Abelian Hidden Subgroup Problem

|
Abelian Hidden Subgroup Problem
1995; Kitaev

MICHELE MOscA?

! Combinatorics and Optimization / Institute for
Quantum Computing, University of Waterloo,
Waterloo, ON, Canada

2 Perimeter Institute for Theoretical Physics,

St. Jerome’s University, Waterloo, ON, Canada

Keywords and Synonyms

Generalization of Abelian stabilizer problem; Generaliza-
tion of Simon’s problem

Problem Definition

The Abelian hidden subgroup problem is the problem
of finding generators for a subgroup K of an Abelian
group G, where this subgroup is defined implicitly by
a function f: G — X, for some finite set X. In particu-
lar, f has the property that f(v) = f(w) if and only if the
cosets! v + K and w + K are equal. In other words, f is con-
stant on the cosets of the subgroup K, and distinct on each
coset.

It is assumed that the group G is finitely generated and
that the elements of G and X have unique binary encod-
ings (the binary assumption is not so important, but it is
important to have unique encodings.) When using vari-
ables g and & (possibly with subscripts) multiplicative no-
tation is used for the group operations. Variables x and y
(possibly with subscripts) will denote integers with addi-
tion. The boldface versions x and y will denote tuples of
integers or binary strings.

By assumption, there is computational means of com-
puting the function f, typically a circuit or “black box” that
maps the encoding of a value g to the encoding of f(g). The

! Assuming additive notation for the group operation here.

theory of reversible computation implies that one can turn
a circuit for computing f(g) into a reversible circuit for
computing f(g) with a modest increase in the size of the
circuit. Thus it will be assumed that there is a reversible
circuit or black box that maps (g,z) — (g,z ® f(g)),
where @ denotes the bitwise XOR (sum modulo 2), and
z is any binary string of the same length as the encoding of
f@)-

Quantum mechanics implies that any reversible gate
can be extended linearly to a unitary operation that can
be implemented in the model of quantum computation.
Thus, it is assumed that there is a quantum circuit or
black box that implements the unitary map Uy: |g)|z)
Ig)z ® f(g))-

Although special cases of this problem have been con-
sidered in classical computer science, the general formu-
lation as the hidden subgroup problem seems to have
appeared in the context of quantum computing, since it
neatly encapsulates a family of “black-box” problems for
which quantum algorithms offer an exponential speed up
(in terms of query complexity) over classical algorithms.
For some explicit problems (i.e., where the black box
is replaced with a specific function, such as exponentia-
tion modulo N), there is a conjectured exponential speed

up.

Abelian Hidden Subgroup Problem

Input: Elements g1, g2,...,¢n € G that generate the
Abelian group G. A black box that implements Uy:
Imi,my, . omu)ly) = [myma, o me)|f() @),
where ¢ = g{"'gy"* ... gy, and K is the hidden subgroup
corresponding to f.

Output: Elements /iy, hy, ..., h; € G that generate K.

Here we use multiplicative notation for the group G in
order to be consistent with Kitaev’s formulation of the
Abelian stabilizer problem. Many of the applications of in-
terest typically use additive notation for the group G.

It is hard to trace the precise origin of this general for-
mulation of the problem, which simultaneously general-

Abelian Hidden Subgroup Problem

izes “Simon’s problem” [16], the order-finding problem
(which is the quantum part of the quantum factoring al-
gorithm [14]) and the discrete logarithm problem.

One of the earliest generalizations of Simon’s prob-
lem, the order-finding problem, and the discrete logarithm
problem, which captures the essence of the Abelian hidden
subgroup problem is the Abelian stabilizer problem, which
was solved by Kitaev [11] using a quantum algorithm in
his 1995 paper (and the solution also appears in [12]).

Let G be a group acting on a finite set X. That is, each
element of G acts as a map from X to X in such a way that
for any two elements g, h € G, g(h(z)) = (gh)(z) for all
z € X. For a particular element z € X, the set of elements
that fix z (that is the elements g € G such that g(z) = z)
form a subgroup. This subgroup is called the stabilizer of z
in G, denoted St;(2).

Abelian Stabilizer Problem

Input: Elements g, g>,...,¢, € G that generate the
group G. An element z € X. A black box that implements
UgG,x) : Imy.my,my)|z) = |mi,my, ... my,)|g(2))
where g = g/"'gy" ... gn".

Output: Elements hy, h,, ..., h; € G that generate Stg(z).

Let f, denote the function from G to X that maps g € G
to g(z). One can implement Uy, using U, x)- The hidden
subgroup corresponding to f is Stg(z). Thus, the Abelian
stabilizer problem is a special case of the Abelian hidden
subgroup problem.

One of the subtle differences (discussed in Appendix 6
of [10]) between the above formulation of the Abelian
stabilizer problem and the Abelian hidden subgroup
problem is that Kitaev’s formulation gives a black box
that for any g,h € G maps |my,...,m,)|f.(2) +
[mi, ..., mp)|fz(hg)), where g = g/"' ¢)" ... gn" and es-
timates eigenvalues of shift operations of the form
| f2(£)) = |fz(hg)). In general, these shift operators are
not explicitly needed, and it suffices to be able to com-
pute a map of the form |y) — |f,(h) @ y) for any binary
string y.

Generalizations of this form have been known since
shortly after Shor presented his factoring and discrete log-
arithm algorithms. For example, in [18] the hidden sub-
group problem was discussed for a large class of finite
Abelian groups, and more generally in [2] for any fi-
nite Abelian group presented as a product of finite cyclic
groups. In [13] the Abelian hidden subgroup algorithm
was related to eigenvalue estimation.

Other problems which can be formulated in this way
include the following.

Deutsch’s Problem

Input: A black box that implements Uy: |x}|b) > |x)[b&®
f(x)), for some function f that maps Z, = {0, 1} to {0, 1}.
Output: “Constant” if f(0) = f(1), “balanced” if f(0) #
.

Note that f(x) = f(y) if and only if x — y € K, where K
is either {0} or Z; = {0,1}. If K = {0} then f is 1 —1 or
“balanced” and if K = Z, then f is constant [4,5].

Simon’s Problem

Input: A black box that implements Uy : [x)|b) = |x)|b®
f(x)) for some function f from ZJ to some set X (which
is assumed to consist of binary strings of some fixed
length) with the property that f(x) = f(y) if and only if
x—ye K ={0,s} forsomes € Z7.

Output: The “hidden” string s.

The decision version allows K = {0} and asks whether K
is trivial. Simon [16] presented an efficient algorithm for
solving this problem, and an exponential lower bound on
the query complexity. The solution to the Abelian hid-
den subgroup problem is a generalization of Simon’s al-
gorithm (which deals with finite groups with many gener-
ators) and Shor’s algorithms [14,12] (which deal with an
infinite group with one generator, and a finite group with
two generators).

Key Results

Theorem (Abelian stabilizer problem) There exists
a quantum algorithm that, given an instance of the Abelian
stabilizer problem, makes n + O(1) queries to Ug, x), uses
poly(n) other elementary quantum and classical opera-
tions, and with probability at least 2/3 outputs values

hi, hy, ..., hy such that Stg(z) = (h1) ® (hy) & --- ().

Kitaev first solved this problem (with a slightly higher
query complexity, because his eigenvalue estimation pro-
cedure was not optimal). An eigenvalue estimation proce-
dure based on the quantum Fourier transform achieves the
n + O(1) query complexity.

Theorem (Abelian hidden subgroup problem) There
exists a quantum algorithm that, given an instance of the
Abelian hidden subgroup problem, makes n + O(1) queries
to Uy, uses poly(n) other elementary quantum and classical
operations, and with probability at least 2/3 outputs values
hy,hy, ... hysuchthat K = (hy) @ (hy) @ --- (h;).

In some cases, the success probability can be made 1 with
the same complexity, and in general the success probabil-
ity can be made 1 — € using n + O(log(1/€)) queries and

Abelian Hidden Subgroup Problem

poly(n,log(1/€)) other elementary quantum and classical
operations.

Applications

Most of these applications in fact were known before the
Abelian stabilizer problem or the Abelian hidden sub-
group problem were formulated.

Finding the Order of an Element ina Group Letabean
element of a group H (which does not need to be Abelian).
Consider the function f from G = Z to the group H where
f(x) = a* for some element a of H. Then f(x) = f(y) if
and only if x — y € rZ. The hidden subgroup is K = rZ
and a generator for K gives the order r of a [14,12].

Discrete Logarithms Let a be an element of a group H
(which does not need to be Abelian), with a” =1, and
suppose b = a* from some unknown k. The integer k
is called the discrete logarithm of b to the base a. Con-
sider the function f from G =7, x Z, to H satisfying
f(x1,x2) = a*1b*2. Then f(x1, x2) = f(y1, y2) if and only
if (x1,22) — (y1. y2) € {(tk,—1),t =0,1,...,r—1}, which
is the subgroup ((k, —1)) of Z, x Z,. Thus, finding a gen-
erator for the hidden subgroup K will give the discrete log-
arithm k. Note that this algorithm works for H equal to the
multiplicative group of a finite field, or the additive group
of points on an elliptic curve, which are groups that are
used in public-key cryptography.

Hidden Linear Functions Let o be some permuta-
tion of Zx for some integer N. Let h be a function
from G=7Z xZ to ZN, h(x,y)=x+ay mod N. Let
f =0 o h. The hidden subgroup of f is ((—a, 1)). Boneh
and Lipton [1] showed that even if the linear structure of h
is hidden (by o), one can efficiently recover the parame-
ter a with a quantum algorithm.

Self-shift-equivalent Polynomials Given a polyno-
mial P in [variables X1, X3, ..., X; over [Fy, the function f
that maps (a1, az,...,a;) € IFCII to P(X1—a1, Xo—az, ...,
X; — a;) is constant on cosets of a subgroup K of IF;.
This subgroup K is the set of shift-self-equivalences of the
polynomial P. Grigoriev [8] showed how to compute this
subgroup.

Decomposition of a Finitely Generated Group Let Gbe
a group with a unique binary representation for each ele-
ment of G, and assume that the group operation, and rec-
ognizing if a binary string represents an element of G or
not, can be done efficiently.

Given a set of generators g1, g2, . .., gn for a group G,
output a set of elements hy, hy, ..., h;, I < n, from the
group G such that G=(g1) ® (g2) ®--- D (g1). Such
a generating set can be found efficiently [3] from gener-
ators of the hidden subgroup of the function that maps

mp _mj my
g

(my,my,....mu) g/ 'g,

Discussion: What About non-Abelian Groups?

The great success of quantum algorithms for solving the
Abelian hidden subgroup problem leads to the natural
question of whether it can solve the hidden subgroup
problem for non-Abelian groups. It has been shown that
a polynomial number of queries suffice [7]; however, in
general there is no bound on the overall computational
complexity (which includes other elementary quantum or
classical operations).

This question has been studied by many researchers,
and efficient quantum algorithms can be found for some
non-Abelian groups. However, at present, there is no effi-
cient algorithm for most non-Abelian groups. For exam-
ple, solving the hidden subgroup problem for the symmet-
ric group would directly solve the graph automorphism
problem.

Cross References

» Graph Isomorphism

» Quantum Algorithm for the Discrete Logarithm
Problem

» Quantum Algorithm for Factoring

» Quantum Algorithm for the Parity Problem

» Quantum Algorithm for Solving the Pell’s Equation

Recommended Reading

1. Boneh, D,, Lipton, R.: Quantum Cryptanalysis of Hidden Linear
Functions (Extended Abstract) In: Proceedings of 15th Annual
International Cryptology Conference (CRYPTO'95), pp. 424-
437, Santa Barbara, 27-31 August 1995

2. Brassard, G., Hayer, P.: An exact quantum polynomial-time al-
gorithm for Simon’s problem. In: Proc. of Fifth Israeli Sympo-
sium on Theory of Computing ans Systems (ISTCS'97), pp. 12—
23 (1997) and in: Proceedings IEEE Computer Society, Ramat-
Gan, 17-19 June 1997

3. Cheung, K., Mosca, M.: Decomposing Finite Abelian Groups.
Quantum Inf. Comp. 1(2), 26-32 (2001)

4. Cleve, R, Ekert, A., Macchiavello, C., Mosca, M.: Quantum Al-
gorithms Revisited. Proc. Royal Soc. London A 454, 339-354
(1998)

5. Deutsch, D.: Quantum theory, the Church-Turing principle and
the universal quantum computer. Proc. Royal Soc. London A
400, 97-117 (1985)

6. Deutsch, D., Jozsa, R.: Rapid solutions of problems by quantum
computation. Proc. Royal Soc. London A 439, 553-558 (1992)

Adaptive Partitions

7. Ettinger, M., Hoyer, P., Knill, E.: The quantum query complexity
of the hidden subgroup problem is polynomial. Inf. Process.
Lett. 91, 43-48 (2004)

8. Grigoriev, D.: Testing Shift-Equivalence of Polynomials by De-
terministic, Probabilistic and Quantum Machines. Theor. Com-
put. Sci. 180, 217-228 (1997)

9. Hayer, P.: Conjugated operators in quantum algorithms. Phys.
Rev. A 59(5), 3280-3289 (1999)

10. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum
Computation. Oxford University Press, Oxford (2007)

11. Kitaev, A.: Quantum measurements and the Abelian Stabilizer
Problem. quant-ph/9511026, http://arxiv.org/abs/quant-ph/
9511026 (1995) and in: Electronic Colloquium on Compu-
tational Complexity (ECCC) 3, Report TR96-003,http://eccc.
hpi-web.de/eccc-reports/1995/TR96-003/ (1996)

12. Kitaev, A.Y.: Quantum computations: algorithms and error cor-
rection. Russ. Math. Surv. 52(6), 1191-1249 (1997)

13. Mosca, M., Ekert, A.: The Hidden Subgroup Problem and Eigen-
value Estimation on a Quantum Computer. In: Proceedings
1st NASA International Conference on Quantum Computing
& Quantum Communications. Lecture Notes in Computer Sci-
ence, vol. 1509, pp. 174-188. Springer, London (1998)

14. Shor, P.: Algorithms for Quantum Computation: Discrete Loga-
rithms and Factoring. In: Proceedings of the 35th Annual Sym-
posium on Foundations of Computer Science, pp. 124-134,
Santa Fe, 20-22 November 1994

15. Shor, P.: Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer. SIAM
J. Comp. 26, 1484-1509 (1997)

16. Simon, D.: On the power of quantum computation. In: Pro-
ceedings of the 35th IEEE Symposium on the Foundations
of Computer Science (FOCS), pp. 116-123, Santa Fe, 20-22
November 1994

17. Simon, D.: On the Power of Quantum Computation. SIAM
J. Comp. 26, 1474-1483 (1997)

18. Vazirani, U.: Berkeley Lecture Notes. Fall 1997. Lecture 8. http://
www.cs.berkeley.edu/~vazirani/qc.html (1997)

|
Adaptive Partitions

1986; Du, Pan, Shing
PING DENG!, WEILI WU!, EUGENE SHRAGOWITZ?
! Department of Computer Science,

University of Texas at Dallas, Richardson, TX, USA

2 Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MN, USA

Keywords and Synonyms

Technique for constructing approximation

Problem Definition

Adaptive partition is one of major techniques to de-
sign polynomial-time approximation algorithms, espe-
cially polynomial-time approximation schemes for ge-
ometric optimization problems. The framework of this

technique is to put the input data into a rectangle and par-
tition this rectangle into smaller rectangles by a sequence
of cuts so that the problem is also partitioned into smaller
ones. Associated with each adaptive partition, a feasible
solution can be constructed recursively from solutions
in smallest rectangles to bigger rectangles. With dynamic
programming, an optimal adaptive partition is computed
in polynomial time.

Historical Background

The adaptive partition was first introduced to the design of
an approximation algorithm by Du et al. [5] with a guillo-
tine cut while they studied the minimum edge length rect-
angular partition (MELRP) problem. They found that if
the partition is performed by a sequence of guillotine cuts,
then an optimal solution can be computed in polynomial
time with dynamic programming. Moreover, this optimal
solution can be used as a pretty good approximation solu-
tion for the original rectangular partition problem. Both
Arora [1] and Mitchell et al. [12,13] found that the cut
needs not to be completely guillotine. In other words, the
dynamic programming can still runs in polynomial time
if subproblems have some relations but the number of
relations is smaller. As the number of relations goes up,
the approximation solution obtained approaches the opti-
mal one, while the run time, of course, goes up. They also
found that this technique can be applied to many geomet-
ric optimization problems to obtain polynomial-time ap-
proximation schemes.

Key Results

The MELRP was proposed by Lingas et al. [9] as follows:
Given a rectilinear polygon possibly with some rectangular
holes, partition it into rectangles with minimum total edge
length. Each hole may be degenerated into a line segment
or a point.

There are several applications mentioned in [9] for
the background of the problem: process control (stock
cutting), automatic layout systems for integrated circuit
(channel definition), and architecture (internal partition-
ing into offices). The minimum edge length partition is
a natural goal for these problems since there is a certain
amount of waste (e. g., sawdust) or expense incurred (e. g.,
for dividing walls in the office) which is proportional to the
sum of edge lengths drawn. For very large scale integra-
tion (VLSI) design, this criterion is used in the MIT Place-
ment and Interconnect (PI) System to divide the routing
region up into channels - one finds that this produces large
“natural-looking” channels with a minimum of channel-
to-channel interaction to consider.

http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/quant-ph/9511026
http://eccc.hpi-web.de/eccc-reports/1995/TR96-003/
http://eccc.hpi-web.de/eccc-reports/1995/TR96-003/
http://www.cs.berkeley.edu/~vazirani/qc.html
http://www.cs.berkeley.edu/~vazirani/qc.html

Adaptive Partitions

They showed that while the MELRP in general is non-
deterministic polynomial-time (NP) hard, is can be solved
in time O(#n*) in the hole-free case, where n is the num-
ber of vertices in the input rectilinear polygon. The poly-
nomial algorithm is essentially a dynamic programming
based on the fact that there always exists an optimal so-
lution satisfying the property that every cut line passes
through a vertex of the input polygon or holes (namely,
every maximal cut segment is incident to a vertex of input
or holes).

A naive idea to design an approximation algorithm for
the general case is to use a forest connecting all holes to the
boundary and then to solve the resulting hole-free case in
O(n*) time. With this idea, Lingas [10] gave the first con-
stant-bounded approximation; its performance ratio is 41.

Motivated by a work of Du et al. [4] on application
of dynamic programming to optimal routing trees, Du
et al. [5] initiated an idea of adaptive partition. They used
a sequence of guillotine cuts to do rectangular partition;
each guillotine cut breaks a connected area into at least
two parts. With dynamic programming, they were able to
show that a minimum-length guillotine rectangular parti-
tion (i. e., one with minimum total length among all guillo-
tine partitions) can be computed in O(n°) time. Therefore,
they suggested using the minimum-length guillotine rect-
angular partition to approximate the MELRP and tried to
analyze the performance ratio. Unfortunately, they failed
to get a constant ratio in general and only obtained a upper
bound of 2 for the performance ratio in a NP-hard special
case [7]. In this special case, the input is a rectangle with
some points inside. Those points are holes. The following
is a simple version of the proof obtained by Du et al. [6].

Theorem The minimum-length guillotine rectangular
partition is an approximation with performance ratio 2 for
the MELRP.

Proof Consider a rectangular partition P. Let proj(P) de-
note the total length of segments on a horizontal line cov-
ered by vertical projection of the partition P.

A rectangular partition is said to be covered by a guil-
lotine partition if each segment in the rectangular partition
is covered by a guillotine cut of the latter. Let guil(P) de-
note the minimum length of the guillotine partition cover-
ing P and length(P) denote the total length of rectangular
partition P. It will be proved by induction on the number
k of segments in P that

guil(P) < 2-length(P) — projc(P) .

For k = 1, one has guil(P) = length(P). If the segment is
horizontal, then one has proj, (P) = length(P) and hence

guil(P) =2 - length(P) — proj.(P) .

If the segment is vertical, then proj,(P) = 0 and hence
guil(P) < 2-length(P) — proj.(P) .

Now, consider k > 2. Suppose that the initial rectangle has
each vertical edge of length a and each horizontal edge of
length b. Consider two cases:

Case 1. There exists a vertical segment s having length
greater than or equal to 0.5a. Apply a guillotine cut along
this segment s. Then the remainder of P is divided into
two parts P; and P, which form rectangular partition of
two resulting small rectangles, respectively. By induction
hypothesis,

guil(P;) < 2-length(P;) — projy(P;)
for i = 1, 2. Note that
guil(P) < guil(Py) + guil(P,) + a ,
length(P) = length(P;) + length(P,) + length(s) ,
projx(P) = projx(P1) + proj(Ps) .
Therefore,
guil(P) < 2-length(P) — proj.(P) .

Case 2. No vertical segment in P has length greater than
or equal to 0.5a. Choose a horizontal guillotine cut which
partitions the rectangle into two equal parts. Let P; and P,
denote rectangle partitions of the two parts, obtained from
P. By induction hypothesis,

guil(P;) <2-length(P;) — projx(P;)
for i = 1, 2. Note that
guil(P) = guil(Py) + guil(Py) + b,
length(P) > length(Py) + length(P;) ,
projx(P) = proj.(P1) = proj.(P2) = b..
Therefore,

guil(P) < 2-length(P) — proj.(P) .

Gonzalez and Zheng [8] improved this upper bound to
1.75 and conjectured that the performance ratio in this
case is 1.5.

Applications

In 1996, Arora [1] and Mitchell et al. [12,13,14] found that
the cut does not necessarily have to be completely guillo-
tine in order to have a polynomial-time computable op-
timal solution for such a sequence of cuts. Of course, the

Adaptive Partitions

number of connections left by an incomplete guillotine cut
should be limited. While Mitchell et al. developed the m-
guillotine subdivision technique, Arora employed a “por-
tal” technique. They also found that their techniques can
be used for not only the MELRP, but also for many geo-
metric optimization problems [1,2,3,12,13,14,15].

Open Problems

One current important submicron step of technology evo-
lution in electronics interconnects has become the domi-
nating factor in determining VLSI performance and reli-
ability. Historically a problem of interconnects design in
VLSI has been very tightly intertwined with the classi-
cal problem in computational geometry: Steiner minimum
tree generation. Some essential characteristics of VLSI are
roughly proportional to the length of the interconnects.
Such characteristics include chip area, yield, power con-
sumption, reliability and timing. For example, the area oc-
cupied by interconnects is proportional to their combined
length and directly impacts the chip size. Larger chip size
results in reduction of yield and increase in manufactur-
ing cost. The costs of other components required for man-
ufacturing also increase with increase of the wire length.
From the performance angle, longer interconnects cause
an increase in power dissipation, degradation of timing
and other undesirable consequences. That is why find-
ing the minimum length of interconnects consistent with
other goals and constraints is such an important problem
at this stage of VLSI technology.

The combined length of the interconnects on a chip is
the sum of the lengths of individual signal nets. Each sig-
nal net is a set of electrically connected terminals, where
one terminal acts as a driver and other terminals are re-
ceivers of electrical signals. Historically, for the purpose of
finding an optimal configuration of interconnects, termi-
nals were considered as points on the plane, and a rout-
ing problem for individual nets was formulated as a clas-
sical Steiner minimum tree problem. For a variety of rea-
sons VLSI technology implements only rectilinear wiring
on the set of parallel planes, and, consequently, with few
exceptions, only a rectilinear version of the Steiner tree
is being considered in the VLSI domain. This problem is
known as the RSMT.

Further progress in VLSI technology resulted in more
factors than just length of interconnects gaining impor-
tance in selection of routing topologies. For example, the
presence of obstacles led to reexamination of techniques
used in studies of the rectilinear Steiner tree, since many
classical techniques do not work in this new environment.
To clarify the statement made above, we will consider

the construction of a rectilinear Steiner minimum tree in
the presence of obstacles.

Let us start with a rectilinear plane with obstacles de-
fined as rectilinear polygons. Given # points on the plane,
the objective is to find the shortest rectilinear Steiner tree
that interconnects them. One already knows that a polyno-
mial-time approximation scheme for RSMT without ob-
stacles exists and can be constructed by adaptive parti-
tion with application of either the portal or the m-guil-
lotine subdivision technique. However, both the m-guil-
lotine cut and the portal techniques do not work in the
case that obstacles exists. The portal technique is not ap-
plicable because obstacles may block movement of the line
that crosses the cut at a portal. The m-guillotine cut could
not be constructed either, because obstacles may break
down the cut segment that makes the Steiner tree con-
nected.

In spite of the facts stated above, the RSMT with
obstacles may still have polynomial-time approxima-
tion schemes.Strong evidence was given by Min et
al. [11]. They constructed a polynomial-time approxima-
tion scheme for the problem with obstacles under the con-
dition that the ratio of the longest edge and the shortest
edge of the minimum spanning tree is bounded by a con-
stant. This design is based on the classical nonadaptive
partition approach. All of the above make us believe that
a new adaptive technique can be found for the case with
obstacles.

Cross References

» Metric TSP
» Rectilinear Steiner Tree
» Steiner Trees

Recommended Reading

1. Arora, S.: Polynomial-time approximation schemes for Eu-
clidean TSP and other geometric problems. In: Proc. 37th IEEE
Symp. on Foundations of Computer Science, 1996, pp. 2-12

2. Arora, S.: Nearly linear time approximation schemes for Eu-
clidean TSP and other geometric problems. In: Proc. 38th IEEE
Symp. on Foundations of Computer Science, 1997, pp. 554-
563

3. Arora, S.: Polynomial-time approximation schemes for Eu-
clidean TSP and other geometric problems. J. ACM 45, 753-
782 (1998)

4. Du, D.Z, Hwang, F.K,, Shing, M.T., Witbold, T.: Optimal routing
trees. IEEE Trans. Circuits 35, 1335-1337 (1988)

5. Du, D.-Z, Pan, L.-Q., Shing, M.-T.: Minimum edge length guil-
lotine rectangular partition. Technical Report 0241886, Math.
Sci. Res. Inst., Univ. California, Berkeley (1986)

6. Du, D.-Z,, Hsu, D.F., Xu, K.-J.: Bounds on guillotine ratio. Con-
gressus Numerantium 58, 313-318 (1987)

Adwords Pricing

7. Gonzalez, T., Zheng, S.Q.: Bounds for partitioning rectilinear
polygons. In: Proc. 1st Symp. on Computational Geometry
(1985)

8. Gonzalez, T., Zheng, S.Q.: Improved bounds for rectangular
and guillotine partitions. J. Symb. Comput. 7,591-610 (1989)

9. Lingas, A., Pinter, R.Y., Rivest, R.L., Shamir, A.: Minimum edge
length partitioning of rectilinear polygons. In: Proc. 20th Aller-
ton Conf. on Comm. Control and Compt., lllinos (1982)

10. Lingas, A.: Heuristics for minimum edge length rectangular
partitions of rectilinear figures. In: Proc. 6th Gl-Conference,
Dortmund, January 1983. Springer

11. Min, M., Huang, S.C.-H,, Liu, J., Shragowitz, E., Wu, W., Zhao, Y.,
Zhao, Y.: An Approximation Scheme for the Rectilinear Steiner
Minimum Tree in Presence of Obstructions. Fields Inst. Com-
mun. 37, 155-164 (2003)

12. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal
subdivisions: A simple new method for the geometric k-MST
problem. In: Proc. 7th ACM-SIAM Symposium on Discrete Al-
gorithms, 1996, pp. 402-408.

13. Mitchell, J.S.B., Blum, A., Chalasani, P., Vempala, S.: A constant-
factor approximation algorithm for the geometric k-MST prob-
lem in the plane. SIAM J. Comput. 28(3), 771-781 (1999)

14. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal
subdivisions: Part Il - A simple polynomial-time approximation
scheme for geometric k-MST, TSP, and related problem. SIAM
J. Comput. 29(2), 515-544 (1999)

15. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal
subdivisions: Partlll - Faster polynomial-time approximation
scheme for geometric network optimization, manuscript, State
University of New York, Stony Brook (1997)

I
Ad-Hoc Networks

» Channel Assignment and Routing in Multi-Radio
Wireless Mesh Networks

|
Adword Auction

» Position Auction

|
Adwords Pricing
2007; Bu, Deng, Qi

TIAN-MING BU
Department of Computer Science & Engineering,
Fudan University, Shanghai, China

Problem Definition

The model studied here is the same as that which was
first presented in [11] by Varian. For some keyword,
N ={1,2,..., N}, advertisers bid K ={1,2,...,K} ad-
vertisement slots (K < N) which will be displayed on the
search result page from top to bottom. The higher the

advertisement is positioned, the more conspicuous it is
and the more clicks it receives. Thus for any two slots
ki, ky € K, if k; < ky, then slot k;’s click-through rate
(CTR) cg, is larger than cg,. Thatis, ¢ > ¢ > ... > ¢k,
from top to bottom, respectively. Moreover, each bidder
i € N has privately known information, v/, which repre-
sents the expected return per click to bidder i.

According to each bidder i’s submitted bid &', the auc-
tioneer then decides how to distribute the advertisement
slots among the bidders and how much they should pay
per click. In particular, the auctioneer first sorts the bid-
ders in decreasing order according to their submitted bids.
Then the highest slot is allocated to the first bidder, the
second highest slot is allocated to the second bidder, and
so on. The last N — K bidders would lose and get nothing.
Finally, each winner would be charged on a per-click basis
for the next bid in the descending bid queue. The losers
would pay nothing.

Let by denote the kth highest bid in the descending bid
queue and vy the true value of the kth bidder in the de-
scending queue. Thus if bidder i got slot k, i’s payment
would be by, - ck. Otherwise, his payment would be zero.
Hence, for any bidder i € 2V, if i were on slot k € K, his
utility (payoff) could be represented as

up =W — b)) -k .

