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Chapter 26 

Balanced Realization


26.1 Introduction 

One popular approach for obtaining a minimal realization is known as Balanced Realization. In this 

approach, a new state-space description is obtained so that the reachability and observability gramians 

are diagonalized. This de�nes a new set of invariant parameters known as Hankel singular values. This 

approach plays a major role in model reduction which w i l l b e h i g h l i g h ted in this chapter. 

26.2 Balanced Realization 

Let us start with a system G with minimal realization � � 

A B 

G � : 

C D 

As we h a ve seen in an earlier lecture, the controllability gramian P , and the observability gramian Q 

are obtained as solutions to the following Lyapunov equations 

0AP + PA 

0 + BB � 0 

A0Q + QA + C 0C � 0: 

P and Q are symmetric and since the realization is minimal they are also positive de�nite. The 

eigenvalues of the product of the controllability and observability gramians play an important role 

in system theory and control. We de�ne the Hankel singular values, �i 

, as the square roots of the 

eigenvalues of PQ 

4 

�i 

� ( �i 

(PQ )) 

1 

2 : 

We w ould like to obtain coordinate transformation, T , that results in a realization for which the con-
trollability and observability gramians are equal and diagonal. The diagonal entries of the transformed 

controllability and observability gramians will b e the Hankel singular values. With the coordinate 

transformation T the new system realization is given by � � � �
^ ^T 

;1AT T 

;1B A B 

G � � � 

CT D Ĉ D 



and the Lyapunov equations in the new coordinates are given by 

^ ^ ^ ^0A(T;1PT 0
;1
) + ( T;1PT 0

;1
)A0 + BB � 0 

0^	 ^ ^0 ^A0(T QT ) + ( T 0QT )A+ C C � 0 : 

Therefore the controllability and observability gramian in the new coordinate system are given by 

P̂ � T;1PT 0
;1 

Q̂ � T 0QT: 

We are looking for a transformation T such that 10 

�1 

�2
^ ^P � Q � � � 

BBB@


CCCA


:. . . 

�n 

We h a ve the relation 

(T;1PT;1
0 

)(T 0QT ) � �2� 

T;1PQT � �2: (26.1) 

Since Q � Q0 and is positive de�nite, we can factor it as Q � R0R, where R is an invertible matrix. 

2We can write equation 26.1 as T;1PR0RT  � � , w	hich is equivalent to 

0 2(RT );1RPR (RT ) � � : (26.2) 

Equation 26.2 means that RPR0 is similar to �2 and is positive de�nite. Therefore, there exists an 

orthogonal transformation U , U 0U � I , such that 

0RPR0 � U�2U :	 (26.3) 

2By setting (RT );1U� 

1 

� I , w e arrive at a de�nition for T and T;1 as 

2T � R;1U� 

1 

T;1 � �; 

1 

2 U 0R:  

With this transformation it follows that 

P̂ � (�; 

1 

2 U 0R)P (R0U
0 0� (�; 

1 

2 U )(U�2U )(U

� �� 

and 

^

�; 

1 

2 ) 

�; 

1 

2 ) 

Q � (R;1U� 

1

2 )0R0R(R;1U� 

1

2 ) 

1

2 U 0
1

2 )� (� )(R0
;1
R0RR;1)(U� 

� �: 



26.3 Model Reduction by Balanced Truncation 

Suppose we start with a system � � 

A B 

G � � 

C D 

where A is asymptotically stable. Suppose T is the transformation that converts the above realization 

to a balanced realization, with � �
^ ^A B 

G � �
Ĉ D 

^ ^and P � Q � � � diag(�1 

� � 2� : : : � � n). In many applications it may b e bene�cial to only consider 

the subsystem of G that corresponds to the Hankel singular values that are larger than a certain small 

constant. For that reason, suppose we partition � as � � 

�1 

0 

� � 

0 �2 

where �2 

contains the small Hankel singular values. We can partition the realization of G accordingly 

as 2 ^ ^A11 

A12 

^ ^G � 

4 A21 

A22 

^ ^C1 

C2 

Recall that the following Lyapunov equations hold 

3
B̂1 

B̂2 

5 : 

D 

^ ^ ^B0^A� +� A0 + B � 0 

^ ^ ^A0�+� A + C 0Ĉ � 0 � 

which can be expanded as � � � � � �
^ ^ ^ ^B1B

0 B1B
0A11�1 

A12�2 

�1Â
0 ^

21 1 2 

^ ^
11 

�1 

A0 

+ + � 0 �^ ^ ^ ^B2B
0 B2B

0A21�1 

A22�2 

�2Â
0 ^

22 1 2 

^ ^
12 

�2 

A0 

� � � � � �
^ ^ Ĉ1 

0 Ĉ1 

Ĉ 0 ^Â0 

21�2 +
�1A11 

�1A12 1C211 

�1 

Â0 

+ � 0 :^ ^ Ĉ2 

0 Ĉ1 

Ĉ 0 ^Â0 

22�2 

�2A21 

�2A22 2C2 

From the above t wo matrix equations we get the following set of equations 

^ ^

12 

�1 

Â0 

^ ^
11 

+ B1B
0 � 0 (26.4) 

