
Sigma-Point Kalman Filters for

Probabilistic Inference in Dynamic

State-Space Models

Rudolph van der Merwe
M.Eng., Electrical Engineering, University of Stellenbosch, 1998
B.Eng., Electrical Engineering, University of Stellenbosch, 1995

A dissertation submitted to the faculty of the
OGI School of Science & Engineering at

Oregon Health & Science University
in partial fulfillment of the
requirements for the degree

Doctor of Philosophy
in

Electrical and Computer Engineering

April 2004

c© Copyright 2004 by Rudolph van der Merwe
All Rights Reserved

ii

Dedication

To Zoë,

My companion in love and life

on this long and weirdly wonderful, arduous journey.

For not undertaking this journey we would not have met.

For not meeting, this journey surely would have failed.

Dankie vir alles!

iv

Acknowledgments

I would like to thank the following people who all contributed in some form to the success

of this endevour:

My professors and colleagues at OGI for their intellectual support, and for providing

a congenial and stimulating academic environment. In particular, I want to thank my

advisor, Eric Wan, for his time, patience, insight and knowledge imparted to me over the

last five years. Special thanks also go to Todd Leen for sharing his mathematical expertise

and wisdom, as well as emphasizing the importance of rigor in research. Finally, I want

to thank the remaining members of my thesis committee, Misha Pavel and Dieter Fox, for

their input and suggestions along the way, as well as for taking the time to review this

work.

My family for their love and support. Chris, Henriette, Mary, Christelle, Theron, Rykie

& Gary: Thank you for always believing in me.

All my wonderful friends (of whom there are simply too many to mention by name1):

Thanks for your friendship and support. It kept me sane.

This work was supported in part by the following grants: NSF ECS-0083106, DARPA

F33615-98-C-3516 & ONR N0014-02-C-0248.

1One exception: Dr. Ashvin Goel [67], consider yourself cited.

v

Contents

Dedication . iv

Acknowledgments . v

Abstract .xviii

1 Introduction . 1

1.1 Compact Overview . 1

1.2 Reasoning under Uncertainty . 1

1.3 Probabilistic Inference . 2

1.4 Optimal Solution: Recursive Bayesian Estimation 6

1.5 Approximate Solutions . 7

1.5.1 Gaussian Approximate Methods . 9

1.5.2 Sequential Monte Carlo methods . 14

1.6 Research Objectives and Work Overview . 15

1.6.1 Summary of research objectives . 16

1.7 Contributions of this Work . 19

1.8 Thesis Outline . 23

1.8.1 Main thesis chapters . 23

1.8.2 Appendices . 25

1.9 Publications . 25

2 Gaussian Approximate Bayesian Estimation:

The Kalman Filter Framework . 27

2.1 Introduction . 27

2.2 Optimal Gaussian Approximate Linear Bayesian Update 28

vi

2.3 Nonlinear Transformations of Random Variables 31

2.4 The EKF and its Flaws . 35

2.5 Demonstration of EKF Inaccuracy . 37

2.5.1 Analytic scalar example . 37

2.5.2 Arbitrary nonlinear transformation of Gaussian random variable . . 40

2.5.3 Conversion of polar to Cartesian coordinates 41

2.6 State, Parameter and Dual Estimation . 43

2.6.1 State estimation . 43

2.6.2 Parameter estimation . 44

2.6.3 Dual estimation . 45

2.7 Chapter Summary . 47

3 Sigma-Point Kalman Filters:

Derivation, Algorithmic Implementation, Applications & Extensions . . 49

3.1 Introduction . 49

3.2 The Unscented Kalman Filter . 50

3.2.1 The unscented transformation . 51

3.2.2 The scaled unscented transformation 55

3.2.3 Implementing the unscented Kalman filter 59

3.3 The Central Difference Kalman Filter . 62

3.3.1 Second order Sterling polynomial interpolation 62

3.3.2 Estimation of posterior mean and covariance by Sterling interpolation 65

3.3.3 Demonstration of Sterling interpolation for posterior statistics esti-

mation . 69

3.3.4 Implementing the central difference Kalman filter 71

3.4 Sigma-Point Kalman Filters and the Sigma-point Approach 74

3.4.1 The Sigma-point Approach . 74

3.4.2 Sigma-point Kalman filters . 79

3.5 SPKF Application to State, Parameter and Dual estimation 81

3.5.1 SPKF State Estimation . 82

vii

3.5.2 SPKF Parameter Estimation . 89

3.5.3 SPKF Dual Estimation . 102

3.6 SPKF Extensions & Implementation Variations 108

3.6.1 Additive noise forms . 108

3.6.2 Square-root forms . 111

3.6.3 SPKF Based Smoothing . 124

3.7 Chapter Summary . 126

4 Sigma-Point Kalman Filters:

Theoretical Analysis .128

4.1 Introduction . 128

4.2 Alternate Interpretation of Sigma-Point Approach 129

4.2.1 Statistical linearization . 130

4.2.2 Weighted statistical linear regression (WSLR) 132

4.2.3 Relationship between WSLR and the sigma-point approach 135

4.2.4 Demonstration of statistical linearization as implicitly used by the

sigma-point approach . 137

4.3 Accuracy of Sigma-point Approach . 139

4.3.1 Posterior mean accuracy . 140

4.3.2 Posterior covariance accuracy . 142

4.3.3 Demonstration of accuracy of sigma-point approach 145

4.4 Relationship between Sigma-Point Approach and Gaussian Quadrature . . . 146

4.5 Theoretical Analysis of SPKF based Parameter Estimation 148

4.5.1 MAP Parameter Estimation . 149

4.5.2 The Gauss-Newton Method for Nonlinear Least Squares 156

4.5.3 The SPKF Parameter Estimation Measurement Update as an Online

Gauss-Newton Method . 158

4.5.4 Discussion and Experimental Demonstration 161

4.6 Summary of SPKF properties . 166

4.7 Chapter Summary . 167

viii

5 SPKF Based UAV Autonomy .169

5.1 Introduction . 169

5.2 Experimental Platform . 171

5.2.1 Vehicle Airframe . 172

5.2.2 Avionics System . 174

5.2.3 Nonlinear Vehicle Models . 176

5.2.4 Sensor Models . 187

5.2.5 Simulation Systems . 189

5.2.6 Control System . 190

5.3 SPKF Based Estimation System . 192

5.3.1 SPKF based Time Delayed Sensor Fusion 200

5.3.2 SPKF based quaternion unity norm constraint enforcement 206

5.4 State Estimation Experimental Results . 210

5.4.1 Experiment SE0: Determining effect of IMU offset term in vehicle

dynamics . 210

5.4.2 Experiment SE1: EKF vs. SPKF (without latency compensation)

vs. SPKF (with latency compensation) 212

5.4.3 Experiment SE2: Closed loop control and estimation performance . . 216

5.4.4 Experiment SE3: IMU degradation experiments 219

5.5 Parameter Estimation Experimental Results 226

5.5.1 Implementation Issues . 227

5.5.2 Experiment PE1: Static system parameter identification 229

5.5.3 Experiment PE2: Dynamic system parameter identification and track-

ing . 229

5.6 Dual Estimation Experimental Results . 231

5.6.1 System Implementation . 233

5.6.2 Experiment D1: Joint estimation of auxiliary states and dynamic

tracking of vehicle mass . 235

5.7 Chapter Summary . 237

ix

6 Non-Gaussian Bayesian Estimation:

Sequential Monte Carlo / SPKF Hybrids238

6.1 Introduction . 238

6.2 Particle Filters: Monte Carlo Simulation and Sequential Importance Sampling239

6.2.1 Perfect Monte Carlo Simulation . 239

6.2.2 Bayesian Importance Sampling . 240

6.2.3 Sequential Importance Sampling . 242

6.2.4 Mitigating SIS Degeneracy : Resampling 247

6.2.5 The Particle Filter Algorithm . 249

6.2.6 Demonstration of Nonlinear Non-Gaussian Inference 251

6.3 Improving Particle Filters: Designing Better Proposal Distributions 255

6.3.1 Sigma-Point Particle Filter . 260

6.3.2 Gaussian Mixture Sigma-Point Particle Filters 264

6.3.3 Discussion about differences between SPPF and GMSPPF 274

6.4 Experimental Results . 275

6.4.1 Experiment 1 : Scalar Nonlinear, Non-Gaussian Time-series Estima-

tion . 277

6.4.2 Experiment 2 : Econometrics - Pricing Financial Options 278

6.4.3 Experiment 3 : Comparison of PF, SPPF & GMSPPF on nonlinear,

non-Gaussian state estimation problem 287

6.4.4 Experiment 4 : Human Face Tracking 290

6.4.5 Experiment 5 : Mobile Robot Localization 298

6.5 Chapter Summary . 311

7 Conclusions and Future Work .313

7.1 Introduction . 313

7.2 Concluding Summary . 313

7.3 General Overview . 315

7.4 Possible Extensions & Future Work . 317

7.5 Derived & Related Work . 324

x

Bibliography .327

A The Kalman Filter .346

A.1 Introduction . 346

A.2 MMSE Derivation of Kalman Filter . 346

A.3 Gaussian MAP Derivation of Kalman Filter 350

A.4 The Full Kalman Filter Algorithm . 354

A.5 Alternative Forms . 355

A.5.1 Joseph’s Form of the Measurement Update 355

A.5.2 Schmidt-Kalman Filter . 357

B Navigation Primer .359

B.1 Introduction . 359

B.2 Reference Frames . 359

B.3 Attitude Quaternion . 362

B.4 Matrix Exponentiation of a Skew-Symmetric Matrix 365

C ReBEL Toolkit .369

C.1 A Recursive Bayesian Estimation Library for Matlab r© 369

Biographical Note .376

xi

List of Algorithms

1 The extended Kalman filter (EKF) . 36

2 The unscented Kalman filter (UKF) . 60

3 The central difference Kalman filter (CDKF) 71

4 The unscented Kalman filter (UKF) - SPKF formulation 79

5 The central difference Kalman filter (CDKF) - SPKF formulation 79

6 The unscented Kalman filter (UKF) - parameter estimation form 93

7 The central difference Kalman filter (CDKF) - parameter estimation form . . 94

8 The unscented Kalman filter (UDKF) - additive noise case 108

9 The central difference Kalman filter (CDKF) - additive noise case 110

10 The square-root UKF (SR-UKF) - general state estimation form 114

11 The square-root UKF (SR-UKF) - state estimation form, additive noise case 115

12 The square-root CDKF (SR-CDKF) - general state estimation form 116

13 The square-root CDKF (SR-CDKF) - state estimation form, additive noise

case . 118

14 The square-root UKF (SR-UKF) - parameter estimation 122

15 The square-root CDKF (SR-CDKF) - parameter estimation form 123

16 The particle filter (PF) . 250

17 The sigma-point particle filter (SPPF) . 261

18 The Gaussian mixture sigma-point particle filter (GMSPPF) 269

19 The Kalman filter (KF) . 356

xii

List of Tables

2.1 Calculating the statistics of a Gaussian random variable that undergoes a

quadratic nonlinear transformation. 40

3.1 Estimation of Mackey-Glass time-series with the EKF, UKF and CDKF

using a known model: Monte-Carlo averaged (200 runs) estimation error. . . 84

3.2 Inverted double pendulum parameter estimation. 98

3.3 Square-root SPKF state estimation results for Mackey-Glass time-series

problem. 119

3.4 Comparison of smoother performance. 125

4.1 Calculating the statistics of a Gaussian random variable that undergoes a

quadratic nonlinear transformation. 146

4.2 Gauss-Hermite quadrature abscissas and weights for small n. 148

5.1 MIT-Draper-XCell-90 model state vector components 178

5.2 MIT-Draper-XCell-90 model parameters . 179

5.3 Kinematic model state vector components. 181

5.4 State estimation results : EKF vs. SPKF (with and without GPS latency

compensation). 215

6.1 Scalar nonlinear non-Gaussian state estimation experiment results. 278

6.2 Financial options pricing: One-step-ahead normalized square errors over 100

runs. 286

6.3 Non-stationary, nonlinear, non-Gaussian time series estimation experiment. 290

xiii

List of Figures

1.1 Reasoning under uncertainty : Robot Localization 2

1.2 Probabilistic inference . 4

1.3 Probabilistic dynamic state-space model . 5

1.4 Grid based filters vs. sequential Monte Carlo methods. 10

1.5 Unmanned aerial vehicle (UAV) guidance, navigation and control (GNC)

system. 18

2.1 Optimal vs. EKF approximate transformation of Gaussian random variables. 41

2.2 Optimal vs. EKF results on polar-to-Cartesian transformation experiment. . 42

2.3 State estimation: block diagram of a discrete-time nonlinear DSSM 44

2.4 Dual estimation . 46

3.1 Example of weighted sigma-point set for a 2D Gaussian RV. 52

3.2 Schematic diagram of the unscented transformation. 53

3.3 Demonstration of the SUT for mean and covariance propagation. 58

3.4 Optimal vs. linearized vs. Sterling vs. SUT approximation for estimating

the statistic of a or polar-to-Cartesian coordinate transformation. 70

3.5 Estimation of Mackey-Glass time-series with the EKF and SPKF using a

known model. 83

3.6 Estimation of Mackey-Glass time-series with the EKF and SPKF using a

known model (detail). 85

3.7 Monte-Carlo analysis of estimation error for Mackey-Glass nonlinear (chaotic)

time-series estimation problem. 86

3.8 State estimation for inverted double pendulum problem. 88

3.9 SPKF neural network training examples. 96

xiv

3.10 Neural network parameter estimation using different methods for noise es-

timation. 97

3.11 Inverted double pendulum parameter estimation. 98

3.12 Singhal and Wu’s Four Region classification problem. 99

3.13 Rossenbrock’s “Banana” optimization problem. 101

3.14 Schematic diagrams of two main dual estimation filter implementations. . . 103

3.15 Dual nonlinear time-series estimation experiment. 106

3.16 Inverted double pendulum dual estimation and control experiment. 107

3.17 Square-root SPKF parameter estimation. 121

3.18 Forward/backward neural network prediction training for sigma-point Kalman

smoother. 125

4.1 Stochastic linearization / weighted statistical linear regression 138

4.2 Optimization issues: local vs. average (expected) gradient of a nonlinear

function. 164

5.1 Unmanned aerial vehicle (UAV) guidance, navigation and control (GNC)

system. 170

5.2 Close-up of instrumented X-Cell-90 helicopter in flight. 172

5.3 Instrumented X-Cell-90 helicopter in flight. 173

5.4 Schematic diagram of the software based UAV simulation system. 190

5.5 System with a delayed measurement due to sensor latency. 196

5.6 IMU offset impact determination experiment. 211

5.7 Simulator flight plan for UAV estimation experiments. 213

5.8 State estimation results: EKF vs. SPKF (without GPS latency compensa-

tion) vs. SPKF (with GPS latency compensation) 214

5.9 State estimation results (position and velocity error) : SPKF vs. EKF . . . 217

5.10 State estimation results (Euler angle errors) : SPKF vs. EKF 217

5.11 Comparing closed-loop estimation and control results between the EKF and

SPKF. 218

5.12 Typical bias/drift-rate plots for IMU simulation. 222

xv

5.13 IMU degradation experiment: additive noise 223

5.14 IMU degradation experiment: drift/bias . 224

5.15 IMU degradation experiment: IMU update rate 225

5.16 Pure parameter estimation using full nonlinear model and known states. . . 230

5.17 Tracking a time-varying system parameter. 232

5.18 Joint estimation : Hidden system states . 236

5.19 Joint estimation : tracking time-varying system mass 236

6.1 Moving particles to areas of high-likelihood 246

6.2 Resampling . 249

6.3 Schematic diagram of a generic particle filter (SIR-PF) 252

6.4 Non-Gaussian (bimodal) state estimation demonstration 254

6.5 Schematic diagram of the Gaussian mixture sigma-point particle filter (GM-

SPPF). 269

6.6 Scalar nonlinear non-Gaussian state estimation experiment results: state

estimates . 279

6.7 Scalar nonlinear non-Gaussian state estimation experiment results: covari-

ance estimates . 279

6.8 Volatility smile plots for options on the FTSE-100 index. 281

6.9 Probability smile plots for options on the FTSE-100 index. 282

6.10 SPPF one-step-ahead predictions on the call and put option’s prices with

confidence intervals. 283

6.11 Estimated interest rate and volatility. 284

6.12 Probability distribution of the implied interest rate. 285

6.13 Probability distribution of the implied volatility. 285

6.14 GMM approximation of heavy tailed, asymmetric Gamma distributed noise

distribution. 288

6.15 Non-stationary, nonlinear, non-Gaussian time series estimation experiment. 289

6.16 Human face tracking using the SPPF . 291

6.17 SPPF based human face tracking . 296

xvi

6.18 Mobile robot localization: map and physical setup 298

6.19 Mobile robot localization: PF vs GMSSPF results 304

6.20 Mobile robot localization: k=1 close-up . 306

6.21 Mobile robot localization: k=2 close-up . 307

6.22 Mobile robot localization: k=10 close-up . 308

6.23 Mobile robot localization: k=20 close-up . 309

6.24 Mobile robot localization: k=50 close-up . 310

B.1 Reference frames used for terrestrial navigation 360

B.2 Vehicle body fixed reference frame. 361

B.3 Quaternion representation of an arbitrary rotation. 364

C.1 The ReBEL toolkit : general information . 372

C.2 The ReBEL Toolkit : general, modular unified framework for probabilistic

inference in generic DSSMs. 373

C.3 The ReBEL Toolkit : code example . 374

C.4 The ReBEL Toolkit website . 375

xvii

Abstract

Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic
State-Space Models

Rudolph van der Merwe

Supervising Professor: Dr. Eric A. Wan

Probabilistic inference is the problem of estimating the hidden variables (states or

parameters) of a system in an optimal and consistent fashion as a set of noisy or incomplete

observations of the system becomes available online. The optimal solution to this problem

is given by the recursive Bayesian estimation algorithm which recursively updates the

posterior density of the system state as new observations arrive. This posterior density

constitutes the complete solution to the probabilistic inference problem, and allows us to

calculate any "optimal" estimate of the state. Unfortunately, for most real-world problems,

the optimal Bayesian recursion is intractable and approximate solutions must be used.

Within the space of approximate solutions, the extended Kalman filter (EKF) has become

one of the most widely used algorithms with applications in state, parameter and dual

estimation. Unfortunately, the EKF is based on a sub-optimal implementation of the

recursive Bayesian estimation framework applied to Gaussian random variables. This can

seriously affect the accuracy or even lead to divergence of any inference system that is based

on the EKF or that uses the EKF as a component part. Recently a number of related novel,

more accurate and theoretically better motivated algorithmic alternatives to the EKF

have surfaced in the literature, with specific application to state estimation for automatic

control. We have extended these algorithms, all based on derivativeless deterministic

xviii

sampling based approximations of the relevant Gaussian statistics, to a family of algorithms

called Sigma-Point Kalman Filters (SPKF). Furthermore, we successfully expanded the

use of this group of algorithms (SPKFs) within the general field of probabilistic inference

and machine learning, both as stand-alone filters and as subcomponents of more powerful

sequential Monte Carlo methods (particle filters). We have consistently shown that there

are large performance benefits to be gained by applying Sigma-Point Kalman filters to

areas where EKFs have been used as the de facto standard in the past, as well as in new

areas where the use of the EKF is impossible.

xix

Chapter 1

Introduction

1.1 Compact Overview

This chapter will first describe the broad problem domain addressed by the body of work

presented in this thesis. After this, a compact literature overview of related work in the

field is given. Finally, a summary of the specific contributions of the work presented in

this dissertation as well as a overview of the thesis itself is provided.

1.2 Reasoning under Uncertainty

Thanks in part to the relentless accuracy of Moore’s Law [138] over the last 40 years,

cybernetic systems have become more and more capable of tackling hard problems outside

the confines of the research lab. We are currently exploring the solar system with robotic

proxies capable of autonomous reasoning and action [141, 49]; Neural network based sys-

tems are used daily for automatic recognition and classification of handwritten text for

purposes of large volume mail-sorting and check verification [113, 112]; Autonomous bio-

metric systems (voice and face recognition, etc.) are becoming more prevalent in areas

such as homeland security and counter-terrorism [206, 207]. These are but a few examples

of such successful systems, but they do share a very important commonality: They all op-

erate in the real world and therefor have to deal with uncertainty. Consider the situation

shown in Figure 1.1: How does a learning machine (in this case a mobile robot), determine

its own pose (position and orientation) relative to its environment using noisy (uncertain)

sensor measurements? Furthermore, once it has calculated some form of optimal estimate

of its pose, how much “trust” should the robot have in this inferred quantity? In essence,

1

2

Figure 1.1: Reasoning under uncertainty : Using only noisy sensor measurements, how can the robot
determine its pose (position and orientation) relative to its environment? Furthermore, how can this be
accomplished in a manner that optimally uses all the available information and deal with the inherent
uncertainty in a robust manner?

the estimate itself constitutes an uncertain belief of the underlying “reality” of the robots

situation. In order to design such machines that learn from, reason about, and act upon

the real world, we need to represent uncertainty. Probability theory provides a language

for representing these uncertain beliefs and a calculus for manipulating these beliefs in a

consistent manner [33, 89, 151]. In essence, probability theory allows us to reason under

uncertainty. This process is called probabilistic inference.

1.3 Probabilistic Inference

Probabilistic inference is the problem of estimating the hidden variables (states or param-

eters) of a system in an optimal and consistent fashion (using probability theory) given

noisy or incomplete observations. This general framework is depicted in Figure 1.2.

In particular, we will be addressing the sequential (recursive) probabilistic inference

problem within discrete-time nonlinear dynamic systems that can be described by a dy-

namic state-space model (DSSM) as shown in Figure 1.3. The hidden system state xk,

3

with initial probability density p(x0), evolves over time (k is the discrete time index) as

an indirect or partially observed first order Markov process according to the conditional

probability density p(xk|xk−1). The observations yk are conditionally independent given

the state and are generated according to the conditional probability density p(yk|xk). The

DSSM can also be written as a set of nonlinear system equations

xk = f(xk−1,uk,vk;w) (1.1)

yk = h(xk,nk;w) (1.2)

where vk is the process noise that drives the dynamic system through the nonlinear state

transition function f , and nk is the observation or measurement noise corrupting the ob-

servation of the state through the nonlinear observation function h. The state transition

density p(xk|xk−1) is fully specified by f and the process noise distribution p(vk), whereas

h and the observation noise distribution p(nk) fully specify the observation likelihood

p(yk|xk). The exogenous input to the system, uk, is assumed known. Both f and/or h

are parameterized via the parameter vector w. The dynamic state-space model, together

with the known statistics of the noise random variables as well as the prior distributions of

the system states, defines a probabilistic generative model of how the system evolves over

time and of how we (partially or inaccurately) observe this hidden state evolution. This

process is depicted in Figure 1.3.

Dynamic state-space models (as defined in this thesis) can be interpreted as a special

case of the more general framework of Bayesian networks [140] (also known as Bayes nets),

which in turn is the combination of Bayesian probability theory [89] and graphical models

[93]. Bayesian networks do not explicitly “hard code” the notion of temporal information

flow, they rather directly model the probabilistic dependence between the different nodes

in a graph. These dependences are indicated by connecting edges between the nodes, i.e.,

nodes that are not connected by an edge have no direct probabilistic dependence on each

other. The edges are in general not directed, but directed edges (indicated by arrows) can

be used to explicitly model conditional dependence and causal information flow. A DSSM

4

system : ,x w

observation : y

Unobserved

Observed

Figure 1.2: Schematic diagram of probabilistic inference: Given y (noisy observation), what can we
deduce/infer about x (system state) and/or w (system parameters) ?

can thus be interpreted as dynamic Bayesian network (DBN) with directed edges connect-

ing the (hidden) states, where the edges directly model the temporal flow of information

with the implied causality constraints. The first order Markov and conditional observation

independence of the DSSMs we consider in this thesis, is modeled by the specific graphical

structure and relationship of the directed edges and nodes as illustrated by the directed

acyclic graph (DAG) in Figure 1.3. In general, the hidden state-space modeled by DSSMs

are continuous: That is, even though the time-progression from one state to the next is

discrete, the actual state variable evolves smoothly along some manifold (as determined

by the process model) in state space. The number of unique state realizations are thus

infinite. DSSMs can however also be used to model a finite number of uniquely indexed

states. For this specific form of the state-space, the DSSM is known as a hidden Markov

model (HMM) [14]. HMMs can further be divided into two groups: Those whose finite set

of states are still continuously valued and those where the state variables are themselves

discrete. The latter group are closely related to the notion of vector quantization, where

the state variable values act as discrete indexes into state value look-up tables. For a

good overview of the application of Bayesian networks to linear Gaussian systems, see the

tutorial by Roweis and Ghahramani [167].

The problem statement of sequential probabilistic inference in the DSSM framework

(as discussed above) can now be framed as follows: How do we optimally estimate the hid-

den system variables in a recursive fashion as incomplete and noisy observations becomes

5

kx
1k −x2k −x

2k −y 1k −y ky

1(|)k kp −x x

(|)k kp y x

Unobserved

Observed

Figure 1.3: Graphical model of a probabilistic dynamic state-space model. This representation is also
known as a directed acyclic graph (DAG) in the graph theory field.

available online? This issue lies at the heart of numerous real world applications1 in a

variety of fields such as engineering, bio-informatics, environmental modeling, statistics,

finance & econometrics and machine learning to name but a few.

In a Bayesian framework, the posterior filtering density

p(xk|y1:k) (1.3)

of the state given all the observations

y1:k = {y1,y2, . . . ,yk} , (1.4)

constitutes the complete solution to the sequential probabilistic inference problem, and

allows us to calculate any "optimal" estimate of the state, such as the conditional mean

x̂k = E [xk|y1:k] =
∫

xkp(xk|y1:k)dxk . (1.5)

The problem statement can thus be reformulated as: How do we recursively compute the

posterior density as new observations arrive online?

1A few examples: Inertial navigation, bearings-only tracking, navigational map building, speech en-
hancement, global optimization of source-filter models for speech coding, financial time-series prediction,
neural network training, environmental modeling with partial or missing data, etc.

6

1.4 Optimal Solution: Recursive Bayesian Estimation

The optimal method to recursively update the posterior density as new observations arrive

is given by the recursive Bayesian estimation algorithm. By making use of Bayes rule

and the dynamic state-space model of the system, the posterior density can expanded and

factored into the following recursive update form,

p(xk|y1:k) =
p(y1:k|xk)p(xk)

p(y1:k−1)
(1.6)

=
p(yk,y1:k−1|xk)p(xk)

p(yk,y1:k−1)
(1.7)

=
p(yk|y1:k−1,xk)p(y1:k−1|xk)p(xk)

p(yk|y1:k−1)p(y1:k−1)
(1.8)

=
p(yk|y1:k−1,xk)p(xk|y1:k−1)p(y1:k−1)p(xk)

p(yk|y1:k−1)p(y1:k−1)p(xk)
(1.9)

=
p(yk|y1:k−1,xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(1.10)

=
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
, (1.11)

where we again made use of Bayes rule in going from Equation 1.8 to 1.9, and the condi-

tional independence of the observation given the state in going from Equation 1.10 to 1.11.

In order to gain insight into the Bayesian recursion, lets look at the part-by-part decon-

struction of Equation 1.11: The posterior at time k − 1, p(xk−1|y1:k−1), is first projected

forward in time in order to calculate the prior at time k. This is done using the probabilistic

process model, i.e.

p(xk|y1:k−1) =
∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 . (1.12)

Next, the latest noisy measurement is incorporated using the observation likelihood to

generate the updated posterior

p(xk|y1:k) = Cp(yk|xk)p(xk|y1:k−1). (1.13)

7

The normalizing factor is given by

C =
(∫

p(yk|xk)p(xk|y1:k−1)dxk

)−1

, (1.14)

and the state transition prior and observation likelihood densities are given by

p(xk|xk−1) =
∫
δ (xk − f(xk−1,uk,vk;w)) p(vk)dvk (1.15)

and

p(yk|xk) =
∫
δ (yk − h(xk,uk,nk;w)) p(nk)dnk , (1.16)

where δ(·) is the Dirac-delta function.

Although this is the optimal recursive solution, the multi-dimensional integrals (Equa-

tions 1.12, 1.14, 1.15 and 1.16) are usually only tractable for linear, Gaussian systems

in which case the closed-form recursive solution is given by the well known Kalman fil-

ter [102]. For most general real-world (nonlinear, non-Gaussian) systems however, the

multi-dimensional integrals are intractable and approximate solutions must be used.

1.5 Approximate Solutions

Numerous approximate solutions to the recursive Bayesian estimation problem have been

proposed over the last couple of decades in a variety of fields. These methods can be

loosely grouped into the following four main categories2, some of which will be elaborated

on in more detail later:

• Gaussian approximate methods: These methods all model the pertinent densi-

ties in the Bayesian recursion by Gaussian distributions, under the assumption that

a consistent minimum variance estimator (of the posterior state density) can be re-

alized through the recursive propagation and updating of only the first and second

2This list is not intended to be complete (exhaustive), but rather aims to reflect the broader categories
and some of the representative or seminal works in those areas. Many excellent reviews and tutorials of
the larger recursive Bayesian estimation field and optimal filtering can be found in the literature [62, 4,
46, 92, 93, 65]. These publications contain much more exhaustive taxonomies of the different approaches
that fall into the broad categories presented here. For the sake of clarity and brevity, we do not intend to
duplicate such a complete listing and exposition here.

8

order moments of the true densities.

– Kalman filter [102]: The celebrated Kalman filter (KF) is the optimal closed-

form solution for linear, Gaussian DSSMs.

– Extended Kalman filter [90]: The EKF applies the Kalman filter framework to

nonlinear Gaussian systems, by first linearizing the DSSM using a first-order

truncated Taylor series expansion around the current estimates.

– Gaussian sum filters [3]: The GSF approximates the posterior by a finite linear

mixture of Gaussian densities, i.e., a Gaussian mixture model (GMM) approxi-

mation. Each Gaussian component density of the GMM is propagated using a

separate parallel running KF/EKF.

• Direct numerical integration methods: These methods, also known as grid-

based filters (GBF), approximate the optimal Bayesian recursion integrals with large

but finite sums over a uniform N-dimensional grid that tiles the complete state-

space in the “area of interest”. For even moderately high dimensional state-spaces

the computational complexity quickly becomes prohibitively large, which all but

preclude any practical use of these filters. For more detail, see [155].

• Sequential Monte-Carlo methods [45]: SMC methods make no explicit assump-

tion about the form of the posterior density. They can be used for inference and

learning in any general, nonlinear non-Gaussian DSSMs. These methods, like the

grid-based filters, approximates the Bayesian integrals, with finite sums. Unlike

GBFs however, the summation is done with sequential importance sampling on an

adaptive “stochastic grid”. This grid, as defined by a set of weighted samples drawn

from a proposal distribution that approximates the true posterior, is concentrated

in high likelihood areas of the state-space (See Figure 1.4). This approach results in

huge computational savings, allowing for the implementation of practical algorithms

called particle filters [44, 118, 68, 87]. See Section 1.5.2 for more detail.

• Variational Bayesian methods [11, 92]: Variational Bayesian methods approx-

imates the true posterior distribution with a tractable approximate form. A lower

9

bound on the likelihood of the posterior is then maximized with respect to the free

parameters of this tractable approximation, through the use of Jensen’s inequality

and variational calculus [65]. Recursive adaptation of this approach to DSSMs forms

the basis of numerous inference algorithms, such as the Bayesian mixture of factor

analyzers [64] to name but one. Variational Bayesian methods is a relatively young,

but promising newcomer to the field of approximate Bayesian inference. Nonethe-

less, these methods fell outside the scope of the research questions addressed in this

thesis.

All of the approximate methods discussed above, make some form of simplifying assump-

tion regarding either the form of the probability densities in question, the nature of the

underlying system dynamics and the desired form of the resulting estimator. This is done

in order to allow for tractable and practically implementable algorithms. The accuracy

and validity of the simplifying assumptions will strongly depend on the specific nature

of the inference problem at hand, making certain approximate solutions more attractive

than others. The work presented in this thesis, focused primarily on the most popular and

widely used of these approaches, namely. Gaussian approximate methods and sequential

Monte Carlo methods (SMC) as well as hybridizations of the two.

We will now give a brief introduction to these two areas, which will be covered in

more detail in subsequent chapters. For brevity’s sake, a certain amount of insightful

but rather lengthy introductory material on both Gaussian approximations and sequential

Monte Carlo methods are not presented here, but rather in Chapters 2 and 6 respectively.

This includes an in-depth discussion of the extended Kalman filter (EKF) and why it is

flawed, and important issue which is addressed in this thesis. We refer the reader to those

sections for more background material if the following discussion (Sections 1.5.1 and 1.5.2)

are to deemed too concise.

1.5.1 Gaussian Approximate Methods

Due in part to their relative ease of implementation and modest computational cost, the

group of Gaussian approximate solutions has received most attention for over the past 40

years. Under the assumption that the underlying DSSM is linear and all of the probability

10

2x1x
2x

1x
2x

grid based inference sequential Monte Carlo based inference

Figure 1.4: Difference between grid-based filters (left) and sequential Monte Carlo based filters (right).
Both approaches approximates integrals over complex distributions by finite sums over a grid in the
state-space. However, the grid-based approach uses an uniform grid that covers a large volume of the
state-space, resulting in huge computational costs. The sequential Monte Carlo approach on the other
hand, concentrates its grid in areas of increased likelihood, i.e., peaks in probability density, thereby
significantly reducing the computational cost without sacrificing accuracy. This figure shows a 2D
example with a non-Gaussian probability distribution. The x1 and x2 coordinates of the summation
grid for both approaches are indicated by location of the red dots on their respective axes. Notice how
the SMC approach concentrates the grid in areas of increased probability (peaks of distribution) that
constitutes the bulk of the probability mass of the whole distribution.

11

densities are Gaussian, the celebrated Kalman filter [102] is the optimal (and exact) solu-

tion to the recursive Bayesian estimation problem. If these assumptions hold, the achieved

solution is optimal in the minimum mean-square-error (MMSE) sense, the maximum like-

lihood (ML) sense, the maximum a posteriori (MAP) sense and asymptotically achieves

the Cramer-Rao lower bound [104]. However, Kalman’s original derivation of the Kalman

filter (see Appendix A, Section A.2 for a full derivation) did not require the underlying

system equations to be linear or the probability densities to be Gaussian. The only as-

sumptions made are that consistent estimates of the system random variables (RVs) can

be maintained by propagating only their first and second order moments (means and co-

variances), that the estimator itself be linear, and that predictions of the state and of the

system observations can be calculated. These predictions are optimally calculated by tak-

ing the expected value of Equations 1.1 and 1.2. It turns out that these expectations can

in general only be calculated exactly for linear Gaussian random variables. This does not

however disallow the application of the Kalman framework to nonlinear systems. It just

require further approximations to be made. One such approximation is the linearization

of the DSSM through the use of a first order truncated Taylor series expansion around the

current estimate of the system state. This algorithm is known as the extended Kalman

filter (EKF) [90, 4, 62].

Off all the approximate solutions listed in the previous section, the EKF has probably

had the most widespread use in nonlinear estimation and inference over the last 30 years. It

has been applied successfully3 to problems in all areas of probabilistic inference, including

state estimation (SE), parameter estimation (PE) (also known as machine learning) and

dual estimation (DE) [143, 76, 62]. Here are but a few real-world examples of where the

EKF is used for these purposes:

• State estimation: The EKF has become a standard component part of most com-

mercially sold integrated navigation systems (INS) which are used to generate nav-

igational state solutions (position, attitude and velocity) for a variety of aircraft

(manned and unmanned) [142, 84, 35, 185]. These units typically use an EKF to

3Some would say that the EKF has become the de facto standard for approximate nonlinear estimation.

12

fuse observational data coming from a variety of avionics sensors such as a GPS, IMU

and magnetic compass into an estimate of the vehicles navigational state. Histori-

cally, one of the first successful real-world applications of the EKF for this purpose

was in the navigation computer of the Apollo moon mission [80].

• Parameter estimation: Puskorius and Feldkamp from Ford Research Laboratories

have applied the EKF algorithm to the problem of training of recurrent neural net-

works for real-world automotive engineering problems such as engine misfire detec-

tion, drop-out rejection, sensor catalyst modeling and on-vehicle idle speed control

[160]. The result of this work was a custom VLSI ASIC based on a recurrent neural

network framework [184].

• Dual estimation: Nelson successfully applied the EKF in a dual estimation framework

to the problem of single channel speech enhancement [143]. For this application, the

EKF is used to enhance the quality of human speech that has been corrupted by

additive noise. This is done by estimating not only the underlying clean speech

sequence, but also the parameters of the speech models that are used to clean up the

speech. The only input to the system being the noisy speech itself [145, 144].

Even newer, more powerful inference frameworks such as sequential Monte Carlo methods

(see Section 1.5.2) often use extended Kalman filters as subcomponents [44]. Unfortunately,

the EKF is based on a suboptimal implementation of the recursive Bayesian estimation

framework applied to Gaussian random variables. As we show in Chapter 2, the simple

“first order Taylor series linearization” employed by the EKF, ignores the fact that the

prior and predicted system state variables (x̂k−1 and x̂−
k) are, in fact, random variables

themselves. This failure to account for the “probabilistic spread” of the state variables

seriously affect the accuracy of the posterior predictions as well as the final state estimates

generated by the filter. Furthermore, this often leads to divergence of the filter itself, where

the filter fails to generate consistent estimates of the estimation error covariance, causing

the filter to “trust” its own estimates more than is warranted by the true underlying state-

space evolution and observation sequence. These two issues not only affect the EKF, but

also any inference system that is based on the EKF or that uses the EKF as a component

13

part.

These shortcomings of the EKF have in recent years lead to the independent develop-

ment of a number of closely related Gaussian approximate derivativeless filters, all based

on novel deterministic sampling methods for the propagation of Gaussian random variables

through nonlinear systems. In the mid to late nineties, Julier and Uhlmann [94, 99, 100, 96]

introduced the Unscented Kalman Filter (UKF) in the general context of state estimation

for automatic control. The UKF makes explicit use of the scaled unscented transformation

(SUT) [97] in the calculation of the optimal terms in the Gaussian approximate Bayesian

update (see Chapter 3), forgoing the need for an analytical Taylor series linearization as

used in the EKF. The scaled unscented transformation only requires functional evaluations

of the true nonlinear DSSM, which allows it to be used on non-smooth, non-analytical sys-

tems. The use of the EKF for such systems are impossible. Julier showed how, for the

same computational cost, the UKF consistently outperforms the EKF in terms of state

estimation accuracy and estimate consistency [95].

Independently from Julier and Uhlman’s work, two different groups published a closely

related algorithm in the late nineties. This filter, based on Stirling’s interpolations formula

[182], is closely related to the UKF through the use of a similar derivativeless deterministic

sampling approach to propagate the Gaussian statistics (means and covariances) through

nonlinear DSSMs. Ito and Xiong [88] called their version of this algorithm the central

difference filter (CDF) and Norgaard et al [148] called theirs the divided difference filter

(DDF). Although these two approaches were developed independently and published at the

same time, they are essentially the same algorithm and we use the name central difference

Kalman filter (CDKF) to refer to it. It turns out that the CDKF has, for all practical

purposes, the same estimation performance and ease of implementation, i.e., no analytical

derivatives, only functional evaluations, etc., as the UKF [147].

It turns out that the different derivativeless techniques used for Gaussian approximate

random variable propagation, by both the UKF and CDKF algorithms, can be viewed as

different implementational realizations of the same general deterministic sampling frame-

work we call the sigma-point approach. This allows us to group all Gaussian approximate

solutions that make use of this framework into a larger loosely knit family of algorithms

14

called sigma-point Kalman filters (SPKFs) [188]. Within this larger family of filters, we

have since derived numerically more efficient and stable versions of both the CDKF and

the UKF , called the square-root CDKF (SR-CDKF) and the square-root UKF (SR-UKF)

[191, 192]. As we will show later, there are interesting parallels between the sigma-point

approach (as used in all SPKFs) and a statistical technique called weighted statistical linear

regression (also known as stochastic linearization [62, 114]). This partial alternative inter-

pretation of the sigma-point approach allows for further useful unifying insights into why

the SPKF is expected to perform better and more robustly than the EKF for Gaussian

approximate probabilistic inference problems.

The original publications on the UKF and CDKF focused primarily on state-estimation

for automatic control. We have since further expanded the use of SPKFs into the larger

full domain of probabilistic inference, specifically with applications to state estimation,

parameter estimation and dual estimation. These effort form one of the main focus areas

of the work and original contribution presented in this thesis and is presented in full in

Chapter 3.

1.5.2 Sequential Monte Carlo methods

More recently, another group of approximate solutions known as Sequential Monte Carlo

Methods (SMC) or particle filters, have gained significant interest not only in the theoret-

ical/research community, but also as viable solutions to real-world problems [45]. These

methods, although more computationally expensive4 than Gaussian approximations, are

the least restrictive with respect to the assumptions they make and can be effectively

applied to general nonlinear, non-Gaussian problems. Particle filters represents the distri-

bution of all pertinent random variables in the Bayesian recursion by empirical point mass

approximations and then recursively update them using sequential importance sampling

and resampling [46].

Many researchers in the statistical and signal processing communities have, almost

simultaneously, proposed several variations of particle filtering algorithms. As pointed

4With the increasing availability of cheap but extremely powerful common-of-the-shelf (COTS) compu-
tational resources (general purpose CPUs, DSPs, etc) these methods are quickly becoming viable (practical)
solutions for hard (nonlinear, non-Gaussian) real-world estimation problems.

15

out in [119], basic Monte Carlo methods, based on sequential importance sampling, has

already been introduced in the physics and statistics literature in the fifties [69, 165]. These

methods were also introduced in the automatic control field in the late sixties [71], and

further explored during the seventies by various researchers [70, 208, 1]. However, all these

earlier implementations were based on plain sequential importance sampling, which, as

well see later (Chapter 6), degenerates over time. The major contribution toward allowing

this class of algorithm to be of any practical use was the inclusion of a resampling stage in

the early nineties [68]. Since then many new improvements have been proposed [46]. One

of these improvements uses an extended Kalman filter as a core subcomponent [44, 39].

Although this was done in an attempt to further mitigate the sample depletion problem

experienced by all importance sampling based approaches, it made the resulting hybrid

filter susceptible to the same well-known issues that plague the EKF. Since sigma-point

Kalman filter attempts to improve on the EKF for application to Gaussian approximate

nonlinear estimation, it stands to believe that they could be very useful as a subcomponent

in hybrid SMC filters for nonlinear, non-Gaussian inference problems. It is in this area

that another main focus of this thesis lies, i.e. the extension (improvement) of the standard

particle filter framework through the hybridization with Sigma-Point Kalman filters. This

is covered in full detail in Chapter 6.

1.6 Research Objectives and Work Overview

Over the last thirty years the extended Kalman filter has become a standard technique

within the field of probabilistic inference, used in numerous diverse estimation algorithms

and related applications. One of the reasons for its wide spread use has been the clear

understanding of the underlying theory of the EKF and how that relates to different aspects

of the inference problem. This insight has been enhanced by unifying studies toward the

relationship between the EKF and other related algorithms [170, 12, 13], allowing for the

improvement of numerous existing algorithms [90, 39, 44] and the development of new ones

[157, 158, 159, 66, 76].

As discussed above, the unscented Kalman filter (UKF) and the central difference

16

Kalman filter (CDKF) were introduced as viable and more accurate alternatives to the

EKF within the framework of state estimation. Like most new algorithms, these methods

were not widely known or understood and their application has been limited. The goal of

this dissertation research was an attempt to extend these differently motivated and derived

algorithms into a common family of filters, called sigma-point Kalman filters, and expand

their use to other areas of probabilistic inference, such as parameter and dual estimation

as well as sequential Monte Carlo methods. In doing so we hope to extend the theoretical

understanding of SPKF based techniques (as applied to probabilistic inference and machine

learning), developed new novel algorithmic structures based on the SPKF and apply these

methods to a variety of interesting and representative inference problems.

1.6.1 Summary of research objectives

In order to address the larger research goal, the following five main objectives were iden-

tified:

1. Combine different derivativeless, deterministic sampling based Gaussian approximate

filters into a common family of algorithms called sigma-point Kalman filters

(SPKF).

2. Derive new numerically efficient and stable square-root versions of existing

SPKFs.

3. Extend application of SPKFs to larger probabilistic inference and machine learning

field:

(a) State estimation

• Verification and extension of existing state estimation claims in literature.

• Compare to EKF based state estimation.

(b) Parameter estimation

• Derive efficient algorithmic SPKF forms for parameter estimation.

17

• Experimentally verify SPKF parameter estimation performance on bench-

mark problems (neural network training, parametric model fitting, etc.)

and compare to EKF performance.

• Investigate the extension of SPKF parameter estimators to non-MSE cost

functions.

• Relate (theoretically) SPKF based parameter estimation methods to other

existing second order nonlinear optimization methods.

(c) Dual estimation

• Implement different algorithmic forms for SPKF based dual estimation:

dual SPKF, joint SPKF and SPKF based EM.

• Comparative experimental verification of performance relative to EKF based

methods.

4. SPKF application to real-world inference problem: UAV Autonomy

Two large ongoing research projects within our group at OGI are the DARPA spon-

sored “Model-Relative Control of Autonomous Vehicles” [38, 105] and the ONR spon-

sored “Sigma-Point Kalman Filter Based Sensor Integration, Estimation and Sys-

tem Identification for Enhanced UAV Situational Awareness & Control” [149, 203]

projects. Both these overlapping programs focuses on the autonomous control of an

unmanned aerial vehicle (UAV)5. The core component of such a system is a high-

performance digital computer based guidance, navigation & control (GNC) unit as

depicted in Figure 1.5. The main subsystems of this GNC unit is a control system and

a guidance & navigation system (GNS). The GNS takes noisy avionics sensor (GPS,

IMU, magnetic compass, altimeter, etc.) measurements as input, and then fuse them

in a probabilistic sense with predictions from a vehicle dynamics model in order to

calculate optimal vehicle navigation state solutions. These state estimates together

with desired flight trajectories are then fed to the control system that computes some

form of optimal control law to drive the flight surface actuators of the vehicle. The

5In our case the UAV is an autonomous rotorcraft (helicopter). See Chapter 5 for full detail.

18

ku

ky

Estimation

system

noisy sensor

measurements

vehicle estimates

(states / parameters)

control
Mission plan

(way points)

Model based

adaptive control

system

GNC System

UAV

ˆ ˆ{ , }k kx w

Figure 1.5: Unmanned aerial vehicle (UAV) guidance, navigation and control (GNC) system.

current state-of-the-art probabilistic inference system used for such UAV guidance

and navigation systems are usually EKF based [56, 58]. Our aim is to replace the

EKF in the UAV-GNC system by a SPKF with specific focus on:

• Improved six-degrees-of-freedom (6DOF) state estimation accuracy (relative to

EKF).

• SPKF based compensation for GPS latency.

• Evaluation of improved control envelope due to use of better state estimator.

• SPKF based parameter estimation: Track certain UAV model parameters such

as mass, moments of inertia, etc.

• SPKF based dual estimation: Simultaneously estimate 6DOF state, as well as

secondary set of hidden dynamic model states (blade flapping angles, etc.) and

attempt to track a subset of vehicle model parameters (mass, etc.)

This real-world application will bring together numerous theoretical and algorith-

mic aspects and serve as a proof of concept for integrating the different separately

developed SPKF technologies.

5. Development of hybrid SMC / SPKF algorithms for improved general, nonlin-

ear, non-Gaussian probabilistic inference:

19

As indicated in Section 1.5.2 and discussed in full detail in Chapter 6, we aimed

to hybridize existing particle filters with sigma-point Kalman filters in an attempt

to mitigate the well known sample depletion problem [46]. Previous attempts to

accomplish the same goal through the use of EKF hybridization has had only partial

success due to the inherent problems experienced with EKF inaccuracy, divergence,

etc. We intend to improve/extend this approach through the replacement of the

EKF in all such hybrid methods by the SPKF. Specific goals include:

• Hybrid SMC/SPKF algorithm development from well founded theoretical ar-

guments.

• Application of new hybrid algorithm to nonlinear, non-Gaussian inference prob-

lems for experimental verification and comparison to existing competitive meth-

ods.

By addressing these five main objectives, we hope to contribute to taking the SPKF out of

its infancy and making it better understood and more accessible to different areas within

the probabilistic inference field.

1.7 Contributions of this Work

Most of the research objectives as stated in the previous section were successfully com-

pleted during the course of this thesis research. During the pursuit and completion of

these objectives, a number of ancillary issues came to light. These were addressed as

needed within the larger scope of the research. In summary, the following concrete and

substantial contributions to the body of knowledge regarding SPKFs and their application

to probabilistic inference and machine learning were made:

1. Sigma-point Kalman filters:

• Combined different derivativeless Kalman filters (UKF, CDF & DDF) into a

single implementational/algorithmic framework : SPKFs

• Derived numerically efficient and stable square-root versions of all SPKF algo-

rithms: SR-UKF & SR-CDKF

20

• Extended application of SPKFs to larger probabilistic inference and machine

learning field:

– State estimation:

∗ Verified literature claims of consistently better performance than EKF

on a variety of nonlinear state estimation problems.

∗ Successfully applied SPKFs to new state estimation problems such as

nonlinear time-series prediction.

∗ Implemented and verified a novel SPKF based smoother for nonlinear

time-series estimation. This smoother also forms the core component of

the E-step of a future SPKF based full EM (expectation maximization)

algorithm.

– Parameter estimation

∗ Derived efficient O(n2) algorithmic SPKF forms for parameter estima-

tion.

∗ Experimentally verified SPKF parameter estimation performance on a

variety of benchmark problems (neural network training, parametric

model fitting, etc.) and compared to EKF performance.

∗ Extended SPKF based parameter estimation framework to minimize

general non-MSE cost functions.

∗ We show the relationship between the SPKF and other second order

nonlinear optimization methods. This extends the theoretical under-

standing of the SPKF for parameter estimation. The SPKF is cast into

a general online (stochastic) adaptive modified Newton method frame-

work that minimizes an instantaneous nonlinear least squares cost func-

tion.

– Dual estimation

∗ Derived and implemented two different algorithmic forms for SPKF

based dual estimation:

· dual SPKF : iterative state/parameter estimation; less optimal; lower

21

computational cost

· joint SPKF : direct joint MAP estimation of states and parameters;

closer to optimal solution; higher computational cost.

∗ Experimentally verified performance and compared to EKF based meth-

ods on a number of dual estimation problems.

2. Real-world application of SPKF framework: UAV Autonomy

• A SPKF based UAV guidance & navigation system for sensor integration and

probabilistic inference (state, parameter & dual estimation) was successfully

implemented (first of its kind to authors knowledge).

• SPKF system incorporates a novel method to deal with sensor latency (in GPS).

The SPKF framework allows for an elegant (using sigma-point approach) way

of optimally fusing time-delayed measurements with smoothed state estimates.

This allows for increased estimation performance of whole inference system.

• System was extensively tested against state-of-the-art EKF based guidance &

navigation system. The SPKF system consistently outperforms EKF system in

terms of: estimation accuracy and resulting control cost.

• We demonstrated the enhanced robustness of our SPKF based system, com-

pared to similar EKF based systems, through synthetic IMU degradation ex-

periments. This has direct implications on the cost/performance tradeoff for

any SPKF based GNC system. Since the IMU is typically the most expensive

component of any GNC system, our system allows for greatly enhanced per-

formance at the same financial cost level, or conversely, we can achieve equal

performance (to EKF systems) at a greatly reduced financial cost, i.e., through

the use of a cheaper, lower quality IMU.

• Modular form of SPKF system for 6DOF state estimation allows for easy ex-

tension to other vehicles (UAVs, UUVs, UGVs, etc.) due to use of kinematic

vehicle process model and high accuracy IMU sensor.

22

• Prototype dual estimation framework successfully demonstrated. Capable of

tracking time-varying system parameters such as vehicle mass (due to fuel con-

sumption and payload transients).

3. Sequential Monte Carlo methods : SPKF / particle filter hybrids

• Particle filter sample depletion problem address by derivation/implementation

of two new hybrid algorithms that use an adaptive bank of SPKFs for proposal

distribution generation.

– Sigma-point particle filter (SPPF)

– Gaussian-mixture sigma-point particle filter (GMSPPF)

• We show how these new algorithms closer match the requirements for the the-

oretically optimal proposal distribution that are guaranteed to reduce the vari-

ance of the resulting importance weights.

• Algorithms were experimentally verified on a number of representative non-

linear, non-Gaussian inference problems, including human face tracking6, non-

Gaussian nonlinear time-series estimation, global robot localization and financial

options pricing.

4. Released public domain software library for recursive Bayesian estimation:

ReBEL

• During the course of this dissertation research, the underlying software im-

plementation of the different inference algorithms went through a number of

evolutionary iterations. We eventually standardized our implementation on a

modular framework that decouples the application (inference problem) layer

from the estimation (inference filter) layer. This resulted in a Matlab toolkit,

called ReBEL (Recursive Bayesian Estimation Library), that contains all of

6The actual implementation of our SPPF algorithm for human face tracking was done by Rui at
Microsoft Research [169]. This serves as an external verification of our algorithm in a real-world inference
system. Subsequently, our SPPF algorithm has received wide ranging interest in the literature [196, 117, 36]
and has been applied successfully to numerous other real-world inference problems [86, 117].

23

the different existing as well as newly derived SPKF and SPKF/SMC hybrid

algorithms. The toolkit allows for a high-level description of the problem do-

main through the definition of the relevant DSSM (process model, observation

model, noise models, etc.) after which any of the different inference algorithms

can then be applied for either state-, parameter- or dual estimation.

• The toolkit also include a large number of demonstration/example scripts that

duplicate a large amount of the experimental results presented in this disserta-

tion. This allows for easy external verification and duplication of our published

results.

• The toolkit is freely available for academic research and has to date7 been

downloaded by more than 1000 different researchers and research groups with

a wide variety of intended uses.

• ReBEL has been licensed by a number of commercial companies through OHSU’s

Technology and Research Collaborations (TRC) office, resulting in the award

of an OHSU Commercialization Award to the author.

1.8 Thesis Outline

The remainder of the dissertation is organized as follows:

1.8.1 Main thesis chapters

Chapter 2 gives an in-depth discussion of optimal Gaussian approximate recursive Bayesian

estimation, introduces the extended Kalman filter and shows why the EKF is in fact a

highly suboptimal (flawed) approximate solution. This chapter covers much of the in-

troductory motivation of why a better solution than the EKF is needed for Gaussian

approximate nonlinear estimation.

Chapter 3 is one of the core chapters in this dissertation and covers the algorithmic

development of the sigma-point Kalman filter in detail. The two main SPKF variants, the

7The initial version of ReBEL was released in May 2002, followed by a number of bug-fix releases as
well as major updates. By the time of this publication, January 2004, more than 1000 unique downloads
of the toolkit for academic use has taken place.

24

UKF and CDKF, are introduced and shown to be different implementational variations of

a common derivativeless Kalman filter framework, which in turn is based on a deterministic

sampling technique called the sigma-point approach. We derive numerically efficient and

stable square-root versions of the SPKF as well as inference type specific forms. After the

different SPKF algorithms are introduced, we cover in detail (using numerous experimental

examples) how they are applied to the three domains of probabilistic inference, specifically

state-, parameter - and dual-estimation. These experiments also verify the superiority of

the SPKF over the EKF for all classes of estimation problems.

In Chapter 4 a number of theoretical aspects of the sigma-point Kalman filter are

derived and analyzed in order to gain further insight and relate it to other algorithms.

Specific attention is given to the weighted statistical linear regression interpretation of the

sigma-point approach that is employed by all SPKF forms. We investigate the theoret-

ical accuracy of the sigma-point approach (compared to the optimal solution) as well as

the relationship between SPKF based parameter estimation and other 2nd order nonlin-

ear optimization methods. At the end of this chapter the most salient (and important)

characteristics of the SPKF are summarized and contrasted with those of the EKF.

Chapter 5 focuses specifically on the application of the SPKF to the UAV Autonomy

problem. This large-scale application is covered in depth, giving detail about the vehicle

itself (dynamic models, etc.), the experimental setup that was used (high-fidelity simulator)

and the numerous experiments that was done. Results are given for a number of state

estimation (open and closed loop) experiments as well as parameter and dual estimation

experiments.

Chapter 6 focuses on the derivation, implementation and experimental verification of

the two hybrid sequential Monte Carlo / SPKF algorithms we developed, the sigma-point

particle filter and the Gaussian-mixture sigma-point particle filter. A thorough introduc-

tion to sequential Monte Carlo methods (particle filters) is first presented, showing the

relationship to general nonlinear, non-Gaussian approximate Bayesian inference. After

that the sample depletion problem is introduced which serves as motivation for the devel-

opment of the above mentioned hybrid approaches. As with the chapter on the SPKF, we

25

verify these new algorithms on numerous representative inference problems including non-

linear non-Gaussian time-series prediction, financial options pricing, human face tracking

and global robot localization.

In Chapter 7, the major results of this work is discussed and summarized, conclusions

are drawn and possible directions for future research are indicated.

1.8.2 Appendices

Some of the material that forms part of the secondary contributions made by this work

is relegated to the Appendices section in order to maintain the presentational flow of this

document. These include Appendix C which covers the development and use of the

ReBEL Toolkit.

1.9 Publications

A large majority of the work contained in this thesis has already been published in the

peer-reviewed literature and presented at numerous conferences and workshops [199, 200,

204, 190, 77, 189, 191, 192, 193, 188]. Here is a list of those publications:

• van der Merwe, R. Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic-
State Space Models. In Proc. of Workshop on Advances in Machine Learning (Montreal,
June 2003).

• van der Merwe, R., and Wan, E. A. Gaussian Mixture Sigma-Point Particle Filters
for Sequential Probabilistic Inference in Dynamic State-Space Models. In Proc. of the
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Hong Kong,
April 2003), IEEE.

• van der Merwe, R., and Wan, E. A. The Square-Root Unscented Kalman Filter for
State- and Parameter-Estimation. In Proc. of the International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (Salt Lake City, May 2001), IEEE.

• van der Merwe, R., and Wan, E. A. Efficient Derivative-Free Kalman Filters for Online
Learning. In Proc. of ESANN (Bruges, Belgium, April 2001).

• Wan, E. A., and van der Merwe, R. Kalman Filtering and Neural Networks . Adaptive
and Learning Systems for Signal Processing, Communications, and Control. Wiley, 2001,
ch. 7 - The Unscented Kalman Filter, pp. 221-280.

26

• van der Merwe, R., de Freitas, N., Doucet, A., and Wan, E. A. The Unscented
Particle Filter. In Advances in Neural Information Processing Systems (NIPS) 13 (Denver,
Nov 2001), pp. 584-590.

• van der Merwe, R., de Freitas, N., Doucet, A., and Wan, E. A. The Unscented
Particle Filter. Tech. Rep. CUED/F-INFENG/TR 380, Cambridge University Engineering
Department, August 2000.

• Wan, E. A., and van der Merwe, R. The Unscented Kalman Filter for Nonlinear Esti-
mation. In Proc. of IEEE Symposium 2000 (AS-SPCC) (Lake Louise, Oct 2000), IEEE.

• Wan, E. A., van der Merwe, R., and Nelson, A. T. Dual Estimation and the Un-
scented Transformation. In Neural Information Processing Systems (NIPS) 12 (Denver, Nov
2000), pp. 666-672.

• Wan, E. A., and van der Merwe, R. Noise-Regularized Adaptive Filtering for Speech
Enhancement. In Proc. of EuroSpeech (Sep 1999).

The work presented in this thesis and the publications above, have already impacted

a number of external related research efforts, resulting in further applications, refinements

and publications. We briefly summarize some of the more important and significant of

these in Chapter 7.

Chapter 2

Gaussian Approximate Bayesian

Estimation:

The Kalman Filter Framework

2.1 Introduction

As we showed in Section 1.4, the optimal recursive Bayesian solution to the probabilistic

inference problem requires the propagation of the full posterior state probability density

function. This optimal solution is general enough to deal with any form of posterior density,

including aspects such as multimodalities, asymmetries and discontinuities. However, since

this solution does not put any restrictions on the form of the posterior density, it cannot in

general be described by a finite number of parameters. Therefore, as already pointed out

earlier, any practically implementable estimator must make some form of approximating

assumption with regard to the shape of the posterior density and the form of the Bayesian

recursion as summarized by Equations 1.6 through 1.16. This chapter, and the first half

of this thesis, focuses on the group of Gaussian approximate solutions which are all based

around the Kalman filter framework [102]. The most well known application of the Kalman

filter framework to nonlinear inference problems is the extended Kalman filter (EKF). As

already alluded to in Section 1.5, even though the EKF is one of the most widely used

approximate solution for nonlinear estimation and filtering, it has serious limitations. This

chapter will investigate this claim further, first by showing what the optimal Gaussian

approximate linear Bayesian update, which forms the core of the Kalman filter framework,

looks like, and then contrasting that with the suboptimal implementation of this approach

27

28

as used in the EKF. This exposition will serve as a justification for the need to develop

a better solution, the sigma-point Kalman filter, (SPKF) which is covered in detail in

Chapter 3.

In this chapter we will also introduce the three different algorithmic forms of prob-

abilistic inference, i.e., state-estimation, parameter estimation and dual estimation, and

show how the EKF (and hence subsequently the SPKF) is used to perform these functions

for general nonlinear models. The actual experimental results of applying the SPKF to

these “three legs” of the inference problem is reported in Chapter 3.

2.2 Optimal Gaussian Approximate Linear Bayesian Update

A common misconception about the Kalman framework is that it requires the underlying

state space to be linear as well as all the probability densities to be Gaussian. This is

in fact overly strict and incorrect. Kalman’s original derivation of the Kalman filter (see

Appendix A, Section A.2) did not assume these conditions. The only assumptions he made

were the following:

1. Consistent minimum variance estimates of the system random variables (RVs) and

hence the posterior state distribution (pdf) can be calculated, by maintaining (recur-

sively propagating and updating) only their first and second order moments (means

and covariances).

2. The estimator (measurement update) itself is a linear function of the prior knowl-

edge of the system, summarized by p(xk|y1:k−1), and the new observed information,

summarized by p(yk|xk). In other words, it is assumed that Equation 1.11 of the

optimal Bayesian recursion can be accurately approximated by a linear function.

3. Accurate predictions of the state (using process model) and of the system observa-

tions (using observation model) can be calculated. These predictions are needed to

approximate the first and second order moments of p(xk|y1:k−1) and p(yk|xk).

29

Consistency in Assumption 1 implies that the estimates of the mean and covariance of the

posterior state density, i.e., x̂k and Pxk
, satisfies the following:

trace
[
Pxk

− E
[
(xk − x̂k) (xk − x̂k)

T
]]

≥ 0 , (2.1)

where (xk − x̂k) is called the estimation error1. The fact that only means and covariances

are maintained (per Assumption 1) is why these methods are (somewhat misleadingly)

called Gaussian approximate solutions. In other words, the densities are not required to

be Gaussian, we simply only maintain the Gaussian components (mean and covariance) of

these densities in the estimator. If the assumed consistency of the estimator holds and the

mean estimates are unbiased, then the resulting Gaussian approximate posterior will have

significant support overlap with the true posterior.

The form of the measurement update is chosen to be linear in Assumption 2, in order to

allow for a practically realizable and computationally feasible estimator that can be imple-

mented using numerous powerful and computationally efficient linear algebra components.

This assumed linear form of the measurement update, implies that the resulting Gaussian

approximate estimator will be the optimal (as defined by the minimum variance criteria of

Assumption 1) linear estimator, if the remaining assumptions are exactly satisfied. This

in turn implies that we need to calculate the predictions in Assumption 3 in an optimal

fashion.

Based on these assumptions, Kalman derived [102] the following recursive form of the

optimal Gaussian approximate linear Bayesian update (Kalman update for short) of the

conditional mean of the state RV, x̂k = E [xk|y1:k] and its covariance, Pxk
:

x̂k = (prediction of xk) + Kk (yk − (prediction of yk)) (2.2)

= x̂−
k + Kk

(
yk − ŷ−

k

)
(2.3)

Pxk
= P−

xk
− KkPỹk

KT
k . (2.4)

1An efficient estimator minimizes the magnitude of the LHS of Equation 2.1 while still satisfying the
≥ constraint. A conservative estimate replaces the inequality with a strictly greater than (>) relationship.

30

While this is a linear recursion, we have not assumed linearity of the model. The optimal

terms in this recursion are given by

x̂−
k = E [f(xk−1,vk−1,uk)] (2.5)

ŷ−
k = E

[
h(x−

k ,nk)
]

(2.6)

Kk = E
[
(xk − x̂−

k)(yk − ŷ−
k)T
]
E
[
(yk − ŷ−

k)(yk − ŷ−
k)T
]−1 (2.7)

= Pxkỹk
P−1

ỹk
(2.8)

where the optimal prediction (prior mean at time k) of xk is written as x̂−
k , and corresponds

to the expectation (taken over the posterior distribution of the state at time k − 1) of a

nonlinear function of the random variables xk−1 and vk−1 (similar interpretation for the

optimal prediction ŷ−
k , except the expectation is taken over the prior distribution of the

state at time k). The optimal gain term Kk is expressed as a function of the expected cross-

correlation matrix (covariance matrix) of the state prediction error and the observation

prediction error, and the expected auto-correlation matrix of the observation prediction

error2. Note that evaluation of the covariance terms also require taking expectations of a

nonlinear function of the prior state variable.

It turns out that these expectations can in general only be calculated exactly (in an

analytical sense) for a linear DSSM and Gaussian random variables. Under these (lin-

ear, Gaussian) conditions, the Kalman filter framework are in fact an exact solution of

the optimal Bayesian recursion (see Appendix A, Section A.3). This is probably why the

Kalman filter framework is often misconstrued as only applicable to such linear, Gaussian

systems. This does not, however, disallow the application of the Kalman framework to

nonlinear systems. As mentioned above, even for nonlinear, non-Gaussian systems, the

Kalman filter framework is still the (minimum variance) optimal Gaussian approximate

linear estimator, if the rest of the assumptions hold. This does however require further

approximations to be made in order to practically apply this framework to nonlinear sys-

tems. Specifically, these approximations directly address how the optimal terms in the

2The error between the true observation and the predicted observation, ỹk = yk − ŷ−
k is called the

innovation.

31

Kalman update (Equations 2.5 through 2.8) are calculated.

2.3 Nonlinear Transformations of Random Variables

As noted above, at the core of the optimal Kalman update3 we need to accurately calcu-

late the expected mean and covariance of a random variable that undergoes a nonlinear

transformation. Consider the following problem: a random variable x with mean x̄ and

covariance Px undergoes an arbitrary nonlinear transformation. This can be written as

y = g(x) (2.9)

= g(x̄ + δx) , (2.10)

where δx is a zero-mean random variable with the same covariance Px as x, and x̄ is the

mean value of x. Given this formulation, what is the mean and covariance of y?

In order to analytically calculate these quantities, we first expand g(·) using a multi-

dimensional Taylor series4 expansion around x̄,

y = g(x̄) + Dδxg +
1
2!

D2
δx

g +
1
3!

D3
δx

g +
1
4!

D4
δx

g + . . . , (2.11)

where Dδxg is an operator that evaluates the total differential of g(·) when perturbed

around a nominal value x̄ by δx, i.e.,

Dδxg
.=
[(

δTx∇
)
g(x)
]T ∣∣∣

x=x̄
. (2.12)

This operator can be written and interpreted as the scalar operator

Dδx =
Nx∑
j=1

δxj

∂

∂xj
(2.13)

which acts on g(·) on a component-by-component basis. Using this definition, the ith term

3We use the term optimal Kalman update as shorthand for “optimal Gaussian approximate linear
Bayesian update”.

4For the purpose of this analysis, we assume that g is analytic across the domain of all possible values
of x. This requirement does not need to be true in general, but it does simplify the analysis we present
here.

32

(i = 0, 1, 2, . . . ,∞) in the Taylor series for y = g(x) is thus given by

1
i!
Di

δx
g =

1
i!

⎡⎣ Nx∑
j=1

δxj

∂

∂xj

⎤⎦i g(x)

∣∣∣∣∣∣
x=x̄

(2.14)

where δxj is the jth component of δx, ∂
∂xj

is the normal partial derivative operator with

respect to xj (the jth component of x), and Nx is the dimension of x (i.e. x ∈ R
Nx).

The expected value (mean) of y, ȳ, is given by the expected value of Equation 2.11,

i.e.,

ȳ = E [g(x̄ + δx)]

= g(x̄) + E

[
Dδxg +

1
2!

D2
δx

g +
1
3!

D3
δx

g +
1
4!

D4
δx

g + . . .

]
(2.15)

where the ith term in the series is given by

E

[
1
i!
Di

δx
g
]

=
1
i!
E

⎡⎣⎛⎝ Nx∑
j=1

δxj

∂

∂xj

⎞⎠i g(x)

∣∣∣∣∣∣
x=x̄

⎤⎦
=

1
i!

(Nx)i∑
k=1

[
ms(δx,k,Nx,i)

∂ig(x)
s(∂x, k,Nx, i)

∣∣∣∣
x=x̄

]
. (2.16)

Here s(a, k, b, i) is an argument constructor function defined as

s(a, k, b, i) .= pick the kth term in the full expansion of :

⎛⎝ b∑
j=1

aj

⎞⎠i ,
e.g.,

s ((∂x), 3, 2, 2) = pick the 3rd term of : (∂x1 + ∂x2)2

= pick the 3rd term of : (∂x1∂x1 + ∂x1∂x2 + ∂x2∂x1 + ∂x2∂x2)

= ∂x2∂x1 ,

33

and mδx1δx2 ...δxn
is the nth order central moment of δx, i.e.,

mδx1δx2 ...δxn
= E [δx1δx2 . . . δxn]

=
∫

(δx1δx2 . . . δxn) p(x)dx .

It is clear from Equation 2.16 that in order to calculate the mean of y accurately to the

mth order (of the expanded Taylor series), we need to know all the moments of δx (and

hence x) and the derivatives of g, up to and including the mth order.

For further analysis and comparison to the EKF and subsequent sigma-point Kalman

filter formulations, it is insightful to write Equation 2.15 as

ȳ = g(x̄) +
1
2
E
[
D2

δx
g
]
+E

[
1
4!

D4
δx

g +
1
6!

D6
δx

g + . . .

]
(2.17)

where we assumed that the distribution of δx (and hence x) is symmetrical5, such that all

odd-order moments are zeros. The expectation in the second order term can be written as

E
[
D2

δx
g
]

= E
[
Dδx (Dδxg)T

]
= E

[(∇TδxδTx∇
)
g(x)
∣∣
x=x̄

]
. (2.18)

Using the interpretation of the Dδx operator and noting that E
[
δxδTx

]
= Px, we can

rewrite Equation 2.18 as

E
[
D2

δx
g
]

=
(∇TPx∇

)
g(x)
∣∣
x=x̄

. (2.19)

Substituting this result back into Equation 2.17 gives us the following convenient form of

the mean expansion which we will use again in Chapter 4:

ȳ = g(x̄) +
1
2
[(∇TPx∇

)
g(x)
∣∣
x=x̄

]
+ E

[
1
4!

D4
δx

g +
1
6!

D6
δx

g + . . .

]
(2.20)

5Symmetry is a less strict requirement than Gaussianity, but does include multi-dimensional Gaussian
distributions as a special case. This assumption holds for a very large group of ’real-world’ occurring
distributions such as student-T, Cauchy, the exponential family, etc, which are then often modeled as
Gaussian distributions or finite mixtures of Gaussians.

34

In a similar fashion as the exposition shown above, we can calculate the true covari-

ance of the posterior random variable y. First, by definition the covariance of y is given

by

Py = E
[
(y − ȳ) (y − ȳ)T

]
. (2.21)

We can calculate y − ȳ by substituting from Equations 2.11 and 2.17,

y − ȳ = g(x̄ + δx) − E [g(x̄ + δx)]

= Dδxg +
1
2!

D2
δx

g +
1
3!

D3
δx

g +
1
4!

D4
δx

g + . . .

−E
[

1
2!

D2
δx

g +
1
4!

D4
δx

g +
1
6!

D6
δx

g + . . .

]
. (2.22)

Taking outer products and expectations (again exploiting the fact that if we assume δx to

be symmetrically distributed, the odd moment terms equate to zero), we can write6 the

covariance of y as

Py = Gx̄PxGT
x̄ − 1

4
E
[
D2

δx
g
]
E
[
D2

δx
g
]T

+E

⎡⎢⎢⎢⎢⎢⎣
∞∑
i=1

∞∑
j=1

1
i!j!

Di
δx

g
(
Dj

δx
g
)T

︸ ︷︷ ︸
∀ i,j : such that ij>1

⎤⎥⎥⎥⎥⎥⎦

−

⎛⎜⎜⎜⎜⎜⎝
∞∑
i=1

∞∑
j=1

1
(2i)!(2j)!

E
[
D2i

δx
g
]
E
[
D2j

δx
g
]T

︸ ︷︷ ︸
∀ i,j : such that ij>1

⎞⎟⎟⎟⎟⎟⎠ . (2.23)

Here Gx̄ = ∇xg(x)|x=x̄ is the Jacobian matrix of g(x) evaluated at x = x̄. From this is

clear that in general the mth order term in the covariance series expansion can only be

calculated accurately if we know all of the derivatives of g and the moments of δx up to

that order. In Section 2.5.1 we give an analytic example of the above analysis applied to

a simple scalar problem.

6See [99] for a complete derivation.

35

2.4 The EKF and its Flaws

As stated earlier, the Kalman filter [102] calculates the optimal terms in Equations 2.5, 2.6

and 2.8 exactly for linear DSSMs. This is a well known result for linear Gaussian systems,

i.e, the linear transformation of a Gaussian random variable stays Gaussian, and is implic-

itly due to the fact that all of the higher order (> 1) derivatives of g in Equations 2.15

and 2.23 equate to zero.

For nonlinear DSSMs however, the extended Kalman filter (EKF) first linearizes the

system around the current state estimate using a first-order truncation of the multi-

dimensional Taylor series expansion. In other words, Equations 2.11, 2.15 and 2.23 are

approximated by,

y ≈ ylin = g(x̄) + Dδxg (2.24)

ȳ ≈ ȳlin = g(x̄) (2.25)

Py ≈ Plin
y = Gx̄PxGT

x̄ . (2.26)

Applying this result to Equations 2.5, 2.6 and 2.8, we obtain:

x̂−
k ≈ f(x̂k−1, v̄,uk) (2.27)

ŷ−
k ≈ h(x̂−

k , n̄) (2.28)

Kk ≈ P̂lin
xkyk

(
P̂lin

yk

)−1
, (2.29)

which forms the core of the EKF (the full recursive algorithm is given in Algorithm 1).

Clearly these approximations will only be valid (and the resulting linearly calculated pos-

terior statistics accurate), if all the higher order derivatives of the nonlinear functions are

effectively zero over the “uncertainty region” of x, as summarized by the support of its prior

distribution. In other words, it requires the zeroth and first order terms of Equation 2.11

to dominate the remaining terms, over the region of the state-space defined by the prior

distribution of x. It is important to note here, that although this probabilistic spread of

x (or equivalently that of δx around x̄), as captured by the covariance Px, plays an im-

portant role in the validity of the EKFs “first order linearization”, it is completely ignored

36

Algorithm 1 The extended Kalman filter (EKF).

Initialization:

x̂0 = E[x0] (2.30)
Px0 = E[(x0 − x̂0)(x0 − x̂0)T] (2.31)
Rv = E[(v − v̄)(v − v̄)T] (2.32)
Rn = E[(n − n̄)(n − n̄)T] (2.33)

For k = 1, 2, . . . ,∞:

1. Prediction step:

• Compute the process model Jacobians:

Fxk
= ∇xf(x, v̄,uk)|x=x̂k−1

(2.34)

Gv = ∇vf(x̂k−1,v,uk)|v=v̄ (2.35)

• Compute the predicted state mean and covariance (time-update)

x̂−
k = f(x̂k−1, v̄,uk) (2.36)

P−
xk

= Fxk
Pxk

FTxk
+ GvRvGT

v (2.37)

2. Correction step:

• Compute the observation model Jacobians:

Hxk
= ∇xh(x, n̄)|x=x̂−

k
(2.38)

Dn = ∇nh(x̂−
k ,n)

∣∣
n=n̄

(2.39)

• Update estimates with latest observation (measurement update)

Kk = P−
xk

HT
xk

(
Hxk

P−
xk

HT
xk

+ DnRnDT
n

)−1 (2.40)
x̂k = x̂−

k + Kk

[
yk − h(x̂−

k , n̄)
]

(2.41)
Pxk

= (I −KkHxk
)P−

xk
. (2.42)

37

during the linearization process. Alternatively put, the linearization method employed by

the EKF does not take into account the fact that x is a random variable with inherent

uncertainty. In effect, through the linearization around a single point (the current state

estimate), the crucial expectation operator of Equations 2.5, 2.6 and 2.8 is omitted7. This

has large implications for the accuracy and consistency of the resulting EKF algorithm.

These approximations often introduce large errors in the EKF calculated posterior mean

and covariance of the transformed (Gaussian) random variable, which may lead to subop-

timal performance and sometimes divergence of the filter [77, 200, 204]. Three examples

of this are given in the next section.

2.5 Demonstration of EKF Inaccuracy

2.5.1 Analytic scalar example

In this example we propagate a scalar random variable x through a simple nonlinear

function to generate y, i.e.,

y = g(x) = x2 , (2.43)

where x ∼ N (x; x̄, σ2
x) is drawn from a Gaussian distribution with mean x̄ and covariance

σ2
x. We will next analytically calculate the mean and covariance of y, i.e., ȳ and σ2

y . using

the scalar versions of Equations 2.17 and 2.23. Using the scalar version of Equations 2.17,

the mean is calculated as

ȳ = g(x̄) + E

[
(x− x̄)

dg(x̄)
dx

+
1
2
(x− x̄)2

d2g(x̄)
dx2

+ . . .

]
(2.44)

= x̄2 + E
[
2(x− x̄)x̄+ (x− x̄)2

]
(2.45)

= x̄2 + E
[
2x̄x− 2x̄2 + (x− x̄)2

]
(2.46)

= x̄2 + 2x̄2 − 2x̄2 + E
[
(x− x̄)2

]
(2.47)

= x̄2 + σ2
x , (2.48)

7One can also interpret this as taking the expectation, but assuming the prior random variable is
“peaked up” around its mean, i.e. Px → 0.