Unlike one-round sealed-bid auctions where each bid-
der has only one chance to bid, the adword auction al-
lows bidders to change their bids any time. Once bids
are changed, the system refreshes the ranking automati-
cally and instantaneously. Accordingly, all bidders’ pay-
ment and utility are also recalculated. As a result, other
bidders could then have an incentive to change their bids
to increase their utility, and so on.

Definition 1 (Adword Pricing)

INPUT: the CTR for each slot, each bidder’s expected re-
turn per click on his advertising.

OUTPUT: the stable states of this auction and whether any
of these stable states can be reached from any initial states.

Key Results

Let b represent the bid vector (b',b?,...,b"Y). Vi € N,
O'(b) denotes bidder s place in the descending bid queue.
Let b=% = (b',..., b1, bi*l ... bN) denote the bids of
all other bidders except i. Mi(b~) returns a set defined as

{u;i(bijb—i)} . (1)

Definition 2 (Forward-Looking Best-Response Func-
tion) Given b™', suppose ©'(M'(b~"),b™") = k, then

M (b~') =arg max
bieo,vi]

Adwords Pricing

bidder i’s forward-looking response function Fib™) is
defined as

i _Ck (i _
fi(b_i) — Vl‘ Ch—1 (VI bk+1) 2 = k = Ka (2)
v! k=lork>K.
Definition 3 (Forward-Looking Nash Equilibrium) A
forward-looking best-response-function-based Nash equi-
librium is a strategy profile b such that
VieN, b eFi®h).

Definition 4 (Output Truthful [7,9]) For any instance of
an adword auction and the corresponding equilibrium set
£, if Ve € F and Vi € N, O'(e) = O'(v',...,vN), then
the adword auction is output truthful on E.

Theorem 5 An adword auction is output truthful on

Z‘forw:«lrd—looking-

Corollary 6 An adword auction has a unique forward-
looking Nash equilibrium.

Corollary 7 Any bidder’s payment under the forward-
looking Nash equilibrium is equal to her payment under the
VCG mechanism for the auction.

Corollary 8 Foradword auctions, the auctioneer’s revenue
in a forward-looking Nash equilibrium is equal to her rev-
enue under the VCG mechanism for the auction.

Definition 9 (Simultaneous Readjustment Scheme) In
a simultaneous readjustment scheme, all bidders par-
ticipating in the auction will use forward-looking best-
response function F to update their current bids simul-
taneously, which turns the current stage into a new stage.
Then, based on the new stage, all bidders may update their
bids again.

Theorem 10 An adword auction may not always converge
to a forward-looking Nash equilibrium under the simulta-
neous readjustment scheme even when the number of slots
is 3. But the protocol converges when the number of slots
is 2.

Definition 11 (Round-Robin Readjustment Scheme) In
the round-robin readjustment scheme, bidders update
their biddings one after the other, according to the order
of the bidder’s number or the order of the slots.

Theorem 12 An adword auction may not always converge
to a forward-looking Nash equilibrium under the round-
robin readjustment scheme even when the number of slots
is 4. But the protocol converges when the number of slots is 2
or3.

: if (j = 0) then
exit
end if
: Let i be the ID of the bidder whose current bid is b;
(and equivalently, b").

: Leth = O/ (M (b~7),b~").

6: Let F'(b™") be the best response function value for
Bidder i.

7: Re-sort the bid sequence. (So h is the slot of the new
bid F(b~") of Bidder i.)

8: if (h < j) then

call Lowest-First(K, j, by, by, -+ , bN),

w

10: else
11: call Lowest-First(K, h — 1, by, by, -+, by)
12: end if

Adwords Pricing, Figure 1
Readjustment Scheme: Lowest-First(K, j, b1, ba, -+« , by)

Theorem 13 Adword auctions converge to a forward-look-
ing Nash equilibrium in finite steps with a lowest-first ad-
justment scheme.

Theorem 14 Adword auctions converge to a forward-look-
ing Nash equilibrium with probability one under a random-
ized readjustment scheme.

Applications

Online adword auctions are the fastest growing form of
advertising on the Internet today. Many search engine
companies such as Google and Yahoo! make huge prof-
its on this kind of auction. Because advertisers can change
their bids any time, such auctions can reduce advertisers’
risk. Further, because the advertisement is only displayed
to those people who are really interested in it, such auc-
tions can reduce advertisers’ investment and increase their
return on investment.

For the same model, Varian [11] focuses on a subset
of Nash equilibrium called symmetric Nash equilibrium,
which can be formulated nicely and dealt with easily. Edel-
man et al. [8] study locally envy-free equilibrium, where
no player can improve her payoff by exchanging bid with
the player ranked one position above her. Coincidently,
locally envy-free equilibrium is equal to symmetric Nash
equilibrium proposed in [11]. Further, the revenue under
the forward-looking Nash equilibrium is the same as the
lower bound under Varian’s symmetric Nash equilibrium
and the lower bound under Edelman et al.’s locally envy-
free equilibrium. In [6], Cary et al. also study the dynamic

Algorithm DC-Tree for k Servers on Trees

model’s equilibrium and convergence based on the bal-
anced bidding strategy, which is actually the same as the
forward-looking best-response function in [4]. Cary et al.
explore the convergence properties under two models, a
synchronous model, which is the same as the simultaneous
readjustment scheme in [4], and an asynchronous model,
which is the same as the randomized readjustment scheme
in [4].

In addition, there are other models for adword auc-
tions. [1] and [5] study the model under which each bidder
can submit a daily budget, even the maximum number of
clicks per day, in addition to the price per click. Both [10]
and [3] study bidders’ behavior of bidding on several key-
words. [2] studies a model whereby the advertiser not only
submits a bid but additionally submits which positions he
is going to bid for.

Open Problems

The speed of convergence remains open. Does the dy-
namic model converge in polynomial time under random-
ized readjustment scheme? Even more, are there other
readjustment schemes that converge in polynomial time?

Cross References

» Multiple Unit Auctions with Budget Constraint
» Position Auction

Recommended Reading

1. Abrams, Z.: Revenue maximization when bidders have bud-
gets. In: Proceedings of the 17th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA-06), Miami, FL 2006,
pp. 1074-1082, ACM Press, New York (2006)

2. Aggarwal, G., Muthukrishnan, S., Feldman, J.: Bidding to the
top: Vcg and equilibria of position-based auctions. http://
www.citebase.org/abstract?id=oai:arXiv.org:cs/0607117
(2006)

3. Borgs, C., Chayes, J., Etesami, O., Immorlica, N., Jain, K., Mah-
dian, M.: Bid optimization in online advertisement auctions.
In: 2nd Workshop on Sponsored Search Auctions, in conjunc-
tion with the ACM Conference on Electronic Commerce (EC-
06), Ann Arbor, MI, 2006

4. Bu, T.-M,, Deng, X., Qi, Q.: Dynamics of strategic manipulation
in ad-words auction. In: 3rd Workshop on Sponsored Search
Auctions, in conjunction with WWW2007, Banff, Canada, 2007

5. Bu, T.-M,, Qi, Q., Sun, A.W.: Unconditional competitive auc-
tions with copy and budget constraints. In: Spirakis, P.G.,
Mavronicolas, M., Kontogiannis, S.C. (eds.) Internet and Net-
work Economics, 2nd International Workshop, WINE 2006. Lec-
ture Notes in Computer Science, vol. 4286, pp. 16-26, Patras,
Greece, December 15-17. Springer, Berlin (2006)

6. Cary, M., Das, A., Edelman, B., Giotis, I., Heimerl, K., Karlin, A.R.,
Mathieu, C., Schwarz, M.: Greedy bidding strategies for key-
word auctions. In: MacKie-Mason, J.K., Parkes, D.C., Resnick, P.

(eds.) Proceedings of the 8th ACM Conference on Electronic
Commerce (EC-2007), San Diego, California, USA, June 11-15
2007, pp. 262-271. ACM, New York (2007)

7. Chen, X, Deng, X, Liu, B.J.: On incentive compatible com-
petitive selection protocol. In: Computing and Combinatorics,
12th Annual International Conference, COCOON 2006, Taipei,
Taiwan, 15 August 2006. Lecture Notes in Computer Science,
vol. 4112, pp. 13-22. Springer, Berlin (2006)

8. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising
and the generalized second price auction: selling billions of
dollars worth of dollars worth of keywords. In: 2nd Workshop
on Sponsored Search Auctions, in conjunction with the ACM
Conference on Electronic Commerce (EC-06), Ann Arbor, MI,
June 2006

9. Kao, M.-Y., Li, X.-Y.,, Wang, W.: Output truthful versus input
truthful: a new concept for algorithmic mechanism design
(2006)

. Kitts, B., Leblanc, B.: Optimal bidding on keyword auctions.
Electronic Markets, Special issue: Innovative Auction Markets
14(3), 186-201 (2004)

11. Varian, H.R.: Position auctions. Int. J. Ind. Organ. 25(6), 1163-

1178 (2007) http://www.sims.berkeley.edu/~hal/Papers/2006/
position.pdf. Accessed 29 March 2006

|
Agreement

» Asynchronous Consensus Impossibility
» Consensus with Partial Synchrony
» Randomization in Distributed Computing

I
Algorithm DC-Tree
for k Servers on Trees
1991; Chrobak, Larmore

MAREK CHROBAK
Department of Computer Science,
University of California, Riverside, CA, USA

Problem Definition

In the k-server problem, one wishes to schedule the move-
ment of k servers in a metric space M, in response to
asequence @ =y, 12,..., 1, of requests, where r; € M for
each i. Initially, all the servers are located at some point
ro € M. After each request r; is issued, one of the k servers
must move to ;. A schedule specifies which server moves
to each request. The cost of a schedule is the total distance
traveled by the servers, and our objective is to find a sched-
ule with minimum cost.

In the online version of the k-server problem the deci-
sion as to which server to move to each request r; must
be made before the next request ry; is issued. In other
words, the choice of this server is a function of requests

http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0607117
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0607117
http://www.sims.berkeley.edu/~hal/Papers/2006/position.pdf
http://www.sims.berkeley.edu/~hal/Papers/2006/position.pdf

10

Algorithm DC-Tree for k Servers on Trees

Algorithm DC-Tree for k Servers on Trees, Figure 1

Algorithm DC-TREE serving a request on r. The initial configuration is on the left; the configuration after the service is completed is
on the right. At first, all servers are active. When server 3 reaches point x, server 1 becomes inactive. When server 3 reaches point y,

server 2 becomes inactive

ri,ta2, ..., ri. It is quite easy to see that in this online sce-
nario it is not possible to guarantee an optimal schedule.
The accuracy of online algorithms is often measured us-
ing competitive analysis. If A is an online k-server algo-
rithm, denote by cost4 (o) the cost of the schedule pro-
duced by A on a request sequence o, and by opt(o) the
cost of the optimal schedule. A is called R-competitive if
cost4(0) < R - opt(0) + B, where B is a constant that may
depend on M and ry. The smallest such R is called the com-
petitive ratio of A. Of course, the smaller the R the better.

The k-server problem was introduced by Manasse, Mc-
Geoch, and Sleator [7,8], who proved that there is no on-
line R-competitive algorithm for R < k, for any metric
space with at least k + 1 points. They also gave a 2-com-
petitive algorithm for k = 2 and formulated what is now
known as the k-server conjecture, which postulates that
there exists a k-competitive online algorithm for all k.
Koutsoupias and Papadimitriou [5,6] proved that the so-
called work-function algorithm has competitive ratio at
most 2k — 1, which to date remains the best upper bound
known.

Efforts to prove the k-server conjecture led to dis-
coveries of k-competitive algorithms for some restricted
classes of metric spaces, including Algorithm DC-TREE for
trees [4] presented in the next section. (See [1,2,3] for other
examples.) A tree is a metric space defined by a connected
acyclic graph whose edges are treated as line segments of
arbitrary positive lengths. This metric space includes both
the tree’s vertices and the points on the edges, and the dis-
tances are measured along the (unique) shortest paths.

Key Results

Let T be a tree, as defined above. Given the current server
configuration S = {s1, ..., s}, where s; denotes the loca-
tion of server j, and a request point r, the algorithm will
move several servers, with one of them ending up on r. For
two points x, y € T, let [x, y] be the unique path from x to
yin T. A server j is called active if there is no other server
in [s;. 7] — {sj},andj is the minimum-index server located
on s; (the last condition is needed only to break ties).

Algorithm DC-TREE

On a request r, move all active servers, continuously and
with the same speed, towards r, until one of them reaches
the request. Note that during this process some active
servers may become inactive, in which case they halt.
Clearly, the server that will arrive at r is the one that was
closest to r at the time when r was issued. Figure 1 shows
how DC-TREE serves a request 7.

The competitive analysis of Algorithm DC-TREE is
based on a potential argument. The cost of Algorithm DC-
TREE is compared to that of an adversary who serves the
requests with her own servers. Denoting by A the con-
figuration of the adversary servers at a given step, define
the potential by @ = k- D(S, A) + Zi<j d(s;.s;j), where
D(S, A) is the cost of the minimum matching between S
and A. At each step, the adversary first moves one of her
servers to r. In this sub-step the potential increases by at
most k times the increase of the adversary’s cost. Then, Al-
gorithm DC-TREE serves the request. One can show that
then the sum of @ and DC-TREE’s cost does not increase.
These two facts, by amortization over the whole request
sequence, imply the following result [4]:

Theorem ([4]) Algorithm DC-TREE is k-competitive on
trees.

Applications

The k-server problem is an abstraction of various schedul-
ing problems, including emergency crew scheduling,
caching in multilevel memory systems, or scheduling head
movement in 2-headed disks. Nevertheless, due to its ab-
stract nature, the k-server problem is mainly of theoretical
interest.

Algorithm DC-TREE can be applied to other spaces
by “embedding” them into trees. For example, a uniform
metric space (with all distances equal 1) can be represented
by a star with arms of length 1/2, and thus Algorithm DC-
TREE can be applied to those spaces. This also immediately
gives a k-competitive algorithm for the caching problem,
where the objective is to manage a two-level memory sys-

Algorithmic Cooling

tem consisting of a large main memory and a cache that
can store up to k memory items. If an item is in the cache,
it can be accessed at cost 0, otherwise it costs 1 to read
it from the main memory. This caching problem can be
thought of as the k-server problem in a uniform metric
space where the server positions represent the items re-
siding in the cache. This idea can be extended further to
the weighted caching [3], which is a generalization of the
caching problem where different items may have different
costs. In fact, if one can embed a metric space M into a tree
with distortion bounded by §, then Algorithm DC-TREE
yields a § k-competitive algorithm for M.

Open Problems

The k-server conjecture — whether there is a k-competi-
tive algorithm for k servers in any metric space — remains
open. It would be of interest to prove it for some natural
special cases, for example the plane, either with the Eu-
clidean or Manhattan metric. (A k-competitive algorithm
for the Manhattan plane for k = 2, 3 servers is known [1],
but not for k > 4.)

Very little is known about online randomized algo-
rithms for k-servers. In fact, even for k = 2 it is not known
if there is a randomized algorithm with competitive ratio
smaller than 2.

Cross References

» Deterministic Searching on the Line

» Generalized Two-Server Problem

» Metrical Task Systems

» Online Paging and Caching

» Paging

» Work-Function Algorithm for k Servers

Recommended Reading

1. Bein, W., Chrobak, M., Larmore, L.L.: The 3-server problem in the
plane. Theor. Comput. Sci. 287, 387-391 (2002)

2. Borodin, A, El-Yaniv, R.: Online Computation and Competitive
Analysis. Cambridge University Press, Cambridge (1998)

3. Chrobak, M., Karloff, H., Payne, T.H., Vishwanathan, S.: New re-
sults on server problems. SIAM J. Discret. Math. 4, 172-181
(1991)

4. Chrobak, M., Larmore, L.L.: An optimal online algorithm for k
servers on trees. SIAM J. Comput. 20, 144-148 (1991)

5. Koutsoupias, E., Papadimitriou, C.: On the k-server conjecture.
In: Proc. 26th Symp. Theory of Computing (STOC), pp. 507-511.
ACM (1994)

6. Koutsoupias, E., Papadimitriou, C.: On the k-server conjecture.
J.ACM 42, 971-983 (1995)

7. Manasse, M., McGeoch, L.A,, Sleator, D.: Competitive algorithms
for online problems. In: Proc. 20th Symp. Theory of Computing
(STOQ), pp. 322-333. ACM (1988)

8. Manasse, M., McGeoch, L.A,, Sleator, D.: Competitive algorithms
for server problems. J. Algorithms 11, 208-230 (1990)

|
Algorithmic Cooling

1999; Schulman, Vazirani
2002; Boykin, Mor, Roychowdhury, Vatan, Vrijen

TAL MOR
Department of Computer Science, Technion, Haifa, Israel

Keywords and Synonyms

Algorithmic cooling of spins; Heat-bath algorithmic cool-
ing

Problem Definition

The fusion of concepts taken from the fields of quan-
tum computation, data compression, and thermodynam-
ics, has recently yielded novel algorithms that resolve
problems in nuclear magnetic resonance and potentially
in other areas as well; algorithms that “cool down” physi-
cal systems.

e A leading candidate technology for the construction

of quantum computers is Nuclear Magnetic Resonance
(NMR). This technology has the advantage of being
well-established for other purposes, such as chemistry
and medicine. Hence, it does not require new and ex-
otic equipment, in contrast to ion traps and optical lat-
tices, to name a few. However, when using standard
NMR techniques (not only for quantum computing
purposes) one has to live with the fact that the state can
only be initialized in a very noisy manner: The parti-
cles’ spins point in mostly random directions, with only
a tiny bias towards the desired state.
The key idea of Schulman and Vazirani [13] is to com-
bine the tools of both data compression and quan-
tum computation, to suggest a scalable state initializa-
tion process, a “molecular-scale heat engine”. Based
on Schulman and Vazirani’s method, Boykin, Mor,
Roychowdhury, Vatan, and Vrijen [2] then developed
a new process, “heat-bath algorithmic cooling”, to sig-
nificantly improve the state initialization process, by
opening the system to the environment. Strikingly, this
offered a way to put to good use the phenomenon of
decoherence, which is usually considered to be the vil-
lain in quantum computation. These two methods are
now sometimes called “closed-system” (or “reversible”)
algorithmic cooling, and “open-system” algorithmic
cooling, respectively.

12

Algorithmic Cooling

o The far-reaching consequence of this research lies in
the possibility of reaching beyond the potential imple-
mentation of remote-future quantum computing de-
vices. An efficient technique to generate ensembles of
spins that are highly polarized by external magnetic
fields is considered to be a Holy Grail in NMR spec-
troscopy. Spin-half nuclei have steady-state polariza-
tion biases that increase inversely with temperature;
therefore, spins exhibiting polarization biases above
their thermal-equilibrium biases are considered cool.
Such cooled spins present an improved signal-to-noise
ratio if used in NMR spectroscopy or imaging.
Existing spin-cooling techniques are limited in their
efficiency and usefulness. Algorithmic cooling is
a promising new spin-cooling approach that employs
data compression methods in open systems. It reduces
the entropy of spins to a point far beyond Shannon’s
entropy bound on reversible entropy manipulations,
thus increasing their polarization biases. As a result, it
is conceivable that the open-system algorithmic cool-
ing technique could be harnessed to improve on cur-
rent uses of NMR in areas such as chemistry, material
science, and even medicine, since NMR is at the basis
of MRI - Magnetic Resonance Imaging.

Basic Concepts

Loss-Less in-Place Data Compression Given a bit-
string of length #, such that the probability distribution
is known and far enough from the uniform distribution,
one can use data compression to generate a shorter string,
say of m bits, such that the entropy of each bit is much
closer to one. As a simple example, consider a four-bit-
string which is distributed as follows; pooor = pooro =
Potoo = Piooo = 1/4, with p; the probability of the string
i. The probability of any other string value is exactly zero,
so the probabilities sum up to one. Then, the bit-string
can be compressed, via a loss-less compression algorithm,
into a 2-bit string that holds the binary description of the
location of “1” in the above four strings. As the proba-
bilities of all these strings are zero, one can also envision
a similar process that generates an output which is of the
same length n as the input, but such that the entropy is
compressed via a loss-less, in-place, data compression into
the last two bits. For instance, logical gates that operate
on the bits can perform the permutation 0001 — 0000,
0010 — 0001, 0100 — 0010 and 1000 — 0011, while the
other input strings transform to output strings in which
the two most significant bits are not zero; for instance
1100 — 1010. One can easily see that the entropy is now
fully concentrated on the two least significant bits, which

are useful in data compression, while the two most signif-
icant bits have zero entropy.

In order to gain some intuition about the design of
logical gates that perform entropy manipulations, one can
look at a closely related scenario which was first considered
by von Neumann. He showed a method to extract fair coin
flips, given a biased coin; he suggested taking a pair of bi-
ased coin flips, with results a and b, and using the value of
a conditioned on a # b. A simple calculation shows that
a =0 and a =1 are now obtained with equal probabili-
ties, and therefore the entropy of coin a is increased in this
case to 1. The opposite case, the probability distribution
of a given that a = b, results in a highly determined coin
flip; namely, a (conditioned) coin-flip with a higher bias or
lower entropy. A gate that flips the value of b if (and only
if) a = 1 is called a Controlled-NOT gate. If after applying
such a gate b = 1 is obtained, this means that a # b prior
to the gate operation, thus now the entropy of a is 1. If,
on the other hand, after applying such a gate b = 0 is ob-
tained, this means that a = b prior to the gate operation,
thus the entropy of a is now lower than its initial value.

Spin Temperature, Polarization Bias, and Effective
Cooling In physics, two-level systems, namely systems
that possess only binary values, are useful in many ways.
Often it is important to initialize such systems to a pure
state ‘0’ or to a probability distribution which is as close
as possible to a pure state ‘0’. In these physical two-level
systems a data compression process that brings some of
them closer to a pure state can be considered as “cool-
ing”. For quantum two-level systems there is a simple
connection between temperature, entropy, and popula-
tion probability. The population-probability difference be-
tween these two levels is known as the polarization bias,
€. Consider a single spin-half particle - for instance a hy-
drogen nucleus - in a constant magnetic field. At equi-
librium with a thermal heat-bath the probability of this
spin to be up or down (i.e., parallel or anti-parallel to
the field direction) is given by: py = 1<, and p, = 15¢.
The entropy H of the spin is H(single-bit) = H(1/2 + €/2)
with H(P) = —Plog, P — (1 — P)log,(1 — P) measured
in bits. The two pure states of a spin-half nucleus are com-
monly written as | 1) =0 and | |) =1’; the |) notation
will be clarified elsewhere!. The polarization bias of the
spin at thermal equilibrium is given by € = p4 — p,. For
such a physical system the bias is obtained via a quantum
hyB

statistical mechanics argument, € = tanh (m), where
B

h is Planck’s constant, B is the magnetic field, y is the

'Quantum Computing entries in this encyclopedia, e.g. » Quan-
tum Dense Coding

Algorithmic Cooling

particle-dependent gyromagnetic constant?, K is Boltz-
man’s coefficient, and T is the thermal heat-bath temper-
ature. For high temperatures or small biases € &LBBT,
thus the bias is inversely proportional to the temperature.
Typical values of € for spin-half nuclei at room temper-
ature (and magnetic field of ~ 10 Tesla) are 107°-107°,
and therefore most of the analysis here is done under the
assumption that € <« 1. The spin temperature at equi-
librium is thus T = %, and its (Shannon) entropy is
H=1-—(e?/In4).

A spin temperature out of thermal equilibrium is still
defined via the same formulas. Therefore, when a system is
moved away from thermal equilibrium, achieving a greater
polarization bias is equivalent to cooling the spins with-
out cooling the system, and to decreasing their entropy.
The process of increasing the bias (reducing the entropy)
without decreasing the temperature of the thermal-bath is
known as “effective cooling”. After a typical period of time,
termed the thermalization time or relaxation time, the bias
will gradually revert to its thermal equilibrium value; yet
during this process, typically in the order of seconds, the
effectively-cooled spin may be used for various purposes
as described in Sect. “Applications”.

Consider a molecule that contains # adjacent spin-half
nuclei arranged in a line; these form the bits of the string.
These spins are initially at thermal equilibrium due to their
interaction with the environment. At room temperature
the bits at thermal equilibrium are not correlated to their
neighbors on the same string: More precisely, the corre-
lation is very small and can be ignored. Furthermore, in
a liquid state one can also neglect the interaction between
strings (between molecules). It is convenient to write the
probability distribution of a single spin at thermal equilib-
rium using the “density matrix” notation

_(pr O\ _[((I+e)2 0
pf‘(o p¢)_(0 (1—6)/2)’)

since these two-level systems are of a quantum nature
(namely, these are quantum bits — qubits), and in general,
can also have states other than just a classical probability
distribution over ‘0" and ‘1’. The classical case will now be
considered, where p contains only diagonal elements and
these describe a conventional probability distribution. At
thermal equilibrium, the state of #n = 2 uncorrelated qubits

that have the same polarization bias is described by the
{n=2}

density matrix p; ;' = pe ® pe, where ® means tensor

2This constant, y, is thus responsible for the difference in equi-
librium polarization bias [e. g., a hydrogen nucleus is 4 times more
polarized than a carbon isotope '*C nucleus, but about 10> less polar-
ized than an electron spin].

product. The probability of the state 00, for instance, is
then (1 +¢€)/2 x (1 + €)/2 = (1 + €)?/4 (etc.). Similarly, the
initial state of an n-qubit system of this type, at thermal
equilibrium, is

P = pe ® pe ® -+ ® pe .)

This state represents a thermal probability distribution,
such that the probability of the classical state ‘000...0’ is
Pooo...o = (1 +€9)"/2", etc. In reality, the initial bias is not
the same on each qubit®, but as long as the differences be-
tween these biases are small (e. g., all qubits are of the same
nucleus), these differences can be ignored in a discussion
of an idealized scenario.

Key Results
Molecular Scale Heat Engines

Schulman and Vazirani (SV) [13] identified the impor-
tance of in-place loss-less data compression and of the
low-entropy bits created in that process: Physical two-level
systems (e.g., spin-half nuclei) may be similarly cooled
by data compression algorithms. SV analyzed the cool-
ing of such a system using various tools of data com-
pression. A loss-less compression of an n-bit binary string
distributed according to the thermal equilibrium distri-
bution, Eq. (2), is readily analyzed using information-
theoretical tools: In an ideal compression scheme (not
necessarily realizable), with sufficiently large n, all ran-
domness - and hence all the entropy - of the bit string
is transferred to n — m bits; the remaining m bits are thus
left, with extremely high probability, at a known determin-
istic state, say the string ‘000...0’. The entropy H of the en-
tire system is H(system) = nH(single — bit) = nH(1/2 +
€/2). Any compression scheme cannot decrease this en-
tropy, hence Shannon’s source coding entropy bound
yields m < n[1 — H(1/2 + €/2)]. A simple leading-order
calculation shows that m is bounded by (approximately)
% n for small values of the initial bias €. Therefore, with
typical € ~ 107>, molecules containing an order of mag-
nitude of 10'? spins are required to cool a single spin close
to zero temperature.

Conventional methods for NMR quantum computing
are based on unscalable state-initialization schemes [5,9]
(e.g., the “pseudo-pure-state” approach) in which the
signal-to-noise ratio falls exponentially with », the num-
ber of spins. Consequently, these methods are deemed in-
appropriate for future NMR quantum computers. SV [13]
were first to employ tools of information theory to address

3Furthermore, individual addressing of each spin during the algo-
rithm requires a slightly different bias for each.

14

Algorithmic Cooling

the scaling problem; they presented a compression scheme
in which the number of cooled spins scales well (namely,
a constant times #). SV also demonstrated a scheme ap-
proaching Shannon’s entropy bound, for very large n.
They provided detailed analyses of three cooling algo-
rithms, each useful for a different regime of € values.

Some ideas of SV were already explored a few years
earlier by Serensen [14], a physical chemist who ana-
lyzed effective cooling of spins. He considered the entropy
of several spin systems and the limits imposed on cool-
ing these systems by polarization transfer and more gen-
eral polarization manipulations. Furthermore, he consid-
ered spin-cooling processes in which only unitary oper-
ations were used, wherein unitary matrices are applied
to the density matrices; such operations are realizable, at
least from a conceptual point of view. Serensen derived
a stricter bound on unitary cooling, which today bears his
name. Yet, unlike SV, he did not infer the connection to
data compression or advocate compression algorithms.

SV named their concept “molecular-scale heat en-
gine”. When combined with conventional polarization
transfer (which is partially similar to a SWAP gate between
two qubits), the term “reversible polarization compression
(RPC)” to be more descriptive.

Heat-Bath Algorithmic Cooling

The next significant development came when Boykin,
Mor, Roychowdhury, Vatan and Vrijen, (hereinafter re-
ferred to as BMRVYV), invented a new spin-cooling tech-
nique, which they named Algorithmic cooling [2], or more
specifically, heat-bath algorithmic cooling in which the
use of controlled interactions with a heat bath enhances
the cooling techniques much further. Algorithmic Cool-
ing (AC) expands the effective cooling techniques by ex-
ploiting entropy manipulations in open systems. It com-
bines RPC steps* with fast relaxation (namely, thermal-
ization) of the hotter spins, as a way of pumping entropy
outside the system and cooling the system much beyond
Shannon’s entropy bound. In order to pump entropy out
of the system, AC employs regular spins (here called com-
putation spins) together with rapidly relaxing spins. The
latter are auxiliary spins that return to their thermal equi-
librium state very rapidly. These spins have been termed
“reset spins”, or, equivalently, reset bits. The controlled in-
teractions with the heat bath are generated by polarization
transfer or by standard algorithmic techniques (of data
compression) that transfer the entropy onto the reset spins

4When the entire process is RPC, namely, any of the processes that
follow SV ideas, one can refer to it as reversible AC or closed-system
AG, rather than as RPC.

which then lose this excess entropy into the environment.