^ ^

A11 

�1 

+� 1A
0 

1 

^ ^
21 

+ B1B
0 � 0 (26.5) 

^ ^

A12 

�2 

+� 1A
0 

2 

^ ^
22 

+ B2B
0 � 0 (26.6)A22 

�2 

+� 2A
0 

2 

Â0 ^
11 

�1 

+� 1 

A11 

+ Ĉ1 

0 Ĉ1 

� 0 (26.7) 

 



0 +21 

�2 

Â � 12 

+ 1 

ĈÂ 0 

2 

Ĉ � 0 (26.8)1 

0 

22�2 22 

+ 2 

From this decomposition we can extract two subsystems 

ĈÂÂ 0 

2 

Ĉ� � 0:
 (26.9)
+ 2 

1 

� 

� 

11 

1 

Â

Ĉ

� � 

22 

Â

Ĉ2 

�


B̂
 B̂
1 2 

2 

�G
 G� : 

D D


Theorem 26.1 G is an asymptotically stable system. If �1 

and �2 

do not have any common diagonal 

elements then G1 

and G2 

are asymptotically stable. 

Proof: Let us show that the subsystem 

1 

� 

Â

Ĉ

� 

11 

1 

�


B̂
1G


D


is asymptotically stable. Since Â11 

satis�es the Lyapunov equation 

0� +11 1 11 

Â

ÂÂ

then it immediately follows that all the eigenvalues of 11 

must be in the closed left half of the complex 

B̂
 B̂


0� � 0+ 1 1 1 

Âi( 11 

) � 0. In order to show asymptotic stability w e m ust show t h a t Â11 

has no plane� that is, Re� 


purely imaginary eigenvalues. 

Âis an eigenvalue of 11 

, and let v Â11 

;
) is one-dimensional. The general case where there may b 

Suppose !j be an eigenvector associated with !j � (
 I!j )v � 

Â0. Assume that the Kernel of ( 11 

; I!j e 

several independent eigenvectors associated with !j can b e handled by a slight modi�cation of the 

present argument.


Equation 26.7 can be written as


Â( 11 

; I!j Ĉ
Ĉ
1 1 

0 on the left we get 

)0�1 

0� 1(A I!j )
 � 011 

;+ + 

By multiplying the above equation by v on the right a n d v

0 Â( 11 

; 

^0C 0 

1 

Ĉ1 

v � 0I!j )0�1v + v 

0�1(A I!j )v + v11 

;v 

Ĉwhich implies that ( 1 

v Ĉ)0( 1 

v) � 0, and this in turn implies that 

Ĉ1v � 0 (26.10):


Again from equation 26.7 we get 

Â( 11 

; I!j )0�1v Ĉ)v 1 

Ĉ0 

1v� 1(A I!j � 0
�
11 

;+ + 

which implies that 

)0�1vÂ( 11 

; I!j � 0
:
 (26.11) 

Now w e m ultiply equation 26.4 from the right b y � 1v and from the left by v0�1 

to get 

Â0�1( 11 

; !j 1v + v 

0�2)�2
1(A11 

; !j 0)0�1v + v 

0�1B1 

B1�1v � 0:
v I I



1 

�1v) � 0, and B0This implies that v0�1 

B1)(B
0 

1�1v � 0 . By multiplying equation 26.4 on the right b y 

�1v we get 

^ ^ ^
1v +� 1 

(A11 

; j! I )0�1v + B1B
0(A11 

; j! I )�2
1�1 

v � 0 

and hence 

^(A11 

; j! I )�2 

1v � 0 : (26.12) 

^Since that the kernel of ( A11 

; j! I ) is one dimensional, and both v and �2 

1v are eigenvectors, it follows 

that �2 ^ � is one of the diagonal elements in �2 

1v � �2 v, where ^ 1 

. 

Now m ultiply equation 26.5 on the left by v0�1 

and equation 26.8 by v0 on the left we get 

^ 0�2Â0 v 

0�1A12 

�2 

+ v 1 21 

� 0 (26.13) 

and 

^v A00 ^
21 

�2 

+ v 

0�1A12 

� 0 : (26.14) 

�From equations 26.13 and 26.14 we get that 

0 ^;v A0 ^0 ^
21 

�2 + �2 v A0 � 0 �2 21 

which can be written as � � 

21 

) 2 

�2I � 0 :(v 

0Â0 ;�2 + ^

^Since by assumption �2 and �2 have no common eigenvalues, then �2I and �2 

have no common2 1 

eignevalues, and hence A21v � 0. We have 

^(A11 

; j! I )v � 0 

Â21 

v � 0� 

which can be written as � � � � � �
^ ^A11 

A12 

v v 

^ ^ 0
� j! : 

0A21 

A22 

^This statement implies that j! is an eigenvalue of A, w h i c h c o n tradicts the assumption of the theorem 

stating that G is asymptotically stable. 