38

where dng(x̄)
dxn is the nth derivative of g(x) evaluated at x = x̄. We made use of the fact

that all the derivatives of g(x) = x2 above the second order are zero in Equation 2.45,

and that E
[
(x− x̄)2

]
= σ2

x (by definition) in Equation 2.48. Using the scalar version of

Equations 2.23, the covariance is given by

σ2
y =

(
dg(x̄)
dx

)
σ2
x

(
dg(x̄)
dx

)
− 1

4
E

[
(x− x̄)2

d2g(x̄)
dx2

]2
+ (2.49)

= +E
[
1
2
(x− x̄)

dg(x̄)
dx

(x− x̄)2
d2g(x̄)
dx2

+
1
2
(x− x̄)2

d2g(x̄)
dx2

(x− x̄)
d2g(x̄)
dx2

+

+
1
4
(x− x̄)2

d2g(x̄)
dx2

(x− x̄)2
d2g(x̄)
dx2

]
(2.50)

= (2x̄)2σ2
x −

1
4
E
[
2(x− x̄)2

]2 + E
[
(x− x̄)4 + 4x̄(x− x̄)3

]
(2.51)

= 4x̄2σ2
x −
(
σ2
x

)2 + E
[
(x− x̄)4

]
+ 4x̄E

[
(x− x̄)3

]
. (2.52)

The third term in Equation 2.52, E
[
(x− x̄)4

]
, is known as the kurtosis of x. For a

Gaussian random variable, the kurtosis can be expressed in terms of the variance [152],

i.e.,

E
[
(x− x̄)4

]
= 3
(
σ2
x

)2
. (2.53)

The second part of the last term in Equation 2.52, E
[
(x− x̄)3

]
, is known as the skewness

of x. For a Gaussian random variable, this odd order central moment is zero. Substituting

these results back into Equation 2.52, gives us the final value of the covariance of y in

terms of the mean and covariance of x:

σ2
y = 4x̄2σ2

x −
(
σ2
x

)2 + 3
(
σ2
x

)2
= 2

(
σ2
x

)2 + 4x̄2σ2
x . (2.54)

In comparison to these exact results, the EKF calculates the mean and covariance of y

using the first order Taylor series approximations given by Equations 2.25 and 2.26. For

39

the specific model used here (Equation 2.43), the resulting approximations are:

ȳlin = g(x̄) = x̄2 (2.55)(
σ2
y

)lin =
(
dg(x̄)
dx

)
σ2
x

(
dg(x̄)
dx

)
= 4x̄2σ2

x . (2.56)

Comparing Equation 2.55 with Equation 2.48 (mean), and Equation 2.56 with Equa-

tion 2.54 (covariance), we see that the EKF approximations has errors in both terms, given

by

eȳ = ȳ − ȳlin =
(
x̄2 + σ2

x

)− x̄2 = σ2
x (2.57)

eσ2
y

= σ2
y −
(
σ2
y

)lin =
[
2
(
σ2
x

)2 + 4x̄2σ2
x

]
− 4x̄2σ2

x = 2
(
σ2
x

)2
. (2.58)

The magnitude of these errors are in both cases proportional to the variance of the prior

random variable σ2
x. Clearly, the more “peaked” up the prior random variable x is around

its mean, the more accurate the crude linearization of the EKF will be. For any signifi-

cant probabilistic spread in x, the EKF calculated posterior mean will be biased and the

posterior mean will be under estimated (inconsistent).

Finally, to experimentally verify the analytical results derived above, we performed

three Monte Carlo simulations of the model described in Equation 2.43. We generated

100, 000 samples for each experiment, drawn from a Gaussian distribution with mean

x̄ = 1 and variance σ2
x,j = {σ2

x,1, σ
2
x,2, σ

2
x,3} = {0.1, 1, 10}, i.e., xi ∼ N

(
x; 1, σ2

x,j

)
for

i = 1, 2, . . . , N , N = 100, 000. These samples were then propagated trough the quadratic

nonlinearity to generate a set of 100, 000 posterior samples, i.e., yi = x2
i for i = 1, 2, . . . , N .

The posterior mean and covariance of y was then calculated using the standard empirical

unbiased maximum-likelihood estimators, i.e.,

ˆ̄y =
1
N

N∑
i=1

yi and σ̂2
y =

1
N − 1

N∑
i=1

(
yi − ˆ̄y

)2
. (2.59)

Table 2.1 summarizes and compares the analytical mean and covariance (true and EKF

linearized) as well as the experimental empirical verifications thereof. Clearly the empirical

40

Table 2.1: Mean and covariance of a nonlinear transformed scalar Gaussian random variable. The table
compares the true analytically calculated posterior mean and covariance of y = g(x) = x2, i.e., ȳ and
σ2

y , with Monte Carlo (100, 000 samples) calculated verifications thereof. The first order linearization
approximations (as employed by the EKF) of these values are also shown. The experiment was repeated
three times, the only difference being the covariance of the prior random variable x, i.e., x is a Gaussian
random variable with mean x̄ = 1 and covariance σ2

x = {0.1, 1, 10} for each experiment.

x̄ = 1 σ2
x = 0.1 σ2

x = 1 σ2
x = 10

ȳ σ2
y ȳ σ2

y ȳ σ2
y

True statistics (analytical) 1.1 0.42 2 6 11 240
True statistics (Monte Carlo) 1.101 0.419 2.000 5.998 10.99 240.27
Approximated statistics (EKF) 1 0.4 1 4.0 1 40

Monte Carlo results concur with our analytically calculated results. Furthermore, the

inaccuracy of the first-order linearization approach of the EKF is clearly illustrated. The

approximation error of the EKF for both the mean and covariance also grows (as expected)

in relation with the magnitude of the prior covariance of x.

2.5.2 Arbitrary nonlinear transformation of Gaussian random variable

This demonstration contrasts the differences between the optimal and EKF approximated

transformation of Gaussian random variables (GRVs). This experiment propagates a two

dimensional GRV through an arbitrary nonlinear transformation and then compares the

optimally calculated first and second order posterior statistics of the transformed RV with

those calculated by the EKF. The optimal statistics were calculated with a Monte Carlo

approach using 100, 000 samples drawn from the prior distribution and then propagated

through the full nonlinear mapping. For this experiment the arbitrary nonlinear mapping

was generated by a randomly initialized multi-layer-perceptron (MLP) neural network with

2 input units, 10 hidden units and 2 output units. The neural network weights and biases

were randomly drawn from a Gaussian distribution with a large enough covariance such

that the resulting mapping was sufficiently nonlinear. The results of this experiment is

shown in Figure 2.1. On the top-left the prior GRV (indicated by its mean, covariance-

ellipse and representative sample distribution) is shown. The resulting posterior sample

distribution (after the nonlinear transformation) with its true mean and covariance are

41

mean

covariance

Actual (sampling) Linearized (EKF)

lin

lin T

y x

x x

y g x

P GP G

G g x

true mean

true covariance

()()T

E

Ey

y g x

y g x

P y y y y

lin
y

lin

yP

Figure 2.1: Optimal vs. EKF approximate transformation of Gaussian random variable (GRV). On
the top-left a GRV (indicated by its mean, covariance-ellipse and representative sample distribution)
undergoes an arbitrary highly nonlinear transformation. The resulting posterior sample distribution with
its true mean and covariance are indicated at the bottom-left. On the right the GRV are analytically
propagated through a “first-order linearized” (as used by the EKF) system. The posterior mean estimate
is clearly biased and the posterior covariance estimate is highly inaccurate and inconsistent.

indicated at the bottom-left. On the right the GRV are analytically propagated through

a “first-order linearized” (as used by the EKF) system. The posterior mean estimate is

clearly biased and the posterior covariance estimate is highly inaccurate and inconsistent.

2.5.3 Conversion of polar to Cartesian coordinates

The third example illustrating the potential inaccuracies and inconsistencies of the EKF

when applied to nonlinear estimation problems, is that of polar to Cartesian coordinate

transformation. This ubiquitous transformation lies at the heart of the observation models

42

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

x

y

true
EKF

Figure 2.2: Optimal vs. EKF results on polar-to-Cartesian transformation experiment. The blue dots
indicate the noisy polar coordinate measurements coming from a sensor such as a laser or sonar range
finder. The true covariance and mean of this distribution is indicated by the black dot and ellipse. The
EKF calculated (linearized approximation) mean and covariance is indicated in magenta.

for many real-world sensors such as sonar, radar and laser range finders to name but a

few. A sensor returns polar measurement information that are related through a nonlinear

transformation with the underlying Cartesian position of a target, i.e,⎡⎣ x

y

⎤⎦ =

⎡⎣ r cos θ

r sin θ

⎤⎦ ,

where (r, θ) are the range and bearing angle of the target in the polar coordinate frame and

(x, y) are the normal 2-dimensional Cartesian coordinates of the target. Linearizing this

nonlinear observation model using a first order Taylor series truncation, quickly becomes

very inaccurate for any significant bearing error. An example of this can be found in a

range-optimized sonar sensor that can provide reasonably accurate range measurements

(0.02m standard deviation) but extremely poor bearing measurements (standard deviation

of up to 15◦) [115]. The results of this experiment is shown in Figure 2.2. The true position

of the target is at (0, 1) in the Cartesian plane. Several thousand measurement samples were

generated by taking the true range and bearing (r, θ)value of the target location and adding

43

zero-mean Gaussian noise to both the r and the θ components, and then converting back to

the Cartesian plane. The resulting distribution (in the Cartesian plane) has a characteristic

“banana”-shape, clearly indicating the better accuracy in the range direction than the

bearing direction. The true mean and covariance of this distribution is indicated by the

black dot and covariance ellipse. The mean and covariance calculated by the EKF (using

Equations 2.25 and 2.26) are indicated by the magenta dot and ellipse. The EKF solution

is clearly inaccurate. There is a large bias in the mean estimate in the range direction and

the covariance is also underestimated in this direction. The underestimation results in an

estimated posterior distribution that is too peaked (compared to the true posterior) in the

range direction, resulting in “over confidence” in the resulting mean position estimate. This

is called an inconsistent estimate, which, in more formal terms implies that trace(P̂) <

trace(P), where P̂ is the estimated covariance and P is the true covariance. If the EKF

filter now recurses on this result the filter can (and often does) diverge.

2.6 State, Parameter and Dual Estimation

In presenting the SPKF in Chapter 3 as a better alternative to the EKF, we shall cover a

number of application areas of nonlinear estimation (probabilistic inference) in which the

EKF has previously been applied. General application areas may be divided into state

estimation, parameter estimation (machine learning, e.g., learning the weights of a neural

network), and dual estimation (e.g., the expectation-maximization (EM) algorithm). Each

of these areas place specific requirements on the SPKF or EKF, and will be developed in

turn. An overview of the framework for these areas is briefly reviewed in this section.

2.6.1 State estimation

The basic framework for the EKF involves estimation of the state of a discrete-time non-

linear DSSM,

xk+1 = f(xk,uk,vk) (2.60)

yk = h(xk,nk) , (2.61)

44

ku
ky

kx

kv kn

1k+x
∆F H

input

process noise measurement noise

output

state

kx

Figure 2.3: Block diagram of a discrete-time nonlinear DSSM used for general state estimation.

where xk represents the unobserved state of the system, uk is a known exogenous input, and

yk is the observed measurement signal. The process noise vk drives the dynamic system,

and the observation noise is given by nk. Note that we are not assuming additivity of the

noise sources. The system dynamic model f and h are assumed known and parameterized

by a set of known (given) parameters. A simple block diagram of this system is shown in

Figure 2.3. In state estimation, the EKF is the standard Gaussian approximate method

of choice to achieve a recursive (approximate) maximum-likelihood estimation of the state

xk.

2.6.2 Parameter estimation

Parameter estimation, sometimes referred to as system identification or machine learning,

involves determining a nonlinear mapping8

yk = g (xk;w) , (2.62)

where xk is the input, yk is the output, and the nonlinear map g(·) is parameterized by

the vector w. The nonlinear map, for example, may be a feed-forward or recurrent neural

network (w constitute the weights and biases), with numerous applications in regression,

classification, and dynamic modeling [74, 76]. Learning corresponds to estimating the

parameters w in some “optimal” fashion. Typically, a training set is provided with sample

pairs consisting of known input and desired outputs, {xk,dk}. The error of the machine

8For parameter estimation the index k does not necessarily indicate time, it can simply be an enumer-
ating index.

45

is defined as

ek = dk − g (xk;w) , (2.63)

and the goal of learning involves solving for the parameters w in order to minimize the

expectation of some given function of the error. While a number of optimization approaches

exist (e.g., gradient descent using backpropagation), the EKF may be used to estimate the

parameters by writing a new state-space representation

wk+1 = wk + rk (2.64)

dk = g (xk,wk) + ek , (2.65)

where the parameters wk correspond to a stationary process with identity state transition

matrix, driven by “artificial” process noise rk (the choice of variance determines convergence

and tracking performance and will be discussed in further detail in Section 3.5.2). The

output dk corresponds to a nonlinear observation on wk. The EKF can then be applied

directly as an efficient “second-order” technique for learning the parameters [13]. The use

of the EKF for training neural networks has been developed by Singhal and Wu [178] and

Puskorious and Feldkamp [157, 158, 159], and is covered in detail in [143]. The use of the

SPKF in this role is developed in Section 3.5.2.

2.6.3 Dual estimation

A special case of machine learning arises when the input xk is unobserved, and requires

coupling both state estimation and parameter estimation. For these dual estimation prob-

lems, we again consider a discrete-time nonlinear dynamic system,

xk+1 = f(xk,uk,vk;w) (2.66)

yk = h(xk,nk;w) , (2.67)

where both the system state xk and the set of model parameters w for the dynamic sys-

tem must be simultaneously estimated from only the observed noisy signal yk. Example

applications include adaptive nonlinear control, noise reduction (e.g., speech or image

46

ˆ
kx () KF x

ˆ
kw

ky

 () KF w

Dual Filter

 (,) KF x w

ky

ˆ

ˆ

k

k

x

w

Joint Filter

w

x

Figure 2.4: Dual estimation

enhancement), determining the underlying price of financial time-series, etc. A general

theoretical and algorithmic framework for dual Kalman based estimation is presented by

Nelson in [143] and leveraged in this work. This framework encompasses two main ap-

proaches, namely joint filtering and dual filtering. This is indicated in Figure 2.4.

In the dual filtering approach, a separate state-space representation is used for the state

and the parameters. Two Kalman filters (EKFs) are run simultaneously (in an iterative

fashion) for state and parameter estimation. At every time step, the current estimate of

the parameters ŵk is used in the state filter as a given (known) input, and likewise the

current estimate of the state x̂k is used in the parameter filter. This results is a step-wise

optimization within the combined state-parameter space as indicated on the right-hand

side of Figure 2.4.

In the joint filtering approach, the unknown system state and parameters are concate-

nated into a single higher-dimensional joint state vector, x̃k ,i.e.,

x̃k =
[

xTk wT
k

]T

47

and the state space model is reformulated as

x̃k+1 = f̃ (x̃k,uk, ṽk)

yk = h̃(x̃k,nk) ,

which can be expanded to⎡⎣ xk+1

wk+1

⎤⎦ =

⎡⎣ f (xk,uk,vk;wk)

wk

⎤⎦+

⎡⎣ 0

rk

⎤⎦
yk = h (xk,nk;wk) .,

where ṽk =
[

vTk rTk

]T
. A single EKF (or SPKF) is now run on the joint state space

to produce simultaneous estimates of the states xk and the parameters w. The left-hand

part of Figure 2.4 illustrates the joint estimation process: At the top of the image a

block diagram of the joint estimation framework is shown. At the bottom, a stylized

representation is shown indicating how the joint approach attempts direct optimization of

the combined state-parameter space.

Approaches to dual estimation utilizing the SPKF are developed in Section 3.5.3.

2.7 Chapter Summary

In this chapter the optimal recursive Gaussian approximate Bayesian estimation algorithm

was introduced, analyzed and compared to the flawed approximation employed by the EKF.

It was indicated (and stressed) how the calculation of the statistics of a Gaussian random

variable that undergoes a nonlinear transformation forms the core of the optimal Gaussian

update. Utilizing a multi-dimensional Taylor series analysis, we showed how the EKF only

achieves first order accuracy in the calculation of both the posterior mean and covariance of

the transformed random variables. This limited accuracy of the EKF was demonstrated in

two experimental examples that clearly indicated the nature of this problem as well as how

it can lead to filter divergence. As discussed, one of the reasons for the EKFs inaccuracies

is the failure to take into account the inherent “uncertainty” in the prior random variable

during the linearization process. This insight will be revisited and investigated further in

48

the next chapter, where we introduce the family of sigma-point Kalman filters that attempt

to address the short-comings of the EKF.

Chapter 3

Sigma-Point Kalman Filters:

Derivation, Algorithmic Implementation,

Applications & Extensions

3.1 Introduction

In order to improve the accuracy, consistency (robustness) and efficiency1 of Gaussian ap-

proximate inference algorithms applied to general nonlinear DSSMs, the two major short-

comings of the EKF need to be addressed. These are: 1) Disregard for the “probabilistic

uncertainty” of the underlying system state and noise RVs during the linearization of the

system equations, and 2) Limited first-order accuracy of propagated means and covariances

resulting from a first-order truncated Taylor-series linearization method. As discussed in

Chapter 1, two related algorithms, the unscented Kalman filter [94] and the central differ-

ence Kalman filter [148, 88], have recently been proposed in an attempt to address these

issues. This is done through the use of novel deterministic sampling approaches to approx-

imate the optimal gain and prediction terms in the Gaussian approximate linear Bayesian

update of the Kalman filter framework (Equations 2.5 - 2.8). These derivativeless2, de-

terministic sampling based Kalman filters consistently outperform the EKF not only in

terms of estimation accuracy, but also in filter robustness and easy of implementation, for

1The accuracy of an estimator is an indication of the average magnitude (taken over the distribution
of the data) of the estimation error. An estimator is consistent if trace[P̂x] ≥ trace[Px] and it is efficient
if that lower bound on the state error covariance is tight.

2Unlike the EKF, no analytical or perturbation based derivatives of the system equations need to be
calculated.

49

50

no added computational cost [204, 200, 77, 191, 192, 94, 99, 100, 96, 148, 88].

In this chapter, we will first introduce both the unscented Kalman filter (UKF) and the

central difference Kalman filter (CDKF), show how they are motivated and derived, and

completely specify their algorithmic implementations. We will then show how the deriva-

tiveless Gaussian random variable propagation techniques that lie at the core of these

algorithms, can be viewed as different implementations of a general deterministic sam-

pling framework for the calculation of the posterior mean and covariance of the pertinent

Gaussian approximate densities in the Kalman framework recursion. We call this general

framework the sigma-point approach. This in turn allows us to group all Kalman filters

which are implicitly based on the sigma-point approach into a larger family of algorithms

called sigma-point Kalman filters (SPKF).

We continue to show how we extended the SPKF family of algorithms by deriving

numerically efficient and stable square-root forms of both the UKF and the CDKF. As

mentioned in Section 1.7, one of the main contributions of this thesis is the extension of

the SPKF framework to the larger probabilistic inference domain, with specific focus on

nonlinear parameter and dual estimation. The derivation of these different algorithmic

forms of the SPKF is covered in detail in this chapter along with their application to

numerous inference problems. In most cases the experiments will not only verify the

correctness and utility of the SPKF algorithm, but also contrast its performance relative

to that of the EKF on the same problem.

3.2 The Unscented Kalman Filter

The unscented Kalman filter (UKF) is a recursive MMSE estimator based on the optimal

Gaussian approximate Kalman filter framework, that addresses some of the approximation

issues of the EKF [100]. Because the EKF only uses the first order terms of the Taylor

series expansion of the nonlinear functions, it often introduces large errors in the estimated

statistics of the posterior distributions of the states. This is especially evident when the

models are highly nonlinear and the local linearity assumption breaks down, i.e., the effects

of the higher order terms of the Taylor series expansion becomes significant. Unlike the

51

EKF, the UKF does not explicitly approximate the nonlinear process and observation

models, it uses the true nonlinear models and rather approximates the distribution of the

state random variable. In the UKF the state distribution is still represented by a Gaussian

random variable (GRV), but it is specified using a minimal set of deterministically chosen

sample points. These sample points completely capture the true mean and covariance of

the GRV, and when propagated through the true nonlinear system, captures the posterior

mean and covariance accurately to the 2nd order for any nonlinearity, with errors only

introduced in the 3rd and higher orders. To elaborate on this, we start by first explaining

the deterministic sampling approach called the unscented transformation3. After this, the

scaled unscented transformation (SUT) is introduced and discussed. The scaled unscented

transformation is a generalizing extension of the unscented transformation and forms the

algorithmic core of the unscented Kalman filter.

3.2.1 The unscented transformation

The unscented transformation (UT) is a method for calculating the statistics of a random

variable which undergoes a nonlinear transformation and builds on the principle that it

is easier to approximate a probability distribution than an arbitrary nonlinear function

[99]. As in Chapter 2, we consider the propagation of a L dimensional random variable x

through an arbitrary nonlinear function,

y = g(x) . (3.1)

Assume x has mean x̄ and covariance Px. To calculate the statistics (first two moments)

of y using the UT, we proceed as follows: First, a set of 2L + 1 weighted samples, called

sigma-points, Si = {wi,X i} are deterministically chosen so that they completely capture

the true mean and covariance of the prior random variable x. A selection scheme that

3The reason why this transformation is named “unscented ” is wrapped in mystery. The author has
tried in vain to coax the true implied meaning of this term from the inventor, but to this day, it remains
a riddle [98].

52

Figure 3.1: Weighted sigma-points for a 2 dimensional Gaussian random variable (RV). These sigma-
points lie along the major eigen-axes of the RV’s covariance matrix and complete captures the first and
second order statistics of the RV. The height of each sigma-point indicates its relative weight. For this
example, κ = 1 was used.

satisfies this requirement is:

X 0 = x̄ w0 = κ
L+κ i = 0

X i = x̄ +
(√

(L+ κ)Px

)
i

wi = 1
2(L+κ) i = 1, . . . , L

X i = x̄−
(√

(L+ κ)Px

)
i

wi = 1
2(L+κ) i = L+ 1, . . . , 2L

(3.2)

where wi is the weight associated with the ith sigma-point such that
∑2L

i=0wi = 1. κ is

a scaling parameter and
(√

(L+ κ)Px

)
i
is the ith column (or row) of the matrix square

root of the weighted covariance matrix, (L + κ)Px. The numerically efficient Cholesky

factorization method [156] is typically used to calculate the matrix square root. Since the

matrix square-root of a positive-definite matrix is not unique, any ortho-normal rotation of

the sigma-point set is again a valid set. Furthermore, if desired one can derive a selection

scheme that captures higher order moment information such as skew or kurtosis [96].

This will in general require a larger set of sigma-points however. Figure 3.1 shows the

location and weight (indicated by height) of a typical sigma-point set generated for a two

dimensional Gaussian random variable.

Each sigma point is now propagated through the nonlinear function

Yi = g (X i) i = 0, . . . , 2L (3.3)

53

x

Px

x xi x x P x P

g

Weighted

sample mean

,L

y

Py

i

+
-

Weighted

sample covariance

Figure 3.2: Schematic diagram of the unscented transformation.

and the approximated mean, covariance and cross-covariance of y are computed as follows:

ȳ ≈
2L∑
i=0

wiY i (3.4)

Py ≈
2L∑
i=0

wi (Y i − ȳ) (Y i − ȳ)T (3.5)

Pxy ≈
2L∑
i=0

wi (X i − x̄) (Y i − ȳ)T . (3.6)

These estimates of the mean and covariance are accurate to the second order (third order

for true Gaussian priors) of the Taylor series expansion of g(x) for any nonlinear function4.

Errors are introduced in the third and higher order moments but are scaled by the choice

of the parameter κ. In comparison (as shown in Section 2.4), the EKF only calculates the

posterior mean and covariance accurately to the first order with all higher order moments

truncated. A comparison of the performance of the UT versus that of the linearization

approach used in the EKF is shown in Figure 3.3. Note that the approximations of the

posterior statistics as calculated by the UT using Equations 3.4 - 3.6 is exact for linear

systems, i.e., if g(x) = Ax + b. Figure 3.2 provides a schematic representation of the

unscented transformation.

4A derivation of the accuracy of the unscented transformation is given in Section 4.3 of Chapter 4.

54

Julier’s original derivation of the unscented transformation was based on the following

reasoning[98]: Assuming that we can calculate a set of weighted samples that accurately

capture the relevant prior statistics of a random variable, what should the value of these

weights and sample locations be, such that we can accurately approximate the poste-

rior mean and covariance using only weighted sample mean and covariance estimators

(Equations 3.4 - 3.6) operating on functional evaluations of these samples (Equation 3.3)?

Specifically, he wanted to accurately capture the posterior mean and covariance up to and

including the second order terms in the Taylor series expansion of the true quantities (see

Equations 2.20 and 2.23). The solution to this problem was found by comparing the Tay-

lor series expansions of the estimators5 (Equations 3.4 - 3.6) with the true quantities and

choosing the weights and sigma-point locations such that the first and second order terms

matched exactly. Under this scheme, errors are only introduced in the higher (> 2) order

terms. For more detail, see [101].

The sigma-point selection scheme used in the UT has the property that as the dimension

of the state-space (L) increases, the radius of the sphere that bounds all the sigma points

increases as well. Even though the mean and covariance of the prior distribution are still

captured correctly, it does so at the cost of possibly sampling non-local effects. If the

nonlinearities in question are very severe, this can lead to significant difficulties. In order

to address this problem, the sigma points can be scaled towards or away from the mean

of the prior distribution by a proper choice of κ. The distance of the ith sigma point from

x̄, |X i − x̄|, is proportional to
√
L+ κ. When κ = 0, the distance is proportional to

√
L.

When κ > 0 the points are scaled further from x̄ and when κ < 0 the points are scaled

towards x̄. For the special case of κ = 3−L, the desired dimensional scaling invariance is

achieved by canceling the effect of L. However, when κ = 3 − L < 0 the weight w0 < 0

and the calculated covariance can become non-positive semidefinite. The scaled unscented

transformation was developed to address this problem [97].

5See Section 4.3 for a derivation of the accuracy of the unscented transformation based on a Taylor
series expansion analysis.

55

3.2.2 The scaled unscented transformation

The scaled unscented transformation (SUT) replaces the original set of sigma-points with

a transformed set given by

X ′
i = X 0 + α (X i − X 0) i = 0 . . . 2L , (3.7)

where α is a positive scaling parameter which can be made arbitrarily small (0 < α < 1) to

minimize possible higher order effects. This formulation gives an extra degree of freedom to

control the scaling of the sigma-points without causing the resulting covariance to possibly

become non-positive semidefinite. This is achieved by applying the UT to an auxiliary

random variable propagation problem which is related to the original nonlinear model

(Equation 3.1) by

z = g
′
(x) =

g (x̄ + α(x − x̄)) − g(x̄)
α2

+ g(x̄) . (3.8)

The Taylor series expansion of z̄ and Pz agrees with that of ȳ and Py exactly up to the

second order, with the higher order terms scaling geometrically with a common ratio of α

[97]. The same second order accuracy of the normal UT is thus retained with a controllable

scaling of the higher order errors by a proper choice of α. The auxiliary random variable

formulation of the SUT is identical to applying the original UT on a pre-scaled set of

sigma-points [97]. A set of sigma-points S = {wi,X i ; i = 0, . . . , 2L} is calculated using

Equation 3.2 and then transformed into the scaled set S ′
= {w′

i,X
′
i ; i = 0, . . . , 2L} by

X ′
i = X 0 + α (X i − X 0) (3.9)

w
′
i =

⎧⎨⎩ w0/α
2 + (1 − 1/α2) i = 0

wi/α
2 i = 1, . . . , 2L

(3.10)

where α is the new sigma-point scaling parameter. The sigma point selection and scaling

can also be combined into a single step (thereby reducing the number of calculations) by

setting

λ = α2(L+ κ) − L , (3.11)

56

and selecting the sigma-point set by:

X 0 = x̄ w
(m)
0 = λ

L+λ i=0

X i = x̄ +
(√

(L+ λ)Px

)
i

i=1,...,L w
(c)
0 = λ

L+λ + (1−α2+β) i=0

X i = x̄−
(√

(L+ λ)Px

)
i

i=L+1,...,2L w
(m)
i = w

(c)
i = 1

2(L+λ) i=1,...,2L

(3.12)

The weighting on the zeroth sigma-point directly affects the magnitude of the errors in the

fourth and higher order terms for symmetric prior distributions [97]. A third parameter, β,

is thus introduced which affects the weighting of the zeroth sigma-point for the calculation

of the covariance. This allows for the minimization of higher order errors if prior knowledge

(e.g. kurtosis, etc.) of the distribution of x is available. The complete scaled unscented

transformation is thus given by the following:

1. Choose the parameters κ, α and β. Choose κ ≥ 0 to guarantee positive semi-

definiteness of the covariance matrix. The specific value of kappa is not critical

though, so a good default choice is κ = 0. Choose 0 ≤ α ≤ 1 and β ≥ 0. α controls

the “size” of the sigma-point distribution and should ideally be a small number to

avoid sampling non-local effects when the nonlinearities are strong. Here “locality” is

defined in terms on the probabilistic spread of x as summarized by its covariance. β

is a non-negative weighting term which can be used to incorporate knowledge of the

higher order moments of the distribution. For a Gaussian prior the optimal choice

is β = 2 [97]. This parameter can also be used to control the error in the kurtosis

which affects the ’heaviness’ of the tails of the posterior distribution.

2. Calculate the set of 2L + 1 scaled sigma-points and weights S = {wi,X i ; i =

0, . . . , 2L} by setting λ = α2(L + κ) − L and using the combined selection/scaling

scheme of Equation 3.12. As mentioned earlier, L is the dimension of x.

3. Propagate each sigma point through the nonlinear transformation:

Y i = g (X i) i = 0, . . . , 2L (3.13)

57

4. The mean ȳ, covariance Py and cross-covariance Pxy are computed as follows:

ȳ ≈
2L∑
i=0

w
(m)
i Y i (3.14)

Py ≈
2L∑
i=0

w
(c)
i (Yi − ȳ) (Y i − ȳ)T (3.15)

Pxy ≈
2L∑
i=0

w
(c)
i (X i − x̄) (Yi − ȳ)T . (3.16)

Note: Not much research effort has yet been spent on determining if there is a global

optimal setting of the SUT scaling parameters (α, β and κ) and it is not one of the research

questions that this dissertation aimed to answer. That said, our empirical evidence seems

to indicate that such an optimal set is problem specific which thwart the effort to find such

an global optimum. However, it also seems that the algorithm is not very sensitive to

the exact values chosen for these parameters as long as they result in a numerically well

behaved set of sigma-points and weights.

Demonstration of SUT

In order to demonstrate the accuracy of the scaled unscented transformation (SUT), we

revisit the nonlinear mapping problem first presented in Section 2.5.

In this experiment we propagate a two dimensional GRV through an arbitrary nonlinear

transformation and then compare the optimally calculated first and second order posterior

statistics of the transformed RV with those calculated through normal linearization (EKF),

and by the scaled unscented transformation (SUT). The optimal statistics were calculated

with a Monte Carlo approach using 100, 000 samples drawn from the prior distribution and

then propagated through the full nonlinear mapping. For this experiment the arbitrary

nonlinear mapping was generated by a randomly initialized multi-layer-perceptron (MLP)

neural network with 2 input units, 10 hidden units and 2 output units. The neural net-

work weights and biases were randomly drawn from a Gaussian distribution with a large

enough covariance such that the resulting mapping was sufficiently nonlinear. The results

of this experiment is shown in Figure 3.3. On the top-left the prior GRV (indicated by its

58

�� � �����

�� � �����

�� ���������
�

�����

��������
�

�� � ��� ��

Actual (sampling) Linearized (EKF)

sigma points

true mean

SP mean

 and covariance
weighted sample mean

mean

SP covariance

covariance

true covariance

transformed
sigma points

Sigma−Point

Figure 3.3: Demonstration of the accuracy of the scaled unscented transformation for mean and
covariance propagation. a) actual, b) first-order linearization (EKF), c) SUT (sigma-point) A cloud of
5000 samples drawn from a Gaussian prior is propagated through an arbitrary highly nonlinear function
and the true posterior sample mean and covariance are calculated. This reflects the truth as calculated
by a Monte Carlo approach and is shown in the left plot. Next, the posterior random variable’s statistics
are calculated by a linearization approach as used in the EKF. The middle plot shows these results.
The errors in both the mean and covariance as calculated by this “first-order” approximation is clearly
visible. The plot on the right shows the results of the estimates calculated by the scaled unscented
transformation. There is almost no bias error in the estimate of the mean and the estimated covariance
is also much closer to the true covariance. The superior performance of the SUT approach is clearly
evident.

59

mean, covariance-ellipse and representative sample distribution) is shown. The resulting

posterior sample distribution (after the nonlinear transformation) with its true mean and

covariance are indicated at the bottom-left. In the center plot, the GRV is analytically

propagated through a “first-order linearized” (as used by the EKF) system. The posterior

mean estimate is clearly biased and the posterior covariance estimate is highly inaccurate.

The plot on the right shows the results using the SUT (note only 5 sigma-points are used

compared to the thousands needed by the pure Monte Carlo method on the left). The

bottom-right plot of Figure 3.3 indicates the posterior statistics of y as calculated by the

SUT (note also the posterior location of the propagated sigma-points). The superior per-

formance of the sigma-point approach of the SUT over the normal linearization method is

clear and closely matches the optimal result. Also note that the SUT calculated posterior

covariance seems to be consistent and efficient. The consistency stems from the fact the

SUT’s green posterior covariance ellipse is larger than the true posterior covariance ellipse

(indicated in black), but since it is still “tight” around it, it seems efficient as well.

3.2.3 Implementing the unscented Kalman filter

The unscented Kalman filter (UKF) is a straightforward application of the scaled unscented

transformation to the recursive Kalman filter framework as presented in Section 2.2 of

the previous chapter. Specifically, the SUT is used to approximate the optimal terms in

Equations 2.5-2.8 of the optimal Gaussian approximate linear Bayesian update, where the

state random variable (RV) is redefined as the concatenation of the original state and the

process and observation noise random variables:

xak =

⎡⎢⎢⎢⎣
xxk

xvk

xnk

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
xk

vk

nk

⎤⎥⎥⎥⎦ . (3.17)

The effective dimension of this augmented state RV is now L = Lx + Lv + Ln, i.e., xa ∈
R
Lx+Lv+Ln , where Lx is the original state dimension, Lv is the process noise dimension and

Ln is the observation noise dimension. In a similar manner the augmented state covariance

60

matrix is built up from the individual covariances matrices of x, v and n:

Pa =

⎡⎢⎢⎢⎣
Px 0 0

0 Rv 0

0 0 Rn

⎤⎥⎥⎥⎦ , (3.18)

where Rv and Rn are the process and observation noise covariances. The SUT sigma-point

selection scheme is applied to this new augmented state RV to calculate the corresponding

augmented sigma-point set X a
k. By augmenting the state random variable with the noise

random variables, we take the uncertainty in the noise RVs into account in the same manner

as we do for the state during the sigma-point propagation. This allows for the effect of

the noise on the system dynamics and observations to be captured with the same level of

accuracy as with which we treat the state. In contrast, the EKF simply models the noise

RV’s using their expected values, which for zero-mean Gaussian noise is (not surprisingly)

equal to 0.

The complete UKF algorithm that updates the mean x̂k and covariance Pxk
of the

Gaussian approximation to the posterior distribution of the states will now be presented:

Algorithm 2 : The Unscented Kalman Filter (UKF)

• Initialization: x̂0 = E[x0] , Px0 = E[(x0 − x̂0)(x0 − x̂0)T]

x̂a
0 = E [xa] = E [x̂0 0 0]T , Pa

0 = E
[
(xa

0 − x̂a
0)(xa

0 − x̂a
0)

T
]

=

⎡⎢⎢⎣
Px0 0 0

0 Rv 0

0 0 Rn

⎤⎥⎥⎦
• For k = 1, . . . ,∞ :

1. Calculate sigma-points:

X a
k−1 =

[
x̂a

k−1 x̂a
k−1 + γ

√
Pa

k−1 x̂a
k−1 − γ

√
Pa

k−1

]
(3.19)

61

2. Time-update equations:

X x
k|k−1 = f

(X x
k−1,X v

k−1,uk−1

)
(3.20)

x̂−
k =

2L∑
i=0

w
(m)
i X x

i,k|k−1 (3.21)

P−
xk

=
2L∑
i=0

w
(c)
i

(
X x

i,k|k−1 − x̂−
k

)(
X x

i,k|k−1 − x̂−
k

)T

(3.22)

3. Measurement-update equations:

Yk|k−1 = h
(
X x

k|k−1,X n
k−1

)
(3.23)

ŷ−
k =

2L∑
i=0

w
(m)
i Yi,k|k−1 (3.24)

Pỹk
=

2L∑
i=0

w
(c)
i

(Yi,k|k−1 − ŷ−
k

) (Yi,k|k−1 − ŷ−
k

)T (3.25)

Pxkyk
=

2L∑
i=0

w
(c)
i

(
X x

i,k|k−1 − x̂−
k

) (Yi,k|k−1 − ŷ−
k

)T (3.26)

Kk = Pxkyk
P−1

ỹk
(3.27)

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
(3.28)

Pxk
= P−

xk
− KkPỹk

KT
k (3.29)

• Parameters: xa =
[

xT vT nT
]T

, X a =
[

(X x)T (X v)T (X n)T
]T

, γ =
√
L+ λ

: γ is a composite scaling parameter and λ is given by Eq. 3.11, L is the dimension of the
augmented states, Rv is the process-noise covariance, Rn is the observation-noise covariance,
and wi are the weights as calculated in Eq. 3.12.

62

3.3 The Central Difference Kalman Filter

Separately from the development of the UKF, two different groups [88, 148] proposed an-

other derivativeless Kalman filter for nonlinear estimation, based on Sterling’s polynomial

interpolation formula [182]. This formulation was the basis of Norgaard’s [147, 148] deriva-

tion of the divided difference filter as well as Ito and Xiong’s [88] central difference filter.

These two filters are essentially identical and will henceforth be referred to simply as the

central difference Kalman filter (CDKF). In order to show how this filter was derived,

we will first briefly discuss Sterling’s polynomial interpolation method of approximating

nonlinear functions. Specifically, we will focus on the 2nd order Sterling approximation

which forms the core of the CDKF.

3.3.1 Second order Sterling polynomial interpolation

As shown in Section 2.3, the Taylor series expansion of a nonlinear function of a random

variable x around some point, say x̄ (its mean), is given by the following (for the scalar

case):

g(x) = g(x̄) +Dδxg +
1
2!
D2
δxg + . . . (3.30)

= g(x̄) + (x− x̄)
dg(x̄)
dx

+
1
2!

(x− x̄)2
d2g(x̄)
dx2

(3.31)

where we limited the expansion to the second order term. Another way to approximate

a nonlinear function over a certain interval is to make use of an interpolation formula,

that uses a finite number of functional evaluations instead of analytical derivatives. One

particular type of interpolation formula that uses central divided differences, is Sterling’s

polynomial interpolation formula [57, 37], which for the scalar 2nd order case is given by:

g(x) = g(x̄) + D̃∆xg +
1
2!
D̃2

∆x
g (3.32)

63

where D̃∆xg and D̃2
∆x
g are the first and second order central divided difference operators

acting on g(x). For the scalar case, these are given by

D̃∆xg = (x− x̄)
g(x̄ + h) − g(x̄− h)

2h
(3.33)

D̃2
∆x
g = (x− x̄)2

g(x̄+ h) + g(x̄− h) − 2g(x̄)
h2

, (3.34)

where h is the interval length or central difference step size and x̄ is the prior mean of

x around which the expansion is done. One can thus interpret the Sterling interpolation

formula as a Taylor series where the analytical derivatives are replaced by central divided

differences. Extending this formulation to the multi-dimensional case, g(x), is achieved by

first stochastically decoupling the prior random variable x by the following linear transfor-

mation [171]

z = S−1
x x (3.35)

g̃(z) .= g(Sxz) = g(x) (3.36)

where Sx is the Cholesky factor of the covariance matrix of x, Px, such that

Px = SxSTx . (3.37)

Here we assume that the random variable x has mean x̄ = E[x] and covariance Px =

E
[
(x− x̄) (x− x̄)T

]
. Note that the Taylor series expansion of g(·) and g̃(·) will be identi-

cal. This transformation stochastically decouples the variables in x in that the individual

components of z becomes mutually uncorrelated (with unity variance), i.e.,

Pz = E
[
(z− z̄) (z − z̄)T

]
= I . (3.38)

64

This allows for the application of the scalar central differencing operations (Equations 3.33

and 3.34) independently to the components of g̃(z) in order to obtain the following multi-

dimensional central difference operators:

D̃∆z g̃ =

(
L∑
i=1

∆zimidi

)
g̃(z̄) (3.39)

D̃2
∆z

g̃ =

⎛⎜⎝ L∑
i=1

∆2
zi
d2
i +

L∑
j=1

L∑
q=1
q �=j

∆zj∆zq (mjdj) (mqdq)

⎞⎟⎠ g̃(z̄) , (3.40)

where ∆zi = (z− z̄)i is the ith component of z− z̄ (i = 1, . . . , L), L is the dimension of x

(and thus z), and di, mi and d2
i are the “partial” first order difference and mean operators

and “partial” second order difference operator resp. defined as:

dig̃(z̄) =
1
2h

[g̃ (z̄ + hei) − g̃ (z̄ − hei)] (3.41)

mig̃(x̄) =
1
2

[g̃ (z̄ + hei) + g̃ (z̄− hei)] (3.42)

d2
i g̃(z̄) =

1
2h2

[g̃ (z̄ + hei) + g̃ (z̄ − hei) − 2g̃ (z̄)] (3.43)

where ei is the ith unit vector.

As an aside, using Equation 3.35 and 3.36, we can show that

g̃ (z̄ ± hei) = g (Sx [z̄ ± hei]) (3.44)

= g (Sxz̄ ± hSxei) (3.45)

= g (x̄± hsxi) (3.46)

where sxi is the ith column of the square Cholesky factor of the covariance matrix of x,

i.e.,

sxi = Sxei = (Sx)i =
(√

Px

)
i
. (3.47)

It is important to note here for future reference, that the set of vectors defined in Equa-

tion 3.46 by x̄ ± hsxi , is equivalent in form to the way that the UKF generates its set

of sigma-points in Equation 3.2, with the only difference being the value of the weighting

term.

65

3.3.2 Estimation of posterior mean and covariance by Sterling interpo-
lation

As before, we consider the nonlinear transformation of a L dimensional random variable x

with mean x̄ and covariance Px through an arbitrary nonlinear function g(·), i.e.,

y = g(x) . (3.48)

Using the 2nd order multi-dimensional Sterling interpolation expansion of Equation 3.48,

y = g(x)

= g̃(z)

≈ g̃(z̄) + D̃∆z g̃ +
1
2
D̃2

∆z
g̃ , (3.49)

where z̄ = Sxx̄, we will now proceed to approximate the posterior mean, covariance and

cross-covariance of y,

ȳ = E [y] (3.50)

Py = E
[
(y − ȳ) (y − ȳ)T

]
(3.51)

Pxy = E
[
(x− x̄) (y − ȳ)T

]
(3.52)

in terms of the prior statistics of x, x̄ and Px. This is done by replacing y in Equa-

tions 3.50 - 3.52 by its 2nd order Sterling approximation (Equation 3.49) and carrying out

the expectation operations as necessary.

66

The mean approximation is given by

ȳ ≈ E

[
g̃(z̄) + D̃∆z g̃ +

1
2
D̃2

∆z
g̃
]

(3.53)

= g̃(z̄) + E

[
1
2
D̃2

∆z
g̃
]

(3.54)

= g̃(z̄) + E

[
1

2h2

(
L∑
i=1

∆2
zi
d2
i

)
g̃(z̄)

]
(3.55)

= g̃(z̄) +
1

2h2

L∑
i=1

[g̃ (z̄ + hei) + g̃ (z̄ − hei) − 2g̃ (z̄)] (3.56)

=
h2 − L

h2
g̃(z̄) +

1
2h2

L∑
i=1

[g̃ (z̄ + hei) + g̃ (z̄− hei)] , (3.57)

where we assumed ∆z = z− z̄ is a zero-mean unity variance symmetric random variable as

defined in Equation 3.35. Substituting Equation 3.46 into Equation 3.57, we can rewrite

the posterior mean approximation in terms of the prior statistics of x:

ȳ ≈ h2 − L

h2
g(x̄) +

1
2h2

L∑
i=1

[g (x̄ + hsxi) + g (x̄ − hsxi)] . (3.58)

For the calculation of the covariance approximation, the following expansion of Equa-

tion 3.51 is used:

Py = E
[
(y − ȳ) (y − ȳ)T

]
(3.59)

= E
[
(y − g(x̄)) (y − g(x̄))T

]
− E [y − g(x̄)]E [y − g(x̄)]T (3.60)

= E
[
(y − g̃(z̄)) (y − g̃(z̄))T

]
− E [y − g̃(z̄)]E [y − g̃(z̄)]T (3.61)

where we used the identity

ȳ = E [y]

= E [y] + g (x̄) − g (x̄)

= E [y] + g (x̄) − E [g (x̄)]

= g (x̄) + E [y − g (x̄)] , (3.62)

67

in the expansion of Equation 3.59. From Equation 3.49 we have

y − g̃(z̄) = D̃∆z g̃ +
1
2
D̃2

∆z
g̃ , (3.63)

which is the 2nd order Stirling interpolation approximation of y− g̃(z̄). Substituting this

result into Equation 3.61 gives us the following approximation:

Py ≈ E

[(
D̃∆z g̃ +

1
2
D̃2

∆z
g̃
)(

D̃∆z g̃ +
1
2
D̃2

∆z
g̃
)T]

−E
[
D̃∆z g̃ +

1
2
D̃2

∆z
g̃
]
E

[
D̃∆zg +

1
2
D̃2

∆z
g̃
]T

. (3.64)

As for the derivation of the mean, we assume that ∆z = z − z̄ is a zero-mean unity

variance symmetric random variable as defined in Equation 3.35. Due to the symmetry, all

resulting odd-order expected moments can be equated to zero. Furthermore, in order to

keep the results computationally tractable, we will discard all components of the resulting

fourth order term, E
[

1
4D̃

2
∆z

g̃
(
D̃2

∆z
g̃
)T]

, that contains cross-differences in the expansion

of Equation 3.64. This is done because inclusion of these terms leads to an excessive

increase in the number of computations as the number of such terms grows rapidly with

the dimension of z. The reason for not considering the extra effort worthwhile is that we are

unable to capture all fourth order moments anyway [147, 148]. Carrying out the expansion

and expectation operations6 on Equation 3.64 under the assumptions just stated, results

in the following approximations of the covariance:

Py ≈ 1
4h2

L∑
i=1

[g (x̄ + hsxi) − g (x̄− hsxi)] [g (x̄ + hsxi) − g (x̄− hsxi)]
T

+
h2 − 1
4h4

L∑
i=1

[g (x̄ + hsxi) + g (x̄− hsxi) − 2g (x̄)] ×

× [g (x̄ + hsxi) + g (x̄− hsxi) − 2g (x̄)]T (3.65)

6The complete derivation, which from this point on consists of a couple of pages of tedious algebra and
careful bookkeeping, is not presented here for the sake of brevity. The interested reader is referred to [148]
for a complete exposition.

68

In a similar fashion, the cross-covariance approximation is given by:

Pxy = E
[
(x− x̄) (y − ȳ)T

]
(3.66)

≈ E

[
(Sx (z− z̄))

(
D̃∆z g̃ +

1
2
D̃2

∆z
g̃ − E

[
1
2
D̃2

∆z
g̃
])T]

(3.67)

= E

[
(Sx∆z)

(
D̃∆z g̃

)T]
+

1
2
E

[
(Sx∆z)

(
D̃2

∆z
g̃
)T]−

−1
2
E [(Sx∆z)]E

[
1
2
D̃2

∆z
g̃
]2

(3.68)

= E

[
(Sx∆z)

(
D̃∆z g̃

)T]
(3.69)

=
1
2h

L∑
i=1

sxi [g̃ (z̄ + hei) − g̃ (z̄ − hei)]T (3.70)

=
1
2h

L∑
i=1

sxi [g (x̄ + hsxi) − g (x̄− hsxi)]
T , (3.71)

where the odd-order moment terms of Equation 3.68 equate to zero due to the symmetry

of ∆z.

The optimal setting of the central difference interval parameter, h, is dictated by the

prior distribution of z = S−1
x x. It turns out that h2 should equal the kurtosis of z to

minimize errors between the Taylor series expansion of the true mean and covariance and

those of the estimates [147]. For Gaussian priors, the optimal value of h is thus h =
√

3.

(Note: At this point one might ask what the differences and similarities are between

Sterling’s approximation method and the UKF’s unscented transformation? This will be

covered in detail in Sections 3.4 and 4.2.)

Now that we can approximate the posterior statistics of a nonlinearly transformed

random variable using the Sterling interpolation method, we are ready to show how this

technique is used inside the actual algorithmic implementation of the central difference

Kalman filter (CDKF). Before that though, we will present a brief demonstration of the

Sterling interpolation method for posterior statistics estimation.

69

3.3.3 Demonstration of Sterling interpolation for posterior statistics es-
timation

For this example we revisit the polar to Cartesian coordinate transformation experiment

presented in Chapter 2. As described in Section 2.5.3, this ubiquitous transformation lies

at the heart of the observation models for many real-world sensors such as sonar, radar

and laser range finders. A sensor returns polar measurement information that are related

through a nonlinear transformation with the underlying Cartesian position of a target, i.e⎡⎣ x

y

⎤⎦ =

⎡⎣ r cos θ

r sin θ

⎤⎦ ,

where (r, θ) are the range and bearing angle of the target in the polar coordinate frame and

(x, y) are the normal 2-dimensional Cartesian coordinates of the target. Linearizing this

nonlinear observation model using a first order Taylor series truncation, quickly becomes

very inaccurate for any significant bearing error. The results of this experiment is shown

in Figure 3.4. The true position of the target is at (0, 1) in the Cartesian plane. Several

thousand measurement samples were generated by taking the true range and bearing (r, θ)

value of the target location and adding zero-mean Gaussian noise to both the r and the θ

components, and then converting back to the Cartesian plane. The resulting distribution

(in the Cartesian plane) has a characteristic “banana”-shape, clearly indicating the better

accuracy in the range direction than the bearing direction. The true mean and covariance

of this distribution is indicated by the black dot and covariance ellipse. The mean and

covariance calculated by a simple first order linearization approach (as used in the EKF,

Equations 2.25 and 2.26) are indicated by the magenta dot and ellipse. The Sterling ap-

proximation calculated mean and covariance (using Equations 3.58 and 3.65) are indicated

in green. The linearization based solution is clearly inaccurate. There is a large bias in

the mean estimate in the range direction and the covariance is also underestimated in this

direction. The underestimation results in an estimated posterior distribution that is too

peaked (compared to the true posterior) in the range direction, resulting in “over confi-

dence” in the resulting mean position estimate. In comparison, the sigma-point estimate

70

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0.6

0.7

0.8

0.9

1

1.1

y

x

true

linearized

Sterling

SUT

Figure 3.4: Optimal vs. linearized (EKF) vs. Sterling approximation (CDKF) vs. SUT (UKF)
approximation for estimating the statistics of a Gaussian random variable that undergoes a polar-to-
Cartesian coordinate transformation. The blue dots indicate the noisy polar coordinate measurements
coming from a sensor such as a laser or sonar range finder. The true covariance and mean of this
distribution is indicated by the black dot and ellipse. The magenta dots and ellipse indicate the results
using normal linearization. Red and green indicate the results using Sterling approximation and SUT
calculated means and covariances respectively.

has almost no bias error in the mean and the covariance estimate seems to be more accu-

rate, consistent and efficient. Clearly, a recursive navigation filter based on the Sterling

approximation approach will outperform a comparable EKF solution not only in accuracy

but also in robustness. Since the Sterling approximation calculated covariance tends to

be more consistent than the linearization result, the resulting CDKF will have a much

smaller tendency (if at all) to diverge. Figure 3.4 also indicates the results obtained using

the SUT. The mean estimates resulting from Sterling approximation and the SUT are

indistinguishable. The SUT’s covariance estimate seems to be slightly more conservative

than the Sterling result. Both the SUT and Sterling approximation clearly outperforms

the simple linearization approach however. Repeating the 2D nonlinear mapping example

of Section 3.2.2 gives almost identical results for the SUT and Sterling approximation. In

Section 3.5.1 we present a direct comparative experiment between the UKF and the CDKF

which will again show that for all practical purposes there are no difference in estimation

performance between the UKF (SUT) and the CDKF (Sterling approximation).

71

3.3.4 Implementing the central difference Kalman filter

The central difference Kalman filter (CDKF) is a straightforward application of Sterling

interpolation for posterior statistics approximation, to the recursive Kalman filter frame-

work as presented in Section 2.2 of the previous chapter. Specifically, Equations 3.58,

3.65 and 3.71 are used to approximate the optimal terms in Equations 2.5-2.8 of the op-

timal Gaussian approximate linear Bayesian update. The complete CDKF algorithm that

updates the mean x̂k and covariance Pxk
of the Gaussian approximation to the posterior

distribution of the states will now be presented:

Algorithm 3 : The Central Difference Kalman Filter (CDKF)

• Initialization:
x̂0 = E[x0] Px0 = E[(x0 − x̂0)(x0 − x̂0)T]

v̄ = E[v] Rv = E[(v − v̄)(v − v̄)T]

n̄ = E[n] Rn = E[(n − n̄)(n − n̄)T]

(3.72)

• For k = 1, . . . ,∞ :

1. Calculate covariance square-root column vectors for time-update:

sx,i
k−1 = h

(√
Pxk−1

)
i

i = 1, . . . , Lx (3.73)

sv,i
k−1 = h

(√
Rv

)
i

i = 1, . . . , Lv (3.74)

2. Time-update equations:

x̂−
k =

h2 − Lx − Lv

h2
f (x̂k−1, v̄,uk−1) (3.75)

+
1

2h2

Lx∑
i=1

[
f
(
x̂k−1 + sx,i

k−1, v̄,uk−1

)
+ f
(
x̂k−1 − sx,i

k−1, v̄,uk−1

)]
+

1
2h2

Lv∑
i=1

[
f
(
x̂k−1, v̄ + sv,i

k−1,uk−1

)
+ f
(
x̂k−1, v̄ − sv,i

k−1,uk−1

)]

72

P−
xk

=
1

4h2

Lx∑
i=1

[
f
(
x̂k−1 + sx,i

k−1, v̄,uk−1

)
− f
(
x̂k−1 − sx,i

k−1, v̄,uk−1

)]2
+

1
4h2

Lv∑
i=1

[
f
(
x̂k−1, v̄ + sv,i

k−1,uk−1

)
− f
(
x̂k−1, v̄ − sv,i

k−1,uk−1

)]2
+
h2 − 1
4h4

Lx∑
i=1

[
f
(
x̂k−1 + sx,i

k−1, v̄,uk−1

)
+ f
(
x̂k−1 − sx,i

k−1, v̄,uk−1

)
−2f (x̂k−1, v̄,uk−1)]

2

+
h2 − 1
4h4

Lv∑
i=1

[
f
(
x̂k−1, v̄ + sv,i

k−1,uk−1

)
+ f
(
x̂k−1, v̄ − sv,i

k−1,uk−1

)
−2f (x̂k−1, v̄,uk−1)]

2 (3.76)

3. Calculate covariance square-root column vectors for measurement-update:

sx,i
k = h

(√
P−

xk

)
i

i = 1, . . . , Lx (3.77)

sn,i
k = h

(√
Rn

)
i

i = 1, . . . , Ln (3.78)

4. Measurement-update equations:

ŷ−
k =

h2 − Lx − Ln

h2
h
(
x̂−

k , n̄
)

+
1

2h2

Lx∑
i=1

[
h
(
x̂−

k + sx,i
k , n̄

)
+ h
(
x̂−

k − sx,i
k , n̄

)]

+
1

2h2

Ln∑
i=1

[
h
(
x̂−

k , n̄ + sn,i
k

)
+ h
(
x̂−

k−1, n̄− sn,i
k

)]
(3.79)

Pỹk
=

1
4h2

Lx∑
i=1

[
h
(
x̂−

k + sx,i
k , n̄

)
− h
(
x̂−

k − sx,i
k , n̄

)]2
(3.80)

+
1

4h2

Ln∑
i=1

[
h
(
x̂−

k , n̄ + sn,i
k

)
− h
(
x̂−

k , n̄− sn,i
k

)]2
+
h2 − 1
4h4

Lx∑
i=1

[
h
(
x̂−

k + sx,i
k , n̄

)
+ h
(
x̂−

k − sx,i
k , n̄

)
− 2h

(
x̂−

k , n̄
)]2

+
h2 − 1
4h4

Ln∑
i=1

[
h
(
x̂−

k , n̄ + sn,i
k

)
+ h
(
x̂−

k , n̄ − sn,i
k

)
− 2h

(
x̂−

k , n̄
)]2

Pxkyk
=

1
2h2

Lx∑
i=1

sx,i
k

[
h
(
x̂−

k + sx,i
k , n̄

)
− h
(
x̂−

k − sx,i
k , n̄

)]T
(3.81)

73

Kk = Pxkyk
P−1

ỹk
(3.82)

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
(3.83)

Pxk
= P−

xk
− KkPỹk

KT
k (3.84)

• Parameters: h ≥ 1 is the scalar central difference interval size. For Gaussian x, the optimal
value is h =

√
3. Lx, Lv and Ln are the dimensions of the state, process noise and observation

noise RVs. Rv and Rn are the process and observation noise covariances. (·)2 is shorthand
for the vector outer product, i.e. a2 .= aaT , and

(√
P
)

i
is the ith column of the matrix

square root of the square-symmetric matrix P.

74

3.4 Sigma-Point Kalman Filters and the Sigma-point Ap-

proach

Now that we have presented the UKF and the CDKF, it is convenient to to cast them into a

single framework that allows us to group them (and other derived algorithms) into a single

family of derivativeless Kalman filters for Gaussian approximate nonlinear estimation. We

call this family of filters sigma-point Kalman filters (SPKF) and the underlying common

framework the sigma-point approach for estimating the statistics of nonlinearly transformed

Gaussian approximate random variables.

We will first describe the sigma-point approach and then show how both the UKF and

the CDKF make use of it under a different set of implementational assumptions. After

this we rewrite the algorithmic specification of the CDKF (as presented in Section 3.3.4)

using the sigma-point approach in order to present both the UKF and the CDKF algo-

rithms in the common sigma-point Kalman filter (SPKF) notation. Note, in Chapter 4

(Section 4.2) we provide an alternative interpretation of the sigma-point approach, based

on weighted statistical linear regression (stochastic/statistical linearization), that provides

further unifying insight into the the different SPKF filters.

3.4.1 The Sigma-point Approach

Notice how the arguments of all the nonlinear functional evaluations in Equations 3.58,

3.65 and 3.71, the core of the Stirling approximation approach, are all of the form, x̄±hsxi ,

for i = 1, . . . , L (L is the dimension of x, x̄ is the mean of x and sxi are the columns of

the matrix square-root of the covariance of x). As we already pointed out earlier, this

forms a sigma-point set in exactly the same manner as was the case for the SUT used

by the UKF. More specifically, the resulting weighted sigma-point set used by Sterling’s

interpolation formula (which forms the core of the CDKF), is again 2L+1 points given by

the prior mean plus/minus the columns (or rows) of the scaled matrix square-root of the

75

prior covariance matrix, i.e.,

X 0 = x̄ w
(m)
0 = h2−L

h2

X i = x̄ +
(
h
√

Px

)
i

i=1,...,L w
(m)
i = 1

2h2 i=1,...,2L

X i = x̄− (h√Px

)
i

i=L+1,...,2L w
(c1)
i = 1

4h2 i=1,...,2L

w
(c2)
i = h2−1

4h4 i=1,...,2L

(3.85)

where L is the dimension of x. Similar to the SUT, each sigma-point is propagated through

the true nonlinear function

Yi = g (X i) , i = 0, . . . , 2L , (3.86)

to form the posterior sigma-point set, Y i. Using the above results, we can now rewrite the

Sterling approximation estimates of the posterior mean, covariance and cross-covariance

(Equations 3.58, 3.65 and 3.71) as:

ȳ ≈
2L∑
i=0

w
(m)
i Y i (3.87)

Py ≈
L∑
i=1

w
(c1)
i [Y i − Y i+L] [Yi − Y i+L]T

+
L∑
i=1

w
(c2)
i [Y i + Y i+L − 2Y0] [Y i + Y i+L − 2Y0]

T (3.88)

Pxy ≈
L∑
i=1

w
(m)
i [X i − x̄] [Y i − Y i+L]T . (3.89)

This resulting set of equations for calculating of the statistics of a random variable that

undergoes a nonlinear transformation are of the same general form as those employed by

the SUT inside the UKF. Both approaches (SUT and Sterling approximation) are thus

essentially the same and can be summarized by the following three steps which we refer

to in general as the sigma-point approach for the approximating the statistics of a random

variable that undergoes a nonlinear transformation:

The Sigma-point Approach

1. A set of weighted sigma-points are deterministically calculated using the mean and

76

square-root decomposition of the covariance matrix of the prior random variable. As a

minimal requirement the sigma-point set must completely capture the first and second

order moments of the prior random variable. Higher order moments can be captured,

if so desired, at the cost of using more sigma-points.

2. The sigma-points are then propagated through the true nonlinear function using func-

tional evaluations alone, i.e., no analytical derivatives are used, in order to generate

a posterior sigma-point set.

3. The posterior statistics are calculated (approximated) using tractable functions of the

the propagated sigma-points and weights.

By comparing Equations 3.14 and 3.87, we see that both the SUT and the Sterling ap-

proximation approach calculate the posterior mean in an identical fashion, with the only

difference being the values of the scalar weights. The subtle difference between the two

approaches, however, lie in the approximation of the posterior covariance term (Equa-

tions 3.15 and 3.88). The SUT makes use of the indirect form of the posterior covariance

approximation:

Py = E
[
(y − ȳ) (y − ȳ)T

]
(3.90)

≈
2L∑
i=0

w
(c)
i (Yi − ȳ) (Y i − ȳ)T (3.91)

=
2L∑
i=0

w
(c)
i

⎛⎝Yi −
2L∑
j=0

w
(m)
j Yj

⎞⎠⎛⎝Yi −
2L∑
j=0

w
(m)
j Yj

⎞⎠T (3.92)

= PSUT
y , (3.93)

That is, in Equation 3.91 the posterior mean (ȳ) is first calculated using Equation 3.14,

the result of which is then substituted into the calculation of the posterior covariance

77

(Equation 3.92). When this approximation is fully expanded,

PSUT
y =

2L∑
i=0

w
(c)
i

⎛⎝Y i −
2L∑
j=0

w
(m)
j Yj

⎞⎠⎛⎝Y i −
2L∑
j=0

w
(m)
j Yj

⎞⎠T

=
2L∑
i=0

w
(c)
i

⎡⎣Y iYT
i − Y i

⎛⎝ 2L∑
j=0

w
(m)
j YT

j

⎞⎠−
⎛⎝ 2L∑
j=0

w
(m)
j Yj

⎞⎠YT
i +

+
2L∑
j=0

2L∑
k=0

w
(m)
j w

(m)
k YjYT

k

⎤⎦ (3.94)

=
2L∑
i=0

w
(c)
i YiYT

i −
2L∑
i=0

2L∑
j=0

w
(c)
i w

(m)
j

(Y iYT
j + YjYT

i

)
+

+
2L∑
j=0

2L∑
k=0

γ̃w
(m)
j w

(m)
k YjYT

k , (3.95)

where γ̃ =
∑2L

i=0w
(c)
i , we see that it contains terms with all off the posterior sigma-point

cross-products, i.e., YiYT
j for i = 0, . . . , 2L and j = 0, . . . , 2L, present.

The Sterling approximation approach on the other hand, makes use of the direct form

of the posterior covariance approximation (Equation 3.60):

Py = E
[
(y − g(x̄)) (y − g(x̄))T

]
− E [y − g(x̄)]E [y − g(x̄)]T (3.96)

≈
L∑
i=1

w
(c1)
i (Yi − Y i+L) (Y i − Y i+L)T +

+
L∑
i=1

w
(c2)
i [Y i + Y i+L − 2Y0] [Y i + Y i+L − 2Y0]

T (3.97)

= PSterling
y , (3.98)

That is, the covariance approximation is a direct function of the propagated sigma-points

(Y i) and not of the propagated sigma-point and the approximated posterior mean (ȳ ≈∑2L
i=0w

(m)
i Y i). If we now expand Equation 3.98 further,

78

PSterling
y =

L∑
i=1

w
(c1)
i (Y i − Y i+L) (Yi − Yi+L)T +

+
L∑
i=1

w
(c2)
i [Y i + Yi+L − 2Y0] [Y i + Yi+L − 2Y0]

T (3.99)

=
L∑
i=1

w
(c1)
i

[YiYT
i − Y iYT

i+L − Y i+LYT
i + Y i+LYT

i+L

]
+

+
L∑
i=1

w
(c2)
i

[
4Y0YT

0 − 2Y i+LYT
0 − 2Y iYT

0 − 2Y0YT
i+L +

+Y i+LYT
i+L + YiYT

i+L − 2Y0YT
i + Yi+LYT

i + Y iYT
i

]
(3.100)

=
2L∑
i=1

2w(c2)
i Y0YT

0 −
2L∑
i=1

2w(c2)
i YiYT

0 −
2L∑
i=1

2w(c2)
i Y0YT

i +

+
2L∑
i=1

w
(c1)
i Y iYT

i −
L∑
i=1

w
(c1)
i

(Y iYT
i+L + Yi+LYT

i

)
, (3.101)

we see that general forms of Equation 3.101 and Equation 3.95 are similar. The differences

being only the value of the weights and the fact that Equation 3.99 (Sterling) does not

use some of the sigma-point cross-product terms in comparison to Equation 3.95 (SUT).

Specifically, the Sterling interpolation approximation discards the following cross-products

{Y iYT
j , i = 1, . . . , 2L , j = 1, . . . , 2L , i �= j , |i− j| �= L

}
. (3.102)

This is a direct result of the design choice to discard some of the higher order cross-

product terms (to avoid excessive computational cost) in the derivation of the Sterling

approximation estimate of the covariance (see Section 3.3.2).

Although this thesis only deals with the SUT and Sterling approximation as specific

implementations of the sigma-point approach, it does not imply that other related imple-

mentational variations might not be derived. Julier has in subsequent work [96] extended

the SUT to both a simplex version that uses half the number of sigma-points (at a re-

duced computational cost and accuracy), as well as a higher-order version that not only

captures (and propagates) the mean and covariance of the prior random variables, but

also the skew. Implementations of the sigma-point approach based on other polynomial

79

interpolation formulas such as Padé approximants [57, 37] are also conceivable and is an

area of future research.

In Section 4.2 of Chapter 4, we present an alternative interpretation of the sigma-

point approach, based on a statistical technique called weighted statistical linear regression.

which allows for further useful insight into why the SPKF is expected to perform better

and more robustly than the EKF.

3.4.2 Sigma-point Kalman filters

Sigma-point Kalman filters are the collective name used for derivativeless Kalman filters

that employ the deterministic sampling based sigma-point approach to calculate approx-

imations of the optimal terms of the Gaussian approximate linear Bayesian update rule

(Equations 2.5, 2.6 and 2.8). The already presented UKF and CDKF algorithms thus

fall within this family as the core members. Later in this chapter we will present further

extensions of these filters which expands the SPKF family.

Comparing the algorithmic specifications of the UKF (Algorithm 2, Section 3.2.3) with

that of the CDKF (Algorithm 3, Section 3.3.4), we see that the UKF is already specified

in the general sigma-point approach based SPKF formulation. It is thus convenient at this

point to recast the algorithmic specification of the CDKF into the similar more general

SPKF framework.

Algorithm 4 : The Unscented Kalman Filter (UKF) - SPKF formulation

Identical to original formulation. See Algorithm 2 in Section 3.2.3.

Algorithm 5 : The Central Difference Kalman Filter (CDKF) - SPKF formulation

• Initialization: x̂0 = E[x0] , Px0 = E[(x0 − x̂0)(x0 − x̂0)T]

• For k = 1, . . . ,∞ :

80

1. Calculate sigma-points for time-update:

x̂av

k−1 = [x̂k−1 v̄] , Pav

k−1 =

[
Pxk−1 0

0 Rv

]
(3.103)

X av

k−1 =
[

x̂av

k−1 x̂av

k−1 + h
√

Pav

k−1 x̂av

k−1 − h
√

Pav

k−1

]
(3.104)

2. Time-update equations:

X x
k|k−1 = f

(X x
k−1,X v

k−1,uk−1

)
(3.105)

x̂−
k =

2L∑
i=0

w
(m)
i X x

i,k|k−1 (3.106)

P−
xk

=
L∑

i=1

[
w

(c1)
i

(
X x

i,k|k−1 − X x
L+i,k|k−1

)2
+ (3.107)

w
(c2)
i

(
X x

i,k|k−1 + X x
L+i,k|k−1 − 2Xx

0,k|k−1

)2]

3. Calculate sigma-points for measurement-update:

x̂an

k|k−1 =
[
x̂−

k n̄
]

, Pan

k|k−1 =

[
P−

xk
0

0 Rn

]
(3.108)

X an

k|k−1 =
[
x̂an

k|k−1 x̂an

k|k−1 + h
√

Pan

k|k−1 x̂an

k|k−1 − h
√

Pan

k|k−1

]
(3.109)

4. Measurement-update equations:

Yk|k−1 = h
(
X x

k|k−1,X n
k|k−1

)
(3.110)

ŷ−
k =

2L∑
i=0

w
(m)
i Yi,k|k−1 (3.111)

Pỹk
=

L∑
i=1

[
w

(c1)
i

(Yi,k|k−1 − YL+i,k|k−1

)2 + (3.112)

w
(c2)
i

(Yi,k|k−1 + YL+i,k|k−1 − 2Y0,k|k−1

)2]
Pxkyk

= =
√
w

(c1)
1 P−

xk

[Y1:L,k|k−1 − YL+1:2L,k|k−1

]T (3.113)

Kk = Pxkyk
P−1

ỹk
(3.114)

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
(3.115)

Pxk
= P−

xk
− KkPỹk

KT
k (3.116)

• Parameters: xav =
[
xT vT

]T , X av =
[
(X x)T (X v)T

]T , xan =
[
xT nT

]T , X an =

81

[
(X x)T (X n)T

]T , h ≥ 1 is the scalar central difference step size, L is the dimension
of the augmented states, Rv is the process-noise covariance, Rn is the observation-noise
covariance, and wi are the weights as calculated in Equation 3.85. (·)2 is shorthand for the
vector outer product, i.e. a2 .= aaT .

• General note: Here we again augment the system state with the process noise and observa-
tion noise vectors (vk and nk) as we did for the UKF. For the CDKF, however, we split this
augmentation between the time-update and measurement-update, i.e., for the time-update
the augmented state vector and augmented covariance matrix is given by

xav

k =
[

xT
k vT

k

]T
, Pav

k =

[
Pxk

0

0 Rv

]
, (3.117)

and by

xan

k =
[

xT
k nT

k

]T
, Pan

k =

[
Pxk

0

0 Rn

]
, (3.118)

for the measurement-update.

We’ve found in practice that the CDKF and UKF perform equally well with negligible

difference in estimation accuracy. Both generate estimates however that are clearly superior

to those calculated by an EKF. The performance similarity of the UKF and CDKF is clearly

demonstrated on nonlinear time-series estimation problem in Section 3.5.1. However, there

is one advantage the CDKF has over the UKF: The CDKF uses only a single scalar scaling

parameter, the central difference interval size h, as opposed to the three (α, κ, β) that the

UKF uses. Once again this parameter determines the spread of the sigma-points around

the prior mean. As mentioned earlier, the optimal setting for h is equal to the kurtosis of

the prior RV. For Gaussian RVs the optimal value is thus h =
√

3.

3.5 SPKF Application to State, Parameter and Dual estima-

tion

In this section we demonstrate (and experimentally verify) the versatility of the SPKF as

a general inference tool with specific application to state estimation, parameter estimation

and dual estimation. We will show how the SPKF consistently outperforms the EKF on a

variety of inference and machine learning problems.

82

3.5.1 SPKF State Estimation

The UKF (and CDKF) was originally designed for state estimation applied to nonlinear

control applications requiring full-state feedback [94, 99, 100, 147]. We provide an example

for an inverted double pendulum control system. In addition, we provide a new applica-

tion example corresponding to noisy time-series estimation with neural networks7. An-

other original contribution reported here is the implementation of a sigma-point Kalman

smoother with application to time-series estimation using a novel neural network based

forward-backward predictor.

Noisy time-series estimation : In this example, two SPKFs (UKF and CDKF) are

used to estimate an underlying clean time-series corrupted by additive Gaussian white

noise. The time-series used is the Mackey-Glass-30 chaotic series [129, 110] which is de-

scribed by the following continuous time differential equation

dx(t)
dt

= −0.1x(t) +
0.2x(t− 3)

1 + x(t− 30)10
, (3.119)

where t is the continuous time variable and x(t) is the time-series amplitude at time t. For

this experiment, we modeled the discrete time version of this time series as a nonlinear

autoregression

xk = f(xk−1, xk−2, . . . , xk−M ;w) + vk , (3.120)

where the model f (parameterized by w) was approximated by training a feed-forward

neural network on a sampled clean sequence generated by Equation 3.119. The residual

error after convergence was taken to be the process noise variance, i.e., σ2
v . Next, white

Gaussian noise was added to the clean Mackey-Glass series to generate a noisy time-series

yk = xk + nk. The corresponding state-space representation is given by

xk+1 = f(xk;w) + Bvk (3.121)

yk = Cxk + nk (3.122)

7See Haykin [74] or Bishop [18] for a thorough review of neural network theory.

83

SPKF

SPKF

Figure 3.5: Estimation of Mackey-Glass time-series with the EKF and SPKF using a known model.

which can be expanded as⎡⎢⎢⎢⎢⎢⎢⎣
xk+1

xk
...

xk−M+2

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
f(xk, xk−1, . . . , xk−M+1;w)⎡⎢⎢⎢⎣
1 0 0 0

0
. . . 0

...

0 0 1 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

xk−1

...

xk−M+1

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
1

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎦ vk (3.123)

yk =
[

1 0 · · · 0
] [

xk xk−1 · · · xk−M+1

]T
+ nk . (3.124)

In the estimation problem, the noisy-time series yk is the only observed input to either

the EKF or SPKF algorithms (all utilize the known neural network model). Note that for

time-series estimation, both the EKF and the SPKF are O(L2) complexity. Figures 3.5

and 3.6 show sub-segments of the estimates generated by both the EKF and the SPKF

(the original noisy time-series has a 3dB SNR). The superior performance of the SPKF

algorithms are clearly visible. Table 3.1 summarizes the mean MSE as well as its variance

for a Monte-Carlo run of 200 randomly initialized experiments. For each run a different

84

Table 3.1: Estimation of Mackey-Glass time-series with the EKF, UKF and CDKF using a known
model. : Monte-Carlo averaged (200 runs) estimation error.

Algorithm MSE (mean) MSE (var)
Extended Kalman filter (EKF) 60.90 4.475e8
Unscented Kalman filter (UKF) 0.1115 0.0324
Central difference Kalman filter (CDKF) 0.1116 0.0357

realization of both the process and observation noise was generated. This results is also

presented graphically in Figure 3.7, where the ensemble averaged (over all 200 runs) short-

term MSE of the EKF and SPKF is plotted as a function of time (top plot). A 51

element median filter was used to smooth the resulting time-trajectories of the average

MSE curves. As is clearly evident from both the table and the figure, the magnitude of

the EKF errors is much larger (close to 2 orders of magnitude) than those of the SPKFs.

The EKF not only has a worse average MSE performance, but the variance of the MSE is

also extremely large. This is due to the fact that every once in while (for some runs) the

EKF completely diverges for a significant number of samples, resulting in huge spikes in

the estimates, as well as the resulting instantaneous MSE. The bottom plot of Figure 3.7

shows the distribution of the log of the Monte-Carlo averaged estimation errors for the

EKF, UKF and CDKF using an unnormalized histogram presentation. Note the heavy

tailed distribution for the EKF. This is due to the above mentioned “filter divergence”

phenomenon where huge spikes in the EKF’s estimates occurs (these spikes can be seen in

Figure 3.6). This skews the distribution (as well as the average MSE) to the right (larger

errors). The almost indistinguishable performance of the UKF and CDKF is again evident.

85

780 790 800 810 820 830 840 850 860 870
-4

-3

-2

-1

0

1

2

3

time (k)

s
ig

n
a

l
a

m
p

li
tu

d
e

clean

noisy

ekf estimate

ukf estimate

cdkf estimate

700 750 800 850 900 950 1000
-20

-15

-10

-5

0

5

10

time (k)

Mackey-Glass Chaotic Time Series Estimation

s
ig

n
a

l
a

m
p

li
tu

d
e

clean

noisy

ekf estimate

ukf estimate

cdkf estimate

Figure 3.6: Estimation of Mackey-Glass time-series with the EKF and SPKF using a known model:
(top) The plot shows a sub-segment of the underlying clean time-series as well as the noisy observed
samples. The estimates generated by the EKF, UKF and CDKF are indicated. Note the large spikes
in the estimates generated by the EKF. This is due (in part) to filter divergence. (bottom) This plot
“zooms in” further on a section of the plot shown above. Note how the estimates generated by the
two SPKF algorithms, the UKF and CDKF, are at the same time very close (similar) to each other and
superior to those generated by the EKF.

86

0 100 200 300 400 500 600 700 800 900 1000
10

-2

10
-1

10
0

10
1

time (k)

M
S

E

Smoothed time trajectory of short term MSE averaged over 200 Monte-Carlo runs

EKF

UKF

CDKF

-10 -8 -6 -4 -2 0 2 4 6
10

0

10
1

10
2

10
3

10
4

10
5

log(MSE) : 10
x

c
o

u
n

ts

MSE histogram for 200 Monte-Carlo runs

EKF

UKF

CDKF

Figure 3.7: Monte-Carlo analysis of estimation error for Mackey-Glass nonlinear (chaotic) time-series
estimation problem: These graphs show a comparison of averaged (over 200 Monte-Carlo runs) esti-
mation error (MSE) for the complete sequence as generated by the EKF and SPKF algorithms. (top)
This plot shows the smoothed (median filtered) Monte-Carlo averaged MSE trajectories for the dif-
ferent filters. Note the almost indistinguishable performance between the UKF and CDKF. (bottom)
Histogram of estimation errors: This plot shows the distribution of the log of the Monte-Carlo averaged
estimation errors for the EKF, UKF and CDKF . Note the heavy tailed distribution for the EKF. This
is due to the often occurring “filter divergence” phenomenon where huge spikes in the EKF’s estimates
occurs. This skews the distribution (as well as the average MSE) to the right (larger errors). The
almost indistinguishable performance of the UKF and CDKF is again evident .