The ratio Rielax—times> Detween the relaxation time of
the computation spins and the relaxation time of the reset
spins, must satisfy Ryelax—times > 1. This condition is vital
if one wishes to perform many cooling steps on the system
to obtain significant cooling.

From a pure information-theoretical point of view, it is
legitimate to assume that the only restriction on ideal RPC
steps is Shannon’s entropy bound; then the equivalent of
Shannon’s entropy bound, when an ideal open-system AC
is used, is that all computation spins can be cooled down to
zero temperature, that is to € = 1. Proof. - repeat the fol-
lowing till the entropy of all computation spins is exactly
zero: (i) push entropy from computation spins into reset
spins; (ii) let the reset spins cool back to room tempera-
ture. Clearly, each application of step (i), except the last
one, pushes the same amount of entropy onto the reset
spins, and then this entropy is removed from the system
in step (ii). Of course, a realistic scenario must take other
parameters into account such as finite relaxation-time ra-
tios, realistic environment, and physical operations on the
spins. Once this is done, cooling to zero temperature is no
longer attainable. While finite relaxation times and a real-
istic environment are system dependent, the constraint of
using physical operations is conceptual.

BMRVYV therefore pursued an algorithm that follows
some physical rules, it is performed by unitary operations
and reset steps, and still bypass Shannon’s entropy bound,
by far. The BMRVV cooling algorithm obtains significant
cooling beyond that entropy bound by making use of very
long molecules bearing hundreds or even thousands of
spins, because its analysis relies on the law of large num-
bers.

Practicable Algorithmic Cooling

The concept of algorithmic cooling then led to practica-
ble algorithms [8] for cooling small molecules. In order to
see the impact of practicable algorithmic cooling, it is best
to use a different variant of the entropy bound. Consider
a system containing # spin-half particles with total entropy
higher than # — 1, so that there is no way to cool even one
spin to zero temperature. In this case, the entropy bound is
a result of the compression of the entropy into n — 1 fully-
random spins, so that the remaining entropy on the last
spin is minimal. The entropy of the remaining single spin
satisfies H(single) > 1 — ne?/1In 4, thus, at most, its polar-
ization can be improved to

€final = eﬁ . (3)

Algorithmic Cooling

The practicable algorithmic cooling (PAC), suggested by
Fernandez, Lloyd, Mor, and Roychowdhury in [8], indi-
cated potential for a near-future application to NMR spec-
troscopy. In particular, it presented an algorithm named
PAC?2 which uses any (odd) number of spins 7, such that
one of them is a reset spin, and (n — 1) are computation
spins. PAC2 cools the spins such that the coldest one can
(approximately) reach a bias amplification by a factor of
(3/2)"=V2_The approximation is valid as long as the fi-
nal bias (3/2)"""D2¢ is much smaller than 1. Otherwise,
a more precise treatment must be done. This proves an ex-
ponential advantage of AC over the best possible reversible
AG, as these reversible cooling techniques, e. g., of [13,14],
are limited to improve the bias by no more than a factor
of 4/n. PAC can be applied for small n (e. g., in the range
of 10-20), and therefore it is potentially suitable for near-
future applications [6,8,10] in chemical and biomedical us-
ages of NMR spectroscopy.

It is important to note that in typical scenarios the ini-
tial polarization bias of a reset spin is higher than that of
a computation spin. In this case, the bias amplification fac-
tor of (3/2)("*~172 is relative to the larger bias, that of the
reset spin.

Exhaustive Algorithmic Cooling

Next, AC was analyzed, wherein the cooling steps (reset
and RPC) are repeated an arbitrary number of times. This
is actually an idealization where an unbounded number of
reset and logic steps can be applied without error or de-
coherence, while the computation qubits do not lose their
polarization biases. Fernandez [7] considered two compu-
tation spins and a single reset spin (the least significant
bit, namely the qubit at the right in the tensor-product
density-matrix notation) and analyzed optimal cooling of
this system. By repeating the reset and compression ex-
haustively, he realized that the bound on the final biases of
the three spins is approximately {2,1, 1} in units of €, the
polarization bias of the reset spin.

Mor and Weinstein generalized this analysis further
and found that n — 1 computation spins and a single re-
set spin can be cooled (approximately) to biases accord-
ing to the Fibonacci series: {... 34, 21, 13, 8, 5, 3, 2, 1,
1}. The computation spin that is furthest from the reset
spin can be cooled up to the relevant Fibonacci number
F,. That approximation is valid as long as the largest term
times € is still much smaller than 1. Schulman then sug-
gested the “partner pairing algorithm” (PPA) and proved
the optimality of the PPA among all classical and quan-
tum algorithms. These two algorithms, the Fibonacci AC
and the PPA, led to two joint papers [11,12], where up-

per and lower bounds on AC were also obtained. The PPA
is defined as follows; repeat these two steps until cooling
sufficiently close to the limit: (a) RESET - applied to a re-
set spin in a system containing n — 1 computation spins
and a single (the LSB) reset spin. (b) SORT - a permu-
tation that sorts the 2" diagonal elements of the density
matrix by decreasing order, so that the MSB spin becomes
the coldest. Two important theorems proven in [12] are:
1. Lower bound: When €2” > 1 (namely, for long enough
molecules), Theorem 3 in [12] promises that n — log(1/¢)
cold qubits can be extracted. This case is relevant for scal-
able NMR quantum computing. 2. Upper bound: Section
4.2 in [12] proves the following theorem: No algorithmic
cooling method can increase the probability of any basis
state to above min{2~" ¢*"€, 1}, wherein the initial config-
uration is the completely mixed state (the same is true if
the initial state is a thermal state).

More recently, Elias, Fernandez, Mor, and Wein-
stein [6] analyzed more closely the case of n < 15 (at
room temperature), where the coldest spin (at all stages)
still has a polarization bias much smaller than 1. This
case is most relevant for near-future applications in NMR
spectroscopy. They generalized the Fibonacci-AC to algo-
rithms yielding higher-term Fibonacci series, such as the
tri-bonacci (also known as 3-term Fibonacci series), {... 81,
44, 24, 13, 7, 4, 2, 1, 1}, etc. The ultimate limit of these
multi-term Fibonacci series is obtained when each term in
the series is the sum of all previous terms. The resulting
series is precisely the exponential series {... 128, 64, 32, 16,
8,4, 2, 1, 1}, so the coldest spin is cooled by a factor of
2"=2, Furthermore, a leading order analysis of the upper
bound mentioned above (Section 4.2 in [12]) shows that
no spin can be cooled beyond a factor of 2"~!; see Corol-
lary 1 in [6].

Applications

The two major far-future and near-future applications are
already described in Sect. “Problem Definition”. It is im-
portant to add here that although the specific algorithms
analyzed so far for AC are usually classical, their practical
implementation via an NMR spectrometer must be done
through analysis of universal quantum computation, us-
ing the specific gates allowed in such systems. Therefore,
AC could yield the first near-future application of quan-
tum computing devices.

AC may also be useful for cooling various other physi-
cal systems, since state initialization is a common problem
in physics in general and in quantum computation in par-
ticular.

16

Algorithmic Mechanism Design

Open Problems

A main open problem in practical AC is technological; can
the ratio of relaxation times be increased so that many
cooling steps may be applied onto relevant NMR sys-
tems? Other methods, for instance a spin-diffusion mech-
anism [1], may also be useful for various applications.

Another interesting open problem is whether the ideas
developed during the design of AC can also lead to appli-
cations in classical information theory.

Experimental Results

Various ideas of AC had already led to several experiments
using 3-4 qubit quantum computing devices: 1. An experi-
ment [4] that implemented a single RPC step. 2. An exper-
iment [3] in which entropy-conservation bounds (which
apply in any closed system) were bypassed. 3. A full AC ex-
periment [1] that includes the initialization of three carbon
nuclei to the bias of a hydrogen spin, followed by a single
compression step on these three carbons.

Cross References

» Dictionary-Based Data Compression

» Quantum Algorithm for Factoring

» Quantum Algorithm for the Parity Problem
» Quantum Dense Coding

» Quantum Key Distribution

Recommended Reading

1. Baugh, J., Moussa, O., Ryan, C.A., Nayak, A., Laflamme, R.: Exper-
imental implementation of heat-bath algorithmic cooling us-
ing solid-state nuclear magnetic resonance. Nature 438, 470-
473 (2005)

2. Boykin, P.O., Mor, T., Roychowdhury, V., Vatan, F., Vrijen, R.:
Algorithmic cooling and scalable NMR quantum computers.
Proc. Natl. Acad. Sci. 99, 3388-3393 (2002)

3. Brassard, G, Elias, Y., Fernandez, J.M., Gilboa, H., Jones, J.A,,
Mor, T., Weinstein, Y., Xiao, L.: Experimental heat-bath cool-
ing of spins. Submitted to Proc. Natl. Acad. Sci. USA. See also
quant-ph/0511156 (2005)

4. Chang, D.E., Vandersypen, LMK, Steffen, M.: NMR implemen-
tation of a building block for scalable quantum computation.
Chem. Phys. Lett. 338, 337-344 (2001)

5. Cory, D.G., Fahmy, A.F., Havel, T.F.: Ensemble quantum com-
puting by NMR spectroscopy. Proc. Natl. Acad. Sci. 94, 1634-
1639 (1997)

6. Elias, Y., Fernandez, J.M., Mor, T., Weinstein, Y.: Optimal algo-
rithmic cooling of spins. Isr. J. Chem. 46, 371-391 (2006), also
in: EKI, S. et al. (eds.) Lecture Notes in Computer Science, Vol-
ume 4618, pp. 2-26. Springer, Berlin (2007), Unconventional
Computation. Proceedings of the Sixth International Confer-
ence UC2007 Kingston, August 2007

7. Fernandez, J.M.: De computatione quantica. Dissertation, Uni-
versity of Montreal (2004)

8. Fernandez, J.M., Lloyd, S., Mor, T., Roychowdhury V.: Practica-
ble algorithmic cooling of spins. Int. J. Quant. Inf. 2, 461-477
(2004)

9. Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum
computation. Science 275, 350-356 (1997)

10. Mor, T.,Roychowdhury, V., Lloyd, S., Fernandez, J.M., Weinstein,
Y.: Algorithmic cooling. US Patent 6,873,154 (2005)

11. Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-
bath algorithmic cooling. Phys. Rev. Lett. 94, 120501, pp. 1-4
(2005)

12. Schulman, LJ., Mor, T., Weinstein, Y.: Physical limits of heat-
bath algorithmic cooling. SIAM J. Comput. 36, 1729-1747
(2007)

13. Schulman, L.J., Vazirani, U.: Molecular scale heat engines and
scalable quantum computation. Proc. 31st ACM STOC, Symp.
Theory of Computing,pp. 322-329 Atlanta, 01-04 May 1999

14. Serensen, O.W.: Polarization transfer experiments in high-
resolution NMR spectroscopy. Prog. Nuc. Mag. Res. Spect. 21,
503-569 (1989)

|
Algorithmic Mechanism Design
1999; Nisan, Ronen

RON LAVI
Faculty of Industrial Engineering and Management,
Technion, Haifa, Israel

Problem Definition

Mechanism design is a sub-field of economics and game
theory that studies the construction of social mechanisms
in the presence of selfish agents. The nature of the agents
dictates a basic contrast between the social planner, that
aims to reach a socially desirable outcome, and the agents,
that care only about their own private utility. The underly-
ing question is how to incentivize the agents to cooperate,
in order to reach the desirable social outcomes.

In the Internet era, where computers act and interact
on behalf of selfish entities, the connection of the above
to algorithmic design suggests itself: suppose that the in-
put to an algorithm is kept by selfish agents, who aim to
maximize their own utility. How can one design the algo-
rithm so that the agents will find it in their best interest
to cooperate, and a close-to-optimal outcome will be out-
putted? This is different than classic distributed comput-
ing models, where agents are either “good” (meaning obe-
dient) or “bad” (meaning faulty, or malicious, depending
on the context). Here, no such partition is possible. It is
simply assumed that all agents are utility maximizers. To
illustrate this, let us describe a motivating example:

Algorithmic Mechanism Design

A Motivating Example: Shortest Paths

Given a weighted graph, the goal is to find a shortest path
(with respect to the edge weights) between a given source
and target nodes. Each edge is controlled by a selfish en-
tity, and the weight of the edge, we is private information
of that edge. If an edge is chosen by the algorithm to be in-
cluded in the shortest path, it will incur a cost which is mi-
nus its weight (the cost of communication). Payments to
the edges are allowed, and the total utility of an edge that
participates in the shortest path and gets a payment p, is
assumed to be u. = p. — we. Notice that the shortest path
is with respect to the true weights of the agents, although
these are not known to the designer.

Assuming that each edge will act in order to maximize
its utility, how can one choose the path and the payments?
One option is to ignore the strategic issue all together, ask
the edges to simply report their weights, and compute the
shortest path. In this case, however, an edge dislikes be-
ing selected, and will therefore prefer to report a very high
weight (much higher than its true weight) in order to de-
crease the chances of being selected. Another option is to
pay each selected edge its reported weight, or its reported
weight plus a small fixed “bonus”. However in such a case
all edges will report lower weights, as being selected will
imply a positive gain.

Although this example is written in an algorithmic lan-
guage, it is actually a mechanism design problem, and the
solution, which is now a classic, was suggested in the 70’s.
The chapter continues as follows: First, the abstract formu-
lation for such problems is given, the classic solution from
economics is described, and its advantages and disadvan-
tages for algorithmic purposes are discussed. The next sec-
tion then describes the new results that algorithmic mech-
anism design offers.

Abstract Formulation

The framework consists of a set A of alternatives, or
outcomes, and n players, or agents. Each player i has
a valuation function v;: A — N that assigns a value to
each possible alternative. This valuation function belongs
to a domain V; of all possible valuation functions. Let
V=V x-++xV,,and V_; =]_[]-7&,- Vj. Observe that this
generalizes the shortest path example of above: A is all the
possible s — ¢ paths in the given graph, v.(a) for some path
a € Ais either —w, (if e € a) or zero.

A social choice function f: V — A assigns a socially
desirable alternative to any given profile of players’ valu-
ations. This parallels the notion of an algorithm. A mech-
anism is a tuple M = (f, p1,..., pn), where f is a social
choice function, and p;: V. — N (for i =1, ..., n) is the

price charged from player i. The interpretation is that the
social planner asks the players to reveal their true val-
uations, chooses the alternative according to f as if the
players have indeed acted truthfully, and in addition re-
wards/punishes the players with the prices. These prices
should induce “truthfulness” in the following strong sense:
no matter what the other players declare, it is always in
the best interest of player i to reveal her true valuation,
as this will maximize her utility. Formally, this translates
to:

Definition 1 (Truthfulness) M is “truthful” (in domi-
nant strategies) if, for any player 7, any profile of valuations
of the other players v_; € V_;, and any two valuations of
player iv;, v} € V,

vi(a) — pivi,v—i) = vi(b) — pi(Vi, v—;)
where f(vi,v—;) = aand f(vi,v—;) = b.

Truthfulness is quite strong: a player need not know any-
thing about the other players, even not that they are ra-
tional, and still determine the best strategy for her. Quite
remarkably, there exists a truthful mechanism, even under
the current level of abstraction. This mechanism suits all
problem domains, where the social goal is to maximize the
“social welfare”:

Definition 2 (Social welfare maximization) A social
choice function f: V — A maximizes the social welfare if
f(v) € argmax,c, >, vi(a), foranyv € V.

Notice that the social goal in the shortest path domain
is indeed welfare maximization, and, in general, this is
a natural and important economic goal. Quite remark-
ably, there exists a general technique to construct truthful
mechanisms that implement this goal:

Theorem 1 (Vickrey-Clarke-Groves (VCG)) Fix any
alternatives set A and any domain V, and suppose that
f:V — A maximizes the social welfare. Then there exist
prices p such that the mechanism (f, p) is truthful.

This gives “for free” a solution to the shortest path prob-
lem, and to many other algorithmic problems. The great
advantage of the VCG scheme is its generality: it suits all
problem domains. The disadvantage, however, is that the
method is tailored to social welfare maximization. This
turns out to be restrictive, especially for algorithmic and
computational settings, due to several reasons: (i) dif-
ferent algorithmic goals: the algorithmic literature con-
siders a variety of goals, including many that cannot be
translated to welfare maximization. VCG does not help
us in such cases. (ii) computational complexity: even if

18

Algorithmic Mechanism Design

the goal is welfare maximization, in many settings achiev-
ing exactly the optimum is computationally hard. The
CS discipline usually overcomes this by using approxima-
tion algorithms, but VCG will not work with such algo-
rithm - reaching exact optimality is a necessary require-
ment of VCG. (iii) different algorithmic models: common
CS models change “the basic setup”, hence cause unex-
pected difficulties when one tries to use VCG (for exam-
ple, an online model, where the input is revealed over time;
this is common in CS, but changes the implicit setting that
VCG requires). This is true even if welfare maximization
is still the goal.

Answering any one of these difficulties requires the
design of a non-VCG mechanism. What analysis tools
should be used for this purpose? In economics and clas-
sic mechanism design, average-case analysis, that relies on
the knowledge of the underlying distribution, is the stan-
dard. Computer science, on the other hand, usually prefers
to avoid strong distributional assumptions, and to use
worst-case analysis. This difference is another cause to the
uniqueness of the answers provided by algorithmic mech-
anism design. Some of the new results that have emerged
as a consequence of this integration between Computer
Science and Economics is next described. Many other re-
search topics that use the tools of algorithmic mechanism
design are described in the entries on Adword Pricing,
Competitive Auctions, False Name Proof Auctions, Gen-
eralized Vickrey Auction, Incentive Compatible Ranking,
Mechanism for One Parameter Agents Single Buyer/Seller,
Multiple Item Auctions, Position Auctions, and Truthful
Multicast.

There are two different but closely related research
topics that should be mentioned in the context of this en-
try. The first is the line of works that studies the “price of
anarchy” of a given system. These works analyze existing
systems, trying to quantify the loss of social efficiency due
to the selfish nature of the participants, while the approach
of algorithmic mechanism design is to understand how
new systems should be designed. For more details on this
topic the reader is referred to the entry on Price of Anar-
chy. The second topic regards the algorithmic study of var-
ious equilibria computation. These works bring computa-
tional aspects into economics and game theory, as they ask
what equilibria notions are reasonable to assume, if one re-
quires computational efficiency, while the works described
here bring game theory and economics into computer sci-
ence and algorithmic theory, as they ask what algorithms
are reasonable to design, if one requires the resilience to
selfish behavior. For more details on this topic the reader is
referred (for example) to the entry on Algorithms for Nash
Equilibrium and to the entry on General Equilibrium.

Key Results
Problem Domain 1: Job Scheduling

Job scheduling is a classic algorithmic setting: n jobs are
to be assigned to m machines, where job j requires pro-
cessing time p;; on machine i. In the game-theoretic set-
ting, it is assumed that each machine i is a selfish en-
tity, that incurs a cost p;; from processing job j. Note
that the payments in this setting (and in general) may
be negative, offsetting such costs. A popular algorithmic
goal is to assign jobs to machines in order to minimize
the “makespan”: max; Z]- is assigned to i Pij- This is different
than welfare maximization, which translates in this setting
to the minimization of }; 3~y ssigned to 1 Pij» further il-
lustrating the problem of different algorithmic goals. Thus
the VCG scheme cannot be used, and new methods must
be developed.

Results for this problem domain depend on the specific
assumptions about the structure of the processing time
vectors. In the related machines case, p;; = p;/s; for any
ij, where the p;’s are public knowledge, and the only secret
parameter of player i is its speed, s;.

Theorem 2 ([3,22]) For job scheduling on related ma-
chines, there exists a truthful exponential-time mecha-
nism that obtains the optimal makespan, and a truthful
polynomial-time mechanism that obtains a 3-approxima-
tion to the optimal makespan.

More details on this result are given in the entry on Mecha-
nism for One Parameter Agents Single Buyer. The bottom
line conclusion is that, although the social goal is differ-
ent than welfare maximization, there still exists a truth-
ful mechanism for this goal. A non-trivial approximation
guarantee is achieved, even under the additional require-
ment of computational efficiency. However, this guarantee
does not match the best possible without the truthfulness
requirement, since in this case a PTAS is known.

Open Question 1 Is there a truthful PTAS for makespan
minimization in related machines?

If the number of machines is fixed then [2] give such
a truthful PTAS.

The above picture completely changes in the move to
the more general case of unrelated machines, where the
pij’s are allowed to be arbitrary:

Theorem 3 ([13,30]) Any truthful scheduling mechanism
for unrelated machines cannot approximate the optimal
makespan by a factor better than 1 + /2 (for deterministic
mechanisms) and 2 — 1/m (for randomized mechanisms).

Note that this holds regardless of computational consid-
erations. In this case, switching from welfare maximiza-

Algorithmic Mechanism Design

tion to makespan minimization results in a strong im-
possibility. On the possibilities side, virtually nothing (!)
is known. The VCG mechanism (which minimizes the
total social cost) is an m-approximation of the optimal
makespan [32], and, in fact, nothing better is currently
known:

Open Question 2 What is the best possible approxima-
tion for truthful makespan minimization in unrelated ma-
chines?

What caused the switch from “mostly possibilities” to
“mostly impossibilities”? Related machines is a single-di-
mensional domain (players hold only one secret number),
for which truthfulness is characterized by a simple mono-
tonicity condition, that leaves ample flexibility for algo-
rithmic design. Unrelated machines, on the other hand,
are a multi-dimensional domain, and the algorithmic con-
ditions implied by truthfulness in such a case are harder
to work with. It is still unclear whether these conditions
imply real mathematical impossibilities, or perhaps just
pose harder obstacles that can be in principle solved. One
multi-dimensional scheduling domain for which possibil-
ity results are known is the case where p;; € {L;, H;},
where the “low”’s and “high”’s are fixed and known. This
case generalizes the classic multi-dimensional model of re-
stricted machines (p;; € {p;, 00}), and admits a truthful
3-approximation [27].

Problem Domain 2: Digital Goods
and Revenue Maximization

In the E-commerce era, a new kind of “digital goods” have
evolved: goods with no marginal production cost, or, in
other words, goods with unlimited supply. One example
is songs being sold on the Internet. There is a sunk cost
of producing the song, but after that, additional electronic
copies incur no additional cost. How should such items
be sold? One possibility is to conduct an auction. An auc-
tion is a one-sided market, where a monopolistic entity
(the auctioneer) wishes to sell one or more items to a set of
buyers.

In this setting, each buyer has a privately known value
for obtaining one copy of the good. Welfare maximization
simply implies the allocation of one good to every buyer,
but a more interesting question is the question of revenue
maximization. How should the auctioneer design the auc-
tion in order to maximize his profit? Standard tools from
the study of revenue-maximizing auctions' suggest to sim-
ply declare a price-per-buyer, determined by the probabil-

!This model was not explicitly studied in classic auction theory,
but standard results from there can be easily adjusted to this setting.

ity distribution of the buyer’s value, and make a take-it-or-
leave-it offer. However, such a mechanism needs to know
the underlying distribution. Algorithmic mechanism de-
sign suggests an alternative, worst-case result, in the spirit
of CS-type models and analysis.

Suppose that the auctioneer is required to sell all items
in the same price, as is the case for many “real-life” mo-
nopolists, and denote by F(v) the maximal revenue from
a fixed-price sale to bidders with values v = v1, ... v,, as-
suming that all values are known. Reordering indexes so
that v > v, > -+ > v, let F(v) = max; i - v;. The prob-
lem is, of-course, that in fact nothing about the values is
known. Therefore, a truthful auction that extracts the play-
ers’ values is in place. Can such an auction obtain a profit
that is a constant fraction of F(V), for any v (i.e. in the
worst case)? Unfortunately, the answer is provably no [17].
The proof makes use of situations where the entire profit
comes from the highest bidder. Since there is no potential
for competition among bidders, a truthful auction cannot
force this single bidder to reveal her value.

Luckily, a small relaxation in the optimality crite-
ria significantly helps. Specifically, denote by F@(v) =
max;> i - v; (i. e. the benchmark is the auction that sells
to at least two buyers).

Theorem 4 ([17,20]) There exists a truthful random-
ized auction that obtains an expected revenue of at least
F@/3.25, even in the worst-case. On the other hand, no
truthful auction can approximate F?) within a factor better
than 2.42.

Several interesting formats of distribution-free revenue-
maximizing auctions have been considered in the litera-
ture. The common building block in all of them is the
random partitioning of the set of buyers to random sub-
sets, analyzing each set separately, and using the results on
the other sets. Each auction utilizes a different analysis on
the two subsets, which yields slightly different approxima-
tion guarantees. [1] describe an elegant method to deran-
domize these type of auctions, while losing another factor
of 4 in the approximation. More details on this problem
domain can be found in the entry on Competitive Auc-
tions.

Problem Domain 3: Combinatorial Auctions

Combinatorial auctions (CAs) are a central model with
theoretical importance and practical relevance. It gen-
eralizes many theoretical algorithmic settings, like job
scheduling and network routing, and is evident in many
real-life situations. This new model has various pure com-
putational aspects, and, additionally, exhibits interesting

20

Algorithmic Mechanism Design

game theoretic challenges. While each aspect is important
on its own, obviously only the integration of the two pro-
vides an acceptable solution.

A combinatorial auction is a multi-item auction in
which players are interested in bundles of items. Such a val-
uation structure can represent substitutabilities among
items, complementarities among items, or a combination
of both. More formally, m items (£2) are to be allocated
to n players. Players value subsets of items, and v;(S) de-
notes i’s value of a bundle S C £2. Valuations additionally
satisfy: (i) monotonicity, i.e v;(S) < v;(T) for S € T, and
(ii) normalization, i. e. v; (@) = 0. The literature has mostly
considered the goal of maximizing the social welfare: find
an allocation (Sy, ..., S,) that maximizes), v;(S;).

Since a general valuation has size exponential in n and
m, the representation issue must be taken into account.
Two models are usually considered (see [11] for more de-
tails). In the bidding languages model, the bid of a player
represents his valuation is a concise way. For this model it
is NP-hard to approximate the social welfare within a ra-
tio of 2(m'/27¢), for any € > 0 (if “single-minded” bids
are allowed; the exact definition is given below). In the
query access model, the mechanism iteratively queries the
players in the course of computation. For this model, any
algorithm with polynomial communication cannot ob-
tain an approximation ratio of £2(m!/27€) for any € > 0.
These bounds are tight, as there exist a deterministic /m-
approximation with polynomial computation and com-
munication. Thus, for the general valuation structure, the
computational status by itself is well-understood.

The basic incentives issue is again well-understood:
VCG obtains truthfulness. Since VCG requires the exact
optimum, which is NP-hard to compute, the two consider-
ations therefore clash, when attempting to use classic tech-
niques. Algorithmic mechanism design aims to develop
new techniques, to integrate these two desirable aspects.

The first positive result for this integration challenge
was given by [29], for the special case of “single-minded
bidders”: each bidder, i, is interested in a specific bundle
S;, for a value v; (any bundle that contains S; is worth v;,
and other bundles have zero value). Both v;, S; are private
to the player i.

Theorem 5 ([29]) There exists a truthful and polynomial-
time deterministic combinatorial auction for single-minded
bidders, which obtains a \/m-approximation to the optimal
social welfare.

A possible generalization of the basic model is to assume
that each item has B copies, and each player still desires at
most one copy from each item. This is termed “multi-unit
CA”. As B grows, the integrality constraint of the prob-

lem reduces, and so one could hope for better solutions.
Indeed, the next result exploits this idea:

Theorem 6 ([7]) There exists a truthful and polynomial-
time deterministic multi-unit CA, for B > 3 copies of each
item, that obtains O(B- m'B=2)-approximation to the
optimal social welfare.

This auction copes with the representation issue (since
general valuations are assumed) by accessing the valua-
tions through a “demand oracle”: given per-item prices
{Px}xes, specify a bundle S that maximizes v;(S) —
D ves P

Two main drawbacks of this auction motivate further
research on the issue. First, as B gets larger it is reason-
able to expect the approximation to approach 1 (indeed
polynomial-time algorithms with such an approximation
guarantee do exist). However here the approximation ra-
tio does not decrease below O(log m) (this ratio is achieved
for B = O(log m)). Second, this auction does not provide
a solution to the original setting, where B = 1, and, in gen-
eral for small B’s the approximation factor is rather high.
One way to cope with these problems is to introduce ran-
domness:

Theorem 7 ([26]) There exists a truthful-in-expecta-
tion and polynomial-time randomized multi-unit CA, for
any B > 1 copies of each item, that obtains O(m'/B*D)-
approximation to the optimal social welfare.

Thus, by allowing randomness, the gap from the standard
computational status is being completely closed. The def-
inition of truthfulness-in-expectation is the natural exten-
sion of truthfulness to a randomized environment: the ex-
pected utility of a player is maximized by being truthful.
However, this notion is strictly weaker than the de-
terministic notion, as this implicitly implies that players
care only about the expectation of their utility (and not,
for example, about the variance). This is termed “the risk-
neutrality” assumption in the economics literature. An in-
termediate notion for randomized mechanisms is that of
“universal truthfulness”: the mechanism is truthful given
any fixed result of the coin toss. Here, risk-neutrality is
no longer needed. [15] give a universally truthful CA for
B = 1 that obtains an O(y/m)-approximation. Universally
truthful mechanisms are still weaker than deterministic
truthful mechanisms, due to two reasons: (i) It is not
clear how to actually create the correct and exact proba-
bility distribution with a deterministic computer. The sit-
uation here is different than in “regular” algorithmic set-
tings, where various derandomization techniques can be
employed, since these in general does not carry through
the truthfulness property. (ii) Even if a natural random-

Algorithmic Mechanism Design

21

ness source exists, one cannot improve the quality of the
actual output by repeating the computation several times
(using the the law of large numbers). Such a repetition
will again destroy truthfulness. Thus, exactly because the
game-theoretic issues are being considered in parallel to
the computational ones, the importance of determinism
increases.

Open Question 3 What is the best-possible approxima-
tion ratio that deterministic and truthful combinatorial
auctions can obtain, in polynomial-time?

There are many valuation classes, that restrict the pos-
sible valuations to some reasonable format (see [28]
for more details). For example, sub-additive valua-
tions are such that, for any two bundles S, T,C €2,
v(SU T) < v(S) + v(T). Such classes exhibit much better
approximation guarantees, e. g. for sub-additive valuation
a polynomial-time 2-approximation is known [16]. How-
ever, no polynomial-time truthful mechanism (be it ran-
domized, or deterministic) with a constant approximation
ratio, is known for any of these classes.

Open Question 4 Does there exist polynomial-time truth-
ful constant-factor approximations for special cases of CAs
that are NP-hard?

Revenue maximization in CAs is of-course another impor-
tant goal. This topic is still mostly unexplored, with few ex-
ceptions. The mechanism [7] obtains the same guarantees
with respect to the optimal revenue. Improved approxi-
mations exist for multi-unit auctions (where all items are
identical) with budget constrained players [12], and for
unlimited-supply CAs with single-minded bidders [6].

The topic of Combinatorial Auctions is discussed also
in the entry on Multiple Item Auctions.

Problem Domain 4: Online Auctions

In the classic CS setting of “online computation”, the in-
put to an algorithm is not revealed all at once, before the
computation begins, but gradually, over time (for a de-
tailed discussion see the many entries on online problems
in this book). This structure suits the auction world, espe-
cially in the new electronic environments. What happens
when players arrive over time, and the auctioneer must
make decisions facing only a subset of the players at any
given time?

The integration of online settings, worst-case analysis,
and auction theory, was suggested by [24]. They consid-
ered the case where players arrive one at a time, and the
auctioneer must provide an answer to each player as it ar-
rives, without knowing the future bids. There are k iden-

tical items, and each bidder may have a distinct value for
every possible quantity of the item. These values are as-
sumed to be marginally decreasing, where each marginal
value lies in the interval [v, 7]. The private information of
a bidder includes both her valuation function, and her ar-
rival time, and so a truthful auction need to incentivize the
players to arrive on time (and not later on), and to reveal
their true values. The most interesting result in this setting
is for alarge k, so that in fact there is a continuum of items:

Theorem 8 ([24]) There exists a truthful online auc-
tion that simultaneously approximates, within a factor of
O(log(v/v)), the optimal offline welfare, and the offline rev-
enue of VCG. Furthermore, no truthful online auction can
obtain a better approximation ratio to either one of these
criteria (separately).

This auction has the interesting property of being
a “posted price” auction. Each bidder is not required to re-
veal his valuation function, but, rather, he is given a price
for each possible quantity, and then simply reports the de-
sired quantity under these prices.

Ideas from this construction were later used by [10] to
construct two-sided online auction markets, where multi-
ple sellers and buyers arrive online.

This approximation ratio can be dramatically im-
proved, to be a constant, 4, if one assumes that (i) there
is only one item, and (ii) player values are i.i.d from some
fixed distribution. No a-priori knowledge of this distribu-
tion is needed, as neither the mechanism nor the players
are required to make any use of it. This work, [19], ana-
lyzes this by making an interesting connection to the class
of “secretary problems”.

A general method to convert online algorithms to on-
line mechanisms is given by [4]. This is done for one item
auctions, and, more generally, for one parameter domains.
This method is competitive both with respect to the wel-
fare and the revenue.

The revenue that the online auction of Theorem 8
manages to raise is competitive only with respect to VCG’s
revenue, which may be far from optimal. A parallel line of
works is concerned with revenue maximizing auctions. To
achieve good results, two assumptions need to be made:
(i) there exists an unlimited supply of items (and recall
from Sect. “Problem Domain 2: Digital Goods and Rev-
enue Maximization” that F(v) is the offline optimal mo-
nopolistic fixed-price revenue), and (ii) players cannot lie
about their arrival time, only about their value. This last
assumption is very strong, but apparently needed. Such
auctions are termed here “value-truthful”, indicating that
“time-truthfulness” is missing.

22

Algorithmic Mechanism Design

Theorem 9 ([9]) For any € > 0, there exists a value-
truthful online auction, for the unlimited supply case, with
expected revenue of at least (F(v))/(1 + €) — O(h/e?).

The construction exploits principles from learning the-
ory in an elegant way. Posted price auctions for this case
are also possible, in which case the additive loss increases
to O(hloglogh). [19] consider fully-truthful online auc-
tions for revenue maximization, but manage to obtain only
very high (although fixed) competitive ratios. Construct-
ing fully-truthful online auctions with a close-to-optimal
revenue remains an open question. Another interesting
open question involves multi-dimensional valuations. The
work [24] remains the only work for players that may
demand multiple items. However their competitive guar-
antees are quite high, and achieving better approxima-
tion guarantees (especially with respect to the revenue) is
a challenging task.

Advanced Issues

Monotonicity What is the general way for designing
a truthful mechanism? The straight-forward way is to
check, for a given social choice function f, whether truthful
prices exist. If not, try to “fix” f. It turns out, however, that
there exists a more structured way, an algorithmic condi-
tion that will imply the existence of truthful prices. Such
a condition shifts the designer back to the familiar terri-
tory of algorithmic design. Luckily, such a condition do
exist, and is best described in the abstract social choice set-
ting of Sect. “Problem Definition”:

Definition 3 ([8,23]) A social choice function f: V — A
is “weakly monotone” (W-MON) if for any i, v—; € V_,
and any v;, v} € V;, the following holds. Suppose that
fi,v—i) = a, and f(v},v_;) = b. Then v(b) — v;(b) >
vi(a) —vi(a).

In words, this condition states the following. Suppose that
player i changes her declaration from v; to v}, and this
causes the social choice to change from a to b. Then it must
be the case that i’s value for b has increased in the transi-
tion from v; to v; no-less than s value for a.

Theorem 10 ([35]) Fix a social choice function f: V —
A, where V is convex, and A is finite. Then there exist
prices p such that M = (f, p) is truthful if and only if f
is weakly monotone.

Furthermore, given a weakly monotone f, there exists an
explicit way to determine the appropriate prices p (see [18]
for details).

Thus, the designer should aim for weakly monotone
algorithms, and need not worry about actual prices. But

how difficult is this? For single-dimensional domains, it
turns out that W-MON leaves ample flexibility for the al-
gorithm designer. Consider for example the case where ev-
ery alternative has a value of either 0 (the player “loses”) or
some v; € N (the player “wins” and obtains a value v;). In
such a case, it is not hard to show that W-MON reduces
to the following monotonicity condition: if a player wins
with v;, and increases her value to v§ > v; (while v_; re-
mains fixed), then she must win with v/ as well. Further-
more, in such a case, the price of a winning player must be
set to the infimum over all winning values.

Impossibilities of truthful design It is fairly simple to
construct algorithms that satisfy W-MON for single-di-
mensional domains, and a variety of positive results were
obtained for such domains, in classic mechanism design,
as well as in algorithmic mechanism design. But how hard
is it to satisfy W-MON for multi-dimensional domains?
This question is yet unclear, and seems to be one of the
challenges of algorithmic mechanism design. The contrast
between single-dimensionality and multi-dimensionality
appears in all problem domains that were surveyed here,
and seems to reflect some inherent difficulty that is not
exactly understood yet. Given a social choice function f,
call f implementable (in dominant strategies) if there exist
prices p such that M = (f, p) is truthful. The basic ques-
tion is then what forms of social choice functions are imple-
mentable.

As detailed in the beginning, the welfare maximiz-
ing social choice function is implementable. This specific
function can be slightly generalized to allow weights, in
the following way: fix some non-negative real constants
{w;}_, (not all are zero) and {y,}se4, and choose an al-
ternative that maximizes the weighted social welfare, i.e.
f(v) € argmax, ., Y _; wivi(a)+ya. This class of functions
is sometimes termed “affine maximizers”. It turns out that
these functions are also implementable, with prices similar
in spirit to VCG. In the context of the above characteriza-
tion question, one sharp result stands out:

Theorem 11 ([34]) Fix a social choice function
f: V. — A, such that (i) A is finite, |A| > 3, and f is onto
A, and (ii) V; = R4 for all i. Then f is implementable (in
dominant strategies) if and only if it is an affine maximizer.

The domain V that satisfies V; = %4 for all i is term an
“unrestricted domain”. The theorem states that, if the do-
main is unrestricted, at least three alternatives are chosen,
and the set A of alternatives is finite, then nothing besides
affine maximizers can be implemented!

However, the assumption that the domain is unre-
stricted is very restrictive. All the above example do-

Algorithmic Mechanism Design

23

mains exhibit some basic combinatorial structure, and are
therefore restricted in some way. And as discussed above,
for many restricted domains the theorem is simply not
true. So what is the possibilities — impossibilities border?
As mentioned above, this is an unsolved challenge. Lavi,
Mu’alem, and Nisan [23] explore this question for Com-
binatorial Auctions and similar restricted domains, and

reach partial answers. For example:

Theorem 12 ([23]) Any truthful combinatorial auction or
multi-unit auction among two players, that must always al-
locate all items, and that approximates the welfare by a fac-
tor better than 2, must be an affine maximizer.

Of-course, this is far from being a complete answer. What
happens if there are more than two players? And what hap-
pens if it is possible to “throw away” part of the items?
These questions, and the more general and abstract char-
acterization question, are all still open.

Alternative solution concepts In light of the conclu-
sions of the previous section, a natural thought would be to
re-examine the solution concept that is being used. Truth-
fulness relies on the strong concept of dominant strategies:
for each player there is a unique strategy that maximizes
her utility, no matter what the other players are doing. This
is very strong, but it fits very well the worst-case way of
thinking in CS. What other solution concepts can be used?
As described above, randomization, and truthfulness-in-
expectation, can help. A related concept, again for ran-
domized mechanisms, is truthfulness with high probabil-
ity. Another direction is to consider mechanisms where
players cannot improve their utility too much by deviating
from the truth-telling strategy [21].

Algorithm designers do not care so much about actu-
ally reaching an equilibrium point, or finding out what will
the players play - the major concern is to guarantee the op-
timality of the solution, taking into account the strategic
behavior of the players. Indeed, one way of doing this is to
guarantee a good equilibrium point. But there is no reason
to rule out mechanisms where several acceptable strategic
choices for the players exist, provided that the approxima-
tion will be achieved in each of these choices.

As a first attempt, one is tempted to simply let the play-
ers try and improve the basic result by allowing them to
lie. However, this can cause unexpected dynamics, as each
player chooses her lies under some assumptions about the
lies of the others, etc. etc. To avoid such an unpredictable
situation, it is important to insist on using rigorous game
theoretic reasoning to explain exactly why the outcome
will be satisfactory.

The work [31] suggests the notion of “feasibly domi-
nant” strategies, where players reveal the possible lies they
consider, and the mechanism takes this into account. By
assuming that the players are computationally bounded,
one can show that, instead of actually “lying”, the players
will prefer to reveal their true types plus all the lies they
might consider. In such a case, since the mechanism has
obtained the true types of the players, a close-to-optimal
outcome will be guaranteed.

Another definition tries to capture the initial intuition
by using the classic game-theoretic notion of undominated
strategies:

Definition 4 ([5]) A mechanism M is an “algorithmic
implementation of a c-approximation (in undominated
strategies)” if there exists a set of strategies, D, such that
(i) M obtains a c-approximation for any combination of
strategies from D, in polynomial time, and (ii) For any
strategy not in D, there exists a strategy in D that weakly
dominates it, and this transition is polynomial-time com-
putable.

By the second condition, it is reasonable to assume that
a player will indeed play some strategy in D, and, by the
first condition, it does not matter what tuple of strategies
in D will actually be chosen, as any of these will provide the
approximation. This transfers some of the burden from
the game-theoretic design to the algorithmic design, since
now a guarantee on the approximation should bu provided
for a larger range of strategies. [5] exploit this notion to
design a deterministic CA for multi-dimensional players
that achieves a close-to-optimal approximation guarantee.
A similar-in-spirit notion, although a weaker one, is the
notion of “Set-Nash” [25].

Applications

One of the popular examples to a “real-life” combinato-
rial auction is the spectrum auction that the US govern-
ment conducts, in order to sell spectrum licenses. Typical
bids reflect values for different spectrum ranges, to accom-
modate different geographical and physical needs, where
different spectrum ranges may complement or substitute
one another. The US government invests research efforts
in order to determine the best format for such an auction,
and auction theory is heavily exploited. Interestingly, the
US law guides the authorities to allocate these spectrum
ranges in a way that will maximize the social welfare, thus
providing a good example for the usefulness of this goal.
Adword auctions are another new and fast-growing
application of auction theory in general, and of the new
algorithmic auctions in particular. These are auctions that

24

Algorithmic Mechanism Design

determine the advertisements that web-search engines
place close to the search results they show, after the user
submits her search keywords. The interested companies
compete, for every given keyword, on the right to place
their ad on the results’ page, and this turns out to be the
main source of income for companies like Google. Several
entries in this book touch on this topic in more details, in-
cluding the entries on Adwords Pricing and on Position
Auctions.

A third example to a possible application, in the mean-
while implemented only in the academic research labs, is
the application of algorithmic mechanism design to pric-
ing and congestion control in communication networks.
The existing fixed pricing scheme has many disadvantages,
both with respect to the needs of efficiently allocating the
available resources, and with respect to the new oppor-
tunities of the Internet companies to raise more revenue
due to specific types of traffic. Theory suggests solutions to
both of these problems.

Cross References

» Adwords Pricing

» Competitive Auction

» False-Name-Proof Auction

» Generalized Vickrey Auction

» Incentive Compatible Selection
» Position Auction

» Truthful Multicast

Recommended Reading

The topics presented here are detailed in the textbook [33].
Section “Problem Definition” is based on the paper [32],
that also coined the term “algorithmic mechanism design”.
The book [14] covers the various aspects of combinatorial
auctions.

1. Aggarwal, G, Fiat, A, Goldberg, A., Immorlica, N., Sudan, M.:
Derandomization of auctions. In: Proc. of the 37th ACM Sym-
posium on Theory of Computing (STOC'05), 2005

2. Andelman, N., Azar, Y., Sorani, M.: Truthful approximation
mechanisms for scheduling selfish related machines. In: Proc.
of the 22nd International Symposium on Theoretical Aspects
of Computer Science (STACS), 2005, pp. 69-82

3. Archer, A, Tardos, E.: Truthful mechanisms for one-parameter
agents. In: Proc. 42nd Annual Symposium on Foundations of
Computer Science (FOCS), 2001, pp. 482-491

4. Awerbuch, B., Azar, Y., Meyerson, A.: Reducing truth-telling on-
line mechanisms to online optimization. In: Proc. of the 35th
ACM Symposium on Theory of Computing (STOC'03), 2003

5. Babaioff, M., Lavi, R., Pavlov, E.: Single-value combinatorial auc-
tions and implementation in undominated strategies. In: Proc.
of the 17th Symposium on Discrete Algorithms (SODA), 2006

20.

21.

22.

23.

24.

25.

26.

. Balcan, M., Blum, A., Hartline, J., Mansour, Y.: Mechanism de-

sign via machine learning. In: Proc. of the 46th Annual Sympo-
sium on Foundations of Computer Science (FOCS'05), 2005

. Bartal, Y., Gonen, R, Nisan, N.: Incentive compatible multi-

unit combinatorial auctions. In: Proc. of the 9th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK'03),
2003

. Bikhchandani, S., Chatterjee, S., Lavi, R., Mu‘alem, A., Nisan, N.,

Sen, A.: Weak monotonicity characterizes deterministic dom-
inant-strategy implementation. Econometrica 74, 1109-1132
(2006)

. Blum, A,, Hartline, J.: Near-optimal online auctions. In: Proc. of

the 16th Symposium on Discrete Algorithms (SODA), 2005

. Blum, A., Sandholm, T., Zinkevich, M.: Online algorithms for

market clearing. J. ACM 53(5), 845-879 (2006)

. Blumrosen, L., Nisan, N.: On the computational power of itera-

tive auctions. In: Proc. of the 7th ACM Conference on Electronic
Commerce (EC'05), 2005

. Borgs, C., Chayes, J., Immorlica, N., Mahdian, M., Saberi, A.:

Multi-unit auctions with budget-constrained bidders. In: Proc.
of the 7th ACM Conference on Electronic Commerce (EC'05),
2005

. Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for

scheduling mechanisms. In: Proc. 18th Symposium on Discrete
Algorithms (SODA), 2007

. Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions.

MIT Press (2005)

. Dobzinski, S., Nisan, N., Schapira, M.: Truthful randomized

mechanisms for combinatorial auctions. In: Proc. of the 38th
ACM Symposium on Theory of Computing (STOC'06), 2006

. Feige, U.: On maximizing welfare when utility functions are

subadditive. In: Proc. of the 38th ACM Symposium on Theory
of Computing (STOC'06), 2006

. Goldberg, A., Hartline, J., Karlin, A., Saks, M., Wright, A.: Com-

petitive auctions. Games Econ. Behav. 55(2), 242-269 (2006)

. Gui, H., Muller, R., Vohra, R.V.: Characterizing dominant strategy

mechanisms with multi-dimensional types (2004). Working pa-
per

. Hajiaghayi, M., Kleinberg, R., Parkes, D.: Adaptive limited-sup-

ply online auctions. In: Proc. of the 6th ACM Conference on
Electronic Commerce (EC'04), 2004

Hartline, J., McGrew, R.: From optimal limited to unlimited sup-
ply auctions. In: Proc. of the 7th ACM Conference on Electronic
Commerce (EC'05), 2005

Kothari, A., Parkes, D., Suri, S.: Approximately-strategyproof
and tractable multi-unit auctions. Decis. Support Syst. 39, 105—
121 (2005)

Kovacs, A.: Fast monotone 3-approximation algorithm for
scheduling related machines. In: Proc. 13th Annual European
Symposium on Algorithms (ESA), 2005, pp. 616-627

Lavi, R, Mu’alem, A., Nisan, N.: Towards a characterization of
truthful combinatorial auctions. In: Proc. of the 44rd Annual
Symposium on Foundations of Computer Science (FOCS'03),
2003

Lavi, R., Nisan, N.: Competitive analysis of incentive compatible
on-line auctions. Theor. Comput. Sci. 310, 159-180 (2004)
Lavi, R, Nisan, N.: Online ascending auctions for gradually ex-
piring items. In: Proc. of the 16th Symposium on Discrete Algo-
rithms (SODA), 2005

Lavi, R., Swamy, C.: Truthful and near-optimal mechanism de-
sign via linear programming. In: Proc. 46th Annual Symposium

Algorithms for Spanners in Weighted Graphs

25

on Foundations of Computer Science (FOCS), 2005, pp. 595-
604

27. Lavi, R, Swamy, C.: Truthful mechanism design for multi-di-
mensional scheduling via cycle monotonicity (2007). Working
paper

28. Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions
with decreasing marginal utilities. Games Econom. Behav.
55(2), 270-296 (2006)

29. Lehmann, D., O’Callaghan, L., Shoham, Y.: Truth revelation in
approximately efficient combinatorial auctions. J. ACM 49(5),
577-602 (2002)

30. Mu‘alem, A., Schapira, M.: Setting lower bounds on truthful-
ness. In: Proc. 18th Symposium on Discrete Algorithms (SODA),
2007

31. Nisan, N., Ronen, A.: Computationally feasible vcg mecha-
nisms. In: Proc. of the 2nd ACM Conference on Electronic Com-
merce (EC'00), 2000

32. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games
Econom. Behav. 35, 166-196 (2001)

33. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic
Game Theory. Cambridge University Press (2007). (expected to
appear)

34. Roberts, K.: The characterization of implementable choice
rules. In: Laffont, J.J. (ed.) Aggregation and Revelation of Pref-
erences, pp. 321-349. North-Holland (1979)

35. Saks, M., Yu, L.: Weak monotonicity suffices for truthfulness on
convex domains. In: Proc. 6th ACM Conference on Electronic
Commerce (ACM-EC), 2005, pp. 286-293

|
Algorithms for Spanners

in Weighted Graphs

2003; Baswana, Sen

SURENDER BASWANA', SANDEEP SEN?

! Department of Computer Science and Engineering,
IIT Kanpur, Kanpur, India

2 Department of Computer Science and Engineering,
IIT Delhi, New Delhi, India

Keywords and Synonyms

Graph algorithms; Randomized algorithms; Shortest path;
Spanner

Problem Definition

A spanner is a sparse subgraph of a given undirected graph
that preserves approximate distance between each pair of
vertices. More precisely, a t-spanner of a graph G = (V, E)
is a subgraph (V, Es), Es € E such that, for any pair of
vertices, their distance in the subgraph is at most ¢ times
their distance in the original graph, where ¢ is called the
stretch factor. The spanners were defined formally by Peleg

and Schiffer [14], though the associated notion was used
implicitly by Awerbuch [3] in the context of network syn-
chronizers.

Computing a t-spanner of smallest size for a given
graph is a well motivated combinatorial problem with
many applications. However, computing t-spanner of
smallest size for a graph is NP-hard. In fact, for t > 2, it
is NP-hard [10] even to approximate the smallest size of
a t-spanner of a graph with ratio O2U=*!"") for any
i > 0. Having realized this fact, researchers have pursued
another direction which is quite interesting and useful. Let
S¢ be the size of the sparsest t-spanner of a graph G, and
let !, be the maximum value of S;; over all possible graphs
on n vertices. Does there exist a polynomial time algorithm
which computes, for any weighted graph and parameter ¢,
its t-spanner of size O(SY,)? Such an algorithm would be
the best one can hope for given the hardness of the orig-
inal ¢-spanner problem. Naturally the question arises as
to how large can S’ be? A 43-year old girth lower bound
conjecture by Erdés [12] implies that there are graphs on
n vertices whose 2k- as well as (2k — 1)-spanner will re-
quire 2 (n'*1/%) edges. This conjecture has been proved for
k =1,2,3 and 5. Note that a (2k — 1)-spanner is also a 2k-
spanner and the lower bound on the size is the same for
both a 2k-spanner and a (2k — 1)-spanner. So the objec-
tive is to design an algorithm that, for any weighted graph
on n vertices, computes a (2k — 1)-spanner of O(n'*1k)
size. Needless to say, one would like to design the fastest
algorithm for this problem, and the most ambitious aim
would be to achieve the linear time complexity.

Key Results

The key results of this article are two very simple al-
gorithms which compute a (2k — 1)-spanner of a given
weighted graph G = (V, E). Let n and m denote the num-
ber of vertices and edges of G, respectively. The first al-
gorithm, due to Althofer et al. [2], is based on a greedy
strategy, and runs in O(mn'*/¥) time. The second al-
gorithm [6] is based on a very local approach and runs
in the expected O(km) time. To start with, consider the
following simple observation. Suppose there is a subset
Eg C E that ensures the following proposition for every
edge (x, y) € E\Es.

Pi(x, y): the vertices x and y are connected in the sub-
graph (V, Es) by a path consisting of at most t edges,
and the weight of each edge on this path is not more
than that of the edge (x,).

It follows easily that the sub graph (V, Eg) will be a t-span-
ner of G. The two algorithms for computing the (2k — 1)-

26

Algorithms for Spanners in Weighted Graphs

spanner eventually compute the set Eg based on two com-
pletely different approaches.

Algorithm I

This algorithm selects edges for its spanner in a greedy
fashion, and is similar to Kruskal’s algorithm for comput-
ing a minimum spanning tree. The edges of the graph are
processed in the increasing order of their weights. To be-
gin with, the spanner Eg = # and the algorithm adds edges
to it gradually. The decision as to whether an edge, say
(u, v), has to be added (or not) to Eg is made as follows:

If the distance between u and v in the subgraph induced
by the current spanner edges Eg is more than t-weight(u, v),
then add the edge (u, v) to Es, otherwise discard the edge.

It follows that P;(x, y) would hold for each edge of E
missing in Eg, and so at the end, the subgraph (V, Eg) will
be a t-spanner. A well known result in elementary graph
theory states that a graph with more than n'*'/* edges
must have a cycle of length at most 2k. It follows from the
above algorithm that the length of any cycle in the sub-
graph (V, Eg) has to be atleast ¢ + 1. Hence for ¢ = 2k — 1,
the number of edges in the subgraph (V,Egs) will be
less than n'*/%. Thus Algorithm I computes a (2k — 1)-
spanner of size O(n'*/¥), which is indeed optimal based
on the lower bound mentioned earlier.

A simple O(mn'*/¥) implementation of Algorithm
I follows based on Dijkstra’s algorithm. Cohen [9], and
later Thorup and Zwick [18] designed algorithms for
a (2k — 1)-spanner with an improved running time of
O(kmn''*). These algorithms rely on several calls to Di-
jkstra’s single-source shortest-path algorithm for distance
computation and therefore were far from achieving linear
time. On the other hand, since a spanner must approxi-
mate all pairs distances in a graph, it appears difficult to
compute a spanner by avoiding explicit distance informa-
tion. Somewhat surprisingly, Algorithm II, described in
the following section, avoids any sort of distance compu-
tation and achieves expected linear time.

Algorithm II

This algorithm employs a novel clustering based on a very
local approach, and establishes the following result for the
spanner problem.

Given a weighted graph G = (V, E), and an integer
k > 1, a spanner of (2k — 1)-stretch and O(kn!*1/¥)
size can be computed in expected O(km) time.

The algorithm executes in O(k) rounds, and in each round
it essentially explores adjacency list of each vertex to prune
dispensable edges. As a testimony of its simplicity, we will

present the entire algorithm for a 3-spanner and its anal-
ysis in the following section. The algorithm can be eas-
ily adapted in other computational models (parallel, ex-
ternal memory, distributed) with nearly optimal perfor-
mance (see [6] for more details).

Computing a 3-Spanner in Linear Time To meet the
size constraint of a 3-spanner, a vertex should contribute
an average of /1 edges to the spanner. So the vertices with
degree O(4/n) are easy to handle since all their edges can
be selected in the spanner. For vertices with higher degree
a clustering (grouping) scheme is employed to tackle this
problem which has its basis in dominating sets.

To begin with, there is a set of edges E’ initialized to
E, and an empty spanner Eg. The algorithm processes the
edges E’, moves some of them to the spanner Eg and dis-
cards the remaining ones. It does so in the following two
phases.
1. Forming the clusters:

A sample R C V is chosen by picking each vertex in-
dependently with probability 1/./n. The clusters will
be formed around these sampled vertices. Initially the
clusters are {{u}|u € R}. Each u € R is called the cen-
ter of its cluster. Each unsampled vertex v € V — R is
processed as follows.

(a) If vis not adjacent to any sampled vertex, then ev-
ery edge incident on v is moved to Eg.

(b) Ifvisadjacent to one or more sampled vertices, let
N (v, R) be the sampled neighbor that is nearest!
to v. The edge (v, N (v, R)) along with every edge
that is incident on v with weight less than this edge
is moved to Eg. The vertex v is added to the cluster
centered at N (v, R).

As a last step of the first phase, all those edges (u,v)

from E’ where u and v are not sampled and belong to

the same cluster are discarded.

Let V' be the set of vertices corresponding to the end-

points of the edges E’ left after the first phase. It fol-

lows that each vertex from V" is either a sampled vertex

or adjacent to some sampled vertex, and the step 1(b)

has partitioned V' into disjoint clusters, each centered

around some sampled vertex. Also note that, as a con-
sequence of the last step, each edge of the set E’ is an
inter-cluster edge. The graph (V’, E’), and the corre-
sponding clustering of V' is passed onto the following
(second) phase.
2. Joining vertices with their neighboring clusters:
Each vertex v of graph (V', E’) is processed as follows.

!Ties can be broken arbitrarily. However, it helps conceptually to
assume that all weights are distinct.

Algorithms for Spanners in Weighted Graphs

27

Let E'(v, ¢) be the edges from the set E’ incident on v

from a cluster c. For each cluster ¢ that is a neighbor

of v, the least-weight edge from E’(v, ¢) is moved to Es

and the remaining edges are discarded.
The number of edges added to the spanner Eg during
the algorithm described above can be bounded as follows.
Note that the sample set R is formed by picking each ver-
tex randomly and independently with probability 1/./n.
It thus follows from elementary probability that for each
vertex v € V, the expected number of incident edges with
weights less than that of (v, N'(v, R)) is at most 4/n. Thus
the expected number of edges contributed to the span-
ner by each vertex in the first phase of the algorithm is at
most /7. The number of edges added to the spanner in
the second phase is O(n|R]). Since the expected size of the
sample R is v/, therefore, the expected number of edges
added to the spanner in the second phase is at most #>2.
Hence the expected size of the spanner Eg at the end of
Algorithm II as described above is at most 2n*/. The algo-
rithm is repeated if the size of the spanner exceeds 31>, It
follows using Markov’s inequality that the expected num-
ber of such repetitions will be O(1).

We now establish that Eg is a 3-spanner. Note that for
every edge (u, v) ¢ Eg, the vertices u and v belong to some
cluster in the first phase. There are two cases now.

Case 1: (u and v belong to same cluster)

Let u and v belong to the cluster centered at x € R. It
follows from the first phase of the algorithm that there
is a 2-edge path u — x — v in the spanner with each edge
not heavier than the edge (u, v). (This provides a justifica-
tion for discarding all intra-cluster edges at the end of first
phase).

Case 2 : (u and v belong to different clusters)

Clearly the edge (u,v) was removed from E’ during phase
2, and suppose it was removed while processing the vertex
u. Let v belong to the cluster centered at x € R.