87

Inverted Double pendulum: An inverted double pendulum (See Figure 3.8) has states

corresponding to cart position and velocity, and top and bottom pendulum angle and

angular velocity; and system parameters correspond the length and mass of each pendulum,

and the cart mass:

x =
[
x ẋ θ1 θ̇1 θ2 θ̇2

]
, w =

[
l1 l2 m1 m2 M

]
(3.125)

The dynamic equations are

(M +m1 +m2)ẍ− (m1 + 2m2)l1θ̈1 cos θ1 − l2m2θ̈2 cos θ2 (3.126)

= u+ (m1 + 2m2)l1θ̇2
1 sin θ1 +m2l2θ̇

2
2 sin θ2

−(m1 + 2m2)l1ẍ cos θ1 + 4(m1
3 +m2)l21 θ̈1 + 2m2l1l2θ̈2 cos(θ2 − θ1) (3.127)

= (m1 + 2m2)gl1 sin θ1 + 2m2l1l2θ̇
2
2 sin(θ2 − θ1)

−m2ẍl2 cos θ2 + 2m2l1l2θ̈1 cos(θ2 − θ1) + 4
3m2l

2
2θ̈2 (3.128)

= m2gl2 sin θ2 − 2m2l1l2θ̇
2
1 sin(θ2 − θ1)

These continuous-time dynamics are discretized with a sampling period of 0.02 seconds.

The pendulum is stabilized by applying a control force, u to the cart. In this case we use

a state dependent Ricatti equation (SDRE) controller to stabilize the system 8. A state

estimator is run outside the control loop in order to compare the EKF with the SPKF

(i.e., the estimates states are not used in the feedback control for evaluation purposes).

The observation corresponds to noisy measurements of the cart position, cart velocity, and

angle of the top pendulum. This is a challenging problem, as no measurements are made

for the bottom pendulum, nor for the angular velocity of the top pendulum. For this

experiment, the pendulum is initialized in a jack-knife position (+25/-25 degrees) with a

8An SDRE controller [30] is designed by formulating the dynamic equations as xk+1 = A(xk)xk +
B(xk)uk. Note, this representation is not a linearization, but rather a reformulation of the nonlinear
dynamics into a pseudo-linear form. Based on this state-space representation, we design an optimal LQR
controller, uk = −R−1BT (xk)P(xk)xk ≡ K(xk)xk, where P(xk) is a solution of the standard Ricatti
equations using state-dependent matrices A(xk) and B(xk). The procedure is repeated at every time step
at the current state xk and provides local asymptotic stability of the plant [30]. The approach has been
found to be far more robust than LQR controllers based on standard linearization techniques, and as well
as many alternative “advanced” nonlinear control approaches.

88

u

x

1θ

2θ
2 2,l m

1 1,l m

M

0 50 100 150
−4

−2

0

2

4
observed

ca
rt

 p
os

iti
on

0 50 100 150
−15

−10

−5

0

5

10
observed

ca
rt

 v
el

oc
ity

0 50 100 150
−2

−1.5

−1

−0.5

0

0.5

1
un−observed

pe
nd

ul
um

 1
 a

ng
le

0 50 100 150
−15

−10

−5

0

5

10
un−observed

pe
nd

ul
um

 1
 v

el
oc

ity

0 50 100 150
−1

−0.5

0

0.5
observed

pe
nd

ul
um

 2
 a

ng
le

time

true state
noisy observation
EKF estimate
UKF estimate

0 50 100 150
−20

−15

−10

−5

0

5

10
un−observed

pe
nd

ul
um

 2
 v

el
oc

ity

time

Figure 3.8: State estimation for double inverted pendulum problem: (top) Physical layout. (bottom)
Estimation results. Only three noisy states are observed: cart position, cart velocity and the angle of
the top pendulum. [10dB SNR]

89

cart offset of 0.5 meters. The resulting state estimates are shown in Figure 3.8. Clearly

the SPKF is better able to track the unobserved states9. If the estimated states are used

for feedback in the control loop, the SPKF system is still able to stabilize the pendulum,

while the EKF system crashes. We will return to the double inverted pendulum problem

later in this chapter for both model estimation and dual estimation.

3.5.2 SPKF Parameter Estimation

Recall that parameter estimation involves learning a nonlinear mapping yk = g(xk,w),

where w corresponds to the set of unknown parameters10. The nonlinear map g(·), for

example, may be a feed-forward or recurrent neural network (w are the weights), with

numerous applications in regression, classification, and dynamic modeling. It can also

be a general nonlinear parametric model, such as the dynamic/kinematic vehicle model,

parameterized by a finite set of coefficients .The Kalman filter framework may be used to

estimate the parameters by writing a new state-space representation

wk+1 = wk + rk (3.129)

dk = g(xk,wk) + ek , (3.130)

where wk correspond to a stationary process with identity state transition matrix, driven

by process noise rk. The desired output dk corresponds to a nonlinear observation on wk.

From an optimization perspective, the following prediction-error cost is minimized:

J(w) =
k∑
t=1

[dt − g(xk,w)]T (Re)
−1 [dt − g(xk,w)] . (3.131)

Thus if the “noise” covariance Re is a constant diagonal matrix, then, in fact, it cancels

out of the algorithm (this can be shown explicitly), and hence can be set arbitrarily (e.g.,

Re = 1
2I). Alternatively, Re can be set to specify a weighted MSE cost. The innovations

covariance E
[
rkrTk

]
= Rrk

, on the other hand, affects the convergence rate and tracking

9Note that if all 6 states are observed with noise, then the performance of the EKF and the SPKF is
comparable.

10See Section 2.6.2 for an overview.

90

performance. Roughly speaking, the larger the covariance, the more quickly older data is

discarded. There are several options on how to choose Rrk
:

• Set Rrk
to an arbitrary “fixed” diagonal value, which may then be “annealed” toward

zero as training continues.

• Set

Rrk
=
(
λ−1
RLS − 1

)
Pwk

, (3.132)

where λRLS ∈ (0, 1] is often referred to as the “forgetting factor”, as defined in

the recursive least-squares (RLS) algorithm [75]. This provides for an approximate

exponentially decaying weighting on past data and is described in more detail in

[143]. Note, λRLS should not be confused with the λ scaling parameter used for

sigma point calculation in the UKF algorithm (Equation 3.11).

• Set

Rrk
= (1 − αRM)Rrk−1

+ αRMKk

[
dk − g

(
xk, ŵ−

k

)] [
dk − g

(
xk, ŵ−

k

)]T KT
k ,

(3.133)

which is a Robbins-Monro stochastic approximation scheme for estimating the inno-

vations [124, 163, 183]. The method assumes the covariance of the Kalman update

model should be consistent with the actual update model. Typically, Rrk
is also

constrained to be a diagonal matrix, which implies an independence assumption on

the parameters. Note that a similar update may also be used for Rek
, which will

results in a time-varying (adaptive) weighting being applied to the cost function in

Equation 3.131.

Our experience indicates that the Robbins-Monro method provides the fastest rate of ab-

solute convergence and lowest final MMSE values (see experiments in the next section).

The “fixed” Rrk
in combination with annealing can also achieve good final MMSE per-

formance, but requires more monitoring and a greater prior knowledge of the noise levels.

For problems where the MMSE is zero, the covariance should be lower bounded to prevent

the algorithm from stalling and potential numerical problems. The “forgetting-factor” and

91

“fixed” Rrk
methods are most appropriate for on-line learning problems in which tracking

of time varying parameters is necessary. In this case, the parameter covariance stays lower

bounded, allowing the most recent data to be emphasized. This leads to some misadjust-

ment, but also keeps the Kalman gain sufficiently large to maintain good tracking. In

general, the various trade-offs between these different approaches is still an area of open

research11.

The SPKF represents an alternative to the EKF for parameter estimation. However, as

the state-transition function is linear, the advantage of the SPKF may not be as obvious.

Note the observation function is still nonlinear. Furthermore, the EKF essentially builds

up an approximation to the inverse of the expected information matrix (called the Fisher

information matrix) by taking outer products of the instantaneous gradient (Jacobian)

of the posterior likelihood function (the posterior score function). This approximation is

called the empirical information matrix [133, 132]. As we show in Section 4.5, the SPKF

provides a more accurate estimate (in a statistical sense) of the empirical information

matrix by building it up over time using the outer-product of the expected Jacobian of the

posterior likelihood (posterior score function). Furthermore, the SPKF implicitly includes

the variance of the “stochastic linearization error” of the nonlinear observation function into

the effective Rek
being employed in Equation 3.131. This results in more robust behavior,

helping the algorithm avoid getting stuck in certain local minima. These issues are covered

in full detail in Section 4.5. While both the EKF and SPKF can be expected to achieve

similar final MMSE performance, their convergence properties may differ. In addition, a

distinct advantage of the SPKF occurs when either the architecture or error metric is such

that differentiation with respect to the parameters is not easily derived, as is necessary in

the EKF. The SPKF effectively approximates both the Jacobian and Hessian accurately

(in a statistically average sense) through its sigma point propagation, without the need to

perform any analytic differentiation.

Specific equations for SPKF parameter estimation are given in Algorithm 6 for the

UKF and in Algorithm 7 for the CDKF. Simplifications have been made relative to the

state estimation SPKF accounting for the specific form of the state-transition function.

11See Chapter 7.

92

We have also provided two options on how the function output d̂k is calculated. In the

first option, the output is given as

d̂k =
2L∑
i=0

w
(m)
i Y i,k|k−1 ≈ E [g (xk,wk)] , (3.134)

corresponding to the direct interpretation of the SPKF equations. The output is the

expected value (mean) of a function of the random variable w. In the second option, we

have

d̂k = g
(
xk, ŵ−

k

)
, (3.135)

corresponding to the typical interpretation, in which the output is the function with the

current “best” set of parameters. This option yields convergence performance that is in-

distinguishable from the EKF. The first option, however, has different convergence char-

acteristics, and requires further explanation. In the state-space approach to parameter

estimation, absolute convergence is achieved when the parameter covariance Pwk
goes to

zero (this also forces the Kalman gain to zero). At this point, the output for either op-

tion is identical. However, prior to this, the finite covariance provides a form of averaging

on the output of the function, which in turn prevents the parameters from going to the

instantaneous (using the currently observed data) minimum of the error surface. Thus

the method may help avoid falling into local minimum. Furthermore, it provides a form

of built in regularization for short or noisy data sets that are prone to overfitting (see

Section 4.5). Note that the complexity of the SPKF algorithm is still order L3 (L is the

number of parameters), due to the need to compute a matrix square-root at each time

step. An order L2 complexity (same as the EKF) can be achieved by using a recursive

square-root formulation as given in Algorithms 14 and 15. Detail about the square-root

formulation is given in Section 3.6.2.

93

Algorithm 6 : The UKF for Parameter Estimation

• Initialization: ŵ0 = E[w] , Pw0 = E[(w − ŵ0)(w − ŵ0)T]

• For k = 1, . . . ,∞ :

1. Time-update equations:

ŵ−
k = ŵk−1 (3.136)

P−
wk

= Pwk−1 + Rrk−1 (3.137)

2. Calculate sigma-points for measurement-update:

X k|k−1 =
[
ŵ−

k ŵ−
k + γ

√
P−

wk x̂−
k − γ

√
P−

wk

]
(3.138)

3. Measurement-update equations:

Yk|k−1 = g
(
xk,X k|k−1

)
(3.139)

option 1: d̂−
k =

2L∑
i=0

w
(m)
i Yi,k|k−1 (3.140)

option 2: d̂−
k = g

(
xk, ŵ−

k

)
(3.141)

Pd̃k
=

2L∑
i=0

w
(c)
i

(
Yi,k|k−1 − d̂−

k

)(
Yi,k|k−1 − d̂−

k

)T

+ Rek
(3.142)

Pwkdk
=

2L∑
i=0

w
(c)
i

(X i,k|k−1 − ŵ−
k

) (Yi,k|k−1 − d̂−
k

)T

(3.143)

Kk = Pwkdk
P−1

d̃k
(3.144)

ŵk = ŵ−
k + Kk

(
dk − d̂−

k

)
(3.145)

Pwk
= P−

wk
− KkPd̃k

KT
k (3.146)

• Parameters: Rr is the artificial process-noise covariance and Rn is the observation-noise
covariance (See Section 3.5.2 for detail on how these should be calculated/adapted. γ =√
L+ λ , γ is the composite scaling parameter and λ is given by Eq. 3.11, L is the dimension

of the state, and wi are the weights as calculated in Eq. 3.12.

94

Algorithm 7 : The CDKF for Parameter Estimation

• Initialization: ŵ0 = E [w] , Pw0 = E[(w − ŵ0)(w − ŵ0)T]

• For k = 1, . . . ,∞ :

1. Time-update equations:

ŵ−
k = ŵk−1 (3.147)

P−
wk

= Pwk−1 + Rrk−1 (3.148)

2. Calculate sigma-points for measurement-update:

X k|k−1 =
[
ŵ−

k ŵ−
k + h

√
P−

wk x̂−
k − h

√
P−

wk

]
(3.149)

3. Measurement-update equations:

Yk|k−1 = g
(
xk,X k|k−1

)
(3.150)

option 1: d̂−
k =

2L∑
i=0

w
(m)
i Yi,k|k−1 (3.151)

option 2: d̂−
k = g

(
xk, ŵ−

k

)
(3.152)

Pd̃k
=

L∑
i=1

[
w

(c1)
i

(Yi,k|k−1 − YL+i,k|k−1

)2 + (3.153)

w
(c2)
i

(Yi,k|k−1 + YL+i,k|k−1 − 2Y0,k|k−1

)2]
+ Rek

Pwkdk
=
√
w

(c1)
1 P−

wk

[Y1:L,k|k−1 − YL+1:2L,k|k−1

]T (3.154)

Kk = Pwkdk
P−1

d̃k
(3.155)

ŵk = ŵ−
k + Kk

(
dk − d̂−

k

)
(3.156)

Pwk
= P−

wk
− KkPd̃k

KT
k (3.157)

• Parameters: Rr is the artificial process-noise covariance and Rn is the observation-noise
covariance (See Section 3.5.2 for detail on how these should be calculated/adapted. h ≥ 1

is the scalar central difference step size, L is the dimension of the state, , and wi are the
weights as calculated in Equation 3.85. (·)2 is shorthand for the vector outer product.

95

Parameter Estimation Examples

We have performed a number of experiments to illustrate the performance of the SPKF

parameter estimation approach. The first set of experiments corresponds to benchmark

problems for neural network training, and serve to illustrate some of the differences be-

tween the EKF and the SPKF, as well as the different options discussed above. Two

parametric optimization problems are also included, corresponding to model estimation of

the inverted double pendulum, and the benchmark “Rossenbrock’s Banana” optimization

problem.

Benchmark neural network regression and time-series problems: The Mackay-

Robot-Arm dataset [128, 127] and the Ikeda chaotic time series [83] are used as benchmark

problems to compare neural network training. For the Mackay-Robot-Arm problem we

train a 2-12-2 MLP neural network to map the joint angles of a robot arm to the Cartesian

coordinates of the robot’s hand. Figure 3.9 illustrates the differences in learning curves

for the EKF versus SPKF using option 1 (see Equation 3.134). Note the slightly lower

final MSE performance of the SPKF weight training. If option 2 for the SPKF output is

used (see Equation 3.135), then the learning curves for the EKF and SPKF are indistin-

guishable; this has been found to be consistent with all experiments, thus we will not show

explicit learning curves for the SPKF with option 2.

Figure 3.10 illustrates performance differences based on the choice of process noise

covariance Rrk
. The Mackey-Glass and Ikeda time-series are used. The plots show only

comparisons for the SPKF (differences are similar for the EKF). In general the Robbins-

Monro method is the most robust approach with the fastest rate of convergence. In some

examples, we have seen faster convergence with the “annealed” approach, however, this

also requires additional insight and heuristic methods to monitor the learning. We should

re-iterate that the “fixed” and “RLS-lambda” approaches are more appropriate for on-line

tracking problems.

96

5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

epochs

tr
ai

ni
ng

 s
et

 e
rr

or
 :

M
S

E

Learning Curves : MacKay Robot−Arm NN parameter estimation

EKF
UKF

2 4 6 8 10 12 14 16 18 20

10
−1

10
0

epochs

tr
ai

ni
ng

 s
et

 e
rr

or
 :

M
S

E

Learning Curves : Ikeda NN parameter estimation

EKF
UKF

Figure 3.9: (top) MacKay-Robot-Arm problem : comparison of learning curves for the EKF and UKF
training, 2-12-2 MLP, ’annealing’ noise estimation. (bottom) Ikeda chaotic time series : comparison of
learning curves for the EKF and SPKF training, 10-7-1 MLP, ’Robbins-Monro’ noise estimation.

97

2 4 6 8 10 12 14 16 18 20

10
−1

10
0

epochs

tr
ai

ni
ng

 s
et

 e
rr

or
 :

M
S

E

Learning Curves : Ikeda NN parameter estimation

fixed
lambda
anneal
Robbins−Monro

2 4 6 8 10 12 14 16 18 20
10

−4

10
−2

10
0

epochs

tr
ai

ni
ng

 s
et

 e
rr

or
 :

M
S

E

Learning Curves : Mackey−Glass NN parameter estimation

fixed
lambda
anneal
Robbins−Monro

Figure 3.10: Neural network parameter estimation using different methods for noise estimation. (top)
Ikeda chaotic time series. (bottom) Mackey-Glass chaotic time series.

98

Table 3.2: Inverted double pendulum parameter estimation: true vs. estimated parameter values.

l1 l2 m1 m2 M

True model 0.50 0.75 0.75 0.50 1.50
SPKF estimate 0.50 0.75 0.75 0.50 1.49
EKF estimate 0.50 0.75 0.68 0.45 1.35

5 10 15 20 25 30 35 40
10

−5

10
0

iteration

m
od

el
 M

S
E

Inverted Double Pendulum : parameter estimation

EKF
UKF

Figure 3.11: Inverted double pendulum parameter estimation: EKF vs. SPKF learning curves.

Inverted double pendulum: Returning to the inverted double pendulum (Section 3.5.1),

we consider learning the system parameters, w =
[
l1 l2 m1 m2 M

]
. These param-

eter values are treated as unknown with all initialized to 1.0. The full system state,

x =
[
x ẋ θ1 θ̇1 θ2 θ̇2

]
, is observed. Figure 3.11 shows the total model MSE ver-

sus iteration comparing the EKF to SPKF. Each iteration represents a pendulum crash

with different initial conditions for the state (no control is applied). The final converged

parameter estimates are tabulated in Table 3.2. Clearly, the EKF has converged to a bi-

ased solution, possibly corresponding to a local minimum in the error surface.

Four-regions classification : In the next parameter estimation example, we consider a

benchmark pattern classification problem having four interlocking regions [178]. A three-

layer feed-forward network (MLP) with 2-10-10-4 nodes is trained using inputs randomly

drawn within the pattern space, S = [−1,−1]×[1, 1], with the desired output value of +0.8

99

x1

x2

True Mapping

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x1

x2

NN Classification : EKF trained

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x1

x2

NN Classification : UKF trained

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

0.7
Learning Curves on Test Set

epochs

av
er

ag
ed

 R
M

S
E

EKF
UKF

Figure 3.12: Singhal and Wu’s four-region classification problem: (top-left) True mapping. (top-right)
Learning curves on the test set. (bottom-left) Neural network classification: EKF trained. (bottom-
right) Neural network classification: UKF trained [2-10-10-4 MLP; Robbins-Monro; 1 epoch=100 ran-
dom examples].

100

if the pattern fell within the assigned region and −0.8 otherwise. Figure 3.12 illustrates

the classification task, learning curves for the SPKF and EKF, and the final classification

regions. For the learning curve, each epoch represents 100 randomly drawn input sam-

ples. The test set evaluated on each epoch corresponds to a uniform grid of 10,000 points.

Again, we see the superior performance for the SPKF.

Rosenbrock’s Banana function: For the last parameter estimation example, we turn

to a pure optimization problem. The “Banana function” [166] can be thought of as a

two-dimensional surface which has a saddle-like curvature that bends around the origin.

Specifically, we wish to find the values of x1 and x2 that minimizes the function

f(x1, x2) = 100(x2 − x2
1)

2 + (1 − x1)2 . (3.158)

The true minimum is at x1 = 1 and x2 = 1. The Banana function is a well known test

problem used to compare the convergence rates of competing minimization techniques.

In order to use the SPKF or EKF, the basic parameter estimation equations need to be

reformulated to minimize a non-MSE cost function. To do this we write the state-space

equations in observed-error form [159]:

wk = wk−1 + rk (3.159)

0 = −ek + ek , (3.160)

where the target “observation” is fixed at zero, and e is an error term resulting in the

optimization of the sum of instantaneous costs

Jk = eTk ek . (3.161)

The MSE cost is optimized by setting

ek = dk − g (xk,wk) . (3.162)

However, arbitrary costs (e.g., cross-entropy) can also be minimized simply by specifying ek

101

1 2 3 4 5 6 7
10

−40

10
−20

10
0

10
20

k

f(
X

)

Function Value

EKF
UKF

1 2 3 4 5 6 7
10

−40

10
−20

10
0

10
20

k

M
S

E

Model Error

EKF
UKF

Figure 3.13: Rosenbrock’s “Banana” optimization problem.

appropriately. Further discussion of this approach is given in [143] and [76]. Reformulation

of the SPKF equations requires changing only the effective output to be ek, and setting

the desired response to zero. For the example at hand, we set

ek =
[
10(x2 − x2

1) (1 − x1)
]T

.

Furthermore, since this optimization problem is a special case of ’noiseless’ parameter

estimation where the actual error can be minimized to zero, we make use of Equation 3.162

(option 2) to calculate the output of the UKF algorithm. This will allow the UKF to reach

the true minimum of the error surface more rapidly12. We also set the scaling parameter

α to a small value, which we have found to be appropriate again for zero MSE problems.

Under these circumstances the performance of the SPKF and EKF is indistinguishable

12Note that the use of Option 1, where the expected value of the function is used as the output, essentially
involves averaging of the output based on the current parameter covariance. This slows convergence in the
case where zero MSE is possible since convergence of the state covariance to zero would also be necessary
through proper annealing of the state process noise covariance Rrk .

102

as illustrated in Figure 3.13. Overall, the performance of the two filters are at least

comparable to a number of alternative 2nd order optimization approaches (e.g., Davidon-

Fletcher-Powell, Levenberg-Marquardt, etc. See “optdemo” in the Matlab optimization

toolbox [187, 186]). The main purpose of this example was to illustrate the versatility of

the SPKF to general optimization problems.

3.5.3 SPKF Dual Estimation

Recall that the dual estimation problem consists of simultaneously estimating the clean

state xk and the model parameters w from the noisy data yk (see Equation 2.67). A num-

ber of algorithmic approaches exist for this problem, including joint and dual EKF meth-

ods (recursive-prediction-error and maximum-likelihood versions [143]), and expectation-

maximization (EM) approaches. A thorough coverage of these algorithms is given in [143]

by Nelson, and in Chapters 5 and 6 of [76]. In this section, we present results for the

dual-SPKF and joint-SPKF methods.

In the the dual extended Kalman filter [202], a separate state-space representation is

used for the signal and the weights. Two EKFs are run simultaneously for signal and

weight estimation. At every time-step, the current estimate of the weights is used in the

signal-filter, and the current estimate of the signal-state is used in the weight-filter. In the

dual SPKF algorithm, both state- and weight-estimation are done with the SPKF. See

Figure 3.14 for a schematic representation of the dual filter framework. The two coupled

DSSMs used by the dual filtering framework are given by

xk = f (xk−1,uk−1,vk−1; ŵk−1)

yk = h (xk,nk; ŵk−1) , (3.163)

for the state filter and by

wk = wk−1 + rk−1

yk = h (f (x̂k−1,uk−1,vk−1;wk) ,nk;wk) , (3.164)

for the parameter filter. Notice how the state filter makes use of the estimate of the

103

ˆ
kx

ˆ
kw

ky

Dual Filter

ky

ˆ

ˆ

k

k

x

w

Joint Filter

Estimate states

and parameters

simultaneously

estimate states

estimate parameters

Figure 3.14: Schematic diagrams of two main dual estimation filter implementations: (left) joint filter
(right) dual filter

system parameters, ŵk−1, which treated as a constant given input. Likewise, the parameter

filter uses the previous state estimate, x̂k−1, as a given (known) input in the observation

equation.

In the joint extended Kalman filter [131], the signal-state and weight vectors are con-

catenated into a single, higher-dimensional joint state vector, x̃k =
[

xTk wT
k

]T
. Esti-

mation is done recursively by writing the DSSM for the joint state as

x̃k+1 = f̃ (x̃k,uk, ṽk) (3.165)

yk = h̃(x̃k,nk) , (3.166)

which can be expanded to⎡⎣ xk+1

wk+1

⎤⎦ =

⎡⎣ f (xk,uk,vk;wk)

wk

⎤⎦+

⎡⎣ 0

rk

⎤⎦ (3.167)

yk = h (xk,nk;wk) , (3.168)

where ṽk =
[

vTk rTk

]T
, and running an EKF on the joint state-space to produce simul-

taneous estimates of the states xk and the parameters w. Again, our approach is to use

the SPKF instead of the EKF.

A careful analysis of the differences between the dual and joint filtering frameworks

show how, in theory at least, the joint approach is expected to provide better estimates

[143]. Since the joint filter concatenates the state and parameter random variables into

104

a single augmented state, it effectively models the cross-covariance between the state and

parameter estimates, i.e.,

E

[(
ˆ̃xk − E

[
ˆ̃xk
]) (

ˆ̃xk − E
[
ˆ̃xk
])T]

=

⎡⎣ Pxk
Pxkwk

Pwkxk
Pwk

⎤⎦ . (3.169)

This full covariance structure allows the joint-SPKF framework to not only accurately

treat the dual uncertainty of the parameter and state estimates (through the sigma-point

approach), but also to accurately model the interaction (correlation) between the states

and parameters. The dual framework on the other hand, decouples (in a statistical sense)

the dual estimation problem by treating the parameter estimate as a known fixed value

and not as a random variable in the state filter, and the state estimate as a fixed known

value (and not as a random variable) in the parameter filter. This effectively equates the

off-diagonal blocks of Equation 3.169 to zero, i.e., Pxkwk
= PT

wkxk
= 0. As pointed out

in Section 2.6.3, this can have some effect on how the algorithm searches the combined

state-parameter state-space in order to find the optimal solution.

Dual Estimation Experiments

In this section we present a number of representative dual estimation experiments, as we

did for state- and parameter estimation above.

Noisy time-series: We present results on two time-series to provide a clear illustration

of the use of the SPKF over the EKF. The first series is again the Mackey-Glass-30 chaotic

series with additive noise (SNR ≈ 3dB). The second time-series (also chaotic) comes from

an autoregressive neural network with random weights driven by Gaussian process noise

and also corrupted by additive white Gaussian noise (SNR ≈ 3dB). A standard 6-10-1

MLP with hyperbolic tangent (tanh) hidden activation functions and a linear output layer

was used for all the filters in the Mackey-Glass problem. A 5-3-1 MLP was used for the

second problem. The process and measurement noise variances associated with the state

were assumed to be known. Note that in contrast to the state estimation example in the

previous section, only the noisy time-series is observed. A clean reference is never provided

105

for training. Example training curves for the different dual and joint Kalman based esti-

mation methods are shown in Figure 3.15. A final estimate for the Mackey-Glass series is

also shown for the Dual SPKF. The superior performance of the SPKF based algorithms

are clear.

Inverted double pendulum: In this dual estimation example, we again consider the

inverted double pendulum (see Section 3.5.1 for model details). As mentioned earlier, we

use a SDRE controller [30] to balance the system. The SDRE controller needs accurate

estimates of the system state as well as system parameters in order to accurately and ro-

bustly balance the pendulum. In our experiment, only partial and noisy observations of the

system states were available and the system parameters were also initialized to incorrect

values. A SPKF (a joint-UKF in this case) is used to estimate both the underlying sys-

tem states and the true system parameters using only the noisy observations at each time

step, which is then fed back to the SDRE controller for closed-loop control. Figure 3.16

illustrates the performance of this adaptive control system by showing the evolution of the

estimated and actual states (middle) as well as the system parameter estimates (bottom).

At the start of the simulation both the states and parameters are unknown (the control

system is unstable at this point). However, within one trial, the SPKF enables conver-

gence and stabilization of the pendulum without a single crash! This is in stark contrast to

standard system identification and adaptive control approaches, where numerous off-line

trials, large amounts of training data and painstaking “hand-tuning” are often needed.

106

0 5 10 15 20 25 30
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

epoch

no
rm

al
iz

ed
 M

S
E

Chaotic AR neural network

Dual UKF
Dual EKF
Joint UKF
Joint EKF

5 10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

epoch

no
rm

al
iz

ed
 M

S
E

Mackey−Glass chaotic time series
Dual EKF
Dual UKF
Joint EKF
Joint UKF

200 210 220 230 240 250 260 270 280 290 300
−5

0

5

k

x(
k)

Estimation of Mackey−Glass time series : Dual UKF

clean
noisy
Dual UKF

Figure 3.15: Comparative learning curves and results for the dual estimation experiments. Curves are
averaged over 10 and 3 runs respectively using different initial weights. “Fixed” innovation covariances
are used in the joint algorithms. “Annealed” covariances are used for the weight filter in the dual
algorithms. (top) Chaotic AR neural network. (middle) Mackey-Glass chaotic time series. (bottom)
Estimation of Mackey-Glass time series: dual SPKF.

107

0 50 100 150 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time

st
at

e
es

tim
at

es

angle 1

angle 2

true states
noisy observations
UKF estimates

0 50 100 150 200
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time

pa
ra

m
et

er
s

es
tim

at
es cart mass

pendulum 1 length & mass

pendulum 2 length & mass

true model parameters
UKF estimates

Figure 3.16: Inverted double pendulum dual estimation and control experiment. Dynamic model
and schematic of control system (top plot). Estimation results are shown in the bottom plot: state
estimates (top) and parameter estimates(bottom).

108

3.6 SPKF Extensions & Implementation Variations

In this section we introduce extensions and alternative implementational forms of the

SPKF, which, depending on the specific form of the estimation problem, results in signif-

icant computational cost savings as well as an increase in numerical robustness. Where

relevant, experimental verification is given.

3.6.1 Additive noise forms

For the special (but often found) case where the process and measurement noise are purely

additive, the computational complexity of the SPKF can be reduced by a linear scaling

factor. In such a case, the system state need not be augmented with the noise RV’s. This

reduces the dimension of the sigma points as well as the total number of sigma points

used. The covariances of the noise sources are then incorporated into the state covariance

using a simple additive procedure. This implementation is given in Algorithm 8 for the

UKF and in Algorithm 9 for the CDKF. The complexity of the algorithm is order L3,

where L is the dimension of the state. This is the same complexity as the EKF. The

most costly operation is in forming the sample prior covariance matrix P−
xk

. Depending

on the form of f , this may be simplified, e.g., for univariate time-series estimation or with

parameter estimation (see Section 3.5.2) the complexity can be reduced further to order L2.

Algorithm 8 : The unscented Kalman filter (UKF) - additive noise case

• Initialization: x̂0 = E[x0] , Px0 = E[(x0 − x̂0)(x0 − x̂0)T]

• For k = 1, . . . ,∞ :

1. Calculate sigma-points:

X k−1 =
[

x̂k−1 x̂k−1 + γ
√

Pxk−1 x̂k−1 − γ
√

Pxk−1

]
(3.170)

109

2. Time-update equations:

X ∗
k|k−1 = f (X k−1,uk−1) (3.171)

x̂−
k =

2L∑
i=0

w
(m)
i X ∗

i,k|k−1 (3.172)

P−
xk

=
2L∑
i=0

w
(c)
i

(
X ∗

i,k|k−1 − x̂−
k

)(
X ∗

i,k|k−1 − x̂−
k

)T

+ Rv (3.173)

(see below) X k|k−1 =
[

X ∗
k|k−1 X ∗

0,k|k−1 + γ
√

Rv X ∗
0,k|k−1 − γ

√
Rv

]
(3.174)

Yk|k−1 = h
(
X x

k|k−1

)
(3.175)

ŷ−
k =

2L∑
i=0

w
(m)
i Yi,k|k−1 (3.176)

3. Measurement-update equations:

Pỹk
=

2L∑
i=0

w
(c)
i

(Yi,k|k−1 − ŷ−
k

) (Yi,k|k−1 − ŷ−
k

)T
+ Rn (3.177)

Pxkyk
=

2L∑
i=0

w
(c)
i

(X i,k|k−1 − x̂−
k

) (Yi,k|k−1 − ŷ−
k

)T (3.178)

Kk = Pxkyk
P−1

ỹk
(3.179)

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
(3.180)

Pxk
= P−

xk
− KkPỹk

KT
k (3.181)

• Parameters: γ =
√
L+ λ is the composite scaling parameter and λ is given by Eq. 3.11,

L is the dimension of the state, Rv is the process-noise covariance, Rn is the observation-
noise covariance, and wi are the weights as calculated in Equation 3.12. Sigma-point set
augmentation: In (3.174), the sigma-points are augmented with additional points derived
from the matrix square root of the process noise covariance, in order to incorporate the
effect of the process noise on the observed sigma-points, Y . This requires setting L →
2L and recalculating the various weights wi accordingly. Alternatively, we may redraw a
complete new set of sigma points, i.e., X k|k−1 =

[
x̂−

k x̂−
k + γ

√
P−

xk x̂−
k − γ

√
P−

xk

]
. This

alternative approach results in fewer sigma points being used, but also discards any odd-
moments information captured by the original propagated sigma points.

110

Algorithm 9 : The central difference Kalman filter (CDKF) - additive noise case

• Initialization: x̂0 = E[x0] , Px0 = E[(x0 − x̂0)(x0 − x̂0)T]

• For k = 1, . . . ,∞ :

1. Calculate sigma-points for time-update:

X k−1 =
[

x̂k−1 x̂k−1 + h
√

Pxk−1 x̂k−1 − h
√

Pxk−1

]
(3.182)

2. Time-update equations:

X k|k−1 = f (X k−1,uk−1) (3.183)

x̂−
k =

2L∑
i=0

w
(m)
i X i,k|k−1 (3.184)

P−
xk

=
L∑

i=1

[
w

(c1)
i

(X i,k|k−1 − X L+i,k|k−1

)2 + (3.185)

w
(c2)
i

(X i,k|k−1 + X L+i,k|k−1 − 2X 0,k|k−1

)2]+ Rv

3. Calculate sigma-points for measurement-update:

X ∗
k|k−1 =

[
x̂−

k x̂−
k + h

√
P−

xk x̂−
k − h

√
P−

xk

]
(3.186)

4. Measurement-update equations:

Yk|k−1 = h
(
X ∗

k|k−1

)
(3.187)

ŷ−
k =

2L∑
i=0

w
(m)
i Yi,k|k−1 (3.188)

Pỹk
=

L∑
i=1

[
w

(c1)
i

(Yi,k|k−1 − YL+i,k|k−1

)2 + (3.189)

w
(c2)
i

(Yi,k|k−1 + YL+i,k|k−1 − 2Y0,k|k−1

)2]+ Rn

Pxkyk
=
√
w

(c1)
1 P−

xk

[Y1:L,k|k−1 − YL+1:2L,k|k−1

]T (3.190)

Kk = Pxkyk
P−1

ỹk
(3.191)

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
(3.192)

Pxk
= P−

xk
− KkPỹk

KT
k (3.193)

• Parameters: h ≥ 1 is the scalar central difference step size, L is the dimension of the state,
Rv is the process-noise covariance, Rn is the observation-noise covariance, and wi are the

111

weights as calculated in Equation 3.85. (·)2 is shorthand for the vector outer product.

3.6.2 Square-root forms

One of the most costly operations in the SPKF is the calculation of the matrix square-

root of the state covariance at each time step in order to form the sigma-point set (See

Equations 3.19 and 3.104). Due to this and the need for more numerical stability (especially

during the state covariance update), we derived numerically efficient square-root forms

of both the UKF and the CDKF [191, 192]. These forms propagate and update the

square-root of the state covariance directly in Cholesky factored form, using the sigma-

point approach and the following linear algebra techniques: QR decomposition, Cholesky

factor updating and efficient pivot-based least squares. The square-root SPKFs (SR-UKF

and SR-CDKF) has equal (or marginally better) estimation accuracy when compared to

the standard SPKF, but at the added benefit of reduced computational cost for certain

DSSMs and a consistently increased numerical stability (all resulting covariance matrices

are guaranteed to stay positive definite). For this reason, they are our preferred form for

SPKF use in stand-alone estimators as well as in SMC/SPKF hybrids (see Chapter 6).

In the standard Kalman implementation, the state (or parameter) covariance Pxk
is

recursively calculated. The SPKF requires taking the matrix square-root Sxk
STxk

= Pxk
, at

each time step, which is O(L3/6) using a Cholesky factorization. In the square-root SPKF

(SR-SPKF), Sk will be propagated directly, avoiding the need to refactorize at each time

step. The algorithm will in general still be O(L3) for state-estimation, but with improved

numerical propertied (e.g, guaranteed positive semi-definiteness of the state-covariances)

similar to those of standard square-root Kalman filters [170]. However, for the special state-

space formulation of parameter estimation, an O(L2) implementation becomes possible (see

Algorithms 14 and 15) with equivalent complexity to EKF parameter estimation.

As stated above, the SR-SPKF makes use of three powerful linear algebra techniques

for theoretical and implementation details which we briefly review below:

• QR decomposition: The QR decomposition or factorization of a matrix A ∈ R
LxN

112

is given by,

AT = QR ,

where Q ∈ R
NxN is orthogonal, R ∈ R

NxL is upper triangular and N ≥ L. The

upper triangular part of R, R̃, is the transpose of the Cholesky factor of P = AAT ,

i.e., R̃ = ST , such that R̃T R̃ = AAT . We use the shorthand notation qr{·} to donate

a QR decomposition of a matrix where only R̃ is returned. The computational

complexity of a QR decomposition is O(NL2). Note that performing a Cholesky

factorization directly on P = AAT is O(L3/6) plus O(NL2) to form AAT .

• Cholesky factor updating : If S is the original lower triangular Cholesky factor of

P = AAT , then the Cholesky factor of the rank-1 update (or downdate)

P̌ = P ±√
νuuT

is denoted as

Š = cholupdate{S,u,±ν} .

If u is a matrix and not a vector, then the result is M consecutive updates of the

Cholesky factor using the M columns of u. This algorithm (available in Matlab as

cholupdate) is only O(L2) per update.

• Efficient least squares: The solution to the equation

(
AAT

)
x = ATb

also corresponds to the solution of the overdetermined least squares problem Ax = b.

This can be solved efficiently using triangular QR decomposition with pivoting [156]

(implemented in Matlab’s “/’ operator).

The complete specifications for the new square-root filters are given in Algorithms 10

through 13 for state estimation and Algorithms 14 and 15 for parameter estimation. Below

we describe the key parts of the square-root algorithms, and how they contrast with the

standard implementations.

113

Square-root State Estimation

As in the standard SPKF, the filter is initialized by calculating the matrix square-root

of the state covariance once via a Cholesky factorization. However, the propagated and

updated Cholesky factor is then used in subsequent iterations to directly form the sigma-

points. In Equation 3.198 the time-update of the Cholesky factor, S−
x , is calculated using

a QR decomposition of the compound matrix containing the weighted propagated sigma-

points and the matrix square-root of the additive process noise covariance. The subsequent

Cholesky update (or downdate) in Equation 3.199 is necessary (for the SR-UKF) since the

zeroth weight, W (c)
0 , may be negative. The SR-CDKF has no such requirement. These

two steps replace the time-update of P−
x in Equations 3.22 and 3.107, and is also O(L3).

The same two-step approach13 is applied to the calculation of the Cholesky factor, Sỹ,

of the observation-error covariance in Equations 3.202 and 3.203. This step is O(LM2),

whereM is the observation dimension. In contrast to the way the Kalman gain is calculated

in the standard SPKF (see Equations 3.27 and 3.114), we now use two nested inverse (or

least squares) solutions to the following expansion of Equation 3.27:

Kk

(
Sỹk

STỹk

)
= Pxkyk

. (3.194)

Since Sỹk
is square and triangular, efficient “back-substitutions” can be used to solve for

Kk directly without the need for a matrix inversion [156].

Finally, the posterior measurement update of the Cholesky factor of the state covariance

is calculated in Equation 3.208 and 3.238 by applying M sequential Cholesky downdates

to S−
xk

. The downdate vectors are the columns of U = KkSỹk
. This replaces the posterior

update of P−
xk

in Equations 3.29 and 3.193, and is also O(LM2).

13For the CDKF, only the first step is needed since all weights are positive (See Equations 3.228
and 3.233).

114

Algorithm 10 : The square-root UKF (SR-UKF) - general state estimation form

• Initialization: x̂0 = E [x0] , Sx0 = chol
{
E[(x0 − x̂0)(x0 − x̂0)T]

}
, Sv =

√
Rv , Sn =√

Rn

x̂a
0 = E [xa] =

[
x̂0 0 0

]T
, Sa

0 = chol
{
E
[
(xa

0 − x̂a
0)(xa

0 − x̂a
0)

T
]}

=

⎡⎢⎢⎣
Sx0 0 0

0 Sv 0

0 0 Sn

⎤⎥⎥⎦
• For k = 1, . . . ,∞ :

1. Calculate sigma-points:

X a
k−1 =

[
x̂a

k−1 x̂a
k−1 + γSa

xk−1
x̂a

k−1 − γSa
xk−1

]
(3.195)

2. Time-update equations:

X x
k|k−1 = f

(X a
k−1,X v

k−1,uk−1

)
(3.196)

x̂−
k =

2L∑
i=0

w
(m)
i X x

i,k|k−1 (3.197)

S−
xk

= qr
{[√

w
(c)
1

(
X x

1:2L,k|k−1 − x̂−
k

)]}
(3.198)

S−
xk

= cholupdate
{
S−

xk
,X x

0,k|k−1 − x̂−
k , w

(c)
0

}
(3.199)

Yk|k−1 = h
(
X x

i,k|k−1,X n
k−1

)
(3.200)

ŷ−
k =

2L∑
i=0

w
(m)
i Yi,k|k−1 (3.201)

3. Measurement-update equations:

Sỹk
= qr

{[√
w

(c)
1

(Y1:2L,k|k−1 − ŷ−
k

)]}
(3.202)

Sỹk
= cholupdate

{
Sỹk

,Y0,k|k−1 − ŷ−
k , w

(c)
0

}
(3.203)

Pxkyk
=

2L∑
i=0

w
(c)
i

(
X x

i,k|k−1 − x̂−
k

) (Yi,k|k−1 − ŷ−
k

)T (3.204)

Kk =
(
Pxkyk

/ST
ỹk

)
/Sỹk

(3.205)

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
(3.206)

U = KkSỹk
(3.207)

Sxk
= cholupdate

{
S−

xk
,U,−1

}
(3.208)

115

• Parameters: xa =
[

xT vT nT
]T

, X a =
[

(X x)T (X v)T (X n)T
]
, γ =

√
L+ λ

is the composite scaling parameter and λ is given by Eq. 3.11, L is the dimension of the
state, Rv is the process-noise covariance, Rn is the observation-noise covariance, and wi are
the weights as calculated in Equation 3.12.

Algorithm 11 : The square-root UKF (SR-UKF) - state estimation (additive noise)

• Initialization: x̂0 = E [x0] , Sx0 = chol
{
E[(x0 − x̂0)(x0 − x̂0)T]

}
, Sv =

√
Rv , Sn =√

Rn

• For k = 1, . . . ,∞ :

1. Calculate sigma-points:

X k−1 =
[

x̂k−1 x̂k−1 + γSxk−1 x̂k−1 − γSxk−1

]
(3.209)

2. Time-update equations:

X ∗
k|k−1 = f (X k−1,uk−1) (3.210)

x̂−
k =

2L∑
i=0

w
(m)
i X ∗

i,k|k−1 (3.211)

S−
xk

= qr
{[√

w
(c)
1

(
X ∗

1:2L,k|k−1 − x̂−
k

)
Sv

]}
(3.212)

S−
xk

= cholupdate
{
S−

xk
,X ∗

0,k|k−1 − x̂−
k , w

(c)
0

}
(3.213)

(augment) X k|k−1 =
[

X ∗
k|k−1 X ∗

0,k|k−1 + γSv X ∗
0,k|k−1 − γSv

]
(3.214)

Yk|k−1 = h
(
X x

i,k|k−1

)
(3.215)

ŷ−
k =

2L∑
i=0

w
(m)
i Yi,k|k−1 (3.216)

116

3. Measurement-update equations:

Sỹk
= qr

{[√
w

(c)
1

(Y1:2L,k|k−1 − ŷ−
k

)
Sn

]}
(3.217)

Sỹk
= cholupdate

{
Sỹk

,Y0,k|k−1 − ŷ−
k , w

(c)
0

}
(3.218)

Pxkyk
=

2L∑
i=0

w
(c)
i

(X i,k|k−1 − x̂−
k

) (Yi,k|k−1 − ŷ−
k

)T (3.219)

Kk =
(
Pxkyk

/ST
ỹk

)
/Sỹk

(3.220)

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
(3.221)

U = KkSỹk
(3.222)

Sxk
= cholupdate

{
S−

xk
,U,−1

}
(3.223)

• Parameters: γ =
√
L+ λ is the composite scaling parameter and λ is given by Eq. 3.11, L

is the dimension of the state, Rv is the process-noise covariance, Rn is the observation-noise
covariance, and wi are the weights as calculated in Equation 3.12. Sigma-point set augmen-
tation: In (3.214) the sigma-point set is augmented in a similar fashion as in Algorithm 8.
This alternative approach results in fewer sigma-points being used, but also discards any
odd-moments information captured by the original propagated sigma points.

Algorithm 12 : The square-root CDKF (SR-CDKF) - general state estimation form

• Initialization: x̂0 = E [x0] , Sx0 = chol
{
E[(x0 − x̂0)(x0 − x̂0)T]

}
, Sv =

√
Rv , Sn =√

Rn

• For k = 1, . . . ,∞ :

1. Calculate sigma points for time-update:

x̂av

k−1 = [x̂k−1 v̄] , Sav

k−1 =

[
Sxk−1 0

0 Sv

]
(3.224)

X av

k−1 =
[

x̂av

k−1 x̂av

k−1 + hSav

k−1 x̂av

k−1 − hSav

k−1

]
(3.225)

117

2. Time-update equations:

X x
k|k−1 = f

(X x
k−1,X v

k−1,uk−1

)
(3.226)

x̂−
k =

2L∑
i=0

w
(m)
i X x

i,k|k−1 (3.227)

S−
xk

= qr
{[√

w
(c1)
1

(
X x

1:L,k|k−1 − X x
L+1:2L,k|k−1

)
(3.228)√

w
(c2)
1

(
X x

1:L,k|k−1 + X x
L+1:2L,k|k−1 − 2Xx

0,k|k−1

)]}
3. Calculate sigma-points for measurement update:

x̂an

k|k−1 =
[
x̂−

k n̄
]

, San

k|k−1 =

[
S−

xk
0

0 Sn

]
(3.229)

X an

k|k−1 =
[

x̂an

k|k−1 x̂an

k|k−1 + hSan

k|k−1 x̂an

k|k−1 − hSan

k|k−1

]
(3.230)

4. Measurement-update equations:

Yk|k−1 = h
(
X x

k|k−1,X n
k|k−1

)
(3.231)

ŷ−
k =

2L∑
i=0

w
(m)
i Yi,k|k−1 (3.232)

Sỹk
= qr

{[√
w

(c1)
1

(Y1:L,k|k−1 − YL+1:2L,k|k−1

)
(3.233)√

w
(c2)
1

(Y1:L,k|k−1 − YL+1:2L,k|k−1 − 2Y0,k|k−1

)]}

Pxkyk
=
√
w

(c1)
1 S−

xk

[Y1:L,k|k−1 − YL+1:2L,k|k−1

]T (3.234)

Kk =
(
Pxkyk

/ST
ỹk

)
/Sỹk

(3.235)

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
(3.236)

U = KkSỹk
(3.237)

Sxk
= cholupdate

{
S−

xk
,U,−1

}
(3.238)

• Parameters: xav =
[
xT vT

]T , X av =
[
(X x)T (X v)T

]T , xan =
[
xT nT

]T , X an =[
(X x)T (X n)T

]T , h ≥ 1 is the scalar central difference step size, L is the dimension
of the augmented states, Rv is the process-noise covariance, Rn is the observation-noise
covariance, and wi are the weights as calculated in Equation 3.85. (·)2 is shorthand for the
vector outer product.

118

Algorithm 13 : The square-root CDKF (SR-CDKF) - state estimation (additive noise)

• Initialization: x̂0 = E [x0] , Sx0 = chol
{
E[(x0 − x̂0)(x0 − x̂0)T]

}
, Sv =

√
Rv , Sn =√

Rn

• For k = 1, . . . ,∞ :

1. Calculate sigma-points for time-update:

X k−1 =
[

x̂k−1 x̂k−1 + hSxk−1 x̂k−1 − hSxk−1

]
(3.239)

2. Time-update equations:

X k|k−1 = f (X k−1,uk−1) (3.240)

x̂−
k =

2L∑
i=0

w
(m)
i X i,k|k−1 (3.241)

S−
xk

= qr
{[√

w
(c1)
1

(
X x

1:L,k|k−1 − X x
L+1:2L,k|k−1

)
(3.242)√

w
(c2)
1

(
X x

1:L,k|k−1 + X x
L+1:2L,k|k−1 − 2X x

0,k|k−1

)
Sv

]}
3. Calculate sigma-points for measurement-update:

X ∗
k|k−1 =

[
x̂−

k x̂−
k + hS−

xk
x̂−

k − hS−
xk

]
(3.243)

4. Measurement-update equations:

Yk|k−1 = h
(
X ∗

k|k−1

)
(3.244)

ŷ−
k =

2L∑
i=0

w
(m)
i Yi,k|k−1 (3.245)

Sỹk
= qr

{[√
w

(c1)
1

(Y1:L,k|k−1 − YL+1:2L,k|k−1

)
(3.246)√

w
(c2)
1

(Y1:L,k|k−1 − YL+1:2L,k|k−1 − 2Y0,k|k−1

)
Sn

]}
Pxkyk

=
√
w

(c1)
1 S−

xk

[Y1:L,k|k−1 − YL+1:2L,k|k−1

]T (3.247)

Kk =
(
Pxkyk

/ST
ỹk

)
/Sỹk

(3.248)

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
(3.249)

U = KkSỹk
(3.250)

Sxk
= cholupdate

{
S−

xk
,U,−1

}
(3.251)

119

• Parameters: h ≥ 1 is the scalar central difference step size, L is the dimension of the state,
Rv is the process-noise covariance, Rn is the observation-noise covariance, and wi are the
weights as calculated in Equation 3.85. (·)2 is shorthand for the vector outer product.

In order to test the performance of the square-root SPKFs and compare it with the

non-square-root forms, we repeated the nonlinear time-series estimation experiment of

Section 3.5.1. We used a UKF, CDKF, SR-UKF and SR-CDKF to estimate the underlying

clean state of a Mackey-Glass-30 chaotic time-series that has been corrupted by additive

white Gaussian noise (3dB SNR). The average estimation error statistics are summarized in

Table 3.3. Clearly there are no difference (at least to the fourth decimal place) between the

square-root and non-square-root versions of the SPKF. As before, a very small difference

(≈ 0.2%) in estimation accuracy exist between the UKF and CDKF (as well as their

square-root versions). The CDKF has a slightly better mean estimation error, but higher

variance than the UKF. These differences are so small that they can be ignored for all

practical purposes. The choice of which SPKF to use is thus clear: If the form of the

specific inference problem allows for the use of a square-root form, do so, since it increases

the numerical robustness of the filter. However, the choice of if a SR-UKF or SR-CDKF

must be used is simply a matter of implementational choice.

Table 3.3: Square-root SPKF state estimation results on Mackey-Glass chaotic time-series: Mean and
variance of estimation MSE for 200 Monte-Carlo runs.

Algorithm MSE (mean) MSE (var)
Unscented Kalman filter (UKF) 0.1136 0.0336
Square-root UKF (SR-UKF) 0.1136 0.0336
Central difference Kalman filter (CDKF) 0.1134 0.0376
Square-root CDKF (SR-CDKF) 0.1134 0.0376

120

Square-root Parameter Estimation

The parameter estimation algorithm follows a similar framework as that of the state estima-

tion square-root SPKF. However, an O(ML2) algorithm, as opposed to O(L3), is possible

by taking advantage of the linear state transition function. Specifically, the time-update

of the state covariance is given simply by

P−
wk

= Pwk−1
+ Rrk

, (3.252)

where Rrk
is the time-varying covariance of the “artificial” process noise (see Section 3.253

for discussion on selecting and adapting Rrk
). In the square-root filters, Swk−1

may thus

be updated directly in Equations 3.256 and 3.268 using one of two options:

1. RLS exponential decay:

S−
wk

= λ−1
RLSSwk−1

(3.253)

This option (introduced by Nelson for standard, non-square-root parameter estima-

tion [143]) corresponds to an exponential weighting on past data.

2. Annealing or Robbins-Monro:

S−
wk

= Swk−1
+ Drk

(3.254)

Here the diagonal matrix Drk
is chosen to either a) approximate the effects of an-

nealing a diagonal process noise covariance Rdiag
rk

, or b) is calculated as the diagonal

approximation of a Robbins-Monro stochastic estimate of the driving process noise

(See Section 3.5.2). This updates ensures the main diagonal of P−
wk

is exact. How-

ever, additional off-diagonal cross-terms Swk−1
DT

rk
+ Drk

STwk−1
are also introduced

(though the effect appears negligible [191]).

Both options avoid the costly O(L3) QR and Cholesky based updates necessary in the

state-estimation filter. The computational efficiency of the square-root SPKF parameter

estimation algorithms are demonstrated in Figure 3.17 on the Mackay-Robot-Arm prob-

lem. This is the same neural network training problem we addressed in Section 3.5.2,

121

2 4 6 8 10 12 14 16
10

−3

10
−2

10
−1

10
0

Learning Curves : Mackay Robot−Arm Problem

iteration

tr
ai

ni
ng

 s
et

 e
rr

or
 :

M
S

E EKF

SR−UKF

SR−CDKF

100 150 200 250 300 350 400 450 500 550
0

5

10

15
x 10

4

number of parameters (L)

(f
lo

ps
 p

er
 it

er
at

io
n)

1/
2

Computational Complexity

EKF
SR−UKF
SR−CDKF
UKF

Figure 3.17: Square-root SPKF parameter estimation for Mackay-Robot-Arm neural network training
problem: (top) Learning curves for EKF, SR-UKF and SR-CDKF (see Figure 3.9 for non-square root
SPKF results). (bottom) Computational complexity: flops/epochs vs. number of parameters (neural
network complexity).

except in this case we use a square-root SPKF (SR-UKF and SR-CDKF) to train the

MLP neural network. We repeat the experiment a number of times, each time increas-

ing the complexity (number of weights per neural network layer) and measure the total

number of floating point calculations (flops) required for each iteration of neural network

training. This results in the computational complexity graph shown in the bottom plot of

Figure 3.17. Clearly the square-root SPKFs (as well as the EKF) are O(L2) whereas the

non-square-root SPKF (original UKF) is O(L3). The claimed improvement in numerical

efficiency has been achieved.

122

Algorithm 14 : The square-root UKF (SR-UKF) - parameter estimation form

• Initialization: ŵ0 = E [w] , Sw0 = chol
{
E[(w − ŵ0)(w − ŵ0)T]

}
• For k = 1, . . . ,∞ :

1. Time-update equations:
ŵ−

k = ŵk−1 (3.255)

S−
wk

=
√
λRLSSwk−1 or S−

wk
= Swk−1 + Drk−1 (3.256)

where Drk−1 = −diag
{
Swk−1

}
+
√

diag
{
Swk−1

}2
+ diag

{
Rrk−1

}
2. Calculate sigma-points for measurement-update:

X k|k−1 =
[
ŵ−

k ŵ−
k + γS−

wk
x̂−

k − γS−
wk

]
(3.257)

3. Measurement-update equations:

Yk|k−1 = g
(
xk,X k|k−1

)
(3.258)

d̂−
k =

2L∑
i=0

w
(m)
i Yi,k|k−1 (3.259)

Sd̃k
= qr

{[√
w

(c)
1

(
Y1:2L,k|k−1 − d̂−

k

) √
Sn

]}
(3.260)

Sd̃k
= cholupdate

{
Sd̃k

, Y0,k|k−1 − d̂−
k , w

(c)
0

}
(3.261)

Pwkdk
=

2L∑
i=0

w
(c)
i

(X i,k|k−1 − ŵ−
k

)(Yi,k|k−1 − d̂−
k

)T

(3.262)

Kk =
(
Pwkdk

/ST
d̃k

)
/Sd̃k

(3.263)

ŵk = ŵ−
k + Kk

(
dk − d̂−

k

)
(3.264)

U = KkSd̃k
(3.265)

Swk
= cholupdate

{
S−

wk
, U , −1

}
(3.266)

• Parameters: Rr is the artificial process-noise covariance and Rn is the observation-noise
covariance. The diag{·} operator nulls all the elements of a square matrix except the main
diagonal. γ =

√
L+ λ is the composite scaling parameter and λ is given by Eq. 3.11. L is

the dimension of the state and wi are the weights as calculated in Equation 3.12. The +

and − operators add or subtract a column vector to each column of a matrix.

123

Algorithm 15 : The square-root CDKF (SR-CDKF) - parameter estimation form

• Initialization: ŵ0 = E [w] , Sw0 = chol
{
E[(w − ŵ0)(w − ŵ0)T]

}
• For k = 1, . . . ,∞ :

1. Time-update equations:

ŵ−
k = ŵk−1 (3.267)

S−
wk

=
√
λRLSSwk−1 or S−

wk
= Swk−1 + Drk−1 , (3.268)

where Drk−1 = −diag
{
Swk−1

}
+
√

diag
{
Swk−1

}2 + diag
{
Rrk−1

}
2. Calculate sigma-points for measurement-update:

X k|k−1 =
[
ŵ−

k ŵ−
k + hS−

wk
x̂−

k − hS−
wk

]
(3.269)

3. Measurement-update equations:

Yk|k−1 = g
(
xk,X k|k−1

)
(3.270)

d̂−
k =

2L∑
i=0

w
(m)
i Yi,k|k−1 (3.271)

Sd̃k
= qr

{[√
w

(c1)
1

(Y1:L,k|k−1 − YL+1:2L,k|k−1

)
(3.272)√

w
(c2)
1

(Y1:L,k|k−1 − YL+1:2L,k|k−1 − 2Y0,k|k−1

) √
Sn

]}
Pwkdk

=
√
w

(c1)
i S−

wk

[Y1:L,k|k−1 − YL+1:2L,k|k−1

]T (3.273)

Kk =
(
Pwkdk

/ST
d̃k

)
/Sd̃k

(3.274)

ŵk = ŵ−
k + Kk

(
dk − d̂−

k

)
(3.275)

U = KkSd̃k
(3.276)

Swk
= cholupdate

{
S−

wk
,U,−1

}
(3.277)

• Parameters: Rr is the artificial process-noise covariance and Rn is the observation-noise
covariance (See Section 3.5.2 for detail on how these should be calculated/adapted. The
diag{·} operator nulls all the elements of a square matrix except the main diagonal. h ≥ 1

is the scalar central difference step size, L is the dimension of the state, , and wi are the
weights as calculated in Equation 3.85. (·)2 is shorthand for the vector outer product.

124

3.6.3 SPKF Based Smoothing

The sigma-point Kalman smoother: As has been discussed, the Kalman filter is a

recursive algorithm providing the conditional expectation of the state xk given all observa-

tions Yk = {y1,y2, . . . ,yk} up to the current time k. In contrast, the Kalman smoother,

estimates the state given all observations past and future, YN = {y0,y2, . . . ,yN}, where

N is the final time. Kalman smoothers are commonly used for applications such as trajec-

tory planning, noncausal noise reduction, and the E-step in the EM-Algorithm [176, 66].

A thorough treatment of the Kalman smoother in the linear case is given in [116]. The

basic idea is to run a Kalman filter forward in time to estimate the mean and covariance

(x̂fk|k , P
f
xk|k) of the state given past data. A second Kalman filter is then run backward in

time to produce a backward-time predicted mean and covariance (x̂bk|k+1 , P
b
xk|k+1

)14 given

the future data. These two estimates are then combined, producing the following smoothed

statistics given all the data:

(
Ps

xk

)−1 =
(
Pf

xk|k

)−1
+
(
Pb

xk|k+1

)−1
(3.278)

x̂sk = Ps
xk

[(
Pf

xk|k

)−1
x̂fk|k +

(
Pb

xk|k+1

)−1
x̂bk|k+1

]
(3.279)

For the nonlinear case, the EKF replaces the Kalman filter. The use of the EKF for

the forward filter is straightforward. However, implementation of the backward filter is

achieved by using the following linearized backward-time system:

xk−1 = A−1xk − A−1Bvk , (3.280)

that is, the forward nonlinear dynamics are linearized, and then inverted for the backward

model. A linear Kalman filter is then applied.

Our proposed sigma-point Kalman smoother (SPKS), replaces the EKF with a SPKF.

In addition, we consider using a nonlinear backward model as well, either derived from first

principles, or by training a backward predictor using a neural network model, as illustrated

for the time series case in Figure 3.18. The nonlinear backward model allows us to take

14The notation x̂i|j means the estimate of x at time i based on information at time j. The backward
predicted state at time k, based on information at time k + 1, is thus written as, x̂b

k|k+1.

125

kx

1ˆkx +1ˆk Lx − −

time series

Figure 3.18: Forward/backward neural network prediction training for sigma-point Kalman smoother.

Table 3.4: Comparison of smoother performance: The estimation results (normalized MSE) for two
nonlinear time-series estimation problems are summarized. On the left the results for the Mackey-
Glass experiment is given and on the right the right the results for an chaotic autoregressive neural
network. [EKS1 = extended Kalman smoother with linearized backward model; EKS2 = extended
Kalman smoother with second nonlinear backward model; SPKS = sigma-point Kalman smoother
using forward-backward neural predictor shown in Figure 3.18.

Mackey-Glass
Normalized MSE

Algorithm forward backward smoothed
EKS1 0.20 0.70 0.27
EKS2 0.20 0.31 0.19
SPKS 0.10 0.24 0.08

Chaotic AR-NN
Normalized MSE

Algorithm forward backward smoothed
EKS1 0.35 0.32 0.28
EKS2 0.35 0.22 0.23
SPKS 0.23 0.21 0.16

full advantage of the SPKF, which requires no linearization step.

To illustrate performance, we reconsider the noisy Mackey-Glass time-series problem of

the previous section, as well as a second time series generated using chaotic autoregressive

neural network. The table below compares smoother performance. In this case, the network

models are trained on the clean time-series, and then tested on the noisy data using either

the standard extended Kalman smoother with linearized backward model (EKS1), an

extended Kalman smoother with a second nonlinear backward model (EKS2), and the

sigma-point Kalman smoother (SPKS). The forward, backward, and smoothed estimation

errors are reported. Again, the performance benefits of the sigma-point approach is clear.

126

3.7 Chapter Summary

In this chapter the sigma-point Kalman filter (SPKF) was introduced as a better alternative

to the EKF for Gaussian approximate probabilistic inference in general nonlinear DSSMs.

The underlying unifying technique common to all SPKFs, the sigma-point approach, was

introduced as a method to calculate the statistics of a random variable that undergoes a

nonlinear transformation. These calculations form the core of the optimal Kalman time and

measurement update equations, which is simply the original (optimal) recursive Bayesian

estimation integral equations recast under a Gaussian assumption.

We showed how two SPKF algorithms, the UKF and CDKF, although derived from

different starting assumptions, both employ the sigma-point approach as their core algo-

rithmic component for calculating the posterior Gaussian statistics necessary to for Gaus-

sian approximate inference in a Kalman framework. In Chapter 4 we will show, through a

theoretical analysis, how both these approaches (and all SPKFs for that matter) achieve

essentially the same level of accuracy that surpasses that of the EKF. This result was

already foreshadowed in this chapter through experimental verification.

In Section 3.5 we demonstrated through a large number of experimental results how

we extended the use of the SPKF from its original state-estimation for vehicular con-

trol origins, to the larger complete probabilistic inference field, namely. state estimation

(with new application to nonlinear time-series prediction), parameter estimation (machine

learning and system ID) and dual-estimation. Through these experiments we verified the

consistently better or equal performance of the SPKF compared to that of the EKF.

Other detail covered in Section 3.5 is the discussion of a number of process-noise es-

timation and adaptation methods with specific application to parameter estimation. We

also showed how the SPKF (for parameter estimation) can be modified to minimize general

non-MSE cost functions (e.g. entropic cost, etc.), allowing for its application to a larger

group of general optimization problems.

Section 3.6 covers the derivation of a number of implementational variations of the

SPKF that provide better computational efficiency and increased numerical robustness.

Starting from the original state-estimation UKF and CDKF, a number of new SPKF

127

algorithms, including numerically stable (robust) square-root forms, were derived that

take advantage of the specific form of the DSSM for certain state, parameter and dual

estimation problems in order to increase computational efficiency.

Throughout this chapter, where relevant, we presented detailed implementation orien-

tated summaries of all of the derived and discussed SPKF algorithms. These allow for easy

verifiable implementation. This fact notwithstanding, all of the discussed algorithms are

also available in pre-coded Matlab form as part of the ReBEL toolkit. See Appendix C for

more detail.

Chapter 4

Sigma-Point Kalman Filters:

Theoretical Analysis

4.1 Introduction

In this chapter some of the theoretical properties of the SPKF family of filters are analyzed.

We first present an alternative (partial) interpretation of the sigma-point approach based

on a technique called weighted statistical linear regression, which allows for further useful

insight into why the SPKF is expected to perform better and more robustly than the

EKF for Gaussian approximate nonlinear estimation. After that, we will determine the

accuracy with which the SPKF calculates the posterior statistics of the random variables

they operate on. We will show how all SPKFs achieve at least second order accuracy in

the calculation of the posterior mean and covariance. In Section 4.4 we briefly comment

on some of the apparent similarities between the sigma-point approach and a numerical

integration method called Gaussian quadrature.

One of the longer and more important sections of this chapter, which also constitutes

one of the original contributions of this work, is the analysis of the SPKF for parameter

estimation presented in Section 4.5. In this section, we show the relationship between

the SPKF and other second order nonlinear optimization methods, casting it into a gen-

eral online (stochastic) adaptive modified Newton method framework that minimizes an

instantaneous nonlinear least squares cost function.

We conclude this chapter by a brief summary of the most salient and important char-

acteristics of the SPKF family of algorithms as revealed by the derivations in the previous

128

129

chapter and the analysis of this chapter.

4.2 Alternate Interpretation of Sigma-Point Approach

As pointed put in the previous chapter, all sigma-point Kalman filters utilize a general

deterministic sampling framework called the sigma-point approach, to calculate Gaussian

approximations to the optimal Bayesian recursion terms (Equations 2.5, 2.6 and 2.8).

Based on a analysis of the UKF by Lefebvre [114], it is possible to interpret the sigma-point

approach as implicitly performing statistical linearization [62] of the nonlinear functions

in question through the implicit use of a technique known as weighted statistical linear

regression (WSLR). WSLR is a statistical linearization technique that takes into account

the uncertainty or “probabilistic spread” of the prior random variable when linearizing a

nonlinear function that operates on that random variable (takes it as an argument). By

doing so, the resulting linearized function is more accurate in an average statistical sense,

than simply using a first order truncated Taylor-series expansion of the function around a

single point, say the prior mean.

In Chapter 2 (Section 2.4) we indicated and demonstrated how the EKF’s inaccuracies

stem from the fact that it does not take into account the probabilistic spread of the

prior state random variables when it linearizes the process and observation models using

analytical first-order Taylor series truncations. This implies the assumption that the prior

random variables are highly “peaked up” around their mean values, resulting in the highly

inaccurate approximations of the posterior statistics when the nonlinearities in question

are significant over the true distribution of the prior random variable.

We will next introduce the concepts of statistical linearization and weighted statistical

linear regression (WSLR) and show how the sigma-point approach, and hence all SPKFs,

makes implicit use of it. It is important to note at this point however, that a WSLR

interpretation of the sigma-point approach does not capture all of its salient features. For

instance, it is possible to extend the sigma-point approach through the use of more samples

and careful constrained weight/location optimization, to capture and accurately propagate

higher order moment information such as skew, kurtosis, etc. [96, 101]. These extra

130

properties of the sigma-point approach falls outside the narrower interpretation framework

that the WSLR technique offers. That said, it does not detract from the validity and utility

of using the WSLR interpretation to analyze the general 2nd order sigma-point approach

framework.

4.2.1 Statistical linearization

The following exposition follows that of Gelb in [62] closely. We seek a linear approximation

of a general nonlinear vector function g(x), operating on vector random variable x with

probability density function p(x), i.e.,

y = g(x) ≈ Ax + b , (4.1)

where A and b are a matrix and a vector to be determined. The aim here is determine

the linearization parameters, A and b, such that the approximation takes into account the

prior distribution of x and hence perform better in an average (statistical) sense than a

simple first order Taylor series truncation. Defining the approximation error as

ε
.= g(x) − Ax− b , (4.2)

we desire to choose A and b such that the quantity

J = E
[
εTWε

]
(4.3)

is minimized for some symmetric positive semidefinite matrix W. Substituting Equa-

tion 4.2 into Equation 4.3 and setting the partial derivative of J with respect to the

elements of b equal to zero, we obtain:

E [W (g(x) − Ax − b)] = 0 . (4.4)

131

Therefore, b is given by

b = E [g(x)] − AE [x]

= ȳ − Ax̄ . (4.5)

Substituting b from Equation 4.5 into J and taking the partial derivative with respect to

the elements of A, we obtain

E
[
W
[
Ax̃x̃T + (g(x) − ȳ) x̃T

]]
= 0 , (4.6)

where x̃ = x− x̄. Solving Equation 4.6 for A gives

A = E
[
(g(x) − ȳ) x̃T

]
E
[
x̃x̃T
]−1

= E
[
(x− x̄) (y − ȳ)T

]T
E
[
(x − x̄) (x− x̄)T

]−1

= PT
xyP

−1
x , (4.7)

where Px is the covariance matrix of x and Pxy is the cross-covariance matrix of x and

y = g(x). Notice that both b and A as given by Equations 4.5 and 4.7, are independent

of the weighting matrix W; hence, they provide a generalized minimum mean square error

linearized approximation of g(x).

To summarize, statistical linearization as presented above, derives a MMSE optimal

linear approximation of a general nonlinear function that takes into account the prior

mean and covariance of the random variable it operates upon. This linearization will be

more accurate in statistical sense, with respect to the distribution of the prior random

variable, than a simple first order Taylor-series truncation approach. Next we will show

how statistical linearization can be realized through the use of a method called weighted

statistical linear regression and how it relates to the sigma-point approach

132

4.2.2 Weighted statistical linear regression (WSLR)

Consider a nonlinear function y = g(x) which is evaluated in N points (χi , i = 1 . . . N),

i.e.,

γi = g(χi) , i = 1 . . . N, (4.8)

where the points χi are chosen such that they capture certain statistical properties of x,

such as the mean and covariance, through the sample based estimators of the following

general form:

x̄ =
N∑
i=1

wiχi (4.9)

Px =
N∑
i=1

wi(χi − x̄)(χi − x̄)T , (4.10)

where wi is a set of N scalar regression weights such that

N∑
i=1

wi = 1 . (4.11)

Now, the aim is to find the linear regression

y = Ax + b (4.12)

that minimizes the weighted sum of squared errors

{A,b} = argmin
N∑
i=1

wiε
T
i εi , (4.13)

where the point-wise linearization error εi is defined as

εi = γi − (Aχi + b) . (4.14)

133

Equation 4.13 can be interpreted as a finite sample based approximation of the true ex-

pected statistical linearization cost given by Equation 4.3, i.e.,

J = E
[
εTWε

] ≈ N∑
i=1

wiε
T
i εi . (4.15)

On the left hand side of Equation 4.15, the expectation is taken with respect to the

distribution of x, p(x). Since the regression points χi are chosen such that they capture the

prior mean and covariance of x, the right-hand side of the equation is a valid approximation

of the true expected cost under a Gaussian approximate assumption.

If we now further define the following estimators of the posterior (Gaussian approxi-

mate) statistics of the propagated regression points γi,

ȳ ≈ ŷ =
N∑
i=1

wiγi (4.16)

Py ≈ P̂y =
N∑
i=1

wi(γi − ŷ)(γi − ŷ)T (4.17)

Pxy ≈ P̂xy =
N∑
i=1

wi(χi − x̄)(γi − ŷ)T , (4.18)

we can use the statistical linearization results from the previous section to solve for A and

b in Equations 4.12 and 4.13. This weighted statistical linear regression solution is thus

given by:

A = P̂T
xyP

−1
x (4.19)

b = ŷ − Ax̄ . (4.20)

134

The covariance of the statistical linearization error can be approximated by

Pε ≈
N∑
i=1

wiεiε
T
i

=
N∑
i=1

wi [γi − (Aχi + b)] [γi − (Aχi + b)]T

=
N∑
i=1

wi [γi − Aχi − ŷ + Ax̄] [γi − Aχi − ŷ + Ax̄]T

=
N∑
i=1

wi [(γi − ŷ) − A (χi − x̄)] [(γi − ŷ) − A (χi − x̄)]T

= P̂y − AP̂xy − P̂T
xyA

T + APxAT

= P̂y − APxAT , (4.21)

where we substituted1 P̂T
xy = APx from Equation 4.19.

Once this statistical linearization has been determined we can now approximate the

nonlinear function g(·) as

y = g(x)

∼= Ax + b + ε , (4.22)

where ε is the linearization error as defined above. The posterior statistics of y can now

also expressed (approximated) by the following statistical linear regression forms

ŷslr .= Ax̄ + b (4.23)

P̂slr
y

.= APxAT + Pε . (4.24)

where we use the expected value of Equation 4.22 for the mean approximation and the

expected value of its outer product for the covariance approximation. Note how the vari-

ance of the linearization error, Pε, is added back into linearly propagated prior covariance,

APxAT , when calculating P̂slr
y . This correction term makes intuitive sense: The more

severe the nonlinearity is over the “uncertainty region” of x, the larger our linearization

1We assume the covariance matrix of x, Px, is symmetric and positive-definite and hence invertible.

135

error and error covariance will be, and accordingly the normal linear approximation of

Py, AP̂xAT , will be less accurate. The correction term Pε thus needs to be larger to

compensate.

4.2.3 Relationship between WSLR and the sigma-point approach

Using the results from the previous section and the general form of the sigma-point ap-

proach equations (See Chapter 3), we will now show how the sigma-point approach makes

implicit use of statistical linear regression to obtain an implied statistically linearized DSSM

for use within the Kalman filter framework.

If we substitute Equation 4.16 into Equation 4.20 and the result into Equation 4.23,

we obtain

ŷslr = Ax̄ +
N∑
i=1

wiγi − Ax̄

=
N∑
i=1

wiγi . (4.25)

If we now assume that the prior regression points χi are chosen using a sigma-point selec-

tion scheme as used by the sigma-point approach, i.e.,

χi ≡ X i i=0,...,2L

X 0 = x̄ i=0

X i = x̄ + ζ
(√

Px

)
i

i=1,...,L

X i = x̄− ζ
(√

Px

)
i

i=L+1,...,2L

, (4.26)

where ζ is a scaling parameter, then

γi = g(χi)

= g(X i)

= Y i

is equivalent to the posterior (propagated) set of sigma-points as used by the sigma-point

approach. Under these assumptions, the weighted statistical linear regression calculated

136

posterior mean ŷslr (Equation 4.25) is equivalent to the sigma-point calculated posterior

mean as given by Equation 3.14.

Likewise, if we substitute Equation 4.17 into Equation 4.21 and the result into Equa-

tions 4.24, we obtain

P̂slr
y = APxAT +

N∑
i=1

wi(γi − ȳ)(γi − ȳ)T − APxAT

=
N∑
i=1

wi(γi − ȳ)(γi − ȳ)T , (4.27)

=
N∑
i=1

wi(Y i − ȳ)(Y i − ȳ)T (4.28)

which, under the same assumptions as above, is equivalent to the way that the sigma-point

approach calculates the posterior covariance (Equation 3.15). The same can be done for

the cross-covariance resulting in a form identical to Equation 3.16.

This analysis shows that the WSLR method is implicitly used for the purpose of statis-

tical linearization when posterior statistics are calculated using the sigma-point approach.

Note that the correction term in Equation 4.24, i.e., Pe, are never explicitly calculated in

the sigma-point approach, but its effect is implicitly incorporated through the way that

the posterior statistics are approximated. This implied correction term gives useful in-

sight into why the sigma-point approach (and hence SPKFs) tend to generate posterior

covariance estimates that are consistent. The EKF on the other hand simply approximates

the posterior covariance by P̂lin
y = AlinPxAT

lin , where Alin is the analytically calculated

Jacobian of g(·) evaluated at x = x̄. This often results in overly confident (not consistent)

estimates. In this statistical linearization formulation, the matrix A can be thought of as

the expected Jacobian of the nonlinear function over the “uncertainty range” of the prior

random variable x. Here the expectation is taken with regard to the prior Gaussian ap-

proximate density of x. This expected Jacobian plays an important role when the SPKF

is used for recursive nonlinear parameter estimation, with specific regard to generalization

and dealing with local minima. This will be discussed further in Section 4.5.

A final interesting insight into the use of the sigma-point can be found by looking at

137

the general form of the optimal linear Kalman update used in the measurement update

step of the SPKF. This is given by,

x̂k = x̂−
k + Kνk , (4.29)

where x̂−
k is the optimal prediction x̂−

k = E[xk|y1:k−1], νk is the innovation (new informa-

tion) given by νk = yk − ŷ−
k = yk − E[yk|x−

k] and K is the Kalman gain. Equation 4.29

can thus be interpreted as a linear combination of the best prediction of the state and the

new information contained in the innovation. In this formulation, the Kalman gain, given

by

K = PxyP−1
y , (4.30)

serves the purpose of optimally propagating the new information in the output (observa-

tion) space, back down into the hidden state-space before combining it with the predicted

state value. If we compare Equation 4.30 with Equation 4.19, we see that the Kalman

gain has the same general form as that of the optimal WSLR gain term, A. The differ-

ence being, however, that the Kalman gain equation (Equation 4.30) replaces PT
xy with

PT
yx = Pxy and P−1

x with P−1
y . Using the just discussed implicit WSLR view of the

sigma-point approach, his can thus be interpreted as propagating the innovation informa-

tion downwards (from the y-space to the x-space) using a statistically linearized inverse

observation function.