In the beginning of the second phase let (u,v") € E’ be
the least weight edge among all the edges incident on
u from the vertices of the cluster centered at x. So it
must be that weight(u,v") < weight(u, v). The process-
ing of vertex u during the second phase of our algo-
rithm ensures that the edge (u, v') gets added to Es. Hence
there is a path I1,, =u—v —x —v between u and v
in the spanner Es, and its weight can be bounded as
weight(IT,,) = weight(u, v') + weight(v/, x) + weight(x, v).
Since (v/, x) and (v, x) were chosen in the first phase, it fol-
lows that weight(v/, x) < weight(u, v') and weight(x, v) <
weight(u, v). It follows that the spanner (V, Eg) has stretch
3. Moreover, both phases of the algorithm can be executed

in O(m) time using elementary data structures and bucket
sorting.

The algorithm for computing a (2k — 1)-spanner exe-
cutes k iterations where each iteration is similar to the first
phase of the 3-spanner algorithm. For details and formal
proofs, the reader may refer to [6].

Other Related Work

The notion of a spanner has been generalized in the past
by many researchers.

Additive spanners: A t-spanner as defined above approx-
imates pairwise distances with multiplicative error, and
can be called a multiplicative spanner. In an analogous
manner, one can define spanners that approximate pair-
wise distances with additive error. Such a spanner is called
an additive spanner and the corresponding error is called
a surplus. Aingworth et al. [1] presented the first additive
spanner of size O(n*? logn) with surplus 2. Baswana et
al. [7] presented a construction of O(n*?) size additive
spanner with surplus 6. It is a major open problem if there
exists any sparser additive spanner.

(o, B)-spanner: Elkin and Peleg [11] introduced the no-
tion of an («, B)-spanner for unweighted graphs, which
can be viewed as a hybrid of multiplicative and additive
spanners. An (o, 8)-spanner is a subgraph such that the
distance between any pair of vertices u, v € V in this sub-
graph is bounded by «§(u, v) + B, where §(u, v) is the dis-
tance between u and v in the original graph. Elkin and Pe-
leg showed that an (1 + €, B)-spanner of size O(ﬂn1+8),
for arbitrarily small €, § > 0, can be computed at the ex-
pense of a sufficiently large surplus f. Recently Thorup
and Zwick [19] introduced a spanner where the additive
error is sublinear in terms of the distance being approxi-
mated.

Other interesting variants of spanners include the dis-
tance preserver proposed by Bollobas et al. [8] and the
Light-weight spanner proposed by Awerbuch et al. [4].
A subgraph is said to be a d-preserver if it preserves ex-
act distances for each pair of vertices which are separated
by distance at least d. A light-weight spanner tries to min-
imize the number of edges as well as the total edge weight.
A lightness parameter is defined for a subgraph as the ra-
tio of the total weight of all its edges and the weight of the
minimum spanning tree of the graph. Awerbuch et al. [4]
showed that for any weighted graph and integer k > 1,
there exists a polynomially constructable O(k)-spanner
with O(kpn“”k) edges and O(kpn”k) lightness, where
p = log(Diameter).

In addition to the above work on the generalization of
spanners, a lot of work has also been done on computing

28

All Pairs Shortest Paths in Sparse Graphs

spanners for special classes of graphs, e. g., chordal graphs,
unweighted graphs, and Euclidean graphs. For chordal
graphs, Peleg and Schiffer [14] designed an algorithm that
computes a 2-spanner of size O(n>?), and a 3-spanner
of size O(nlogn). For unweighted graphs Halperin and
Zwick [13] gave an O(m) time algorithm for this prob-
lem. Salowe [17] presented an algorithm for computing
a (1 + €)-spanner of a d-dimensional complete Euclidean
graph in O(nlogn + ;) time. However, none of the algo-
rithms for these special classes of graphs seem to extend to
general weighted undirected graphs.

Applications

Spanners are quite useful in various applications in the ar-
eas of distributed systems and communication networks.
In these applications, spanners appear as the underlying
graph structure. In order to build compact routing ta-
bles [16], many existing routing schemes use the edges
of a sparse spanner for routing messages. In distributed
systems, spanners play an important role in designing
synchronizers. Awerbuch [3], and Peleg and Ullman [15]
showed that the quality of a spanner (in terms of stretch
factor and the number of spanner edges) is very closely
related to the time and communication complexity of any
synchronizer for the network. The spanners have also been
used implicitly in a number of algorithms for comput-
ing all pairs of approximate shortest paths [5,9,18]. For
a number of other applications, please refer to the pa-
pers [2,3,14,16].

Open Problems

The running time as well as the size of the (2k — 1)-
spanner computed by the Algorithm II described above
are away from their respective worst case lower bounds by
a factor of k. For any constant value of k, both these pa-
rameters are optimal. However, for the extreme value of
k, that is, for k = log n, there is a deviation by a factor of
log n. Is it possible to get rid of this multiplicative factor of
k from the running time of the algorithm and/or the size
of the (2k — 1)-spanner computed? It seems that a more
careful analysis coupled with advanced probabilistic tools
might be useful in this direction.

Recommended Reading

1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estima-
tion of diameter and shortest paths (without matrix multipli-
cation). SIAM J. Comput. 28, 1167-1181 (1999)

2. Althofer, 1., Das, G., Dobkin, D.P., Joseph, D., Soares J.: On sparse
spanners of weighted graphs. Discret. Comput. Geom. 9, 81—
100 (1993)

3. Awerbuch, B.: Complexity of network synchronization. J. Assoc.
Comput. Mach. 32(4), 804-823 (1985)

4. Awerbuch, B, Baratz, A., Peleg, D.: Efficient broadcast and light
weight spanners. Tech. Report C592-22, Weizmann Institute of
Science (1992)

5. Awerbuch, B., Berger, B., Cowen, L., Peleg D.: Near-linear time
construction of sparse neighborhood covers. SIAM J. Comput.
28,263-277 (1998)

6. Baswana, S., Sen, S.: A simple and linear time randomized al-
gorithm for computing sparse spanners in weighted graphs.
Random Struct. Algorithms 30, 532-563 (2007)

7. Baswana, S., Telikepalli, K., Mehlhorn, K., Pettie, S.: New con-
struction of (&, B)-spanners and purely additive spanners. In:
Proceedings of 16th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 2005, pp. 672-681

8. Bollobas, B., Coppersmith, D., Elkin M.: Sparse distance pre-
serves and additive spanners. In: Proceedings of the 14th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2003, pp. 414-423

9. Cohen, E.: Fast algorithms for constructing t-spanners and
paths with stretch t. SIAM J. Comput. 28, 210-236 (1998)

10. Elkin, M., Peleg, D.: Strong inapproximability of the basic
k-spanner problem. In: Proc. of 27th International Colloquim
on Automata, Languages and Programming, 2000, pp. 636-
648

11. Elkin, M., Peleg, D.: (1 + €, B)-spanner construction for general
graphs. SIAM J. Comput. 33, 608-631 (2004)

12. Erdos, P.: Extremal problems in graph theory. In: Theory of
Graphs and its Applications (Proc. Sympos. Smolenice, 1963),
pp. 29-36. Publ. House Czechoslovak Acad. Sci., Prague (1964)

13. Halperin, S., Zwick, U.: Linear time deterministic algorithm
for computing spanners for unweighted graphs. unpublished
manuscript (1996)

14. Peleg, D., Schéffer, A.A.: Graph spanners. J. Graph Theory 13,
99-116 (1989)

15. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hyper-
cube. SIAM J. Comput. 18, 740-747 (1989)

16. Peleg, D., Upfal, E.: A trade-off between space and efficiency for
routing tables. J. Assoc. Comput Mach. 36(3), 510-530 (1989)

17. Salowe, J.D.. Construction of multidimensional spanner
graphs, with application to minimum spanning trees. In: ACM
Symposium on Computational Geometry, 1991, pp. 256-261

18. Thorup, M., Zwick, U.: Approximate distance oracles. J. Assoc.
Comput. Mach. 52, 1-24 (2005)

19. Thorup, M., Zwick, U.: Spanners and emulators with sublin-
ear distance errors. In: Proceedings of 17th Annual ACM-SIAM
Symposium on Discrete Algorithms, 2006, pp. 802-809

I
All Pairs Shortest Paths

in Sparse Graphs
2004; Pettie

SETH PETTIE
Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI, USA

Keywords and Synonyms

Shortest route; Quickest route

All Pairs Shortest Paths in Sparse Graphs

29

Problem Definition

Given a communications network or road network one
of the most natural algorithmic questions is how to de-
termine the shortest path from one point to another.
The all pairs shortest path problem (APSP) is, given
a directed graph G = (V,E,{), to determine the dis-
tance and shortest path between every pair of vertices,
where |V| = n,|E| = m, and £: E — R is the edge length
(or weight) function. The output is in the form of two
n X n matrices: D(u,v) is the distance from u to v and
S(u,v) = w if (u,w) is the first edge on a shortest path
from u to v. The APSP problem is often contrasted with the
point-to-point and single source (SSSP) shortest path prob-
lems. They ask for, respectively, the shortest path from
a given source vertex to a given target vertex, and all short-
est paths from a given source vertex.

Definition of Distance

If £ assigns only non-negative edge lengths then the defi-
nition of distance is clear: D(u, v) is the length of the mini-
mum length path from u to v, where the length of a path is
the total length of its constituent edges. However, if £ can
assign negative lengths then there are several sensible no-
tations of distance that depend on how negative length cy-
cles are handled. Suppose that a cycle C has negative length
and that u, v € V are such that C is reachable from u and v
reachable from C. Because C can be traversed an arbitrary
number of times when traveling from u to v, there is no
shortest path from u to v using a finite number of edges.
It is sometimes assumed a priori that G has no negative
length cycles; however it is cleaner to define D(u, v) = —o0
if there is no finite shortest path. If D(u, v) is defined to
be the length of the shortest simple path (no repetition of
vertices) then the problem becomes NP-hard.! One could
also define distance to be the length of the shortest path
without repetition of edges.

Classic Algorithms

The Bellman-Ford algorithm solves SSSP in O(mn) time
and under the assumption that edge lengths are non-
negative, Dijkstra’s algorithm solves it in O(m + nlogn)
time. There is a well known O(mn)-time shortest path pre-
serving transformation that replaces any length function
with a non-negative length function. Using this transfor-
mation and #n runs of Dijkstra’s algorithm gives an APSP
algorithm running in O(mn + n? logn) = O(n?) time. The

!1f all edges have length —1 then D(u,v) = —(n — 1) if and only
if G contains a Hamiltonian path [7] from u to v.

Floyd-Warshall algorithm computes APSP in a more di-
rect manner, in O(n®) time. Refer to [4] for a descrip-
tion of these algorithms. It is known that APSP on com-
plete graphs is asymptotically equivalent to (min, +) ma-
trix multiplication [1], which can be computed by a non-
uniform algorithm that performs O(n?-*) numerical oper-
ations [6].2

Integer-Weighted Graphs

Much recent work on shortest paths assume that edge
lengths are integers in the range {—C,...,C} or {0,...,
C}. One line of research reduces APSP to a series of stan-
dard matrix multiplications. These algorithms are limited
in their applicability because their running times scale lin-
early with C. There are faster SSSP algorithms for both
non-negative edge lengths and arbitrary edge lengths. The
former exploit the power of RAMs to sort in o(n logn)
time and the latter are based on the scaling technique. See
Zwick [19] for a survey of shortest path algorithms up to
2001.

Key Results

Pettie’s APSP algorithm [13] adapts the hierarchy ap-
proach of Thorup [17] (designed for undirected, inte-
ger-weighted graphs) to general real-weighted directed
graphs. Theorem 1 is the first improvement over the
O(mn + n?log n) time bound of Dijkstra’s algorithm on
arbitrary real-weighted graphs.

Theorem 1 Given a real-weighted directed graph, all pairs
shortest paths can be solved in O(mn + n* loglog n) time.

This algorithm achieves a logarithmic speedup through
a trio of new techniques. The first is to exploit the nec-
essary similarity between the SSSP trees emanating from
nearby vertices. The second is a method for computing
discrete approximate distances in real-weighted graphs.
The third is a new hierarchy-type SSSP algorithm that runs
in O(m + nloglog n) time when given suitably accurate
approximate distances.

Theorem 1 should be contrasted with the time bounds of
other hierarchy-type APSP algorithms [17,12,15].

Theorem 2 ([15],2005) Given a real-weighted undirected
graph, APSP can be solved in O(mnloga(m, n)) time.

Theorem 3 ([17], 1999) Given an undirected graph
G(V, E, L), where { assigns integer edge lengths in the range
{=2w=1 ..., 2%71 — 1}, APSP can be solved in O(mn) time
on a RAM with w-bit word length.

2The fastest known (min, +) matrix multiplier runs n O(n?(log
log n)3/(log n)?) time [3].

30

All Pairs Shortest Paths in Sparse Graphs

Theorem 4 ([14], 2002) Given a real-weighted directed
graph, APSP can be solved in polynomial time by an algo-
rithm that performs O(mnloga(m, n)) numerical opera-
tions, where « is the inverse-Ackermann function.

A secondary result of [13,15] is that no hierarchy-type
shortest path algorithm can improve on the O(m +nlog n)
running time of Dijkstra’s algorithm.

Theorem 5 Let G be an input graph such that the ra-
tio of the maximum to minimum edge length is r. Any
hierarchy-type SSSP algorithm performs §2(m + min{n
log n, nlogr}) numerical operations if G is directed and
£2(m + min{nlog n, nloglog r}) if G is undirected.

Applications

Shortest paths appear as a subproblem in other graph op-
timization problems; the minimum weight perfect match-
ing, minimum cost flow, and minimum mean-cycle prob-
lems are some examples. A well known commercial ap-
plication of shortest path algorithms is finding efficient
routes on road networks; see, for example, Google Maps,
MapQuest, or Yahoo Maps.

Open Problems

The longest standing open shortest path problems are to
improve the SSSP algorithms of Dijkstra’s and Bellman-
Ford on real-weighted graphs.

Problem 1 Is there an o(mn) time SSSP or point-to-point
shortest path algorithm for arbitrarily weighted graphs?

Problem 2 Is there an O(m) + o(nlogn) time SSSP al-
gorithm for directed, non-negatively weighted graphs? For
undirected graphs?

A partial answer to Problem 2 appears in [15], which
considers undirected graphs. Perhaps the most surprising
open problem is whether there is any (asymptotic) dif-
ference between the complexities of the all pairs, single
source, and point-to-point shortest path problems on ar-
bitrarily weighted graphs.

Problem 3 Is point-to-point shortest paths easier than all
pairs shortest paths on arbitrarily weighted graphs?

Problem 4 Is there a genuinely subcubic APSP algorithm,
i. e., one running in time O(n3~¢€)? Is there a subcubic APSP
algorithm for integer-weighted graphs with weak depen-
dence on the largest edge weight C, i.e., running in time
O(n* ¢polylog(C))?

Experimental Results

See [9,16,5] for recent experiments on SSSP algorithms.
On sparse graphs the best APSP algorithms use repeated
application of an SSSP algorithm, possibly with some pre-
computation [16]. On dense graphs cache-efficiency be-
comes a major issue. See [18] for a cache conscious im-
plementation of the Floyd-Warshall algorithm.

The trend in recent years is to construct a linear space
data structure that can quickly answer exact or approxi-
mate point-to-point shortest path queries; see [10,6,2,11].

Data Sets

See [5] for a number of U.S. and European road networks.

URL to Code
See [8] and [5].

Cross References

» All Pairs Shortest Paths via Matrix Multiplication
» Single-Source Shortest Paths

Recommended Reading

1. Aho, A.V,, Hopcroft, J.E., Ullman, J.D.: The design and analysis
of computer algorithms. Addison-Wesley, Reading (1975)

2. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In
transit to constant shortest-path queries in road networks.
In: Proc. 9th Workshop on Algorithm Engineering and Exper-
iments (ALENEX), 2007

3. Chan, T.. More algorithms for all-pairs shortest paths in
weighted graphs. In: Proc. 39th ACM Symposium on Theory of
Computing (STOC), 2007, pp. 590-598

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms. MIT Press, Cambridge (2001)

5. Demetrescu, C., Goldberg, A.V. Johnson, D.. 9th DIMACS
Implementation challenge - shortest paths. http://www.dis.
uniromaT.it/~challenge9/ (2006)

6. Fredman, M.L.: New bounds on the complexity of the shortest
path problem. SIAM J. Comput. 5(1), 83-89 (1976)

7. Garey, MR, Johnson, D.S. Computers and Intractability:
a guide to NP-Completeness. Freeman, San Francisco (1979)

8. Goldberg, A.V.: AVG Lab. http://www.avglab.com/andrew/

9. Goldberg, A.V.: Shortest path algorithms: Engineering aspects.
In: Proc. 12th Int'l Symp. on Algorithms and Computation
(ISAAQ). LNCS, vol. 2223, pp. 502-513. Springer, Berlin (2001)

10. Goldberg, A.V., Kaplan, H., Werneck, R.: Reach for A*: efficient
point-to-point shortest path algorithms. In: Proc. 8th Work-
shop on Algorithm Engineering and Experiments (ALENEX),
2006

11. Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Com-
puting many-to-many shortest paths using highway hierar-
chies. In: Proc. 9th Workshop on Algorithm Engineering and
Experiments (ALENEX), 2007

http://www.dis.uniroma1.it/~challenge9/
http://www.dis.uniroma1.it/~challenge9/
http://www.avglab.com/andrew/

All Pairs Shortest Paths via Matrix Multiplication

31

12. Pettie, S.: On the comparison-addition complexity of all-pairs
shortest paths. In: Proc. 13th Int'l Symp. on Algorithms and
Computation (ISAAC), 2002, pp. 32-43

13. Pettie, S.: A new approach to all-pairs shortest paths on real-
weighted graphs. Theor. Comput. Sci. 312(1), 47-74 (2004)

14. Pettie, S., Ramachandran, V.: Minimizing randomness in mini-
mum spanning tree, parallel connectivity and set maxima al-
gorithms. In: Proc. 13th ACM-SIAM Symp. on Discrete Algo-
rithms (SODA), 2002, pp. 713-722

15. Pettie, S.,Ramachandran, V.: A shortest path algorithm for real-
weighted undirected graphs. SIAM J. Comput. 34(6), 1398-
1431 (2005)

16. Pettie, S., Ramachandran, V., Sridhar, S.: Experimental evalua-
tion of a new shortest path algorithm. In: Proc. 4th Workshop
on Algorithm Engineering and Experiments (ALENEX), 2002,
pp. 126-142

17. Thorup, M.: Undirected single-source shortest paths with pos-
itive integer weights in linear time. J. ACM 46(3), 362-394
(1999)

18. Venkataraman, G., Sahni, S., Mukhopadhyaya, S.: A blocked all-
pairs shortest paths algorithm. J. Exp. Algorithms 8 (2003)

19. Zwick, U.: Exact and approximate distances in graphs - a sur-
vey. In: Proc. 9th European Symposium on Algorithms (ESA),
2001, pp. 33-48. See updated version at http://www.cs.tau.ac.
il/~zwick/

T
All Pairs Shortest Paths
via Matrix Multiplication
2002; Zwick

TADAO TAKAOKA

Department of Computer Science

and Software Engineering, University of Canterbury,
Christchurch, New Zealand

Keywords and Synonyms

Shortest path problem; Algorithm analysis

Problem Definition

The all pairs shortest path (APSP) problem is to compute
shortest paths between all pairs of vertices of a directed
graph with non-negative real numbers as edge costs. Focus
is given on shortest distances between vertices, as shortest
paths can be obtained with a slight increase of cost. Clas-
sically, the APSP problem can be solved in cubic time of
O(n*). The problem here is to achieve a sub-cubic time for
a graph with small integer costs.

A directed graph is given by G =(V,E), where
V ={1,..., n}, the set of vertices, and E is the set of edges.
The cost of edge (i, j) € E is denoted by dj;. The (1, n)-ma-
trix D is one whose (i,/) element is dj;. It is assumed for

simplicity that d;; > 0 and d;; = 0 for all i # j. If there
is no edge from i to j, let d;; = oo. The cost, or distance,
of a path is the sum of costs of the edges in the path.
The length of a path is the number of edges in the path.
The shortest distance from vertex i to vertex j is the min-
imum cost over all paths from i to j, denoted by d;“] Let
D* = {d?‘j}. The value of n is called the size of the matri-
ces.

Let A and B be (n, n)-matrices. The three products are
defined using the elements of A and B as follows: (1) Ordi-
nary matrix product over a ring C = AB, (2) Boolean ma-
trix product C = A - B, and (3) Distance matrix product
C = A x B, where

Weij=> aixbej. @) cij=\/aixAbg .

k=1 k=1
(3) cij = min {a;x + byj} .
1<k<n

The matrix C s called a product in each case; the computa-
tional process is called multiplication, such as distance ma-
trix multiplication. In those three cases, k changes through
the entire set {1, ..., n}. A partial matrix product of A and
B is defined by taking k in a subset I of V. In other words,
a partial product is obtained by multiplying a vertically
rectangular matrix, A(%, I), whose columns are extracted
from A corresponding to the set I, and similarly a hori-
zontally rectangular matrix, B(I, %), extracted from B with
rows corresponding to I. Intuitively I is the set of check
points k, when going from i to j in the graph.

The best algorithm [3] computes (1) in O(n®)
time, where w = 2.376. Three decimal points are carried
throughout this article. To compute (2), Boolean values
0 and 1 in A and B can be regarded as integers and
use the algorithm for (1), and convert non-zero elements
in the resulting matrix to 1. Therefore, this complexity
is O(n®). The witnesses of (2) are given in the witness
matrix W = {w;;} where w;; = k for some k such that
aik A brj = 1. If there is no such k, w;; = 0. The wit-
ness matrix W = {w;;} for (3) is defined by w;; = k that
gives the minimum to ¢;. If there is an algorithm for
(3) with T(n) time, ignoring a polylog factor of n, the
APSP problem can be solved in O(T(n)) time by the re-
peated squaring method, described as the repeated use of
D < D x D O(log n) times.

The definition here of computing shortest paths is to
give a witness matrix of size n by which a shortest path
from i to j can be given in O({) time where £ is the length of
the path. More specifically, if w;; = k in the witness matrix
W = {w;;}, it means that the path from i to j goes through
k. Therefore, a recursive function path(i,j) is defined by

http://www.cs.tau.ac.il/~zwick
http://www.cs.tau.ac.il/~zwick

32

All Pairs Shortest Paths via Matrix Multiplication

(path(i, k), k, path(k, j)) if w;; = k > 0 and nil if w;; = 0,
where a path is defined by a list of vertices excluding end-
points. In the following sections, k is recorded in w;; when-
ever k is found such that a path from i to j is modified or
newly set up by paths from i to k and from k to j. Pre-
ceding results are introduced as a framework for the key
results.

Alon-Galil-Margalit Algorithm

The algorithm by Alon, Galil, and Margalit [1] is reviewed.
Let the costs of edges of the given graph be ones. Let D
be the £th approximate matrix for D" defined by dl(f) = d;"j
if d?‘j <{,and dl(f) = 0o otherwise. Let A be the adjacency
matrix of G, that is, a;; = 1 if there is an edge (i,), and
a;j = 0 otherwise. Let a;; = 1 for all i. The algorithm con-
sists of two phases. In the first phase, D¥) is computed for
£=1,....r, by checking the (i, j)-element of A¢ = {afj}.
Note that if af =L there is a path from i to j of length £ or
less. Since Boolean mutrix multiplication can be computed
in O(n®) time, the computing time of this part is O(rn®).

In the second phase, the algorithm computes DY for
L=r,[3/27], [3/2[3/2r]], - -+ , n’ by repeated squaring,
where n’ is the smallest integer in this sequence of ¢
such that £ > n. Let T = {]|dff) =a},and I; = Tjq such
that |Tj| is minimum for [£/2] <« < {. The key ob-
servation in the second phase is that it is only needed
to check k in I; whose size is not larger than 2n/{,
since the correct distances between £ + 1 and [3£/2] can
be obtained as the sum dt(i) + d,(fj) for some k satisfying

[€/2] < dgi) < {. The meaning of I; is similar to I for par-
tial products except that I varies for each i. Hence the
computing time of one squaring is O(n’/£). Thus, the
time of the second phase is given with N = [log;, n/r]
by O(Zi\il n3/((3/2) r)) = 0n3/r). Balancing the two
phases with rn® = n’/r yields O(n'@+3)2) = O(n26%8)
time for the algorithm with r = o(n—0)2y,

Witnesses can be kept in the first phase in time polylog
of n by the method in [2]. The maintenance of witnesses
in the second phase is straightforward.

When a directed graph G whose edge costs are inte-
gers between 1 and M is given, where M is a positive inte-
ger, the graph G can be converted to G’ by replacing each
edge by up to M edges with unit cost. Obviously the prob-
lem for G can be solved by applying the above algorithm
to G’, which takes O((Mn)@*3/2) time. This time is sub-
cubic when M < n%116. The maintenance of witnesses has
an extra polylog factor in each case.

For undirected graphs with unit edge costs, O(n®)
time is known in Seidel [7].

Takaoka algorithm

When the edge costs are bounded by a positive integer M,
a better algorithm can be designed than in the above as
shown in Takaoka [9]. Romani’s algorithm [6] for distance
matrix multiplication is reviewed briefly.

Let A and B be (n,m) and (m, n) distance matrices
whose elements are bounded by M or infinite. Let the di-
agonal elements be 0. A and B are converted into A" and
B’ where a;j =(m+ 1)M=%j if aij # 00, 0 otherwise, and
b;j = (m+ 1)Mbij_if bij # 00, 0 otherwise.

Let C' = A’B’ be the product by ordinary matrix mul-
tiplication and C = A x B be that by distance matrix mul-
tiplication. Then it holds that

m
= 3 PN, =200 g,
k=1

This distance mutrix multiplication is called (n,m)-Ro-
mani. In this section the above multiplication is used with
square matrices, that is, (#, n)-Romani is used. In the next
section, the case where m < n is dealt with.

C can be computed with O(n®) arithmetic oper-
ations on integers up to (n+ M. Since these values
can be expressed by O(Mlogn) bits and Schonhage
and Strassen’s algorithm [8] for multiplying k-bit num-
bers takes O(klogkloglogk) bit operations, C can be
computed in O(n® M log nlog(M log n) loglog(M log n))
time, or O(Mn®) time.

The first phase is replaced by the one based on (n, n)-
Romani, and modify the second phase based on path
lengths, not distances.

Note that the bound M is replaced by {M in the dis-
tance matrix multiplication in the first phase. Ignoring
polylog factors, the time for the first phase is given by
O(n®r2M). 1t is assumed that M is O(n¥) for some con-
stant k. Balancing this complexity with that of the sec-
ond phase, O(n®/r), yields the total computing time of
O(ne*®)3 p13) with the choice of r = O(nG—®)/3 pp~1/3),
The value of M can be almost O(1n%-%2*) to keep the com-
plexity within sub-cubic.

Key Results

Zwick improved the Alon-Galil-Margalit algorithm in
several ways. The most notable is an improvement of the
time for the APSP problem with unit edge costs from
O(n?%88) to O(n*%7%). The main accelerating engine in
Alon-Galil-Margalit [1] was the fast Boolean matrix mul-
tiplication and that in Takaoka [9] was the fast distance
matrix multiplication by Romani, both powered by the fast
matrix multiplication of square matrices.

All Pairs Shortest Paths via Matrix Multiplication

33

In this section, the engine is the fast distance ma-
trix multiplication by Romani powered by the fast ma-
trix multiplication of rectangular matrices given by Cop-
persmith [4], and Huang and Pan [5]. Let w(p.q.r)
be the exponent of time complexity for multiplying
(n?,n1) and (n1, n") matrices. Suppose the product of
(n,m) matrix and (m, n) matrix can be computed with
O(n®L:#-1Y) arithmetic operations, where m = n* with
0 < p < 1. Several facts such as O(n®1:Dy = O(n2-376)
and O(n®1:0-2941)) = H(52) are known. To compute the
product of (n,n) square matrices, n'~* matrix multipli-
cations are needed, resulting in O(n®(LHDH1=1) time,
which is reformulated as O(n**#), where yu satisfies the
equation (1, u, 1) =2u + 1. Currently the best-known
value for p is p = 0.575, so the time becomes O(n?>>7°),
which is not as good as O(n%37%). So the algorithm for rect-
angular matrices is used in the following.

The above algorithm is incorporated into (n, m)-Ro-
mani with m = n* and M = n’ for some t > 0, and the
computing time of O(Mn®(:#-1)) The next step is how
to incorporate (1, m)-Romani into the APSP algorithm.
The first algorithm is a mono-phase algorithm based on
repeated squaring, similar to the second phase of the algo-
rithm in [1]. To take advantage of rectangular matrices in
(n, m)-Romani, the following definition of the bridging set
is needed, which plays the role of the set I in the partial
distance matrix product in Sect. “Problem Definition”.

Let §(i, j) be the shortest distance from i to j, and
n(i, j) be the minimum length of all shortest paths from
i to j. A subset I of V is an {-bridging set if it satis-
fies the condition that if n(i, j) > £, there exists k € I
such that 8(i,j) = 8(i,k) + 8(k,j). I is a strong
£-bridging set if it satisfies the condition that if n(i, j) > ¢,
there exists k € I such that §(i, j) = 8(i, k) + 8(k, j) and
n(i, j) = n(i, k) + n(k, j). Note that those two sets are the
same for a graph with unit edge costs.

Note that if (2/3)¢ < u(i,j) <€ and I is a strong
£/3-bridging set, thereisa k € I'such that (i, j) = 6(i, k)+
8(k, j) and (i, j) = p(i, k) + u(k, j). With this property
of strong bridging sets, (1, m)-Romani can be used for the
APSP problem in the following way. By repeated squar-
ing in a similar way to Alon-Galil-Margalit, the algorithm
computes D for £ = 1,[3/2],[3/2[3/2]].....n', where
n’ is the first value of £ that exceeds n, using various types
of set I described below. To compute the bridging set, the
algorithm maintains the witness matrix with extra poly-
log factor in the complexity. In [10], there are three ways
for selecting the set I. Let |I| = n” for some r sucn that
0<r<lI.

(1) Select 9nlnn/f vertices from V at random. In
this case, it can be shown that the algorithm solves the

APSP problem with high probability, i.e., with 1 —1/n°
for some constant ¢ > 0, which can be shown to be
3. In other words, I is a strong {/3-bridging set with
high probability. The time T is dominated by (n, m)-
Romani. It holds that T = O(¢Mn®®:"D) since the mag-
nitude of matrix elements can be up to £M. Since
m = O(nlnn/€) = n", it holds that £ = O(n'~"), and thus
T = O(Mn' " n®@:1)). When M = 1, this bound on r is
i =0.575,and thus T = O(#*°7°). When M = n' > 1, the
time becomes O(n?**()), where t <3 — w = 0.624 and
= ju(t) satisfies w(1, u, 1) = 1 + 24 — t. It is determined
from the best known w(1, i, 1) and the value of t. As the
result is correct with high probability, this is a randomized
algorithm.

(2) Consider the case of unit edge costs here. In (1), the
computation of witnesses is an extra thing, i. e., not neces-
sary if only shortest distances are needed. To achieve the
same complexity in the sense of an exact algorithm, not
a randomized one, the computation of witnesses is essen-
tial. As mentioned earlier, maintenance of witnesses, that
is, matrix W, can be done with an extra polylog factor,
meaning the analysis can be focused on Romani within the
O-notation. Specifically I is selected as an £/3-bridging set,
which is strong with unit edge costs. To compute I as an
O({)-bridging set, obtain the vertices on the shortest path
from i to j for each i and j using the witness matrix W in
O(¢) time. After obtaining those n? sets spending O(£n?)
time, it is shown in [10] how to obtain a O({)-bridging set
of O(nln n/f) size within the same time complexity. The
process of obtaining the bridging set must stop at £ = n'/?
as the process is too expensive beyond this point, and thus
the same bridging set is used beyond this point. The time
before this point is the same as that in (1), and that af-
ter this point is O(#?°). Thus, this is a two-phase algo-
rithm.

(3) When edge costs are positive and bounded by
M = n' > 0, a similar procedure can be used to compute
an O({)-bridging set of O(nlInn/{f) size in O(tn?) time.
Using the bridging set, the APSP problem can be solved in
O(n**M1) time in a similar way to (1). The result can be
generalized into the case where edge costs are between —M
and M within the same time complexity by modifying the
procedure for computing an £-bridging set, provided there
is no negative cycle. The details are shown in [10].

Applications

The eccentricity of a vertex v of a graph is the greatest dis-
tance from v to any other vertices. The diameter of a graph
is the greatest eccentricity of any vertices. In other words,
the diameter is the greatest distance between any pair of

34

Alternative Performance Measures in Online Algorithms

vertices. If the corresponding APSP problem is solved, the
maximum element of the resulting matrix is the diameter.

Open Problems

Two major challenges are stated here among others. The
first is to improve the complexity of O(n?>7°) for the APSP
with unit edge costs. The other is to improve the bound of
M < O(n%%2%) for the complexity of the APSP with inte-
ger costs up to M to be sub-cubic.

Cross References

» All Pairs Shortest Paths in Sparse Graphs
» Fully Dynamic All Pairs Shortest Paths

Recommended Reading

1. Alon, N, Galil, Z., Margalit, O.: On the exponent of the all pairs
shortest path problem. In: Proc. 32th IEEE FOCS, pp. 569-575.
IEEE Computer Society, Los Alamitos, USA (1991). Also JCSS 54,
255-262 (1997)

2. Alon, N., Galil, Z., Margalit, O., Naor, M.: Witnesses for Boolean
matrix multiplication and for shortest paths. In: Proc. 33th IEEE
FOCS, pp. 417-426. IEEE Computer Society, Los Alamitos, USA
(1992)

3. Coppersmith, D., Winograd, S.: Matrix multiplication via arith-
metic progressions. J. Symb. Comput. 9, 251-280 (1990)

4. Coppersmith, D.: Rectangular matrix multiplication revisited.
J. Complex. 13, 42-49 (1997)

5. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplications
and applications. J. Complex. 14, 257-299 (1998)

6. Romani, F.: Shortest-path problem is not harder than matrix
multiplications. Info. Proc. Lett. 11, 134-136 (1980)

7. Seidel, R.: On the all-pairs-shortest-path problem. In: Proc. 24th
ACM STOC pp. 745-749. Association for Computing Machin-
ery, New York, USA (1992) Also JCSS 51, 400-403 (1995)

8. Schonhage, A., Strassen, V.. Schnelle Multiplikation GroRer
Zahlen. Computing 7, 281-292 (1971)

9. Takaoka, T.: Sub-cubic time algorithms for the all pairs shortest
path problem. Algorithmica 20, 309-318 (1998)

10. Zwick, U.: All pairs shortest paths using bridging sets and rect-
angular matrix multiplication. J. ACM 49(3), 289-317 (2002)

I
Alternative Performance Measures

in Online Algorithms
2000; Koutsoupias, Papadimitriou

ESTEBAN FEUERSTEIN
Department of Computing, University of Buenos Aires,
Buenos Aires, Argentina

Keywords and Synonyms

Diffuse adversary model for online algorithms; Compara-
tive analysis for online algorithms

Problem Definition

Even if online algorithms had been studied for around
thirty years, the explicit introduction of competitive anal-
ysis in the seminal papers by Sleator and Tarjan [8] and
Manasse, McGeoch and Sleator [6] sparked an extraordi-
nary boom in research about these class of problems and
algorithms, so both concepts (online algorithms and com-
petitive analysis) have been strongly related since. How-
ever, rather early in its development, some criticism arose
regarding the realism and practicality of the model mainly
because of its pessimism. That characteristic, in some
cases, attempts on the ability of the model to distinguish,
between good and bad algorithms. In a 1994 paper called
Beyond competitive analysis [3], Koutsoupias and Pa-
padimitriou proposed and explored two alternative per-
formance measures for on-line algorithms, both very
much related to competitive analysis and yet avoiding the
weaknesses that caused the aforementioned criticism. The
final version of that work appeared in 2000 [4].

In competitive analysis, the performance of an online
algorithm is compared against an all-powerful adversary
on a worst-case input. The competitive ratio of an algo-
rithm A is defined as the worst possible ratio

where x ranges over all possible inputs of the problem and
A(x) and opt(x) are respectively the costs of the solutions
obtained by algorithm A and the optimum offline algo-
rithm for input x!. This notion can be extended to define
the competitive ratio of a problem, as the minimum com-
petitive ratio of an algorithm for it, namely

A(x)
opt(x)

R = min R4 = min max
A A x

The main criticism to this approach has been that,
with the characteristic pessimism common to all kinds of
worst-case analysis, it fails to discriminate between algo-
rithms that could have different performances under dif-
ferent conditions. Moreover, algorithms that “try” to per-
form well relative to this worst case measure many times
fail to behave well in front of many “typical” inputs. This
arguments can be more easily contested in the (rare) sce-
narios where the very strong assumption that nothing is
known about the distribution of the input holds. But, this
is rarely the case in practice.

!n this article all problems are assumed to be online minimiza-
tion problems, therefore the objective is to minimize costs. All the re-
sults presented here are valid for online maximization problems with
the proper adjustments to the definitions.

Alternative Performance Measures in Online Algorithms

35

The paper by Koutsoupias and Papadimitriou pro-
poses and studies two refinements of competitive analy-
sis which try to overcome all these concerns. The first of
them is the diffuse adversary model, which points at the
cases where something is known about the input: its prob-
abilistic distribution. With this in mind, the performance
of an algorithm is evaluated comparing its expected cost
with the one of an optimal algorithm for inputs following
that distribution.

The second refinement is called comparative analy-
sis. This refinement is based on the notion of information
regimes. According to this, competitive analysis is inter-
preted as the comparison between two different informa-
tion regimes, the online and the offline ones. But this vi-
sion entails that those information regimes are just par-
ticular, extreme cases of a large set of possibilities, among
which, for example, the set of algorithms that know in ad-
vance some prefix of the awaiting input (finite lookahead
algorithms).

Key Results
Diffuse Adversaries

The competitive ratio of an algorithm A against a class A
of input distributions is the infimum c¢ such that the al-
gorithm is c-competitive when the input is restricted to
that class. That happens whenever there exists a constant
d such that, for all distributions D € A,

Ep(A(x)) < cEp(opt(x)) +d,

where Fp stands for the mathematical expectation over in-
puts following distribution D. The competitive ratio R(A)
of the class of distributions A is the minimum competitive
ratio achievable by an online algorithm against A.

The model is applied to the traditional Paging prob-
lem, for the class of distributions A¢. A¢ is the class that
contains all probability distributions such that, given a re-
quest sequence and a page p, the probability that the next
requested page is p is not more than €. It is shown that
the well-known online algorithm LRU achieves the opti-
mal competitive ratio R(A¢) for all €, that is, it is optimal
against any adversary that uses a distribution in this class.

The proof of this result makes strong use of the work
function concept introduced in [5], that is used as a tool
to track the behavior of the optimal offline algorithm and
estimate the optimal cost for a sequence of requests, and
that of conservative adversaries, which are adversaries that
assign higher probabilities to pages that have been re-
quested more recently. This kind of adversary is consistent
with locality of reference, a concept that has been always
connected to Paging algorithms and competitive analysis

(though in [1] another family of distributions is proposed,
and analyzed within this framework, which better captures
this notion).

The first result states that, for any adversary D € A,
there is a conservative adversary D € A, such that the
competitive ratio of LRU against D is at least the com-
petitive ratio of LRU against D. Then it is shown that for
any conservative adversary D € A, against LRU, there is
a conservative adversary D’ € A, against an on-line algo-
rithm A such that the competitive ratio of LRU against D
is at most the competitive ratio of A against D'. In other
words, for any €, LRU has the optimal competitive ratio
R(A¢) for the diffuse adversary model. This is the main
result in the first part of [4].

The last remaining point refers to the value of the op-
timal competitive ratio of LRU for the Paging problem.
As it is shown, that value is not easy to compute. For
the extreme values of € (the cases in which the adversary
has complete and almost no control of the input, respec-
tively), R(A;) = k, where k is the size of the cache, and also
lime_so R(A¢) = 1. Later work by Young [9] allowed to es-
timate R(A¢) within (almost) a factor of two. For values
of ¢ around the threshold 1/k the optimal ratio is ®(In k),
for values below that threshold the values tend rapidly to
0O(1), and above it to @ (k).

Comparative Analysis

Comparative analysis is a generalization of competitive
analysis that allows to compare classes of algorithms, and
not just individual algorithms. This new idea may be used
to contrast the behaviors of algorithms obeying to arbi-
trary information regimes. In a few words, an information
regime is a class of algorithms that acquire knowledge of
the input in the same way, or at similar “rates”, so both
classes of online and offline algorithms are particular in-
stances of this concept (the former know the input step by
step, the latter receive all the information before having to
produce any output).

The idea of comparative analysis is to measure the rel-
ative quality of two classes of algorithms by the maximum
possible quotient of the results obtained by algorithms in
each of the classes for the same input.

Formally, if A and B are classes of algorithms, the
comparative ratio R(A, B) is defined as

A(x)
B(x)

R(A, B) = max min max
BEB A€A x
With this definition, if B is the class of all algorithms,
and A is the class of on-line algorithms, then the compar-
ative ratio coincides with the competitive ratio.

36

Alternative Performance Measures in Online Algorithms

The concept is illustrated determining how beneficial
it can be to allow some lookahead to algorithms for Met-
rical Task Systems (MTS). MTS are an abstract model that
has been introduced in [2], and generalizes a wide fam-
ily of on-line problems, among which Paging, the k-server
problem, list accessing, and many other more. In a Met-
rical Task System a server can travel through the points of
a Metric Space (states) while serving a sequence of requests
or Tasks. The cost of serving a task depends on the state in
which the server is, and the total cost for the sequence is
given by the sum of the distance traveled plus the cost of
servicing all the tasks. The meaning of the lookahead in
this context is that the server can decide where to serve the
next task based not only on the past movements and input
but also on some fixed number of future requests.

The main result here (apart from the definition of the
model itself) is that, for Metrical Task Systems, the Com-
parative Ratio for the class of online algorithms versus that
of algorithms with lookahead I (respectively £y and £;) is
not more than 2/ + 1. That is, for this family of problems
the benefit obtainable from lookahead is never more than
two times the size of the lookahead plus one. The result is
completed showing particular cases in which the equality
holds.

Finally, for particular Metrical Task System the power
of lookahead is shown to be strictly less than that: the last
important result of this section shows that for the Paging
Problem, the comparative ratio is exactly min{l + 1, k},
that is, the benefit of using lookahead [is the minimum
between the size of the cache and the size of the lookahead
window plus one.

Applications

As it is mentioned in the introduction of [4], the ideas pre-
sented therein are useful to have a better and more precise
analysis of the performance of online algorithms. Also, the
diffuse adversary model may prove useful to depict char-
acteristics of the input that are probabilistic in nature (e. g.
locality). An example in this direction is a paper by Bec-
chetti [1], that uses a diffuse adversary with the intention
of better modeling the locality of reference phenomenon
that characterizes practical applications of Paging. In the
distributions considered there the probability of request-
ing a page is also a function of the page’s age, and it is
shown that the competitive ratio of LRU becomes constant
as locality increases.

A different approach is taken however in [7]. There the
Paging problem with variable cache size is studied and it is
shown that the approach of the expected competitive ra-
tio in the diffuse adversary model can be misleading, while

they propose the use of the average performance ratio in-
stead.

Open Problems

It is an open problem to determine the exact competitive
ratio against a diffuse adversary of known algorithms, for
example FIFO, for the Paging problem. FIFO is known to
be worse in practice than LRU, so proving that the former
is suboptimal for some values of ¢ would give more sup-
port to the model.

An open direction presented in the paper is to consider
what they call the Markov diffuse adversary, which as it is
suggested by the name, refers to an adversary that gener-
ates the sequence of requests following a Markov process
with output.

The last direction of research suggested is to use the
idea of comparative analysis to compare the efficiency of
agents or robots with different capabilities (for example
with different vision ranges) to perform some tasks (for
example construct a plan of the environment).

Cross References

» List Scheduling

» Load Balancing

» Metrical Task Systems

» Online Interval Coloring

» Online List Update

» Packet Switching in Multi-Queue Switches
» Packet Switching in Single Buffer

» Paging

» Robotics

» Routing

» Work-Function Algorithm for k Servers

Recommended Reading

1. Becchetti, L.: Modeling locality: A probabilistic analysis of LRU
and FWF. In: Proceeding 12th European Symposium on Algo-
rithms (ESA) (2004)

2. Borodin, A, Linial, N., Saks, M.E.: An optimal on-line algorithm
for metrical task systems. J. ACM 39, 745-763 (1992)

3. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analy-
sis. In: Proceeding 35th Annual Symposium on Foundations of
Computer Science, pp. 394-400, Santa Fe, NM (1994)

4. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analy-
sis. SIAM J. Comput. 30(1), 300-317 (2000)

5. Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjecture.
J. ACM 42(5), 971-983 (1995)

6. Manasse, M.S., McGeoch, L.A,, Sleator, D.D.: Competitive algo-
rithms for on-line problems. In: Proceeding 20th Annual ACM
Symposium on the Theory of Computing, pp. 322-333, Chicago,
IL (1988)

Analyzing Cache Misses

37

7. Panagiotou, K., Souza, A.: On adequate performance measures
for paging. In: Proceeding 38th annual ACM symposium on The-
ory of computing, STOC 2006

8. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and
paging rules. Comm. ACM. 28, 202-208 (1985)

9. Young, N.E.: On-Line Paging against Adversarially Biased Ran-
dom Inputs. J. Algorithms 37, 218 (2000)

|
Analyzing Cache Misses

2003; Mehlhorn, Sanders

NAILA RAHMAN
Department of Computer Science, University of Leicester,
Leicester, UK

Keywords and Synonyms

Cache analysis

Problem Definition

The problem considered here is multiple sequence access
via cache memory. Consider the following pattern of mem-
ory accesses. k sequences of data, which are stored in dis-
joint arrays and have a total length of N, are accessed as
follows:

for t :=1to N do
select a sequence s; € {1,...k}
work on the current element of sequence s;
advance sequence s; to the next element.

The aim is to obtain exact (not just asymptotic) closed
form upper and lower bounds for this problem. Concur-
rent accesses to multiple sequences of data are ubiquitous
in algorithms. Some examples of algorithms which use this
paradigm are distribution sorting, k-way merging, prior-
ity queues, permuting and FFT. This entry summarises the
analyses of this problem in [3,6].

Caches, Models and Cache Analysis

Modern computers have hierarchical memory which con-
sists of registers, one or more levels of caches, main mem-
ory and external memory devices such as disks and tapes.
Memory size increases but the speed decreases with dis-
tance from the CPU. Hierarchical memory is designed to
improve the performance of algorithms by exploiting tem-
poral and spatial locality in data accesses.

Caches are modeled as follows. A cache has m blocks
each of which holds B data elements. The capacity of the
cache is M = mB. Data is transferred between one level of
cache and the next larger and slower memory in blocks

of B elements. A cache is organized as s = m/a sets where
each set consists of a blocks. Memory at address xB, re-
ferred to as memory block x can only be placed in a block
in setx mods. If a = 1 the cache is said to be direct mapped
and if a = s it is said to be fully associative.

If memory block x is accessed and it is not in cache
then a cache miss occurs and the data in memory block x
is brought into cache, incurring a performance penalty. In
order to accommodate block x, it is assumed that the least
recently used (LRU) or the first used (FIFO) block from
the cache set x mod s is evicted and this is referred to as
the replacement strategy. Note that a block may be evicted
from a set even though there may be unoccupied blocks in
other sets.

Cache analysis is performed for the number of cache
misses for a problem with N data elements. To read or
write N data elements an algorithm must incur §2(N/B)
cache misses. These are the compulsory or first reference
misses. In the multiple sequence access via cache memory
problem, for given values of M and B, one aim is to find the
largest k such that there are O(N/B) cache misses for the
N data accesses. It is interesting to analyze cache misses
for the important case of direct mapped cache and for the
general case of set-associative caches.

A large number of algorithms have been designed on
the External Memory Model [9] and these algorithms opti-
mize the number of data transfers between main memory
and disk. It seems natural to exploit these algorithms to
minimize cache misses, but due to the limited associativity
of caches this is not straightforward. In the external mem-
ory model data transfers are under programmer control
and the multiple sequence access problem has a trivial so-
lution. The algorithm simply chooses k < M,/B., where
B, is the block size and M, is the capacity of the main
memory in the external memory model. For k < M,/B,
there are O(N/B,) accesses to external memory. Since
caches are hardware controlled the problem becomes non-
trivial. For example, consider the case where the starting
addresses of k > a equal length sequences map to the ith
element of the same set and the sequences are accessed in
a round-robin fashion. On a cache with an LRU or FIFO
replacement strategy all sequence accesses will result in
a cache miss. Such pathological cases can be overcome by
randomizing the starting addresses of the sequences.

Related Problems

A very closely related problem is where accesses to the se-
quences are interleaved with accesses to a small working
array. This occurs in applications such as distribution sort-
ing or matrix multiplication.

38

Analyzing Cache Misses

Caches can emulate external memory with an optimal
replacement policy [1,8] however this requires some con-
stant factor more memory. Since the emulation techniques
are software controlled and require modification to the al-
gorithm, rather than selection of parameters, they work
well for fairly simple algorithms [4].

Key Results

Theorem 1 [3] Given an a-way set associative cache with
m cache blocks, s = m/a cache sets, cache blocks size B, and
LRU or FIFO replacement strategy. Let U, denote the ex-
pected number of cache misses in any schedule of N sequen-
tial accesses to k sequences with starting addresses that are
at least (a + 1)-wise independent.

U1§k+ﬂ(1+(3—1)£), (1)
B m
N k—1
U > E(l"'(B—l)m) , (2)
N ka* 1 k—1
Us Sk-'.E(H-(B_I)(Z)-'.m/(kot)—l-'.s—l)
m
forkf;,
(3)

N KB\ 1
Ua§k+§(l+(3—1)(z) +W) (4)

where o = a(a) = a/(a)V, Pu(n,p,a) = Yisa ()
p'(1 — p)"~ is the cumulative binomial probability and
B =1+ a([ax]) where x = x(a) = inf{0 < z < 1:
z+zla([az]) = 1}.

Here 1 <o < eand B(1) =2,8(c0) =1+ e ~ 3.71. This
analysis assumes that an adversary schedules the accesses
to the sequences. For the lower bound the adversary

initially advances sequence s; for i =1...k by X; ele-
ments, where the X; are chosen uniformly and indepen-
dently from {0, M — 1}. The adversary then accesses the
sequences in a round-robin manner.

The k in the upper bound accounts for a possible ex-
tra block that may be accessed due to randomization of
the starting addresses. The —kM term in the lower bound
accounts for the fact that cache misses can not be counted
when the adversary initially winds forwards the sequences.

The bounds are of the form pN + ¢, where ¢ does not
depend on N and p is called the cache miss probability. Let-
ting r = k/m, the ratio between the number of sequences
and the number of cache blocks, the bounds for the cache
miss probabilities in Theorem 1 become [3]:

p1 = 1/B)(1+(B—1)r), @)

p1 > (1/B) (1+(B—1)1:r) ,)

Pa < (1/B)1+(B—1)(ra)® +ra +ar)forr < —, (9)

IS

Pa <(/B)(1+(B—1)(rB)* +rp)forr < % , (10)

k
Pa = (1/B) (1 + (B —1)(ra)” (1 - %)) . (11)

The 1/B term accounts for the compulsory or first refer-
ence miss, which must be incurred in order to read a block
of data from a sequence. The remaining terms account for
conflict misses, which occur when a block of data is evicted
from cache before all its elements have been been scanned.
Conflict misses can be reduced by restricting the number
of sequences. As r approaches zero the cache miss proba-
bilities approach 1/B. In general, inequality (4) states that
the number of cache misses is O(N/B) if r < 1/(2f8) and
(B—1)(rB)* = O(1). Both these conditions are satisfied if
k < m/max(BY?,2p). So, there are O(N/B) cache misses
provided k = O(m/BY4).

The analysis shows that for a direct-mapped cache,
where a = 1, the upper bound is a factor of r + 1 above
the lower bound. For a > 2, the upper bounds and lower
bounds are close if (1 —1/s)f ~ and (¢ + a)r < 1 and
both these conditions are satisfied if k < s.

Rahman and Raman [6] obtain closer upper and lower
bounds for average case cache misses assuming the se-
quences are accessed uniformly randomly on a direct-

Analyzing Cache Misses

39

mapped cache. Sen and Chatterjee [8] also obtain up-
per and lower bounds assuming the sequences are ran-
domly accessed. Ladner, Fix and LaMarca have analyzed
the problem on direct-mapped caches on the independent
reference model [2].

Multiple Sequence Access with Additional Working Set

As stated earlier in many applications accesses to se-
quences are interleaved with accesses to an additional data
structure, a working set, which determines how a sequence
element is to be treated. Assuming that the working set has
size at most sB and is stored in contiguous memory loca-
tions, the following is an upper bound on the number of
cache misses:

Theorem 2 [3] Let U, denote the bound on the number
of cache misses in Theorem 1 and define Uy = N. With the
working set occupying w conflict free memory blocks, the ex-
pected number of cache misses arising in the N accesses to
the sequence data and any number of accesses to the work-
ing set, is bounded by w + (1 — w/s)U, + 2(w/s)U,—1.

On a direct mapped cache, for i = 1,..., k, if sequence i
is accessed with probability p; independently of all previ-
ous accesses and is followed by an access to element i of
the working set then the following are upper and lower
bounds for the number of cache misses:

Theorem 3 [6] In a direct-mapped cache with m cache
blocks each of B elements, if sequence i, for i = 1,...,k, is
accessed with probability p; and block j of the working set,
for j=1,...,kIB, is accessed with probability P; then the
expected number of cache misses in N sequence accesses is
at most N(ps + pw) + k(1 + 1/B), where:

1 k B—1
ps S S5 +—=+
mB mB
k k/B
B DI z bip
— & pi+P +p] ’

Theorem 4 [6] In a direct-mapped cache with m cache
blocks each of B elements, if sequence i, for i =1,...,k,
is accessed with probability p; > 1/m then the expected

number of cache misses in N sequence accesses is at least

Np; + k, where:

>l k(2m — k) k(k—3m)_ 1 B k
‘=~ B 2m? 2Bm? 2Bm 2B2m
k
i=1 j=1
B-1)2 & kL pi pj) B-1
+ —
B3m2 Z]21: (P1+P)2 2
k k
ZZ —0(e?).

b +p;+pz pipi

The lower bound ignores the interaction with the work-
ing set, since this can only increase the number of cache
misses.

In Theorem 3 and Theorem 4 p; is the probability of
a cache miss for a sequence access and in Theorem 3 p,, is
the probability of a cache miss for an accesses to the work-
ing set.

If the sequences are accessed uniformly randomly,
then using Theorem 3 and Theorem 4, the ratio between
the upper and lower bound is 3/(3 —), where r = k/m.
So for uniformly random data the lower bound is within
a factor of about 3/2 of the upper bound when k < m and
is much closer when k < m.

Applications

Numerous algorithms have been developed on the exter-
nal memory model which access multiple sequences of
data, such as merge-sort, distribution sort, priority queues,
radix sorting. These analyzes are important as they allow
initial parameter choices to be made for cache memory al-
gorithms.

Open Problems

The analyzes assume that the starting addresses of the se-
quences are randomized and current approaches to allo-
cating random starting addresses waste a lot of virtual ad-
dress space [3]. An open problem is to find a good online
scheme to randomize the starting addresses of arbitrary
length sequences.

Experimental Results

The cache model is a powerful abstraction of real caches,
however modern computer architectures have complex in-
ternal memory hierarchies, with registers, multiple levels

40

Applications of Geometric Spanner Networks

of caches and translation-lookaside-buffers (TLB). Cache
miss penalties are not of the same magnitude as the cost
of disk accesses, so an algorithm may perform better by
allowing conflict misses to increase in order to reduce
computation costs and compulsory misses, by reducing
the number of passes over the data. This means that in
practice cache analyzes is used to choose an initial value
of k which is then fine tuned for the platform and algo-
rithm [4,5,7,10].

For distribution sorting, in [4] a heuristic was consid-
ered for selecting k and equations for approximate cache
misses were obtained. These equations were shown to be
very accurate in practice.

Cross References

» Cache-Oblivious Model

» Cache-Oblivious Sorting

» External Sorting and Permuting
» I/O-model

Recommended Reading

1. Frigo, M,, Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-
oblivious algorithms. In: Proc. of 40th Annual Symposium on
Foundations of Computer Science (FOCS'99), pp. 285-298 IEEE
Computer Society, Washington D.C. (1999)

2. Ladner, R.E, Fix, J.D., LaMarca, A.: Cache performance analy-
sis of traversals and random accesses. In: Proc. of 10th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 1999),
pp. 613-622 Society for Industrial and Applied Mathematics,
Philadelphia (1999)

3. Mehlhorn, K., Sanders, P.: Scanning multiple sequences via
cache memory. Algorithmica 35, 75-93 (2003)

4. Rahman, N., Raman, R.: Adapting radix sort to the memory hi-
erarchy. ACM J. Exp. Algorithmics 6, Article 7 (2001)

5. Rahman, N., Raman, R.: Analysing cache effects in distribution
sorting. ACM J. Exp. Algorithmics 5, Article 14 (2000)

6. Rahman, N., Raman, R.: Cache analysis of non-uniform dis-
tribution sorting algorithms. (2007) http://www.citebase.org/
abstract?id=oai:arXiv.org:0706.2839 Accessed 13 August 2007
Preliminary version in: Proc. of 8th Annual European Sympo-
sium on Algorithms (ESA 2000). LNCS, vol. 1879, pp. 380-391.
Springer, Berlin Heidelberg (2000)

7. Sanders, P.: Fast priority queues for cached memory. ACM J.
Exp. Algorithmics 5, Article 7 (2000)

8. Sen, S., Chatterjee, S.: Towards a theory of cache-efficient al-
gorithms. In: Proc. of 11th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2000), pp. 829-838. Society for In-
dustrial and Applied Mathematics (2000)

9. Vitter, J.S.: External memory algorithms and data structures:
dealing with massive data. ACM Comput. Surv. 33, 209-271
(2001)

10. Wickremesinghe, R., Arge, L., Chase, J.S,, Vitter, J.S.: Efficient
sorting using registers and caches. ACM J. Exp. Algorithmics
7,9(2002)

Applications of Geometric
Spanner Networks

2002; Gudmundsson, Levcopoulos,
Narasimhan, Smid

JOACHIM GUDMUNDSSON', GIRT NARASIMHAN?,

MICHIEL SMID’

! DMiST, National ICT Australia Ltd,
Alexandria, Australia

2 School of Computing and Information Science, Florida
International University, Miami, FL, USA

3 School of Computer Science, Carleton University,
Ottawa, ON, Canada

Keywords and Synonyms

Stretch factor

Problem Definition

Given a geometric graph in d-dimensional space, it is use-
ful to preprocess it so that distance queries, exact or ap-
proximate, can be answered efficiently. Algorithms that
can report distance queries in constant time are also re-
ferred to as “distance oracles”. With unlimited preprocess-
ing time and space, it is clear that exact distance oracles
can be easily designed. This entry sheds light on the design
of approximate distance oracles with limited preprocess-
ing time and space for the family of geometric graphs with
constant dilation.