4.2.4 Demonstration of statistical linearization as implicitly used by the
sigma-point approach

Figure 4.1 gives a graphical demonstration of the sigma-point approach (through the im-

plicit use of WSLR) and contrasts its performance with that of the normal first-order

Taylor series linearization employed by the EKF. On the bottom x-axis the prior Gaussian

random variable (GRV) x is stylistically indicated by a green Gaussian distribution with

mean x̄. This GRV undergoes a transformation through a arbitrary nonlinear function

(thick blue curve) in order to produce the posterior random variable y. The true mean

138

x

y

()y g x

i

i
x

() ()lin xy g x x g x

Stochastic Linearization

spy Ax b

lin

sp

i

y

y

y

1

1

1

1

1

()

ˆ

ˆ

r

i i

i

r
T

x i i i

i

i i

r

sp i i

i

r
T

y i i sp i sp

i

T

x e

r
T

xy i i i sp

i

x w

P w x x

g

y w

Ax b

P w y y

AP A P

P w x y

1

1

A,b argmin ()

ˆ cov{ }

r
T

i i i i i i

i

T

xy x sp e

w e e e A b

A P P b y Ax P e

Choose location of regression points

and their weights in order to:

1) exactly capture prior RV statistics [constraint]

2) minimize cost function of posterior statistics

i

iw

ˆ =() ()lin T

y x x xP g P g

ˆ =sp T

y x eP AP A P

Sigma-Point Calculations

Weighted Statistical Linear Regression

Figure 4.1: Stochastic linearization also known as weighted statistical linear regression. This tech-
niques is implicitly employed in all sigma-point Kalman filters.

and covariance2 of this posterior RV is indicated by the green Gaussian distribution and

dot on the y-axis. If we linearize the nonlinear function through a first-order Taylor series

expansion around the prior mean x̄ (as done in the EKF), we obtain the dashed red line

as a linear approximation. The EKF then analytically propagates the prior mean and co-

variance through this linearized system resulting in the approximate posterior distribution

indicated in red on the y-axis. The resulting mean (red dot) is clearly biased with respect

to the true posterior mean (green dot) and the covariance (red curve) is much more peaked

(inconsistent) with respect to the true covariance (green curve). Clearly the linearization

employed by the EKF results in highly inaccurate results. In contrast, the sigma-point

approach is more accurate (and consistent). The prior set of sigma-points (green dots on

x-axis) are chosen such that they accurately capture the prior mean and covariance of x

2Remember, the true posterior distribution will not be Gaussian (due to the nonlinear mapping), but it
will still have a mean and covariance. It is these first and second order moments we are trying to capture
as accurately as possible.

139

using a standard sigma-point selection scheme. In this case only three sigma-points are

needed (we showed in Chapter 3 how in general 2L+1 points are needed for GRVs, where L

is the dimension of the variable): The first sigma-point lies at the mean, X 0 = x̄, and the

other two are symmetrically located around the mean, i.e., X 1 = x̄− σx and X 2 = x̄+ σx

where σx is the standard deviation of the distribution of x. The sigma-points are now

propagated through the true nonlinear function resulting in the posterior sigma-point set,

Y i (yellow dots on y-axis). These posterior points (and their weights) are now used to

calculate the approximate posterior mean and covariance (using Equations 4.16 and 4.17).

The resulting mean and covariance are indicated in magenta on the y-axis. The implicit

statistical linearization (WSLR) is indicated by the dashed magenta linear function. This

clearly differs from the normal EKF linearization (red dashed line), not only in gradient

but also in offset. The difference in gradient is directly due to the fact that the WSLR lin-

earization calculates an approximate expected Jacobian whereas the EKF simply calculates

the Jacobian at the prior mean (gradient of tangent line to nonlinear function evaluated

at x̄). The difference in offset is due to the fact that the WSLR linearization employs

a non-zero bias-correction term b, whereas in the EKF linearization, the corresponding

bias term, ∇gx̄(x − x̄), equates to zeros when evaluated at the linearization point. The

superior performance of the sigma-point approach over that of the EKF linearization is

clearly evident.

4.3 Accuracy of Sigma-point Approach

We can gain valuable insight into the SPKF family of filters by analyzing the theoretical

accuracy of the sigma-point approach calculated posterior statistics. For this purpose we

will use the same multi-dimensional Taylor series analysis as in Section 2.3.

Assume a random variable x with mean x̄ and covariance Px undergoes an arbitrary

nonlinear transformation,

y = g(x) = g(x̄ + δx) , (4.31)

where δx is a zero-mean random variable with the same covariance Px as x. Given this

140

formulation, we can again expand3 g(x) as

y = g(x̄) + Dδxg +
1
2!

D2
δx

g +
1
3!

D3
δx

g +
1
4!

D4
δx

g + (4.32)

The SPKF calculates the posterior mean from the propagated sigma-points using Equa-

tion 4.16. By substituting Equation 4.32 into 4.16 and using the sigma-points and their

weights as given by Equations 3.12 and 3.85 for the UKF and CDKF respectively, we can

now calculate the accuracy of the posterior mean:

4.3.1 Posterior mean accuracy

For the UKF, the sigma-points are given by

X i = x̄±
√

(L+ λ)σxi (4.33)

= x̄± σ̃xi (4.34)

where σxi denotes the ith column4 of the matrix square-root of Px. This implies that

L∑
i=1

σxiσ
T
xi

= Px . (4.35)

Given this formulation of the sigma-points, we can again write the propagation of each

point through the nonlinear function as a Taylor series expansion about x̄:

Y i = g(X i) = g(x̄) + Dσ̃xi
g +

1
2!

D2
σ̃xi

g +
1
3!

D3
σ̃xi

g +
1
4!

D4
σ̃xi

g + . . . , (4.36)

where the total differential operator Dσ̃xi
is defined the same as in Equation 2.12 (see

Chapter 2, Equations 2.12-2.14). The lth term in the multi-dimensional Taylor series

expansion (Equation 4.36) is thus given by

Dl
σ̃xi

g =
1
l!

⎡⎣ Nx∑
j=1

σ̃xi,j

∂

∂xj

⎤⎦l g(x)

∣∣∣∣∣∣∣
x=x̄

, (4.37)

3See Section 2.3 for definitions of all the relevant operators such as Di
δx

g , etc.
4σxi is thus treated as a column vector.

141

where σ̃xi,j is the jth component of σ̃xi ,
∂
∂xj

is the normal partial derivative operator with

respect to xj (the jth component of x), and Nx is the dimension of x (i.e. x ∈ R
Nx).

Using Equations 3.14, 3.13 and 3.12, the UKF calculated posterior mean is given by

ȳUKF =
λ

L+ λ
g(x̄) +

1
2(L+ λ)

2L∑
i=1

[
g(x̄) + Dσ̃xi

g +
1
2!

D2
σ̃xi

g +
1
3!

D3
σ̃xi

g + . . .

]
(4.38)

= g(x̄) +
1

2(L+ λ)

2L∑
i=1

[
1
2
D2

σ̃xi
g +

1
4!

D4
σ̃xi

g +
1
6!

D6
σ̃xi

g + . . .

]
, (4.39)

where the simplification in the last line is justified by the fact that the sigma-points are

symmetrically distributed around x̄ resulting in zero odd moment terms. Using the same

expansion as in Equations 2.18-2.19 (see Chapter 2), we can rewrite the second order term

in Equation 4.39 as

1
2(L+ λ)

2L∑
i=1

1
2
D2

σ̃xi
g =

1
2(L+ λ)

{
2L∑
i=1

1
2

[
Dσ̃xi

(
Dσ̃xi

g
)T]}

(4.40)

=
1

4(L+ λ)

{
2L∑
i=1

[(∇T σ̃xiσ̃
T
xi
∇)g(x)

∣∣
x=x̄

]}
(4.41)

=
1

4(L+ λ)

{
2L∑
i=1

[(
∇T

√
L+ λσxiσ

T
xi

√
L+ λ∇

)
g(x)
∣∣∣
x=x̄

]}
(4.42)

=
L+ λ

4(L+ λ)

[
∇T

(
2L∑
i=1

σxiσ
T
xi

)
∇
]
g(x)

∣∣∣∣∣
x=x̄

(4.43)

=
L+ λ

4(L+ λ)
(∇T2Px∇

)
g(x)
∣∣
x=x̄

(4.44)

=
1
2
(∇TPx∇

)
g(x)
∣∣
x=x̄

(4.45)

where we made use of the fact that
∑2L

i=1 σxiσ
T
xi

= 2Px (see Equation 4.35). Substituting

this result into Equation 4.39 gives us,

ȳUKF = g(x̄) +
1
2
(∇TPx∇

)
g(x)
∣∣
x=x̄

+
1

2(L+ λ)

2L∑
i=1

[
1
4!

D4
σ̃xi

g +
1
6!

D6
σ̃xi

g + . . .

]
.

(4.46)

When we compare Equations 4.46 and 2.20, we can clearly see that the true posterior mean

142

and the mean calculated by the UKF agrees exactly to the third order and that errors are

only introduced in the fourth and higher-order terms. The magnitude of these errors

depends on the choice of the composite scaling parameter λ as well as the higher-order

derivatives of the nonlinear function g. In contrast (see Chapter 2), the EKF linearization

approach calculates the posterior mean as, ȳLIN = g(x̄), which only agrees with the true

posterior mean up to the first order.

By noting that the CDKF weights and sigma-points can be derived from the UKF

weights after the following substitution is made,

h2 = L+ λ ,

we can derive exactly the same result for the posterior mean calculated by the CDKF, i.e.,

ȳCDKF = g(x̄) +
1
2
(∇TPx∇

)
g(x)
∣∣
x=x̄

+
1

2h2

2L∑
i=1

[
1
4!

D4
σ̃xi

g +
1
6!

D6
σ̃xi

g + . . .

]
. (4.47)

See [147] for the full derivation.

4.3.2 Posterior covariance accuracy

As derived in Section 2.3, the true posterior covariance is given by

Py = Gx̄PxGT
x̄ − 1

4
E
[
D2

δx
g
]
E
[
D2

δx
g
]T

+E

⎡⎢⎢⎢⎢⎢⎣
∞∑
i=1

∞∑
j=1

1
i!j!

Di
δx

g
(
Dj

δx
g
)T

︸ ︷︷ ︸
∀ i,j : such that ij>1

⎤⎥⎥⎥⎥⎥⎦

−

⎛⎜⎜⎜⎜⎜⎝
∞∑
i=1

∞∑
j=1

1
(2i)!(2j)!

E
[
D2i

δx
g
]
E
[
D2j

δx
g
]T

︸ ︷︷ ︸
∀ i,j : such that ij>1

⎞⎟⎟⎟⎟⎟⎠ , (4.48)

143

which can be further simplified as

Py = Gx̄PxGT
x̄ − 1

4
[
Gx̄PxGT

x̄

] [
Gx̄PxGT

x̄

]T

+E

⎡⎢⎢⎢⎢⎢⎣
∞∑
i=1

∞∑
j=1

1
i!j!

Di
δx

g
(
Dj

δx
g
)T

︸ ︷︷ ︸
∀ i,j : such that ij>1

⎤⎥⎥⎥⎥⎥⎦

−

⎛⎜⎜⎜⎜⎜⎝
∞∑
i=1

∞∑
j=1

1
(2i)!(2j)!

E
[
D2i

δx
g
]
E
[
D2j

δx
g
]T

︸ ︷︷ ︸
∀ i,j : such that ij>1

⎞⎟⎟⎟⎟⎟⎠ . (4.49)

Using the results from Equations 4.46, 4.47, 3.5 and 3.88, and a similar approach5 as the

one used above to calculate the accuracy in the mean approximation, we can derive the

following expressions for the SPKF calculated posterior covariance:

PUKF
y = Gx̄PxGT

x̄ − 1
4
[
Gx̄PxGT

x̄

] [
Gx̄PxGT

x̄

]T

+
1

2(L+ λ)

2L∑
k=1

⎡⎢⎢⎢⎢⎢⎣
∞∑
i=1

∞∑
j=1

1
i!j!

Di
σ̃xk

g
(
Dj

σ̃xk
g
)T

︸ ︷︷ ︸
∀ i,j : such that ij>1

⎤⎥⎥⎥⎥⎥⎦

−

⎛⎜⎜⎜⎜⎜⎝
∞∑
i=1

∞∑
j=1

1
4(2i)!(2j)!(L + λ)2

2L∑
k=1

2L∑
m=1

D2i
σ̃xk

g
(
D2j

σ̃xm
g
)T

︸ ︷︷ ︸
∀ i,j : such that ij>1

⎞⎟⎟⎟⎟⎟⎠ . (4.50)

Comparing Equations 4.50 and 4.49 and noting that δx = σx in a statistical sense (with

regard to the covariance of x), it is clear that the UKF calculates the posterior covariance

accurately in the first two terms, with errors only introduced at the fourth- and higher-

order moments. Julier and Uhlmann [99] show how the absolute term-by-term errors of

5For brevity’s sake the full derivation is not presented here. The interested reader is referred to [95, 147]
for a complete derivation of not only the posterior covariance expressions, but also for other terms such as
the skew and kurtosis.

144

these higher-order moments are again consistently smaller for the sigma-point approach

than for the linearized (EKF) case that truncates the Taylor series after the first term,

that is,

PLIN
y = Gx̄PxGT

x̄ .

For this derivation, we have assumed the value of the β parameter in the UKF covariance

calculation to be zero. If extra knowledge about the shape of the prior distribution of x

is known, β can be set to a non-zero value that minimizes the error in some of the higher

(≥ 4) order moments. Julier [96] shows how the error in the kurtosis of the posterior

distribution is minimized for a Gaussian x when β = 2. Using a similar approach as above

and the same substitution for the sigma-points weights as in the mean calculation, we can

derive the following expression for the CDKF calculated posterior covariance (see [147] for

full derivation):

PCDKF
y = Gx̄PxGT

x̄ − 1
4
[
Gx̄PxGT

x̄

] [
Gx̄PxGT

x̄

]T

+
1
h2

⎡⎢⎢⎢⎢⎢⎣
∞∑
i=1

∞∑
j=1

1
(2i+ 1)!(2j + 1)!

L∑
k=1

D2i+1
σ̃xk

g
(
D2j+1

σ̃xk
g
)T

︸ ︷︷ ︸
∀ i,j : such that ij>1

⎤⎥⎥⎥⎥⎥⎦

−

⎛⎜⎜⎜⎜⎜⎝
∞∑
i=1

∞∑
j=1

1
(2i)!(2j)!h4

L∑
k=1

D2i
σ̃xk

g
(
D2j

σ̃xk
g
)T

︸ ︷︷ ︸
∀ i,j : such that ij>1

⎞⎟⎟⎟⎟⎟⎠ . (4.51)

Clearly, the CDKF has the same exact accuracy in the first and second terms of the

posterior covariance as the UKF. In fact, any SPKF based on a valid sigma-point approach

implementation will exhibit this accuracy in the posterior covariance and mean as derived

above for the UKF and CDKF. As discussed in Section 3.4.1, the differences between the

UKF and CDKF implementations of the SPKF covariance approximation, lies in the choice

of cross-product terms to discard in the higher-order (> 2) terms of the full Taylor-series

expansion. This is reflected in the differences between the last two compound terms of

Equation 4.50 (UKF) and the last two compound terms of Equation 4.51 (CDKF).

145

In [147], Norgaard shows how the CDKF has a slightly smaller absolute error (compared

to the UKF) in the fourth order term and also guarantees positive semi-definiteness of

the posterior covariance. Notwithstanding this small theoretical advantages with regard to

approximation accuracy, we’ve found in practice that the CDKF and UKF perform equally

well with negligible difference in estimation accuracy. Both generate estimates however

that are clearly superior to those calculated by an EKF. The performance similarity of the

UKF and CDKF is clearly demonstrated on nonlinear time-series estimation problem in

Section 3.5.1. However, there is one advantage the CDKF has over the UKF: The CDKF

uses only a single scalar scaling parameter, the central difference interval size h, as opposed

to the three (α, κ, β) that the UKF uses. Once again this parameter determines the spread

of the sigma-points around the prior mean. As mentioned earlier, the optimal setting for

his equal to the kurtosis of the prior RV. For Gaussian RVs the optimal value is thus

h =
√

3.

4.3.3 Demonstration of accuracy of sigma-point approach

In order to demonstrate the 2nd order accuracy of the sigma-point approach we revisit

the scalar analytical example first used in Section 2.5.1 to demonstrate the difference

in accuracy between the EKF’s linearization approximations and the true analytically

calculated posterior statistics. The nonlinear transformation is the simple scalar quadratic

function

y = g(x) = x2 .

We will now repeat this experiment, but include the sigma-point approach calculated

posterior statistics approximations (UKF and CDKF) for comparison. The results are

tabulated in Table 4.1. As expected, the UKF and CDKF (using the sigma-point approach)

calculates the posterior statistics exactly with the same level of 2nd order accuracy as

the analytical approach. Since the nonlinearity in question has no higher order (> 2)

derivatives the sigma-point approach will be exact. Notice again the highly inaccurate

estimates generated by the EKF’s first order linearization approach.

146

Table 4.1: Mean and covariance of a nonlinear transformed scalar Gaussian random variable. The
table compares the true analytically calculated posterior mean and covariance of y = g(x) = x2,
i.e., ȳ and σ2

y , with Monte Carlo (100, 000 samples) calculated verifications thereof. The first order
linearization approximations (as employed by the EKF) as well as those calculated by the SPKF’s sigma-
point approach (UKF and CDKF) of these values are also shown. The experiment was repeated three
times, the only difference being the covariance of the prior random variable x, i.e., x is a Gaussian
random variable with mean x̄ = 1 and covariance σ2

x = {0.1, 1, 10} for each experiment.

x̄ = 1 σ2
x = 0.1 σ2

x = 1 σ2
x = 10

y = g(x) = x2 ȳ σ2
y ȳ σ2

y ȳ σ2
y

True statistics (analytical) 1.1 0.42 2 6 11 240
True statistics (Monte Carlo) 1.100 0.419 2.000 5.980 10.99 239.8
Approximated statistics (EKF) 1 0.4 1 4.0 1 40
Approximated statistics (UKF) 1.100 0.420 2.000 6.000 11.00 240.0
Approximated statistics (CDKF) 1.100 0.420 2.000 6.000 11.00 240.0

4.4 Relationship between Sigma-Point Approach and Gaus-

sian Quadrature

Further insight into the sigma-point approach can be gained by relating it to a numerical

integral evaluation technique called Gaussian quadrature [79, 156] utilizing the Gauss-

Hermite rule:

In the scalar case, the Gauss-Hermite rule is given by∫ ∞

−∞
f(x)

1√
2π
e−x

2
dx =

m∑
i=1

wif(xi) , (4.52)

where the equality holds for all polynomials, f(·), of degree up to 2m−1 and the quadrature

abscissas, xi, and weights, wi, are determined according to the specific rule type. To be

more specific: The abscissas for quadrature order n are given by the roots xi of the Hermite

polynomials Hn(x), which occur symmetrically about 0. The weights are given by

wi = − An+1γn
AnH ′

n(xi)Hn+1(xi)
=

An
An−1

γn−1

Hn−1(xi)H ′
n(xi)

, (4.53)

147

where γn =
√
π2nn! and An is the coefficient of xn in Hn(x). For Hermite polynomials,

An = 2n ,

such that
An
An−1

= 2 .

Substituting these results back into Equation 4.53 gives us the weights:

wi = − 2n+1n!
√
π

Hn+1(xi)H ′
n(xi)

(4.54)

=
2n(n− 1)!

√
π

Hn−1(xi)H ′
n(xi)

(4.55)

=
2n+1n!

√
π

[H ′
n(xi)]

2 (4.56)

=
2n+1n!

√
π

[Hn+1(xi)]
2 (4.57)

=
2n−1n!

√
π

n2 [Hn−1(xi)]
2 , (4.58)

where Equation 4.56 and 4.57 follow using the recurrence relation [205]

H ′
n(x) = 2nHn−1(x) = 2xHn(x) −Hn+1(x) ,

to obtain

H ′
n(xi) = 2nHn−1(xi) = −Hn+1(xi) ,

and Equation 4.58 follows from a proof by Abramowitz and Stegun [205]. Due to the

complexity of calculating the specific values for the abscissas and weights, published tables

of precalculated solutions are often utilized when specific Gauss-Hermite filters are imple-

mented. However, for small n these values can be computed analytically. Table 4.2 lists

the values for n = 2 . . . 4.

For the scalar case, the UKF with α = 1, β = 0 and κ = 2 coincides with the three

point Gauss-Hermite quadrature rule.

Ito and Xiong [88] recently published an algorithm called the Gauss-Hermite filter that

148

Table 4.2: Gauss-Hermite quadrature abscissas and weights for small n.

n xi wi

2 ±1
2

√
2 1

2

√
π

3 0 2
3

√
π

±1
2

√
6 1

6

√
π

4 ±
√

3−√
6

2

√
π

4(3−√
6)

±
√

3+
√

6
2

√
π

4(3+
√

6)

utilizes the Gauss-Hermite quadrature method to calculate the recursive Bayesian estima-

tion integrals under a Gaussian assumption. It is for this same purpose that the SPKF uses

the sigma-point approach. As we showed above, the Gauss-Hermite rule share a number of

similarities with the sigma-point approach (i.e., point wise evaluation of nonlinearities and

weighted sum statistics calculation (see Equation 4.52)), with one important distinction

that is both its biggest advantage and disadvantage: Whereas the sigma-point approach

still approximates the Bayesian integrals (albeit much more accurately than the EKF),

the Gauss-Hermite rule calculates these integrals exactly under a Gaussian assumption.

This accuracy comes at an exceedingly hight cost though, namely. O(mL), where m is the

polynomial order of the nonlinearity and L is the dimension of the system state. Clearly,

the Gauss-Hermite filter is only practically implementable (computationally tractable) for

low dimensional DSSMs, and hence much more limited in practice than the SPKF (which

is O(L3) for general DSSMs and O(L2) for parameter estimation). For a full exposition

of the Gauss-Hermite filter including experimental verification for low dimensional state

estimation problems, see [88].

4.5 Theoretical Analysis of SPKF based Parameter Estima-

tion

When used as a parameter estimation method, the EKF can be viewed as an efficient

second-order nonlinear programming approach similar to the Gauss-Newton update rule

[12, 126]. In this section we will cast the SPKF algorithm for parameter estimation into a

149

similar framework, showing its particular relationship with other 2nd order optimization

methods. This analysis provides further insight into the subtle6 differences between the

EKF and SPKF for parameter estimation, and gives at least a theoretically underpinned

intuitive reason why better global optimization performance can be expected from the

SPKF: We hypothesize that the SPKF is less likely to get stuck in local minima of the

optimization error surface due to the inherent statistical averaging that takes place in the

sigma-point approach, i.e., Jacobians are replaced by stochastically averaged Jacobians,

etc.

Our analysis is twofold: First we will derive the SPKF based parameter estimation

measurement update from a maximum a-posteriori (MAP) perspective, utilizing the im-

plicit WSLR form of the nonlinear prediction equation. Using the MAP result, we will

then proceed to show the equivalence of the SPKF measurement update (for parameter

estimation) to an online stochastic Gauss-Newton method that iteratively approximates

the inverse of the empirical Fisher information matrix by the outer product of the stochas-

tically averaged (expected) Jacobian matrices of the posterior likelihood function.

4.5.1 MAP Parameter Estimation

Using the standard state-space model for parameter estimation (Equations 3.129 and 3.130

and Bayes rule, we can write the posterior distribution of the system parameters (w)

conditioned on all of the observations as

p(wk|z1:k) =
p(z1:k|wk)p(wk)

p(z1:k)
, (4.59)

6Since the state transition function (process model) for parameter estimation is linear (see Equa-
tion 3.129), the EKF and SPKF algorithms differ only in the measurement update.

150

where we substituted d (the noisy observation) in Equation 3.130 with z. This posterior

can now be expanded as follows:

p(wk|z1:k) =
p(zk, z1:k−1|wk)p(wk)

p(z1:k)
(4.60)

=
p(zk|z1:k−1,wk)p(z1:k−1|wk)p(wk)

p(z1:k)
(4.61)

=
p(zk|wk)p(z1:k−1|wk)p(wk)p(z1:k−1)

p(z1:k)p(z1:k−1)
(4.62)

=
p(zk|wk)p(wk|z1:k−1)
p(z1:k)/p(z1:k−1)

, (4.63)

where we made use of the conditional independence of the observation given the current

state [p(zk|z1:k−1,wk)
.= p(zk|wk)] going from Equation 4.61 to 4.62, and applied Bayes

rule going from Equation 4.62 to 4.63 after multiplying above and below by p(z1:k−1).

The MAP estimate of the parameters ŵMAP
k can now be found by choosing the wk that

maximizes the posterior density. Since the denominator of Equation 4.63 is not a function

of w, maximizing the posterior p(wk|z1:k) with respect to wk is equivalent to maximizing

the numerator of Equation 4.63 with respect to wk. So, our MAP estimate is given by:

ŵMAP
k = arg max

wk

[p(zk|wk)p(wk|z1:k−1)] . (4.64)

It is often more convenient to write the MAP estimate as the value of wk that minimizes

the negative of the log of the right hand side of Equation 4.64, i.e.,

ŵMAP
k = arg min

wk

[−ln (p(zk|wk)p(wk|z1:k−1))]

= arg min
wk

[−ln (p(zk|wk)) − ln (p(wk|z1:k−1))]

= arg min
wk

[J(wk)] , (4.65)

where

J(wk) = −ln (p(zk|wk)) − ln (p(wk|z1:k−1)) , (4.66)

is called the posterior log-likelihood function.
Next we need to determine what the actual probability density functions p(zk|wk) and

p(wk|z1:k−1) look like. In the Kalman MAP framework it is assumed that all densities

151

are Gaussian (see Appendix A). Given this, we can write the prior density of the system
parameters as

p(wk|z1:k−1) =
1√

(2π)Lw

∣∣P−
wk

∣∣ exp
[
−1

2
(
wk − ŵ−

k

)T (
P−

wk

)−1 (
wk − ŵ−

k

)]
, (4.67)

where ŵ−
k is the prior estimate of the system parameters (i.e. before the information in

the new observation is incorporated), P−
wk

is its covariance and Lw is the dimension of the
parameter state vector. In a similar fashion the observation likelihood is given by

p(zk|wk) =
1√

(2π)Lz |Re|
exp
[
−1

2
(zk − g (wk))T (Re)

−1 (zk − g (wk))
]
, (4.68)

where g(·) is the nonlinear observation function, Re is the observation noise covariance7

and Lz is the dimension of the observation vector.

Next we must reformulate8 the nonlinear observation model,

zk = g (wk) + ek , (4.69)

(ek ∼ N (e;0,Re) is the zero-mean Gaussian observation noise) into a statistically lin-

earized form using weighted statistical linear regression (WSLR) as employed by the sigma-

point approach (see Section 4.2). By doing this we implicitly assume that the statistical

linearization of g(·) over the probabilistic spread (uncertainty) of the underlying parameter

(state) random variable w, is a good approximation, i.e., errors are relatively small and

normally distributed). This condition can be met if we make sure that the sigma-point set

is correctly constructed, i.e., that they capture needed prior statistics of w. Once met, the

resulting statistically linearized approximation of g(·) will be more robust (and valid) than

the first order analytically linearized (in a single point) approximation employed by the

EKF. The EKF linearization has a much stricter (and hence harder to satisfy) assumption

that the current estimate ŵ−
k , is close enough to the true value (realization) of w such that

the expansion is valid. Furthermore (as discussed in length in Sections 2.4 and 4.2) the

EKF linearization disregards the fact that the prior estimate of the parameters ŵ−
k is a

random variable with inherent uncertainty which will further influence the validity of the

7We assume the observation noise is zero mean.
8This reformulation is needed to allow for a tractable analysis.

152

first-order truncated Taylor series linearization.

In order to reformulate Equation 4.69 into a statistically linearized form, we write

down the WSLR approximation of the nonlinear observation function g(wk) using Equa-

tions 4.22:

g (wk) = Akwk + bk + εk

= Akwk + ẑ−k − Akŵ−
k + εk

= A
(
wk − ŵ−

k

)
+ ẑ−k + εk , (4.70)

where A and b is given by Equations 4.19 and 4.20. εk is the statistical linearization error

(as defined in Section 4.2.2) which is modeled as a zero mean Gaussian random variable

with covariance Pe, i.e., εk ∼ N (ε;0,Pe). This covariance matrix is identical to Pε in

Equation 4.21. ẑ−k is the observation prediction as calculated by the sigma-point approach

(see Equation 4.16. Substituting Equation 4.70 into 4.69 and reordering terms gives us

zk = A
(
wk − ŵ−

k

)
+ ẑ−k + εk + ek

= A
(
wk − ŵ−

k

)
+ ẑ−k + ẽk , (4.71)

where ẽk = εk + ek (the sum of the stochastic linearization error and the true observation

noise) is termed the “effective observation noise” which is modeled as zero-mean Gaussian

random variable with covariance

Rẽ = Pε + Re , (4.72)

i.e., ẽk ∼ N (ẽ;0,Rẽ). Here we make the common assumption that εk and ek are un-

correlated and independent, allowing the additive form of the effective covariance. This

alternative form of the observation model (Equation 4.71) allows us to rewrite the obser-

vation likelihood density function (Equation 4.68) as

p(zk|wk) =
1√

2πLz |Rẽ|
exp
[
−1

2
(
zk −A

(
wk − ŵ−

k

)− ẑ−k
)T R−1

ẽ

(
zk − A

(
wk − ŵ−

k

)− ẑ−k
)]

.

(4.73)

153

We can now rewrite the posterior log-likelihood function by substituting Equations 4.67

and 4.73 into Equation 4.66:

J(wk) =
1
2
[
zk − A

(
wk − ŵ−

k

)− ẑ−k
]T R−1

ẽ

[
zk − A

(
wk − ŵ−

k

)− ẑ−k
]
+

+
1
2
(
wk − ŵ−

k

)T (P−
wk

)−1 (wk − ŵ−
k

)
. (4.74)

The MAP estimate is now found by substituting Equation 4.74 back into Equation 4.65

and solving for the minimum value of wk. The differential condition

∂

∂wk
J
(
ŵMAP
k

)
= 0 , (4.75)

necessary for an extremum, is called the maximum posterior likelihood equation [12] or

score function [132] for wk. For the case at hand, it is calculated by setting the derivative

of Equation 4.74 (with respect to wk) equal to zero, i.e.,

(
P−

wk

)−1 (ŵMAP
k − ŵ−

k

)− ATR−1
ẽ

[
zk − A

(
ŵMAP
k − ŵ−

k

)− ẑ−k
]

= 0 . (4.76)

We now solve this equation for ŵMAP
k :

ATR−1
ẽ

[
zk − A

(
ŵMAP
k − ŵ−

k

)− ẑ−k
]

=
(
P−

wk

)−1 (ŵMAP
k − ŵ−

k

)[(
P−

wk

)−1 + ATR−1
ẽ A
] (

ŵMAP
k − ŵ−

k

)
= ATR−1

ẽ

(
zk − ẑ−k

)
ŵMAP
k − ŵ−

k =
[(

P−
wk

)−1 + ATR−1
ẽ A
]−1

ATR−1
ẽ

(
zk − ẑ−k

)
ŵMAP
k = ŵ−

k +
[(

P−
wk

)−1 + ATR−1
ẽ A
]−1

ATR−1
ẽ

(
zk − ẑ−k

)
(4.77)

which is the maximum a posteriori estimate of wk. Making the following substitution,

P̆ .=
[(

P−
wk

)−1 + ATR−1
ẽ A
]−1

, (4.78)

we can rewrite the MAP estimate of the parameter vector as

ŵMAP
k = ŵ−

k + P̆ATR−1
ẽ

(
zk − ẑ−k

)
. (4.79)

Using the definitions of A (Equation 4.19), Rẽ (Equation 4.72) and Pε (Equation 4.21,

154

we can rewrite the first part of the second term of Equation 4.79 as

P̆ATR−1
ẽ = P̆ATR−1

ẽ

(
AP−

wk
AT + Rẽ

) (
AP−

wk
AT + Rẽ

)−1

= P̆
(
ATR−1

ẽ AP−
wk

AT + ATR−1
ẽ Rẽ

) (
AP−

wk
AT + Rẽ

)−1

= P̆
(
ATR−1

ẽ AP−
wk

AT + AT
) (

AP−
wk

AT + Rẽ

)−1

= P̆
[
ATR−1

ẽ A +
(
P−

wk

)−1
]
P−

wk
AT
(
AP−

wk
AT + Rẽ

)−1

= P̆P̆−1P−
wk

AT
(
AP−

wk
AT + Rẽ

)−1

= P−
wk

AT
(
AP−

wk
AT + Rẽ

)−1

= P−
wk

[
PT

wkzk

(
P−

wk

)−1
]T (

AP−
wk

AT + Rẽ

)−1

= Pwkzk

(
AP−

wk
AT + Re + Pε

)−1

= Pwkzk

(
AP−

wk
AT + Re + P−

z − AP−
wk

AT
)−1

= Pwkzk

(
Re + P−

z

)−1
. (4.80)

Equation 4.80 is clearly recognizable as the SPKF calculated Kalman gain, i.e.

K = Pwkzk

(
Re + P−

z

)−1
. (4.81)

When this result is substituted back into Equation 4.79, we obtain

ŵMAP
k = ŵ−

k + K
(
zk − ẑ−k

)
, (4.82)

which is the standard SPKF measurement update of the state. This implies (and proves)

that the SPKF parameter estimation algorithm is equivalent to a maximum posterior likeli-

hood estimate of the underlying parameters under a Gaussian posterior (and noise distribu-

tion) assumption. Furthermore, through equivalence, the covariance of the MAP estimate

155

will be the same as that calculated by the SPKF9, i.e.,

Pwk
= P−

wk
− K

(
Re + P−

z

)
KT . (4.83)

Another important result we need to derive is the interpretation of the compound term

P̆ defined in Equation 4.78 and used In Equation 4.79. Using the matrix inversion lemma10

and the definitions of A (Equation 4.19), Rẽ (Equation 4.72) and Pe (Equation 4.21), we

can rewrite P̆ as

P̆ =
[(

P−
wk

)−1 + AT (Re + Pε)
−1 A

]−1

= P−
wk

− P−
wk

AT
(
Re + Pε + AP−

wk
AT
)−1

AP−
wk

= P−
wk

− P−
wk

AT
(
Re + P−

z − AP−
wk

AT + AP−
wk

AT
)−1

AP−
wk

= P−
wk

− P−
wk

AT
(
Re + P−

z

)−1 AP−
wk

= P−
wk

− P−
wk

[
PT

wkzk

(
P−

wk

)−1
]T (

Re + P−
z

)−1
[
PT

wkzk

(
P−

wk

)−1
]
P−

wk

= P−
wk

− Pwkzk

(
Re + P−

z

)−1 PT
wkzk

= P−
wk

− Pwkzk

(
Re + P−

z

)−1 (Re + P−
z

) (
Re + P−

z

)−1 PT
wkzk

= P−
wk

− K
(
Re + P−

z

)
KT , (4.84)

where we made the standard substitution for the Kalman gain in the last line, i.e. K =

Pwkzk
(Re + P−

z)−1. The right hand side of Equation 4.84 is clearly again the stan-

dard SPKF measurement update of the parameter (state) covariance (see Equations 3.146

and 3.157). This implies by definition that P̆ is the updated parameter (state) covariance,

i.e.,

P̆ = Pwk
= P−

wk
− K

(
Re + P−

z

)
KT . (4.85)

This equivalence for P̆ will be used in Section 4.5.2. Furthermore, substituting these

9This can also be derived (and proved) explicitly (in the same manner as for the state up-
date), by substituting Equation 4.77 into the definition of the MAP estimate covariance, PMAP

wk
=

E
[(

wk − ŵMAP
k

) (
wk − ŵMAP

k

)T]
,and carrying out a few pages more pages of algebraic manipulation

(with ample use of the matrix inversion lemma).
10Matrix inversion lemma [156]:

[
B−1 + CD−1CT

]−1
= B − BC

(
D + CT BC

)−1
CT B , where B is a

square symmetric positive-definite (and hence invertible) matrix.

156

results back into Equation 4.77 (and simplifying) will again result in the standard SPKF

parameter estimation measurement update of the state. This can be used as an alternative

method to prove the equivalence of the MAP estimate to the SPKF estimate.

4.5.2 The Gauss-Newton Method for Nonlinear Least Squares

The Gauss-Newton method [126, 161, 132, 133] is used to find the iterative solution to a

nonlinear least-squares problem of the form:

min
w

f(w; z) =
1
2
‖r(w; z)‖2 , (4.86)

where r : R
m → R

m is twice differentiable, ‖x‖ =
√

xTx is the usual norm on x ∈ R
m, z is

the observed (noisy) data and w is the vector of parameters. The Gauss-Newton method

(GNM) for solving this problem applies a modified Newton’s approach to the problem of

finding a root of the gradient function

s(w; z) = ∇wf(w; z) = r′(w; z)T r(w; z) , (4.87)

in order to solve

ŵ = argmin
w

f(w; z) . (4.88)

Modified Newton method iterations are given by

ŵi+1 = ŵi + C−1s(w; z)
∣∣
w=ŵi

, (4.89)

where C is some form of tractable approximation of the observed information matrix I(w)

evaluated at w = ŵi [132, 133]. When C is set to

C = I(w; z)

= −∂
2f(w; z)
∂w∂wT

, (4.90)

the true Hessian of the cost function evaluated at the maximum likelihood estimate of ŵML,

the modified Newton method is equivalent to the Newton-Rhapson method. However, when

C is set to the expected information matrix, also known as the Fisher information matrix,

157

i.e.,

C = I (w) (4.91)

= E [I(w; z)] (4.92)

= E

[
−∂

2f(w; z)
∂w∂wT

]
(4.93)

= E

[
−∂f(w; z)

∂w

(
∂f(w; z)
∂w

)T]
(4.94)

= E
[
s(w; z)s(w; z)T

]
(4.95)

(where the expectation is taken over all the data z, and I(w) is evaluated at w = ŵi),

the modified Newton method is known as Fisher-scoring. It is a well known fact that the

Fisher information matrix evaluated at the maximum likelihood estimate is equal to the

inverse of the Cramer-Rao lower bound of the estimate variance [104].

For IID data, we can apply the method of scoring (Fisher scoring [150, 50]) but instead

of using I(w), we can employ the empirical information matrix, Î(w; z), evaluated at the

current estimate w = ŵi. In a seminal paper by Meilijson [133], it is shown how (for IID

data) the empirical information matrix is given by

Î(w; z) =
1
N

N∑
k=1

s(w; zk)s(w; zk)T −
[

1
N

N∑
k=1

s(w; zk)

] [
1
N

N∑
k=1

s(w; zk)

]T
, (4.96)

where the sums are taken over all N of the observed data points, is an consistent estimator

of I(w). Meilijson then goes further showing how using the empirical information matrix

for Fisher scoring is equivalent to the Gauss-Newton method for solving the nonlinear

least-squares problem for IID data. For a complete (although lengthy) proof of this, see

[133].

The Gauss-Newton method uses the following form for the C matrix [12],

C = −r′(w; z)T r′(w; z) , (4.97)

resulting in the following iterative formula for solving the nonlinear least squares cost

158

function:

ŵi+1 = ŵi −
[
r′(w; z)T r′(w; z)

]−1
r′(w; z)T r(w; z)

∣∣∣
w=ŵi

. (4.98)

Note that the traditional Gauss-Newton method for solving the nonlinear least-squares

problem (as presented in Equation 4.98) is a batch algorithm. In other words, all of the ob-

served data is first collected (for k = 1 . . . N) and then used as a complete batch in the GN

iterations in order to iteratively find the best (maximum likelihood) estimate of w. An on-

line version of the Gauss-Newton method is also possible if the gradient, r′(w; z)T r(w; z),

and the inverse of the empirical information matrix,
(
r′(w; z)r′(w; z)T

)−1, can be built

up recursively as new observation data arrive online. We will now show how the SPKF

achieves this by making use of the results of Section 4.5.1.

4.5.3 The SPKF Parameter Estimation Measurement Update as an On-
line Gauss-Newton Method

First we define the cost-functional r(wk) as

r(wk)
.=

⎡⎣ Sẽ 0

0 S−
wk

⎤⎦⎡⎣ zk − A
(
wk − ŵ−

k

)− ẑ−k
wk − ŵ−

k

⎤⎦ , (4.99)

where Sẽ and S−
wk

are the normal matrix square-roots of R−1
ẽ and

(
P−

wk

)−1 respectively,

such that STẽ Sẽ = R−1
ẽ and

(
S−

wk

)T S−
wk

=
(
P−

wk

)−1. The variables zk, A, wk, ŵ−
k , ẑ−k ,

Rẽ and P−
wk

are used as defined in Section 4.5.1. Substituting this definition of r(wk) into

Equation 4.86 gives us the following nonlinear least-squares cost function,

f(wk) =
1
2
r(wk)T r(wk)

=
1
2

{[
zk − A

(
wk − ŵ−

k

)− ẑ−k
]T (Sẽ)

T +
(
wk − ŵ−

k

)T (S−
w

)T}×
×{Sẽ

[
zk − A

(
wk − ŵ−

k

)− ẑ−k
]
+ S−

w

(
wk − ŵ−

k

)}
=

1
2
[
zk − A

(
wk − ŵ−

k

)− ẑ−k
]T R−1

ẽ

[
zk − A

(
wk − ŵ−

k

)− ẑ−k
]
+

+
1
2
(
wk − ŵ−

k

)T (P−
wk

)−1 (wk − ŵ−
k

)
, (4.100)

159

which is identical to Equation 4.74, the MAP log-likelihood cost function. In other words,

the nonlinear least squares problem as defined above and the maximum posterior likelihood

problem of the previous section optimizes the same objective (cost) function.

Given the definition of r(wk) in Equation 4.99, we next calculate its gradient function

s(w; z) (using Equation 4.87) as

s(w; z) = r′(w; z)T r(w; z)

=

⎧⎨⎩
⎡⎣ Sẽ 0

0 S−
wk

⎤⎦⎡⎣ −A

1

⎤⎦⎫⎬⎭
T ⎡⎣ Sẽ 0

0 S−
wk

⎤⎦⎡⎣ zk − A
(
wk − ŵ−

k

)− ẑ−k
wk − ŵ−

k

⎤⎦
=

⎡⎣ −SẽA

S−
wk

⎤⎦T ⎡⎣ Sẽ 0

0 S−
wk

⎤⎦⎡⎣ zk − A
(
wk − ŵ−

k

)− ẑ−k
wk − ŵ−

k

⎤⎦
= −ATR−1

ẽ

[
zk − A

(
wk − ŵ−

k

)− ẑ−k
]
+
(
P−

wk

)−1 (wk − ŵ−
k

)
= ATR−1

ẽ A
(
wk − ŵ−

k

)
+
(
P−

wk

)−1 (wk − ŵ−
k

)− ATR−1
ẽ

(
zk − ẑ−k

)
=
[
ATR−1

ẽ A +
(
P−

wk

)−1
] (

wk − ŵ−
k

)− ATR−1
ẽ

(
zk − ẑ−k

)
, (4.101)

and the empirical information matrix as

r′(w; z)T r′(w; z) =

⎡⎣ −SẽA

S−
wk

⎤⎦T ⎡⎣ −SẽA

S−
wk

⎤⎦
= ATSTẽ SẽA +

(
S−

wk

)T (S−
wk

)
= ATR−1

ẽ A +
(
P−

wk

)−1
. (4.102)

Substituting Equations 4.101 and 4.102 back into Equation 4.98, and noting that ŵ−
k
.= ŵi

and ŵk
.= ŵi+1, we arrive at the following Gauss-Newton update:

ŵk = ŵ−
k −
[
ATR−1

ẽ A +
(
P−

wk

)−1
]−1 [

ATR−1
ẽ A +

(
P−

wk

)−1
] (

w − ŵ−
k

)
+

+
[
ATR−1

ẽ A +
(
P−

wk

)−1
]−1

ATR−1
ẽ

(
zk − ẑ−k

)∣∣∣∣
w=ŵi=ŵ−

k

= ŵ−
k +
[
ATR−1

ẽ A +
(
P−

wk

)−1
]−1

ATR−1
ẽ

(
zk − ẑ−k

)
, (4.103)

which is exactly the same as Equation 4.77, the MAP update. Since we already proved in

160

the previous section that the MAP update is equivalent to the SPKF measurement update

for parameter estimation, by implication the SPKF update is also equivalent to the Gauss-

Newton update.

By examining the exact form of the cost function gradient s(w; z) and the C matrix

(approximation to the empirical information matrix, i.e. C = r′(w; z)T r′(w; z)), we see

how these quantities are calculated recursively, forgoing the need to store all of the observed

data: As is clear from Equation 4.101, the gradient of the cost function is a function not

only of the previous estimate, ŵ−
k , but also of the prior estimate covariance, P−

wk
. Likewise,

the C matrix (Equation 4.102) is also a function of P−
wk

. Furthermore, by substituting the

definition of the “effective observation noise”, Rẽ = Pε +Re, back into Equation 4.102, we

can prove the following identity:

C = r′(w; z)T r′(w; z)

= ATR−1
ẽ A +

(
P−

wk

)−1

= AT (Pε + Re)
−1 A +

(
P−

wk

)−1 (4.104)

= P̆−1 (4.105)

= (Pwk
)−1 , (4.106)

where we made use of the definition P̆−1 (Equation 4.78) going from Equation 4.104

to 4.105, and the result of Equation 4.85 for the last step. In other words, the recursively

updated state estimate covariance matrix, Pwk
(as calculated by the SPKF parameter esti-

mation filter), is also the recursively (online) calculated inverse of the empirical information

matrix used by the Gauss-Newton equivalent optimization step. Since the posterior distri-

bution of the parameters p(wk|z1:k) (summarized by the sufficient statistics ŵk and Pwk
),

completely captures all of the information contained in all the observed data up to and

including time k, the SPKF does indeed implement an online/recursive Gauss-Newton

method for parameter estimation.

161

4.5.4 Discussion and Experimental Demonstration

It is a well known and published fact in the literature that the EKF also approximates an

online modified Newton’s method for parameter estimation [12, 13, 124, 143, 125, 15, 123].

One of the questions that remains to be answered regarding the use of the SPKF for

parameter estimation is the following: What is the significant difference between the implicit

Gauss-Newton nature of the SPKF when compared to the implicit Gauss-Newton nature of

the EKF? We will attempt to answer this question next:

As we showed in the previous section, the SPKF (for parameter estimation) can be in-

terpreted as an online Gauss-Newton method for solving the nonlinear least-squares prob-

lem with a cost function defined by Equation 4.100. Two important terms used in this

cost function is the “Jacobian-like” matrix, A, and the “effective observation noise” covari-

ance, Rẽ. As we showed in Section 4.2.2, the sigma-point approach used in the SPKF

implicitly calculates the A matrix though the process of statistical regression (stochastic

linearization) and that it can be interpreted as a statistically averaged Jacobian of the

nonlinear observation function. In effect, an expected Jacobian is calculated with regard

to the prior distribution of the state (in this case parameter) random variable. In Sec-

tion 4.5.1 (Equations 4.71 and 4.72) we showed how the “effective observation noise” term

is a combination of the true observation noise and the implicit approximation error made

by the sigma-point approach. Likewise, the “effective observation noise” covariance is the

sum of the true noise covariance and the variance of the approximation error.

Through the analysis in Section 4.5.3, we showed how the A and Rẽ matrices are

used by the SPKF’s implicit Gauss-Newton optimization step. To summarize: The SPKF

recursively builds up the inverse of the curvature-metric term (empirical information matrix

approximation of the C matrix) through the Kalman measurement update of the state

estimate covariance. Equation 4.102 shows how this term is implicitly updated by the

weighted outer product of the WSLR calculated A matrix, where the weighting factor is

given by the inverse of the effective observation noise covariance, R−1
ẽ . These two terms

are also used in the calculation of the gradient term (Equation 4.101).

Carrying out a similar analysis of the EKF (as done above for the SPKF), we find that

162

it minimizes the following nonlinear least-squares cost function

f(wk) =
1
2
[
zk − G

(
wk − ŵ−

k

)− g(ŵ−
k)
]T R−1

e

[
zk − G

(
wk − ŵ−

k

)− g(ŵ−
k)
]
+

+
1
2
(
wk − ŵ−

k

)T (P−
wk

)−1 (wk − ŵ−
k

)
, (4.107)

resulting in a recursive Gauss-Newton equivalent update of the following form [12]:

ŵk = ŵ−
k +
[
GTR−1

e G +
(
P−

wk

)−1
]−1

GTR−1
e

(
zk − g(ŵ−

k)
)
, (4.108)

where G is the true Jacobian (first partial derivatives matrix) of the nonlinear observation

function evaluated at the prior parameter estimate, i.e.,

G =
∂g(w)
∂w

∣∣∣∣
w=ŵ−

k

, (4.109)

R−1
e is the true observation noise covariance, and g(ŵ−

k) is simply the nonlinear observation

function evaluated at the prior parameter estimate. Given Equation 4.108 we can now

compare and contrast the differences between the SPKF’s implicit online Gauss-Newton

method and that employed by the EKF, by focusing on the following three components:

1. Jacobian term (A vs. G): The EKF uses the standard Jacobian G, evaluated in a

single point (the prior estimate), when calculating the relevant terms of the Gauss-

Newton iteration. The SPKF on the other hand uses the WSLR approximated

expected Jacobian that more accurately (on average) reflects the gradient of the

nonlinear observation function as evaluated over the prior spread (distribution) of

the parameter random variable. As pointed out in Section 4.2.2 this is a much

more robust linearization method than simply using the truncated first order Taylor

series (as in the EKF). In Figure 4.2 we show the result of a parameter estimation

experiment11 that illustrates how the EKF, by relying on the local gradient and

not the expected (average) gradient (as used by the SPKF), cause it to get stuck in

local minima. The expected Jacobian, used by the SPKF, causes the optimization

11Even though this experiment might seem a bit contrived, it does illustrate the relevant issues quite
well.

163

process to respond more to the relevant average slope of the error surface, whereas

the normal Jacobian by definition only looks at the slope at the prior estimate. By

implication, if the local12 slope of the error surface behaves significantly differently

than the average slope of the error surface over the uncertainty region of the prior

estimate, the resulting optimization step (direction and size) will be quite different

for the EKF vs. the SPKF. The results of the experiment shown in Figure 4.2 clearly

imply that the SPKF will tend to be more robust with regard to getting stuck in

local minima. Another experimental verification of this claim is evident in the results

of the inverted double pendulum parameter estimation experiment of Figure 3.11.

2. Weighting term (R−1
ẽ vs. R−1

e): Using the expected gradient is, however, only half

of the story. Since the SPKF implicitly calculates the expected Jacobian by drawing

sigma-points from the prior distribution of the parameter estimate, it is very impor-

tant that this distribution stays consistent and not collapse (become overly peaked)

prematurely (before a globally good solution has been found). The EKF is notori-

ously bad in this regard and one often finds the filter diverging due to covariance

collapse. As pointed out in Figure 4.2, this collapse (for the EKF) is in part due

to the failure to compensate for the variance loss caused by the linearization error

when propagating the prior covariance through the nonlinear observation function.

Looking at Equations 4.103 and 4.104 through 4.106, we see that the SPKF com-

pensates for this by effectively “adding back” the variance of the linearization error

through the use of the “effective observation” noise covariance as the Gauss-Newton

weighting term, i.e.

Rẽ = Pε + Re ,

where Pε, the WSLR (linearization) error covariance is given by Equation 4.21. As

the SPKF estimates converge to the true solution, the resulting posterior covariance

should also become more peaked (depending on the variance of the true observation

12By local we imply within an epsilon neighborhood around the prior estimate, i.e.
∀wk such that limε→0

∥∥ŵ−
k − wk

∥∥ ≤ ε. For the EKF linearization to be well behaved the prior RV must be
peaked up with most if its probability mass lying within this region. If this assumption is violated (which
is often the case) and the nonlinearity is quite severe, the point wise Jacobian will be a bad approximation
of the average slope.

164

-10 -8 -6 -4 -2 0 2 4 6

w

z

EKF : k = 1

-10 -8 -6 -4 -2 0 2 4 6

w

z

SPKF : k = 1

-10 -8 -6 -4 -2 0 2 4 6

w

z

EKF : k = 2

-10 -8 -6 -4 -2 0 2 4 6

w

z

SPKF : k = 2

-10 -8 -6 -4 -2 0 2 4 6

w

z

EKF : k = 3

-10 -8 -6 -4 -2 0 2 4 6

w

z

SPKF : k = 3

-10 -8 -6 -4 -2 0 2 4 6

w

z

EKF : k = 4

-10 -8 -6 -4 -2 0 2 4 6

w

z

SPKF : k = 4

-10 -8 -6 -4 -2 0 2 4 6

w

z

EKF : k = 5

-10 -8 -6 -4 -2 0 2 4 6

w

z

SPKF : k = 5

-10 -8 -6 -4 -2 0 2 4 6

w

z

EKF : k = 6

-10 -8 -6 -4 -2 0 2 4 6

w

z

SPKF : k = 6

Figure 4.2: Optimization issues - local vs. average (expected) gradient of cost function: The results
of a comparative (EKF vs. SPKF) parameter estimation experiment is presented here. Both filters
were used to estimate the true value (blue dot) of an arbitrary parameter that was observed through
a nonlinear observation function (curve shown in black). Globally (large scale) the nonlinear function
has quadratic nature with a distinct minimum at the true value of the hidden parameter (wtrue = 0).
The small scale nature of the nonlinearity does however have numerous local minima as is evident from
the plots. The plots on the left side show (from top to bottom) the first 6 iterations (k = 1 . . . 6) for
the EKF and those on the right show the same steps for the SPKF. The shape (mean and covariance)
of the posterior density function of the state (parameter) estimate is indicated in red for both filters.
Both filters were initialized with identical wide prior Gaussian distributions. The EKF clearly is much
more sensitive to the local (point wise) gradient of the nonlinearity. The first step of the EKF actually
moves the estimate away from the true value of w since the local gradient has the opposite sign of the
“average” gradient as measured over the region of w where the estimate’s distribution has significant
probability mass. The distribution of the EKFs estimate also gets peaked up very rapidly, causing the
algorithm to focus its “search” in a small area of the parameter space which is still far away from
the optimal solution. The reason why the distribution gets so peaked early on is due (in part) to the
fact that the EKF does not compensate for linearization error when propagating the prior covariance
through the linearized observation function. The SPKF on the other hand, not only uses the expected
(averaged) slope causing it to be less sensitive to the local gradient and more to the average global (over
prior distribution of the estimate) slope, it also compensates for linearization error by using the effective
observation noise covariance (Rẽ = Pε + Re) that incorporates the variance of the linearization error.
This keeps the covariance of the estimate to stay consistent, allowing for a more robust exploration of
the parameter space. Both of these issues tend to help the SPKF to be more robust with regard to
getting stuck in local minima, which the EKF clearly has fallen victim to in this experiment.

165

noise, Re). If the nonlinearity of the observation function becomes less severe (more

linear) over the range of this “shrinking” covariance (of the parameter estimate), the

variance of the linearization error, Pε, will also decrease. This will cause the effective

observation noise covariance to approach the true observation noise covariance in

the limit as the filter converges to a solution. One can thus think of the “effective

observation noise” as an adaptive noise term that helps to regularize the SPKF

especially in the early stages of the optimization process when the prior covariance of

the parameter estimates still dominates the noisy observations and the filter estimate

is far from the optimal solution. It is in these early stages that the EKF often behaves

badly, especially if the filter was badly initialized. A typical ad-hoc method that is

used to make the EKF more robust in these circumstances is to artificially add some

“tuning noise” to the covariance estimate in order to enforce consistency. Although

this might improve the robustness of the EKF, it usually results in a decrease in

estimate accuracy.

3. Predicted observation term (ẑ−k vs. g(ŵ−
k)): The last (and most obvious) differ-

ence between the EKF and SPKF algorithms is the manner in which the expected

prediction of the nonlinear observation is calculated. As we already pointed out in

Section 4.3.1, the SPKF achieves third order accuracy for the propagation of the

mean of the prior Gaussian RV, through the use of the sigma-point approach, i.e.,

E [g (wk)] ≈ ẑ−k =
2L∑
i=0

wig (X i) ,

where the sigma-point set, {wi;X i; i = 1 . . . 2L} is calculated from the prior covari-

ance of the parameter estimate, P−
wk

. In contrast, the EKF only achieves first order

accuracy through the first order truncation of the Taylor-series expansion of the

nonlinear function of the prior RV, i.e.

E [g (wk)] ≈ g
(
ŵ−
k

)
.

There is one caveat here that was hinted to in Section 3.5.2. If we are dealing with

166

a pure noise-less optimization problem where the prediction error can be driven to

zero, the SPKF might converge to an estimate that might have a slightly higher error

than the EKF. This is due to the fact that estimate covariance will only converge

to a Dirac-delta function in the limit (i.e. collapse) and only if the process noise is

annealed to zero (see Section 3.5.2). While the parameter estimate covariance still

has a finite “spread” the SPKF will calculate the expected (averaged) best parameter

estimate over this distribution, which might not lie “right in the bottom of the bowl”

of the error surface. Under these circumstances, one might employ an equivalent

method (once the estimate is close to the solution) to the EKF for calculating the

prediction of the observation. This was referred to as Option 2 in Section 3.5.2.

4.6 Summary of SPKF properties

Based in part on the analysis presented in this chapter, we now summarize the most salient

properties of the SPKF:

• SPKF implicitly performs a statistical linearization of the nonlinear state transition

(process) and state observation functions. Linearization error is compensated for by

effectively including variance of error in calculation of posterior covariances.

• Mean and covariance of state estimate is calculated accurately to at least the second

order (third order for true Gaussian priors) as opposed to the limited first order

accuracy of the EKF.

• Equivalent computational complexity as EKF: O(L3) in general, but a O(L2) imple-

mentation is possible for parameter estimation.

• Computationally efficient and numerically robust implementations available through

use of square-root forms.

• In contrast to EKF, no analytical derivatives (Jacobians or Hessians) need to be

calculated: The utility of this is especially valuable in situations where the system

at hand is a “black box” model for which the internal dynamic equations are unavail-

able. In order to apply an EKF to such systems, derivatives must be found either

167

from a principled analytic re-derivation of the system, or through costly and often

inaccurate numerical methods (e.g., by perturbation). On the other hand, the SPKF

relies on only functional evaluations (inputs and outputs) through the use deter-

ministically drawn samples from the prior distribution of the state random variable.

From a coding perspective, this also allows for a much more general and modular

implementation.

• SPKF for parameter estimation is a new efficient online 2nd order optimization

method. The SPKF (for parameter estimation) can be interpreted as an online

recursive Gauss-Newton method utilizing an adaptive “effective observation noise”

term and a prior parameter distribution averaged (expected) Jacobian of the er-

ror surface, to iteratively build up an approximation of the inverse of the empirical

Fisher information matrix. This Hessian-like matrix serves as a curvature-metric to

determine the (locally) optimal step size for a Fisher-scoring step in the parameter

space. Based in part on these qualities, the SPKF seems to have better robustness

properties, i.e., less likely to get stuck in non-optimal local minima.

• The SPKF consistently outperforms (or at least equals in some circumstances) the

EKF for state, parameter and dual estimation. The SPKF generates estimates which

are more accurate (lower estimation error) and estimates of the error covariance which

tend to be more consistent, resulting in increased filter robustness and decreased

likelihood of filter divergence.

4.7 Chapter Summary

In this chapter we analyzed certain theoretical characteristics of the sigma-point approach

and the resulting sigma-point Kalman filter. We first presented an alternative interpre-

tation of the sigma-point approach based on a technique called weighted statistical linear

regression (statistical linearization), which allows for useful insight into why the SPKF

performs better and more robustly than the EKF for Gaussian approximate nonlinear

estimation.

In an analysis of the accuracy of the sigma-point approach, we showed how it attains at

168

least second order accuracy in calculation of the posterior statistics of a Gaussian random

variable that undergoes an arbitrary nonlinear transformation. This was contrasted to the

limited 1st order accuracy of the EKF which is achieved at the same computational cost

as the SPKF.

A relationship was drawn between the sigma-point approach and the numerical inte-

gration technique called Gauss-Hermite quadrature. We showed how (at least for a limited

scalar case) the SPKF is equivalent to a related algorithm called the Gauss-Hermite fil-

ter. The Gauss-Hermite filter, although theoretically superior to the SPKF with regard

to accuracy of the posterior statistics calculation, was shown to be implementationally

impractical for general estimation problems with more than a few system states.

One of the main contributions of this thesis was presented in this chapter, namely the

analysis of the relationship between the SPKF for parameter estimation and other 2nd

order optimization methods within the modified-Newton method family. We showed how

the SPKF minimizes a MAP cost function (under a Gaussian assumption), which in turn

can be interpreted as a novel adaptation of the Gauss-Newton optimization method.

The chapter was ended by summarizing the most salient features of the SPKF that has

been revealed and demonstrated through the analysis in this chapter and the experimental

verification of the previous chapter.

Chapter 5

SPKF Based UAV Autonomy

5.1 Introduction

Two large ongoing research projects within our group are the DARPA sponsored “Model-

Relative Control of Autonomous Vehicles” [38, 105] and ONR sponsored “Sigma-Point

Kalman Filter Based Sensor Integration, Estimation and System Identification for En-

hanced UAV Situational Awareness & Control” [149, 203] projects. Both these overlapping

research efforts focus on the autonomous control of an unmanned aerial vehicle (UAV),

specifically, an autonomous small-scale helicopter as shown in Figures 5.2 and 5.3.

The core component of such a UAV is a high-performance digital computer based

guidance, navigation & control (GNC) system as schematically depicted in Figure 5.1.

The main subsystems of the GNC system is a control system (CS) and a guidance &

navigation system (GNS). The GNS takes noisy avionics sensor measurements as input, and

then fuses1 them in a probabilistic sense with predictions from a vehicle dynamics model

in order to calculate optimal vehicle navigation state solutions. These state estimates

together with desired flight trajectories are then fed to the control system that computes

some form of optimal control law to drive the flight surface actuators of the vehicle.

The current state-of-the-art probabilistic inference system used for such UAV guidance

and navigation systems are usually EKF based [56, 58, 42]. Our experimental platform

(see Section 5.2) which was developed by MIT [52], is indeed built around a EKF based

GNS implementation. This EKF based estimator was adapted and “hand tuned” over a

1The term “fuse” refers to the (Kalman) optimal combination of the prior state estimate with the new
information contained in the sensor measurement. This is achieved through the Kalman measurement-
update step.

169

170

ku

ky

SPKF based

estimator

noisy sensor

measurements

control
Mission plan

(way points)

Model based

adaptive control

system

GNC System

UAV

ˆ
kx

model parameter

estimates

state

estimates
ˆ

kw

Figure 5.1: Schematic diagram unmanned aerial vehicle (UAV) guidance, navigation and control
(GNC) system.

considerable amount of time in order to deliver high quality estimates for the specific UAV

platform at hand. This system has been tested, debugged and verified extensively not only

in simulation2, but also through numerous real test-flights [60, 61].

As a real-world experimental verification of our research on the SPKF (as reported in

the previous chapters of this thesis), we replaced the EKF in the UAV-GNC system by a

SPKF and compared its performance to the existing EKF base-line system, with specific

focus on:

• Improved six-degrees-of-freedom (6DOF) state estimation accuracy (relative to EKF).

• SPKF based compensation for GPS latency.

• Evaluation of improved control envelope due to use of better state estimator.

• SPKF based parameter estimation: Track certain UAV model parameters such as

mass, moments of inertia, etc.

• SPKF based dual estimation: Simultaneously estimate 6DOF state, as well as sec-

ondary set of hidden dynamic model states (blade flapping angles, etc.) and attempt

2This includes “software only” as well as “hardware-in-the-loop” simulations. See Section 5.2 for more
details on the different simulators.

171

to track a subset of vehicle model parameters (mass, etc.)

This brought together numerous theoretical and algorithmic aspects and served as a proof

of concept for integrating the different separately developed SPKF technologies into a

serious, real-world application. In this chapter we will cover the work related to this effort

and report on our experimental findings.

5.2 Experimental Platform

In this section we briefly summarize the different component parts of the UAV platform.

These include the vehicle airframe, the avionics subsystem, the mathematical dynamic

state-space models used for simulator, controller and estimator design as well as the sim-

ulators themselves. For a complete in-depth exposition of the design, implementation,

verification and testing of the complete UAV platform, please see [58].

Since the goals of the two above mentioned projects (DARPA & ONR) are research

related to UAV autonomy (control and estimation) and not flight hardware development,

we opted to subcontract out the manufacture of the experimental platform to the Aerial

Robotics group at MIT’s Laboratory for Information and Decision Systems [52]. The

group at MIT (who was part of the multi-institute, multi-PI DARPA project [38]) al-

ready had a fully developed, debugged and operational UAV experimental platform built

around the X-Cell 90 radio controlled (R/C) helicopter [136]. This helicopter is outfit-

ted with a state-of-the art avionics subsystem comprising a PC-104 based flight computer

augmented by a high-grade IMU, GPS, digital magnetic compass and digital barometric

altimeter. More detail on the avionics system is provided in Section 5.2.2. A large part

of the MIT research effort was aimed at the development of a state-of-the-art high-fidelity

nonlinear mathematical model for small helicopter dynamics. This model was provided as

part of the sub-contracted deliverables such that we could readily leverage it in our own

research. Section 5.2.3 provides further detail about this and other vehicle models used in

our research.

The final component of the experimental platform is a high-fidelity simulation environ-

ment build around the previously mentioned high-fidelity helicopter model. The simulation

172

Figure 5.2: Close-up of instrumented X-Cell-90 helicopter in flight. The silver box between the
helicopter’s landing gear is the avionics box containing the flight computer, communication equipment,
GPS, IMU and barometric altimeter. [photo courtesy of Vlad Gavrilets [58]].

environment consisted out of four separate simulators, operating at different levels of ab-

straction and fidelity. These are discussed in Section 5.2.5. We made extensive use of these

simulation environments for the results reported in this chapter.

5.2.1 Vehicle Airframe

As mentioned above, an X-Cell 90 radio controlled hobby helicopter was chosen as the

airframe around which the rest of our UAV experimental platform was built. The helicopter

weighs about 10 lbs (empty) and carries a 7 lbs avionics payload and 1lbs of fuel. With

a full fuel load, the helicopter can stay in the air for approximately 9-10 minutes. The

X-Cell 90 has a hingeless main rotor that is equipped with a Bell-Hiller stabilizer bar [24],

which provides lagged rate feedback and augments the servo torque with an aerodynamic

moment used to change the cyclic pitch of the blades. The helicopter is powered by a single

piston internal combustion engine running on a mixture of alcohol and oil. The helicopter

173

Figure 5.3: Instrumented X-Cell-90 helicopter in flight.

is equipped with an electronic governor that provides closed-loop engine speed control

outside of the main (software controlled) vehicle control loop. The electronic governor, a

Futaba-GV1, is a COTS3 device that measures the engine speed with a magnetic sensor and

adjusts the engine throttle setting in order to maintain an operator commanded average

setpoint (typically around 1600 rpm). This is a self-contained closed loop control system

that is not accessible to the flight computer. The rotor speed (which is proportional to

the engine speed via the gearbox ratio), although needed for precise and robust control

of aggressive aerial maneuvers, is thus not accessible to the flight computer and must be

estimated by the estimation system.

Figures 5.3 and 5.2 shows the helicopter in flight carrying the avionics box mounted

on a custom suspension system, used to attenuate certain unwanted vibration inputs.

High vibration levels significantly degrade performance of inertial sensors (IMU) leading

to high drift rates, and can also increase the likelihood of electronic component failures

such as broken solder joints and loose connectors. There are several sources of vibration

in a helicopter such as the main rotor, the tail rotor and the engine, all of which can

3common off-the-shelf

174

excite lightly damped structural modes, e.g. the first bending mode of the tail boom.

The MIT group has experimentally determined the primary vibration source as the once-

per-revolution component coming from the main rotor with a nominal frequency of about

27 Hz [58]. The suspension system, consisting of four neoprene isolators, was designed to

attenuate this specific frequency while still being stiff enough not to couple with the modes

of interest needed for vehicle state estimation and control.

5.2.2 Avionics System

Autonomous aerobatics calls for a high-bandwidth control system, which in turn necessi-

tates fast servo-mechanisms, low latencies in the flight computer and fast sensor responses.

The actuators used (Futaba digital servos) were chosen to meet these strict load and band-

width demands. See [58] for full detail on the servo design analysis. The sensor suite used

on the X-Cell 90 platform consists of an IMU, a GPS receiver and a barometric altimeter.

These will now be discussed in more detail:

The core of the avionics sensor suite is an inertial measurement unit (IMU) from In-

ertial Sciences (ISIS-IMU) [85], that provides measurements of the vehicle’s 3D linear

accelerations (in body frame), i.e.

a =
[
ax ay az

]T
, (5.1)

as well as the vehicle’s rotational rates in the body frame, i.e.,

ω =
[
p q r

]T
, (5.2)

where p is the roll rate, q is the pitch rate and r is the yaw rate. All rates are measured

in radians per second. (See Figures B.1 and B.2 in Appendix B for an illustration of

the different frames of reference used in this and subsequent discussions.) The ISIS-IMU

makes these measurements using three MEMS linear accelerometers and three temperature

stabilized MEMS gyroscopes. The range of the gyroscopes was set to ±300 deg/sec, and the

range of the accelerometers to ±5 g’s, where 1 g is the normal gravity induced acceleration

directed at the center of the earth, i.e., 9.81 m/s2. The helicopter with a full payload is

175

capable of achieving roll rates of up to 200 deg/sec, and yaw rates in excess of 1000 deg/sec.

Higher full scale settings for the gyros lead to higher drift rates, and to avoid the latter,

the yaw rate command was software limited to avoid sensor saturation and possible control

instability. The IMU has internal power regulation, temperature compensation, a serial

output update rate of 100Hz and internal first order analog anti-aliasing filters. The drift

rates of the gyroscopes (which must be compensated for using the estimator subsystem)

are in the order of 0.02 deg/sec, and for the accelerometers 0.02 g over the typical duration

of a flight.

For direct absolute altitude measurements, z = zalt, a digital barometric altimeter from

Honeywell, the HPA200 [81], is used. This altimeter provides 0.6 meter resolution (0.001

psi) and has excellent stability. Due to the short flight durations, ambient pressure changes

are negligible and hence ignored. The altimeter has internal power regulation, temperature

compensation and a serial output which is sampled at 5 Hz. The altimeter and its pressure

port are housed inside the avionics box in order to shield the measurements from pressure

changes in the main rotor wake and from dynamic pressure changes induced by the vehicle

motion and wind. This results in reliable altitude measurements once the helicopter is

outside the ground effect zone (about 2 rotor diameters or 3 meters above the ground).

A high quality Global Positioning System (GPS) receiver, the G12 from Ashtech [130],

is used to provide 3D measurements of vehicle position and velocity in the ECEF (Earth-

centered Earth-fixed) reference frame4 , i.e.,

pgps =
[
x y z

]T
ECEF

, (5.3)

and

vgps =
[
ẋ ẏ ż

]T
ECEF

=
[
vx vy vz

]T
ECEF

. (5.4)

This GPS receiver has a 10 Hz update rate and a 50 ms latency. The latency implies that

the measurements coming from the GPS relates to the vehicle state as it was 50 ms in the

past. MIT’s group deemed this latency to be short enough to have no discernible impact on

4See Appendix B for a definition of the different navigational reference frames.

176

their state estimators accuracy [59]. This combined with the fact that EKF based latency-

compensation techniques are hard to implement and often result in no real improvement

(if not degradation) in estimation accuracy, led them to ignore it completely and not

compensate for it in their state estimator. Since a SPKF based latency-compensation

technique is not only elegantly accommodated within the SPKF theoretical framework,

but also implemented with relative ease, we decided to include latency compensation in

our state estimator. Detail of this is provided in Section 5.3.

Other avionics devices include a flight control computer (TP400 from DSP design

equipped with a Pentium MMX 300 Mhz compatible CPU, RAM, non-volatile FLASH

memory and I/O subsystems), a wireless LAN transceiver for data and telemetry up- and

downlinking from the base-station, a remote control radio receiver for pilot commands,

and a custom-designed servo board for sampling pilot commands and driving the servo-

mechanisms at 50Hz. The flight control processor runs the QNX 4.25 real-time operating

systems (RTOS) [107] and all system software is implemented in the C programming

language.

5.2.3 Nonlinear Vehicle Models

Accurate computational models of the helicopter dynamics and avionics sensors are needed

to build accurate, high-fidelity simulators as well as high-performance control and estima-

tion systems. Unfortunately, there is always a compromise between the fidelity of any given

model and the computational resources needed to simulate it. Systems that by design are

allowed to run off-line or at sub-real-time speeds, such as simulators, or systems that can

run on high performance ground-based (e.g. in the ground station computer) assets, can

make use of very high-fidelity models that demand significant computational resources.

On the other hand, algorithms that have to run on-board the UAV’s flight computer and

meet stringent timing, CPU load and power requirements, often have to resort to using

less complex (lower fidelity) approximate models. Since our main control loop in the flight

computer runs at half the IMU rate (50 Hz), all of our processing (control step, estima-

tor step, actuator command step) has to be completed within a single 20ms computation

window. This places strict limitations on the complexity of the process model used inside

177

our estimation algorithm. For this reason we made use of two vehicle dynamic models in

our research: For the simulator (used to test our algorithms), we used the full complexity

high-fidelity nonlinear model developed by MIT (based on an original design by Draper

Laboratories), which we call the MIT-Draper-XCell-90 model. For the online, on-board

computations inside our SPKF based state estimator we used a reduced kinematic model

driven directly by the high quality IMU inputs. We will now discuss these two different

models in more detail. (Note: Please consult Appendix B for definitions of the different

navigational reference frames used in the discussion of the helicopter models).

MIT-Draper-XCell-90 Model

The MIT-Draper-XCell-90 model is a high-fidelity quaternion based nonlinear model of

small helicopter dynamics utilizing 43 states

x =
[
pT vT eT ωT βT ΩT ωT

box ω̇T
box sT1 sT2 sT3 sT4

]T
, (5.5)

where p = [x y z]T is the position vector in the NED reference frame, v = [u v w]T

is the velocity vector in the body-frame, e = [e0 e1 e2 e3]T is the attitude quater-

nion vector, ω = [p q r]T is the rotational rate vector, β = [βlat βlon] is the

flapping angle vector, Ω = [Ωmr ΩmrI]T is the main rotor rotation rate vector, ωbox =

[pbox qbox rbox]T is the rotational rate vector of the suspended avionics box, ω̇box =

[ṗbox q̇box ṙbox]T is the rotational acceleration vector of the suspended avionics box and

si = [si,0 si,1 si,2 si,3 si,4]T are the actuator state vectors for the four main vehicle

servos (i = 1, . . . , 4). All of the state vector components are summarized in Table 5.1. The

model is further parameterized by the following 70 dimensional parameter vector,

w = [m Ixx Iyy Izz · · · Qme]T , (5.6)

where the components are described in Table 5.2. The control input vector to the vehicle

dynamic model

uk =
[
ulon ulat ucol utcol

]T
k
, (5.7)

178

Table 5.1: MIT-Draper-XCell-90 model state vector components

Variable Description Variable Description
x position in NED frame

(north)
p roll rate of vehicle

y position in NED frame (east) q pitch rate of vehicle
z position in NED frame (down) r yaw rate of vehicle
u velocity in body frame

(longitudinal)
pbox roll rate of suspended avionics

box
v velocity in body frame (lateral) qbox pitch rate of suspended

avionics box
w velocity in body frame (vertical) rbox yaw rate of suspended

avionics box
e0 attitude quaternion (1st

component)
ṗbox roll acceleration of suspended

avionics box
e1 attitude quaternion (2nd

component)
q̇box pitch acceleration of

suspended avionics box
e2 attitude quaternion (3rd

component)
ṙbox yaw acceleration of suspended

avionics box
e3 attitude quaternion (4th

component)
Ωmr main rotor rotational rate

βlon longitudinal flapping angle ΩmrI integral of main rotor
rotational rate

βlat lateral flapping angle

corresponds to rotor blade pitch angles, i.e., main rotor longitudinal, lateral and collec-

tive inputs and tail rotor collective input. The model accurately accounts for rotor forces,

torque, thrust, flapping dynamics, horizontal stabilizer, and vertical tail forces and mo-

ments, fuselage drag, and actuator states. This model has been found to be accurate as a

basis for control design through pilot observations and flight-testing [58].

Without going into the exact detail5, the MIT-Draper-XCell-90 helicopter model can be

described as a generic six-degree-of-freedom (6DOF) rigid body model with external forces

and moments originating from the main and tail rotors, vertical and horizontal fins and

fuselage drag [61]. All actuator responses are modeled by 5th order ARMAX models. The

continuous time partial differential equations of the model is discretized using a fourth

5For a fully detailed derivation of the MIT-Draper-XCell-90 model, please consult [58].

179

Table 5.2: MIT-Draper-XCell-90 model parameters

Parameter Description Parameter Description
m helicopter mass r̃mrhub, r̃

tr
hub location of main and tail rotor

hubs in body frame
Ixx, Iyy, Izz moments of inertia around

rolling, pitching and yawing
axes

r̃hρc
, r̃vρc

location of center of pressure
for horizontal and vertical fins
in body frame

Ixz roll-yaw cross moment of iner-
tia

r̃gps location of GPS antenna in
body frame

Ωnom
mr nominal main rotor (m.r.)

RPM
r̃imu location of IMU c.g. in body

frame
Kβ main rotor hub torsional stiff-

ness
r̃lbg location of left-back landing

gear in body frame
Kµ scaling factor of flap response

to speed variation
r̃rfg location of right-front landing

gear in body frame
γfb fly-bar lock number r̃fuscp fuselage moment offset

Klon,Klat longitudinal and lateral cyclic
to flap gain

r̃cg body axis coordinates of center
of gravity (c.g.)

r̃mr main rotor radius r̃tr tail rotor radius
c̃mr main rotor cord c̃tr tail rotor cord
Cmrla main rotor lift curve slope Ctrla tail rotor lift curve slope
Cmrdo main rotor profile drag coeffi-

cient
Ctrdo tail rotor profile drag coeffi-

cient
CmrTmax

main rotor maximum thrust
coefficient

φ̃tro tail rotor pitch offset

Imrb main rotor blade inertia αtrg tail rotor gear ratio
Ãvf vertical fin area Ãhf horizontal fin area
Cvfla vertical fin Chfla horizontal fin
F vft vertical fin blockage factor ÃfusV fuselage vertical area
ÃfusF fuselage frontal area ÃfusS fuselage side area
f boxφ suspension box pitch fre-

quency
f boxψ suspension box yaw frequency

f boxθ suspension box roll frequency ζbox suspension damping ratio
Pmax maximum engine power Pidle engine idle power
Kp
gov governor gain - proportional

component
Ki
gov governor gain - integral com-

ponent
vwind wind speed in inertial frame Qme mean engine torque
ψwind wind direction in inertial frame

180

order Runge-Kutta integration scheme with a 10ms integration step-size to generate a

high-fidelity nonlinear discrete time model of the form

xk+1 = f (xk,uk;w) , (5.8)

with the states, control inputs and parameters as defined above. In order to simulate this

model, all of the above mentioned forces and moments need to be calculated as functions

of the current state of the vehicle, the model parameters and certain external disturbances.

These are computationally intensive calculations, some of which depend on iterating non-

closed-form solutions. See [22, 58] for more detail on how this is accomplished. As stated

earlier, this high-fidelity model forms the core of all of our simulation environments, but is

too computationally complex to use onboard as the process model required by our SPKF

based estimator. For this this purpose , we make use of a IMU driven kinematic model of

3 dimensional holonomic movement. This model will now be introduced:

Kinematic Model

In order to derive a simpler 6DOF helicopter process model for use inside the state es-

timator, we need to resort to a kinematic model of three dimensional (3D) movement

(translation and rotation). The main benefit of a kinematic model is that it is for the most

part vehicle agnostic, in that it does not need to explicitly model the forces and moments

that act upon the vehicle. It rather uses the outputs of an IMU (linear accelerations and

rotational velocities) to directly drive the 6DOF kinematic differential equations. The

IMU can be thought of as summarizing (through measurement and not modeling) all of

the forces and moments acting upon the vehicle. For this reason kinematic models can

easily be adapted for different vehicles. The only vehicle related parameters used by the

model is the location (relative to the center of gravity of the vehicle) of where the IMU is

mounted. This makes such models very appealing for “strap-down” type state estimators,

like the one presented in this chapter. We will now give the specific detail of how the

kinematic model is constructed:

For the purpose of the core state estimation filters (SPKF or EKF based) the following

16 dimensional state vector is used (the definition of the component variables are given in

181

Table 5.3: Kinematic model state vector components.

Variable Description Variable Description
x north position in NED frame abx IMU x -accelerometer bias
y east position in NED frame aby IMU y-accelerometer bias
z down position in NED frame abz IMU z -accelerometer bias
vx north velocity in NED frame wbp IMU θ (roll) gyro rate bias
vy east velocity in NED frame wbq IMU φ (pitch) gyro rate bias
vz down velocity in NED frame wbr IMU ψ (yaw) gyro rate bias
e0 attitude quaternion : first

component
e2 attitude quaternion : third

component
e1 attitude quaternion : second

component
e3 attitude quaternion : fourth

component

Table 5.3):

x =
[

pT vT eT aTb ωT
b

]
(5.9)

=
[
x y z vx vy vz e0 e1 e2 e3 axb

ayb
azb

pb qb rb

]T
(5.10)

where p = [x y z]T is the NED frame6 position vector, v = [vx vy vz]T is the NED

frame vehicle velocity vector, e = [e0 e1 e2 e3]T is the unity norm vehicle attitude

quaternion, ab = [axb
ayb

azb
]T is the vector of IMU acceleration (drift) biases, and

ωb = [pb qb rb]T is the IMU gyro rate bias vector. A quaternion (as opposed to Euler

angle) attitude representation is used, since it is free of the trigonometric singularities7

associated with the Euler representation. This representation is however subject to a unit

norm constraint [175].

Using the definition of the IMU accelerometer and gyro rate measurements (Equa-

tions 5.1 and 5.2) we can now write down the continuous time8 kinematic navigation

6See Appendix B for definitions of the different navigational reference frames.
7The well known “Gimbal Lock” problem. See Appendix B for more detail.
8For conciseness of notation we have dropped the explicit indication of time dependence of the vehicles

state components, i.e., p, v, e, ab and wb implies pt, vt, et, abt and wbt . The same time dependency
is implied for the acceleration and rotation rate terms, i.e., ā, na, ar̃imu and Ω̃ implies āt, nat , ar̃imu,t .

182

equations [58]:

ṗ = v (5.11)

v̇ = (Tb2i) (ā − ar̃imu) +
[

0 0 1
]T
g (5.12)

ė = −1
2
Ω̃e + jλe (5.13)

ȧb = 0 (5.14)

ω̇b = 0 (5.15)

where Tb2i is the direction cosine matrix (DCM) transforming vectors from the body axis

to the NED reference frame, given by

Tb2i = 2

⎡⎢⎢⎢⎣
0.5 − e22 − e23 e1e2 − e0e3 e1e3 + e0e2

e1e2 + e0e3 0.5 − e21 − e23 e2e3 − e0e1

e1e3 − e0e2 e2e3 + e0e1 0.5 − e21 − e22

⎤⎥⎥⎥⎦ , (5.16)

ā and ω̄ are the bias and noise corrected IMU accelerometer and gyro rate measurements,

i.e.

ā = ã − ab − na (5.17)

ω̄ = ω̃ − ωb − nω , (5.18)

where ã and ω̃ are the measurements coming from the IMU, na and nω are the IMU

acceleration and gyro-rate measurement noise terms, g is the gravitational acceleration

component, λ = 1−‖e‖2 is the deviation of the square of the quaternion norm from unity

due to numerical integration errors, and j is the factor that determines the convergence

speed of the numerical error. These factors serve the role of Lagrange multipliers ensuring

that the norm of the quaternion remains close to unity [164]. The constraint on the speed

of convergence for stability of the numerical solution is j ·dt < 1, where dt is the integration

time step [58]. In Section 5.3 we introduce another SPKF centric method we used to further

ensure this constraint. Ω̃ is 4× 4 skew-symmetric matrix [181] composed of the IMU gyro

183

measurements and gyro bias values, i.e.,

Ω̃ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 ω̄p ω̄q ω̄r

−ω̄p 0 −ω̄r ω̄q

−ω̄q ω̄r 0 −ω̄p
−ω̄r −ω̄q ω̄p 0

⎤⎥⎥⎥⎥⎥⎥⎦ (5.19)

=

⎡⎢⎢⎢⎢⎢⎢⎣
0 p− pb q − qb r − rb

− (p− pb) 0 − (r − rb) q − qb

− (q − qb) r − rb 0 − (p− pb)

− (r − rb) − (q − qb) p− pb 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (5.20)

and ar̃imu is a rotation-moment-linear-acceleration coupling component due to the IMU

not being located at the center of gravity of the vehicle and is given by

ar̃imu = ˙̄ω × r̃imu + ω̄ × (ω̄ × r̃imu) , (5.21)

where r̃imu is the location vector of the IMU in the body frame (with origin at the center

of gravity) and × is the normal vector-cross-product.

Equation 5.11 of the kinematic model assumes that the time-derivative of the vehicle’s

position (ṗ = dpt/dt) is equal to its velocity.

Equation 5.12 expresses the time derivative of the vehicle’s velocity (v̇ = dvt/dt)

in terms of the IMU measured linear accelerations. We first correct these acceleration

measurements by subtracting the current estimate of the IMU accelerometer bias vector,

ab. This is reflected by Equation 5.17 which also shows the correction that need to be

done for the IMU measurement noise, na, that corrupts the acceleration measurements in

an additive fashion. This noise term is usually modeled as a zero-mean Gaussian random

variable with variance set according to the IMU manufacturer specified sensor accuracy.

This noise term and the noise on the IMU gyro rate measurements, effectively becomes

the process noise term that drives the system dynamics when the kinematic model is later

embedded in a SPKF based state estimator.

Since the IMU acceleration measurements will also reflect the effect of gravitational

184

acceleration on the vehicle, we need to discount this component of the measurement in

the NED frame. More specifically, when the vehicle is stationary, the downwards pointing

component of the IMU acceleration measurement will be: az = −g. In order to discount

this effect and accurately model the true acceleration of the vehicle, Equation 5.12 adds[
0 0 1

]T
g to the IMU measured accelerations once they are transformed into the NED

frame from the body frame. We already discussed how the model further discounts the

effect of rotation-to-acceleration coupled IMU measurements through the use of the ar̃imu

term. In the first experiment of Section 5.4 we show how this term can often be ignored

if the magnitude of the IMU offset, r̃imu, is not to large. As stated earlier, the direction

cosine matrix, Tb2i , is constructed from the components of the attitude quaternion vector

and used to transform the body-frame measured accelerations into the NED frame which

is the reference frame in which the vehicles position and velocity states are expressed.

Equation 5.13 exploits one of the elegant properties of the quaternion framework for

attitude representation. That is, the time derivative of the vehicle’s attitude quaternion

(ė = det/dt) is given by a simple linear transformation of the current attitude quaternion

where the 4-by-4 skew-symmetric transformation matrix Ω̃ is determined by the rotational

rates of the vehicle. These rates are directly measured by the IMU, compensated for

estimated bias and measurement noise (Equation 5.18) and then “plugged” into the Ω̃

matrix according to Equation 5.19.

The final components of the kinematic model, Equations 5.14 and 5.15, indicate that

we assume the IMU biases are unknown but constant values with no defined dynamics

driving their time evolution. In practice however, when using a SPKF to estimate their

values, we model these terms as random walk processes, i.e.,

abk+1
= abk + rabk

(5.22)

ωbk+1
= ωbk + rωbk

, (5.23)

where rabk
and rωbk

are synthetic zero-mean Gaussian random variables. These noise terms

help to increase the convergence speed of the estimator as well as increase the tracking

robustness of the estimator in case these bias terms drift slowly over time. This bias

185

drifting is often caused by changing thermal conditions affecting the IMU in real vehicles.

The variance of these noise terms can be annealed over time in a similar manner as for

SPKF based parameter estimation (see Section 3.5.2).

Discretizing the kinematic model

We already showed at the end of the previous section how the bias components of the model

can be treated in a discrete fashion. We will next discuss how the remaining components

of the continuous time kinematic model is converted into a discrete time model for use

within the SPKF framework.

The quaternion propagation equation can be discretized with an analytical calculation

of the exponent of the skew-symmetric matrix given by Stevens [181]. The discrete-time

update can be written as

ek+1 = exp
(
−1

2
Ω̃ · dt

)
ek . (5.24)

If we further denote

∆φ = p · dt (5.25)

∆θ = q · dt (5.26)

∆ψ = r · dt , (5.27)

as effective rotations around the (body frame) roll, pitch and yaw axes undergone by the

vehicle during the time period dt, assuming that the angular rates p, q and r remained

constant during that interval, we can introduce the 4 × 4 skew-symmetric matrix

Φ∆ = Ω̃ · dt

=

⎡⎢⎢⎢⎢⎢⎢⎣
0 ∆φ ∆θ ∆ψ

−∆φ 0 −∆ψ ∆θ

−∆θ ∆ψ 0 −∆φ

−∆ψ −∆θ ∆φ 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.28)

Using the definition of the matrix exponent and the skew symmetric property of Φ∆, we

186

can write down the following closed-form solution:

exp
(
−1

2
Φ∆

)
= I cos(s) − 1

2
Φ∆

sin(s)
s

, (5.29)

where

s =
1
2

∥∥∥[∆φ ∆θ ∆ψ
]∥∥∥

=
1
2

√
(∆φ)2 + (∆θ)2 + (∆ψ)2 . (5.30)

The proof for the closed-form solution presented in Equation 5.29 is given in Section B.4

of Appendix B. Equations 5.24 and 5.29 ensure (at least theoretically) that the updated

quaternion ek+1 has a unit norm. However, another small Lagrange multiplier term can

be added to Equation 5.29 to further maintain numerical stability. The use of such a

Lagrange multiplier term relaxes the requirement on the accuracy of computation of the

trigonometric functions9, and allows for the use of truncated series approximations for

cos(s) and sin(s)/s. The resulting final solution for the time-update of the quaternion

vector is given by

ek+1 =
[
I (cos(s) + j · dt · λ) − 1

2
Φ∆

sin(s)
s

]
ek . (5.31)

The position and velocity discrete-time updates are calculated by the following simple

first-order Euler update

pk+1 = pk + ṗk · dt (5.32)

vk+1 = vk + v̇k · dt , (5.33)

where ṗk and v̇k are calculated using Equations 5.11 and 5.12. More advanced integration

techniques such as nth order Runge-Kutta methods can be used for this purpose as well, but

we found the simpler approach to be more than sufficient (and accurate) for the calculation

of the position and velocity updates.

9This can be important when the algorithm has to run on limited computational resources (i.e. em-
bedded on-board CPU system) where trigonometric functions are often approximated via table lookups.

187

5.2.4 Sensor Models

The main sensor (observation) models are those for the GPS and the barometric altimeter.

Unlike the full MIT-Draper-XCell-90 model, we do not include the IMU as part of the

observation model. The reason for this was already mentioned when we introduced the

kinematic model: Although the IMU is a sensor, for the kinematic model, it is used to

summarize the forces and moments acting on the vehicle and hence is used directly as

input to the kinematic differential equations. The measurement noise typically associated

with observation sensors, now becomes process noise in the case of the IMU which directly

drives the kinematic process model. This is convenient in that we can easily set the process

noise variance levels according to the performance specifications of the IMU sensor, without

having to resort to ad-hoc methods to determine the variance levels of “artificial” process

noise, which is often the case in complex models.

We will now describe the nonlinear observation models used for the GPS and barometric

altimeter:

GPS

A GPS receiver measures the position and velocity of the vehicle it is attached to, using

precise timing signals from a constellation of orbital GPS satellites [17]. These measure-

ments are normally10 relative to the inertial (NED) reference frame. The point of reference

for the GPS’s measurements is the location of the GPS antenna, r̃gps, so one needs to com-

pensate for the offset of this location from the vehicle’s center of gravity when building

a mathematical observation model. Like all observation sensors, a GPS has an inherent

accuracy determined by a variety of factors such as multi-path delay of the timing signal,

signal strength, number of satellites in view and satellite location geometry [17]. Based on

all of these factors, most GPS receivers calculate a “quality of service” type metric called

the position dilution of precision (PDOP) signal that can be used as a scaling factor on

the assumed accuracy of the resulting position and velocity estimates. For our purpose

of building a robust kinematic model based state estimator, it is sufficient to lump all

10GPS receivers can also provide their measurements in the earth-centered-earth-fixed (ECEF) inertial
reference frame.

188

of these GPS errors together into a single additive multivariate Gaussian noise term, np,

for the position measurements and nv for the velocity measurements. In order to model

the time-varying accuracy of the GPS signals we then simply scale the variances of these

Gaussian noise terms proportional to the PDOP signal.

Another effect that influences the GPS measurements is latency, i.e., the output pro-

vided at time t corresponds to a measurement made at time t−tlag, where tlag is the latency

duration measured in seconds. Combining all of these effects results in the following GPS

observation model:

pGPSt = pt−tlag
+ Tb2ir̃gps + npt (5.34)

vGPSt = vt−tlag
+ Tb2iωt−tlag

× r̃gps + nvt , (5.35)

where pt−tlag
is the time-delayed 3D (NED) position of the helicopter as defined in Equa-

tions 5.9 and 5.10, vt−tlag
is the time-delayed 3D (NED) velocity of the helicopter, Tb2i is

the body-to-NED direction cosine matrix as defined in Equation 5.16, r̃gps is the location

of the GPS antenna in the body frame, ωt−tlag
are the true rotational rates of the vehicle

at time t − tlag, and npt and nvt are the Gaussian measurement noise terms as defined

above. Here the noise terms are modeled as being time-dependent. This is due to the fact

that the accuracy of observations vary over time according to the current PDOP value as

discussed above.

Barometric Altimeter

Ambient air pressure provides an accurate source of sea-level altitude information out

of the “ground effect”11 zone. Important sources of error are sensor quantization and

measurement noise. We used a high-end altimeter with 10−3psi (0.6 meters) resolution.

The measurement noise was assumed to be white Gaussian with a standard deviation of

11Ground effect is due to the main rotor downwash being reflected upwards when the helicopter is close
to the ground. This will have a nonlinear effect on the air pressure in the close vicinity of the vehicle.

189

6 × 10−4psi. The observation model that incorporates these effects are:

ρ = ρ0 exp (G∆ρ · zt) + nza (5.36)

ρq = ρq0floor
(
ρ

ρq0

)
(5.37)

zaltt = − 1
G∆ρ

ln
(
ρq

ρ0

)
, (5.38)

where ρ0 is the nominal air pressure at sea-level, G∆ρ is the pressure decay rate with

altitude constant (1.16603 × 10−4psi/m), zt is the current NED frame z-axis position of

the vehicle, ρq0 is the air pressure quantization resolution of the altimeter (10−3psi), zaltt is

the altimeter output and floor(·) is the integer flooring function, e.g. floor(3.7) = 3.

5.2.5 Simulation Systems

The simulation environment comprises a family of four simulators to support rapid de-

velopment of flight ready software. This environment was derived from a similar en-

vironment developed in MIT’s Information Control Engineering program for the Aerial

Robotics project (as mentioned in the introduction). These simulators include a Mat-

lab implementation, a non-real-time, non-interactive (batch) simulator which runs on a

Windows platform, an interactive, real-time “software-in-the-loop” simulator that includes

simulations of sensor and servos, and a hardware-in-the-loop simulator. After control and

estimation algorithms has undergone thorough testing in each of these environments, it is

deemed flight ready. Common to all of these simulators is the high-fidelity computational

flight dynamics model of the helicopter and its sensors (MIT-Draper-XCell-90 model : see

Section 5.2.3), implemented in C.

The Matlab simulator is our preliminary design test bed. It allows control and estima-

tion algorithms to be quickly implemented, compared and experimentally verified (tested).

The Matlab simulator is linked via Matlab MEX functions to the C language high-fidelity

helicopter model. The simulation is set up for either trajectory following, using a flight

plan, or velocity tracking, following a set of pre-programmed stick inputs. All of the com-

parative experiments reported in this chapter were done within the Matlab simulator12.

12For more detail on the other simulators, see [23, 22, 21, 20, 58].

190

Vehicle Model

(MIT-Draper-XCell-90)

Actuator

Simulation

Actuator

Drivers

Sensor

Drivers

Navigation

Filter
(state estimator)

Control

System

Sensor

Simulation

raw

sensor

data

sensor

data

streams

state

estimates

control

vector

actuator

raw data

controlstates

Desktop ComputerDesktop Computer

Other Systems / Models Trajectory Planner

Figure 5.4: Schematic diagram of the software based UAV simulation system.

We chose to limit the experiments to this simulator for the following reasons: We wanted

to make sure that measured differences in estimation accuracy was due to fundamental

algorithmic (on a mathematical level) differences and not due to inefficient or incorrectly

ported (from Matlab to C) implementations. Efficiently porting Matlab code to C in or-

der to run in real-time under QNX in a real-time message passing fashion is not a trivial

matter, and if done wrong, can easily affect the validity and accuracy of comparative (i.e.

EKF vs. SPKF) experiments. Since we have, through the work reported in this chapter,

verified the validity and superiority of our new SPKF based estimator, we are currently

in the process of porting our code to C in order to test it on the hardware-in-the-loop

simulator, as well as for real flight testing. However, since this second phase is still in

progress it falls under the future-work category (see Chapter 7) and will not be covered in

this thesis.

5.2.6 Control System

One of the main research efforts of our group, but not the focus of this thesis, is the develop-

ment of a robust state-dependent Ricatti equation controller utilizing nonlinear feedforward

191

neural-network compensation for the control of a small unmanned helicopter. This con-

troller (which supersedes MIT’s controller within our test platform) has reached a level

of maturity such that it is now our controller of choice for all development work (in sim-

ulation and test-flights). We used this SDRE based controller for all of our estimation

experiments comparing the performance of the SPKF to MIT’s EKF based estimation

subsystem. We now give only a brief overview of the SDRE control approach, for a more

detailed discussion, see [21, 20, 30, 31].

SDRE Control: A brief overview

The SDRE approach [30] involves manipulating the vehicle dynamic equations

xk+1 = f(xk,uk) (5.39)

into a pseudo-linear form (SD-parameterization), in which system matrices are explicitly

functions of the current state:

xk+1 = Φ(xk)xk + Γ(xk)uk . (5.40)

A standard Riccati Equation can then be solved at each time step to design the state

feedback control law on-line (a 50 Hz sampling rate is used in the flight experiments). Initial

work on SDRE applications for helicopter control is described by Wan and Bogdanov[201,

22]. The SDRE regulator is specified as

uk = −R−1ΓT (xk)P(xk)(xk) ≡ −K(xk)xk ,

where P(xk) is a steady state solution of the difference Riccati equation, obtained by

solving the discrete-time algebraic Riccati equation (DARE)

ΦT
[
P − PΓ(R + ΓTPΓ)−1ΓTP

]
Φ − P + Q = 0 (5.41)

192

using state-dependent matrices Φ(xk) and Γ(xk), which are treated as being constant. For

tracking problems with the desired state xdesk , the SDRE control can be implemented as

uk = −K(xk)(xk − xdesk) ≡ −K(xk)ek , (5.42)

where the vector of controls are given by,

uk =
[
ulon ulat ucol utcol

]T
, (5.43)

corresponding to rotor blade pitch angles. The SDRE control generally exhibits greater

stability and better performance than linear control laws, and thus is attractive in nonlinear

control problems.

In order to calculate the SDRE based control law online, accurate estimates of the

vehicle state and parameters are needed. As mentioned earlier, this requires the presence

of an accurate state estimator to track the navigational state of the vehicle online, fusing

the predictive output of the vehicle model with the noisy sensor observations in an prob-

abilistically optimal fashion. We will next discuss how we designed and implemented a

SPKF based state estimator for this purpose.

5.3 SPKF Based Estimation System

We replaced the MIT designed fine-tuned EKF with a SPKF based estimator that utilizes

the nonlinear kinematic process model and observation models of the GPS and barometric

altimeter as presented in Section 5.2.3. We chose to use a SR-CDKF SPKF formulation

(Algorithm 11) due to its ease of implementation, intuitive choice of scaling parameters

and numerical robustness.

A number of problem specific issues had to be dealt with in order to adapt the general

SPKF framework to the UAV state estimation problem. The most important of these

were.

• asynchronicity, differing sample-rates, and time-varying dimension of sensor obser-

vations

193

• filter initialization

• GPS latency

• quaternion unity norm constraint

We will next discussed how these issues were addressed within the SPKF algorithmic

framework.

Measurement asynchronicity, varying sample rates and time-varying dimen-

sions

Unlike well behaved synthetic laboratory experiments, the UAV avionics system (as well as

the high-fidelity simulations thereof) operate on an asynchronous message passing princi-

ple. Although the main system (and filter) is clocked at the IMU rate (100Hz), the avionic

sensors (GPS and altimeter) operate not only asynchronously from this clock, but their

measurements are also provided at different sampling rates (10Hz and 20Hz respectively).

This in turn implies that every filter cycle does not necessarily have both a time-update

and a measurement-update step. Every time a new IMU measurement becomes available

(roughly every 10ms), the filter undergoes a time-update using the IMU driven kinematic

process model, but a measurement-update is only done if there are actually new sensor data

available for processing. The flight-computer polls the navigational sensors (or their simu-

lation equivalents) in order to determine if new data is available and if so, update a bank

of sensor buffers with these new measurements. These measurements are accompanied by

a unique time-stamp if new data was written into the sensor buffers.

Based on these time-stamps and prior knowledge of the different update rates of the

sensors, the estimator system builds up an adaptive event-map of when to expect new data

from the different sensors. This event-map (built up during the filter initialization stage),

is important to deal with the GPS latency problem, which will be discussed in the next

section.

Since the different sensors have different observation vector dimensions (GPS=6, al-

timeter=1) and operate at different rates, the SPKF observation model for any given

measurement update must adapt to this time-varying total observation dimension: If both

194

sensors report new data, the effective observation model (and its measurement noise ran-

dom variable) will be a concatenation of the individual sensor observation models, and

sigma-points will be drawn from this augmented observation state (true 16D state + aug-

mented noise state). It might also be the case though that only one sensor (either the

GPS or altimeter) reports new data for a given measurement update, resulting in the

observation model (and the related SPKF based measurement update sigma-point gener-

ation) reverting to the relevant single sensor model. This time-varying observation model

requires careful book-keeping of sensor events in order to accurately adapt the filter to the

time-varying nature of the sensor data stream.

Filter initialization

During the initialization of the navigation filter (state estimator), sensor data are observed

and processed over a number of seconds while the UAV is sitting on the ground in a known

position and attitude. This step is important to ensure robust performance of the filter

during subsequent aggressive maneuvers.

The initial position estimate, p̂0 =
[
x̂0 ŷ0 ẑ0

]T
in the NED frame is based solely

on the averaged GPS position measurements for the first couple of seconds while the UAV

is stationary. The initial NED frame velocity estimate, v̂0 =
[
v̂x0 v̂y0 v̂z0

]T
, is initial-

ized to zero. The helicopter is orientated into a known yaw direction (either due north or

due south) with the x−y (horizontal) plane level (using two spirit levels) during the initial-

ization phase. This allows the initial quaternion estimate, ê0 =
[
ê00 ê10 ê20 ê30

]T
, to

be set to a known value such as ê0 =
[

1 0 0 0
]T

. The averaged IMU accelerometer

and gyro readings during the initialization period are used to initialize the estimates of the

IMU bias variables. If the IMU is unbiased, the expected stationary accelerometer reading

should be, a =
[

0 0 −g
]T

(where g is the local gravitational acceleration constant,

i.e. 9.81m/s2) and the gyro rate readings (ignoring the rotation of the earth) should be

zero. Any reading deviating from these expected values can then be used to initialize the

bias estimates.

The final important house-keeping task performed during the initialization phase is to

build up the “event map” for when to expect new data from the avionics sensors. This

195

is done by monitoring the time-stamps of the sensor stream buffers over a period of time

(while the helicopter is stationary). A pre-specified number (≈ 10) of sensor cycles must

be observed before the full event-map is robustly initialized. This in turn implies that

the duration of this specific initialization phase is determined by the slowest sensor in the

avionics system (in our case the GPS). As stated earlier, an accurate event map is also

needed to accurately compensate for the inherent processing latency present in the GPS

measurements.

Dealing with GPS latency

One of the big challenges in building a robust state estimator is dealing with the inherent

measurement latency of the GPS sensor. As mentioned in Section 5.2.4, a GPS sensors

has a finite processing delay between when a GPS satellite signal is received for processing

and when the actual position and velocity measurement related to that signal becomes

available. This implies that the current GPS reading actually corresponds to the position

and velocity state of the vehicle at some point in the past. This time difference is called

the measurement latency. For cheaper lower performance GPS systems this latency can be

in the order of couple of seconds, causing serious problems when these measurements are

fused (inside a Kalman filter) with the current prediction of the vehicle state. Figure 5.5

demonstrates this issue graphically for a linear DSSM given by

xk+1 = Akxk + Bkuk + vk (5.44)

yk = Ckxk + nk , (5.45)

where vk ∼ N(0,Rv) and nk ∼ N(0,Rn). The state estimation filter, in general, receives

measurements from a variety of sensors at each measurement-update step. Some measure-

ments corresponds to the system state at the current time, yk, given by Equation 5.45,

while other latency-delayed measurements, y∗
k, correspond to the system state at time

l = k −N , i.e.,

y∗
k = C∗

l xl + n∗
k ,

196

kx

ˆ
kxˆ

lx

lx

ly ky

*

ky

System

State

Filter

State

System

Observations

Figure 5.5: System with a delayed measurement due to sensor latency: At time k the state esti-
mation filter receives two sets of sensor measurements from the system: A normal measurement yk

corresponding to the system state at time k, as well as a delayed measurement y∗
k corresponding to

the system state at time l = k −N , where N is the sensor latency (measured in sample periods).

where N is the sensor latency measured in sample periods, C∗
l is the measurement sen-

sitivity matrix and n∗
k is the observation noise for the delayed measurement with n∗

k ∼
N(0,R∗

n). The challenge now is this: how do we optimally fuse these different sets of

measurements with the current estimate of the system state?

A number of different solutions to the sensor latency problem has been suggested in

the literature [2, 111, 8] for application to linear DSSMs through the use of modified linear

Kalman filters. These solutions range from “exact but impractical” to “trivial but highly

inaccurate” with a number of approximate solutions in between. We will now briefly review

these different approaches.

The simplest to implement, but also the most inaccurate, solution is to simply ignore the

fact that the sensor measurement is lagged. A normal Kalman measurement update is then

performed to fuse the delayed sensor measurement with the current state estimate. This

is the option that was used for the GPS sensor fusion in MIT’s EKF based state estimator

[58]. Their rationale was that the 50ms latency of the Ashtech G12 GPS receiver was

short enough to not cause significant errors if ignored [59]. Even though this assumption is

probably reasonable for the specific time-delay at hand, we felt13 that valuable information

in the measurements were still being discarded using this approach and that compensating

for the latency will in fact result in a significant increase in estimation performance.

13This intuition is experimentally confirmed in Section 5.4.

197

Another approach used to compensate for measurement latency is to simply recalculate

the complete time-trajectory of the filter through the delay period, when a lagged mea-

surement is received. This requires all of the observations (both lagged and non-lagged)

as well as the system state estimates to be saved for the complete latency duration, i.e.

k̃ ∈ [k − N, k − N + 1, . . . k − 1, k]. Not only does this incur a large storage cost for any

significant sensor latency, but the computational burden also increases rapidly as the recal-

culation period becomes longer. This has serious implications if the filter rate is such that

new state estimates has to be calculated within a short period of time. The only advantage

of this approach is that the resulting state estimates will be exact, i.e., no approximations

with regard to the sensor latency has been made. Unfortunately, due to the large storage

and computational cost, this method is almost never employed.

Another typical approximate solution used to deal with this latency problem is to store

the value of the state estimate corresponding to the latency-lagged sensor measurement,

i.e., x̂k−N , in a buffer. When the lagged measurement y∗
k then eventually becomes available

at time k, the “prediction of the observation”, ŷ∗−
k , is calculated using the correct lagged

state estimate x̂k−N , i.e.

ŷ∗−
k = C∗

k−N x̂k−N . (5.46)

The innovation based on this lagged prediction, y∗
k− ŷ∗−

k , is then fused using the standard

Kalman measurement-update with the current predicted state, i.e.

x̂k = x̂−
k + K

(
y∗
k − ŷ∗−

k

)
. (5.47)

Since the correct innovation is fused with the wrong state prediction, this method although

better than the first approach, is still sub-optimal.

In [2], a method is derived where it suffices to calculate a correction term which is then

added to the filter estimates when the latency-delayed measurements arrive. Referring to

the standard Kalman filter equations (Algorithm 19) and Figure 5.5, the measurement

yl should be fused at time l = k − N , causing a correction in the state estimate x̂−
l

and a decrease in the state covariance P−
xl

. As the Kalman gain is a function of this

updated state covariance, the measurements occurring after this time (k > l) will all

198

be fused differently than if the measurement update for y∗
k is omitted. If therefore the

measurement yl is delayed by N samples (resulting in y∗
k) and fused at time k, the data

update should reflect the fact that the N data updates from time l to k, and therefore the

state and covariance estimates, have all been affected by the delay in a complex manner

[111]. Equations that account for this when fusing y∗
k at time k were derived in [2] but are of

such complexity that they are practically infeasible14 for most applications. This approach

was reformulated in [111] into a practically implementable method (called Larsen’s method)

which does however require (at time l) the measurement sensitivity matrix C∗
l and the

observation noise covariance matrix R∗
n to be known at time l (which is often the case).

If these requirements are met, the filter covariance should be updated at time l as if the

measurement y∗
k is already available. This leads the measurements in the delay period to

be fused as if y∗
k had been fused at time l. At time k, when y∗

k actually becomes available,

incorporating the measurement (y∗
k) correctly is then greatly simplified, by adding the

following correction term after the non-lagged observation yk has been fused:

δx̂k = M∗Kl (y∗
k − C∗

l x̂l) (5.48)

If the latency delay is zero, M∗ is the identity matrix. For N > 0, M∗ is given by:

M∗ =
N−1∏
i=0

(
I −K

′
k−iCk−i

)
Ak−i−1 , (5.49)

where K
′ signifies Kalman gain matrices that have been calculated based on a covariance

matrix updated at time l with the covariance of the delayed measurement15. This implies

that the covariance estimates of the filter will be wrong in a period of N samples (before

the delayed measurement arrives), causing normal non-delayed measurements during this

period to be fused sub-optimally. However, after the correction term (Equation 5.48) is

added, the filter state and covariance will once again be optimal. Take note that Equa-

tions 5.49 and 5.48 assumes a linear DSSM. This method can be adapted to nonlinear

14In fact, the computational complexity is comparable to recalculating the complete Kalman filter
through the complete delay of Nlag samples [111], which is equivalent to the previously discussed exact
method for latency compensation.

15Since the covariance update only depends on C∗
l and R∗

n and not y∗
k, it can be precalculated.

199

models using either EKF or SPKF based linearization, i.e., by replacing the sensitivity

matrices C and A with either the process and observation model Jacobians (EKF), or the

WSLR calculated “average” Jacobians (SPKF)16. See [8] for an application of this approach

to a nonlinear robot localization problem using an EKF.

Larsen [111] extended the previous approach further to a method that provides opti-

mally fused estimates not only at the instances when the delayed measurements arrive,

but also during the interim period between these updates. This is achieved by running

a second parallel Kalman filter that generates optimal estimates in the interim (between

delayed measurements) period: At time l the first filter is updated according to Larsen’s

first method (shown above) incorporating the covariance of the not-yet-received delayed

measurement y∗
k. This filter, will generate non-optimal estimates until the delayed mea-

surement is actually received, but it will build up the correct terms needed for an optimal

measurement update at that time. During this interim period the second filter, which

was not pre-updated at time l, will generate optimal estimates when fusing non-delayed

measurements. At time k, the correctly fused optimal estimate of the first filter (which

incorporated the delayed measurement) and its covariance is used to reinitialize the second

filter. Using this approach optimal estimates are available at all times. The downside is

that two Kalman filters need to be run in parallel which will double the computational

complexity.

Summary : In this section we discussed a number of existing techniques for Kalman

filter based latency delayed sensor fusion. Of these approaches, Larsen’s modified two-

filter method is the only approach that is both computationally practical and produces

optimal states estimates at all time. The method is, however, only exact for linear systems.

For nonlinear systems, the recursive calculation of the corrections terms (Equations 5.49

and 5.48) must be approximated through the use of linearized system matrices. If the

linearization errors are severe, it is expected that large errors may accumulate over time

resulting in sub-optimal corrections when the lagged measurements finally arrive.

Clearly, a new method for optimally fusing latency delayed sensor data in general

nonlinear systems is needed.

16See Section 4.5.4 on how this WSLR averaged Jacobian can be calculated for the SPKF.

200

5.3.1 SPKF based Time Delayed Sensor Fusion

Based on discussions with, and a preliminary idea communicated by Julier [98], we imple-

mented a novel SPKF based latency delayed sensor fusion technique [195] that has not yet

been published elsewhere. We will next present this new method after “refreshing” some

required background concepts from Chapter 2 and Appendix A, specifically as they apply

to time delayed measurements.

Time Delayed Measurements Revisited: A Kalman Optimal Perspective

Kalman’s original optimal update for fusing a new observation with the current estimate

of the system state is given by Equations A.1 and A.2 in Appendix A. These can easily be

rewritten for the case where we want to optimally fuse the current state estimate at time k

with a time delayed measurement y∗
k = yk−n, where n is the number of samples by which

the measurement is delayed (the latency period). Specifically, Equation A.1 becomes

x̂k = x̂−
k + Kkỹk−n , (5.50)

where the time delayed innovation is given by

ỹk−n = y∗
k − ŷ∗

k (5.51)

= yk−n − ŷk−n , (5.52)

and Kk is the Kalman gain term. The optimal form of the Kalman gain can again be found

using the exact same derivation as presented in Section A.2 of Appendix A. However, the

innovation and cross covariance terms are calculated between time step k and time step

l = k − n. This results in the following form for the Kalman gain:

Kk = Pxkỹk−n
(Pỹk−nỹk−n

)−1 . (5.53)

The second term is the inverse of the innovation covariance which can easily be calculated

at time k − n. For the EKF its value is given by

Pỹk−nỹk−n
= Hxk−n

P−
xk−n

HT
xk−n

+ Rn , (5.54)

201

where Hxk−n
is the observation model Jacobian evaluated at x = x̂−

k−n, P−
xk−n

is the time-

updated state estimate covariance at time k−n and Rn is the measurement noise covariance

(we assume the measurement noise is generated by a stationary process). However, the

first term of Equation 5.53,

Pxkỹk−n
= E

[
(xk − x̂−

k)(yk−n − ŷ−
k−n)

T
]
, (5.55)

is not so easily calculated. For the EKF (under the assumption that the observation noise

sequence is independent), this term can be approximated as

Pxkỹk−n
≈ E

[
(xk − x̂−

k)(xk−n − x̂−
k−n)

T
]
HT

xk−n
(5.56)

The expectation in the equation above can be expanded and then approximated as [98],

E
[
(xk − x̂−

k)(xk−n − x̂−
k−n)

T
]

= P−
xkxk−n

(5.57)

≈ Φk,k−nP−
xk−n

(5.58)

where Φk,k−n is the approximate cumulative transformation matrix. Its value between any

successive time step is

Φi,i−1 = (I − KiHxi)Fxi−1 , (5.59)

where Fxi−1 is the process model Jacobian. Using the fact that Φi,i = I, this recursion

relationship gives the same result as Larsen (Equations 5.48 and 5.49) [111, 98].

This section provided a derivation of the time delayed fusion method by approaching

the problem from the “other way around” than Larsen. Rather than thinking about extrap-

olating a measurement forward in time, you can also view it as taking a cross correlation

backwards through time. This idea will now be used to derive a new and better method

to fuse the time-delayed measurement directly.

202

An Alternative Way to Maintain the Cross-Covariance

As pointed out above, the crucial part of correctly fusing the time delayed measurement

is maintaining the cross-covariance term P−
xkxk−n

during the latency period. One approx-

imate method to do this was shown above, based on recursively applying the linearized

system model to propagate the needed covariance term. We will now present an alternative

method to maintain the cross-covariance term through augmentation of the system state

and redefinition of the process model.

First we define the augmented state variable,

xak =

⎡⎣ xk

xl

⎤⎦ , (5.60)

with process model

xak+1 = f̌ (xak,vk) (5.61)

=

⎡⎣ f (xk,vk)

xl

⎤⎦ , (5.62)

where f (·) is the original process model, xl is the original system state at time l with

l ≤ k, xk is the original system state at time k and vk is the original process noise term.

In other words, the augmented system state at time k (Equation 5.60) consists of the true

system state at time k concatenated to the state of the system at some prior point in

time, l ≤ k. The augmented process model (Equations 5.61 and 5.62) will then update the

first component of the augmented state using the original process model while keeping the

second component, xl, constant. This approach will thus maintain the value of the system

state at some prior point in time and update the current state of the system.

Lets now assume that at time k−n the lagged sensor makes it’s physical measurement,

but will only output the result of this measurement Nlag samples later. So, at time k − n

the augmented system state is initialized with the current state of the system,

x̂ak−n =

⎡⎣ x̂k−n

x̂k−n

⎤⎦ , (5.63)

203

with covariance

Pxa
k−n

=

⎡⎣ Pxk−n
Pxk−n

Pxk−n
Pxk−n

⎤⎦ . (5.64)

Propagating the augmented state forward using the Kalman filter (SPKF) time-update

(assuming that the process noise sequence is white, Gaussian and zero-mean), results in

the following predicted state and covariance estimates:

x̂a−k−n+1 =

⎡⎣ x̂−
k−n+1

x̂k−n

⎤⎦ (5.65)

P−
xa

k−n+1
=

⎡⎣ P−
xk−n+1

P−
xk−n+1xk−n

P−
xk−nxk−n+1

Pxk−n

⎤⎦ . (5.66)

One remaining issue to be dealt with is how do we update the augmented state during

the latency period when a normal (non time delayed) measurement arrives? For example:

The system is still waiting for the lagged sensor, say a GPS, to output its measurement

of the system state at time k − n, but it just received a non-lagged measurement from

another sensor, say the altimeter, which must now be fused with the current estimate of

the system state. How can this be accomplished within the augmented framework we’re

currently discussing?

One solution to this problem is trough the use of the Schmidt-Kalman filter [172].

This alternate formulation of the Kalman filter has the property that certain states are

marked as “ancillary” whose values are not updated. It uses the Joseph form17 [62] of the

measurement update equations and a modified Kalman gain equation given by

Kk = MPxkỹk−n
(Pỹk−nỹk−n

)−1 , (5.67)

where M is the indicator matrix which indicates which of the states must be updated and

which are “ancillary”. It is block diagonal with 1s in the diagonals for states which are

updated and 0s for states which are not to be updated. For our specific case at hand, M

17Both the Schmidt-Kalman filter and the Joseph form measurement update is discussed in Section A.5
of Appendix A.

204

is given by:

M =

⎡⎣ I 0

0 0

⎤⎦ . (5.68)

Substituting Equations 5.67 and 5.68 back into the Schmidt-Kalman measurement update

equations result in the following measurement updated system state and covariance:

x̂ak−n+1 =

⎡⎣ x̂k−n+1

x̂k−n

⎤⎦
Pxa

k−n+1
=

⎡⎣ Pxk−n+1
Pxk−n+1xk−n

Pxk−nxk−n+1
Pxk−n

⎤⎦ .

In other words, the bottom right sub-block maintains the original covariance matrix, the

top left sub-block is the covariance of the state as would be calculated by a standard (non

latency compensated) Kalman filter, and the off diagonal sub-blocks are the important

cross covariance estimates, needed to fuse the time-delayed measurement through implicit

use of Equations 5.50, 5.51, 5.52 and 5.53.

The interesting thing is: What happens when you don’t use the Schmidt form of the

measurement update? In other words, perform a normal Kalman measurement update

without the use of the indicator matrix M. The result of this will be that the original

state estimate, xl in the augmented state vector (Equation 5.60), will no longer stay

constant throughout the latency period due to the measurement update performed on

it. It will now be measurement-updated based on subsequent information that has been

observed. This deviates from Larsen’s method [111] and should give better results. In

fact, what will happen is that the original state estimate xl (from which the delayed sensor

measurement is derived), will be smoothed during the latency period using future non-

delayed observations. We use the term “smoothing” here in a more general context than

the typical algorithmic implementation of a smoothing filter as presented in Section 3.6.3.

That is, we simply imply that past estimates of the system state can somehow be improved

based on subsequent future observations of measurement data. This is a well known result

from signal-processing filter theory [75]. Since we are waiting for the lagged sensor anyway

during the latency period, we might just as well use data received in the interim period to

205

improve our estimate of the system state that the sensor will eventually be reporting on.

When the delayed measurement then finally arrives and the innovation is calculated using

Equations 5.51 and 5.52, the prediction of the delayed observation will be more accurate

since it will now be calculated using the smoothed lagged state estimate. As long as this

“smoothing” operation is done correctly, which will be the case for this unified Kalman

framework, we will make better use of all of the information available to us, resulting in

improved filter performance.

SPKF Implementation of New “Smoothed Delayed Sensor Fusion” Method

The approach proposed in the previous section can be directly extended to the SPKF

through the use of the sigma-point approach: We simply expand our normal state vector

(and its covariance) to the augmented form of Equations 5.60, 5.63 and 5.64. Sigma-

points are then drawn from the enlarged state and its covariance using the standard SPKF

formulation. These points are then propagated through the augmented state process model

and updated using the standard SPKF equations and correctly constructed observation

models that reflect the time varying nature of observation vectors (see Section 5.3). More

specifically, using the augmented state vector xak =
[

xTk xTl

]T
, the observation model

for a non-time delayed measurement will be of the following form:

yk = h (xak,nk) = h (xk,n1,k) , (5.69)

where xk is the first (non-delayed) half of the augmented state vector and n1,k is the

observation noise term affecting the non-time delayed sensor measurement. Likewise, the

observation model for the latency delayed sensor measurement is given by18:

y∗
k = h∗ (xak,nk) = h∗ (xl,n2,k) , (5.70)

where xl is the second (smoothed) half of the augmented state vector corresponding to time

l = k∗−Nlag , k∗ is the discrete time instance when a delayed measurement is received, Nlag

18Note, the “∗” notation is used here simply as a function or variable identifier and does not imply the
typical “complex-conjugate” mathematical operation.

206

is the latency period measured in samples and n2,k is the observation noise term affecting

the time delayed sensor measurement. If both delayed and non-delayed measurements are

received at the same time the observation model is simply a concatenation of the two models

shown above, with the observation and noise vector dimensions adjusted accordingly.

In order to accurately re-initialize the lagged (second) component of the augmented

state vector every Nlag samples before the latency delayed observation will be received,

the sensor event-map (which was built up during the initialization phase) is used. See

Section 5.3.

The advantage of the SPKF formulation of the “smoothed delayed sensor fusion” ap-

proach is that the latency delayed measurements are incorporated using the exact same

algorithmic framework used to recursively estimate the normal states. In other words,

the delayed fusion benefits in the same way from the correct second-order accuracy of the

sigma-point approach: not only for the propagation and calculation of the cross covariance

terms but also for the correct treatment of the possibly nonlinear cumulative effect of the

injected process noise. The disadvantage of this method, compared to some of the simpler

approximate methods, is that the state dimension (and hence the number of sigma-points)

doubles during the sensor latency period, resulting in an increase in computational com-

plexity. However, in the next section we will show how the increased estimation accuracy

benefit of this approach outweighs the moderate increase in computational cost.

5.3.2 SPKF based quaternion unity norm constraint enforcement

As mentioned earlier, the quaternion based attitude formulation has many benefits over

an Euler-angle based formulation. These benefits do however come with the caveat that

the unity norm of the estimated quaternion vector has to be maintained during the esti-

mation process. We already discussed the Lagrange multiplier based direct approach we

employ inside the kinematic model to enforce this constraint. There is however another

elegant method available to enforce this unity constraint that is ideally suited to the SPKF

framework.

We first define the following pseudo-observation of the quaternion sub-vector of the full

207

state vector

ze = ‖e‖2 (5.71)

= eTe (5.72)

= e20 + e21 + e22 + e23 , (5.73)

i.e., we directly observe the squared norm of the quaternion vector. This is a pseudo-

observation however, since we don’t have an actual sensor that can measure the norm

of the true attitude quaternion. We do however know that the true attitude quaternion

should always have a unity norm so we can simply force the observation at time k to be

equal to one, i.e.,

ze,k ≡ 1 . (5.74)

We can now calculate the difference (innovation signal) between the assumed known (ob-

served) quaternion norm and that of the prediction of the observation based on the current

estimate of the quaternion, i.e.,

z̃e,k = ze,k − ẑ−e,k (5.75)

= 1 − E
[∥∥ê−k ∥∥2] (5.76)

= 1 − E
[
ê20,k + ê21,k + ê22,k + ê23,k

]
, (5.77)

and update the vehicle state using a standard Kalman framework measurement update,

i.e.,

x̂k = x̂−
k + Ke

(
ze,k − ẑ−e,k

)
. (5.78)

This step can easily be incorporated into the the existing SPKF framework by simply aug-

menting the observation model with Equation 5.71 and concatenating the assumed unity

observation to the end of the true observation vector. It is also convenient at this point

to introduce a synthetic additive observation noise term, ne, into the pseudo-observation

equation for the quaternion norm,

ze = ‖e‖2 + ne , (5.79)

208

where we model ne as a zero-mean Gaussian random variable, i.e., ne ∼ N (ne; 0, σ2
ne

)
,

where σ2
ne

is the variance. The magnitude of the variance of this synthetic noise term will

directly affect the “weighting” that the quaternion norm unity constraint receives in relation

to the other observations. If the variance is set to zero, the SPKF will put a large weight

(importance) on ensuring that the constraint is met, possibly at the detriment of other

components in the state vector estimate. On the other hand, if the variance is set very

high, the filter will largely discount the pseudo observation, resulting in poor quaternion

regulation. The exact setting of this parameter should thus be determined in relation to

the variances of the other observation noise terms in order to find an acceptable trade-off

between the two extreme conditions.

Due to the quadratic form of the pseudo-observation nonlinearity, the SPKF (in con-

trast to the EKF) is ideally suited for this specific method of quaternion norm regulation.

As discussed in Section 4.3 and demonstrated in Section 4.3.3, the SPKF generates exact

results for quadratic nonlinearities, whereas the EKF results for the same nonlinearity

are highly biased and inconsistent. Furthermore, the right hand term of Equation 5.77,

E
[
ê20,k + ê21,k + ê22,k + ê23,k

]
, can be calculated accurately at almost no extra computational

cost by noticing that

E
[
ê20,k + ê21,k + ê22,k + ê23,k

]
= E

[
ê20,k
]
+ E
[
ê21,k
]
+E
[
ê22,k
]
+ E
[
ê23,k
]

= σ̂2
e0 + σ̂2

e1 + σ̂2
e2 + σ̂2

e3 (5.80)

= trace {Pek
} , (5.81)

where σ̂2
ei

is the variance of the ith component of the quaternion vector and Pek
is the sub-

block of the estimated state covariance matrix that relates to the quaternion sub-vector.

In other words

Pek
= E

[
(ek − êk) (ek − êk)

T
]
, (5.82)

where the indexes of the sub-vector estimate (and its covariance) relative to the full state

vector estimate and covariance are given by Equations 5.9 and 5.10. Based on this result,

the quaternion norm pseudo-observation augmentation of the observation model can be

implemented without the need to propagate any extra sigma-points for the calculation of

209

the predicted observation and its covariance. These values already exist encapsulated and

pre-calculated within the prediction of the state and its covariance. This in turn implies

that this SPKF-centric quaternion norm regularization method can be implemented at

almost no extra computational cost.

210

5.4 State Estimation Experimental Results

In this section we report on numerous state estimation experiments performed using the

above described kinematic model based SPKF state estimator. All of the experiments

were performed using the high-fidelity MIT-Draper-XCell-90 model based UAV simulator

platform. This allowed for a repeatable controlled experimental environment. For all the

experiments we compared the performance of our new proposed SPKF approach to the

performance of the built-in fine-tuned EKF based estimator as provided by MIT.

5.4.1 Experiment SE0: Determining effect of IMU offset term in vehicle
dynamics

In Section 5.2.3 (Equation 5.12) we introduced a component of the vehicle kinematic model,

the rotation-moment-linear-acceleration coupling term ar̃imu , which is used to couple the

effect of the vehicle’s rotation into the linear acceleration measurement as provided by the

IMU accelerometers. This extra additive (measured) acceleration term is due to the IMU

not being located at the center of gravity of the vehicle and is given by

ar̃imu = ˙̄ω × r̃imu + ω̄ × (ω̄ × r̃imu) , (5.83)

where r̃imu is the location vector of the IMU in the body frame (with origin at the center of

gravity) and × is the normal vector-cross-product. This correction term is computationally

costly to calculate and also depends on a variable that is not part of the kinematic-model

state vector, ˙̄ω, (the rotational acceleration), which will have to be approximated by a

pseudo-derivative of the gyro-rates. Such derivatives are typically quite noisy and not very

accurate. For this reason, the correction term is often ignored if the IMU offset is not too

far away from the center of gravity (c.g.) of the vehicle. For our specific situation, the

IMU is located at a relative offset of r̃imu = [0.100 0.025 0.120]T from the helicopter’s

c.g. We performed a number of experiments using the high-fidelity simulator (See Sec-

tion 5.2.5) to determine if we could safely drop the cross-coupling term from the kinematic

equations without paying to large an accuracy penalty. Since the simulator is based on

the high-fidelity MIT-Draper-XCell-90 model, it does include the affect of IMU offset on

211

50 100 150 200 250
-4

-3

-2

-1

0

1

2

Body Frame Linear Accelerations

a
x (

m
/s

2
)

50 100 150 200 250
-4

-3

-2

-1

0

1

2

a
y (

m
/s

2
)

50 100 150 200 250
-30

-25

-20

-15

-10

-5

0

a
z (

m
/s

2
)

r
IMU

=0

true

r
IMU

=0

true

r
IMU

=0

true

Figure 5.6: IMU offset coupling term impact determination experiment: The red trace in all the plots
indicate the full (true) IMU accelerometer measurements for all three body axes. These measurements
include the effect of the IMU-offset coupling term. The blue traces in the plot indicate accelerometer
readings if the IMU-offset term is ignored. The average normalized MSE for the discrepancy error
is 0.0372 (3.7%) with component contributions of nMSEax = 0.0197, nMSEay = 0.0896 and
nMSEaz = 0.0023.

212

the accelerometer readings, allowing for an accurate comparison. We flew (in simulation)

an aggressive maneuver while recording the IMU accelerometer readings (ax, ay, az), both

with and without the effect of IMU offset. Figure 5.6 shows the result of this experiment.

The red line in all the plots indicate the full (true) accelerometer measurements for all

three body axes. These measurements include the effect of the IMU-offset coupling term.

The blue lines in the plot indicate accelerometer readings if the IMU-offset term is ignored.

Clearly there are some differences between the two sets of traces, but they do not dominate.

The average normalized MSE for the discrepancy error is 0.0372 (3.7%) with component

contributions of nMSEax = 0.0197, nMSEay = 0.0896 and nMSEaz = 0.0023. We fur-

thermore determined that the difference in state estimation error between the two runs is

less than 1%. For this reason it was decided to ignore the IMU-offset coupling term in the

kinematic model of our SPKF based implementation, resulting in the use of the following

equation for the velocity update: v̇ = Tb2iā +
[

0 0 1
]T
g.

5.4.2 Experiment SE1: EKF vs. SPKF (without latency compensation)
vs. SPKF (with latency compensation)

The first experiment performed was used to determine if the proposed GPS latency compen-

sation technique (see Section 5.3.1) offers a significant increase in performance compared

to simply using a normal SPKF state estimator that fuses the GPS measurements as if

they have no latency. The helicopter was flown (in simulation) along a complex trajec-

tory that increased in “aggressiveness” over time. Figure 5.7 shows a 3D representation

of this flight-plan trajectory with the helicopter’s true attitude superimposed at certain

intervals. The flight plan included complex acrobatic maneuvers such as rapid-rise-and-

hover, figure-eights, split-s, etc. The helicopter was commanded to sit on the landing pad

for a couple of seconds while the different estimation algorithms were initialized before

the flight commenced. The estimated navigational states of interest are: position, velocity

and attitude. Even though the system state, kinematic model and estimation filters makes

use of a quaternion representation of the vehicles attitude, we converted these values to

their equivalent Euler angles for the sole purpose of reporting estimation error performance

here. Internally the quaternion representation was used throughout due to its robustness

213

Figure 5.7: Simulator flight plan for UAV estimation experiments.

advantage as discussed earlier. For this experiment we did not “close the loop” for the flight

control system. In other words, the SDRE controller used the true known states of vehicle

for the online calculation of the control law. The SPKF or EKF estimated states was not

fed back to the control system. This was done to ensure that the helicopter flew exactly

the same flight profile when comparing the estimation performance of the different estima-

tors. This “controlling the environment for repeatability” was one of the reasons why the

high-fidelity simulation environment is so attractive when comparing different estimation

approaches.

Table 5.4 compares the average root-mean-square (RMS) estimation errors for the

three different state estimators. We also show (in brackets) the relative error reduction

percentage for each of the two SPKF estimators compared to the EKF. These results are

also presented graphically in Figure 5.8. The normal SPKF is able to reduce the 3D position

and velocity estimation errors by about 10% and the roll and pitch angle estimation errors

by about 20%. The biggest improvement over the EKF, 55%, is in the estimation of

the yaw (heading) angle. The GPS latency compensated SPKF goes even further with

214

20 40 60 80 100 120 140 160 180 200 220
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time (s)

m

UAV State Estimation : 3D Position Error

EKF

SPKF 1

SPKF 2

20 40 60 80 100 120 140 160 180 200 220
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time (s)

m
/s

UAV State Estimation : 3D Velocity Error

EKF

SPKF 1

SPKF 2

20 40 60 80 100 120 140 160 180 200 220
0

0.5

1

1.5

2

2.5

ro
ll
 (

d
e

g
re

e
s
)

UAV State Estimaiton : Euler Angle Errors

20 40 60 80 100 120 140 160 180 200 220
0

0.5

1

1.5

p
it
c
h

 (
d

e
g

re
e

s
)

20 40 60 80 100 120 140 160 180 200 220

1

2

3

4

5

time (s)

y
a

w
 (

d
e

g
re

e
s
)

EKF

SPKF 1

SPKF 2

Figure 5.8: State estimation results: EKF vs. SPKF (without GPS latency compensation: SPKF 1)
vs. SPKF (with GPS latency compensation: SPKF 2).

215

Table 5.4: UAV state estimation results : EKF vs. SPKF (with and without GPS latency compensa-
tion). The table reports average (over complete flight trajectory) root-mean-square (RMS) estimation
errors for the EKF, SPKF (without GPS latency compensation) and SPKF (with GPS latency compen-
sation) for the simulated flight shown in Figure 5.7. The estimation error reduction percentages are
shown for all filters (relative to EKF).

Algorithm Average RMS Error
position velocity Euler angles (degrees)

(m) (m/s) roll pitch yaw

EKF 2.1 0.57 0.25 0.32 2.29
SPKF - without LC 1.9 (10%) 0.52 (9%) 0.20 (20%) 0.26 (19%) 1.03 (55%)
SPKF - with LC 1.4 (32%) 0.38 (34%) 0.17 (32%) 0.21 (34%) 0.80 (65%)

a 33% reduction in position, velocity, roll angle and pitch angle errors. The yaw angle

error reduction is again the highest at 65%. We repeated this experiment numerous times

with different initializations and realizations of measurement noise as well as flying different

flight trajectories and all of the results consistently confirmed the same relative performance

between the different estimators as presented in this experiment. Clearly, even though the

normal SPKF already outperforms the EKF (as expected), correctly accounting for GPS

latency is well worth the extra effort. For this reason we chose the latency compensated

SPKF as our preferred state estimation filter and it will be used for all of the remaining

experiments presented in this chapter. Even though we will be referring to this estimator

simply as the SPKF in all subsequent experiment descriptions, tables and plots, be aware

that the use of the GPS latency compensated SPKF is implied.

In order to clearly illustrate the difference in estimation performance between the EKF

and the (latency compensated) SPKF we present the results of another run of Experiment

SE1, this time only showing the EKF and preferred SPKF implementation plots. The

position and velocity estimation errors are shown in Figure 5.9 and the Euler angle esti-

mation errors are shown in Figure 5.10. As before the SPKF clearly outperforms the EKF

with the largest improvement again evident in the yaw (heading) angle estimation error.

Figure 5.10 indicates how the EKF has a very large error in the yaw estimate for the first

80 seconds of the flight. This is due to a significant initial error in the underlying IMU bias

estimate that is used to correct for systemic and temperature driven drift errors in the IMU

216

gyro and accelerometer readings. Even though the EKF and SPKF filters were initialized

with exactly the same initial state estimates, the SPKF was able to converge to the true

biases in the IMU measurements much quicker and then track them more accurately. This

contributes (among other things) to more accurate Euler angle estimates. Although the

average yaw estimate error improvement for the SPKF over the whole trajectory is 65%,

this value does not accurately reflect the expected steady-state (after bias convergence)

performance of the SPKF. If we calculate the average error improvement over the first 80

seconds, we find that the SPKF is actually realizing a 81% improvement. The average

error improvement after bias convergence (t > 80s) are 43%. The steady-state error im-

provement of the SPKF over the EKF is thus 32%, 34% and 43% respectively for the roll,

pitch and yaw angle estimates.

Another interesting performance characteristic to note from Figure 5.10 are the frequent

high peaks in the EKF’s estimation error plots. These coincide with the onsets of aggressive

maneuvers (banking, turns, rapid climbs, etc.) that pushes the vehicle into regimes of

increased nonlinear response. The linearization errors of the EKF will therefore be more

severe at these times resulting in poor estimation performance and increase estimation

error. In contrast the SPKF is able to deal with these increased nonlinearities quite

satisfactorily.

5.4.3 Experiment SE2: Closed loop control and estimation performance

In this experiment we “close the loop” in the GNC system by feeding the estimated states

back to the SDRE control system. In other words, the vehicle control commands will now

be a function of the estimates generated by either the EKF or SPKF estimator and not of

the “true” vehicle states. This mimics (in simulation) the true interdependency between

the estimation and control system as would occur in the real flight hardware during a fully

autonomous flight. This experiment will thus not only indicate the difference in estimation

performance between the different filters, but also how that translates into improved or

worsened control-performance. As a measure of control performance we calculate the

average linear quadratic (LQ) control cost , JLQ, over the duration of an aerial acrobatic

maneuver. The LQ control cost is a function of the difference between the flight-plan

217

0 50 100 150 200
0

1

2

3

4

5
3D position error

m

0 50 100 150 200
0

0.5

1

1.5

2
3D velocity error

time

m
/s

SPKF

EKF

SPKF

EKF

32%
improvement

34%
improvement

3D Position Error

3D Velocity Error

(s)

Figure 5.9: State estimation results (position and velocity error) : SPKF vs. EKF

0 50 100 150 200
0

1

2

3

Absolute Pitch Angle Error

d
e
g
re

e
s

0 50 100 150 200
0

0.5

1

1.5

2

Absolute Roll Angle Error

d
e
g
re

e
s

0 50 100 150 200
0

2

4

6

Absolute Yaw Angle Errors

time

d
e
g
re

e
s

SPKF

EKF

SPKF

EKF

SPKF

EKF

34%
improvement

32%
improvement

65%
improvement

Figure 5.10: State estimation results (Euler angle errors) : SPKF vs. EKF

218

EKF
Control cost : 3.30

SPKF
Control cost : 1.82

Figure 5.11: Comparative closed loop flight trajectories using SDRE controller and either EKF (left)
or SPKF (right) state estimation results. Using the SPKF estimator has reduced the LQ control cost
by 45%. Not only does the SPKF based system more closely track the desired trajectory (shown in
red), it also results in a much better yaw (heading) tracking. This is evident from the fact that the
nose of the UAV should point toward the center of the trajectory circle.

determined desired state trajectory (using all navigational states) and the actually realized

true state trajectory. Again, performing this type of experiment in simulation allows for

the calculation of the true control cost,

JLQ =
N∑
k=0

c
(
xdesk − xk

)
, (5.84)

where xdesk is the desired state (as determined by the flight-planning subsystem), xk is

the true system state (as determined by the high-fidelity simulator) and c(·) is some error

function, e.g., the squared-norm. In a real flight experiment, only the estimated control

cost

ĴLQ =
N∑
k=0

c
(
xdesk − x̂k

)
, (5.85)

can be calculated where x̂k is the EKF or SPKF estimated states.

For this experiment we commanded the helicopter to perform an aggressive high speed

219

nose-in turn. This maneuver requires the helicopter to fly along an imaginary circular

trajectory while constantly pointing its nose towards the exact center of the circle. Accu-

rate position, velocity and especially yaw angle estimates are needed to accurately follow

the desired flight plan with the desired attitude. Figure 5.11 shows the results of this

experiment for both the EKF and SPKF. The desired flight trajectory is indicated by

the red curve, the true realized trajectory in blue and the estimated trajectory in green.

The true attitude of the helicopter is indicated by periodic renderings of the vehicle itself

along the flight path. The left hand plot show the results for the EKF and the right hand

plot those of the SPKF. Clearly for the SPKF case the estimated trajectory is not only

close to the true trajectory (small estimation error), but the true trajectory is close to

the desired trajectory which indicated good control performance. The EKF plots clearly

shows worse performance according to both these criteria. Also evident from the plots is

the much improved yaw angle tracking performance of the SPKF system compared to the

EKF system: Not only does the helicopter renderings on the left indicate that their noses

are not pointing at the true center of the desired circle, they don’t even point to the same

point. The SPKF system on the other hand does much better in estimating and realizing

the correct yaw attitude for this maneuver. Finally, the average control cost of the EKF

system for this maneuver was calculated as JLQ = 3.30, compared to the JLQ = 1.82 of the

SPKF based system. This corresponds to a 45% reduction in control cost. These results

again confirm the superior performance of the SPKF over the EKF.

5.4.4 Experiment SE3: IMU degradation experiments

The single most expensive component of our flight system is the high-performance IMU

manufactured by Inertial Sciences [85]. At a cost of about $10,000, this sensor is more

expensive than the rest of the flight hardware combined (including the helicopter itself).

From a cost-minimization perspective it would thus be beneficial if our SPKF based es-

timator can still perform satisfactory and robustly if the IS-IMU is replaced by a lower

performance, and hence cheaper IMU. This is an important requirement for one of the

continuing research goals of the ONR sponsored “UAV Autonomy” [149, 203] projects, viz.

providing high-quality navigational and situational awareness to low unit cost, expendable

220

UAVs.

In order to test the hypothetical estimation performance of our SPKF based estimator

when driven by a lower quality IMU, we performed a number of state estimation experi-

ments in simulation where we artificially degraded the quality of the IMU measurements

(both the accelerometer and gyro rate sensor readings). Using Equations 5.17 and 5.18

from Section 5.2.3, we can write the IMU observation model as

ãk = ak + abk + nak
(5.86)

ω̃k = ωk + ωbk + nωk
(5.87)

where ak =
[
ax ay az

]T
k

and ωk =
[
p q r

]T
k

are the true linear accelerations

and rotational rates of the vehicle, ãk and ω̃k are the measured (noisy/corrupted) IMU

readings, abk and ωbk are the long term bias/drift terms, and nak
and nωk

are additive

noise terms affecting the instantaneous accuracy of the measurements. Here we assumed

the IMU is located at the center of gravity (c.g.) of the vehicle. See Section 5.2.3 for a

discussion of how this model should be amended if the IMU is located at a finite offset

relative to the c.g. Given this observation model, the IMU signal can be degraded in

following four ways:

1. Increasing the variance of the additive noise

2. Increasing the measurement bias.

3. Increasing the drift-rate of the measurements

4. Reducing the update rate of the IMU

The first factor (additive noise variance) simply affects the absolute accuracy of the IMU

measurements. The second factor (bias) affects the initial bias of the measurements from

their nominal (true) value. The magnitude of this bias term depends on the ambient oper-

ating temperature of the IMU. The third factor (drift-rate) affects the long-term stability

of the IMU measurements. Due to the integration of the initial bias error over time, the

IMU measurements will drift away from their true values over time, even if the vehicle

221

is motionless. This is one of the reasons why “dead reckoning” navigation systems which

are purely based on IMU integration without corrective measurement updates (from GPS,

altimeter, etc.) are notoriously inaccurate over long intervals. The magnitude (rate) of this

drift process is related (proportional) to the ambient operating temperature of the IMU.

Within the MIT-Draper-XCell90 model based simulator, the second and third factor are

combined into a single bias/drift-rate error terms, abk and ωbk in Equations 5.86 and 5.2.

These terms are modeled modeled as [58],

abk = αkāsb + ālb (5.88)

ωbk = αkω̄s
b + ω̄l

b , (5.89)

where āsb and ω̄s
b are the short term bias terms, and ālb and ω̄l

b are the long-term drift

terms. These terms (āsb, ω̄s
b, ālb and ω̄l

b) are set during the simulator initialization by

drawing (sampling) them from zero-mean Gaussian random variables. The magnitude of

the variance of the Gaussian densities they are sampled from determines the magnitude of

the respective bias and drift-rate effect as modeled by Equations 5.88 and 5.89. In other

words, these terms are sampled once during initialization according to:

āsb ∼ N (a;0, σas
b
I
)

(5.90)

ālb ∼ N
(
a;0, σal

b
I
)

(5.91)

ω̄s
b ∼ N (ω;0, σωs

b
I
)

(5.92)

ω̄l
b ∼ N

(
ω;0, σωl

b
I
)
, (5.93)

where the scalar multipliers σas
b
, σal

b
, σωs

b
and σωl

b
determine the magnitude of the re-

spective bias and drift-rate effects. Once sampled, these terms are kept constant for a

specific experimental run (simulation) and the resulting time-varying combined bias/drift

terms are calculated according to the models of Equations 5.88 and 5.89. α is a bias filter-

constant with magnitude less than one, i.e., 0 < α < 1. Typically α ≈ 0.9999 is used.

This results in an exponential decay in the initial short-term bias terms (āsb and ω̄s
b) which

models the IMU temperature dependent transient response during initialization or “warm

up”. Figure 5.12 shows two typical time trajectories of these bias/drift terms as generated

222

0 2 4 6 8 10
3.9

3.91

3.92

3.93

3.94

3.95
x 10

-3
w

b
 (

ra
d

/s
)

0 2 4 6 8 10
-0.2

-0.18

-0.16

-0.14

-0.12

a
b
 (

m
/s

2
)

Nominal

0 2 4 6 8 10
0.0225

0.0226

0.0227

0.0228

time (s)

w
b
 (

ra
d

/s
)

0 2 4 6 8 10
4.8

5

5.2

5.4

5.6

time (s)

a
b
 (

m
/s

2
)

Nominal

10x Nominal 10X Nominal

Figure 5.12: Typical bias/drift-rate plots for IMU simulation. The top two plots show the nominal
(modeling the true ISIS-IMU) response for a specific realization of the accelerometer and gyro-rate
bias/drift-rate components. The bottom two plots show another realization where the quality of the
IMU was synthetically degraded by increasing the variance of the bias/drift-rate noise sources (Equa-
tions 5.90 - 5.93) ten fold.

by the MIT-Draper-XCell-90 simulator. The top two plots of the figure show the nomi-

nal (modeling the true ISIS-IMU) response for a specific realization of the accelerometer

and gyro-rate bias/drift-rate components. The bottom two plots show another realization

where the quality of the IMU was synthetically degraded by increasing the variance of the

bias/drift-rate noise sources (Equations 5.90 - 5.93) ten fold.

The fourth and final factor, IMU update rate, determines at what rate the IMU can

provide new data to the flight computer. Since the IMU directly drives the kinematic

model, the filter update rate is directly linked to the IMU rate. A reduction of the update

rate is thus expected to negatively impact the estimation performance of the system.

For the IMU degradation experiments reported here, we simulated an aggressive take-

off followed by the same “nose-in turn” as used in Experiment SE2. We varied each of the

above mentioned four IMU “performance degraders” separately while calculating average

estimation error as well as average control cost over the complete flight profile. As already

mentioned, the simulator combines the bias and drift-rate factors into a single term. We

223

10
-1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

noise multiplier

R
M

S
E

Estimation Errsr : Velocity

10
-1

10
0

10
1

10
2

0.015

0.02

0.025

0.03

0.035

0.04

noise multiplier
R

M
S

E

Estimation Error : Gyro Rates

10
-1

10
0

10
1

10
2

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

noise multiplier

R
M

S
E

Estimation Error : Euler Ang les

10
-1

10
0

10
1

10
2

0.5

1

1.5

2

2.5

3

3.5

noise multiplier

R
M

S
E

Estimation Error : Position

10
-1

10
0

10
1

10
2

0

5

10

15

20

25

noise multiplier

S
D

R
E

 c
o
s
t

Estimation Error : Control Cost

ekf

spkf

ekf

spkf

ekf

spkf

ekf

spkf
ekf

spkf

Figure 5.13: IMU degradation experiment: additive noise

varied the total magnitude of this factor in the same manner as was demonstrated in

Figure 5.12, i.e., we scaled all of the relevant nominal variance terms using a single noise-

multiplier. Although varying these factors separately would have been preferable, the

combined approach was dictated by the current design of the simulator. We plan to

upgrade the simulator in the future allowing for more accurate IMU modeling.

Figure 5.13 shows the results for the additive noise variation experiment. As the first

figure indicates, the SPKF state estimator robustly maintains a high level of state estimate

accuracy as well as a resulting low control cost over a wide range of additive noise levels.

Only at very high noise levels does the performance start to degrade significantly. Over

the whole range the SPKF estimator also consistently outperforms the EKF based system

and also exhibit better degradation characteristics.

For the next set of experiments the variance of the bias/drift-rate noise terms were

scaled relative to their nominal values using a single scalar noise-multiplier factor. All

224

10
-1

10
0

10
1

0

1

2

3

4

5

bias /drift m ult iplier

R
M

S
E

E stim ation E rror : V elocity

10
-1

10
0

10
1

0.1

0.2

0.3

0.4

0.5

0.6

bias /drift m ult iplier

R
M

S
E

E stim ation E rror : E uler Ang les

10
-1

10
0

10
1

0

2

4

6

8

10

bias /drift m ult iplier

R
M

S
E

E stim ation E rror : P osition

10
-1

10
0

10
1

10
0

10
1

10
2

10
3

10
4

bias /drift m ult iplier

S
D

R
E

 c
o
s
t

E stim ation E rror : C ontro l C ost

ek f

spk f

ek f

spk f

ek f

spk f

ek f

spk f

Figure 5.14: IMU degradation experiment: drift/bias

other experiment parameters were kept constant. The same flight profile as the previous

experiment is used. Again estimation errors and control costs where averaged over the

complete trajectory. Also note that for all of the different runs, nothing was changed with

regard to filter/estimator implementations (EKF and SPKF), i.e., the filters were not fine

tuned to the different bias/drift levels through noise variance adjustments on the “filter

side”. Only the levels in the simulator was changed. This was done to determine how ro-

bustly the different estimators can handle observation model mismatch. Figure 5.14 shows

the results for this sensor bias/drift variation experiment. The SPKF again consistently

outperform the EKF and maintains near nominal performance over the whole variance

range. Only at high bias/drift-rate levels does the performance begin to degrade and even

then the degradation is very gradual.

For the final IMU degradation test, we performed a number of simulation experiments

where we artificially reduced the update rate of the IMU. The actual used were: (1) 100Hz

225

1 2 3 4 5
0.8

1

1.2

1.4

1.6

1.8

2

2.2

experiment

n
o

rm
a

li
z
e

d
 a

v
e

ra
g

e
 M

S
E

Effect of IMU rate on estimation accuracy

100Hz

50Hz - 40ms GPS lag

50Hz - 60ms GPS lag

20Hz

10Hz

EKF @ 100Hz

SPKF

Figure 5.15: IMU degradation experiment: IMU update rate .

(nominal value) - 50ms GPS latency; (2) 50Hz - 40ms GPS latency setting; (3) 50Hz -

60ms GPS latency setting; (4) 20Hz - 50ms GPS latency; (5) 10Hz - 50ms GPS latency.

Since we still need to deal with GPS latency, which is 50ms for our Ashtech G12 GPS

receiver [130], the 50Hz IMU update rate experiment posed a problem: At a 50Hz rate

each update window is 20ms long, which is not an integer divisor of the GPS latency. This

means that we have to either assume a 40ms or a 60ms latency window for the GPS in the

SPKF based latency compensated state estimator. We thus repeated the 50Hz experiment

twice: once for the 40ms latency setting and once for the 60ms setting. Unfortunately

for this experiment we could not calculate comparative performance relative to the EKF

due to implementational constraints: The MIT designed EKF is tightly integrated into

the flight simulation software, both for the software-in-the-loop and hardware-in-the-loop

systems which has been highly optimized for the specific rates of the different components

(sensors, controller, estimator, etc.). Unlike our external Matlab implemented SPKF esti-

mator, accommodating a different IMU rate is thus not easily achieved without significantly

changing certain parts of their already optimized source code. For this reason we simply

compared the performance of our SPKF estimator at the different IMU rates relative to

226

its own performance at the optimal 100Hz rate. The normalized (with respect to the nom-

inal 100Hz estimator) average MSE values are shown in Figure 5.15. In comparison, the

nominal EKF performance at 100Hz is also shown (normalized to SPKF @ 100Hz data

point).

Clearly the SPKF based estimator still performs quite well even when the IMU (and

filter) is running at half of its nominal rate (50Hz). It also seems like the 40ms approxima-

tion for the GPS latency gives better performance especially with regard to position and

velocity estimates. This indicated that underestimating the latency seems to be less detri-

mental to filter performance than over estimation. In general the performance with regard

to IMU rate will most likely be a function of the severity (aggressiveness) of the vehicles

maneuvers. In other words, if the roll, pitch and yaw rate as well as linear acceleration

bandwidths increase, one would expect the requirements on a fast IMU update rate to

become more strict. Also note how, even at low update rates, the SPKF still outperforms

the nominal EKF performance running at the full 100Hz IMU rate.

Based on the results of the earlier state estimation experiments and the IMU degra-

dation robustness experiments reported above, we feel confident that our GPS latency

compensated SPKF state estimator provides a robust, highly accurate, stand-alone nav-

igation solution for UAV platforms. Since this system is mostly vehicle agnostic, we are

confident that it can easily be adapted to work on a variety of related aircraft platforms

utilizing avionics sensors of varying performance. This is an ongoing research issue which

is addressed further in Chapter 7.

5.5 Parameter Estimation Experimental Results

In Section 3.5.2 of Chapter 3 we showed how the SPKF can be used for parameter es-

timation (system identification) given a general nonlinear DSSM. In this section we will

show how we used such a SPKF based parameter estimation system to determine the true

values of the parameters of the MIT-Draper-XCell90 model.

As pointed out earlier, one of the advantages of the 6DOF IMU driven kinematic model

(as used in our SPKF state estimator) is that it is for the most part “vehicle agnostic” and

227

that it has very few parameters. The SDRE control system however, makes use of the

full nonlinear MIT-Draper-XCell90 model when calculating the optimal control law. This

requires it to also known the true values of the parameters of this model. Table 5.2

list the ≈ 70 parameters that are used by this model. If these values are not accurately

known a-priori19, they can be determined (or at least fine-tuned) on-line using a parameter

estimation system. As discussed in Chapter 3, system parameters can be estimated by such

a system if we have access to the clean system states. Since we almost never have access to

the clean states, most practical parameter estimation systems are in fact dual estimation

systems, i.e., we need to estimate the states and the parameters. Such a system is discussed

in detail in Section 5.6.

In this section we will thus determine if, in the best (if not practical) case scenario

where we do have access to the true system states, we can in fact determine some of the

systems model parameters. A number of parameter estimation experiments using a SPKF

applied to the full MIT-Draper-XCell90 model is presented as a “proof of concept”.

5.5.1 Implementation Issues

Since the operational stability of any vehicle control system is of high importance, certain

safeguards must be put in place to ensure robustness and limit the “worst case scenario”

that might occur especially when real-time adaptive systems are used. This has direct

implications on any parameter estimation system which is used to set the values of the

system parameters as used by the control system. For this reason, the parameters are often

not estimated directly, but rather lower magnitude “correction terms” are estimated which

are then added to some nominal a-priori value of the parameter vector. In other words, if

w is the true value of the parameter vector, the parameter estimation system makes use

of the following decomposition:

w = w̃0 + δw , (5.94)

19Typically a variety of complex off-line experimental methods are used to accurately estimate certain
“observable” system parameters. For detail on how this was done for our specific UAV platform, please
consult [58].