Notation and Definitions

If p and g are points in R¥, then the notation |pq| is used
to denote the Euclidean distance between p and g; the no-
tation 8 (p, q) is used to denote the Euclidean length of
a shortest path between p and g in a geometric network G.
Given a constant ¢ > 1, a graph G with vertex set S is a ¢-
spanner for Sif §¢(p, q) < t|pq| for any two points p and
q of S. A t-spanner network is said to have dilation (or
stretch factor) t. A (1 + ¢)-approximate shortest path be-
tween p and g is defined to be any path in G between p and
q having length A, where 6¢(p, q) < A < (1 +&)ég(p. q)-
For a comprehensive overview of geometric spanners, see
the book by Narasimhan and Smid [13].

All networks considered in this entry are simple and
undirected. The model of computation used is the tradi-
tional algebraic computation tree model with the added
power of indirect addressing. In particular, the algorithms
presented here do not use the non-algebraic floor function
as a unit-time operation. The problem is formalized below.

http://www.citebase.org/abstract?id=oai:arXiv.org:0706.2839
http://www.citebase.org/abstract?id=oai:arXiv.org:0706.2839

Applications of Geometric Spanner Networks

41

Problem 1 (Distance Oracle) Given an arbitrary real
constant € > 0, and a geometric graph G in d-dimensional
Euclidean space with constant dilation t, design a data
structure that answers (1 + €)-approximate shortest path
length queries in constant time.

The data structure can also be applied to solve several
other problems. These include (a) the problem of report-
ing approximate distance queries between vertices in a pla-
nar polygonal domain with “rounded” obstacles, (b) query
versions of closest pair problems, and (c) the efficient com-
putation of the approximate dilations of geometric graphs.

Survey of Related Research

The design of efficient data structures for answering dis-
tance queries for general (non-geometric) networks was
considered by Thorup and Zwick [15] (unweighted gen-
eral graphs), Baswanna and Sen [3] (weighted general
graphs, i. e., arbitrary metrics), and Arikati et al. [2] and
Thorup [14] (weighted planar graphs).

For the geometric case, variants of the problem have
been considered in a number of papers (for a recent pa-
per see, for example, Chen et al. [5]). Work on the ap-
proximate version of these variants can also be found in
many articles (for a recent paper see, for example, Agarwal
et al. [1]). The focus of this entry are the results reported
in the work of Gudmundsson et al. [9,10,11,12].

Key Results

The main result of this entry is the existence of approx-
imate distance oracle data structures for geometric net-
works with constant dilation (see “Theorem 4” below). As
preprocessing, the network is “pruned” so that it only has
a linear number of edges. The data structure consists of
a series of “cluster graphs” of increasing coarseness each
of which helps answer approximate queries for pairs of
points with interpoint distances of different scales. In or-
der to pinpoint the appropriate cluster graph to search in
for a given query, the data structure uses the bucketing
tool described below. The idea of using cluster graphs to
speed up geometric algorithms was first introduced by Das
and Narasimhan [6] and later used by Gudmundsson et
al. [8] to design an efficient algorithm to compute (1 + &)-
spanners. Similar ideas were explored by Gao et al. [7] for
applications to the design of mobile networks.

Pruning

If the input geometric network has a superlinear number
of edges, then the preprocessing step for the distance or-
acle data structure involves efficiently “pruning” the net-

work so that it has only a linear number of edges. The
pruning may result in a small increase of the dilation of
the spanner. The following theorem was proved by Gud-
mundsson et al. [12].

Theorem 1 Let t > 1and &' > 0 be real constants. Let S
be a set of n points in R% and let G = (S, E) be a t-spanner
for S with m edges. There exists an algorithm to compute in
O(m + nlogn) time, a (1 + &')-spanner of G having O(n)
edges and whose weight is O(wt(MST(S))).

The pruning step requires the following technical theorem
proved by Gudmundsson et al. [12].

Theorem 2 Let S be a set of n points in RY, and let ¢ > 7
be an integer constant. In O(nlog n) time, it is possible to
compute a data structure D(S) consisting of:

1. a sequence Ly, Ly, ..., Ly of real numbers, where £ =

O(n), and
2. a sequence S1,Sz,...,S¢ of subsets of S satisfying
Yii I8 = O(n),

such that the following holds. For any two distinct points
pand q of S, it is possible to compute in O(1) time an index i
with 1 < i < { and two points x and y in S; such that
(a) Li/n“*! < |xy| < L;, and (b) both |px| and |qy| are less
than |xy|/n° 2.

Despite its technical nature, the above theorem is of fun-
damental importance to this work. In particular, it helps
to deal with networks where the interpoint distances are
not confined to a polynomial range, i. e., there are pairs of
points that are very close to each other and very far from
each other.

Bucketing

Since the model of computation assumed here does not al-
low the use of floor functions, an important component
of the algorithm is a “bucketing tool” that allows (after
appropriate preprocessing) constant-time computation of
a quantity referred to as BINDEX, which is defined to be the
floor of the logarithm of the interpoint distance between
any pair of input points.

Theorem 3 Let S be a set of n points in R that are con-
tained in the hypercube (0, n*)?, for some positive integer
constant k, and let ¢ be a positive real constant. The set S
can be preprocessed in O(nlogn) time into a data struc-
ture of size O(n), such that for any two points p and q of S,
with |pq| > 1, it is possible to compute in constant time the

quantity BIndex(p, q) = |log,_. |pq|].

The constant-time computation mentioned in Theorem 3
is achieved by reducing the problem to one of answering

42

Applications of Geometric Spanner Networks

least common ancestor queries for pairs of nodes in a tree,
a problem for which constant-time solutions were devised
most recently by Bender and Farach-Colton [4].

Main Results

Using the bucketing and the pruning tools, and using the
algorithms described by Gudmundsson et al. [11], the fol-
lowing theorem can be proved.

Theorem 4 Let t > 1 and ¢ > 0 be real constants. Let S
be a set of n points in R% and let G = (S, E) be a t-spanner
for S with m edges. The graph G can be preprocessed into
a data structure of size O(nlogn) in time O(m + nlog n),
such that for any pair of query points p, q € S, it is possible
to compute a (1+¢)-approximation of the shortest-path dis-
tance in G between p and q in O(1) time. Note that all the
big-Oh notations hide constants that depend on d, t and ¢.

Additionally, if the traditional algebraic model of compu-
tation (without indirect addressing) is assumed, the fol-
lowing weaker result can be proved.

Theorem 5 Let S be a set of n points in RY, and let
G = (S.E) be a t-spanner for S, for some real constant
t > 1, having m edges. Assuming the algebraic model of
computation, in O(mloglog n + nlog® n) time, it is possi-
ble to preprocess G into a data structure of size O(n log n),
such that for any two points p and q in S, a (1 + €)-approx-
imation of the shortest-path distance in G between p and q
can be computed in O(loglog n) time.

Applications

As mentioned earlier, the data structure described above
can be applied to several other problems. The first appli-
cation deals with reporting distance queries for a planar
domain with polygonal obstacles. The domain is further
constrained to be t-rounded, which means that the length
of the shortest obstacle-avoiding path between any two
points in the input point set is at most ¢ times the Eu-
clidean distance between them. In other words, the visibil-
ity graph is required to be a t-spanner for the input point
set.

Theorem 6 Let F be a t-rounded collection of polygonal
obstacles in the plane of total complexity n, where t is a posi-
tive constant. One can preprocess ‘F in O(nlog n) time into
a data structure of size O(n log n) that can answer obstacle-
avoiding (1+¢&)-approximate shortest path length queries in
time O(log n). If the query points are vertices of F, then the
queries can be answered in O(1) time.

The next application of the distance oracle data structure
includes query versions of closest pair problems, where the

queries are confined to specified subset(s) of the input set.

Theorem 7 Let G = (S,E) be a geometric graph on n
points and m edges, such that G is a t-spanner for S, for some
constant t > 1. One can preprocess G in time O(m-+n log n)
into a data structure of size O(nlogn) such that given
a query subset S’ of S, a (1 + ¢)-approximate closest pair
in §' (where distances are measured in G) can be computed
in time O(|S'| log |S']).

Theorem 8 Let G = (S,E) be a geometric graph on n
points and m edges, such that G is a t-spanner for S, for some
constant t > 1. One can preprocess G in time O(m-+n log n)
into a data structure of size O(nlog n) such that given two
disjoint query subsets X and Y of S, a (1 + €)-approximate
bichromatic closest pair (where distances are measured in
G) can be computed in time O((|X| + |Y|) log(|X| + | Y])).

The last application of the distance oracle data structure
includes the efficient computation of the approximate di-
lations of geometric graphs.

Theorem 9 Given a geometric graph on n vertices with
m edges, and given a constant C that is an upper bound
on the dilation t of G, it is possible to compute a (1 + €)-
approximation to t in time O(m + nlog n).

Open Problems

Two open problems remain unanswered.

1. Improve the space utilization of the distance oracle data
structure from O(nlog n) to O(n).

2. Extend the approximate distance oracle data structure
to report not only the approximate distance, but also
the approximate shortest path between the given query
points.

Cross References

» All Pairs Shortest Paths in Sparse Graphs

» All Pairs Shortest Paths via Matrix Multiplication
» Geometric Spanners

» Planar Geometric Spanners

» Sparse Graph Spanners

» Synchronizers, Spanners

Recommended Reading

1. Agarwal, P.K, Har-Peled, S., Karia, M.: Computing approximate
shortest paths on convex polytopes. In: Proceedings of the
16th ACM Symposium on Computational Geometry, pp. 270-
279. ACM Press, New York (2000)

2. Arikati, S., Chen, D.Z,, Chew, L.P., Das, G., Smid, M., Zaroliagis,
C.D.: Planar spanners and approximate shortest path queries
among obstacles in the plane. In: Proceedings of the 4th An-
nual European Symposium on Algorithms. Lecture Notes in

Approximate Dictionaries

43

Computer Science, vol. 1136, Berlin, pp. 514-528. Springer,
London (1996)

3. Baswana, S., Sen, S.. Approximate distance oracles for un-
weighted graphs in O(n?) time. In: Proceedings of the 15th
ACM-SIAM Symposium on Discrete Algorithms, pp. 271-280.
ACM Press, New York (2004)

4, Bender, M.A,, Farach-Colton, M.: The LCA problem revisited. In:
Proceedings of the 4th Latin American Symposium on Theoret-
ical Informatics. Lecture Notes in Computer Science, vol. 1776,
Berlin, pp. 88-94. Springer, London (2000)

5. Chen, D.Z,, Daescu, O., Klenk, K.S.: On geometric path query
problems. Int. J. Comput. Geom. Appl. 11, 617-645 (2001)

6. Das, G., Narasimhan, G.: A fast algorithm for constructing
sparse Euclidean spanners. Int. J. Comput. Geom. Appl. 7, 297-
315 (1997)

7. Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Discrete
mobile centers. Discrete Comput. Geom. 30, 45-63 (2003)

8. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy
algorithms for constructing sparse geometric spanners. SIAM
J. Comput. 31, 1479-1500 (2002)

9. Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.:
Approximate distance oracles for geometric graphs. In: Pro-
ceedings of the 13th ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 828-837. ACM Press, New York (2002)

10. Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.:
Approximate distance oracles revisited. In: Proceedings of the
13th International Symposium on Algorithms and Computa-
tion. Lecture Notes in Computer Science, vol. 2518, Berlin, pp.
357-368. Springer, London (2002)

11. Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.:
Approximate distance oracles for geometric spanners, ACM
Trans. Algorithms (2008). To Appear

12. Gudmundsson, J., Narasimhan, G., Smid, M.: Fast pruning of
geometric spanners. In: Proceedings of the 22nd Symposium
on Theoretical Aspects of Computer Science. Lecture Notes
in Computer Science, vol. 3404, Berlin, pp. 508-520. Springer,
London (2005)

13. Narasimhan, G., Smid, M.: Geometric Spanner Networks, Cam-
bridge University Press, Cambridge, UK (2007)

14. Thorup, M.: Compact oracles for reachability and approximate
distances in planar digraphs. J. ACM 51, 993-1024 (2004)

15. Thorup, M., Zwick, U.: Approximate distance oracles. In: Pro-
ceedings of the 33rd Annual ACM Symposium on the Theory
of Computing, pp. 183-192. ACM Press, New York (2001)

|
Approximate Dictionaries

2002; Buhrman, Miltersen, Radhakrishnan,
Venkatesh

VENKATESH SRINIVASAN
Department of Computer Science, University of Victoria,
Victoria, BC, Canada

Keywords and Synonyms

Static membership; Approximate membership

Problem Definition
The Problem and the Model

A static data structure problem consists of a set of data
D, a set of queries Q, a set of answers A, and a function
f: D x Q — A. The goal is to store the data succinctly so
that any query can be answered with only a few probes
to the data structure. Static membership is a well-studied
problem in data structure design [1,4,7,8,12,13,16].

Definition 1 (Static Membership) In the static member-
ship problem, one is given a subset S of at most n keys from
auniverse U = {1,2, ..., m}. The task is to store S so that
queries of the form “Is u in §?” can be answered by making
few accesses to the memory.

A natural and general model for studying any data struc-
ture problem is the cell probe model proposed by Yao [16].

Definition 2 (Cell Probe Model) An (s, w, t) cell probe
scheme for a static data structure problem f: D x Q — A
has two components: a storage scheme and a query
scheme. The storage scheme stores the datad € D as a ta-
ble T[d] of s cells, each cell of word size w bits. The stor-
age scheme is deterministic. Given a query q € Q, the
query scheme computes f(d, q) by making at most t probes
to T[d], where each probe reads one cell at a time, and
the probes can be adaptive. In a deterministic cell probe
scheme, the query scheme is deterministic. In a random-
ized cell probe scheme, the query scheme is randomized
and is allowed to err with a small probability.

Buhrman et al. [2] study the complexity of the static
membership problem in the bitprobe model. The bitprobe
model is a variant of the cell probe model in which each
cell holds just a single bit. In other words, the word size w
is 1. Thus, in this model, the query algorithm is given bit-
wise access to the data structure. The study of the member-
ship problem in the bitprobe model was initiated by Min-
sky and Papert in their book Perceptrons [12]. However,
they were interested in average-case upper bounds for this
problem, while this work studies worst-case bounds for the
membership problem.

Observe that if a scheme is required to store sets of size
at most 7, then it must use at least [log >~ _, (/)] number
of bits. If n < m!=2M) this implies that the scheme must
store §2(nlog m) bits (and therefore use §2(n) cells). The
goal in [2] is to obtain a scheme that answers queries uses
only a constant number of bitprobes and at the same time
uses a table of O(n log m) bits.

44

Approximate Dictionaries

Related Work

The static membership problem has been well studied in
the cell probe model, where each cell is capable of hold-
ing one element of the universe. That is, w = O(log m).
In a seminal paper, Fredman et al. [8] proposed a scheme
for the static membership problem in the cell probe model
with word size O(log m) that used a constant number of
probes and a table of size O(n). This scheme will be re-
ferred to as the FKS scheme. Thus, up to constant fac-
tors, the FKS scheme uses optimal space and number of
cell probes. In fact, Fiat et al. [7], Brodnik and Munro [1],
and Pagh [13] obtain schemes that use space (in bits) that
is within a small additive term of [log ", , ()] and yet
answer queries by reading at most a constant number of
cells. Despite all these fundamental results for the mem-
bership problem in the cell probe model, very little was
known about the bitprobe complexity of static member-
ship prior to the work in [2].

Key Results

Buhrman et al. investigate the complexity of the static

membership problem in the bitprobe model. They study

e Two-sided error randomized schemes that are allowed
to err on positive instances as well as negative instances
(that is, these schemes can say ‘No’ with a small proba-
bility when the query element u is in the set S and “Yes’
when it is not);

e One-sided error randomized schemes where the errors
are restricted to negative instances alone (that is, these
schemes never say ‘No’ when the query element u is in
the set S);

e Deterministic schemes in which no errors are allowed.

The main techniques used in [2] are based on two-color-

ings of special set systems that are related to the r-cover-

free family of sets considered in [3,5,9]. The reader is re-
ferred to [2] for further details.

Randomized Schemes with Two-Sided Error

The main result in [2] shows that there are randomized
schemes that use just one bitprobe and yet use space close
to the information theoretic lower bound of £2(nlogm)
bits.

Theorem 1 Forany 0 < € < 1, there is a scheme for stor-
ing subsets S of size at most n ofa universe of size m using
O(; log m) bits so that any membership query “Is u € $¢”
can be answered with an error probability of at most € by
a randomized algorithm that probes the memory at just one
location determined by its coin tosses and the query ele-
ment u.

Note that randomization is allowed only in the query algo-
rithm. It is still the case that for each set S, there is exactly
one associated data structure T(S). It can be shown that
deterministic schemes that answer queries using a single
bitprobe need m bits of storage (see the remarks follow-
ing Theorem 4). Theorem 1 shows that, by allowing ran-
domization, this bound (for constant €) can be reduced to
O(nlogm) bits. This space is within a constant factor of
the information theoretic bound for n sufficiently small.
Yet the randomized scheme answers queries using a single
bitprobe.

Unfortunately, the construction above does not permit
us to have subconstant error probability and still use opti-
mal space. Is it possible to improve the result of Theorem 1
further and design such a scheme? [2] shows that this is not
possible: if € is made subconstant, then the scheme must
use more than nlog m space.

Theorem 2 Suppose iz < € < ;. Then, any two-sided
e-error randomized scheme that answers queries using one

bitprobe must use space ‘Q(elog(lle) log m).

Randomized Schemes with One-Sided Error

Is it possible to have any savings in space if the query
scheme is expected to make only one-sided errors? The
following result shows it is possible if the error is allowed
only on negative instances.

Theorem 3 Forany0 < e < }}, there is a scheme for stor-
ing subsets S of size at most n of a universe of size m us-
ing O((£)*logm) bits so that any membership query “Is
u € §2” can be answered with error probability at most €
by a randomized algorithm that makes a single bitprobe to
the data structure. Furthermore, if u € S, the probability of

error is 0.

Though this scheme does not operate with optimal space,
it still uses significantly less space than a bitvector. How-
ever, the dependence on n is quadratic, unlike in the
two-sided scheme where it was linear. [2] shows that
this scheme is essentially optimal: there is necessarily
a quadratic dependence on £ for any scheme with one-
sided error.

5 <€= }1. Consider the static
membership problem for sets S of size at most n from a uni-
verse of size m. Then, any scheme with one-sided error
€ that answers queries using at most one bitprobe must use

2(=—= log m) bits of storage.

2 log(nle) log(n/e)

Remark One could also consider one-probe, one-sided
error schemes that only make errors on positive instances.
That is, no error is made for query elements not in the set S.

Approximate Dictionaries

45

In this case, [2] shows that randomness does not help at all:
such a scheme must use m bits of storage.

The following result shows that the space requirement can
be reduced further in one-sided error schemes if more
probes are allowed.

Theorem 5 Suppose 0 < § < 1. There is a randomized
scheme with one-sided error n™% that solves the static mem-
bership problem using O(n'*% logm) bits of storage and
O(%) bitprobes.

Deterministic Schemes

In contrast to randomized schemes, Buhrman et al. show
that deterministic schemes exhibit a time-space tradeoft
behavior.

Theorem 6 Suppose a deterministic scheme stores subsets
of size n from a universe of size m using s bits of storage and
answers membership queries with t bitprobes to memory.
Then, (r’:’) < maXj<u; (215)

This tradeoft result has an interesting consequence. Recall
that the FKS hashing scheme is a data structure for stor-
ing sets of size at most n from a universe of size m us-
ing O(nlogm) bits, so that membership queries can be
answered using O(log m) bitprobes. As a corollary of the
tradeoff result, [2] shows that the FKS scheme makes an
optimal number of bitprobes, within a constant factor, for
this amount of space.

Corollary 1 Let € > 0,¢ > 1 be any constants. There is
a constant § > 0 so that the following holds. Let n < m!'~¢
and let a scheme for storing sets of size at most n of a uni-
verse of size m as data structures of at most cnlog m bits be
given. Then, any deterministic algorithm answering mem-
bership queries using this structure must make at least
8 log m bitprobes in the worst case.

From Theorem 6 it also follows that any deterministic
scheme that answers queries using ¢ bitprobes must use
space at least ntm?(/") in the worst case. The final result
shows the existence of schemes which almost match the
lower bound.

Theorem 7

1. There is a nonadaptive scheme that stores sets of size at
most n from a universe of size m using O(ntm%) bits
and answers queries using 2t + 1 bitprobes. This scheme
is nonexplicit.

2. There is an explicit adaptive scheme that stores sets
of size at most n from a universe of size m using
O(m"*nlog m) bits and answers queries using O(log n+
loglog m) + t bitprobes.

Applications

The results in [2] have interesting connections to ques-
tions in coding theory and communication complexity.
In the framework of coding theory, the results in [2] can
be viewed as constructing locally decodable source codes,
analogous to the locally decodable channel codes of [10].
Theorems 1-4 can also be viewed as giving tight bounds
for the following communication complexity problem (as
pointed out in [11]): Alice gets u € {1, ..., m}, Bob gets
S € {1,..., m} of size at most n, and Alice sends a single
message to Bob after which Bob announces whether u € S.
See [2] for further details.

Recommended Reading

1. Brodnik, A., Munro, J.I.: Membership in constant time and min-
imum space. In: Lecture Notes in Computer Science, vol. 855,
pp. 72-81, Springer, Berlin (1994). Final version: Membership
in Constant Time and Almost-Minimum Space. SIAM J. Com-
put. 28(5), 1627-1640 (1999)

2. Buhrman, H., Miltersen, P.B., Radhakrishnan, J., Venkatesh, S.:
Are bitvectors optimal? SIAM J. Comput. 31(6), 1723-1744
(2002)

3. Dyachkov, A.G., Rykov, V.V.: Bounds on the length of disjunc-
tive codes. Problemy Peredachi Informatsii 18(3), 7-13 (1982)

4. Elias, P., Flower, R.A.: The complexity of some simple retrieval
problems. J. Assoc. Comput. Mach. 22, 367-379 (1975)

5. Erdds, P., Frankl, P., Fiiredi, Z.: Families of finite sets in which no
set is covered by the union of r others. Isr. J. Math. 51, 79-89
(1985)

6. Fiat, A., Naor, M.: Implicit O(1) probe search. SIAM J. Comput.
22,1-10(1993)

7. Fiat, A, Naor, M., Schmidt, J.P., Siegel, A.: Non-oblivious hash-
ing. J. Assoc. Comput. Mach. 31, 764-782 (1992)

8. Fredman, M.L,, Komlés, J., Szemerédi, E.: Storing a sparse ta-
ble with O(1) worst case access time. J. Assoc. Comput. Mach.
31(3), 538-544 (1984)

9. Furedi, Z.: On r-cover-free families. J. Comb. Theory, Series A
73,172-173 (1996)

10. Katz, J., Trevisan, L.: On the efficiency of local decoding proce-
dures for error-correcting codes. In: Proceedings of STOC'00,
pp. 80-86

11. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data struc-
tures and asymmetric communication complexity. J. Comput.
Syst. Sci. 57, 37-49 (1998)

12. Minsky, M., Papert, S.: Perceptrons. MIT Press, Cambridge
(1969)

13. Pagh, R.: Low redundancy in static dictionaries with O(1)
lookup time. In: Proceedings of ICALP '99. LNCS, vol. 1644,
pp. 595-604. Springer, Berlin (1999)

14. Ruszinkd, M. On the upper bound of the size of r-cover-free
families. J. Comb. Theory, Ser. A 66, 302-310 (1984)

15. Ta-Shma, A.: Explicit one-probe storing schemes using univer-
sal extractors. Inf. Proc. Lett. 83(5), 267-274 (2002)

16. Yao, A.C.C.: Should tables be sorted? J. Assoc. Comput. Mach.
28(3), 615-628 (1981)

46

Approximate Dictionary Matching

|
Approximate Dictionary Matching

» Dictionary Matching and Indexing (Exact and with
Errors)

|
Approximate Maximum

Flow Construction

» Randomized Parallel Approximations to Max Flow

|
Approximate Membership

» Approximate Dictionaries

|
Approximate Nash Equilibrium

» Non-approximability of Bimatrix Nash Equilibria

|
Approximate Periodicities

» Approximate Tandem Repeats

|
Approximate Regular
Expression Matching
1995; Wu, Manber, Myers

GONZALO NAVARRO
Department of Computer Science, University of Chile,
Santiago, Chile

Keywords and Synonyms

Regular expression matching allowing errors or differ-
ences

Problem Definition

Given a text string T = tit,...t, and a regular expres-
sion R of length m denoting language L£(R), over an al-
phabet X' of size o, and given a distance function among
strings d and a threshold k, the approximate regular ex-
pression matching (AREM) problem is to find all the text
positions that finish a so-called approximate occurrence of
R in T, that is, compute the set {j,3i,1 < i < j, 3P €
L(R),d(P,t; ...t;) < k}. T, R, and k are given together,
whereas the algorithm can be tailored for a specific d.

This entry focuses on the so-called weighted edit dis-
tance, which is the minimum sum of weights of a se-
quence of operations converting one string into the other.
The operations are insertions, deletions, and substitutions
of characters. The weights are positive real values asso-
ciated to each operation and characters involved. The
weight of deleting a character c is written w(c — ¢), that
of inserting c¢ is written w(e — c¢), and that of substi-
tuting ¢ by ¢’ # ¢ is written w(c — ¢/). It is assumed
w(c — ¢) =0 for all c € ¥ U e and the triangle inequal-
ity, that is, w(x — y) + w(y — z) > w(x — z) for any
x,y,z € X U {€}. As the distance may be asymmetric, it is
also fixed that that d(A, B) is the cost of converting A into
B. For simplicity and practicality m = o(n) is assumed in
this entry.

Key Results

The most versatile solution to the problem [3] is based on
a graph model of the distance computation process. As-
sume the regular expression R is converted into a nonde-
terministic finite automaton (NFA) with O(m) states and
transitions using Thompson’s method [8]. Take this au-
tomaton as a directed graph G(V, E) where edges are la-
beled by elements in X' U {¢}. A directed and weighted
graph G is built to solve the AREM problem. G is formed
by putting n + 1 copies of G, Gy, Gy, . . ., G, and connect-
ing them with weights so that the distance computation
reduces to finding shortest paths in G.

More formally, the nodes of G are {v;,v € V,0 < i <
n}, so that v; is the copy of node v € V in graph G;. For

each edge u SvinE ce ¥ U{e}, the following edges are
added to graph G:

u; —> v;, with weight w(c — €), 0<i<mn,
u;j — ujy1 ., with weight w(e — t;41), 0<i<mn,
u;j — viy1, with weight w(c — ti1), 0<i<mn.

Assume for simplicity that G has initial state s and a unique
final state f (this can always be arranged). As defined, the
shortest path in G from s to f,, gives the smallest distance
between T'and a string in £(R). In order to adapt the graph
to the AREM problem, the weights of the edges between s;
and s;, are modified to be zero.

Then, the AREM problem is reduced to computing
shortest paths. It is not hard to see that G can be topolog-
ically sorted so that all the paths to nodes in G; are com-
puted before all those to G;;. This way, it is not hard to
solve this shortest path problem in O(m#n log m) time and
O(m) space. Actually, if one restricts the problem to the
particular case of network expressions, which are regular

Approximate Regular Expression Matching

47

expressions without Kleene closure, then G has no loops
and the shortest path computation can be done in O(mn)
time, and even better on average [2].

The most delicate part in achieving O(mn) time for
general regular expressions [3] is to prove that, given the
types of loops that arise in the NFAs of regular expressions,
it is possible to compute the distances correctly within
each G; by (a) computing them in a topological order of G;
without considering the back edges introduced by Kleene
closures; (b) updating path costs by using the back edges
once; (c) updating path costs once more in topological or-
der ignoring back edges again.

Theorem 1 (Myers and Miller 1989 [3]) There exists an
O(mn) worst-case time solution to the AREM problem un-
der weighted edit distance.

It is possible to do better when the weights are integer-
valued, by exploiting the unit-cost RAM model through
a four-Russian technique [10]. The idea is as follows. Take
a small subexpression of R, which produces an NFA that
will translate into a small subgraph of each G;. At the time
of propagating path costs within this automaton, there will
be a counter associated to each node (telling the current
shortest path from sp). This counter can be reduced to
a number in [0, k + 1], where k + 1 means “more than k”.
If the small NFA has r states, r[log,(k + 2)] bits are needed
to fully describe the counters of the corresponding sub-
graph of G;. Moreover, given an initial set of values for the
counters, it is possible to precompute all the propagation
that will occur within the same subgraph of Gj, in a table
having 27M°& (k21 entries, one per possible configuration
of counters. It is sufficient that r < alog;,, n for some
a < 1 to make the construction and storage cost of those
tables o(n). With the help of those tables, all the propa-
gation within the subgraph can be carried out in constant
time. Similarly, the propagation of costs to the same sub-
graph at G;;; can also be precomputed in tables, as it de-
pends only on the current counters in G; and on text char-
acter t;,1, for which there are only o alternatives.

Now, take all the subtrees of R of maximum size
not exceeding r and preprocess them with the technique
above. Convert each such subtree into a leaf in R labeled
by a special character ay, associated to the corresponding
small NFA A. Unless there are consecutive Kleene closures
in R, which can be simplified as R** = R*, the size of R af-
ter this transformation is O(m/r). Call R the transformed
regular expression. One essentially applies the technique
of Theorem 1 to R/, taking care of how to deal with the
special leaves that correspond to small NFAs. Those leaves
are converted by Thompson’s construction into two nodes
linked by an edge labeled as. When the path cost propa-

gation process reaches the source node of an edge labeled
as with cost ¢, one must update the counter of the initial
state of NFA A to ¢ (or k + 1 if ¢ > k). One then uses the
four-Russians table to do all the cost propagation within
A in constant time, and finally obtain, at the counter of
the final state of A, the new value for the target node of
the edge labeled a4 in the top-level NFA. Therefore, all the
edges (normal and special) of the top-level NFA can be tra-
versed in constant time, so the costs at G; can be obtained
in O(mn/r) time using Theorem 1. Now one propagates
the costs to Gj1, using the four-Russians tables to obtain
the current counter values of each subgraph A in G, ;.