228

where w̃0 is the nominal value of the parameters and δw is the relative offset vector. The

parameter estimation system is now used to rather estimate δw, i.e., ˆδw, than ŵ. To

further prevent divergence of the estimates one can use a nonlinear “squashing function”

to limit the absolute magnitude of the estimated correction term, i.e.,

w = w̃0 + tanh (δw) . (5.95)

This will prevent the estimation system calculating parameter estimates that might make

make mathematical sense, but not physical sense, such as negative moments of inertia or

negative masses.

If the relative magnitude of the parameters to be estimated differs significantly, it can

possibly lead to numerical instability (covariance matrices becoming ill-conditioned) as

well as slow convergence [75]. For this reason, we pre-multiply the limited correction term

by a scaling gain factor, i.e.,

w = w̃0 + gw · tanh (δw) . (5.96)

The gain vector term is given by,

gw = αw |w̃0| , (5.97)

where αw is a scalar value usually set to 0.1 ≤ αw ≤ 0.4 and |w̃0| is the absolute value of

the nominal parameter values vector. Using this formulation, the actual parameter vector

estimated by the SPKF parameter estimation filter is given by,

ŵδ = ˆδw = arctan [(ŵ − w̃0) ./gw] , (5.98)

where ./ is the per-element vector division operator, i.e, a./b = [a1/b1 a2/b2 . . . an/bn].

We found this formulation to result in improved convergence speed and numerically well

behaved estimates and covariances.

All of the parameter estimation experiments presented below made use of the SR-CDKF

implementation of the SPKF framework.

229

5.5.2 Experiment PE1: Static system parameter identification

In this experiment we flew the helicopter through a number of aggressive maneuvers while

running an incorrectly initialized SPKF based parameter estimation filter on a subset of

the MIT-Draper-XCell-90 model parameter vector. Specifically, we estimated the following

parameters: mass (m), moments of inertia (Ixx, Iyy, Izz, Ixz), main rotor hub torsional

stiffness (Kβ), main rotor lift curve slope (Cmrla), main rotor profile drag coefficient (Cmrdo),

and the tail rotor pitch offset (φ̃tr0). The helicopter sat on the ground for 5 seconds (for

filter initialization) after which a rapid take-off was commanded. Figure 5.16 shows the

estimation results for the first 30 seconds of the flight. The dashed red lines indicate the

true values of the different model parameters (as used in the simulator) and the solid blue

lines indicate the trajectory of the estimates generated by the SPKF. The large (±20%)

initialization error for the different parameters are clearly visible over the first 5 seconds of

all the plots. Clearly the filter quickly converges to the true values of the underlying system

parameters. For this experiment we used the Robbins-Monro method (see Section 3.5.2

for detail) to adapt the covariance of the artificial process noise on-line.

5.5.3 Experiment PE2: Dynamic system parameter identification and
tracking

One of the ultimate aims of our SPKF based parameter estimation system is not only to

identify but to track changes in system parameters on-line. Many real-world flight events

such as payload deployment or fault conditions20 can result in changes in the flight model

parameters which, if not compensated for in the GNC system, can lead to suboptimal

behavior or even system failure.

In this experiment we used the SPKF based parameter estimation system to track the

mass of the helicopter during the course of a flight. We dynamically changed the true mass

of the helicopter over time, simulating the effect of (linear) fuel consumption. We assumed

the helicopter weighs 8kg when fully fueled and that it will consume 1.75kg of fuel over the

20Fault conditions can include anything from stuck or broken actuators to significant flight surface
damage caused by impacts, weather, etc.

230

0 10 20
7

8

9

10
mass

p
a

ra
m

e
te

r
v
a

lu
e

0 10 20
4

4.5

5

5.5

6
CLa_mr

0 10 20
0.018

0.02

0.022

0.024

0.026
CDo_mr

0 10 20

0.2

0.22

0.24

ruddTrim

p
a

ra
m

e
te

r
v
a

lu
e

0 10 20
0.16

0.18

0.2

0.22
Ixx

0 10 20
0.25

0.3

0.35
Iyy

0 10 20
0.2

0.25

0.3

0.35

0.4
Izz

time (s)

p
a

ra
m

e
te

r
v
a

lu
e

0 10 20
-0.01

0

0.01

0.02

0.03
Ixz

time (s)
0 10 20

40

45

50

55
Kbeta

time (s)

m
mr

laC

0

tr

xxI yyI

zzI xzI K

mr

doC

Figure 5.16: Parameter estimation using full nonlinear MIT-Draper-XCell-90 model and known states.
The dashed red lines indicate the true value of the system parameters and the blue lines indicates the
estimates generated by the SPKF based parameter estimation system.

231

first 30 seconds of the flight21. At the 25 second mark of the flight, we further simulated

a discrete 2kg step in the true value of the helicopter’s mass, corresponding to a payload

deployment22. For this experiment we again used a SR-CDKF SPKF implementation as

well as the Robbins-Monro process noise adaptation technique.

Figure 5.17 shows the SPKF’s tracking results for this experiment. Clearly the estima-

tion system is quite capable of accurately tracking the true underlying system parameter,

with only a little bit of overshoot right after the “step” at 25 seconds.

Unfortunately, as we already pointed out earlier, these parameter estimation experi-

ments makes use of the known (non estimated) states of the system as inputs to the SPKF

estimator. Therefore, the excellent tracking performance we witnessed in this experiment

is at most an upper limit on performance. Using a more realistic (and practically imple-

mentable) dual estimation system, we expect the estimation and tracking performance to

go down. This is further investigated in the next section where we repeat this experiment

using a dual estimation framework.

5.6 Dual Estimation Experimental Results

In this final section of the chapter, we bring together the kinematic model based SPKF

state estimator and the full MIT-Draper-XCell-90 model based parameter estimator in an

attempt to perform dual (state and parameter) estimation on the UAV system. Although

we already showed how the kinematic model based SPKF state estimator delivers very

high quality estimates of the navigational state of the vehicle (as defined by Equation 5.9),

there are further auxiliary state variables which are important from a control system design

perspective that are not estimated by this estimator [23, 22, 21, 20]. These states are

however contained in the 43 dimensional state vector of the full MIT-Draper-XCell-90

model (see Equation 5.5). In this section we will describe a SPKF based dual estimation

framework we implemented to estimate some of these auxiliary states as well as estimate

and track certain model parameters.

21Even though this “artificially low” fuel efficiency is more akin to that of a SUV than a UAV, it does
allow for an interesting parameter tracking problem.

22For a UCAV (unmanned combat aerial vehicles) this might correspond to the firing/releasing/dropping
of a munition.

232

0 5 10 15 20 25 30 35
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

time (s)

k
g

Mass

true value

SPKF
estimate

Figure 5.17: Tracking a time-varying system parameter (vehicle mass in this case).

233

5.6.1 System Implementation

We make use of a joint SPKF framework (see Section 3.5.3) with the joint state defined

as the concatenation of the 26 dimensional state of the MIT-Draper-XCell-90 model with

whatever subset of parameters (from the same model) we wish to estimate.

Joint Process Model

The joint process model is given by the concatenation of the full nonlinear MIT-Draper-

XCell-90 model with the standard random walk parameter estimation model as presented

in Section 3.5.3. The full C-code implemented MIT-Draper-XCell-90 model (as used in the

high-fidelity simulator) was wrapped in a Matlab MEX file layer [187] so that it can be

called directly from the SPKF based joint estimator. The process noise vector dimension

is scaled accordingly and adapted using the Robbins-Monro method.

Joint Observation Model

For our observation model of the joint state, we make use of the standard “direct noisy

form” given by

yk = xsubk + nsubk , (5.99)

were xsubk is the subset of the full state vector that is being observed and nsubk is the

corresponding observation noise term. For part of our observation vector we use the output

of the kinematic state estimator as the direct (but noisy) partial observation of joint system

state, i.e.,

yak ≡ x̂ksek , (5.100)

where x̂ksek =
[

p̂Tk v̂Tk êTk

]T
is a 10×1 sub-vector composed of the first 10 components

of the state estimate vector as calculated by the kinematic model based SPKF estimator,

described in Section 5.3.1. The time-varying covariance of this estimate, Pxkse
k

, is used as

234

the observation noise covariance of the first part of the observation, i.e.,

Rna
k

= E
[
nak (nak)

T
]

= E

[(
yak − xksek

)(
yak − xksek

)T]
= E

[(
x̂ksek − xksek

)(
x̂ksek − xksek

)T]
= Pxkse

k
. (5.101)

In other words, we ran the previously described kinematic model based SPKF state esti-

mator (with GPS latency compensation) in parallel with the currently discussed dual es-

timator to generate part of the observation vector online. One can think of the kinematic

model based state estimator as a complex higher-level observation sensor that generates

partial measurements of the larger MIT-Draper-XCell-90 model based system for the joint

SPKF estimator.

We further augmented the observation vector with the bias-corrected IMU gyro rate

measurements, i.e.,

ybk ≡ ω̄k , (5.102)

where ω̄k is defined by Equation 5.18. The noise covariance of this term, Rna
k
, is set

according to the noise specifications of the IS-IMU [85]. The final combined observation

model is thus given by,

yk =

⎡⎣ yak

ybk

⎤⎦ =

⎡⎣ x̂ksek

ω̄k

⎤⎦ , (5.103)

with measurement noise covariance given by,

Rnsub
k

=

⎡⎣ Rna
k

0

0 Rnb
k

⎤⎦ =

⎡⎣ Pxkse
k

0

0 Rω̄k

⎤⎦ . (5.104)

Using the process and observation models described above within a standard joint

SPKF framework (utilizing a SR-CDKF core), we performed the following dual estimation

experiments as a preliminary proof of concept. As we will further discuss in Chapter 7 this

235

is an ongoing research effort within the larger UAV project.

5.6.2 Experiment D1: Joint estimation of auxiliary states and dynamic
tracking of vehicle mass

We ran a number of experiments where we estimated the full 26 dimensional state of the

MIT-Draper-XCell-90 model, while at the same time trying to estimate and track a certain

subset of time-varying parameters. The specific auxiliary states we are interested in are the

longitudinal and lateral flapping angles of the main rotor blades (βlat and βlon), as well as

the rotational rate states of the main engine shaft (Ωmr and ΩmrI). These states estimates

provide useful information which can be used to improve the design and robustness of the

SDRE controller [20, 21]. At the same time we tracked the helicopter’s mass parameter

using the same “fuel-consumption/payload-deployment” simulation of Experiment PE2.

The dual estimation results of this experiment are shown in Figures 5.18 and 5.19.

Figure 5.18 shows how the joint SPKF is capable of accurately tracking the flapping

angles and engine RPM states of the helicopter. Figure 5.19 shows how the estimation

system tracks the time varying mass of the helicopter: Again, a large initial mis-adjustment

of the mass estimate was quickly corrected. The estimator response to the discrete change

in mass (due to payload deployment) at the 25 second mark is clearly slower (over damped)

compared to the response of the pure parameter estimator (Section 5.5: Experiment PE2).

The system is capable however of accurately tracking the subsequent linear decrease in

mass due to fuel consumption.

It turned out that full dual estimation (all states and parameters) for the complete UAV

system is an extremely hard problem; not so much in estimating the auxiliary states, but in

accurately identifying the full set of system parameters using only the noisy observations

(as defined in Section 5.6.1) as input. We found that the joint estimator were able to

converge to the true values of some of the parameters, while sometimes getting stuck in

local minima for the other parameters, depending on the type and aggressiveness of the

maneuver being flown. This is probably related to the notion of persistently exciting inputs

[124, 122], i.e., not all modes of the helicopter’s dynamics are sufficiently excited by any

given maneuver such that the navigational state estimates generated by the kinematic

236

87 88 89 90 91 92
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

beta_lat

time (s)

ra
d

87 88 89 90 91 92
-0.01

-0.005

0

0.005

0.01

0.015

beta_lon

time (s)

ra
d

87 88 89 90 91 92
160

165

170

175

omega_mr

time (s)

ra
d

/s
e

c

87 88 89 90 91 92
42

44

46

48

50

omega_int

time (s)

ra
d

lat lon

mr mrI

Figure 5.18: Joint estimation : Auxiliary hidden system states

0 50 100 150
5

6

7

8

9

time (s)

true value

SPKF
estimate

k
g

Mass

Figure 5.19: Joint estimation : tracking time-varying system mass

237

model based estimator can accurately observe the effect of all model parameters at all

time. A dual SPKF implementation (as opposed to the joint SPKF) exhibited the same

difficulties in uniquely identifying all parameters. This is an ongoing research issue.

5.7 Chapter Summary

In this chapter we covered in detail how a SPKF based integrated guidance & navigation

system (GNS) for UAV autonomy was developed, implemented and tested. This appli-

cation served as a testing bed and real-world verification of many of the theoretical and

algorithmic concepts developed and presented in the earlier chapters. Although this spe-

cific application is an ongoing research effort under the earlier mentioned DARPA [38, 105]

and ONR [149, 203] sponsored research projects, with a number of milestones still out-

standing (such as testing on real hardware and real flight-data with further refinement of

the dual estimation system), the preliminary results achieved so far and reported here is

very encouraging. To our judgment we have shown that the SPKF is not only a viable, but

in fact, a preferred alternative to the industry standard EKF currently used in most UAV

GNC systems. All of the experiments showed how the SPKF based estimator consistently

outperforms the hand-tuned state-of-the-art EKF based system developed by MIT for this

exact platform. Furthermore, a novel new sensor latency technique that directly leverages

the sigma-point approach of the SPKF framework was introduced. We demonstrated the

increased estimation accuracy benefit of this approach through experimental verification.

We are currently in the process of comparing this new method to other published latency

compensation techniques. The results of this investigation will be published in due course

[195].

The next step in the real-world validation of the system presented in this chapter, is

testing it on real flight-data (as opposed to simulated data). We are currently in the process

of recording the needed telemetry using our XCell-90 UAV platform for this purpose as

well as migrating the Matlab implemented SPKF code to C for real-time implementation

of the flight hardware.

Chapter 6

Non-Gaussian Bayesian Estimation:

Sequential Monte Carlo / SPKF Hybrids

6.1 Introduction

The SPKF, like the EKF, still assumes a Gaussian posterior which can fail in certain nonlin-

ear non-Gaussian problems with multi-modal and/or heavy tailed posterior distributions.

The Gaussian sum filter (GSF) [3] addresses this issue by approximating the posterior

density with a finite Gaussian mixture and can be interpreted as a parallel bank of EKFs.

Unfortunately, due to the use of the EKF as a subcomponent, it also suffers from similar

shortcomings as the EKF. Recently, particle based sampling filters have been proposed

and used successfully to recursively update the posterior distribution using sequential im-

portance sampling and resampling [45]. These methods (collectively called particle filters)

approximate the posterior by a set of weighted samples without making any explicit as-

sumption about its form and can thus be used in general nonlinear, non-Gaussian systems.

In this chapter, we present hybrid methods that utilizes the SPKF to augment and improve

the standard particle filter, specifically through generation of the importance proposal dis-

tributions. We will review the background fundamentals necessary to introduce particle

filtering and then discuss the two extensions based on the SPKF, the Sigma-Point Particle

Filter (SPPF) and the Gaussian-Mixture Sigma-Point Particle Filter (GMSPPF).

238

239

6.2 Particle Filters: Monte Carlo Simulation and Sequential

Importance Sampling

Particle filtering is based on Monte Carlo simulation with sequential importance sampling

(SIS) [44, 118]. The overall goal is to directly implement optimal recursive Bayesian esti-

mation (see Section 1.4) by recursively approximating the complete posterior state density.

6.2.1 Perfect Monte Carlo Simulation

In Monte Carlo simulation, a set of weighted particles (samples), drawn from the posterior

distribution, is used to map integrals to discrete sums. More precisely, the posterior filtering

density can be approximated by the following empirical estimate:

p(xk|y1:k) ≈ p̂(xk|y1:k) =
1
N

N∑
i=1

δ
(
xk − x

(i)
k

)
, (6.1)

where the random samples {x(i); i = 1, 2, . . . , N}, are drawn from p(xk|y1:k) and δ(·)
denotes the Dirac delta function. The posterior filtering density, p(xk|y1:k), is a marginal

of the full posterior density given by p(x0:k|y1:k). Consequently, any expectations of the

form

E [g (xk)] =
∫

g (xk) p(xk|y1:k)dxk , (6.2)

can be approximated by the following estimate:

E [g (xk)] ≈ Ẽ [g (xk)] =
1
N

N∑
i=1

g
(
x

(i)
k

)
. (6.3)

For example, letting g(xk) = xk yields the optimal MMSE estimate x̂k ≈ E [xk|y1:k]. The

particles x
(i)
k are assumed to be independent and identically distributed (i.i.d.) for the

approximation to hold. According to the law of large numbers, as N goes to infinity the

estimate converges to the true expectation almost surely, i.e.,

Ẽ [g (xk)]
a.s.−−−−→

N→∞
E [g (xk)] . (6.4)

240

Moreover, if the posterior variance of g (xk) is bounded, that is

var [g (xk)] = E
[
g (xk) · g (xk)

T
]
<∞ , (6.5)

then the following central limit theorem holds [45]:

√
N
(
Ẽ [g (xk)] − E [g (xk)]

)
=⇒
N→∞

N (0, var [g (xk)]) , (6.6)

where =⇒
N→∞

denotes convergence in distribution.

Sampling from the filtering posterior is only a special case of Monte Carlo simulation

which in general deals with the complete posterior density, p(x0:k|y1:k). We will use this

more general form to derive the particle filter algorithm.

6.2.2 Bayesian Importance Sampling

As mentioned in the previous section, one can approximate the posterior distribution with

a function on a finite discrete support. Consequently, it follows from the strong law of

large numbers that as the number of samples N increases, expectations can be mapped

into sums. Unfortunately, it is often impossible to sample directly from the posterior

density function. However, we can circumvent this difficulty by making use of importance

sampling and alternatively sampling from a known, easy-to-sample, proposal distribution

π(x0:k|y1:k). The exact form of this distribution is a critical design issue and is usually

chosen in order to facilitate easy sampling. The details of this is discussed later. Given

this proposal distribution we can make use of the following substitution,

E [g (x0:k)] =
∫

g (x0:k)
p(x0:k|y1:k)
π(x0:k|y1:k)

π(x0:k|y1:k)dx0:k

=
∫

g (x0:k)
p(y1:k|x0:k)p(x0:k)
p(y1:k)π(x0:k|y1:k)

π(x0:k|y1:k)dx0:k

=
∫

g (x0:k)
wk(x0:k)
p(y1:k)

π(x0:k|y1:k)dx0:k , (6.7)

where the variables wk(x0:k) are known as the unnormalized importance weights, and are

given by

wk(x0:k) =
p(y1:k|x0:k)p(x0:k)

π(x0:k|y1:k)
. (6.8)

241

We often drop the explicit argument (x0:k) for notational convenience, i.e., wk ≡ wk(x0:k).

Take note that the weights wk are still a function of the state variable x0:k. We can get rid

of the generally unknown or hard to calculate normalizing density p(y1:k) in Equation 6.7

as follows:

E [g (x0:k)] =
1

p(y1:k)

∫
g (x0:k)wk(x0:k)π(x0:k|y1:k)dx0:k

=
∫

g (x0:k)wk(x0:k)π(x0:k|y1:k)dx0:k∫
p(y1:k|x0:k)p(x0:k)

π(x0:k |y1:k)
π(x0:k |y1:k)dx0:k

=
∫

g (x0:k)wk(x0:k)π(x0:k|y1:k)dx0:k∫
wk(x0:k)π(x0:k|y1:k)dx0:k

=
Eπ [wk(x0:k)g (x0:k)]

Eπ [wk(x0:k)]
, (6.9)

where the notation Eπ [·] has been used to emphasize that the expectations are taken

over the proposal distribution π(x0:k|y1:k). Hence, by drawing samples from the proposal

distribution function π(x0:k|y1:k), we can approximate the expectations of interest by the

following estimate:

E [g (x0:k)] ≈ Ẽ [g (x0:k)] =
1
N

∑N
i=1 g

(
x

(i)
0:k

)
wk

(
x

(i)
0:k

)
1
N

∑N
i=1 wk

(
x

(i)
0:k

)
=

N∑
i=1

w̃
(i)
k g
(
x

(i)
0:k

)
, (6.10)

where the normalized importance weights w̃(i)
k are given by

w̃
(i)
k =

wk

(
x

(i)
0:k

)
∑N

j=1wk

(
x

(j)
0:k

) (6.11)

≡ w
(i)
k /

N∑
j=1

w
(j)
k , (6.12)

where we again used notational shorthand for Equation 6.12.

The estimate of Equation 6.10 is biased since it is itself calculated as the ratio of

estimates. However, it is possible to obtain asymptotic convergence and a central limit

242

theorem for Ẽ [g (x0:k)] under the following assumptions [44, 63]:

1. x
(i)
0:k corresponds to a set of i.i.d. samples drawn from the proposal distribution;

the support of the proposal distribution includes the support of the true posterior

distribution and E [g (x0:k)] exists and is finite.

2. The expectations of w̃k and w̃kg2 (x0:k) over the posterior distribution exist and are

finite.

A sufficient condition to verify the second assumption is to have bounds on the variance of

g (x0:k) and on the importance weights [63, 34]. Thus, as N tends to infinity, the posterior

density function can be approximated arbitrarily well by the empirical point-mass estimate

p̂(x0:k|y1:k) =
N∑
i=1

w̃
(i)
k δ
(
x0:k − x

(i)
0:k

)
. (6.13)

6.2.3 Sequential Importance Sampling

In order to compute a sequential estimate of the posterior distribution at time k without

modifying the previously simulated states x
(i)
0:k−1, proposal distributions of the following

form can be used,

π(x0:k|y1:k) = π(x0:k−1|y1:k−1)π(xk|x0:k−1,y1:k) . (6.14)

Here we are making the assumption that the current state is not dependent on future

observations. This is consistent with the 1st order Markov nature of the DSSMs we consider

in this thesis (see Chapter 1). It needs to be emphasized that more general proposals, which

modify previously simulated trajectories, might be necessary in some scenarios [154]. This

issue is, however, beyond the scope of what is presented here. Under our assumptions

that the states correspond to a Markov process and that the observations are conditionally

independent given the states, we get

p(x0:k) = p(x0)
k∏
j=1

p(xj |xj−1) and p(y1:k|x0:k) =
k∏
j=1

p(yj|xj) . (6.15)

243

By substituting Equations 6.14 and 6.15 into Equation 6.8, a recursive estimate for the

importance weights can be derived as follows:

wk =
p(y1:k|x0:k)p(x0:k)

π(x0:k−1|y1:k−1)π(xk|x0:k−1,y1:k)
(6.16)

=
p(y1:k|x0:k)p(x0:k)

π(x0:k−1|y1:k−1)π(xk|x0:k−1,y1:k)
× p(y1:k−1|x0:k−1)p(x0:k−1)
p(y1:k−1|x0:k−1)p(x0:k−1)

(6.17)

=
p(y1:k−1|x0:k−1)p(x0:k−1)p(y1:k|x0:k)p(x0:k)

π(x0:k−1|y1:k−1)p(y1:k−1|x0:k−1)p(x0:k−1)π(xk|x0:k−1,y1:k)
(6.18)

= wk−1
p(y1:k|x0:k)p(x0:k)

p(y1:k−1|x0:k−1)p(x0:k−1)π(xk|x0:k−1,y1:k)
(6.19)

= wk−1

[∏k
j=1 p(yj |xj)

] [
p(x0)

∏k
j=1 p(xj |xj−1)

]
[∏k−1

j=1 p(yj |xj)
] [
p(x0)

∏k−1
j=1 p(xj|xj−1)

]
π(xk|x0:k−1,y1:k)

(6.20)

= wk−1
p(yk|xk)p(xk|xk−1)
π(xk|x0:k−1,y1:k)

(6.21)

Equation 6.21 provides a mechanism to sequentially update the importance weights,

given an appropriate choice of proposal distribution, π(xk|x0:k−1,y1:k). The exact form of

this distribution is a critical design issue and is usually approximated in order to facilitate

easy sampling. The details of this is discussed in the next section. Since we can sample

from the proposal distribution,

x
(i)
k ∼ π(xk|x0:k−1,y1:k) i = 1 . . . N , (6.22)

and evaluate the likelihood p(yk|x(i)
k) and transition probabilities p(x(i)

k |xk−1), all we need

to do is generate a prior set of samples (particles) and iteratively compute the importance

weights. The initial set of samples (particles) are equally weighted, i.e.,

w
(i)
0 =

1
N

i = 1 . . . N . (6.23)

This procedure, known as sequential importance sampling (SIS), allows us to obtain the

244

type of estimates described by Equation 6.10, i.e.,

E [g (xk)] ≈
N∑
i=1

w̃
(i)
k g
(
x

(i)
k

)
. (6.24)

Since we are focusing on the filtering and not smoothing, we do not need to keep the whole

history of the sample trajectories. For this reason g
(
x

(i)
0:k

)
and x

(i)
0:k in Equation 6.10 was

replaced by g
(
x

(i)
k

)
and x

(i)
k in Equation 6.24. This is the standard form of the estimator

used for sequential importance sampling based filtering. Finally, as N tends to infinity, the

posterior filtering density can be approximated arbitrarily well by the following empirical

point-mass estimate:

p̂(xk|y1:k) =
N∑
i=1

w̃
(i)
k δ
(
xk − x

(i)
k

)
. (6.25)

These point-mass estimates can approximate any general distribution arbitrarily well, lim-

ited only by the number of particles used and how well the earlier-mentioned importance

sampling conditions are met. In contrast, the posterior distribution calculated by the EKF

is a minimum-variance Gaussian approximation of the true posterior distribution, which

inherently cannot capture complex structure such as multimodalities, skewness, or other

higher-order moments.

Choice of Proposal Distribution

The choice of proposal function is one of the most critical design issues in importance

sampling algorithms and forms the main issue addressed in this chapter. Doucet shows in

[43] that the optimal proposal distribution minimizes the variance of the proposal weights.

He goes on to prove [46] that the proposal distribution

π(xk|x0:k−1,y1:k) � p(xk|xk−1,yk) (6.26)

minimizes the variance of the importance weights conditional on x0:k−1 and y1:k. This

choice of proposal distribution has also been advocated by other researchers [108, 120, 208]

and is referred to in general as the optimal proposal distribution [46]. Nonetheless, the

245

distribution

π(xk|x0:k−1,y1:k) � p(xk|xk−1) , (6.27)

(the transition prior) is the most popular choice 1 of proposal distribution [7, 10, 68,

87, 106]. Although it results in higher Monte Carlo variation than the optimal proposal

p(xk|xk−1,yk), as a result of it not incorporating the most recent observations, it is usually

easier to implement [16, 44, 118]. This “ease of implementation” can be seen by substituting

Equation 6.27 back into the importance weight expression (Equation 6.21):

wk = wk−1
p(yk|xk)p(xk|xk−1)
π(xk|x0:k−1,y1:k)

= wk−1
p(yk|xk)p(xk|xk−1)

p(xk|xk−1)
= wk−1p(yk|xk) . (6.28)

In other words, if we choose the transition prior as our proposal distribution to sample

from, the importance weights are easily updated by simply evaluating the observation

likelihood density p(yk|xk) for the sampled particle set and multiplying with the previous

weights. The transition prior is defined in terms of the probabilistic model governing the

system’s states’ evolution (Equation 1.15) and the process noise statistics. For example, if

an additive Gaussian process noise model is used, the transition prior is simply,

p(xk|xk−1) = N (xk; f (xk−1,0) ,Rvk−1

)
, (6.29)

where f(·) is the nonlinear process model and Rvk−1
is the process noise covariance (we

assumed the process noise vk is zero mean).

Even though it is easy and convenient to use the transition prior as proposal distri-

bution, it can possibly lead to problems. Unlike the optimal proposal distribution, the

transition prior is not conditioned on the observed data, including the latest observation.

As illustrated in Figure 6.1, if we fail to use the latest available information contained in

current observation to propose new values for the states, only a few particles will have signif-

icant importance weights when their likelihood are evaluated. It is therefore of paramount

1A � B implies that we choose B to approximate A.

246

LikelihoodPrior

Figure 6.1: Including the most current observation into the proposal distribution, allows us to move
the samples in the prior to regions of high likelihood. This is of paramount importance if the likelihood
happens to be lie in one of the tails of the prior distribution, or if it is too narrow (highly peaked due
to low measurement error). This situation often occurs when very high quality, low noise sensors are
used.

importance to move the particles towards the regions of high likelihood. This problem also

arises when the likelihood function is too narrow compared to the prior. In Section 6.3

we describe several algorithms, based on linearization and the SPKF, to approximate the

optimal importance function.

Degeneracy of the SIS Algorithm

The SIS algorithm discussed so far has a serious limitation: the variance of the importance

weights increases stochastically over time [46]. In order to show this we begin by expanding

Equation 6.8,

wk(x0:k) =
p(y1:k|x0:k)p(x0:k)

π(x0:k|y1:k)

=
p(y1:k,x0:k)
π(x0:k|y1:k)

=
p(x0:k|y1:k)p(y1:k)

π(x0:k|y1:k)

∝ p(x0:k|y1:k)
π(x0:k|y1:k)

(6.30)

The ratio in the last line2 of Equation 6.30 is called the importance ratio and it can be

shown that its variance increases over time. For a proof of this, see [108] and [47]. To

2The proportionality in the last line of the equation follows from the fact that p(y1:k) is a constant.

247

understand why such a variance increase poses a problem, suppose that we want to sample

from the posterior. In that case, we want the proposal density to be very close to the

posterior density. Closeness is defined (in a probabilistic sense) over the full support of the

true posterior [39]. This implies that the best possible (but not practical) choice for the

proposal is π(x0:k|y1:k) = p(x0:k|y1:k), the true posterior. So, in the closeness limit as the

proposal distribution approaches the true posterior, we obtain the following results for the

mean and variance (see [43] for a proof):

Eπ

[
p(x0:k|y1:k)
π(x0:k|y1:k)

]
= 1 , (6.31)

and

varπ

[
p(x0:k|y1:k)
π(x0:k|y1:k)

]
= Eπ

[(
p(x0:k|y1:k)
π(x0:k|y1:k)

− 1
)2
]

= 0 . (6.32)

In other words, we want the variance to be close to zero in order to obtain reasonable

estimates. Therefore, a variance increase has a harmful effect on the accuracy of the sim-

ulations. In practice, the degeneracy caused by the variance increase can be observed by

monitoring the importance weights. Typically, what we observe is that, after a few itera-

tions, one of the normalized importance weights tends to 1, while the remaining weights

tend to zero. A large number of samples are thus effectively removed from the sample

set because their importance weights become numerically insignificant. The next section

presents a strategy to reduce (but not fully eliminate) this degeneration or depletion of

samples.

6.2.4 Mitigating SIS Degeneracy : Resampling

To address the rapid degeneracy of the SIS simulation method, a selection (resampling)

stage may be used to eliminate samples with low importance weights and multiply samples

with high importance weights. A selection scheme associates to each particle x
(i)
k a number

of “children”, Ni, such that
∑N

i=1Ni = N . Several selection schemes have been proposed

in the literature, including sampling-importance resampling (SIR) [48, 168, 180], residual

resampling [118, 78] and minimum variance sampling [45].

248

Sampling-importance resampling (SIR) involves mapping the Dirac random measure

{
x

(i)
k , w̃

(i)
k ; i = 1, . . . , N

}
, (6.33)

into an equally weighted random measure{
x

(j)
k ,

1
N

; i = 1, . . . , N
}
. (6.34)

In other words, we produce N new samples all with equal weighting 1/N . This can be

accomplished by sampling uniformly from the discrete set {x
(i)
k ; i = 1, . . . , N} with prob-

abilities {w̃(i)
k ; i = 1, . . . , N}. Figure 6.2 gives a graphical representation of this process.

This procedure effectively replicates the original x
(i)
k particle Ni times (Ni may be zero).

In residual resampling, a two step process is used which makes use of SIR. In the first

step, the number of children are deterministically set using the floor function,

Na
i =
⌊
Nw̃

(i)
k

⌋
. (6.35)

Each x
(i)
k particle is replicated Na

i times. In the second step, SIR is used to select the

remaining

Nk = N −
N∑
i=1

Na
i (6.36)

samples, with new weights

w̆
(i)
k = N

−1
k

(
w̃

(i)
k N −Na

i

)
. (6.37)

These samples form a second set, N b
i , such that N t =

∑N
i=1N

b
i , and are drawn as described

previously. The total number of children of each particle is then set to Ni = Na
i +N b

i . This

procedure is computationally cheaper than pure SIR and also has lower sample variance.

For this reason residual resampling is used for all subsequent particle filter implementations

(See Sections 6.2.5, 6.3.1 and 6.3.2). In general we we have found that the specific choice

of resampling scheme does not significantly affect the performance of the particle filter.

After the selection/resampling step at time k, we obtainN particles distributed marginally

approximately according to the posterior distribution. Since the selection step favors the

249

sampling

Index

i

j resampled index p(i)

cdf

1

()j
tw�

1N −

Figure 6.2: Resampling process, whereby a random measure
{
x

(i)
k , w̃

(i)
k ; i = 1, . . . , N

}
is mapped into

an equally weighted random measure
{

x
(j)
k , 1

N ; i = 1, . . . , N
}
. The index i is drawn from a uniform

distribution.

creation of multiple copies of the “fittest” particles, many particles may end up having no

children (Ni = 0), whereas others might end up having a large number of children, the

extreme case being Ni = N for a particular value i. In this case, there is yet again a severe

depletion of samples. Therefore, and additional procedure is often required to introduce

sample variety after the selection step without affecting the validity of the approximation

they infer. This is achieved by performing a single Markov chain Monte Carlo3 (MCMC)

step on each particle. The basic idea is that if the particles are already (approximately) dis-

tributed according to the posterior p(xk|y1:k) (which is the case), then applying a Markov

chain transition kernel with the same invariant distribution to each particle results in a

set of new particles distributed according to the posterior of interest. However, the new

particles may move to more interesting areas of the state-space. Details on the MCMC

step are given in [189]. For our experimental work in the rest of this chapter we found the

need for a MCMC step to be unnecessary. However, this cannot be assumed in general.

6.2.5 The Particle Filter Algorithm

The pseudo-code of a generic particle filter (PF) is presented in Algorithm 16. As discussed

in Section 6.2.3, the optimal proposal distribution (which minimizes the variance on the

3For an excellent tutorial paper on MCMC methods for machine learning, see [5].

250

importance weights) is given by [44, 118, 46],

π(xk|x0:k−1,y1:k) � p(xk|xk−1,yk) , (6.38)

i.e., the true conditional state density given the previous state and current observation.

Sampling from this is, of course, impractical for arbitrary densities (recall the motivation

for using importance sampling in the first place). Consequently the transition prior is

the most popular choice of proposal distribution for the reasons already mentioned in

Section 6.2.3 [45], i.e.,

π(xk|x0:k−1,y1:k) � p(xk|xk−1) . (6.39)

For this choice of proposal distribution the generic particle filter is also known as the

Condensation Algorithm [87]. This form of the particle filter was also used by Gordon,

Salmond and Smith in their seminal 1993 paper [68]. They named their approach the

bootstrap (particle) filter. The effectiveness of this proposal distribution approximation

depends on how close the transition prior proposal distribution is to the true posterior

distribution. If there is not sufficient overlap, only a few particles will have significant

importance weights when their likelihood are evaluated.

In all of the experimental work presented in the rest of this chapter, the generic particle

filter will be used as the baseline system for most comparisons.

Algorithm 16 : The Particle Filter (PF)

• Initialization: k=0

1. For i = 1, . . . , N , draw (sample) particle x
(i)
0 from the prior p(x0).

• For k = 1, 2, . . .

1. Importance sampling step

– For i = 1, . . . , N , sample x
(i)
k ∼ p(xk|x(i)

k−1).

– For i = 1, . . . , N , evaluate the importance weights up to a normalizing constant:

w
(i)
k = w

(i)
k−1p(yk|x(i)

k) (6.40)

251

– For i = 1, . . . , N , normalize the importance weights: w̃(i)
k = w

(i)
k /
∑N

j=1 w
(j)
k .

2. Selection step (resampling)

– Multiply/suppress samples x
(i)
k with high/low importance weights w̃(i)

k , respec-
tively, to obtainN random samples approximately distributed according to p(xk|y1:k).

– For i = 1, . . . , N , set w(i)
k = w̃

(i)
k = N−1.

– (optional) Do a single MCMC (Markov chain Monte Carlo) move step to add
further ’variety’ to the particle set without changing their distribution.

3. Output: The output of the algorithm is a set of samples that can be used to approx-
imate the posterior distribution as follows: p̂(xk|y1:k) = 1

N

∑N
i=1 δ(xk − x

(i)
k). From

these samples, any estimate of the system state can be calculated, such as the MMSE
estimate,

x̂k = E [xk|y1:k] ≈ 1
N

N∑
i=1

x
(i)
k .

Similar expectations of the function g(xk) (such as MAP estimate, covariance, skew-
ness, etc.) can be calculated as a sample average.

• Note: This particle filter algorithm is also known as the sampling-importance-resampling
(SIR) particle filter (SIR-PF) [39], the bootstrap filter [68], or the CONDENSATION algo-
rithm [87].

6.2.6 Demonstration of Nonlinear Non-Gaussian Inference

We will now present a brief demonstration of a simple nonlinear non-Gaussian inference

problem where Gaussian approximate methods such as the EKF or SPKF fail, due to

their inability to represent highly non-Gaussian posteriors. In particular, this problem is

bimodal in nature, i.e., there is an inherent and unresolvable ambiguity in determining the

true underlying state value that created a certain observation. The DSSM for this problem

is given by:

xk+1 = xk + vk (6.41)

yk = αx2
k + nk , (6.42)

where xk is the scalar hidden state variable, vk is an additive Gaussian process noise term

with a very small variance (σ2
v = 1e − 6), α is a scaling term (for this experiment α = 10

252

58

discrete Monte Carlo representation of 1 1: 1|k kp x y
time: k-1

set of N particles :
()

1

i

kx

Draw new particles

from proposal

distribution
() ()

1(|)i i

k kp x x

Given new

observation yk

evaluate importance

weights using

likelihood function
()() |i

k

i

k kpw y x

Discrete Monte Carlo representation (approximation) of 1:|k kp x y

Resample particles

() ()

1()i i

k kFx x
time: k

Figure 6.3: Schematic diagram of a generic particle filter (SIR-PF)

253

was used), yk is the scalar observation and nk is an additive Gaussian measurement noise

term (σ2
n = 1). Due to the symmetric-around-zero nonlinearity in the observation function

(simple quadratic), it is impossible to disambiguate based on the observations alone the

sign of the underlying true value of the state variable. In other words, if the true value of

the underlying state is x = x∗, then the posterior p(xk|y1:k) will be bimodal with the one

mode centered at x = −x∗ and the other mode at x = x∗.

Clearly in this case, a simple Guassian approximate solution will not suffice to ac-

curately approximate and track the true posterior of the system. In order to test this

hypothesis, we generated a sequence of 40 noisy observations based on the DSSM pre-

sented above, with the true value of the state set to x∗ = −0.5. The true posterior state

density should thus consist of two Gaussian modes, one situated at x = −0.5 and the other

at x = 0.5. We then used an EKF, a SPKF and a generic particle filter (PF) to try and

estimate the underlying state variable, based on the sequence of observations. Figure 6.4

shows the results of this estimation experiment. For each filter we show the time evolu-

tion of the estimated posterior state density. All three filters were initialized with a very

wide (uncertain) initial distribution which covered all possible true underlying states. The

bottom plot shows the results for the particle filter. The filter quickly converges to the

true bimodal posterior with peaks at x = ±0.5. Given a posterior of this nature, using the

conditional mean as estimate of the underlying state, i.e.,

x̂k = E[xk|y1:k] , (6.43)

is clearly a bad choice since it will result in an estimate which lies in the middle (x̂ ≈ 0)

between the two modes (center of mass) of the distribution. A better estimator will be a

MAP estimator which will pick the position of the mode with the “highest likelihood”. For

this reason a simple Gaussian approximate estimator such as the EKF or SPKF will result

in suboptimal results. This is evident when we look at the posterior distribution estimates

generated by the EKF (top plot) and the SPKF (middle plot).

Clearly the EKF and SPKF have to approximate the posterior by a single Gaussian

distribution. The EKF starts out with a very broad (uncertain) Gaussian posterior but

254

Figure 6.4: Non-Gaussian (bimodal) state estimation demonstration

255

quickly converges to one of the two modes of the true posterior. Unfortunately it picks the

incorrect mode and rapidly becomes highly peaked (overly confident), which will result in

a large estimation error as well as a divergent filter, i.e., if the true state value stars to

move the EKF will be tracking the wrong mode.

The SPKF on the other hand seems to do a bit better. It correctly represents the

large underlying uncertainty implied by the dual modes in the posterior, by generating

a single Gaussian posterior that closely (up to third order) matches the true variance

of the bimodal distribution. Although the dual hypothesis nature of the true posterior

cannot be represented, it compensates for this shortcoming in a robust fashion by not

allowing over confidence in any one of the two possible solutions. Here we see an excellent

demonstration of the SPKF’s superior capability of generating consistent estimates: Even

though the SPKF has to model the bimodal posterior distribution with a single Gaussian,

the variance of this Gaussian does seem to match the variance of the underlying true

bimodal distribution. In other words, the single Gaussian includes the support of both the

main modes in the true posterior. This property of the SPKF will play an important role

in a new proposed method to improve the standard particle filter which will be presented

in the next section.

6.3 Improving Particle Filters: Designing Better Proposal

Distributions

The success of the particle filter algorithm depends on the validity of the following under-

lying assumptions:

Monte Carlo (MC) assumption: The Dirac point-mass approximation provides an

adequate representation of the posterior distribution.

Importance sampling (IS) assumption: It is possible to obtain samples from the

posterior by sampling from a suitable proposal distribution and applying importance

sampling corrections.

256

If any of these conditions are not met, the PF algorithm can perform poorly. The dis-

creteness of the approximation poses a resolution problem. In the resampling stage, any

particular sample with a high importance weight will be duplicated many times. As a

result, the cloud of samples may eventually collapse to a single sample. This degeneracy

will limit the ability of the algorithm to search for lower minima in other regions of the

error surface. In other words, the number of samples used to describe the posterior density

function will become too small and inadequate. One strategy to address this problem is to

implement a Markov chain Monte Carlo (MCMC) step after the selection step as discussed

earlier in Section 6.2.4 and covered in more detail in [189, 39]. As already pointed out,

this method is only successful if the point-mass posterior approximation is already a good

(close) approximation of the true posterior.

Another brute force strategy to overcome this problem is to increase the number of par-

ticles. Unfortunately, this might result in a very large (and unnecessary) computational

burden. Typically, the number of particles needed during the initial (highly uncertain)

stages of any particle filter based inference solution is significantly more than the num-

ber needed later on during the estimation process. Initially the posterior is usually quite

wide with multiple modes, whereas later on in the estimation process after the observa-

tion of a large amount of data, the posterior becomes peaked up around a small number

(possibly even a single) of likely hypothesis. The number of needed particles (and hence

computational cost) is thus typically much higher earlier on that during the final stages

of estimation. Fox [54, 53] exploited this phenomenon to develop an adaptive particle

filter where the number of particles used to represent the posterior is adapted on-line.

This method, based on calculating the KL divergence between the point-mass posterior

distribution and the true posterior and adapting the number of used particles accordingly,

resulted in a significant reduction in computational cost for the same level of performance.

As already pointed out in Section 6.2.4, one of the main causes of sample depletion

is the failure to move particles to areas of high observational likelihood. This failure

stems directly from the most common choice of importance distribution, the transition

prior. Even though this proposal loosely satisfies the importance sampling assumption

stated above, it does this at the cost of not incorporating the latest observation, which

257

in turn quickly leads to sample depletion which will eventually violate the Monte Carlo

assumption. An experimental demonstration of this problem associated with the generic

particle filter is presented in Section 6.4.3. The crux of improving the performance of

particle filters thus lie in designing better proposal distributions that not only allow for easy

sampling and evaluation of the importance weights (importance sampling assumption), but

also address the sample depletion problem (Monte Carlo assumption).

Such an improvement in the choice of proposal distribution over the simple transition

prior can be accomplished by moving the particles toward regions of increased likelihood as

dictated by the most recent observation yk (See Figure 6.1). This can be done by choosing

a proposal distribution that is conditioned on yk. An effective approach to accomplish

this, is to use a Kalman filter generated Gaussian approximation of the optimal proposal,

i.e,

π(xk|x0:k−1,y1:k) � p(xk|xk−1,yk) (6.44)

≈ qN (xk|y1:k) (6.45)

where qN (·) denotes a Gaussian proposal distribution. Note that this approximation con-

sists of two steps: First, the prior state conditioning term of optimal proposal distribution

(xk−1) is integrated out with respect to the posterior state density at time k − 1, i.e.,∫
p(xk|xk−1,yk)p(xk−1|y1:k−1)dxk−1 = p(xk|yk,y1:k−1) (6.46)

= p(xk|y1:k) . (6.47)

The implicit integration operation of Equation 6.46 effectively averages the optimal pro-

posal distribution with respect to the previous posterior density of the state. This is done

since we don’t have an exact tractable form for p(xk|xk−1,yk) or know what the true

value of xk−1 is. All that we know about xk−1 is contained (summarized) in the posterior

density p(xk−1|y1:k−1). This averaging operation can be thought of as an “expected” con-

ditioning with respect to the posterior distribution of xk−1. Further insight can be found

258

by expanding the optimal proposal using Bayes rule:

p(xk|xk−1,yk) =
p(yk,xk−1|xk)p(xk)

p(yk,xk−1)
(6.48)

=
p(yk|xk−1,xk)p(xk−1|xk)p(xk)

p(yk|xk−1)p(xk−1)
(6.49)

=
p(yk|xk)p(xk|xk−1)

p(yk|xk−1)
, (6.50)

where we made use of the conditional independence of the observations, i.e., p(yk|xk,xk−1) =

p(yk|xk), in the last step. If we substitute Equation 6.50 back into the importance weight

expression (Equation 6.21), we get the following expression for the optimal importance

weights:

wk = wk−1
p(yk|xk)p(xk|xk−1)
p(xk|xk−1,yk)

= wk−1
p(yk|xk)p(xk|xk−1)p(yk|xk−1)

p(yk|xk)p(xk|xk−1)
= wk−1p(yk|xk−1)

= wk−1

∫
p(yk|xk)p(xk|xk−1)dxk . (6.51)

The multi-dimensional integral in the final line of the expression above is in general in-

tractable for most nonlinear systems, implying that the importance weights for the optimal

proposal density cannot be calculated in general. This reason, combined with the difficulty

of actually sampling from the optimal proposal distribution, rules out its use in general.

If we compare the expansion of the optimal proposal distribution in Equation 6.50 with

the recursive Bayesian expansion4 of the proposed approximate proposal

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
, (6.52)

we see that the relevant densities in the optimal proposal (Equation 6.50) is conditioned on

xk−1, whereas those in the proposed approximate proposal is conditioned on y1:k−1. This

makes intuitive sense if we realize that the true state of the system at time xk−1 already

includes (summarizes) all of the information emitted in the noisy observation stream y1:k−1.

4See Equation 1.11 in Chapter 1 for a derivation of this expansion.

259

Conditioning on the true posterior value of xk−1 thus decouples the densities from y1:k−1.

So, in lieu of knowing the true value of xk−1, we have to condition on all of the observations

received for k = 1, . . . , k − 1. This information in summarized in the posterior density of

the state at time k − 1, i.e., p(xk−1|y1:k−1).

Notice that at this point the proposed approximate proposal density (Equation 6.47) is

the true posterior filtering density of the system state conditioned on all the observations.

Since accurately approximating this density is the whole point of the sequential Monte

Carlo approach, it is not yet available at this point to use as proposal distribution. For

this reason we further approximate this density by a tractable single Gaussian distribution

as generated by an Gaussian approximate recursive Bayesian estimation framework such

as the Kalman filter, i.e.,

p(xk|y1:k) ≈ qN (xk|y1:k) . (6.53)

A valid question at this point is: Why is this double approximation of the optimal

proposal density qN (xk|y1:k) a better choice than the simple transition prior p(xk|xk−1)?

We already discussed above the fact that the optimal proposal distribution is in general

not available in a tractable form which excludes it for practically implementable systems.

Furthermore, we also already showed how failing to condition the proposal density on

the latest observation can keep particles from moving to areas of high likelihood, possibly

causing severe particle depletion. This is always a big concern if the transition prior and

the observation likelihood densities are both peaked and have very little support overlap.

In such a case the transition prior is clearly a bad choice. Also note that for a large

number of systems the effect of process noise is modeled as an additive Gaussian noise

term. This in turn implies that the transition prior proposal distribution will also be

Gaussian. Given this, the fact that the proposed proposal density qN (xk|y1:k) is Gaussian

does not by default make it a worse choice than the transition prior. As long as this

Gaussian approximate proposal has significant support overlap with the optimal proposal

and incorporates the latest observation by conditioning on it, it should satisfy the the two

requirements specified at the beginning of this section and result in an improved particle

filter implementation.

260

A tractable way of generating Gaussian approximate proposal distributions within the

particle filter framework, is to use a separate EKF to generate and propagate a Gaussian

proposal distribution for each particle, i.e.,

qN (xk|y1:k) = N
(
xk;x

(i)
k ,P

(i)
xk

)
i = 1, . . . N (6.54)

That is, at time k one uses the EKF equations (Algorithm 1), with the new observed data,

to compute the mean and covariance of the importance distribution for each particle from

the previous time step k − 1. Next, we redraw the i-th particle (at time k) from this

new updated distribution. This hybrid algorithm is called the extended Kalman particle

filter (EKPF) and can be thought of as an adaptive bank of parallel running EKFs, each

contributing its own estimate as a component in a very large adaptive mixture approx-

imation of the posterior distribution [40]. The mixing proportion of each component is

given by the respective importance weights. The EKPF has been shown to have improved

performance on a number of applications [39, 44, 46], but since it makes use of the EKF

as a component part, it does in general suffer from the same associated EKF problems,

such as filter divergence, etc., as discussed in Chapter 2. For this reason we propose to

replace the EKF in this algorithm with a SPKF. In the section we will introduce this new

algorithm called the sigma-point particle filter (SPKF) and motivate why it is expected to

generate better proposal distributions than the EKF.

6.3.1 Sigma-Point Particle Filter

By replacing the EKF with a SPKF5, we can more accurately propagate the mean and

covariance of the Gaussian approximate proposal distribution for each particle. All of the

benefits the SPKF has over the EKF (as presented in prior chapters) is thus leveraged for

proposal distribution generation.

Distributions generated by the SPKF will tend to have greater support overlap with the

true posterior distribution than the overlap achieved by the EKF estimates. Although this

statement is made without rigorous proof, the underlying intuition for it is based on the

5Specifically we make use of either a square-root unscented Kalman filter (SR-UKF) or a square-root
central difference Kalman filter (SR-CDKF).

261

fact that the SPKF generated estimates tend to be more consistent than those generated

by the EKF. By consistency we again imply the normal definition, i.e., var[x̂] ≥ var[x],

where var[·] implies the variance (expected second order central moment) of the Gaus-

sian approximate posterior estimate, x̂ is the SPKF generated estimate and x is the true

underlying state. This property was nicely demonstrated by the nonlinear non-Gaussian

inference problem presented in Section 6.2.6. As mentioned before, the SPKF also tend

to (in general) generate efficient estimates, i.e., although the estimated variance is larger

than the true variance (to meet the consistency requirement) it is not excessively large.

In [189, 190] Doucet presents a proof showing that if the proposal distribution used for

importance sampling has heavier tails than the underlying true distribution, then the im-

portance weights will be upper bounded resulting in a guarantee of filter convergence. For

this reason, using a filter such as the SPKF for proposal generation, that not only incorpo-

rates the latest observation, but also generate proposals which tend to have more consistent

support overlap with the true posterior, is theoretically better motivated and one could

expect better performance. In addition, scaling parameters used for sigma point selection

can be optimized to capture certain characteristic of the prior distribution if known, i.e.,

the algorithm can possibly be modified to work with distributions that have heavier tails

than Gaussian distributions such as Cauchy or Student-t distributions6.

Algorithm 17 : The Sigma-Point Particle Filter (SPPF)

The new filter that results from using a SPKF for proposal distribution generation within

a particle filter framework is called the sigma-point particle filter (SPPF):

• Initialization: k=0

1. For i = 1, . . . , N , draw (sample) particle x
(i)
0 from the prior p(x0).

• For k = 1, 2, . . .

1. Importance sampling step

6Modifying the SPKF to work with non-Gaussian (but still unimodal and symmetric) distributions is
still an open and ongoing research question. The form of the Kalman measurement update will have to be
modified depending on the nature of the distributions in use.

262

– For i = 1, . . . , N :

(a) Update the Gaussian prior distribution for each particle with the SPKF

:

∗ Calculate sigma-points for particle, x
a,(i)
k−1 = [x(i)

k−1 v̄k−1 n̄k−1]T :

X a,(i)
k−1,(0...2L) =

[
x
a,(i)
k−1 x

a,(i)
k−1 + γ

√
Pa,(i)
k−1 x

a,(i)
k−1 − γ

√
Pa,(i)
k−1

]
∗ Propagate sigma-points into future (time update):

X x,(i)
k|k−1,(0...2L) = f

(
X x,(i)
k−1,(0...2L),X

v,(i)
k−1,(0...2L),uk

)
x̄

(i)
k|k−1 =

2L∑
j=0

w
(m)
j X x,(i)

k|k−1,j

P(i)
k|k−1 =

2L∑
j=0

w
(c)
j (X x,(i)

k|k−1,j − x̄
(i)
k|k−1)(X

x,(i)
k|k−1,j − x̄

(i)
k|k−1)

T

Y(i)
k|k−1,(0...2L) = h

(
X x,(i)
k|k−1,(0...2L),X

n,(i)
k−1,(0...2L)

)
ȳ(i)
k|k−1 =

2L∑
j=0

W
(m)
j Y(i)

j,k|k−1

∗ Incorporate new observation (measurement update):

Pykyk
=

2L∑
j=0

w
(c)
j [Y(i)

k|k−1,j − ȳ(i)
k|k−1][Y

(i)
k|k−1,j − ȳ(i)

k|k−1]
T

Pxkyk
=

2L∑
j=0

w
(c)
j [X (i)

k|k−1,j − x̄
(i)
k|k−1][Y

(i)
k|k−1,j − ȳ(i)

k|k−1]
T

Kk = Pxkyk
P−1

xkyk

x̄
(i)
k = x̄

(i)
k|k−1 + Kk(yk − ȳ(i)

k|k−1)

P(i)
k = P(i)

k|k−1 −KkPykyk
KT
k

(b) Sample x
(i)
k ∼ qN (xk|y1:k) = N

(
xk; x̄

(i)
k ,P

(i)
k

)
– For i = 1, . . . , N , evaluate the importance weights up to a normalizing constant:

w
(i)
k = w

(i)
k−1

p(yk|x(i)
k)p(x(i)

k |x(i)
k−1)

qN (x(i)
k |y1:k)

(6.55)

263

– For i = 1, . . . , N , normalize the importance weights: w̃(i)
k = w

(i)
k /
∑N

j=1 w
(j)
k .

2. Selection step (resampling)

– Multiply/suppress samples x
(i)
k with high/low importance weights w̃(i)

k , respec-
tively, to obtainN random samples approximately distributed according to p(xk|y1:k).

– For i = 1, . . . , N , set w(i)
k = w̃

(i)
k = N−1.

– (optional) Do a single MCMC (Markov chain Monte Carlo) move step to add
further ’variety’ to the particle set without changing their distribution.

3. Output: The output of the algorithm is a set of samples that can be used to approx-
imate the posterior distribution as follows: p̂(xk|y1:k) = 1

N

∑N
i=1 δ(xk − x

(i)
k). From

these samples, any estimate of the system state can be calculated, such as the MMSE
estimate,

x̂k = E [xk|y1:k] ≈ 1
N

N∑
i=1

x
(i)
k .

Similar expectations of the function g(xk) (such as MAP estimate, covariance, skew-
ness, etc.) can be calculated as a sample average.

• General note: In the resampling stage, not only the particles but also their respective

SPKF propagated means and covariances are discarded or duplicated, i.e., we’re

resampling the whole parallel ensemble of SPKFs. The SPPF presented above makes

use of a UKF for proposal generation. Our preferred form however, is a SPPF based

around the square-root CDKF (SR-CDKF) which has the numerical efficiency and

stability benefits discussed in Section 3.4. The UKF was used in the pseudo-code

above in order to simplify the presentation of the algorithm, a similar derivation can

be done for the SR-UKF or SR-CDKF [188, 193]. For experimental verification of

the superior estimation performance of the SPPF over a standard particle filter, see

Section 6.4.3.

The sigma-point particle filter (SPPF) algorithm as presented above and published

first in [189, 190, 188], has received quite a bit of interest from a number of different re-

searchers, leading to various direct implementations for a variety of probabilistic inference

and machine learning applications. Yong Rui at Microsoft Research implemented a real-

time human face tracking system based on a direct implementation of our SPPF algorithm

[169]. This serves as an external verification of our algorithm in a real-world inference

264

system. More detail on this application is presented (with permission from Rui) in Sec-

tion 6.4.4. Subsequently, our SPPF algorithm has received further wide ranging interest in

the literature [196, 117, 36] and has been applied successfully to numerous other real-world

inference problems [86, 117].

6.3.2 Gaussian Mixture Sigma-Point Particle Filters

As pointed out at the start of this section, generic particle filters need to use a large

number of particles in an attempt to mitigate the sample depletion/degeneracy problem

allowing for accurate and robust operation. This can result in very high computational

costs for complex problems, since the computational cost of a particle filter scales directly

in relation to the number of particles used. In the SPPF section above, we showed how the

sample depletion/degeneracy problem can be addressed by moving particles to areas of high

likelihood through the use of a SPKF generated proposal distribution. Although the SPPF

has large estimation performance benefits over the standard PF (this is demonstrated in

Section 6.4), it still incurs a heavy computational burden since it has to run an O(L3
x)

SPKF for each particle in the posterior state distribution. Here Lx is the dimension of the

state. Although the total number of particles needed in the SPPF is typically much less

than the requirement for the generic PF, the complexity per particle is higher. There is

thus a trade-off between between these two factors, which, for some problems7 can make

the computational cost of the SPPF prohibitively high.

In this section we present a further refinement of the SPPF called the Gaussian mixture

sigma-point particle filter (GMSPPF) [193, 188]. This filter has equal or better estima-

tion performance when compared to standard particle filters and the SPPF, at a largely

reduced computational cost. The GMSPPF combines an importance sampling (IS) based

measurement update step with a SPKF based Gaussian sum filter (GSF) for the time-

update and proposal density generation. The GMSPPF uses a finite Gaussian mixture

model (GMM) representation of the posterior filtering density, which is recovered from

the weighted posterior particle set of the IS based measurement update stage, by means

7This is a big consideration for certain real-time applications.

265

of a Expectation-Maximization (EM) algorithm. The EM step either follows directly af-

ter the resampling stage of the particle filter, or it can completely replace that stage if

a weighted EM algorithm is used. The EM or WEM recovered GMM posterior further

mitigates the “sample depletion” problem through its inherent “kernel smoothing” nature.

The three main algorithmic components used in the GMSPPF are briefly discussed below

to provide some background on their use. Then we show how these three components are

combined to form the GMSPPF algorithm. Figure 6.5 gives a schematic summary of the

main components and data flow of the GMSPPF algorithm.

SPKF based Gaussian mixture approximation

It can be shown [4] than any probability density p(x) can be approximated as closely as

desired by a Gaussian mixture model (GMM) of the following form,

p(x) ≈ pG(x) =
G∑
g=1

α(g)N (x;µ(g),P(g)) , (6.56)

whereG is the number of mixing components, α(g) are the mixing weights and N (x;µ(g),P(g))

are Gaussian density functions with mean vectors µ(g) and positive definite covariance ma-

trices P(g). Using the DSSM process and observation functions (Equations 1.1 and 1.2),

and assuming that the prior density p(xk−1|y1:k−1) and system noise densities p(vk−1) and

p(nk) are also modeled by GMMs, i.e.,

pG(xk−1|y1:k−1) =
G∑
g=1

α
(g)
k−1N

(
xk−1;µ

(g)
k−1,P

(g)
k−1

)

pG(vk−1) =
I∑
i=1

β
(i)
k−1N

(
vk−1;µ

(i)
v,k−1,Q

(i)
k−1

)
pG(nk) =

J∑
j=1

γ
(j)
k N

(
nk;µ

(j)
n,k,R

(j)
k

)

266

the following densities can also be approximated by GMMs: 1) the (time updated) predictive

prior density,

p(xk|y1:k−1) ≈ pG(xk|y1:k−1) =
G′∑
g′=1

α
(g′)
k|k−1N (x;µ(g′)

k|k−1,P
(g′)
k|k−1) , (6.57)

and 2) the measurement updated posterior density,

p(xk|y1:k) ≈ pG(xk|y1:k) =
G′′∑
g′′=1

α
(g′′)
k N (x;µ(g′′)

k ,P(g′′)
k) , (6.58)

where G′ = GI and G′′ = G′J = GIJ (G, I and J are the number of components in

the state, process noise, and observation noise GMMs respectively). The predicted and

updated Gaussian component means and covariances of pG(xk|y1:k−1) and pG(xk|y1:k), i.e.,

predicted:
{

µ
(g′)
k|k−1,P

(g′)
k|k−1

}
, (6.59)

and

updated:
{

µ
(g′′)
k|k ,P

(g′′)
k|k
}
, (6.60)

are calculated using the SPKF filter equations implemented as a parallel bank of filters.

The mixing weights α(g′)
k|k−1 and α

(g′′)
k|k are updated using the same method proposed by

Alspach and Sorenson in their seminal 1972 paper on the Gaussian sum filter [3], i.e., the

predictive weights are given by

α
(g′)
k|k−1 =

α
(g)
k−1β

(i)
k−1∑G

g=1

∑I
i=1 α

(g)
k−1β

(i)
k−1

, (6.61)

and the measurement updated weights are given by

α
(g′′)
k =

α
(g′)
k|k−1γ

(j)
k z

(j)
k∑G′

g′=1

∑J
j=1 α

(g′)
k γ

(j)
k z

(j)
k

, (6.62)

where z(j)
k = pj(yk|xk) evaluated at xk = µ

(g′)
k and the current observation yk. It is clear

that the number of mixing components in the GMM representation grows from G to G′

in the predictive (time update) step and from G′ to G′′ in the subsequent measurement

267

update step. Over time, this will lead to an exponential increase in the total number

of mixing components and must be addressed by a mixing-component reduction scheme.

This will be address in a later section (see below).

Importance sampling (IS) based measurement update

In the GMSPPF we use the GMM approximate pG(xk|y1:k) generated by the Gaussian

sum SPKFs (as described above) as the proposal distribution π(xk|x0:k−1,y1:k), i.e.,

π(xk|x0:k−1,y1:k) � pG(xk|y1:k) . (6.63)

In Section 6.3 we showed that sampling from such a proposal (which incorporates the latest

observation), moves particles to areas of high likelihood which in turn reduces the “sample

depletion” problem. Furthermore we use the predictive prior distribution pG(xk|y1:k−1)

as a smoothed (over prior distribution of xk−1) evaluation of the p(xk|xk−1) term in the

importance weight equation (Equation 6.21). This is needed since the GMSPPF represents

the posterior (which becomes the prior at the next time step) with a GMM, which effec-

tively smoothes the posterior particle set by a set of Gaussian kernels. One can thus not

evaluate the transition prior p(xk|xk−1) for a particle at time k conditioned on a particle

at time k− 1, i.e., t = p(x(i)
k |x(i)

k−1), but rather have to calculate this value “averaged” over

the prior distribution of all of the x
(i)
k−1 particles, i.e.

t̃ = E
[
p
(
x

(i)
k |xk−1

)]
=
∫
p
(
x

(i)
k |xk−1

)
p (xk−1|y1:k−1) dxk−1

= p
(
x

(i)
k |y1:k−1

)
≈ pG(xk|y1:k−1) . (6.64)

Particles are thus randomly sampled from pG(xk|y1:k) after which their respective impor-

tance weights are calculated using Equation 6.21 with the terms as defined above.

268

EM/WEM for GMM recovery

The output of the IS-based measurement update stage is a set of N weighted particles,

which in the standard particle filter is resampled in order to discard particles with in-

significant weights and multiply particles with large weights. The GMSPPF represents the

posterior by a GMM which is recovered from the resampled, equally weighted particle set

using a standard Expectation-Maximization (EM) algorithm, or directly from the weighted

particles using a weighted-EM (WEM) [132] step. Whether a resample-then-EM or a

direct-WEM GMM recovery step is used depends on the particular nature of the inference

problem at hand. As discussed in Section 6.2.4, resampling is needed to keep the variance of

the particle set from growing too rapidly . Unfortunately, resampling can also contribute to

the “particle depletion” problem in cases where the measurement likelihood is very peaked,

causing the particle set to collapse to multiple copies of the same particle. In such a case,

the direct-WEM approach might be preferred. On the other hand, we have found that

for certain problems where the disparity (as measured by the KL-divergence) between the

true posterior and the GMM-proposal is large, the resample-then-EM approach performs

better. This issue is still being investigated further.

This GMM recovery step implicitly smoothes over the posterior set of samples, avoiding

the “particle depletion” problem, and at the same time the number of mixing components

in the posterior is reduced to G, avoiding the exponential growth problem alluded to above.

Alternatively, one can use a more powerful “clustering” approach that automatically tries

to optimize the model order, i.e., number of Gaussian component densities in the posterior

GMM, through the use of some probabilistic cost function such as AIC or BIC [137, 153].

This adaptive approach allows for the complexity of the posterior to change over time to

better model the true nature of the underlying process. This is somewhat akin to Fox’s

KD-sampling particle filter approach to adaptively change the number of particles needed

to accurately model the posterior. In the GMSPPF case however, we are varying the

complexity of a parametric model and not the raw number of samples in an empirical

(non-parametric) representation. As we will show in Section 6.4.5, we do in fact make

use of such an adaptive clustering approach for this step in a specific application of the

GMSPPF algorithm to the problem of mobile robot localization. Note however that even

269

1 2
N

1 1(|)k kp x Y

Time update &

proposal generation (|)k kq x Y

GMM posterior

ky
Measurement

Update

SMC based

Importance

sampling

EM/WEM Clustering

Recover GMM

(|)k kp x Y

1z

Model selection

weighted point mass

posterior distribution

bank of N SPKFs

Gaussian sum SPKF

GMSPPF

Figure 6.5: Schematic diagram of the Gaussian mixture sigma-point particle filter (GMSPPF).

though we use adaptive clustering in our algorithm, it was not a research issue itself that

was addressed within the scope of this thesis. Adaptive optimal clustering is a large active

research area within the larger machine learning field. We made use of some of the latest

state-of-the-art clustering techniques developed by Andrew Moore’s group at CMU [153].

Algorithm 18 : The Gaussian Mixture Sigma-Point Particle Filter (GMSPPF)

The full GMSPPF algorithm will now be presented based on the component parts discussed

above. As a graphical aid to understand this algorithm, please refer to the schematic

presented in Figure 6.5:

A) Time update and proposal distribution generation

At time k − 1, assume the posterior state density is approximated by the G-component

270

GMM

p̃G(xk−1|y1:k−1) =
G∑
g=1

α̃
(g)
k−1N

(
xk−1; µ̃

(g)
k−1, P̃

(g)
k−1

)
, (6.65)

and the process and observation noise densities are approximated by the following I and

J component GMMs respectively

pG(vk−1) =
I∑
i=1

β
(i)
k−1N

(
vk−1;µ

(i)
v,k−1,Q

(i)
k−1

)
(6.66)

pG(nk) =
J∑
j=1

γ
(j)
k N

(
nk;µ

(j)
n,k,R

(j)
k

)
(6.67)

Following the GSF approach of [3], but replacing the EKF with a SPKF, the output

of a bank of G′′ = GIJ parallel SPKFs are used to calculate GMM approximations of

p(xk|y1:k−1) and p(xk|y1:k) according to the pseudo-code given below. For clarity of no-

tation define

g′ = g + (i− 1)G , (6.68)

noting that references to g′ implies references to the respective g and i, since they are

uniquely mapped. Similarly define

g′′ = g′ + (j − 1)GI , (6.69)

with the same implied unique index mapping from g′′ to g′ and j. The time-update now

proceeds as follows:

1. For j=1 . . . J , set p̃(nk)(j) = N (nk;µ
(j)
n,k,R

(j)
k).

For i=1 . . . I, set p̃(vk−1)(i)=N (vk−1;µ
(i)
v,k−1,Q

(i)
k−1)

For g=1 . . . G, set p̃(xk−1|y1:k−1)(g)=N (xk−1; µ̃
(g)
k−1, P̃

(g)
k−1).

2. For g′=1 . . . G′ use the time update step of a SPKF (employing the DSSM process

equation xk = f(xk−1,vk−1,uk−1) and densities p̃(xk−1|y1:k−1)(g) and p̃(vk−1)(i)

from above) to calculate a Gaussian approximate predictive prior density

p̃(xk|y1:k−1)(g
′) = N (xk;µ

(g′)
k|k−1,P

(g′)
k|k−1) , (6.70)

271

and update the mixing weights:

α
(g′)
k|k−1

=
α

(g)
k−1β

(i)
k−1∑G

g=1

∑I
i=1 α

(g)
k−1β

(i)
k−1

. (6.71)

3. For g′′ = 1 . . . G′′, complete the measurement update step of each SPKF (employing

the DSSM observation equation yk = h(xk,nk), the current observation yk, and den-

sities p̃(xk|y1:k−1)(g
′) and p̃(nk)(j) from above) to calculate a Gaussian approximate

posterior density

p̃(xk|y1:k)(g
′′) = N (xk;µ

(g′′)
k ,P(g′′)

k) , (6.72)

and update the GMM mixing weights:

α
(g′′)
k =

α
(g′)
k|k−1γ

(j)
k z

(j)
k∑G′

g′=1

∑J
j=1 α

(g′)
k γ

(j)
k z

(j)
k

, (6.73)

where z(j)
k = pj(yk|xk) is the observation likelihood evaluated at xk = µ

(g′)
k and the

current observation, yk.

The predictive state density is now approximated by the following GMM:

pG(xk|y1:k−1) =
G′∑
g′=1

α
(g′)
k|k−1N

(
xk;µ

(g′)
k|k−1,P

(g′)
k|k−1

)
(6.74)

and the posterior state density (which will only be used as the proposal distribution

in the IS-based measurement update step) is approximated by the following GMM:

pG(xk|y1:k) =
G′′∑
g′′=1

α
(g′′)
k N

(
xk;µ

(g′′)
k ,P(g′′)

k

)
. (6.75)

B) Measurement update

1. Draw N samples {x(i)
k ; i = 1 . . . N} from the GMM proposal distribution pG(xk|y1:k)

(Equation 6.75) and calculate their corresponding importance weights:

w̃
(i)
k =

p(yk|x(i)
k)pG(x(i)

k |y1:k−1)

pG(x(i)
k |y1:k)

. (6.76)

272

2. Normalize the weights:

w
(i)
k =

w̃
(i)
k∑N

i=1 w̃
(i)
k

. (6.77)

3. Use one of the following approaches to fit a G-component GMM to the set of weighted

particles {w(i)
k ,x

(i)
k ; i = 1 . . . N}, representing the updated GMM approximate state

posterior distribution at time k, i.e.

p̃G(xk|y1:k) =
G∑
g=1

α̃
(g)
k N

(
xk; µ̃

(g)
k , P̃(g)

k

)
. (6.78)

(Option A) First resample the set of weighted particles into a new set of N equally

weighted particles using any of the efficient resampling techniques8 presented in Sec-

tion 6.2.4, and then apply an expectation-maximization (EM) algorithm to this new

cloud of samples approximating the posterior density.

(Option B) Directly apply a weighted expectation-maximization (WEM) algorithm

[132] to the weighted set of particles to recover the GMM posterior.

For both cases, the EM/WEM algorithm is “seeded” by the G means, covariances and

mixing weights of the prior state GMM, pG(xk−1|y1:k−1), and iterated until a certain

convergence criteria (such as relative dataset likelihood increase) is met. Convergence

usually occur within 4-6 iterations. Alternatively, as discussed earlier, an adaptive

model-order-selection EM/WEM approach can be used to adaptively determine the

optimal number of Gaussian component densities needed in the posterior GMM to

accurately model the posterior cloud of samples.

C) Inference

Once the full posterior state density has been calculated in the previous step, any

“optimal” estimate of the underlying system state can be calculated. These include

estimates such as the condition mean (MMSE), maximum a-posteriori (MAP), mode,

median, etc. to name but a few. As an example, we present the MMSE estimate:

8Our preferred method is residual resampling [189, 46].

273

The conditional mean state estimate

x̂k = E[xk|y1:k] , (6.79)

and the corresponding error covariance

P̂k = E[(xk − x̂k)(xk − x̂k)T] , (6.80)

can be calculated in one of two ways:

(Option A) The estimates can be calculated before the EM/WEM smoothing stage

by a direct weighted sum of the particle set,

x̂k =
N∑
i=1

w
(i)
k x

(i)
k (6.81)

P̂k =
N∑
i=1

w
(i)
k (x(i)

k − x̂k)(x
(i)
k − x̂k)T , (6.82)

(Option B) or after the posterior GMM has been fitted,

x̂k =
G∑
g=1

α̃
(g)
k µ̃

(g)
k (6.83)

P̂k =
G∑
g=1

α̃
(g)
k

[
P(g)
k +

(
µ̃

(g)
k − x̂k

)(
µ̃

(g)
k − x̂k

)T]
. (6.84)

Since N � G, the first approach (Option A) is computationally more expensive

than the second, but possibly generates better (lower variance) estimates, since it

calculates the estimates before the implicit resampling of the WEM step. The choice

of which method to use will depend on the specifics of the inference problem and is

an ongoing research question.

274

6.3.3 Discussion about differences between SPPF and GMSPPF

One of the major differences between the SPPF and GMSPPF algorithms as presented

above, is the difference in computational cost for a specific level of performance. The

GMSPPF typically achieves the same level of performance as the SPPF at a significant

decrease in computational cost. We will demonstrate this experimentally in the next

section.

This difference in computational cost stems directly from the manner in which these

two SPKF/SMC hybrid filters approximates the optimal proposal distribution. The SPPF

uses a separate SPKF generated Gaussian proposal for each particle, whereas the GM-

SPPF uses a single multi-component Gaussian mixture to sample all of the particles from.

The number of component densities in this GMM is typically much smaller than the num-

ber of individual Gaussian proposals needed in the SPPF. Since an individual SPKF is

used to propagate and update each of these Gaussians, the GMSPPF has a much lower

computational cost.

That being said however, there is still a subtle non-obvious similarity between these two

approaches. As mentioned earlier, the SPPF can be interpreted as a stochastic mixture of

N parallel running Kalman filters, where N is the number of particles used by the filter.

In effect, each individual SPKF generated Gaussian proposal is a component density of a

very large implicit Gaussian mixture approximation of the posterior. The mixing weights

are given by the respective particle importance weights. When the new set of particles are

sampled though during each time-update, each particle in the set is drawn from it own

SPKF proposal. In this context, the SPPF’s resampling stage can be partially interpreted

as a stochastic refitting of the large number of Gaussian component densities in the implicit

stochastic GMM approximation of the posterior. This is not a full maximum likelihood

fitting of a GMM to the posterior sample set though, since the location of the Gaussian

densities and their covariances are not adapted. On the other hand, the GMSPPF approach

explicitly models the posterior by a single lower complexity GMM that is fitted to the

posterior cloud of particles using a full EM approach that not only adapts the location

of the Gaussian components (centroids), but also their covariances. In this manner, a

compact (hopefully non-redundant) GMM posterior approximation is found that requires

275

many fewer parameters to model than the large implied stochastic GMM approximation

of the SPPF. This single GMM posterior is then used as a single proposal distribution for

all of the new particles.

Except for the computational benefit of the GMSPPF already mentioned, it arguably

also provides a closer match to the true optimal proposal distribution through the more

powerful general modeling power of a GMM vs. a single Gaussian distribution as used

by the SPPF. In general however, the exact difference in performance between these two

approaches will depend on the inference problem at hand.

6.4 Experimental Results

We will now present a number of experiments demonstrating the performance benefits

of the SPPF and GMSPPF algorithms in comparison with other probabilistic inference

filters. Specifically, we will be comparing and contrasting our hybrid algorithms to the

generic particle filter which will serve as the baseline reference. Emphasis will be put

upon how these new algorithms directly address issues such as particle depletion and/or

computational complexity.

The first experiment is a synthetic, scalar, nonlinear, non-Gaussian time-series estima-

tion problem that is designed to cause serious sample depletion in the standard sampling-

importance-resampling (SIR) particle filter. We will show how the SPPF achieves almost

and order of magnitude improvement in estimation accuracy. In the same experiment

we also compare the performance of the EKF and SPKF to a variety of sequential Monte

Carlo methods, including the generic particle filter and our new proposed SPPF algorithm.

Note that the GMSPPF algorithm is not included, due to “historical reasons”9, in the set

of algorithms to be compared in this experiment. The same inference problem is, how-

ever, revisited in Experiment 3 for a direct comparison between the SPPF and GMSPPF

algorithms.

9The results of this experiment was originally published in [189, 190], more than a year before the
GMSPPF algorithm was proposed in [193]. For this reason the GMSPPF was not included in the original
experiment set. We do however, repeat the same inference problem in Experiment 3, for a thorough
computational cost and estimation performance comparison between the PF, SPPF and GMSPPF. For
the same reason, the GMSPPF is not included in the results of Experiment 2.

276

Experiment 2 applies the SPPF algorithm to an econometrics problem, namely financial

options pricing. We show how using the SPPF approach has certain benefits over the

industry standard Black-Scholes [19] pricing strategy to this problem.

We revisit the nonlinear, non-Gaussian time-series estimation problem of Experiment

1 in Experiment 3, this time focusing however on how the GMSPPF algorithm achieves

the same (or better) level of estimation performance as the SPPF, but at a much reduced

computational cost. Again we contrast this performance to that of the generic particle

filter.

In Experiment 4 we present (with permission) the application of our SPPF algorithm

to the real-world vision problem of human face tracking. This work was done by Yong

Rui at Microsoft Research and published in [169]. The SPPF is compared to Isard and

Blake’s well known CONDENSATION algorithm [87] which is considered one of the best and

most robust solutions for this problem. We will show how the SPPF in fact does even

better. This application serves as an external verification of the SPPF algorithm as a

viable approach for solving real-world probabilistic inference problems.

Lastly, in Experiment 5, we show how the GMSPPF algorithm can be used to solve the

mobile robot localization problem. The problem of globally determining the pose (position

and orientation relative to a map of the environment) of an autonomous mobile robot has

recently started receiving a large amount of interest from the particle filtering community.

Most particle filter solutions for this problem requires extremely large number of particles

(N ≥ 20, 000)to accurately represent the complex posterior density and combat the sample

depletion problem. Because of this, the SPPF algorithm is not a viable (practical) solution

due to its high computational cost for a large particle set requirement. We will show how

the GMSPPF, which has much lower computational cost than the SPPF, is able not only

accurately solve this problem, but also robustly outperform the standard SIR particle filter

solution.

All of the experiments presented here, except Experiment 4, were performed using

Matlab[186] and the ReBEL Toolkit [194]. ReBEL is an in-house developed toolkit for re-

cursive Bayesian estimation in dynamic state space models, containing all of the algorithms

presented in this thesis. See Appendix C for more detail.

277

6.4.1 Experiment 1 : Scalar Nonlinear, Non-Gaussian Time-series Esti-
mation

For this experiment, a time-series was generated by the following process model:

xk+1 = 1 + sin(ωπk) + φ1xk + vk (6.85)

where vk is a Gamma random variable10 modeling the process noise, and ω = 4e − 2 and

φ1 = 0.5 are scalar parameters. Due to the Gamma distributed process noise, the underly-

ing state distribution will be heavy tailed and asymmetric. A non-stationary observation

model,

yk =

⎧⎨⎩ φ2x
2
k + nk k ≤ 30

φ3xk − 2 + nk k > 30
(6.86)

is used, with φ2 = 0.2 and φ3 = 0.5. The observation noise, nk, is drawn from a zero-mean

Gaussian distribution, i.e., nk ∼ N (n; 0, 1e − 5). Due to the narrow observation noise

distribution, the resulting observation likelihood function will also be highly peaked. This

combined with the occasional state outlier produced by the heavy-tailed Gamma process

noise distribution will put significant strain on a standard particle filter which uses the

standard transition prior as proposal distribution. For this experiment it is of utmost

importance to incorporate the latest observation into the proposal distribution in order

to move the particle set to areas of high likelihood. For this reason we expect the SPPF

algorithm to outperform the standard particle filter.

Given only the noisy observations, yk, the different filters were used to estimate the

underlying clean state sequence xk for k = 1 . . . 60. The experiment was repeated 100 times

with random re-initialization for each run. All of the particle filters used 200 particles and

residual resampling. For this experiment we used an UKF inside the SPPF with scaling

parameters set to α = 1, β = 0 and κ = 2. These parameters are optimal for the

scalar case. Take note however that any other SPKF form can be used inside the SPPF.

Table 6.1 summarizes the performance of the different filters. The table shows the means

and variances of the mean-square-error (MSE) of the state estimates. Figure 6.6 compares

10vk ∼ Ga(v; 3, 2). See [109] for detail about Gamma random variables.

278

Table 6.1: Scalar nonlinear non-Gaussian state estimation experiment results. This plot shows
the mean and variance of the MSE calculated over 100 independent runs.

Algorithm MSE
mean var

EKF 0.374 0.015
SPKF 0.280 0.012
SIR-PF (generic particle filter) 0.424 0.053
SIR-PF-MCMC (generic particle filter with MCMC step) 0.417 0.055
EKPF (extended Kalman particle filter) 0.310 0.016
EKPF-MCMC (extended Kalman particle filter with MCMC step) 0.307 0.015
SPPF (sigma-point particle filter) 0.070 0.006
SPPF-MCMC (sigma-point particle filter with MCMC step) 0.074 0.008

the estimates generated from a single run of the different particle filters. The superior

performance of the sigma-point particle filter (SPPF) is clearly evident. Also note how

(at least for this experiment) the extra MCMC move step does not have any significant

effect on the estimation accuracy of the different filters. Figure 6.7 shows the estimates of

the state covariance generated by a stand-alone EKF and SPKF for this problem. Notice

how the EKF’s estimates are consistently smaller than those generated by the SPKF. This

property makes the SPKF better suited than the EKF for proposal distribution generation

within the particle filter framework.

This synthetic problem will be revisited in Experiment 3 when comparing the PF,

SPPF and GMSPPF algorithms with regard to estimation accuracy and computational

complexity.

6.4.2 Experiment 2 : Econometrics - Pricing Financial Options11

Derivatives are financial instruments whose value depends on some basic underlying cash

product, such as interest rates, equity indices, commodities, foreign exchange or bonds [82].

An option is a particular type of derivative that gives the holder the right to do something:

For example, a call option allows the holder to buy a cash product, at a specified date in

11This experiment was done in collaboration with Nando de Freitas who provided valuable
insight into financial and econometric issues. These results were published in [189] and [190].

279

0 10 20 30 40 50 60
1

2

3

4

5

6

7

8

9

Time

Filter estimates (posterior means) vs. True state
E

[x
(t

)]

True x
PF estimate
PF−EKF estimate
PF−UKF estimate

Figure 6.6: Scalar nonlinear non-Gaussian state estimation experiment results: state estimates (The
PF-UKF label refers to a SPPF that uses a UKF internally).

0 10 20 30 40 50 60
10

−6

10
−4

10
−2

10
0

Estimates of state covariance

time

va
r(

x)

EKF
UKF

Figure 6.7: EKF and SPKF estimates of the state covariance for scalar nonlinear, non-Gaussian
problem.

280

the future, for a price determined in advance. The price at which the option is exercised is

known as the strike price, while the date at which the option lapses is often referred to as

the maturity time. Put options, on the other hand, allow the holder to sell the underlying

cash product at a predetermined price.

The Black Scholes partial differential equation is, essentially, the main industry stan-

dard for pricing options [82]. It relates the current value of an option (f) to the current

value of the underlying cash product (S), the volatility of the cash product (σ) and the

risk-free interest rate (r) as follows:

∂f

∂t
+ rS

∂f

∂S
+

1
2
σ2S2 ∂

2f

∂S2
= rf . (6.87)

This basic equation is only valid under several conditions, such as: no risk-less arbitrage

opportunities, an instantaneous risk-less portfolio, continuous trading, no dividends, con-

stant volatility and risk-free interest rate. In addition, the cash product is assumed to be

dictated by the following geometric Brownian motion model

dS
S

= µdt+ σεdt , (6.88)

where µ is the expected return and ε corresponds to a random sample from a standardized

normal distribution (with mean zero and unit variance). In their seminal work [19], Black

and Scholes derived the following solutions for pricing European call and put options:

C = SNc(d1) −Xe−rtmNc(d2) (6.89)

P = −SNc(−d1) +Xe−rtmNc(−d2) (6.90)

where C denotes the price of a call option, P the price of a put option, X the strike price,

tm the time to maturity, Nc(·) is the cumulative normal distribution, and d1 and d2 are

given by

d1 =
ln(S/X) + (r + σ2/2)tm

σ
√
tm

(6.91)

d2 = d1 − σ
√
tm (6.92)

281

2900 3000 3100 3200 3300
0.165

0.17

0.175

0.18

0.185

0.19

Im
pl

ie
d

vo
la

til
iti

es
 a

t t
=

50

Strike prices
2900 3000 3100 3200 3300

0.165

0.17

0.175

0.18

0.185

0.19

Im
pl

ie
d

vo
la

til
iti

es
 a

t t
=

60

Strike prices

Figure 6.8: Volatility smile indicating that an option on the FTSE-100 index was over-priced. The
option value 10 days later confirmed this hypothesis. Estimates obtained with a particle filter [*], 4-th
order polynomial fit [—] and hypothesized volatility [o].

The volatility (σ) is usually estimated from a small moving window of data over the

most recent 50 to 180 days [82]. The risk-free interest rate (r) is often estimated by

monitoring interest rates in the bond markets. In our approach, which follows from [146],

we use a DSSM representation to model the system given by Equations 6.89 and 6.90. We

treat r and σ as the hidden states and C and P as the output observations. tm and S are

treated as known control signals (input observations). We believe that this approach is

better since it constitutes a more natural way of dealing with the sequential behavior and

non-stationarity of the data. In the end, we are able to compute daily complete probability

distributions for r and σ and to decide whether the current value of an option in the market

is being either over-priced or under-priced.

Typically, options on a particular equity and with the same exercise date are traded

with several strike prices. For example, in our experiments, we used five pairs of call and

put option contracts on the British FTSE-100 index (from February 1994 to December

282

2900 2950 3000 3050 3100 3150 3200 3250 3300 3350 3400 3450

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Im
pl

ie
d

vo
la

til
ity

 d
is

tr
ib

ut
io

ns
 a

t t
=

18
0

Strike prices

Figure 6.9: Probability smile for options on the FTSE-100 index (1994). Although the volatility smile
indicates that the option with strike price equal to 3225 is under-priced, the shape of the probability
gives us a warning against the hypothesis that the option is under-priced. Posterior mean estimates
obtained with Black-Scholes model and particle filter [*], 4-th order polynomial fit [—] and hypothesized
volatility [o].

1994) to evaluate the pricing algorithms. For each option on this set one can estimate

a different volatility. By plotting the Black-Scholes estimates of the volatilities against

their respective strike prices, we obtain a curve which is known as the volatility smile [82].

A well known pricing strategy is to leave one of the options out and then determine the

volatility smile given by the other options. If the option that was left out is below the

curve, it could mean that it is under-priced by the market.

Figure 6.8 shows an example of this phenomenon obtained by tracking 5 pairs of call

and put option contracts on the FTSE-100 index (1994) with a particle filter. On the

50th day, option 4 seems to be over-priced. The state of this option 10 days later confirms

283

20 22 24 26 28 30 32 34 36 38

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

C
al

l p
ric

e

Actual price
Prediction

10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

0.06

P
ut

 p
ric

e

Time (days)

Actual price
Prediction

Figure 6.10: SPPF one-step-ahead predictions on the call and put option’s prices with confidence
intervals (2 standard deviations).

this hypothesis. However, depending on the state of the particular equity, some options

might remain under-priced or over-priced during their entire life-time. For example, if an

option on a company product seems to be over-priced according to its volatility smile,

but investors know that the company is being bought by a larger company with better

management, the option price will remain higher than the smile prediction [73].

In the sequential Monte Carlo framework, we can improve this trading strategy. Instead

of plotting a volatility smile, we plot a probability smile. That is, we can plot the probability

density function of each implied volatility against their respective strike prices, as shown in

Figure 6.9. This plot, clearly, conveys more information than a simple plot of the posterior

mean estimates.

The type of predictions obtained with the sigma-point particle filter were very close to

the measured data as evidenced by Figure 6.10. Figure 6.11 shows the estimated volatility

and interest rate for a contract with a strike price of 3225. Plots of the evolution of the

284

0 50 100 150 200 250
4

6

8

10

12

14
x 10

−3

In
te

re
st

 r
at

e

0 50 100 150 200 250
0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

V
ol

at
ili

ty

Time (days)

Figure 6.11: Estimated interest rate and volatility.

probability distributions of the interest rate and volatility are depicted in Figures 6.12

and 6.13.

In Table 6.2, we compare the one-step-ahead normalized square errors obtained with

each method on a pair of options with strike price 2925. The normalized square errors are

defined as follows:

NSEC =
√∑

t

(Ct − Ĉt)2 (6.93)

NSEP =
√∑

t

(Pt − P̂t)2 , (6.94)

where Ĉt and P̂t denotes the one-step-ahead predictions of the call and put prices. The

square errors were only measured over the last 100 days of trading, so as to allow the

algorithms to converge. The experiment was repeated 100 times and we used 100 particles

in each particle filter.

285

0

0.005

0.01

0.015

0.02

0

50

100

150

200

0

0.2

0.4

r
t

Time (t)

p(
r t|S

0:
t,t m

,C
0:

t,P
0:

t)

Figure 6.12: Probability distribution of the implied interest rate.

0.1

0.15

0.2

0.25

0

50

100

150

200

0

0.5

1

σ
t

Time (t)

p(
σ t|S

0:
t,t m

,C
0:

t,P
0:

t)

Figure 6.13: Probability distribution of the implied volatility.

286

Table 6.2: One-step-ahead normalized square errors over 100 runs. The trivial prediction
is obtained by assuming that the price on the following day corresponds to the current
price.

Option Type Algorithm Mean NSE
Call trivial 0.078

EKF 0.037
SPKF 0.037
SIR-PF (generic) 0.037
EKPF (PF with EKF proposal) 0.009
SPPF 0.009

Put trivial 0.035
EKF 0.023
SPKF 0.023
SIR-PF (generic) 0.023
EKPF (PF with EKF proposal) 0.008
SPPF 0.008

In this example, both the EKF and SPKF approaches to improving the proposal dis-

tribution, i.e., EKPF and SPPF algorithms, lead to a significant improvement over the

standard particle filter. The main advantage of the SPKF based SPPF over the EKF

based EKPF, is the ease of implementation, which avoids the need to analytically differ-

entiate the Black-Scholes equations.

For reasons already laid out in the introduction to this section, the GMSPPF was not

available for comparison when this experiment was performed and the results published in

[189, 190, 77]. Since this specific inference problem is inherently off-line by nature and has

a relatively low computational cost (low state and observation dimension as well as low

number of particles needed), the extra implementational complexity of the GMSPPF is not

necessarily justified. For this reason the experiment was not repeated with the GMSPPF.

In the next experiment we do however directly compare the SPPF and GMSPPF.

287

6.4.3 Experiment 3 : Comparison of PF, SPPF & GMSPPF on nonlin-
ear, non-Gaussian state estimation problem

For this experiment we revisit the nonlinear, non-Gaussian, scalar time series estimation

problem as presented in Experiment 1. The specific aim this time however is to directly

compare and contrast the performance of the SPPF and GMSPPF algorithms, with specific

focus on computational complexity. As a baseline reference we will also show the relative

performance of the generic SIR-PF algorithm.

Just to recap, a scalar time series was generated by the following process model:

xk = φ1xk−1 + 1 + sin(ωπ(k − 1)) + vk , (6.95)

where vk is a Gamma Ga(3, 2) random variable modeling the process noise, and ω = 0.04

and φ1 = 0.5 are scalar parameters. A nonstationary observation model,

yk =

⎧⎨⎩ φ2x
2
k + nk k ≤ 30

φ3xk − 2 + nk k > 30
(6.96)

is used, with φ2 = 0.2 and φ3 = 0.5. The observation noise, nk, is drawn from a Gaussian

distribution N (nk; 0, 10−5). Figure 6.15 shows a plot of the hidden state and noisy obser-

vations of the time series. Given only the noisy observations yk, the different filters were

used to estimate the underlying clean state sequence xk for k = 1 . . . 60. The experiment

was repeated 100 times with random re-initialization for each run in order to calculate

Monte-Carlo performance estimates for each filter. All the particle filters used 500 par-

ticles. This is in contrast to Experiment 1 where we used 200 particles per filter. The

increased number of particles will magnify the difference in computational cost between

the algorithms. With the increased number of particles we also expect a lower overall es-

timation error for all the algorithms. Where applicable (SIR-PF and SPPF only) residual

resampling were used. For the GMSPPF we made used of the direct weighted EM option

to recover the GMM posterior after the IS based measurement update step. We found this

approach to have slightly better performance than the resample-then-EM option. For the

IS based measurement update step we used the same number of particles (200) as for the

288

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x

p
(v

)

Gamma

Gaussian
G

1

G
2

G
3

GMM = a
1
G

1
+a

2
G

2
+a

3
G

3

Figure 6.14: GMM approximation of heavy tailed, asymmetric Gamma distributed noise distribu-
tion.The blue curve is the Gamma distribution and the green curve is a single Gaussian approximation
(same mean and covariance) of the Gamma distribution. The dotted magenta curves show the shape
and position of the three Gaussian components of a GMM approximation of the Gamma distribution.
Finally, the red curve shows the resulting GMM distribution built up by a linear weighted sum of the
green component densities. The GMM was fitted to the Gamma distribution using an expectation-
maximization (EM) approach.

generic particle filter.

Two different GMSPPF filters were compared: The first, GMSPPF (5-1-1), uses a 5-

component GMM for the state posterior, and 1-component GMMs for the both the process

and observation noise densities. The second, GMSPPF (5-3-1), use a 5-component GMM

for the state posterior, a 3-component GMM to approximate the “heavy tailed” Gamma

distributed process noise and a 1-component GMM for the observation noise density. The

process noise GMM was fitted to simulated Gamma noise samples with an EM algorithm.

Figure 6.14 shows how an asymmetrical heavy tailed Gamma distribution can be approxi-

mated by a 3-component GMM. Both GMSPPFs use Inference Method 1 (Equations 6.81

and 6.82) to calculate the state estimates.

289

0 10 20 30 40 50 60
−10

0

10

20

30

40

time (k)

x(
k)

an

d
 y

(k
)

true state : x(k)
observation : y(k)
GMSPPF estimate

Figure 6.15: Non-stationary, nonlinear, non-Gaussian time series estimation experiment: Plot of true
state, noisy observations and filter estimates.

Table 6.3 summarizes the performance of the different filters averaged over 100 ran-

domly initialized Monte Carlo runs. The table shows the means and variances of the

mean-square-error of the state estimates as well as the average processing time in seconds

of each filter. The reason why the standard PF performs so badly on this problem is

due to the highly peaked likelihood function of the observations (arising from the small

observation noise variance) combined with the spurious jumps in the state due to the

heavy tailed process noise. This causes severe “sample depletion” in the standard PF that

uses the transition prior p(xk|xk−1) as proposal distribution. As discussed in Sections 6.3

and 6.3.1, the SPPF and GMSPPF addresses this problem by moving the particles to areas

of high likelihood through the use of a SPKF derived proposal distributions, resulting in a

drastic improvement in performance. Unfortunately, for the SPPF, this comes at a highly

increased computational cost. Since the processing time for each algorithm (on the same

CPU) is directly related to its computational complexity, Table 6.3 clearly indicates that

the GMSPPF algorithms has the same order of computational complexity as the SIR-PF,

but much better estimation performance. Conversely, for the same level of estimation per-

formance as the SPPF, the GMSPPF realizes this at a much lower computational cost. The

best performance is achieved by the 5-3-1 GMSPPF that better models the non-Gaussian

nature of the process noise distribution.

290

Table 6.3: Non-stationary, nonlinear, non-Gaussian time series estimation experiment: Estimation
results averaged over 100 Monte Carlo runs.

Algorithm MSE (mean) MSE (var) Time (s)
SIR-PF (generic) 0.2517 4.9e-2 1.70

SPPF 0.0049 8.0e-5 35.6
GMSPPF (5-1-1) 0.0036 5.0e-5 1.04
GMSPPF (5-3-1) 0.0004 3.0e-6 2.03

6.4.4 Experiment 4 : Human Face Tracking

This section reports on the use of the SPPF for a computer vision based human face track-

ing system. The system was developed my Yong Rui and his group at Microsoft Research

[169] and directly utilizes our SPPF algorithm in an efficient C++ implementation with

specific application to a automated camera management system for a lecture room envi-

ronment [121]. This application of our SPPF algorithm serves as an external verification

of its viability as an approach for solving real-world probabilistic inference problems and

is presented here with permission from Yong Rui. In the description of the human face

tracking experiment that follows, we rely heavily on the exposition given by Rui and Chen

in [169].

Robust human head tracking in a cluttered environment has many real-world appli-

cations such as automated camera pointing and speaker tracking in a lecture hall en-

vironment, immersive human-computer interaction for virtual-reality (VR) systems and

adaptive microphone beam-forming for speech enhancement applications to name but a

few [121]. The general shape of a human head can be modeled by a 1:1.2 aspect ratio

ellipse centered at the visual center of mass of the image of head (See Figure 6.16 for a

schematic). This simple parametric curve describing the outline of the head allows us to

build a likelihood model p(zk|xk) for a given observation zk (video frame) conditioned on

the underlying 2D position (x-y) of the center of the persons head in the frame. Unfor-

tunately this likelihood model (which is shown later) is highly nonlinear, increasing the

difficulty of accurately tracking the head-ellipse from frame to frame. Even small changes

in the parametric curve space could result in large changes in the observation likelihood.

291

x

y

x

y

ky

kx

()r

k

() (),r r

k kx y ()r
s

Figure 6.16: Human face tracking with the SPPF

292

For this reason, it is imperative for particle filter solutions to distribute the limited number

of particles in an effective way to areas of increased likelihood as determined by the video

stream. Clearly, this application stands to benefit significantly from the use of a SPPF

that not only incorporates the latest observation into the proposal distribution, but is

also capable of accurately dealing with the severe nonlinearities of the observation model

through the implicit use of the SPKF.

In order to implement any form of particle filter (PF, SPPF, etc.) as a solution to this

problem, we need to determine the specific forms of the process and observation models

as well as the observation likelihood function (needed to evaluate importance weights).

Note that in general, for a simple additive Gaussian observation noise source and single

hypothesis noisy observations the observation model and observation likelihood function

are uniquely linked through the observation noise density function. For this problem how-

ever, even though a specific realization of the system state will result in a unique (if noisy)

observation model prediction. The likelihood function on the other hand will not be so

simple. Due to visual clutter and related non-Gaussian corrupting disturbances, the like-

lihood function will typically be multimodal in order to accurately model the underlying

multiple-hypothesis nature of the problem. For this reason, we need to specify the obser-

vation model and likelihood function separately. They are however related through the

underlying hidden state value xk. The subtle difference between these two functions are

however their causal relationship to the system state: The observation model is treated as

a function of the hidden state, predicting the value of the expected observation yk. The

likelihood function on the other hand treats the specific observation yk as fixed and then

models the likelihood of the underlying (possible) values of xk. We will now show how

these are derived for the human face tracking problem.

Process Model: xk = f (xk−1,vk−1)

Let (x, y)k represent the image plane coordinates of the center of the head-contour ellipse

as illustrated in Figure 6.16. The system states are the 2D position and velocity of the

ellipse center, i.e.,

xk =
[
xk yk ẋk ẏk

]T
. (6.97)

293

To model the movement dynamics of a talking person, the Langevin process is used [169].

This 2nd order movement model has been motivated by numerous researchers in the field of

human behavior tracking [87, 169, 29, 117]. This Langevin model is given by the following

set of coupled continuous time differential equation:

d2xt
dt2

+ βx
dxt
dt

= v (6.98)

d2yt
dt2

+ βy
dyt
dt

= v , (6.99)

where βx and βy are the movement rate constants and v is a Gaussian thermal excitation

process drawn from N (v; 0, σ2
v). The discrete form of the Langevin process applied to the

parametric model of the head-contour ellipse is given by [197]:⎡⎢⎢⎢⎢⎢⎢⎣
x

y

ẋ

ẏ

⎤⎥⎥⎥⎥⎥⎥⎦
k

=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 τ 0

0 1 0 τ

0 0 ax 0

0 0 0 ay

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
x

y

ẋ

ẏ

⎤⎥⎥⎥⎥⎥⎥⎦
k−1

+

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

bx

by

⎤⎥⎥⎥⎥⎥⎥⎦ vk , (6.100)

where τ is the discretization time step, ax = exp (−βxτ) and ay = exp (−βyτ) are the

discrete movement rate constants, bx = v̄
√

1 − a2
x and by = v̄

√
1 − a2

y are the discrete

excitation rate constants and v̄ is the steady-state root-mean square velocity. This linear

model is used as the process model.

Observation Model: zk = h (xk,nk)

Referring to Figure 6.16 we see that the head-contour ellipse is centered at the current

position subvector of the system state, i.e., xk = [xk yk]T . In order to build our

observation model we generate K rays, {s(r); r = 1 . . . K}, from the ellipse center and let

them intersect with the ellipse boundary. If we use the ellipse center as the origin of a local

coordinate system that coincides with the ellipse’s minor and major axes x̃ and ỹ, the K

294

intersections (x̃(r)
k , ỹ

(r)
k) at time k is given by

x̃
(r)
k =

√√√√√√
(
tan θ(r)

k

)2

1.44
(
tan θ(r)

k

)2
+ 1

(6.101)

ỹ
(r)
k =

√√√√ 1

1.44
(
tan θ(r)

k

)2
+ 1

, (6.102)

which results from jointly solving the ellipse equation and the ray equation for each of the

K rays, i.e.,

(x̃(r)
k , ỹ

(r)
k) ⇐

⎧⎪⎨⎪⎩
(
x̃
(r)
k

)2
1 +

(
ỹ
(r)
k

)2
(1.2)2 = 1

x̃
(r)
k = ỹ

(r)
k tan θ(r)

k

, (6.103)

where θ
(r)
k is the angle between the r’th ray and the x̃ axis. Transforming the ellipse

local (x̃, ỹ) coordinates back to the image coordinate frame, we obtain the following highly

nonlinear observation model:

zk = h (xk,nk)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z
(1)
x

z
(1)
y

z
(2)
x

z
(2)
y

...

z
(K)
x

z
(K)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃
(1)
k + xk

ỹ
(1)
k + yk

x̃
(2)
k + xk

ỹ
(2)
k + yk

...

x̃
(K)
k + xk

ỹ
(K)
k + yk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ nk , (6.104)

where nk is the observation noise term, drawn from a zero-mean Gaussian distribution,

N (n; 0,R).

Likelihood Model: p(zk|xk)

The edge intensity is used to model the likelihood function. Specifically, we use a Canny

edge detector [27] to calculate the scalar edge intensity along each of the K ellipse centered

295

rays. This function is in general multi-peaked due to noise and clutter in the video image.

Let J be the number of peaks in the edge-intensity function. Of these J peaks, at most

one is from the true edge along the ray. Following a similar approach as used in [87] and

[197], we can therefore define J + 1 hypotheses:

H0 : {pj = F ; j = 1, . . . , J} (6.105)

Hj : {pj = T , pk = F ; k = 1, . . . , J ; k �= j} , (6.106)

where pj = T means the jth peak is associated with the true edge and pj = F represents

it’s complement, an association with a false peak. Hypothesis H0 therefore implies that

none of the observed peaks along a ray is associated with the true edge and Hypothesis

Hj implies at least peak j is associated with the true edge. Using these hypotheses we can

now define the combined edge likelihood along ray r as:

p(r) (zk|xk) = α
(r)
0 p(r) (zk|H0) +

J∑
j=1

α
(r)
j p(r) (zk|Hj) , (6.107)

where α(r)
0 and α

(r)
j are the prior probabilities of H0 and Hj respectively (on ray r), such

that α(r)
0 +

∑J
j=1 α

(r)
j = 1. The choice of probability distribution used to model Hypothesis

H0 generally dependent on certain assumptions of the background image clutter. For this

experiment a uniform distribution was used, i.e.,

p(r) (zk|H0) = U . (6.108)

Furthermore, a single Gaussian distribution centered at the location (along the ray) of peak

j is used to model p(r) (zk|Hj). The variance of this Gaussian is typically set according to

off-line data analysis done on large numbers of representative images. Finally, the overall

likelihood considering all of the K rays is given by:

p (zk|xk) =
K∏
r=1

p(r) (zk|xk) . (6.109)

296

 Frame 40 Frame 50 Frame 60

 Frame 40 Frame 50 Frame 60

Figure 6.17: SPPF based human face tracking: The top plot of each sequence shows the tracking
results of a standard (CONDENSATION [87]) particle filter and the bottom plot of each sequence
shows the superior tracking performance of the SPPF.

297

Experimental Tracking Results

Using the models and functions as defined above and the SPPF algorithm as defined

in Section 6.3.1, a real-time tracking system was implemented in C++ on a Windows

2000 platform [169]. Our SPPF algorithm was implemented as-is without attempting

any further computational optimizations. The system was found to run comfortably at

30 frames/sec, utilizing 30 particles and 5 rays per particle. The video image resolution

used is 320x240 pixels. The tracking experiment was conducted in a normal office with

bookshelves, computer monitors and other people in the background. Two typical tracking

sequences are reported here in Figure 6.17. The tracking results of the industry standard

CONDENSATION algorithm [87] is compared against that of the proposed SPPF based

system. The CONDENSATION algorithm is a standard SIR-PF using the above defined

state, process and observation likelihood models. The top plot of each sequence (plot 1

and 3) shows the tracking result of the CONDENSATION based system and the bottom

plots (plot 2 and 4) show the SPPF results. In both sequences, when the person moves

to a location that is not readily predicted by the transition prior, the CONDENSATION

algorithm is easily distracted by background clutter (e.g. the bookshelf in Sequence 1 and

the oval shaped light-spot on the rear wall in Sequence 2). This is directly due to the fact

that the transition prior does not take the most current observation into account when

proposing new samples. On the other hand, because the SPPF’s superior SPKF derived

proposal distribution places the limited number of samples (particles) more effectively, it

is able to more robustly track the true location of the persons head in both sequences.

In order to truly judge the difference in tracking performance between these two ap-

proaches, the reader is urged to download and view the following two real video-sequence

captures (courtesy of Yong Rui). These sequences are encoded using the standard MPEG

format and can be downloaded at the following URLs:

• http://wozar.com/phd/cond_tracking.mpg (CONDENSATION)

• http://wozar.com/phd/sppf_tracking.mpg (SPPF)

298

Environment map

robot

walls

laser range finder

doorway

Figure 6.18: Mobile robot localization: (left) Global map of robot’s environment. (right) Physical
setup of robot within its environment.

6.4.5 Experiment 5 : Mobile Robot Localization12

Mobile robot localization (MRL) is the problem of estimating a robot’s pose (2D position

and heading) relative to a map of its environment. This problem has been recognized as

one of the fundamental problems in mobile robotics [32]. The mobile robot localization

problem comes in two flavors. The simpler of these is position tracking where the robot’s

initial pose is known, and localization seeks to correct small, incremental errors in the

robots odometry. More challenging is the global localization problem, also known as the

hijacked robot problem, where the robot does not known its initial pose, but instead has

to determine it from scratch based only only on noisy sensor measurements and a map of

its environment. Note, the robot does not initially know where on the map it is.

In this inference problem there are often ambiguous or equally viable solutions active at

any given moment (due to symmetries in the map and sensor data) which rules out simple

single Gaussian representations of the posterior state distribution. Particle filter solutions

12This work was done in collaboration with Dieter Fox and Simon Julier who provided
the environment maps as well as the the observation likelihood model for the laser-based
range finder sensors. The preliminary results of this collaboration is reported here, but
will be presented more thoroughly in a future publication. See Dieter Fox’s publications
at http://www.cs.washington.edu/homes/fox/ for a wealth of information on mobile robot
localization.

299

are the algorithm of choice to tackle this problem [55] due to their ability to present the

non-Gaussian multi-modal posterior state distribution related to the multiple hypotheses

for the underlying robot pose.

One counter intuitive problem often arising in mobile robot localization using standard

particle filters is that very accurate sensors often results in worse estimation (localization)

performance than using inaccurate sensors. This is due to the fact that accurate sensors

have very peaked likelihood functions, which in turn results in severe particle depletion

during the SIR step of the sequential Monte Carlo measurement update. When the effective

size of the particle set becomes too small due to particle depletion, the particle filter can

no longer accurate represent the true shape of the posterior state distribution resulting in

inaccurate estimates, or even filter divergence when the correct hypothesis are no longer

maintained (the correct mode in the posterior disappears).

In order to address this problem one typically need to use a very large number (≥
20, 000) of particles, resulting in a high computational cost. The irony is that the number

of particles needed later on in the localization process, when much of the uncertainty

or ambiguity of the robot’s pose has been reduced, is much less than what is initially

needed. So, a large number of the particles eventually becomes superfluous but still incurs

a computational burden. Recent work on adaptive particle filters using KLD sampling

[53] attempts to address this by adapting the number of particles used in real time. We

present here some preliminary results in using the GMSPPF to address the same problem.

Take note, that due to the large number of particles needed to accurate represent the

posterior (at least initially), the use of the SPPF, although highly accurate, would incur a

prohibitively high computational cost.

The GMSPPF has two appealing features which make it an attractive solution to the

MRL problem. As discussed in Sections 6.3, 6.3.1 and 6.3.2, the GMSPPF (and SPPF)

moves particles to areas of high likelihood by using a proposal distribution that incorporates

the latest measurement. This addresses the particle depletion problem. Furthermore,

300

by using an adaptive clustering EM algorithm such as X-means13 initialized FastEM 14

[55, 137] in the GMM recovery step, the model order (number of Gaussian components) is

automatically adapted over time to more efficiently model the true nature of the posterior.

We typically find that the model order which is initially set to a large number (to model

the almost uniform uncertainty over the state space) slowly decreases over time as the

posterior becomes more peaked in only a few ambiguous areas. The advantage of this is

that the computational cost also reduces over time in relation to the model order, since we

use a fixed number of particles per Gaussian component in the posterior GMM.

Before we report the experimental results, we will first briefly describe the process

(movement) model and observation models that were used for this problem:

Process Model: xk+1 = f (xk,uk,vk)

We make use of a rather simple, but highly nonlinear process model for the robot’s move-

ment. Firstly, the robot’s state is defined as its 2D position (x, y) relative to the map of

its environment, as well as its heading angle (ψ):

xk =
[
xk yk ψk

]T
. (6.110)

The robot’s movement from one position on the map to another, within one discrete time

step, is broken down into two sub-maneuvers: First the robot rotates towards the desired

heading, and then it translates along that bearing at the required velocity needed to reach

the desired end coordinates. In other words, the robot’s exogenous command input (uk)

13X-means is a highly efficient C-language implementation of the k-means algorithm for automatic clus-
tering of multivariate data and was developed by Andrew Moore and Dan Pelleg at CMU [153]. X-means
makes use of multi-resolution kd -tree data structure embedding of the data to reduce the large number of
nearest-neighbor queries issued by the traditional k-means algorithm. The kd -tree is incrementally built
and sufficient statistics are stored in the nodes of the tree. Then, an analysis of the geometry of the current
cluster centers results in a great reduction of the work needed to update the centers. The kd -tree data
structure further allows for efficient initialization of the k-means starting centroids.

14FastEM [137] is a computationally efficient C-language implementation of the expectation-
maximization (EM) [41] algorithm. Like the X-means algorithm, this computational efficiency is achieved
through the use of kd-tree data structures for data embedding. The FastEM algorithm also allows for
on-line adaptive model-selection, using either the AIC (Akaike Information Criteria) or BIC (Bayesian
Information Criteria) goodness-of-fit cost functions.

301

comprises of the initial rotation angle and the desired translation distance, i.e.,

uk =
[
θ d

]T
. (6.111)

Since we assume the desired distance can be covered within a single discrete time-step, the

distance command is analogous to a constant velocity command over that time-step, and

must be limited according to the physical constraints of the actuators and motors for the

specific robot model in question.

The process noise affecting the accuracy of any specified desired movement has three

components: First, due to stepper motor resolution limitations and quantization noise,

there will always be a finite discrepancy between the commanded and actually realized

rotation angle and translation distance. We model these as additive Gaussian noise terms.

The second cause of movement inaccuracy stems from the small but finite differences be-

tween the response of the left hand and right hand driving wheels/tracks of any mobile

robot (which are driven separately), as well as the surface over which it moves. These dif-

ferences all contribute to the inability of the robot to follow a perfectly straight trajectory.

The magnitude of this effect is in general proportional to the magnitudes of the commanded

rotation angle and translation distance. In order to model this noise process, we make the

magnitude of the first two additive noise components (mentioned above) proportional to

the absolute magnitude of the commanded rotation angle and translation distance. Fur-

thermore, we add a final post-translation random rotation error to the achieved heading

angle. The magnitude of this Gaussian noise term, which forms the third component of

the process noise vector, is proportional to the magnitude of the achieved translation. The

process noise vector (vk) is thus given by,

vk =
[
vθ vd vψ

]T
k
, (6.112)

where vθk
∼ N (vθ; 0, σ2

θ

)
is the pre-translation rotational error, vdk

∼ N (vd; 0, σ2
d

)
is the

translation error, and vψk
∼ N

(
vψ; 0, σ2

ψ

)
is the post-translation rotational error.

302

Finally, the full process model is given by:

ṽdk
= ‖dk‖ · vdk

(6.113)

ṽθk
= ‖θk‖ · vθk

(6.114)

ṽψk
= ‖dk + ṽdk

‖ · vψk
(6.115)

xk+1 = f (xk,uk,vk)⎡⎢⎢⎢⎣
xk+1

yk+1

ψk+1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
xk + (dk + ṽdk

) cos (ψk + θk + ṽθk
)

yk + (dk + ṽdk
) sin (ψk + θk + ṽθk

)

ψk + θk + ṽθk
+ ṽψk

⎤⎥⎥⎥⎦ , (6.116)

where ‖·‖ is the standard norm operator. All of the angular addition operations in

Equation 6.116 are performed modulus-2π, such that all resulting angles fall within the

−π ≤ ψ ≤ π range.

Using the environment map (and computational ray tracing), the process model also

determines if a specific movement trajectory will result in a collision with any of the walls.

If such a collision occurs, the robot will stop and perform a stationary rotation such that

it is pointing away from the wall (based on incidence angle) at the start of the next time

step.

Observation Model: zk = h (xk,nk)

As schematically illustrated in Figure 6.18, the only observation sensor the robot uses to

sense its environment is a high accuracy laser (or sonar) range finder. This sensor measures

the line-of-sight distance to the closest walls along K rays in a 0.5π radian horizontal fan

centered around the robots current heading. In order to model such a sensor we make use

of a computational ray-tracing model based on the environment map (walls and free-space)

defined on a finite resolution grid15. The observation vector is thus a K-dimensional vector

indicating the distance to the closest obstacle along each of the K sensor beams. Each

15The computational cost of such a model grows quadratically with respect to the grid cell size. For this
reason one has to reach a practical compromise between the computational overhead of the observation
model and the grid resolution needed for accurate location and tracking performance. For our experiment
we used environmental maps with a 10x10 cm grid cell size.

303

measurement is corrupted by an additive independent Gaussian random variable, i.e.,

∆ψk =
0.5π
K − 1

(6.117)

zk = h (xk,nk)⎡⎢⎢⎢⎢⎢⎢⎣
z
(1)
k

z
(2)
k
...

z
(K)
k

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
r (ψk − 0.25π + 0 · ∆ψk, xk, yk)
r (ψk − 0.25π + 1 · ∆ψk, xk, yk)

...

r (ψk − 0.25π + (K − 1) · ∆ψk, xk, yk)

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
n

(1)
k

n
(2)
k
...

n
(K)
k

⎤⎥⎥⎥⎥⎥⎥⎦ , (6.118)

where r(φ, x, y) is the ray-tracing distance function defined as:

r(φ, x, y) .= {distance to obstacle along heading φ, from position (x, y)} , (6.119)

and nk is the K-dimensional observation noise vector drawn from a zero-mean Gaussian

distribution, nk ∼ N (n;0,R). Due to the typically high accuracy of laser range-finder

sensors, the measurement noise variance R is set to a small value. This will result in

very peaked likelihood functions, which in turn will result in severe sample depletion for

standard particle filters. In order to mitigate this problem (as discussed before), we either

have to use huge amounts of particles16 and/or use better proposal distributions that move

the particles to areas of increased likelihood.

Experimental Results: SIR-PF vs. GMSPPF

Using the process and observation models defined above, we implemented a SIR-PF and

GMSPPF based mobile robot localization system using the ReBEL Toolkit (See Ap-

pendix C for detail about the toolkit) and tested it (in simulation) on a benchmark MRL

problem provided by Dieter Fox.

Figure 6.19 gives a graphical comparison of the localization results using a SIR particle

filter (SIR-PF) on the left and the GMSPPF on the right. The same plots are reproduced

16As mentioned earlier, the number of particles can possibly be adapted over time using the KLD version
of the particle filter [53]. This will not reduce the initially large computational cost though while there is
still large amount of uncertainty in the posterior. The use of the KLD approach to possibly extend the
SPPF (and possibly the GMSPPF) algorithms is an area of ongoing research.

304

SIR-PF GMSPPF

01

02

10

20

50

Figure 6.19: Mobile robot localization: Results using a SIR particle filter (left) and GMSPPF (right).
The true robot position (black dot) and filter generated posterior is shown for k = {1, 2, 10, 20, 50}(from
top to bottom) as the robot moves from one room up into the hallway, turn left, move down the hallway
and down again into the large room. SIR-PF particles are shown in blue (on the left) and the GMSPPF’s
GMM posterior’s Gaussian component densities are shown in red on the right.

305

at a higher resolution in Figures 6.20-6.24.

The SIR-PF uses 20,000 particles (shown in blue) to represent the posterior and uses

the standard transition prior (movement model of the robot) as proposal distribution.

Residual resampling is used. The initial particle set was uniformly distributed in the

free-space of the map (See Figure 6.20).

The GMSPPF uses 500 samples per Gaussian component, the number of which are

determined automatically using an x-means initialized EM clustering stage [137, 153]. The

initial number of Gaussian components (shown in red) in the posterior was set to 42,

uniformly distributed across the free-space of the map (See Figure 6.20).

The SIR-PF quickly suffers from severe particle depletion even though 20,000 particles

are used to represent the posterior. At k = 10 (third plot from the top on the left of

Figure 6.19, or Figure 6.22 for a close-up) the SIR-PF has already lost track of the true

position of the robot. The GMSPPF in contrast accurately represent all possible robot

location hypotheses through multiple Gaussian components in its GMM posterior. As

the ambiguity and uncertainty of the robots location is reduced, the number of modes in

the posterior decreases, as well as the number of Gaussian component densities needed to

model it. The GMSPPF accurately tracks the true position of the robot for the whole

movement trajectory. The superior performance of the GMSPPF over that of the SIR-PF

is clearly evident.

As was the case for Experiment 4, we strongly suggest that the reader download and

view two short video sequences of the localization performance of these two filters. These

sequences are encoded using the standard MPEG format and can be downloaded at the

following URLs:

• http://wozar.com/phd/sirpf_mrl.mpg (SIR-PF)

• http://wozar.com/phd/gmsppf_mrl.mpg (GMSPPF)

We determined through extensive experimentation that the GMSPPF algorithm’s adaptive

clustering GMM recovery step is very important for robust filter operation. If the reclus-

tering is done naively or if it is initialized badly, the GMSPPF might fail to recover a good

GMM representation of the posterior. These include situations such as using too many

306

SIR-PF : k=1

GMSPPF : k=1

Figure 6.20: Mobile robot localization: This plot shows the initial distribution of particles and GMM
component densities at time k=1. Notice the almost uniform coverage of the map’s free space. The
robot’s true location is indicated by the large black dot.

307

SIR-PF : k=2

GMSPPF : k=2

Figure 6.21: Mobile robot localization: Almost immediately (k=2) severe sample depletion is observed
in the SIR-PF, due to the highly peaked observation likelihood and failure to incorporate the latest ob-
servations into the proposal distribution. The GMSPPF on the other hand accurately approximates the
multiple-hypothesis posterior with a GMM component in each of the four possible room locations. The
SIR-PF only has a few samples in each room which results in a highly degraded posterior approximation.

308

SIR-PF : k=10

GMSPPF : k=10

Figure 6.22: Mobile robot localization: The SIR-PF’s posterior has collapsed to two highly peaked
modes, neither of which coincides with the true location of the robot. At this point, the SIR-PF is no
longer capable of accurately locating or tracking the robot. The GMSPPF, on the other hand, is still
accurately tracking the four possible locations of the robot.

309

SIR-PF : k=20

GMSPPF : k=20

Figure 6.23: Mobile robot localization: As soon as the robot entered the hallway and turned left, the
GMSPPF was able to completely disambiguate the the posterior and lock-in on the true location of
the robot. The GMM posterior has just reduced to a single mode (modeled by a reduced number of
Gaussian components). The SIR-PF’s posterior has also reduced to a single mode, but unfortunately,
not the correct one.

310

SIR-PF : k=50

GMSPPF : k=50

Figure 6.24: Mobile robot localization: The GMSPPF accurately tracks the robot to the end of its
current trajectory (the large room at the bottom left). When the robot entered this room, the SIR-PF’s
posterior completely collapsed (no particles left), due to the paradox/inconsistency between what its
posterior predicted and what the sensors reported.

311

Gaussian components in the GMM where fewer might suffice, resulting in wasted compu-

tational resources, or incorrectly grouping closely located by physically separate clusters of

particles together in a single GMM component density. For the MRL problem, the latter

situation can occur when particles situated on different sides of a wall or a hallway corner

are clustered into a single Gaussian component. In order to robustly address this problem

one can make use of more advanced constrained clustering algorithms [198, 103], which, for

example, makes use of convexity constraints and other meta-information derived from the

environment map, to constrain the clustering process. This is an ongoing research ques-

tion which is currently under investigation by the author. Nonetheless, the preliminary

experimental results reported here on the use of the GMSPPF algorithm for mobile robot

localization, is quite encouraging and does serve as a successful proof-of-concept.

6.5 Chapter Summary

In the earlier chapters of this thesis we introduced the SPKF as an improved Gaussian

approximate solution to the recursive Bayesian estimation problem. Many real-world in-

ference problems can be adequately solved using Gaussian approximations and for those

the SPKF is clearly the method of choice as repeatedly demonstrated in Chapters 3 and 5.

This fact notwithstanding, there remain a large number of systems for which simple Gaus-

sian approximations simply will not suffice. For these nonlinear, non-Gaussians problems,

we must make use of more complex inference algorithms that allow for the complete and

salient description of the true shape of the posterior density function.

In this chapter we introduced the class of approximate recursive Bayesian solutions,

based on sequential importance sampling, called sequential Monte Carlo methods or par-

ticle filters. These algorithms have, over the last couple of years, become the method of

choice to deal with real-world nonlinear, non-Gaussian inference problems. The deriva-

tion of the particle filter was presented in Section 6.2. Along with this exposition we also

presented (in Section 6.2.4) the major performance decreasing ailment of general parti-

cle filters, called the sample degeneracy/depletion problem. Even though the resampling

stage of the particle filter addresses this problem, it does not completely mitigate it. In

312

Section 6.3 we showed that one of the main causes for this problem is the fact that the

proposal distribution used by the standard particle filter does not incorporate the latest

observation. This prevents the particles from moving to areas of high likelihood during

the proposal/sampling stage. We proposed to address this problem by designing better

proposal distributions that do in fact incorporate the latest observation and hence better

approximate the theoretical optimal proposal distribution. This was done through the

hybrid combination of the SPKF with the sequential Monte Carlo inference framework of

a particle filter. The results of this was two new hybrid algorithms called the sigma-point

particle filter (SPPF) and the Gaussian mixture sigma-point particle filter (GMSPPF). In

Sections 6.3.1 and 6.3.2 respectively we showed how these filters are motivated, derived

and implemented.

Finally in Section 6.4 we demonstrated the utility and improved performance capa-

bilities of the proposed new algorithms on a variety of nonlinear, non-Gaussian inference

problems.

Chapter 7

Conclusions and Future Work

7.1 Introduction

This chapter provides a concise, retrospective synopsis of the work presented in this dis-

sertation and emphasizes the notable results. From these results conclusions are drawn

and directions for possible future research are proposed. The work presented in this thesis

and published in part in [199, 200, 204, 77, 189, 190, 191, 192, 193, 188], have already

impacted a number of external related research efforts, resulting in further applications,

refinements and derived works. These works are based in part on or derived from the

research presented in this thesis. In this chapter, we will also briefly summarize some of

the more important and significant of these derived works.

7.2 Concluding Summary

To design learning machines that infer information from, reason about, and act on the

real world, we need to represent uncertainty. Probability theory provides a language for

representing these uncertain beliefs and a calculus for manipulating these beliefs in a con-

sistent manner. Utilizing probability theory and the general descriptive power of dynamic

state space models, recursive Bayesian estimation provides a theoretically well founded and

mathematically robust framework to facilitate sequential probabilistic inference in systems

where reasoning under uncertainty is essential. However, as pointed out in Chapter 1,

the optimal recursive Bayesian solution to the probabilistic inference problem is in general

intractable for most real world problems. This necessitates the need for practically im-

plementable approximate solutions. This thesis has focused on two of the main groups of

313

314

such approximate solutions: Gaussian approximate solutions and sequential Monte Carlo

methods.

Within the family of Gaussian approximate solutions, the extended Kalman filter

(EKF) has become the de facto algorithm of choice for probabilistic inference, used in

numerous diverse nonlinear estimation algorithms and related applications. One of the

reasons for its wide spread use has been the clear understanding of the underlying the-

ory of the EKF and how that relates to different aspects of the inference problem. This

insight has been enhanced by unifying studies towards the relationship between the EKF

and other related algorithms [170], allowing for the improvement of numerous existing

algorithms and the development of new ones.

Recently, the unscented Kalman filter (UKF) and the central difference Kalman filter

(CDKF) have been introduced as viable and more accurate alternatives to the EKF within

the framework of state estimation. Like most new algorithms, these methods were not

widely known or understood and their application has been limited. We have attempted

to unify these differently motivated and derived algorithms under a common family called

sigma-point Kalman filters, and extended their use to other areas of probabilistic inference,

such as parameter and dual estimation as well as sequential Monte Carlo methods. In

doing so we have also extended the theoretical understanding of SPKF based techniques

and developed new novel algorithmic structures based on the SPKF. These algorithms

were successfully applied to a large group of representative inference and machine learning

problems from a variety of related fields, including a major real-world application, namely

UAV Autonomy.

The SPKF and its derivatives are hopefully set to become an invaluable standard tool

within the “probabilistic inference & machine learning toolkit”. To this end we have released

a Matlab toolkit, called ReBEL, that not only contains all of the algorithms presented

in this dissertation, but also provides a powerful, easily extendable, general algorithmic

framework for sequential probabilistic inference and machine learning in dynamic state-

space models.

315

7.3 General Overview

The general probabilistic inference problem within the context of dynamic state-space mod-

els was introduced in Chapter 1. We presented the recursive Bayesian estimation algorithm

that maintains the posterior density of system state as noisy observations become avail-

able, as the optimal solution to the probabilistic inference problem. The optimal Bayesian

solution provides a mathematically rigorous and conceptually intuitive framework to derive

inference and learning systems that can “reason under uncertainty”. We continue to show

how the true optimal Bayesian solution are generally intractable for most real world sys-

tems, necessitating the use of approximate solutions. The main subgroups of approximate

solutions were introduced with specific focus on the two areas that this thesis aimed to

contribute to: Gaussian approximate solutions and sequential Monte Carlo methods.

Chapter 2 provided an in-depth discussion of optimal Gaussian approximate recursive

Bayesian estimation, introduced the extended Kalman filter and showed why the EKF is

in fact a highly suboptimal (flawed) approximate solution. This chapter covered much of

the introductory motivation of why a better solution than the EKF is needed for Gaussian

approximate nonlinear estimation.

Chapter 3 covered the algorithmic development of the sigma-point Kalman filter as

an improved, theoretically better motivated alternative to the EKF. The two main SPKF

variants, the UKF and CDKF, were introduced and shown to be different implementa-

tional variations of a common derivativeless Kalman filter framework, which in turn is

based on a deterministic sampling technique called the sigma-point approach. We derived

numerically efficient and stable square-root versions of the SPKF as well as inference type

specific forms. After the different SPKF algorithms were introduced, we covered in detail

(using numerous experimental examples) how they are applied to the three domains of

probabilistic inference, specifically state-, parameter - and dual-estimation. These experi-

ments also verified the superiority of the SPKF over the EKF for all classes of estimation

problems.

In Chapter 4 a number of theoretical aspects of the sigma-point Kalman filter were

derived and analyzed in order to gain further insight and relate it to other algorithms.

316

Specific attention was given to the weighted statistical linear regression interpretation of

the sigma-point approach as employed by all SPKF forms. This interpretation allowed

us to later (in the same chapter) relate the parameter estimation form of the SPKF with

other 2nd order optimization methods, specifically online modified Newton methods. We

also investigated the theoretical accuracy of the sigma-point approach in comparison to

the accuracy of the optimal solution. We showed how all SPKF forms achieve at least 2nd

order accuracy in the calculation of both the posterior mean and covariance of the Gaus-

sian approximate optimal Kalman update. As already mentioned, the chapter concluded

with an in-depth analysis of how SPKF based parameter estimation relates to other 2nd

order nonlinear optimization methods. At the end of this chapter the most salient (and

important) characteristics of the SPKF were summarized and contrasted with those of the

EKF.

In Chapter 5 we focused specifically on the application of the SPKF to the UAV Au-

tonomy problem. This large-scale application was covered in depth, giving detail about

the vehicle itself (dynamic models, etc.), the experimental setup that was used (high-

fidelity simulator) and the numerous experiments that was done. We showed how a novel

SPKF centric GPS latency compensation technique can be implemented within the SPKF

state estimation framework. This allowed for the implementation of a highly accurate,

robust, stand-alone, vehicle-agnostic integrated navigation system which provides naviga-

tional state estimates to the UAV’s control system. Experimental results were presented

for a number of state estimation (open and closed loop) experiments as well as parameter

and dual estimation experiments. These experiments were performed using a high-fidelity

nonlinear vehicle simulator that modeled most of the highly nonlinear dynamics of the

complete UAV flight system. We compared these results with those of a state-of-the-art,

hand-tuned EKF solution and found our SPKF based system to be superior in all aspects

of the navigation and state estimation problem. Although all of the experimental results

clearly showed the benefit of using our proposed SPKF system over the industry standard

EKF based solutions, we still need to verify these results on real (as opposed to simulated)

flight-data. This issue is addressed in more detail in Section 7.4.

Chapter 6 focused on the second group of approximate recursive Bayesian estimation

317

solutions which this thesis addresses, namely sequential Monte Carlo (SMC) methods.

Unlike Gaussian approximate solutions such as the Kalman filter framework, SMC methods

make no assumptions about the form of the posterior state density. They are thus ideally

suited to most general, nonlinear, non-Gaussian estimation problems where even the SPKF

fails to generate acceptable results. We first derived the general SMC framework, called

particle filters, as a recursive implementation of importance sampling combined with a

resampling stage. We showed how generic particle filters often suffer from a debilitating

ailment called particle depletion which is primarily caused by the use of badly designed

proposal distributions during the importance sampling stage. Based on this intuition, we

showed how the inherent accuracy and robustness of the SPKF can be leveraged to design

better proposal distributions that approximate the optimal proposal by incorporating all

of the available observation data. This allowed us to derive two new hybrid SMC/SPKF

algorithms: the sigma-point particle filter and the Gaussian-mixture sigma-point particle

filter. As with the chapter on the SPKF, we verified these new algorithms on numerous

representative inference problems including nonlinear non-Gaussian time-series prediction,

financial options pricing, human face tracking and global robot localization.

For a summary of the original contributions made by the work presented in this dis-

sertation, please see Section 1.7.

7.4 Possible Extensions & Future Work

In pursuing the numerous research objectives posed at the beginning of the dissertation,

a number of related issues were identified. Although not central to this thesis, these

open research questions provide fertile ground for future research aimed at building on or

extending the work presented here. A brief summary of some of the more interesting of

these suggestions will now be presented:

• Batch forms of SPKF algorithms: In their current form, the SPKF based algo-

rithms are online or sequential algorithms. These methods can possibly be extended

through DSSM reformulation to batch forms that operate on a whole sequence of

data at once. This extension is needed for certain types of applications such as batch

318

form parameter estimation and perceptual metric based speech enhancement. The

development of batch form algorithms are also related to the next issue: arbitrary

cost function optimization.

• Arbitrary metric / cost function optimization: As reported in Section 3.5.2,

the SPKF can be adapted to minimize a non-MSE cost functions as long as the cost

function is analytical and expressible as a sum of instantaneous costs. This is not

directly applicable to “black box” cost functions such as psychoacoustic perceptual

speech metrics used for certain speech coding and speech enhancement applications

[162]. These cost functions typically operate in batch mode on sequences of processed

data. Furthermore, since they are based on proprietary algorithms, they can only be

accessed through a well-defined API, i.e., their inner workings are not made available

and must thus be treated as a “black box scoring” system. Since the SPKF only

requires functional evaluations and not analytical derivatives, it can easily be used

for “black box” DSSMs. If this ease of implementation can be expanded to cope with

“black box” cost functions is not yet obvious and requires further research.

• Online probabilistic noise estimation: One aspect of the inference problem not

directly addressed by this thesis is that of estimating the process and observation

noise distributions, p(vk) and p(nk). We typically assumed that these can be derived

from prior knowledge (process noise) or that they are specified by sensor accuracies,

etc. In Chapter 3 (Section 3.5.2) we introduced a number of on-line methods which

can be used to adapt the covariance of the “synthetic” process noise terms used for

SPKF based parameter estimation. Even though these methods performed satisfac-

tory at a negligible computational cost, other techniques are available to incorporate

the “noise estimation” problem into the larger probabilistic inference framework at

a more fundamental level. This will require the use of a dual estimation framework

where not only the system states and parameters, but also the salient parameters of

the relevant noise distributions, are estimated. We have already done some prelim-

inary work1 on this issue with specific focus on model estimation for colored noise

1The results of these efforts are included in the ReBEL toolkit.

319

sources. As a possible future direction for this research, the work done by Nelson

[143] on noise estimation should be consulted.

• Nonlinear guaranteed/robust estimation: Recent work by Scholte and Camp-

bell [173, 174] on guaranteed nonlinear estimation resulted in the publication of an

algorithm called the extended set-membership filter (ESMF). This approach makes

use of interval mathematics [139, 72] and an assumption that the noise sources are

bounded to obtain hard bounds on state and parameter estimates. This allows for

the implementation of robust estimation systems that can guarantee some level of

maximum error. There seems to be some similarities between the ESMF and the

interval Kalman filter developed by Chen et al [28, 179]. Extensions of this body

of work on guaranteed/robust estimation to the SPKF framework should be highly

beneficial to the larger nonlinear control and estimation field.

• SPKF with non-Gaussian unimodal posteriors: Extending the SPKF frame-

work to model the state posterior distribution with heavy tailed unimodal density

functions such as the Cauchy or Student-t distributions, has certain attractive bene-

fits for proposal distribution generation inside the SPPF. As mentioned in Chapter 62,

the SPPF is theoretically guaranteed to converge if we can upper bound the impor-

tance weights. This can be achieved by ensuring that the chosen proposal distribution

has heavier tails than the true posterior (up to proportionality). If the SPKF can

thus be modified to optimally propagate heavy tailed posteriors for each particle

which are then used as proposal distributions inside a particle filter framework, filter

convergence will be guaranteed. However, making this modification to the SPKF

will not be trivial. The SPKF was derived based on the Gaussian approximate op-

timal Kalman framework. In other words, only the mean and covariance of the true

posterior is propagated and updated using an optimal linear update rule. In order

to modify the SPKF to propagate heavy tailed distributions, one will likely have

to maintain not only the mean and covariance, but also the fourth-order moments

(kurtosis). This will require an increase in the size of the sigma-point set resulting in

2See [189] for a proof.

320

increased computational complexity. The linear Kalman update itself will possibly

have to be adapted as well.

• Scaling parameters: One of the confusing aspects of implementing certain types of

SPKFs, such as the UKF and its derived forms, is the setting of the scaling parameters

(α, β and κ). As discussed in Section 3.2.2, there are certain guidelines how the values

of these parameters should be chosen, but no definitive criteria by which to judge

optimality of choice. Even though we found the estimation performance of these

filters to be rather insensitive to the exact values of these parameters, investigating

this matter further has certain merits. The values of these scaling parameters could

conceivably be made data dependent and hence be adapted on-line depending on

factors such as the severity of nonlinearities, variances of noise sources, etc.

• Padé approximant based SPKF: There might be merit in investigating other

numerical interpolation techniques such as Padé approximants [9, 156], to deter-

mine if they can form the basis of further SPKF implementational variations. Padé

approximants consists of rational functions of polynomials, i.e.,

y = g(x) ≈ gp(x)

=
b(x)
a(x)

,

where b(x) and a(x) are both interpolating polynomials in x. Due to this “ratio of

polynomials” form, Padé approximants have increased fidelity for modeling certain

nonlinearities for a given polynomial order. They are usually superior to Taylor

expansions when functions contain poles, because the use of rational functions allows

them to be well-represented. Systems with poles within the range of operation could

possibly benefit from such approximations. Following a similar approach as for the

derivation of the CDKF (based on Sterling interpolation), it is conceivable that a

Padé approximants based SPKF can be derived and implemented.

• Recurrent derivatives: When using the EKF for inference in recursive structures

such as the training of recurrent neural networks [158], or dual-EKF time-series

321

estimation [143], care must be taken to correctly account for the effect of recursive

derivatives when explicitly (analytically) calculating the Jacobians of the system

models with respect to either the model states and/or parameters. Since the SPKF’s

sigma-point approach does not explicitly calculate any analytical derivatives, but

rather implicitly performs a statistical linearization of nonlinearities in question, it

is not yet obvious what the SPKF-analogy of the EKF’s recursive derivatives notion

is. This is an open research question, which, although not directly addressed in this

thesis, is relevant when applying the SPKF to recurrent (loopy) inference structures.

• Iterated SPKF: The interated EKF (IEKF) algorithm [90, 62] has been proposed

in the literature as an ad-hoc improvement of the standard EKF algorithm. The idea

behind the IEKF is that the measurement update step of the normal EKF algorithm

is iterated a number of times, relinearizing the nonlinear observation equation around

the new state estimate, i.e.,

x̂k,i+1 = x̂−
k + Kk,i

[
yk − h (x̂k,i) − Hk,i

(
x̂−
k − x̂k,i

)]
,

where x̂k,i is the ith iterate of the measurement updated state estimate, and Hk,i =
∂h(x)
∂x

∣∣∣
x=x̂k,i

. The assumption is that the measurement updated state estimate might

provide a “better” (closer to true value) linearization point around which to expand

the nonlinear observation function, resulting in a smaller linearization error and hence

better estimation accuracy. Some researchers have reported increased accuracy and

robustness, as well as a smaller filter divergence likelihood when comparing the IEKF

to the EKF algorithm. The downside to this is that the computational cost scales

with the number of iterations, i.e., if N iterations are performed the cost goes up

from O (L3
)

to O (NL3
)

in general. We suggest investigating the utility of extending

this iterated measurement update approach to the SPKF framework. In order to do

this, the sigma-point generation scheme must be adapted to calculate new sigma-

points at each iteration from the latest (iteration) estimate of the posterior state

distribution. Care must be taken though to ensure that the terms which are combined

in the Kalman update, i.e., x̂−
k and (yk− ŷ−

k,i), stay uncorrelated during the iteration

322

process.

• Estimator integrated Bayesian optimal control: The most straightforward way

that a estimation system and control system are usually integrated, is through the

use of a separation principle; both systems are designed independently and then one

simply substitutes the estimates of the system state x̂k for the actual state in the

feedback control law, i.e., uk = K(x̂k), where K is the control function. Within

the optimal control framework, the control signal uk is calculated by minimizing a

cost function Jk(xk,uk). This is generally done by simply substituting the current

estimate of the state x̂k into the cost function and then solving for the optimal uk.

However, within the Bayesian estimation context the current estimate of the system

state is in fact a random variable and should be treated as such when designing the

control system. Given this, the control law should in fact be derived by minimizing

the expected cost, E [Jk(xk,uk)], where the expectation is taken with respect to the

estimated posterior density, p̂(xk|y1:k), which is provided by the Bayesian estimation

framework. We call this approach estimator integrated Bayesian optimal control. Two

possible approaches to deriving the control law in this framework include:

1. Instead of setting uk = K (x̂k), we set uk = E [K (xk)], where the expectation

is evaluated using either the SPKF framework (sigma-point approach) or using

a more general SMC/SPKF hybrid approach such as the SPPF or GMSPPF.

This improvement is analogous to the motivation of why the SPKF performs

better than the EKF in calculating the optimal terms in the Kalman framework.

2. We can attempt to directly minimize E [Jk(xk,uk)]. If the control function

K(·) is given by a general nonlinear neural network3 for instance, the follow-

ing approximate method can be used to minimize the expected cost function:

We train the neural network using a set of sigma-points (SPKF) or particles

(SMC/SPKF hybrid) calculated/drawn from the posterior state distribution

p̂(xk|y1:k) at every time step, as opposed to training using just x̂k as a single

example. This corresponds to inferring a distribution over the input space to

3Such a control function is used in the model predictive neural control (MPNC) framework [22].

323

the control function, resulting in an optimization of the neural network with

respect to this distribution.

While much of what is proposed here is speculative, we are currently in the process

of investigating some of these ideas under a recently awarded NSF proposal4.

• SPKF application to UAV autonomy: The application of the SPKF framework

to the problem of UAV autonomy as presented in Chapter 5 is an ongoing research

project. Outstanding issues which are currently being addressed are the verification

of the derived SPKF based state estimation system on real flight-data, as well as

the migration of the system itself to the real flight hardware. This will require

porting the Matlab code to a highly optimized C language formulation that can

run within the asynchronous message passing environment of the QNX operating

system used by the XCell platform’s flight computer. The final aim of the project

is to make the SPKF based integrated navigation system completely self-contained

with a well defined software and hardware interface, allowing for easy adaptation to

any general aircraft equipped with GPS, IMU and possibly other avionics sensors.

This will require further investigation into the robustness of the approach when used

together with low cost, lower accuracy GPS and IMU sensors. This will include

further experimental studies into the effect of IMU degradation and navigational

anomalies such as GPS outages.

• GMSPPF - Constrained clustering: One of the crucial steps in the Gaussian-

mixture sigma-point particle filter (GMSPPF) algorithm is the EM based re-clustering

step used to reconstitute the posterior state GMM from the updated (and possibly

resampled) posterior particle cloud. Naive clustering in this step can easily lead to

suboptimal performance. This becomes especially important when using the GM-

SPPF algorithm on applications that have strict physical constraints on the allowed

shape of the posterior distribution. In the mobile robot localization application of

Section 6.4.5 for example, due to the presence of physical barriers such as walls or

4NSF-ITR IIS-0313350 : “Bayesian Integrated Vision, Estimation, and Control for Unmanned Aerial
Vehicles”

324

hallway corners, we might end up with groups of particles that are located close

together (in free space), but lie on separate sides of a physical barrier. A naive

(unconstrained) clustering approach will typically group these points together into

a single cluster. In reality however, these points should be clustered into separate

groups that take the physical constraints of the space into account. Using constrained

clustering approaches with well designed data priors are recommended in these situ-

ations. Such techniques have recently received quite a bit of interest in the machine

learning literature [198, 103] with specific application to data mining. Drawing from

these techniques to improve the robustness of the GMSPPF algorithm is well worth

investigating.

Although certainly not exhaustive, the above list contains ideas regarded by the author as

the most promising in terms of their potential benefit to the research community. Some

of these proposals are quite straight-forward; others represent a considerable amount of

work. All of them would increase the impact of the SPKF paradigm on a variety of fields.

7.5 Derived & Related Work

The following research efforts have benefited in part, either directly or indirectly, from the

work presented in this thesis, and can be interpreted as derived or related works. This list

is not exhaustive, but rather lists some of the more prominent publications that has come

to the authors attention.

• Human face tracking: As discussed in detail in Section 6.4.4, a research project

by Rui at Microsoft Research [169, 29] has successfully applied our SPPF algorithm

to the problem of human face tracking. Based on a direct C code implementation of

the SPPF algorithm they developed a real-time system for the automated tracking

(by camera) of a lecturer in an auditorium environment.

• General visual contour tracking for human-computer interaction: Sub-

sequent to Rui’s work on human face tracking using the SPPF, other researchers

325

have followed suite and opted to use the SPPF for user interface tracking pur-

poses in their own human-computer interaction (HCI) systems [117]. See http:

//choosh.bme.ogi.edu/demos for more detail and demonstrations.

• Nonlinear filtering for Command and Control applications: Irwin et al. [86]

successfully applied the SPPF algorithm to the problem of probabilistic inference in

a military Command and Control (C2) scenario where an automated system is used

to monitor and track objects in a battle-space. C2 involves a body of applications

used by all branches of the armed forces. These include, but are not limited to,

command applications, operations applications, intelligence applications, fire-support

applications, logistics applications, and communication applications.

• Ground target tracking: Cui et al. [36] successfully applied the SPPF to the

problem of tracking multiple ground vehicles. In a derived work, they extended

the SPPF algorithm by leveraging Fox’s KLD based particle set pruning method to

adaptively determine the number of SPKF-particles needed to accurately model the

posterior density. Although not improving on the estimation accuracy of the original

SPPF, their new proposed approach has a slightly lower computational cost.

• Robotics: Mihaylova et al. used our work on the UKF, as well as the ReBEL

toolkit implementation thereof, for application to the problem of active sensing of a

nonholonomic wheeled mobile robot [134, 135].

• Estimation architecture for future autonomous vehicles: Brunke and Cam-

bell [26] applied a square-root UKF formulation to the problem of estimating the

nonlinear state and model parameters for an aircraft during failure, as well as gen-

erating aerodynamic models for potential on-line control reconfiguration.

• ReBEL toolkit: Numerous research groups have downloaded the ReBEL toolkit

for use in a wide variety of probabilistic inference and machine learning problems.

Please see Appendix C for a summary of some of these applications.

• Tutorials: A number of well received and widely cited tutorials in the sequential

Monte Carlo field have been published that make specific mention of our work on

326

the SPKF and SPPF algorithms. The most noteworthy of these are [6] and [45].

Demonstrations of some of these applications discussed above can be viewed at the follow-

ing URL: http://choosh.bme.ogi.edu/demos

Bibliography

[1] Akashi, H., and Kumamoto, H. Random Sampling Approach to State Estimation
in Switching Environments. Automatica 13 (1977), 429–434.

[2] Alexander, H. L. State Estimation for Distributed Systems with Sensing Delay.
SPIE : Data Structures and Target Classification 1470 (1991), 103–111.

[3] Alspach, D. L., and Sorenson, H. W. Nonlinear Bayesian Estimation using
Gaussian Sum Approximation. IEEE Transactions on Automatic Control 17, 4
(1972), 439–448.

[4] Anderson, B., and Moore, J. Optimal Filtering. Prentice-Hall, 1979.

[5] Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M. An Introduction
to MCMC for Machine Learning. Machine Learning 50 (Jan 2003), 5–43.

[6] Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. A Tutorial
on PArticle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE
Transactions on Signal Processing 50, 2 (Feb 2002), 174–188.

[7] Avitzour, D. A Stochastic Simulation Bayesian Approach to Multitarget Tracking.
IEE Proceedings on Radar, Sonar and Navigation 142, 2 (1995), 41–44.

[8] Bak, M., Larsen, T. D., Norgaard, M., Andersen, N. A., Poulsen, N. K.,

and Ravn, O. Location Estimation using Delayed Measurements. In Proceedings
of the 5th International Workshop on Advanced Motion Control (AMC98) (Coimbra,
Portugal, June 1998), pp. 180–185.

[9] Baker, G. A. J., and Graves-Morris, P. Padé Approximants. Cambridge
University Press, New York, 1996.

[10] Beadle, E. R., and Djurić, P. M. A Fast Weighted Bayesian Bootstrap Filter for
Nonlinear Model State Estimation. IEEE Transactions on Aerospace and Electronic
Systems 33, 1 (1997), 338–343.

327

328

[11] Beal, M., and Ghahramani, Z. Variational-Bayes.org : Online repository of
papers, software, and links related to the use of variational methods for approx-
imate Bayesian learning. http://www.variational-bayes.org [Viewed: October
15, 2003].

[12] Bell, B. M., and Cathey, F. W. The Iterated Kalman Filter Update as a Gauss-
Newton Method. IEEE Transactions on Automatic Control 38, 2 (February 1993),
294–297.

[13] Bell, B. M., and Schumitzky, A. Asymptotic properties of extended least
squares estimators, 1997. http://www.seanet.com/~bradbell/elsq.htm [Viewed:
July 29, 2003].

[14] Bengio, Y. Markovian Models for Sequential Data. Neural Computing Surveys 2
(1999), 129–162.

[15] Bertsekas, D. P. Incremental Least-Squares Methods and the Extended Kalman
Filter. SIAM Journal on Optimization 6, 3 (August 1996), 807–822.

[16] Berzuini, C., Best, N. G., Gilks, W. R., and Larizza, C. Dynamic Condi-
tional Independence Models and Markov Chain Monte Carlo Methods. Journal of
the American Statistical Association 92, 440 (Dec. 1997), 1403–1412.

[17] Biezad, D. J. Integrated Navigation and Guidance Systems. Education Series.
AIAA, Reston, VA (USA), 1999.

[18] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press,
1995.

[19] Black, F., and Scholes, M. The Pricing of Options and Corporate Liabilities.
Journal of Political Economy 81 (1973), 637–659.

[20] Bogdanov, A. A., and Wan, E. A. SDRE Control with Nonlinear Feedforward
Compensation for a Small Unmanned Helicopter. In Proceedings of the 2nd AIAA
Unmanned Unlimited Systems, Technologies, and Operations Conference (San Diego,
CA, September 2003). AIAA Paper Number: 2003-6512.

[21] Bogdanov, A. A., Wan, E. A., Carlsson, M., Kieburtz, R., Harvey, G.,

Hunt, J., and van der Merwe, R. State-Dependent Ricatti Equation Control of
a Small Unmanned Helicopter. In Proceedings of the AIAA Guidance Navigation and
Control Conference (Austin, TX, August 2003). AIAA Paper Number: 2003-5672.

329

[22] Bogdanov, A. A., Wan, E. A., Carlsson, M., Zhang, Y., and Kieburtz, R.

Model Predictive Neural Control of a High Fidelity Helicopter Model. In Proceed-
ings of the AIAA Guidance Navigation and Control Conference (Montreal, Canada,
August 2001). AIAA Paper Number: 2001-4164.

[23] Bogdanov, A. A., Wan, E. A., Carlsson, M., Zhang, Y., Kieburtz, R., and

Baptista, A. Model predictive neural control of a high fidelity helicopter model. In
Proceedings of the AIAA Guidance Navigation and Control Conference (Montreal,
Quebec, Canada, August 2001). AIAA Paper Number: 2001-4164.

[24] Bramwell, A. R. S. Bramwell’s Helicopter Dynamics. AIAA, Reston, VA, 2001.

[25] Brown, R. G., and Hwang, P. Y. C. Introduction to Random Signals and Applied
Kalman Filtering. John Wiley and Sons, Inc., New York, 1992.

[26] Brunke, S., and Campbell, M. E. Estimation Architecture for Future Au-
tonomous Vehicles. In Proceedings of the American Control Conference (Anchorage,
AK, 2002), AIAA, pp. 1108–1114.

[27] Canny, J. A Computational Approach to Edge Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 8, 6 (November 1986), 679–698.

[28] Chen, G., Wang, J., and Shieh, L. S. Interval Kalman Filtering. IEEE Trans-
actions on Aerospace and Electronic Systems 33, 1 (Jan 1997), 250–258.

[29] Chen, Y., Huang, T., and rui, Y. Parametric Contour Tracking using the Un-
scented Kalman Filter. In Proceedings of the International Conference on Image
Processing (ICIP) (2002), vol. 3, pp. 613–616.

[30] Cloutier, J. R., D’Souza, C. N., and Mracek, C. P. Nonlinear regulation
and nonlinear H-infinity control via the state-dependent Riccati equation technique:
Part1, Theory. In Proceedings of the International Conference on Nonlinear Problems
in Aviation and Aerospace (Daytona Beach, FL, May 1996), pp. 117–130.

[31] Cloutier, J. R., D’Souza, C. N., and Mracek, C. P. Nonlinear regulation
and nonlinear H-infinity control via the state-dependent Riccati equation technique:
Part2, Examples. In Proceedings of the International Conference on Nonlinear Prob-
lems in Aviation and Aerospace (Daytona Beach, FL, May 1996), pp. 131–141.

[32] Cox, I. J., and Wilfong, G. T., Eds. Autonomous Robot Vehicles. Springer
Verlag, 1990.

330

[33] Cox, R. T. Probability, frequency, and reasonable expectation. American Journal
of Physics 14, 1 (1946), 1–13.

[34] Crisan, D., and Doucet, A. Convergence of Sequential Monte Carlo Methods.
Tech. Rep. CUED/F-INFENG/TR381, Dept. of Engineering, University of Cam-
bridge, 2000.

[35] Crossbow Technology, Inc. Crossbow: Smarter Sensors in Silicon. http://

www.xbow.com [Viewed: October 19, 2003].

[36] Cui, N., Hong, L., and Layne, J. R. A Comparison of Nonlinear Filter-
ing Approaches with Application to Ground Target Tracking. Signal Processing
(EURASIP/Elsevier) (2003). Submitted.

[37] Dahlquist, G., and Björck, A. Numerical Methods. Prentice-Hall, Englewood
Cliffs, NJ, 1974.

[38] DARPA. Software Enabled Control (SEC) Program. http://dtsn.darpa.mil/

ixo/programdetail.asp?progid=39 [Viewed: July 30, 2003].

[39] de Freitas, J. F. G. Bayesian Methods for Neural Networks. PhD thesis, Cam-
bridge University Engineering Department, 1999.

[40] de Freitas, J. F. G., Niranjan, M., Gee, A. H., and Doucet, A. Sequen-
tial Monte Carlo Methods for Optimisation of Neural Network Models. Tech. Rep.
CUED/F-INFENG/TR 328, Department of Engineering, University of Cambridge,
1998.

[41] Dempster, A., Laird, N. M., and Rubin, D. Maximum-likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society B39 (1977),
1–38.

[42] Dittrich, J. S. Design and Integration of an Unmanned Aerial Vehicle Naviga-
tion System. Master’s thesis, School of Aerospace Engineering, Georgia Institute of
Technology, May 2002.

[43] Doucet, A. Monte Carlo Methods for Bayesian Estimation of Hidden Markov
Models: Application to Radiation Signals. PhD thesis, University Paris-Sud, Orsay,
France, 1997.

[44] Doucet, A. On Sequential Simulation-Based Methods for Bayesian Filtering. Tech.
Rep. CUED/F-INFENG/TR 310, Department of Engineering, University of Cam-
bridge, 1998.

331

[45] Doucet, A., de Freitas, N., and Gordon, N. Sequential Monte-Carlo Methods
in Practice. Springer-Verlag, April 2001.

[46] Doucet, A., Godsill, S. J., and Andrieu, C. On sequential Monte Carlo
sampling methods for Bayesian filtering. Statistics and Computing 10, 3 (2000),
197–208.

[47] Doucet, A., Gordon, N. J., and Krishnamurthy, V. Particle Filters for State
Estimaion of Jump Markov Linear Systems. Tech. Rep. CUED/F-INFENG/TR 359,
Cambridge University Engineering Department, Cambridge, United Kingdom, 1999.

[48] Efron, B. The Bootstrap, Jacknife and other Resampling Plans. SIAM, Philadel-
phia, 1982.

[49] ESA. Mars Express / Beagle-2 Mission. http://sci.esa.int/science-e/www/

area/index.cfm?fareaid=9 [Viewed: July 21, 2003].

[50] Fahrmeir, L., and Kaufmann, H. On Kalman Filtering, Posterior Mode Esti-
mation and Fisher Scoring in Dynamic Exponential Family Regression. Metrika 38
(1991), 37–60.

[51] Ferguson, P. F., and How, J. Decentralized Estimation Algorithms for Forma-
tion Flying Spacecraft. In Proceedings of the AIAA Guidance Navigation and Control
Conference (Austin, TX, August 2003). AIAA Paper Number: 2003-5442.

[52] Feron, E. Aerial robotics project : Laboratory for information and decision systems
mit. http://gewurtz.mit.edu/research/heli.htm [Viewed: September 11, 2003].

[53] Fox, D. KLD-Sampling: Adaptive Particle Filters. In Advances in Neural Informa-
tion Processing Systems 14 (2001), pp. 713–720.

[54] Fox, D. KLD-Sampling: Adaptive Particle Filters and Mobile Robot Localization.
Tech. Rep. UW-CSE-01-08-02, University of Washington, Jan. 2002.

[55] Fox, D., Thrun, S., Dellaert, F., and Burgard, W. Sequential Monte Carlo
Methods in Practice. Springer Verlag, 2000, ch. Particle filters for mobile robot
localization., pp. 401–428.

[56] Frazzoli, E. Robust Hybrid Control for Autonomous Vehicle Motion Planning.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 2001.

[57] Fröberg, C. E. Introduction to Numerical Analysis. Addison-Wesley, Reading,
MA, 1970.

332

[58] Gavrilets, V. Autonomous Aerobatic Maneuvering of Miniature Helicopters: Mod-
eling and Control. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, 2003.

[59] Gavrilets, V. MIT X-Cell-60 UAV Platform EKF Estimator. Private Communi-
cations, February 2003.

[60] Gavrilets, V., Martinos, I., Mettler, B., and Feron, E. Flight Test and
Simulation Results for an Autonomous Aerobatic Helicopter. In Proceedings of
21st AIAA/IEEE Digital Avionics Systems Conference (Indianapolis, October 2002),
vol. 2, pp. 8C31–8C36.

[61] Gavrilets, V., Mettler, B., and Feron, E. Nonlinear Model for a Small-size
Acrobatic Helicopter. In Proceedings of the AIAA Guidance Navigation and Control
Conference (Montreal, Canada, August 2001). AIAA Paper Number: 2001-4333.

[62] Gelb, A., Ed. Applied Optimal Estimation. MIT Press, 1974.

[63] Geweke, J. Bayesian Inference in Econometric Models using Monte Carlo Integra-
tion. Econometrica 24 (1989), 1317–1399.

[64] Ghahramani, Z., and Beal, M. Variational Inference for Bayesian Mixture
of Factor Analysers. In Advances in Neural Information Processing Systems 12
(1999), pp. 449–455. http://citeseer.nj.nec.com/ghahramani00variational.
html [Viewed: September 8th, 2003].

[65] Ghahramani, Z., and Roweis, S. Probabilistic Models for Unsupervised Learn-
ing. Tutorial presented at the 1999 NIPS Conference. http://www.gatsby.ucl.ac.
uk/~zoubin/NIPStutorial.html [Viewed: October 15, 2003].

[66] Ghahramani, Z., and Roweis, S. T. Learning nonlinear dynamical systems
using an EM algorithm. In Advances in Neural Information Processing Systems 11:
Proceedings of the 1998 Conference (1999), M. J. Kearns, S. A. Solla, and D. A.
Cohn, Eds., MIT Press, pp. 431–437.

[67] Goel, A. Operating System Support for Low-Latency Streaming. PhD thesis, OGI
School of Science & Engineering, OHSU, Portland, OR, USA, July 2003.

[68] Gordon, N. J., Salmond, D. J., and Smith, A. F. M. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings-F 140, 2 (Apr.
1993), 107–113.

333

[69] Hammersley, J. M., and Morton, K. W. Poor Man’s Monte Carlo. Journal of
the Royal Statistical Society B 16 (1954), 23–38.

[70] Handschin, J. E. Monte Carlo Techniques for Prediction and Filtering of Non-
Linear Stochastic Processes. Automatica 6 (1970), 555–563.

[71] Handschin, J. E., and Mayne, D. Q. Monte Carlo Techniques to Estimate the
Conditional Expectation in Multi-Stage Non-Linear Filtering. International Journal
of Control 9, 5 (1969), 547–559.

[72] Hansen, E. Global Optimization Using Interval Analysis. Monographs and Text-
books in Pure and Applied Mathematics. Marcel Dekker, Inc., 1992.

[73] Haugen, R. A. Modern Investment Theory. Prentice-Hall International, New Jersey,
1990.

[74] Haykin, S. Neural Networks : A Comprehensive Foundation. Macmillan College
Publishing Company, Inc, Englewood Cliffs, NJ, 1994.

[75] Haykin, S. Adaptive Filter Theory, 3 ed. Prentice-Hall, Inc, 1996.

[76] Haykin, S., Ed. Kalman Filtering and Neural Networks. Wiley, 2001.

[77] Haykin, S., Ed. Kalman Filtering and Neural Networks. Adaptive and Learning
Systems for Signal Processing, Communications, and Control. Wiley, 2001, ch. 7 -
The Unscented Kalman Filter, E. A. Wan and R. van der Merwe, pp. 221–280.

[78] Higuchi, T. Monte Carlo Filter Using the Genetic Algorithm Operators. Journal
of Statistical Computation and Simulation 59, 1 (1997), 1–23.

[79] Hildebrand, F. B. Introduction to Numerical Analysis. McGraw-Hill, New-York,
1956.

[80] Hoag, D. Apollo Guidance and Navigation: Considerations of Apollo IMU Gimbal
Lock. Tech. Rep. E-1344, MIT Instrumentation Laboratory, April 1963. http:
//www.hq.nasa.gov/office/pao/History/alsj/e-1344.htm [Viewed: September
15, 2003].

[81] Honeywell Solid State Electronics. Honeywell Precision Barometer: HPA
& HPB User Manual. http://www.ssec.honeywell.com/pressure/datasheets/

hpbmanual.pdf [Viewed: September 19, 2003].

[82] Hull, J. C. Options, Futures, and Other Derivatives, third ed. Prentice Hall, 1997.

334

[83] Ikeda, K. Multiple-valued stationary state and its instability of light by a ring
cavity system. Optics Communications 30, 2 (August 1979), 257–261.

[84] Inertial Science, Inc. ISIS-GPS: Integrated INS/GPS GNS System. http://

www.inertialscience.com [Viewed: October 19, 2003].

[85] Inertial Science, Inc. ISIS-IMU. http://www.inertialscience.com/isis_
imu-new.htm [Viewed: September 19, 2003].

[86] Irwin, M. E., Cressie, N., and Johannesson, G. Spatial-Temporal Nonlin-
ear Filtering Based on Hierarchical Statistical Models. Sociedad de Estadistica e
Investigacion Operativa : Test 11, 2 (2002), 249–302.

[87] Isard, M., and Blake, A. Contour tracking by stochastic propagation of condi-
tional density. In European Conference on Computer Vision (Cambridge, UK, 1996),
pp. 343–356.

[88] Ito, K., and Xiong, K. Gaussian Filters for Nonlinear Filtering Problems. IEEE
Transactions on Automatic Control 45, 5 (May 2000), 910–927.

[89] Jaynes, E. T. Probability Theory : The Logic of Science. Cambridge University
Press, 2003.

[90] Jazwinsky, A. Stochastic Processes and Filtering Theory. Academic Press, New
York., 1970.

[91] Jones, E. M., and Fjeld, P. Gimbal Angles, Gimbal Lock, and a Fourth Gimbal
for Christmas, Nov 2002. http://www.hq.nasa.gov/office/pao/History/alsj/

gimbals.html [Viewed: September 15, 2003].

[92] Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. M. I.
Jordan, (Ed.), Learning in Graphical Models. Kluwer Academic Publishers, 1998,
ch. An Introduction to Variational Methods for Graphical Models.

[93] Jordan, M. I., Sejnowski, T. J., and Poggio, T., Eds. Graphical Models:
Foundations of Neural Computation. MIT Press, 2001.

[94] Julier, S., Uhlmann, J., and Durrant-Whyte, H. A new approach for filter-
ing nonlinear systems. In Proceedings of the American Control Conference (1995),
pp. 1628–1632.

[95] Julier, S. J. Comprehensive Process Models for High-Speed Navigation. PhD thesis,
University of Oxford, England, 1997.

335

[96] Julier, S. J. A Skewed Approach to Filtering. In SPIE Conference on Signal and
Data Processing of Small Targets (Orlando, Florida, April 1998), vol. 3373, SPIE,
pp. 271–282.

[97] Julier, S. J. The Scaled Unscented Transformation. In Proceedings of the American
Control Conference (May 2002), vol. 6, pp. 4555–4559.

[98] Julier, S. J. Ideas on time-delayed fusion. Private communications, April 2003.

[99] Julier, S. J., and Uhlmann, J. K. A General Method for Approximating Non-
linear Transformations of Probability Distributions. Tech. rep., RRG, Dept. of En-
gineering Science, University of Oxford, Nov 1996. http://citeseer.nj.nec.com/
julier96general.html [Viewed: September 8th, 2003].

[100] Julier, S. J., and Uhlmann, J. K. A New Extension of the Kalman Filter to
Nonlinear Systems. In Proc. SPIE - Int. Soc. Opt. Eng. (USA) (Orlando, FL, April
1997), vol. 3068, pp. 182–193.

[101] Julier, S. J., and Uhlmann, J. K. Unscented Filtering and Nonlinear Estimation.
Proceedings of the IEEE 92, 3 (March 2004), 401–422.

[102] Kalman, R. E. A new approach to linear filtering and prediction problems. ASME
Journal of Basic Engineering (1960), 35–45.

[103] Kamvar, S. D. Constrained Clustering for Improved Pattern Discovery, July
2002. http://www.stanford.edu/~sdkamvar/talks/constrained-clustering.

ppt [Viewed: Novermber 5, 2003].

[104] Kay, S. M. Estimation Theory, vol. 1 of Fundamentals of Statistical Signal Process-
ing. Prentice Hall PTR, 1993.

[105] Kieburtz, R. Model-Relative Control of Autonomous Vehicles : A project of the
DARPA Software Enabled Control Program. http://www.cse.ogi.edu/PacSoft/

projects/sec/ [Viewed: July 30, 2003].

[106] Kitagawa, G. Monte Carlo filter and smoother for non-Gaussian nonlinear state
space models. Journal of Computational and Graphical Statistics 5 (1996), 1–25.

[107] Kolnick, F. QNX 4 Real-Time Operating System. Basis Computer Systems,
Canada, 1998.

[108] Kong, A., Liu, J. S., and Wong, W. H. Sequential Imputations and Bayesian
Missing Data Problems. Journal of the American Statistical Association 89, 425
(1994), 278–288.

336

[109] Kreyszig, E. Advanced Engineering Mathematics, 6 ed. Wiley, 1988.

[110] Lapedes, A., and Farber, R. Nonlinear Signal Processing using Neural Networks:
Prediction and System modelling. Tech. Rep. LAUR872662, Los Alamos National
Laboratory, 1987.

[111] Larsen, T. D., Andersen, N. A., and Ravn, O. Incorporation of Time Delayed
Measurements in a Discrete-time Kalman Filter. In Proceedings of the 37th IEEE
Conference on Decision & Control (Tampa, Florida, USA, Dec 1998), pp. 3972–3977.

[112] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86, 11 (November 1998),
2278–2324.

[113] LeCun, Y., Matan, O., Boser, B., Denker, J. S., Henderson, D., Howard,

R. E., Hubbard, W., Jackel, L. D., and Baird, H. S. Handwritten zip code
recognition with multilayer networks. In Proc. of the International Conference on
Pattern Recognition (Atlantic City, 1990), IAPR, Ed., vol. II, IEEE, pp. 35–40.

[114] Lefebvre, T., Bruyninckx, H., and De Schutter, J. Comment on "A New
Method for the Nonlinear Transformation of Means and Covariances in Filters and
Estimators". IEEE Transactions on Automatic Control 47, 8 (August 2002), 1406–
1409.

[115] Leonard, J., and Durrant-Whyte, H. F. Directed Sonar Sensing for Mobile
Robot Navigation. Kluwer Academic Press, Boston, MA, USA, 1991.

[116] Lewis, F. L. Optimal Estimation. John Wiley & Sons, Inc., New York, 1986.

[117] Li, P., and Zhang, T. Visual Contour Tracking Based on Particle Filters.
In Proceedings of the First International Workshop on Generative-Model-Based
Vision (GMBV) (Copenhagen, June 2002), pp. 61–70. http://www.diku.dk/

publikationer/tekniske.rapporter/2002/02-01/ [Viewed: July 31, 2003].

[118] Liu, J., and Chen, R. Sequential Monte Carlo Methods for Dynamic Systems.
Journal of the American Statistical Association 93 (1998), 1032–1044.

[119] Liu, J., Chen, R., and Logvinenko, T. A Theoretical Framework for Sequen-
tial Importance Sampling with Resampling. In Sequential Monte Carlo Methods in
Practice, A. Doucet, N. de Freitas, and N. J. Gordon, Eds. Springer-Verlag, 2000,
pp. 225–242.

337

[120] Liu, J. S., and Chen, R. Blind Deconvolution via Sequential Imputations. Journal
of the American Statistical Association 90, 430 (1995), 567–576.

[121] Liu, Q., Rui, Y., Gupta, A., and Cadiz, J. J. Automating Camera Management
in a Lecture Room Environments. In Proceedings of ACM Conference on Human
Factors in Computing Systems (Seattle, WA, March 2001), pp. 442–449.

[122] Ljung, L. Convergence Analysis of Parametric Identification Methods. IEEE Trans-
action on Automatic Control 23 (1978), 770–783.

[123] Ljung, L. Asymptotic Behaviour of the Extended Kalman Filter as a Parameter
Estimator for Linear Systems. IEEE Transactions on Automatic Control AC-24, 1
(1979), 36–50.

[124] Ljung, L., and Söderström, T. Theory and Practice of Recursive Identification.
MIT Press, Cambridge, MA, 1983.

[125] Ljungquist, D., and Balchen, J. G. Recursive Prediction Error Methods for
Online Estimation in Nonlinear State-Space Models. Modeling, Identification and
Control 15, 2 (April 1994), 109–121.

[126] Luenberger, D. G. Linear and Nonlinear Programming, 2 ed. Addison-Wesley,
1984.

[127] MacKay, D. J. C. Robot-Arm Dataset. http://wol.ra.phy.cam.ac.uk/mackay/
SourceData.html [Viewed: August 31, 2003].

[128] MacKay, D. J. C. A Practical Bayesian Framework for Backpropagation Networks.
Neural Computation 4 (1992), 448–472.

[129] Mackey, M. C., and Glass, L. Oscillation and chaos in a physiological control
system. Science 197, 4300 (June 1977), 287–289.

[130] Magellan Corporation, Santa Clara, CA. Ashtech G12 GPS Sensor. http:
//www.navtechgps.com/supply/g12sens.asp [Viewed: September 19, 2003].

[131] Matthews, M. B. A state-space approach to adaptive nonlinear filtering using
recurrent neural networks. In Proceedings IASTED Internat. Symp. Artificial Intel-
ligence Application and Neural Networks (1990), pp. 197–200.

[132] McLachlan, G., and Krishnan, T. The EM Algorithm and Extensions. Wiley,
1997.

338

[133] Meilijson, I. A fast improvement to the EM algorithm on its own terms. Journal
of the Royal Statistical Society B 51 (1989), 127–138.

[134] Mihaylova, L., Bruyninckx, H., and De Schutter, J. Active Sensing of a
Nonholonomic Wheeled Mobile Robot. In Proceedings of the IEEE Benelux Meeting
(Leuven, Belgium, March 2002), pp. 125–128.

[135] Mihaylova, L., De Schutter, J., and Bruyninckx, H. A Multisine Approach
for Trajectory Optimization Based on Information Gain. In Proceedings of IEEE
International Conference on Intelligent Robots and Systems (Lauzanne, Switzerland,
September 2002), pp. 661–666.

[136] Miniature Aircraft USA (Orlando, FL). X-Cell Line of R/C Helicopters.
http://www.x-cellrchelicopters.com [Viewed: September 11, 2003].

[137] Moore, A. Very Fast EM-based Mixture Model Clustering Using Multiresolution
KD-trees. In Advances in Neural Information Processing Systems (340 Pine Street,
6th Fl., San Francisco, CA 94104, April 1999), M. Kearns and D. Cohn, Eds., Morgan
Kaufman, pp. 543–549.

[138] Moore, G. E. Cramming more components onto integrated circuits. Electron-
ics 38, 8 (April 1965). http://www.intel.com/research/silicon/mooreslaw.htm
[Viewed: March 11, 2004].

[139] Moore, R. E. Interval Analysis. Prentice Hall, 1966.

[140] Murphy, K. P. Dynamic Bayesian Networks: Representation, Inference and Learn-
ing. PhD thesis, UC Berkeley, Computer Science Division, July 2002.

[141] NASA/JPL. Mars Exploration Rover Mission. http://mars.jpl.nasa.gov/mer

[Viewed: July 21, 2003].

[142] NAVSYS Corporation. NAVSYS Corporation: GPS/Inertial Products. http:

//www.navsys.com [Viewed: October 19, 2003].

[143] Nelson, A. T. Nonlinear Estimation and Modeling of Noisy Time-Series by Dual
Kalman Filtering Methods. PhD thesis, Oregon Graduate Institute, 2000.

[144] Nelson, A. T., and Wan, E. A. Neural Speech Enhancement Using Dual Ex-
tended Kalman Filtering. In Proceedings of International Conference on Neural Net-
works (ICNN) (Houston, TX, June 1997), vol. 4, pp. 2171–2175.

339

[145] Nelson, A. T., and Wan, E. A. A Two-Observation Kalman Framework for
Maximum-Likelihood Modeling of Noisy Time Series. In Proceedings of the IEEE
International Joint Conference on Neural Networks (Anchorage, AK, May 1998),
pp. 2489–2494.

[146] Niranjan, M. Sequential Tracking in Pricing Financial Options Using Model Based
and Neural Network Approaches. In Advances in Neural Information Processing
Systems (NIPS) (1996), M. C. Mozer, M. I. Jordan, and T. Petsche, Eds., vol. 8,
pp. 960–966.

[147] Nørgaard, M., Poulsen, N., and Ravn, O. Advances in Derivative-Free State
Estimation for Nonlinear Systems. Tech. Rep. IMM-REP-1998-15, Dept. of Math-
ematical Modelling, Technical University of Denmark, 28 Lyngby, Denmark, April
2000.

[148] Norgaard, M., Poulsen, N., and Ravn, O. New Developments in State Esti-
mation for Nonlinear Systems. Automatica 36, 11 (November 2000), 1627–1638.

[149] ONR. Autonomous Operations Future Naval Capability (ONR-AO-FNC). http:

//www.onr.navy.mil/fncs/auto_ops/ [Viewed: July 30, 2003].

[150] Osborne, M. Fisher’s Method of Scoring. International Statistical Review, 60
(1992), 99–117.

[151] Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

[152] Peebles, Jr., P. Z. Probability, Random Variables, and Random Signal Principles.
McGraw-Hill, 1993.

[153] Pelleg, D., and Moore, A. X-means: Extending k-means with efficient esti-
mation of the number of clusters. In Proceedings of the Seventeenth International
Conference on Machine Learning (San Francisco, 2000), Morgan Kaufmann, pp. 727–
734.

[154] Pitt, M. K., and Shephard, N. Filtering via simulation: Auxiliary particle filters.
Journal of the American Statistical Association 94, 446 (1999), 590–599.

[155] Pole, A., West, M., and Harrison, P. J. Non-normal and Nonlinear Dynamic
Bayesian Modelling. In Bayesian Analysis of Time Series and Dynamic Models, J. C.
Spall, Ed. Marcel Dekker, New York, 1988.

340

[156] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.

Numerical Recipes in C : The Art of Scientific Computing, 2 ed. Cambridge Univer-
sity Press, 1992.

[157] Puskorius, G., and Feldkamp, L. Decoupled Extended Kalman Filter Training
of Feedforward Layered Networks. In Proceedings of the International Joint Confer-
ence on Neural Networks (IJCNN) (Seattle, WA, July 1991), vol. 1, pp. 771–777.

[158] Puskorius, G., and Feldkamp, L. Neurocontrol of Nonlinear Dynamical Systems
with Kalman Filter Trained Recurrent Networks. IEEE Transactions on Neural
Networks 5, 2 (1994), 279–297.

[159] Puskorius, G., and Feldkamp, L. Extensions and Enhancements of Decoupled
Extended Kalman Filter Training. In Proceedings of the IEEE International Confer-
ence on Neural Networks (ICNN) (Houston, TX, June 1997), vol. 3, pp. 1879–1883.

[160] Puskorius, G. V., Feldkamp, L. A., and Davis, L. I. Dynamic Neural Network
Methods Applied to On-Vehicle Idle Speec Control. Proceedings of the IEEE 84 (Oct
1996), 1407–1419.

[161] Rao, S. S. Engineering Optimization: Theory and Practice. John Wiley & Sons,
1996.

[162] Rix, A. W., Beerends, J. G., Hollier, M. P., and Hekstra, A. P. Perceptual
Evaluation of Speech Quality (PESQ) - A New Method for Speech Quality Asses-
ment of Telephone Networks and Codecs. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (Salt Lake City,
UT, May 2001), pp. 749–752.

[163] Robbins, H., and Monro, S. A Stochastic Approximation Method. The Annals
of Mathematical Statistics 22 (1951), 400–407.

[164] Rolfe, J. M., and Staples, K. J. Flight Simulation. Cambridge University Press,
United Kingdom, 1986.

[165] Rosenbluth, M. N., and Rosenbluth, A. W. Monte Carlo Calculation of the
Average Extension of Molecular Chains. Journal of Chemical Physics 23 (1955),
356–359.

[166] Rosenbrock, H. H. An Automatic Method for Finding the Greatest or Least Value
of a Function. Computer Journal 3 (1960), 175–184.

341

[167] Roweis, S., and Ghahramani, Z. A Unifying Review of Linear Gaussian Models.
Neural Computation 11, 2 (1999), 305–345.

[168] Rubin, D. B. Using the SIR Algorithm to Simulate Posterior Distributions. In
Bayesian Statistics 3 (Cambridge, MA, 1988), J. M. Bernardo, M. H. DeGroot,
D. V. Lindley, and A. F. M. Smith, Eds., Oxford University Press, pp. 395–402.

[169] Rui, Y., and Chen, Y. Better Proposal Distributions: Object Tracking Using
Unscented Particle Filter. In Proc. of IEEE CVPR (Kauai, Hawaii, Dec 2001),
vol. II, pp. 786–793.

[170] Sayed, A. H., and Kailath, T. A State-Space Approach to Adaptive RLS Fil-
tering. IEEE Signal Processing Magazine 11, 3 (July 1994), 18–60.

[171] Schei, T. S. A Finite-difference Method for Linearizing in Nonlinear Estimation
Algorithms. Automatica 33, 11 (1997), 2051–2058.

[172] Schmidt, S. F. C. T. Leondes, editor, Advances in Control Systems, vol. 3. Aca-
demic Press, 1966, ch. Applications of State Space Methods to Navigation Problems,
pp. 293–340.

[173] Scholte, E., and Campbell, M. E. On-line Nonlinear Guaranteed Estimation
with Application to a High Performance Aircraft. In Proceedings of the American
Control Conference (Anchorage, AK, May 2002), pp. 184–190.

[174] Scholte, E., and Campbell, M. E. A Nonlinear Set-Membership Filter
for On-line Applications. International Journal of Robust Nonlinear Control
13, 15 (December 2003), 1337–1358. http://www.mae.cornell.edu/sec/Papers/

ESMF-stability.pdf [Viewed: November 7, 2003].

[175] Shoemake, K. Animating Rotation with Quaternion Curves. ACM SIGGRAPH
19, 3 (1985), 245–254.

[176] Shumway, R. H., and Stoffer, D. S. An approach to time series smoothing and
forecasting using the EM algorithm. J. Time Series Analysis 3, 4 (1982), 253–264.

[177] Shuster, M. D. A Survey of Attitude Representations. The Journal of the Astro-
nautical Sciences 41, 4 (October 1993), 439–517.

[178] Singhal, S., and Wu, L. Training multilayer perceptrons with the extended
Kalman filter. In Advances in Neural Information Processing Systems 1 (San Mateo,
CA, 1989), Morgan Kauffman, pp. 133–140.

342

[179] Siouris, G. M., Chen, G., and Wang, J. Tracking an Incomming Ballistic Missile
Using an Extended Interval Kalman Filter. IEEE Transactions on Aerospace and
Electronic Systems 33, 1 (Jan 1997), 232–240.

[180] Smith, A. F. M., and Gelfand, A. E. Bayesian Statistics without Tears: a
Sampling-Resampling Perspective. American Statistician 46, 2 (1992), 84–88.

[181] Stevens, B., and Lewis, F. Aircraft Control and Simulation. Wiley, New York,
NY, 1992.

[182] Stirling, J. Methodus differentialis, sive tractatus de summation et interpolation
serierum infinitarium, 1730.

[183] Sum, J. P. F., Leung, C. S., and Chan, L. W. Extended Kalman Filter in Re-
current Neural Network Trainin and Pruning. Tech. Rep. CS-TR-96-05, Department
of Computer Science and Engineering, Chinese University of Hong Kong, Shatin,
N.T., Hong Kong, May 1996.

[184] Tawel, R., Aranki, N., Puskorius, G. V., Marko, K. A., Feldkamp, L. A.,

James, J. V., Jesion, G., and Feldkamp, T. M. Custom VLSI ASIC for Auto-
motive Applications with Recurrent Networks. In Proceedings of the IEEE Interna-
tional Joint Conference on Neural Networks (Anchorage, AK, May 1998), pp. 598–
602.

[185] Thales Navigation, Inc. Thales Navigation & Magellan GPS Systems. http:

//www.thalesnavigation.com [Viewed: October 19, 2003].

[186] The MathWorks, Inc. Matlab. http://www.mathworks.com [Viewed: October
11, 2003].

[187] The MathWorks, Inc. Matlab Online Documentation. http://www.mathworks.
com/access/helpdesk/help/helpdesk.shtml [Viewed: October 1, 2003].

[188] van der Merwe, R. Sigma-Point Kalman Filters for Probabilistic Inference in Dy-
namic State-Space Models. In Workshop on Advances in Machine Learning (Mon-
treal, June 2003). http://www.iro.umontreal.ca/~kegl/CRMWorkshop/program.
html [Viewed: July 21, 2003].

[189] van der Merwe, R., de Freitas, N., Doucet, A., and Wan, E. The unscented
particle filter. Tech. Rep. CUED/F-INFENG/TR 380, Cambridge University Engi-
neering Department, Aug. 2000.

343

[190] van der Merwe, R., de Freitas, N., Doucet, A., and Wan, E. The Unscented
Particle Filter. In Advances in Neural Information Processing Systems 13 (Nov 2001),
pp. 584–590.

[191] van der Merwe, R., and Wan, E. Efficient Derivative-Free Kalman Filters for
Online Learning. In Proceedings of the 9th European Symposium on Artificial Neural
Networks (ESANN) (Bruges, Belgium, Apr 2001), pp. 205–210.

[192] van der Merwe, R., and Wan, E. The Square-Root Unscented Kalman Filter
for State- and Parameter-Estimation. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP) (Salt Lake City, UT,
May 2001), vol. 6, pp. 3461–3464.

[193] van der Merwe, R., and Wan, E. Gaussian Mixture Sigma-Point Particle Filters
for Sequential Probabilistic Inference in Dynamic State-Space Models. In Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP) (Hong Kong, April 2003), vol. 6, pp. 701–704.

[194] van der Merwe, R., and Wan, E. A. ReBEL : Recursive Bayesian Estima-
tion Library for Matlab. http://choosh.bme.ogi.edu/rebel/index.html [Viewed:
October 11, 2003].

[195] van der Merwe, R., Wan, E. A., and Julier, S. J. Sigma-Point Kalman Filters
for Nonlinear Estimation and Sensor-Fusion: Applications to Integrated Navigation.
In Proceedings of the AIAA Guidance, Navigation, and Control Conference (Provi-
dence, RI, August 2004).

[196] Verma, V., Gordon, G., and Simmons, R. Efficient Monitoring of Planetary
Rovers. In Proceedings of the 7th International Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS) (Nara, Japan, May 2003). http:
//www.ri.cmu.edu/pubs/pub_4424.html [Viewed: March 11, 2004].

[197] Vermaak, J., and Blake, A. Nonlinear Filtering for Speaker Tracking in Noisy
and Reverberant Environments. In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP) (Salt Lake City, UT, May
2001), vol. 5, pp. 3021–3024.

[198] Wagstaff, K., Cardie, C., Rogers, S., and Schroedl, S. Constrained K-
means Clustering with Background Knowledge. In Proceedings of the International
Conference on Machine Learning (ICML) (Williams College, Massachusetts, Jun
2001), pp. 577–584.

344

[199] Wan, E., and van der Merwe, R. Noise-Regularized Adaptive Filtering for
Speech Enhancement. In Proceedings of the 6th European Conference on Speech
Communication and Technology (Eurospeech) (Budapest, Hungary, September 1999),
vol. 6, pp. 2643–2646.

[200] Wan, E., van der Merwe, R., and Nelson, A. Dual Estimation and the Un-
scented Transformation. In Neural Information Processing Systems 12 (Nov 2000),
S. A. Solla, T. K. Leen, and K. R. Müller, Eds., MIT Press, pp. 666–672.

[201] Wan, E. A., and Bogdanov, A. A. Model Predictive Neural Control with Ap-
plications to a 6DOF Helicopter Model. In Proceedings of the American Control
Conference (Arlington, VA, June 2001), vol. 1, pp. 488–493.

[202] Wan, E. A., and Nelson, A. T. Neural Dual Extended Kalman Filtering: Appli-
cations in Speech Enhancement and Monaural Blind Signal Separation. In Proceed-
ings of the IEEE Signal Processing Society Neural Networks for Signal Processing
Workshop (Amelia Island, FL, September 1997), pp. 466–475.

[203] Wan, E. A., and van der Merwe, R. Sigma-Point Kalman Filter Based Sensor
Integration, Estimation and System Identification for Enhanced UAV Situational
Awareness & Control : A project under the ONR Autonomous Operations Future
Naval Capability (ONR-AO-FNC) - UAV Autonomy Program. http://choosh.bme.
ogi.edu/onr/ [Viewed: July 30, 2003].

[204] Wan, E. A., and van der Merwe, R. The Unscented Kalman Filter for Nonlinear
Estimation. In Proceedings of IEEE Symposium on Adaptive Systems for Signal
Processing Communications and Control (AS-SPCC) (Lake Louise, Alberta, Canada,
October 2000), pp. 153–158.

[205] Weisstein, E. W. mathworld.wolfram.com : Hermite-Gauss Quadrature. http:
//mathworld.wolfram.com/Hermite-GaussQuadrature.html [Viewed: September
9th, 2003].

[206] Woodward, J. D. Biometrics: Facing Up to Terrorism, 2001. RAND/IP-218-A,
http://www.rand.org/publications/IP/IP218/ [Viewed: July 21, 2003].

[207] Woodward, J. D. Super Bowl Surveillance: Facing Up to Biometrics, 2001.
RAND/IP-209, http://www.rand.org/publications/IP/IP209/ [Viewed: July 21,
2003].

345

[208] Zaritskii, V. S., Svetnik, V. B., and Shimelevich, L. I. Monte-Carlo Tech-
niques in Problems of Optimal Information Processing. Automation and Remote
Control 36, 3 (1975), 2015–2022.

Appendix A

The Kalman Filter

A.1 Introduction

This appendix provides most of the background theoretical derivations related to Kalman

filter theory.

A.2 MMSE Derivation of Kalman Filter

There is a common misconception that the Kalman filter can only be strictly applied

to linear systems with Gaussian random variables (RV), i.e. a sequential probabilistic

inference problems on linear DSSMs where the prior random variables and noise densities

are Gaussian. However, Kalman’s original derivation of the Kalman filter did not apply

Bayes Rule and does not require the exploitation of any specific probability density function

[102]. His only assumptions were that the system state RV could be consistently estimated

by sequentially updating there first and second order moments (mean and covariance) and

that the specific form of the estimator be linear, i.e. of the form

x̂k = x̂−
k + Kkỹk , (A.1)

where x̂−
k is the prediction of the state at time k, Kkis a linear gain term (the Kalman

gain) and νkis the innovation signal at time k. The innovation signal is defined as the

error between the observed noisy observation yk and its prediction ŷ−
k , i.e.,

ỹk = yk − ŷ−
k . (A.2)

346

347

The predictions of the state , x̂−
k , and the observation, ŷk, are given by,

x̂−
k = E [f(xk−1,vk)] (A.3)

ŷ−
k = E

[
h(x−

k ,nk)
]

(A.4)

where the expectation are taken over the joint distributions of x̂k−1and vk, and x̂−
k and

nkrespectively.

Lets define the estimation error x̃kas

x̃k = xk − x̂k . (A.5)

Substituting (A.1) into (A.5), we can formulate the estimation error as

x̃k = xk − x̂−
k − Kkỹk

= x̃−
k − Kkỹk (A.6)

using the fact that E[ỹk] = 0 under the assumption of an unbiased estimator. Taking

outer products and expectations, the covariance of the update (Equation A.1) is given by

Pxk
= P−

xk
− Pxkỹk

KT
k − KkPỹkxk

+ KkPỹkỹk
KT
k , (A.7)

where Pxk
(the error covariance) is defined as

Pxk

.= E
[
x̃kx̃Tk

]
= E

[
(xk − x̂k)(xk − x̂k)T

]
, (A.8)

and Pxkỹk
(the cross covariance between the state and observation errors) as

Pxkỹk

.= E
[
x̃−
k ỹTk
]

= E
[
(xk − x̂−

k)(yk − ŷ−
k)T
]
. (A.9)

In order to determine the MMSE optimal (Kalman) gain, we need to minimize the trace

of the error covariance. This is done by setting the partial derivative of the trace of

Equation A.7 with respect to the Kalman gain, Kk, equal to zero. Using the following

348

linear algebra identities,
∂

∂A

(
trace[ABAT]

)
= 2AB ,

(where B is symmetric) and

∂

∂A

(
trace[ACT]

)
=

∂

∂A

(
trace[CAT]

)
= C ,

the optimal Kalman gain can be written as

Kk = Pxkỹk
(Pỹkỹk

)−1 . (A.10)

Substituting Equations A.10 and A.2 back into Equations A.1 and A.7 gives us the well

known Kalman equations:

x̂k = x̂−
k + Kk(yk − ŷ−

k) (A.11)

Pxk
= P−

xk
− KkPỹkỹk

KT
k . (A.12)

Another commonly used form of the covariance update is given by substituting Equa-

tion A.10 into A.12, i.e.

Pxk
= P−

xk
− KPỹkỹk

(Pỹkỹk
)−1PT

xkỹk

= P−
xk

− KkPT
xkỹk

(A.13)

Under Kalman’s original assumptions (as per the derivation above) the Kalman filter

will be the best linear estimator of the underlying state given all the observations, but

not necessarily the globally optimal (in the Cramer-Rao sense) estimator. If the DSSM

equations f and hare nonlinear and/or the state RVs are non-Gaussian, the optimal esti-

mator will in general be a nonlinear function of the prior RVs and all of the observations

(See Section 1.4). However, if the RVs are Gaussian and f and h are linear, then the

expectations in Equations A.3, A.4, A.8 and A.9 can be calculated exactly in closed form1.

Under these conditions the Kalman filter will not only be the best linear estimator, it

1The trick here is that the result of affine operations (such as expectations) on Gaussian random
variables are themselves Gaussian.

349

will also be globally optimal for most error formulations. Furthermore it can be shown

(asymptotically) that the inverse of the state error covariance Pk is equal to the expected

Fisher Information Matrix [104], implying that the linear Kalman filter is also efficient in

the Cramer-Rao lower bound (CRLB) sense for linear systems and Gaussian RVs.

For the linear DSSM case, we can rewrite the Kalman update equations (A.11 and A.13)

as,

x̂k = x̂−
k + Kk(yk − Cx̂−

k) (A.14)

Pxk
= P−

xk
− KkCP−

xk
(A.15)

= (I − KkC)P−
xk
, (A.16)

where we made use of the fact that for a linear DSSM (See Equations A.55 and A.56)

ŷ−
k = E[yk] = Cx̂−

k (A.17)

and

Pxkỹk
= E

[
(xk − x̂−

k)(yk − ŷ−
k)T
]

= E
[
(xk − x̂−

k)(Cxk + nk − Cx̂−
k)T
]

= E
[
(xk − x̂−

k)(xk − x̂−
k)T
]
CT + E

[
xknTk

]− E
[
x̂knTk

]
= P−

xk
CT . (A.18)

Here we made the usual assumption that the observation noise is uncorrelated with the

state and the state estimate. Under the same reasoning we can write the innovation

covariance as,

Pỹkỹk
= E

[
(yk − ŷ−

k)(yk − ŷ−
k)T
]

= E
[
(Cxk + nk − Cx̂−

k)(Cxk + nk − Cx̂−
k)T
]

= CE
[
(xk − x̂−

k)(xk − x̂−
k)T
]
CT +E

[
nknTk

]
+CE

[
(xk − x̂−

k)nTk
]
+ E
[
nk(xk − x̂−

k)T
]
CT

= CP−
xk

CT + R . (A.19)

350

Note, we assume that the D = I (the identity matrix) in Equation A.56 to simplify the

notation. This does not affect the validity of the derivation, which can easily (but more

verbosely) be extended to the more general case of a non identity matrix value for D.

A.3 Gaussian MAP Derivation of Kalman Filter

The Kalman filter can also be derived from a Bayesian maximum a posteriori (MAP) per-

spective. Although this is a more constrained2 framework than Kalman’s original MMSE

framework, it allows for very insightful analysis of Gaussian approximate recursive Bayesian

estimation, especially when applied to parameter estimation.

Unlike the MMSE derivation in Section A.2, here we do not assume any prior explicit

form of the optimal estimator. We do however, assume that prior state estimate (before the

new observation is received) and the noisy observation of the hidden state are distributed

according to a Gaussian probability density functions, i.e.

p(x−
k) =

1√
2π
∣∣P−

xk

∣∣exp
[
− (xk − x̂−

k

) (
P−

xk

)−1 (xk − x̂−
k

)T]
, (A.20)

and

p(yk|xk) =
1√

2π
∣∣P−

xk

∣∣exp
[
− (yk − h(xk))R−1 (yk − h(xk))

T
]
, (A.21)

where P−
xk

is the prior state estimate error covariance and R is the observation (measure-

ment) noise covariance, i.e.

R = E
[
(nk − n̄)(nk − n̄)T

]
. (A.22)

We further assume that the noise is zero-mean, i.e. n̄ = 0, such that

R = E
[
(nk − n̄)(nk − n̄)T

]
= E

[
nknTk

]
.

In order to calculate the MAP estimate, we first need to factor the posterior distribution

2Here an explicit form for the true distribution of the prior and posterior random variables are assumed,
viz.. multi-variate Gaussian.

351

of the state using Bayes Rule,

p(xk|y1:k) =
p(y1:k|xk)p(xk)

p(y1:k)

=
p(yk,y1:k−1|xk)p(xk)

p(yk,y1:k−1)

=
p(yk|y1:k−1,xk)p(y1:k−1|xk)p(xk)

p(yk|y1:k−1)p(y1:k−1)
(A.23)

=
p(yk|y1:k−1,xk)p(xk|y1:k−1)p(y1:k−1)p(xk)

p(yk|y1:k−1)p(y1:k−1)p(xk)
(A.24)

=
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
, (A.25)

where we again made use of Bayes rule going from Equation A.23 to A.24, and used the

fact that the observation sequence is conditionally independent given the current state

in reducing p(yk|y1:k−1,xk) to p(yk|xk). Now, by definition p(xk|y1:k−1) = p(x−
k), so

Equation A.25 becomes,

p(xk|y1:k) =
p(yk|xk)p(x−

k)
p(yk|y1:k−1)

. (A.26)

The MAP estimate x̂k is found by picking the xkthat maximizes Equation A.26. This is

equivalent to choosing the xkthat minimizes the negative of the logarithm of the numerator,

since the denominator is not a function of xk. So

x̂k = argmin
{
xk;−ln

[
p(yk|xk)p(x−

k)
]}

(A.27)

= argmin
{
xk;−ln (p(yk|xk)) − ln

(
p(x−

k)
)}

. (A.28)

Substituting Equations A.20 and A.21 into A.28, and setting the derivative with respect

to xk equal to zero, we find the maximum a posteriori equation which must be solved for

x̂k,

∂

∂xk

[
(yk − h(xk))R−1 (yk − h(xk))

T
]

+
∂

∂xk

[(
xk − x̂−

k

) (
P−

xk

)−1 (xk − x̂−
k

)T] = 0 .

Carrying out the differentiation results in,

− ∂

∂xk
[h(xk)]

T R−1 (yk − h(xk)) +
(
P−

xk

)−1 (xk − x̂−
k

)
= 0 . (A.29)

352

If we assume the DSSM is linear, the system observation equation can be written as

h(xk) = Cxk . (A.30)

Substituting Equations A.30 into Equation A.29, differentiating and rearranging terms

gives

(
P−

xk

)−1 (xk − x̂−
k

)
=

∂

∂xk
[Cxk]

T R−1 (yk − Cxk)(
P−

xk

)−1 (xk − x̂−
k

)
= CTR−1

(
yk − Cxk + Cx̂−

k −Cx̂−
k

)
(
P−

xk

)−1 (xk − x̂−
k

)
= CTR−1

[
yk − C

(
xk − x̂−

k

)− Cx̂−
k

][(
P−

xk

)−1 + CTR−1C
] (

xk − x̂−
k

)
= CTR−1

(
yk − Cx̂−

k

)
(A.31)

Solving this equation for xk gives us the MAP optimal state estimate, x̂k. Since P−
xk

and

R are both square-symmetric and positive definite, [(P−
xk

)−1 + CTR−1C] is invertible.

This allows us to rewrite the solution to Equation A.31 as

x̂k = x̂−
k +
[(

P−
xk

)−1 + CTR−1C
]−1

CTR−1
(
yk −Cx̂−

k

)
. (A.32)

If we define

Kk
.=
[(

P−
xk

)−1 + CTR−1C
]−1

CTR−1 = P̃CTR−1 (A.33)

where P̃ in turn is defined as

P̃ .=
[(

P−
xk

)−1 + CTR−1C
]−1

, (A.34)

we can write Equation A.32 as

x̂k = x̂−
k + Kk

(
yk − Cx̂−

k

)
, (A.35)

which is the MAP derived Kalman state update.

Given this formulation of the state update, we can next determine the MAP derived

353

covariance update, i.e how Pxk
, the covariance of xk − x̂k, is calculated. Using Equa-

tion A.35, we can write the covariance as

Pxk
= cov {xk − x̂k}
= E

[
(xk − x̂k) (xk − x̂k)

T
]

= E
[(

xk − x̂−
k − Kk

(
yk − Cx̂−

k

)) (
xk − x̂−

k − Kk

(
yk − Cx̂−

k

))T]
= E

[(
xk − x̂−

k

) (
xk − x̂−

k

)T]− E
[(

xk − x̂−
k

) (
yk − Cx̂−

k

)T]KT
k

−KkE
[(

yk − Cx̂−
k

) (
xk − x̂−

k

)T]+ KkE
[(

yk −Cx̂−
k

) (
yk − Cx̂−

k

)T]KT
k

= P−
xk

− P−
xk

CTKT
k − KkCP−

xk
+ Kk

(
CP−

xk
CT + R

)
KT
k , (A.36)

where we made use of the fact that cov{xk − x̂−
k } = P−

xk
and that the observation noise

nk is uncorrelated with the state xk. If we now (using Equation A.33) rewrite Kkas

Kk = P̃CTR−1

= P̃CTR−1
(
CP−

xk
CT + R

) (
CP−

xk
CT + R

)−1

= P̃
(
CTR−1CP−

xk
CT + CTR−1R

) (
CP−

xk
CT + R

)−1

= P̃
(
CTR−1C +

(
P−

xk

)−1
)

P−
xk

CT
(
CP−

xk
CT + R

)−1

= P̃P̃−1P−
xk

CT
(
CP−

xk
CT + R

)−1

= P−
xk

CT
(
CP−

xk
CT + R

)−1 (A.37)

and substitute into Equation A.36, we get (after rearrangement and cancellation of terms),

Pxk
= P−

xk
− P−

xk
CT
(
CP−

xk
CT + R

)−1
CP−

xk
(A.38)

=
[(

P−
xk

)−1 + CTR−1C
]−1

(A.39)

= P̃ (A.40)

where we made use of the matrix inversion lemma [156] in going from Equation A.38

to A.39, and the definition of P̃ (Equation A.34) to go from Equation A.39 to A.40.

In other words, P̃, as defined in Equation A.34, is the covariance of of the new state

354

estimate which can be recursively calculated by

Pxk
= P−

xk
− KkCP−

xk
(A.41)

= (I− KkC)P−
xk
. (A.42)

Substituting Equations A.19 and A.2 into Equation A.37, we can rewrite the gain term as,

Kk = P−
xk

CT
(
CP−

xk
CT + R

)−1

= Pxkỹk
P−1

ỹkỹk
, (A.43)

which is identical to the form of the Kalman gain term derived under the MMSE criterion in

Section A.2. This result, together with the exact same recursive forms of the state estimate

update (Equations A.14 and A.35) and covariance update (Equations A.16 and A.42)

proofs that the linear Kalman filter is not only the best linear minimum-mean square-

error estimator of the hidden state, but also that it is calculates the maximum a-posteriori

estimate under a linear Gaussian assumption.

A.4 The Full Kalman Filter Algorithm

The only remaining part to derive in order to implement the full recursive Kalman filter

algorithm, is the time-update step that is used to project the best state estimate at the

previous time instance, x̂k−1, forward in time in order to generate the next prior estimate,

x̂−
k . This prior is then updated with the new information contained in the latest observa-

tion, yk, during the measurement-update. It is this measurement-update that was derived

(using two different approached) in Sections A.2 and A.3.

The time update of the prior state estimate and its covariance is found by taking the

expected value of the linear process model (Equation A.55), i.e.

x̂−
k = E [Axk−1 + Buk + Gvk]

= AE [xk−1] + Buk + GE [vk]

= Ax̂k−1 + Buk + Gv̄ , (A.44)

355

and

P−
xk

= E
[(

xk − x̂−
k

) (
xk − x̂−

k

)T]
= E

[
(Axk−1 + Gvk −Ax̂k−1 − Gv̄) (Axk−1 + Gvk − Ax̂k−1 − Gv̄)T

]
= AE

[
(xk−1 − x̂k−1) (xk−1 − x̂k−1)

T
]
AT

+GE
[
(vk − v̄) (vk − v̄)T

]
GT

= APxk−1
AT + GRvGT , (A.45)

where we made the usual assumption that the process noise, vk, is uncorrelated with

the state and the state estimate. Combining this time-update and the measurement-

update derived in the previous section, together into a recursive predictor-corrector [116,

62, 104] results in the well-known linear Kalman filter presented in Algorithm 19. Note

that although the Kalman filter algorithm was derived using constant system matrices,

A, B, C, D and G, they are allowed to changed over time without affecting the validity

of the derivations presented. For this reason Algorithm 19 use them in the more general

(possibly) time-varying form, i.e. Ak, Bk, Ck, Dk and Gk.

A.5 Alternative Forms

A.5.1 Joseph’s Form of the Measurement Update

The standard form of the Kalman filter covariance update given by Equation A.54 involves

subtraction of one matrix from another which can result in loss of symmetry and thus pos-

itive definiteness of the resulting updated covariance matrix due to numerical rounding

errors. A numerically alternative (but algebraically equivalent) form of the covariance

measurement-update can be found by manipulating Equation A.36 into the following nu-

merically stable form:

Pxk
= P−

xk
− P−

xk
CTKT

k − KkCP−
xk

+ Kk

(
CP−

xk
CT + R

)
KT
k

= P−
xk

− P−
xk

CTKT
k − KkCP−

xk
+ KkCP−

xk
CTKT

k + KkRKT
k

= [I − KkC]P−
xk

[I − KkC]T + KkRKT
k . (A.57)

356

Algorithm 19 Algorithm for the Kalman filter (KF).

Initialization:

x̂0 = E[x0] (A.46)
Px0 = E[(x0 − x̂0)(x0 − x̂0)T] (A.47)
Rv = E[(v − v̄)(v − v̄)T] (A.48)
Rn = E[(n − n̄)(n − n̄)T] (A.49)

For k = 1, 2, . . . ,∞:

1. Prediction step:

• Compute the predicted state mean and covariance (time-update)

x̂−
k = Akx̂k−1 + Bkuk + Gkv̄ (A.50)

P−
xk

= AkPxk
AT
k + GkRvGT

k (A.51)

2. Correction step:

• Update estimates with latest observation (measurement update)

Kk = P−
xk

AT
k

(
CkP−

xk
CT
k + DkRnDT

k

)−1 (A.52)
x̂k = x̂−

k + Kk

[
yk − Ckx̂−

k − Dkn̄
]

(A.53)
Pxk

= (I − KkCk)P−
xk

. (A.54)

The linear DSSM is given by:

xk = Akxk−1 + Bkuk + Gkvk (A.55)
yk = Ckxk + Dknk (A.56)

357

Equation A.57 is known as Joseph’s form covariance measurement update [62, 25]. This

form is numerically stable since the “subtraction term”, I − KkC, gets “squared” which

preserves the symmetry and ensures positive definiteness of the updated covariance.

A.5.2 Schmidt-Kalman Filter

The traditional purpose of the Schmidt-Kalman filter (SKF) [172] is to reduce the com-

putational complexity of a standard Kalman filter by eliminating states that are of no

physical interest, but required to estimate other quantities such as noises and/or biases.

The formulation of the Schmidt-Kalman filter begins by partitioning the state vector xk

into two components,

xk =

⎡⎣ xa

xb

⎤⎦
k

, (A.58)

where xak are the states of “interest” and xbk are the remaining states. The state covariance

matrix in turn is partitioned into four quadrants, i.e.,

Pxk
=

⎡⎣ Pxa Pxaxb

Pxbxa Pxb

⎤⎦
k

. (A.59)

The state propagation (process) model3 and observation models are partitioned accord-

ingly: ⎡⎣ xa

xb

⎤⎦
k+1

=

⎡⎣ Aa 0

0 Ab

⎤⎦
k

⎡⎣ xa

xb

⎤⎦
k

+

⎡⎣ va

vb

⎤⎦
k

(A.60)

yk =
[

Ca Cb
]⎡⎣ xa

xb

⎤⎦
k

+ nk . (A.61)

After applying the partitioning of Equations A.58, A.59, A.60 and A.61 to the general

Kalman filter equations (Algorithm 19), solving for each block and setting the Kalman

gain for the xbk states to zero, the following set of equations result [172]:

3For this derivation we assume the noise sensitivity matrices Gk and Dk are both equal to the identity
matrix. This simplifies the notation of the derivation, but does not affect its generality or validity.

358

Schmidt-Kalman time update:

x̂a−k = Aa
k−1x̂

a
k−1 (A.62)

P−
xa

k
= Aa

k−1Pxa
k−1

(
Aa
k−1

)T + Rva (A.63)

P−
xa

kxb
k

= Aa
k−1Pxa

k−1x
b
k−1

(
Ab
k−1

)T
(A.64)

P−
xb

kxa
k

=
(
P−

xa
kxb

k

)T
(A.65)

P−
xb

k

= Ab
k−1Pxb

k−1

(
Ab
k−1

)T
+ Rvb (A.66)

Schmidt-Kalman measurement update:

Ok = Ca
kP

−
xa

k
(Ca

k)
T + Ca

kP
−
xa

kxb
k

(
Cb
k

)T
+ Cb

kP
−
xb

kxa
k

(Ca
k)
T +

+Cb
kP

−
xb

k

(
Cb
k

)T
+ Rn (A.67)

Kk =
[
P−

xa
k
(Ca

k)
T + P−

xa
kxb

k

(
Cb
k

)T]
O−1
k (A.68)

x̂ak = x̂a−k + Kk

(
yk − Ca

kx̂
a−
k − Cbx̂a−0

)
(A.69)

Pxa
k

= (I − KkCa
k)P

−
xa

k
− KkCb

kP
−
xb

kxa
k

(A.70)

Pxa
kxb

k
= (I − KkCa

k)P
−
xa

kxb
k

− KkCb
kP

−
xb

k

(A.71)

Pxb
kxa

k
=
(
P−

xa
kxb

k

)T
(A.72)

Pxb
k

= P−
xb

k

(A.73)

The Schmidt-Kalman filter algorithm may appear at first glance more complicated

than the traditional Kalman filter; however, substantial computational savings are gained

through the fact that the filter only solves for the xa states and not for the xb states which,

in typical applications of this technique, is of no physical interest [51].

Appendix B

Navigation Primer

B.1 Introduction

This appendix introduces certain navigation theory related concepts which are used in

Chapter 5.

B.2 Reference Frames

This section presents four geographical reference frames (see Figures B.1 and B.2) that are

used to describe the position, orientation, and velocities (translational and rotational) of

a free moving vehicle. These four reference frames are [17]:

ECI: The Earth-Centered Inertial frame is by definition an inertial frame, i.e., a non-

accelerating reference frame in which Newton’s laws of motion apply. The origin of the

ECI coordinate space is located at the center of the earth. The axes of this frame is fixed

in space, i.e. it does not rotate with the earth.

ECEF: The Earth-Centered Earth-Fixed frame has the same origin as the ECI frame,

i.e. at the center of the earth, but its axes are fixed to the earth and hence rotate along

with it, relative to the inertial frame (ECI). The rotation rate of the axes of the ECEF

frame is the same as that of the earth, i.e. ωe = 7.291×10−5 rad/s. If a vehicle (at or close

to the surface of the earth) moves relatively slowly compared to the tangential component

of the earth’s rotation at the earth’s surface (in inertial frame), the rotation of the ECEF

frame can be neglected and hence the ECEF frame can be considered inertial.

NED: The North-East-Down coordinate system is defined relative to the Earth’s ref-

erence ellipsoid and is the coordinate system commonly referred to during everyday life. It

359

360

ECI
x

ECEF
x

ECEF
y

ECEF
z

ECI
z

ECI
y

NED
x

NED
y

NED
z

Greenwich

meridian

equator

north pole

centre of

earth

Figure B.1: Reference frames used for terrestrial navigation. The black axes are the ECI (Earth-
Centered Inertial) reference frame. The blue axes (sharing a common z-axis with the ECI frame) is
the ECEF (Earth-Centered Earth-Fixed frame). Both the ECI and ECEF frames have origins located
at the center of the earth, but the ECEF frame is “fixed” in that it rotates with the earth. The ECI
frame on the other hand is a true inertial frame in with the x-axis pointing towards the vernal equinox,
the z-axis lying along the earth’s rotational axis (perpendicular to equatorial plane). The red axes are
the NED (north-east-down) reference frame that is fixed to the tangential plane (at any point) of the
earth-surface-ellipsoid. The x-axis of this frame points north, the y -axis points east and the z-axis
points towards the center of the earth.

361

body
x

body
y

body
z

roll angle :

center of gravity

roll rate : pyaw angle:
yaw rate:r

pitch angle :
pitch rate : q

Figure B.2: Vehicle body fixed reference frame: The origin of this reference frame lies at the center
of gravity of the vehicle. The x-axis points out the nose of the vehicle (along longitudinal axis), the
y -axis points out the right wing (lateral axis) and the z-axis (pointing out the bottom) completes the
right-handed triad. The attitude rotational angles φ, θ and ψ are also indicated. φ is the roll angle
around the x-axis, θ is the pitch angle around the y -axis, and ψ is the yaw (heading) angle around the
z-axis. The derivatives of the body-axis attitude angles are indicated as well: p (roll rate), q (pitch
rate) and r (yaw rate).

is usually defined as a fixed tangent plane on the surface of the earth with the x -axis point-

ing towards true north, the y-axis towards east and z -axis pointing downwards normal to

the earth’s surface. The origin of this reference plane is usually chosen to be located at

the intersection of the equator and the Greenwich meridian, however local origins are also

commonly used if the total distance covered by the vehicle is relatively small compared to

the scale of the earth’s surface.

Body: The body fixed reference frame is a moving coordinate system with its origin

located at the center of gravity of the vehicle. For aircraft, the x-axis points along the

longitudinal axis of the vehicle (out through the nose), the y-axis points along the lateral

axis (out the right wing) and the z -axis points down through the bottom of the aircraft to

complete the right-handed reference frame.

362

B.3 Attitude Quaternion

The attitude quaternion of a rotating object in 3D space is a convenient 4 dimensional

vector representation of an arbitrary rotation around any axis going through the objects

center of gravity [175]. One can think of the quaternion vector as 4-tuple

e =
[
e0 e1 e2 e3

]T
, (B.1)

where last three components define an axis of rotation, n, in 3-space (through the objects

center of gravity) and the first component specifies the angle of the rotation, α, around

that axis. The exact relationship is given by,

e =
[

cos (α/2) nT sin (α/2)
]T

, (B.2)

and is often referred to as the Euler parameter representation of the attitude quaternion

[177]. Since such an arbitrary rotation can be broken down into three consecutive rotations

around the three main Euler axes (pitch, roll and yaw), there is a one-to-one correspondence

between the 4 dimensional attitude quaternion vector and the three dimensional Euler angle

vector, i.e.,

e �
[
φ θ ψ

]
. (B.3)

Figure B.3 demonstrates how an arbitrary rotation is specified using a quaternion represen-

tation. At first glance it might seem that the quaternion representation is under-determined

(it seems to have an extra degree of freedom compared to the Euler angle representation).

By enforcing a unity norm constraint on the quaternion though,

‖e‖ =
√
e20 + e21 + e22 + e23 ≡ 1 , (B.4)

we can ensure that all possible quaternion solutions lie on a 3D unit hypersphere (sub-

manifold) embedded in the 4D quaternion space, which allows for an invertible and unique

attitude relationship between Euler angles and the corresponding quaternion vector. This

unique transformation is defined by Equations B.5 - B.11 on the next page.

The reason why a quaternion representation of attitude (or an attitude change, i.e.

363

rotation) is preferable to an Euler angle representation, is that the angular discontinuities

at ±π radians are avoided as well as the trigonometric singularities that can occur at ±π
2

radians (i.e. the infamous “gimbal lock” problem [80, 91]).

Converting from a specific quaternion representation to the related Euler angles is done

using the following equations,

φ = arctan
(

2(e2e3 + e0e1)
1 − 2(e21 + e22)

)
(B.5)

θ = arcsin (−2(e1e3 − e0e2)) (B.6)

ψ = arctan
(

2(e1e2 + e0e3)
1 − 2(e22 + e23)

)
(B.7)

(note we make use here of the four quadrant arctangent function, i.e., −π ≤ arctan(y/x) ≤
π). Converting from Euler angles to a quaternion vector is given by

eψ =
[

cos
(
ψ
2

)
0 0 sin

(
ψ
2

)]
(B.8)

eθ =
[

cos
(
θ
2

)
0 sin

(
θ
2

)
0
]

(B.9)

eφ =
[

cos
(
φ
2

)
sin
(
φ
2

)
0 0

]
(B.10)

e =
[
e0 e1 e2 e3

]
= eφ ⊗

(
eθ ⊗ eψ

)
, (B.11)

where ⊗ is the quaternion multiplication operator defined by

c = a ⊗ b

.=

⎡⎢⎢⎢⎢⎢⎢⎣
a0b0 − a1b1 − a2b2 − a3b3

a0b1 + a1b0 + a2b3 − a3b2

a0b2 − a1b3 + a2b0 + a3b1

a0b3 + a1b2 − a2b1 + a3b0

⎤⎥⎥⎥⎥⎥⎥⎦ , (B.12)

where c is the resulting unity norm product quaternion.

Another convenient characteristic of the quaternion representation is that the direc-

tional cosine matrix (DCM) used to transform 3D vectors from the body-frame to the

NED frame1 (and vice-versa), can be easily and directly constructed from the components

1We make the assumption here that the scale of our movement (translation and rotation) is such that

364

n

x

y

z

roll angle :

yaw angle:

pitch angle :

Figure B.3: Quaternion representation of an arbitrary rotation: Any point on the 3D sphere can
be rotated to any other point using three consecutive Euler angle (φ, θ, ψ) rotations around the ma-
jor (x − y − z) axes, or using a single rotation around an axis that is perpendicular to the plane
containing the two points and the origin of the sphere. The first method requires specifying the
three Euler angles. The second method (quaternion method), requires specifying the normal vector
(n = [sin(α/2)]−1[e2 e3 e4]T) to the plane and the rotation angle (α = 2 arccos(e1)) in the
plane. In this example the red line is rotated to coincide with the blue line.

of the vehicle’s attitude quaternion, i.e.,

TDCM
b→i =

(
TDCM
i→b

)T
= 2

⎡⎢⎢⎢⎣
0.5 − e22 − e23 e1e2 − e0e3 e1e3 + e0e2

e1e2 + e0e3 0.5 − e21 − e23 e2e3 − e0e1

e1e3 − e0e2 e2e3 + e0e1 0.5 − e21 − e22

⎤⎥⎥⎥⎦ . (B.13)

the NED frame can be considered an inertial frame.

365

B.4 Exponentiation of 4×4 Skew-Symmetric Quaternion Up-

date Matrix

Assume we have the following 4×4 skew-symmetric (anti-symmetric) matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0 a1 a2 a3

−a1 0 −a3 a2

−a2 a3 0 −a1

−a3 −a2 a1 0

⎤⎥⎥⎥⎥⎥⎥⎦ (B.14)

which satisfies the constraint that all rows and colums have the same L2-norm. This is the

same general form as the quaternion update matrix Ω̃ in Equations 5.13 and 5.19. Given

A, we now wish to calculate the following matrix exponentiation

B = exp (−αA) . (B.15)

In general (for arbitrary matrices) this cannot be solved in closed form and iterative approx-

imations must be used. However, due to the special constrained skew-symmeric structure of

A, a closed form solution is possible. This can be derived by first rewriting Equation B.15

using the power series expansion of the matrix exponential function:

exp (−αA) =
∞∑
n=0

(−α)nAn

n!
, (B.16)

where An is the nth matrix power of A, which is defined for a positive integer n as the

matrix product of n copies of A,

An = AA · · ·A︸ ︷︷ ︸
n

. (B.17)

Now, an interesting property of skew-symmetric matrices is that their matrix powers have

a very elegant self-similar property given by,

An =

⎧⎨⎩ (−1)
n
2 vnI n = 2, 4, 6, . . . (even)

(−1)
n−1

2 vn−1A n = 3, 5, 7, . . . (odd)
, (B.18)

366

where

v =

√√√√N−1∑
i=0

(A0,i)
2 (B.19)

is the normal Euclidean vector norm of the elements of the first row of the skew-symmetric

matrix A treated as a vector. Here A0,i is simply the ith column component of the zero’th

row of A, where N is the matrix dimension. We prove Equation B.18 through induction.

First we see if Equation B.18 holds for n = 2 and n = 3. Using Equation B.14 and

Equation B.17, A2 is given by

A2 = AA =

⎡⎢⎢⎢⎢⎢⎢⎣
0 a1 a2 a3

−a1 0 −a3 a2

−a2 a3 0 −a1

−a3 −a2 a1 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0 a1 a2 a3

−a1 0 −a3 a2

−a2 a3 0 −a1

−a3 −a2 a1 0

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
−v2 0 0 0

0 −v2 0 0

0 0 −v2 0

0 0 0 −v2

⎤⎥⎥⎥⎥⎥⎥⎦ (B.20)

= −v2I (B.21)

= (−1)
2
2 v2I , (B.22)

where I is the normal identity matrix with dimensions equal to those of A and v is given

by Equation B.19. In a similar fashion we calculate A3 as

A3 = A2A (B.23)

=
(−v2I

)
A (B.24)

= −v2A (B.25)

= (−1)
3−1
2 v3−1A . (B.26)

For n = k, we get

Ak = (−1)
k
2 vkI ,

367

if k is even and

Ak = (−1)
k−1
2 vk−1A ,

if k is odd. Lets now calculate the value of An for n = k + 1 for both the cases. If k is

even, then Ak+1 is given by

Ak+1 = AkA

=
[
(−1)

k
2 vkI
]
A

= (−1)
k
2 vkA

= (−1)
(k+1)−1

2 v(k+1)−1A .

This is the correct form for Ak+1 according to Equation B.18 since k+1 is odd if k is even.

Finally, we have to test the relation for the case n = k + 1 if k is odd and hence k + 1 is

even:

Ak+1 = AkA

=
[
(−1)

k−1
2 vk−1A

]
A

= (−1)
k−1
2 vk−1A2

= (−1)
k−1
2 vk−1

(−v2I
)

= (−1)
k−1
2

+1vk−1+2I

= (−1)
k+1
2 vk+1 ,

which is again the correct form based on Equation B.18. By induction this implies that

Equation B.18 holds for all n ≥ 2. Using this property, we can now expand Equation B.16

368

as

exp (−αA) =
∞∑
n=0

(−α)nAn

n!
(B.27)

= I − αA +
α2

2!
A2 − α3

3!
A3 +

α4

4!
A4 − α5

5!
A5 +

α6

6!
A6 − . . . (B.28)

= I − αA − α2

2!
v2I +

α3

3!
v2A +

α4

4!
v4I − α5

5!
v4A − α6

6!
v6I + . . . (B.29)

= I − α2

2!
v2I +

α4

4!
v4I − α6

6!
v6I + . . . (B.30)

−αA +
α3

3!
v2A − α5

5!
v4A +

α7

7!
v7A − . . . (B.31)

= I
∞∑
n=0

(−1)nα2n

(2n)!
v2n − αA

∞∑
n=1

(−1)n−1α2n−2

(2n− 1)!
v2n−2 (B.32)

= I
∞∑
n=0

(−1)n

(2n)!
(αv)2n − α(αv)−1A

∞∑
n=1

(−1)n−1

(2n− 1)!
(αv)2n−1 (B.33)

= I cos (αv) − αA
sin(αv)
αv

(B.34)

= I cos (s) − αAsinc(s) , (B.35)

where s = αv, and Equation B.33 is simplified to Equation B.34 using the power series

expansions of the cosine and sine functions. These are given by

cos(x) =
∞∑
n=0

(−1)n
1

(2n)!
x2n

and

sin(x) =
∞∑
n=1

(−1)n−1 1
(2n− 1)!

x2n−1 .

This concludes the derivation and proof. In summary, for any 4×4 skew-symmetric ma-

trix A with constrained structure as given by Equation B.14, the matrix exponentiation

function is given by the following closed form solution:

B = exp (−αA) = I cos (s) − αAsinc(s) , (B.36)

where s = αv and v is given by Equation B.19.

Appendix C

ReBEL Toolkit

C.1 A Recursive Bayesian Estimation Library for Matlab r©

ReBEL is a Matlab r© toolkit of functions and scripts, designed to facilitate sequential

Bayesian inference (estimation) in general state space models. This software consolidates

most of the algorithmic research presented in this thesis and is available for free down-

load for academic research. Numerous commercial entities have also licensed the code for

commercial service and/or product development.

ReBEL was developed over a period of about six months and is still considered a ’work

in progress’ or beta-release quality. The toolkit currently contains most of the following

functional units which can be used for state-, parameter- and joint-estimation: Kalman

filter, Extended Kalman filter, all Sigma-point Kalman filters (SPKFs) presented in this

thesis, including all the square root forms, all particle filters presented in this thesis. The

code is designed to be as general, modular and extensible as possible, while at the same

time trying to be as computationally efficient as possible. It has been tested with Matlab

6.1 (R12.1) and Matlab 6.5 (R13).

The toolkit can be downloaded for free from the main ReBEL website at http://

choosh.bme.ogi.edu/rebel under a “free for academic use” license. This not only allows

others to benefit directly from this work, either through general application to probabilistic

inference problems or extension of the algorithms presented in this thesis, but also allows

for the external verification of most of the experimental results presented in this thesis.

ReBEL has also been licensed by a number of commercial companies through OHSU’s

Technology and Research Collaborations (TRC) office, resulting in the award of an OHSU

369

370

Commercialization Award. To date1, the toolkit has been downloaded by more than 900

different researchers and research groups with a wide variety of intended uses. Here are

but a short selection of some of these applications2:

• Numerous downloads for use as teaching aid in undergraduate and graduate classes

in adaptive signal processing, image processing, machine learning, etc.

• Probabilistic inference for decision support systems.

• Bearing only tracking for submerged aquatic vehicles.

• Study of the probabilistic evolution of the Bosnian conflict using events data ex-

tracted from newswire3.

• Classification of biomedical time series data.

• Satellite orbit and attitude determination.

• Simultaneous localization and mapping (SLAM) for mobile robots.

• Speech enhancement and robust speech & speaker recognition.

• State and parameter estimation for waste -water treatment plant and hydrogeological

modeling.

• Analysis of human brain imaging data.

• Fault detection in fault tolerant control systems

• Parameter estimation for nonlinear stochastic-dynamic models of simple cells in the

visual cortex of primates.

• Echo cancellation

1The initial version of ReBEL was released in May 2002, followed by a number of bug-fix releases as
well as major updates. By the time of this publication, October 2003, more than 900 unique downloads of
the toolkit for academic use has taken place.

2This data was collected using the ReBEL toolkit website. One of the requirements of the academic
license is that the “user” has to provide information regarding their intended use of the toolkit.

3This must be one of the strangest applications of the ReBEL toolkit found to date by the author.

371

• Econometrics and financial time series analysis.

• Signal processing for cochlear implants.

• Stochastic image filtering for magnetic resonance imaging (MRI) applications.

• Non-rigid structure and motion from video.

• Data mining

• Smoothing of microwave remote sensing data.

• VLSI implementation of particle filters.

• Delay and channel estimation in CDMA communication channels.

• Target tracking problems in neuroscience: Exploring optimal algorithms that weakly-

electric fish might use for detecting and tracking prey.

• Biomedical signal processing

• Neural network training for neural based approximate dynamic programming for

flight control augmentation.

• Environmental modeling: Parameter estimation of the ocean mixed layer model (tur-

bulence model in the ocean upper layer).

• Geolocation of mobile users in indoor environments.

• Modeling of astronomical time series, quasars, etc.

• Computational biology applications, i.e., bioinformatics.

• Blind signal separation

• Tracking of micro-organisms from microscopic image sequences.

• etc. ...

372

99

ReBELReBEL : Recursive Bayesian Estimation Library: Recursive Bayesian Estimation Library

Matlab toolkit that provides a unified framework for

recursive Bayesian inference
State-, Parameter- and Dual-estimation

Algorithms:

• Kalman filter

• Extended Kalman filter

• Sigma-point Kalman filters (SPKF)

– Unscented Kalman filter (UKF)

– Central difference Kalman filter (CDKF)

– Square-root SPKFs

– Other SPKF extensions

• Particle Filters

– Generic particle filter (Condensation algorithm, Bootstrap-filter)

– Sigma-point particle filter (SPPF)

– Gaussian mixture sigma-point particle filter (GMSPPF)

General, modular and extensible.

Will possibly be ported to C/C++ (and then rewrapped for Matlab via Mex

code) in the future.

Figure C.1: The ReBEL Toolkit : general information

373

100

ReBELReBEL Toolkit : SchematicToolkit : Schematic

Define dynamic state-space model once for problem

specification.

x

y

z

tx

ty

tz

(, ,)t t tx y z

tracking

system

(, ,)t t tx y z & error estimate
x

y

z

tx

ty

tz

(, ,)t t tx y z

tracking

system

tracking

system

(, ,)t t tx y z & error estimate

In
fe

re
n
c
e
 A

lg
o
ri
th

m
 :
 K

F
 /
 E

K
F

 /
 S

P
K

F
 /
 e

tc
.

Estimation Type : State / Parameter / Dual / Joint

Estimation

results

(>>)

Figure C.2: The ReBEL Toolkit provides a general, modular, unified framework for probabilistic infer-
ence in generic DSSMs. The DSSM is defined once using a standard descriptor file format after which
any of the inference algorithms can be applied for either state-, parameter- or dual/joint estimation.
No reformulation of the DSSM needs to be done by hand. The toolkit automatically builds the needed
data- and algorithmic structures to adapt the DSSM and inference algorithm to the inference task at
hand.

374

134

ReBELReBEL Toolkit : Code ExampleToolkit : Code Example

model = gssm_helicopter('init');

Arg.type = 'state'; % inference type (state estimation)

Arg.tag = 'State estimation for helicopter system.'; % arbitrary ID tag

Arg.model = model; % DSSM data structure of external

% system

InfDS = geninfds(Arg); % Create inference data structure

[pNoise, oNoise, InfDS] = gensysnoiseds(InfDS, ‘CDKF’); % generate process and

% observation noise sources

[Xh, Px] = srcdkf(Xh(:,1), Px, pNoise, oNoise, y, [], [], InfDS); % Call SR-CDKF estimator

(back)

Figure C.3: The ReBEL Toolkit : code example

375

Figure C.4: The ReBEL Toolkit website : http://choosh.bme.ogi.edu/rebel

Biographical Note

Rudolph van der Merwe was born in Bellville, South Africa on November 2, 1973. He grew
up in the greater Cape Town area, attended D. F. Malan High School and graduated first in
his class in 1991. In 1995, he earned a B.Ing (Bachelors of Engineering) degree in Electrical
and Electronic Engineering from the University of Stellenbosch with honors, magna cum
laude. He continued on to graduate school, receiving a M.Ing (Masters of Engineering)
degree in Electronic Engineering (magna cum laude) in 1997, also from the University of
Stellenbosch. In 1998, he was awarded both a Fulbright Fellowship to further his studies
in the United States of America, as well as a scholarship to join the doctoral program at
Cambridge University in the United Kingdom. After much deliberation, introspection and
toil, he finally decided to broaden his horizons to the far side of the Atlantic, accepted
the Fulbright Fellowship and moved to America. He joined the Ph.D. program at the
Oregon Graduate Institute of Science and Technology in the fall of 1998 where he pursued
a doctoral degree in Electrical and Computer Engineering until he graduated in 2004.
During this time of higher academic pursuits, he not only made new friends, explored the
Pacific Northwest and made peace with the incessant rain, he also met his future wife,
Zoë Chambers, whom he married in December 2002. Rudolph’s other awards and honors
include:

• Recipient of Oregon Health & Science University Commercialization Award, for IP
licensing revenue resulting from commercialization of software developed during his
Ph.D., 2003.

• Recipient of the Paul Clayton Student Achievement Award for excellence in Ph.D.
studies and social service, OGI School of Science & Engineering, Oregon Health &
Science University, 2002.

• First place award in annual Student Paper Competition, OGI School of Science &
Engineering, Oregon Health & Science University, 2001-2002.

• Fulbright Fellow, awarded in 1998.

• Recipient of the FRD Merit Scholarship for Graduate Studies, University of Stelle-
bosch, 1997.

376

377

His broad range of interests include (but are not limited to) neural, adaptive, and machine
learning approaches to signal processing, pattern recognition, robotics and autonomous
control. Rudolph van der Merwe is author of the following publications:

• van der Merwe, R. Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic-State
Space Models. In Proc. of Workshop on Advances in Machine Learning (Montreal, Jun 2003).

• van der Merwe, R., and Wan, E. A. Gaussian Mixture Sigma-Point Particle Filters for Se-
quential Probabilistic Inference in Dynamic State-Space Models. In Proc. of the International
Conference on Acoustics, Speech and Signal Processing (Hong Kong, Apr 2003), IEEE.

• van der Merwe, R., and Wan, E. A. The Square-Root Unscented Kalman Filter for State- and
Parameter-Estimation. In Proc. of the International Conference on Acoustics, Speech and Signal
Processing (Salt Lake City, May 2001), IEEE.

• van der Merwe, R., and Wan, E. A. Efficient Derivative-Free Kalman Filters for Online Learn-
ing. In Proc. of ESANN (Bruges, Apr 2001).

• Wan, E. A., and van der Merwe, R. Kalman Filtering and Neural Networks. Adaptive and
Learning Systems for Signal Processing, Communications, and Control. Wiley, 2001, Ch. 7 - The
Unscented Kalman Filter.

• van der Merwe, R., de Freitas, N., Doucet, A., and Wan, E. A. The Unscented Particle
Filter. In Advances in Neural Information Processing Systems (NIPS) 13 (Denver, Nov 2001).

• van der Merwe, R., de Freitas, N., Doucet, A., and Wan, E. A. The Unscented Particle
Filter. Tech. Rep. CUED/F-INFENG/TR 380, Cambridge University Engineering Department,
Aug 2000.

• Wan, E. A., and van der Merwe, R. The Unscented Kalman Filter for Nonlinear Estimation.
In Proc. of IEEE Symposium 2000 (AS-SPCC) (Lake Louise, Oct 2000).

• Wan, E. A., van der Merwe, R., and Nelson, A. T. Dual Estimation and the Unscented
Transformation. In Advances in Neural Information Processing Systems (NIPS) 12 (Denver, Nov
2000).

• Wan, E. A., and van der Merwe, R. Noise-Regularized Adaptive Filtering for Speech Enhance-
ment. In Proc. of EuroSpeech (Budapest, Sep 1999).

• van der Merwe, R., and du Preez, J. A. Hybrid Combination of Knowledge- and Cepstral-
based Features for Phoneme Recognition. In Proc. of COMSIG (Cape Town, Sep 1998), IEEE.

• van der Merwe, R. Variations on Statistical Phoneme Recognition: A Hybrid Approach. Masters

thesis. University of Stellenbosch, Dec 1997.

378

“And if the cloud bursts, thunder in your ear
You shout and no one seems to hear

And if the band you’re in starts playing different tunes
I’ll see you on the dark side of the moon.”

- Pink Floyd, “Brain Damage”

	Contents
	Chapter 1 : Introduction
	Chapter 2 : Gaussian Approximate Bayesian Estimation
	Chapter 3 : SPKF - Derivation, Algorithmic Implementation, Applications & Extensions
	Chapter 4 : SPKF - Theoretical Analysis
	Chapter 5 : SPKF Based UAV Autonomy
	Chapter 6 : Non-Gaussian Bayesian Estimation - SMC/SPKF Hybrids
	Chapter 7 : Conclusions & Fiture Work
	Bibliography
	Appendix A : The Kalman Filter
	Appendix B : Navigation Primer
	Appendix C : ReBEL Toolkit
	Biographical Note