Theorem 2 (Wu et al. 1995 [10]) There exists an
O(n + mn/log, ,, n) worst-case time solution to the AREM
problem under weighted edit distance if the weights are in-
teger numbers.

Applications

The problem has applications in computational biology,
to find certain types of motifs in DNA and protein se-
quences. See [1] for a more detailed discussion. In par-
ticular, PROSITE patterns are limited regular expressions
rather popular to search protein sequences. PROSITE pat-
terns can be searched for with faster algorithms in prac-
tice [7]. The same occurs with other classes of complex
patterns [6] and network expressions [2].

Open Problems

The worst-case complexity of the AREM problem is not
fully understood. It is of course §2(n), which has been
achieved for mlog(k + 2) = O(log n), but it is not known
how much can this be improved.

Experimental Results

Some recent experiments are reported in [5]. For small
m and k, and assuming all the weights are 1 (except
w(c — ¢) = 0), bit-parallel algorithms of worst-case com-
plexity O(kn(m/log n)?) [4,9] are the fastest (the second
is able to skip some text characters, depending on R). For
arbitrary integer weights, the best choice is a more com-
plex bit-parallel algorithm [5]; or the four-Russians based
one [10] for larger m and k. The original algorithm [3] is
slower but it is the only one supporting arbitrary weights.

URL to Code

Well-known packages offering efficient AREM (for sim-
plified weight choices) are agrep [9] (http://webglimpse.
net/download.html, top-level subdirectory agrep/) and

http://webglimpse.net/download.html
http://webglimpse.net/download.html

48

Approximate Repetitions

nrgrep [4] (http://www.dcc.uchile.cl/~gnavarro/software).
For biological applications, anrep [2] (http://www.cs.
arizona.edu/people/gene/ CODE/anrep.tar.Z) matches se-
quences of approximate network expressions with arbi-
trary weights and a specified gap length between each net-
work expression and the next.

Cross References

» Regular Expression Matching is the simplified case
where exact matching with strings in £(R) is sought.
» Sequential Approximate String Matching is
a simplification of this problem, and the relation
between graph G here and matrix C there should be
apparent.

Recommended Reading

1. Gusfield, D.: Algorithms on strings, trees and sequences. Cam-
bridge University Press, Cambridge (1997)

2. Myers, EW.: Approximate matching of network expressions
with spacers. J. Comput. Biol. 3(1), 33-51 (1996)

3. Myers, EW., Miller, W.: Approximate matching of regular ex-
pressions. Bullet. Math. Biol. 51, 7-37 (1989)

4. Navarro, G.: Nr-grep: a fast and flexible pattern matching tool.
Softw. Pr. Exp. 31, 1265-1312 (2001)

5. Navarro, G.: Approximate regular expression searching with ar-
bitrary integer weights. Nord. J. Comput. 11(4), 356-373 (2004)

6. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings
- Practical on-line search algorithms for texts and biological
sequences. Cambridge University Press, Cambridge (2002)

7. Navarro, G., Raffinot, M.: Fast and simple character classes and
bounded gaps pattern matching, with applications to protein
searching. J. Comput. Biol. 10(6), 903-923 (2003)

8. Thompson, K.: Regular expression search algorithm. Commun.
ACM 11(6), 419-422 (1968)

9. Wu, S., Manber, U.: Fast text searching allowing errors. Com-
mun. ACM 35(10), 83-91 (1992)

10. Wu, S., Manber, U., Myers, EW.: A subquadratic algorithm for
approximate regular expression matching. J. Algorithms 19(3),
346-360 (1995)

|
Approximate Repetitions

» Approximate Tandem Repeats

|
Approximate Tandem Repeats

2001; Landau, Schmidt, Sokol
2003; Kolpakov, Kucherov

GREGORY KUCHEROV', DINA SOKOL?

! LIFL and INRIA, Villeneuve d’Ascq, France

2 Department of Computer and Information Science,
Brooklyn College of CUNY, Brooklyn, NY, USA

Keywords and Synonyms

Approximate repetitions; Approximate periodicities

Problem Definition

Identification of periodic structures in words (variants
of which are known as tandem repeats, repetitions, pow-
ers or runs) is a fundamental algorithmic task (see entry
» Squares and Repetitions). In many practical applica-
tions, such as DNA sequence analysis, considered repeti-
tions admit a certain variation between copies of the re-
peated pattern. In other words, repetitions under interest
are approximate tandem repeats and not necessarily exact
repeats only.

The simplest instance of an approximate tandem re-
peat is an approximate square. An approximate square
in a word w is a subword uv, where u and v are within
a given distance k according to some distance measure
between words, such as Hamming distance or edit (also
called Levenstein) distance. There are several ways to de-
fine approximate tandem repeats as successions of approx-
imate squares, i.e. to generalize to the approximate case
the notion of arbitrary periodicity (see entry » Squares
and Repetitions). In this entry, we discuss three different
definitions of approximate tandem repeats. The first two
are built upon the Hamming distance measure, and the
third one is built upon the edit distance.

Let h(-,-) denote the Hamming distance between two
words of equal length.

Definition 1 A word r[1..n] is called a K-repetition of pe-
riod p, p < n/2,iff h(r[1..n — p], r[p + 1..n]) < K.

Equivalently, a word r[l..n] is a K-repetition of pe-
riod p, if the number of mismatches, i.e. the number
of i such that r[i] # r[i + p], is at most K. For ex-
ample, ataa attacttact is a 2-repetition of period 4.
atc atc atc atg atg atg atg atg is a 1-repetition of period
3 but atc atc atc att atc atc atc att is not.

Definition 2 A word r[1..n] is called a K-run, of pe-
riod p, p < n/2, iff for every i € [1..n — 2p + 1], we have
h(rli..i+p—1],r[i+p,i+2p—1]) < K.

A K-run can be seen as a sequence of approximate squares
uv such that |u| = |v| = p and u and v differ by at most K
mismatches. The total number of mismatches in a K-run
is not bounded.

Let ed(-,+) denote the edit distance between two
strings.

Definition 3 A word r is a K-edif repeat if it can be par-
titioned into consecutive subwords, r = v'wyw, ... wpv",

http://www.dcc.uchile.cl/~gnavarro/software
http://www.cs.arizona.edu/people/gene/CODE/anrep.tar.Z
http://www.cs.arizona.edu/people/gene/CODE/anrep.tar.Z

Approximate Tandem Repeats

49

{ > 2, such that
{—1
ed(v', wy) + Z ed(wi, wiw1) + ed(wy,v") < K,
i=1
where w/ is some suffix of w) and wy/ is some prefix of wy.

A K-edit repeat is a sequence of “evolving” copies of a pat-
tern such that there are at most K insertions, deletions,
and mismatches, overall, between all consecutive copies of
the repeat. For example, the word r = caagct cagct ccgct
is a 2-edit repeat.

When looking for tandem repeats occurring in a word,
it is natural to consider maximal repeats. Those are the
repeats extended to the right and left as much as possi-
ble provided that the corresponding definition is still ver-
ified. Note that the notion of maximality applies to K-
repetitions, to K-runs, and to K-edit repeats.

Under the Hamming distance, K-runs provide the
weakest “reasonable” definition of approximate tandem
repeats, since it requires that every square it contains can-
not contain more than K mismatch errors, which seems to
be a minimal reasonable requirement. On the other hand,
K-repetition is the strongest such notion as it limits by K
the total number of mismatches. This provides an addi-
tional justification that finding these two types of repeats
is important as they “embrace” other intermediate types
of repeats. Several intermediate definitions have been dis-
cussed in [10, Section 5].

In general, each K-repetition is a part of a K-run of
the same period and every K-run is the union of all K-re-
petitions it contains. Observe that a K-run can contain as
many as a linear number of K-repetitions with the same
period. For example, the word (000 100)" of length 6n is
a 1-run of period 3, which contains (2n — 1) 1-repetitions.
In general, a K-run r contains (s — K + 1) K-repetitions of
the same period, where s is the number of mismatchesin r.

Example 1 The following Fibonacci word contains three
3-runs of period 6. They are shown in regular font, in po-
sitions aligned with their occurrences. Two of them are
identical, and contain each four 3-repetitions, shown in
italic for the first run only. The third run is a 3-repetition
in itself.

010010 100100 101001 010010 010100 1001
10010 100100 101001
10010 100100 10
0010 100100 101
10 100100 10100
0 100100 101001
1001 010010 010100 1

10 010100 1001

Key Results

Given a word w of length #n and an integer K, it is possible
to find all K-runs, K-repetitions, and K-edit repeats within
w in the following time and space bounds:

K-runs can be found in time O(nKlog K + S) (S the out-
put size) and working space O(n) [10],

K-repetitions can be found in time O(nKlog K + S) and
working space O(n) [10],

K-edit repeats can be found in time O(nK log K log(n/K)
+S) and working space O(n + K?) [14,19].

All three algorithms are based on similar algorithmic tools
that generalize corresponding techniques for the exact
case [4,15,16] (see [11] for a systematic presentation). The
first basic tool is a generalization of longest extension func-
tions [16] that, in the case of Hamming distance, can
be exemplified as follows. Given a word w, we want to
compute, for each position p and each k < K, the quan-
tity max{j|h(w[l..j], w[p..p + j — 1]) < k}. Computing
all those values can be done in time O(nK) using a method
based on the suffix tree and the computation of lowest com-
mon ancestor described in [7].

The second tool is the Lempel-Ziv factorization used
in the well-known compression method. Different variants
of the Lempel-Ziv factorization of a word can be com-
puted in linear time [7,18].

The algorithm for computing K-repetitions from [10]
can be seen as a direct generalization of the algorithm
for computing maximal repetitions (runs) in the exact
case [8,15]. Although based on the same basic tools and
ideas, the algorithm [10] for computing K-runs is much
more involved and uses a complex “bootstrapping” tech-
nique for assembling runs from smaller parts.

The algorithm for finding the K-edit repeats uses both
the recursive framework and the idea of the longest exten-
sion functions of [16]. The longest common extensions, in
this case, allow up to K edit operations. Efficient methods
for computing these extensions are based upon a combi-
nation of the results of [12] and [13]. The K-edit repeats
are derived by combining the longest common extensions
computed in the forward direction with those computed
in the reverse direction.

Applications

Tandemly repeated patterns in DNA sequences are in-
volved in various biological functions and are used in dif-
ferent practical applications.

Tandem repeats are known to be involved in regula-
tory mechanisms, e. g. to act as binding sites for regulatory

50

Approximate Tandem Repeats

proteins. Tandem repeats have been shown to be associ-
ated with recombination hot-spots in higher organisms. In
bacteria, a correlation has been observed between certain
tandem repeats and virulence and pathogenicity genes.

Tandem repeats are responsible for a number of inher-
ited diseases, especially those involving the central nervous
system. Fragile X syndrome, Kennedy disease, myotonic
dystrophy, and Huntington’s disease are among the dis-
eases that have been associated with triplet repeats.

Examples of different genetic studies illustrating
above-mentioned biological roles of tandem repeats can
be found in introductive sections of [1,6,9]. Even more
than just genomic elements associated with various bio-
logical functions, tandem repeats have been established to
be a fundamental mutational mechanism in genome evo-
lution [17].

A major practical application of short tandem repeats
is based on the inter-individual variability in copy number
of certain repeats occurring at a single loci. This feature
makes tandem repeats a convenient tool for genetic pro-
filing of individuals. The latter, in turn, is applied to pedi-
gree analysis and establishing phylogenetic relationships
between species, as well as to forensic medicine [3].

Open Problems

The definition of K-edit repeats is similar to that of K-re-
petitions (for the Hamming distance case). It would be in-
teresting to consider other definitions of maximal repeats
over the edit distance. For example, a definition similar to
the K-run would allow up to K edits between each pair of
neighboring periods in the repeat. Other possible defini-
tions would allow K errors between any pair of copies of
a repeat, or between all pairs of copies, or between some
consensus and each copy.

In general, a weighted edit distance scheme is necessary
for biological applications. Known algorithms for tandem
repeats based on a weighted edit distance scheme are not
feasible, and thus only heuristics are currently used.

URL to Code

The algorithms described in this entry have been imple-
mented for DNA sequences, and are publicly available.
The Hamming distance algorithms (K-runs and K-re-
petitions) are part of the mreps software package, avail-
able at http://bioinfo lifl.fr/mreps/ [9]. The K-edit repeats
software, TRED, is available at http://www.sci.brooklyn.
cuny.edu/~sokol/tandem [19]. The implementations of
the algorithms are coupled with postprocessing filters,
necessary due to the nature of biological sequences.

In practice, software based on heuristic and statisti-
cal methods is largely used. Among them, TRF (http://
tandem.bu.edu/trf/trfhtml) [1] is the most popular pro-
gram used by the bioinformatics community. Other pro-
grams include ATRHunter (http://bioinfo.cs.technion.ac.
il/atrhunter/) [20], TandemSWAN (http://strand.imb.ac.
ru/swan/) [2]. STAR (http://atgc.lirmm.fr/star/) [5] is an-
other software, based on an information-theoretic ap-
proach, for computing approximate tandem repeats of
a pre-specified pattern.

Cross References

» Squares and Repetitions

Acknowledgments

This work was supported in part by the National Science Foundation
Grant DB&I 0542751.

Recommended Reading

1. Benson, G.: Tandem Repeats Finder: a program to analyze DNA
sequences. Nucleic Acids Res. 27, 573-580 (1999)

2. Boeva, V.A.,, Régnier, M., Makeev, V.J.: SWAN: searching for
highly divergent tandem repeats in DNA sequences with
the evaluation of their statistical significance. Proceedings
of JOBIM 2004, Montreal, Canada, p. 40 (2004)

3. Butler, J.M.: Forensic DNA Typing: Biology and Technology Be-
hind STR Markers. Academic Press (2001)

4. Crochemore, M.: Recherche linéaire d'un carré dans un mot.
Comptes Rendus Acad. Sci. Paris Sér. | Math. 296, 781-784
(1983)

5. Delgrange, O., Rivals, E.: STAR —an algorithm to Search for Tan-
dem Approximate Repeats. Bioinform. 20, 2812-2820 (2004)

6. Gelfand, Y., Rodriguez, A., Benson, G.: TRDB - The Tandem Re-
peats Database. Nucl. Acids Res. 35(suppl. 1), D80-D87 (2007)

7. Gusfield, D.: Algorithms on Strings, Trees, and Sequences.
Cambridge University Press (1997)

8. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in
a word in linear time. In: 40th Symp. Foundations of Com-
puter Science (FOCS), pp. 596-604. IEEE Computer Society
Press (1999)

9. Kolpakov, R., Bana, G., Kucherov, G.: mreps: efficient and flex-
ible detection of tandem repeats in DNA. Nucl. Acids Res.
31(13), 3672-3678 (2003)

10. Kolpakov, R., Kucherov, G.: Finding approximate repetitions
under Hamming distance. Theoret. Comput. Sci. 33(1), 135-
156, (2003)

11. Kolpakov, R., Kucherov, G.: Identification of periodic structures
in words. In: Berstel, J., Perrin, D. (eds.) Applied combinatorics
on words. Encyclopedia of Mathematics and its Applications.
Lothaire books, vol. 104, pp. 430-477. Cambridge University
Press (2005)

12. Landau, G.M,, Vishkin, U.: Fast string matching with k differ-
ences. J. Comput. Syst. Sci. 37(1), 63-78 (1988)

13. Landau, G.M., Myers, EW., Schmidt, J.P.: Incremental string
comparison. SIAM J. Comput. 27(2), 557-582 (1998)

http://bioinfo.lifl.fr/mreps/
http://www.sci.brooklyn.cuny.edu/~sokol/tandem
http://www.sci.brooklyn.cuny.edu/~sokol/tandem
http://tandem.bu.edu/trf/trf.html
http://tandem.bu.edu/trf/trf.html
http://bioinfo.cs.technion.ac.il/atrhunter/
http://bioinfo.cs.technion.ac.il/atrhunter/
http://strand.imb.ac.ru/swan/
http://strand.imb.ac.ru/swan/
http://atgc.lirmm.fr/star/

Approximating Metric Spaces by Tree Metrics

51

14. Landau, G.M., Schmidt, J.P., Sokol, D.: An algorithm for approx-
imate tandem repeats. J. Comput. Biol. 8, 1-18 (2001)

15. Main, M.: Detecting leftmost maximal periodicities. Discret.
Appl. Math. 25, 145-153 (1989)

16. Main, M., Lorentz, R.: An O(n log n) algorithm for finding all rep-
etitions in a string. J. Algorithms 5(3), 422-432 (1984)

17. Messer, P.W., Arndt, P.F.: The majority of recent short DNA in-
sertions in the human genome are tandem duplications. Mol.
Biol. Evol. 24(5), 1190-7 (2007)

18. Rodeh, M., Pratt, V., Even, S.: Linear algorithm for data compres-
sion via string matching. J. Assoc. Comput. Mach. 28(1), 16-24
(1981)

19. Sokol, D., Benson, G., Tojeira, J.: Tandem repeats over the edit
distance. Bioinform. 23(2), e30-e35 (2006)

20. Wexler, Y., Yakhini, Z.,Kashi, Y., Geiger, D.: Finding approximate
tandem repeats in genomic sequences. J. Comput. Biol. 12(7),
928-42 (2005)

|
Approximating Metric Spaces
by Tree Metrics
1996; Bartal, Fakcharoenphol, Rao, Talwar
2004; Bartal, Fakcharoenphol, Rao, Talwar

JITTAT FAKCHAROENPHOL', SATISH RAO?,

KUNAL TALWAR®

! Department of Computer Engineering, Kasetsart
University, Bangkok, Thailand

% Computer Science Division, University of California at
Berkeley, Berkeley, CA, USA

3 Microsoft Research, Silicon Valley Campus, Mountain
View, CA, USA

Keywords and Synonyms

Embedding general metrics into tree metrics

Problem Definition

This problem is to construct a random tree metric that
probabilistically approximates a given arbitrary metric
well. A solution to this problem is useful as the first step
for numerous approximation algorithms because usually
solving problems on trees is easier than on general graphs.
It also finds applications in on-line and distributed com-
putation.

It is known that tree metrics approximate general
metrics badly, e.g., given a cycle C, with n nodes, any
tree metric approximating this graph metric has distor-
tion £2(n) [17]. However, Karp [15] noticed that a ran-
dom spanning tree of C, approximates the distances be-
tween any two nodes in C, well in expectation. Alon,
Karp, Peleg, and West [1] then proved a bound of

exp(O(y/log nloglog n)) on an average distortion for ap-
proximating any graph metric with its spanning tree.

Bartal [2] formally defined the notion of probabilistic
approximation.

Notations

A graph G = (V, E) with an assignment of non-negative
weights to the edges of G defines a metric space (V, dg)
where for each pair u, v € V, dg(u, v) is the shortest path
distance between uand vin G. A metric (V, d) is a tree met-
ric if there exists some tree T = (V', E’) such that V € V’
and for all u,v € V, dr(u,v) = d(u, v). The metric (V, d)
is also called a metric induced by T.

Given a metric (V,d), a distribution D over tree
metrics over V o-probabilistically approximates d
if every tree metric dr € D, dr(u,v) > d(u,v) and
Egrenldr(u,v)] < o - d(u,v), for every u,v € V. The
quantity « is referred to as the distortion of the approxi-
mation.

Although the definition of probabilistic approximation
uses a distribution D over tree metrics, one is interested
in a procedure that constructs a random tree metric dis-
tributed according to D, i.e., an algorithm that produces
a random tree metric that probabilistically approximates
a given metric. The problem can be formally stated as fol-
lows.

Problem (APPROX-TREE)

INPUT: a metric (V, d)

OUTPUT: a tree metric (V, dr) sampled from a distribution
D over tree metrics that a-probabilistically approximates
(V,d).

Bartal then defined a class of tree metrics, called hierarchi-
cally well-separated trees (HST), as follows. A k-hierarchi-
cally well-separated tree (k-HST) is a rooted weighted tree
satisfying two properties: the edge weight from any node
to each of its children is the same, and the edge weights
along any path from the root to a leaf are decreasing by
a factor of at least k. These properties are important to
many approximation algorithms.

Bartal showed that any metric on »n points can
be probabilistically approximated by a set of k-HST’s
with O(log2 n) distortion, an improvement from
exp(O(/log nloglog n)) in [1]. Later Bartal [3], follow-
ing the same approach as in Seymour’s analysis on the
Feedback Arc Set problem [18], improved the distortion
down to O(log nloglog n). Using a rounding procedure of
Calinescu, Karloff, and Rabani [5], Fakcharoenphol, Rao,
and Talwar [9] devised an algorithm that, in expectation,
produces a tree with O(logn) distortion. This bound is
tight up to a constant factor.

52

Approximating Metric Spaces by Tree Metrics

Key Results

A tree metric is closely related to graph decomposi-
tion. The randomized rounding procedure of Calinescu,
Karloff, and Rabani [5] for the 0-extension problem de-
composes a graph into pieces with bounded diameter, cut-
ting each edge with probability proportional to its length
and a ratio between the numbers of nodes at certain dis-
tances. Fakcharoenphol, Rao, and Talwar [9] used the
CKR rounding procedure to decompose the graph recur-
sively and obtained the following theorem.

Theorem 1 Given an n-point metric (V, d), there exists
a randomized algorithm, which runs in time O(n?), that
samples a tree metric from the distribution D over tree
metrics that O(log n)-probabilistically approximates (V, d).
The tree is also a 2-HST.

The bound in Theorem 1 is tight, as Alon et al. [1] proved
the bound of an £2(log n) distortion when (V, d) is induced
by a grid graph. Also note that it is known (as folklore)
that even embedding a line metric onto a 2-HST requires
distortion §2(log n).

If the tree is required to be a k-HST, one can apply
the result of Bartal, Charikar, and Raz [4] which states
that any 2-HST can be O(k/log k)-probabilistically ap-
proximated by k-HST, to obtain an expected distortion of
O(klog n/log k).

Finding a distribution of tree metrics that probabilis-
tically approximates a given metric has a dual problem
that is to find a single tree T with small average weighted
stretch. More specifically, given weight ¢, on edges, find
a tree metric dr such that for all u,v € Vdr(u,v) >
d(u,v)and Zu,vEV Cuv-dr(u,v) <a Zu,vEV Cuv-d(u, v).

Charikar, Chekuri, Goel, Guha, and Plotkin [6]
showed how to find a distribution of O(nlog n) tree met-
rics that a-probabilistically approximates a given metric,
provided that one can solve the dual problem. The algo-
rithm in Theorem 1 can be derandomized by the method
of conditional expectation to find the required tree metric
with o = O(log n). Another algorithm based on modified
region growing techniques is presented in [9], and inde-
pendently by Bartal.

Theorem 2 Given an n-point metric (V, d), there exists
a polynomial-time deterministic algorithm that finds a dis-
tribution D over O(nlogn) tree metrics that O(log n)-
probabilistically approximates (V, d).

Note that the tree output by the algorithm contains Steiner
nodes, however Gupta [10] showed how to find another
tree metric without Steiner nodes while preserving all dis-
tances within a constant factor.

Applications

Metric approximation by random trees has applications
in on-line and distributed computation, since randomiza-
tion works well against oblivious adversaries, and trees are
easy to work with and maintain. Alon et al. [1] first used
tree embedding to give a competitive algorithm for the k-
server problem. Bartal [3] noted a few problems in his pa-
per: metrical task system, distributed paging, distributed
k-server problem, distributed queuing, and mobile user.

After the paper by Bartal in 1996, numerous applica-
tions in approximation algorithms have been found. Many
approximation algorithms work for problems on tree met-
rics or HST metrics. By approximating general metrics
with these metrics, one can turn them into algorithms
for general metrics, while, usually, losing only a factor
of O(logn) in the approximation factors. Sample prob-
lems are metric labeling, buy-at-bulk network design, and
group Steiner trees. Recent applications include an ap-
proximation algorithm to the Unique Games [12], infor-
mation network design [13], and oblivious network de-
sign [11].

The SIGACT News article [8] is a review of the metric
approximation by tree metrics with more detailed discus-
sion on developments and techniques. See also [3,9], for
other applications.

Open Problems

Given a metric induced by a graph, some application, e. g.,
solving a certain class of linear systems, does not only re-
quire a tree metric, but a tree metric induced by a spanning
tree of the graph. Elkin, Emek, Spielman, and Teng [7]
gave an algorithm for finding a spanning tree with aver-
age distortion of O(log” nlog log n). It remains open if this
bound is tight.

Cross References

» Metrical Task Systems
» Sparse Graph Spanners

Recommended Reading

1. Alon, N, Karp, R.M., Peleg, D., West, D.: A graph-theoretic game
and its application to the k-server problem. SIAM J. Comput.
24,78-100 (1995)

2. Bartal, Y.: Probabilistic approximation of metric spaces and
its algorithmic applications. In: FOCS '96: Proceedings of the
37th Annual Symposium on Foundations of Computer Sci-
ence, Washington, DC, USA, IEEE Computer Society, pp. 184-
193 (1996)

3. Bartal, Y.: On approximating arbitrary metrices by tree metrics.
In: STOC '98: Proceedings of the thirtieth annual ACM sympo-

Approximations of Bimatrix Nash Equilibria 53

sium on Theory of computing, pp. 161-168. ACM Press, New
York (1998)

4. Bartal, Y., Charikar, M., Raz, D.: Approximating min-sum k-clus-
tering in metric spaces. In: STOC '01: Proceedings of the thirty-
third annual ACM symposium on Theory of computing, pp. 11—
20. ACM Press, New York (2001)

5. Calinescu, G., Karloff, H., Rabani, Y.: Approximation algorithms
for the 0-extension problem. In: SODA '01: Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA, Society for Industrial and Applied Math-
ematics, pp. 8-16. (2001)

6. Charikar, M., Chekuri, C., Goel, A., Guha, S.: Rounding via trees:
deterministic approximation algorithms for group steiner
trees and k-median. In: STOC '98: Proceedings of the thirtieth
annual ACM symposium on Theory of computing, pp. 114-
123. ACM Press, New York (1998)

7. Elkin, M., Emek, Y., Spielman, D.A., Teng, S.-H.: Lower-stretch
spanning trees. In: STOC '05: Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing, pp. 494-
503. ACM Press, New York (2005)

8. Fakcharoenphol, J,, Rao, S., Talwar, K.: Approximating metrics
by tree metrics. SIGACT News 35, 60-70 (2004)

9. Fakcharoenphol, J, Rao, S., Talwar, K.: A tight bound on approx-
imating arbitrary metrics by tree metrics. J. Comput. Syst. Sci.
69, 485-497 (2004)

10. Gupta, A.: Steiner points in tree metrics don't (really) help. In:
SODA '01: Proceedings of the twelfth annual ACM-SIAM sym-
posium on Discrete algorithms, Philadelphia, PA, USA, Society
for Industrial and Applied Mathematics, pp. 220-227. (2001)

11. Gupta, A., Hajiaghayi, M.T., Récke, H.: Oblivious network de-
sign. In: SODA '06: Proceedings of the seventeenth annual
ACM-SIAM symposium on Discrete algorithm, pp. 970-979.
ACM Press, New York (2006)

12. Gupta, A, Talwar, K.: Approximating unique games. In: SODA
'06: Proceedings of the seventeenth annual ACM-SIAM sym-
posium on Discrete algorithm, New York, NY, USA, pp. 99-106.
ACM Press, New York (2006)

13. Hayrapetyan, A., Swamy, C., Tardos, E.: Network design for
information networks. In: SODA '05: Proceedings of the six-
teenth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA, Society for Industrial and Applied Math-
ematics, pp. 933-942. (2005)

14. Indyk, P., Matousek, J.: Low-distortion embeddings of finite
metric spaces. In: Goodman, J.E, O'Rourke, J. (eds.) Hand-
book of Discrete and Computational Geometry. CRC Press, Inc.,
Chap. 8 (2004), To appear

15. Karp, R.: A 2k-competitive algorithm for the circle. Manuscript
(1989)

16. Matousek, J.: Lectures on Discrete Geometry. Springer, New
York (2002)

17. Rabinovich, Y., Raz, R.: Lower bounds on the distortion of
embedding finite metric spaces in graphs. Discret. Comput.
Geom. 19, 79-94 (1998)

18. Seymour, P.D.: Packing directed circuits fractionally. Combina-
torica 15, 281-288 (1995)

|
Approximation Algorithm

» Knapsack

|
Approximation Algorithm Design

» Steiner Trees

|
Approximation Algorithms

» Graph Bandwidth

|
Approximation Algorithms

in Planar Graphs

» Approximation Schemes for Planar Graph Problems

Approximations
of Bimatrix Nash Equilibria
2003; Lipton, Markakis, Mehta

2006; Daskalaskis, Mehta, Papadimitriou
2006; Kontogiannis, Panagopoulou, Spirakis

SPYROS KONTOGIANNISl,

PANAGIOTA PANAGOPOULOUZ, PAUL SPIRAKIS?

! Computer Science Department, University of loannina,
Ioannina, Greece

2 Research Academic Computer Technology Institute,
Patras, Greece

3 Computer Engineering and Informatics Research
and Academic Computer Technology Institute,
Patras University, Patras, Greece

Keywords and Synonyms

€-Nash equilibria; e-Well-supported Nash equilibria

Problem Definition

Nash [14] introduced the concept of Nash equilibria in
non-cooperative games and proved that any game pos-
sesses at least one such equilibrium. A well-known algo-
rithm for computing a Nash equilibrium of a 2-player
game is the Lemke-Howson algorithm [12], however it
has exponential worst-case running time in the number of
available pure strategies [16].

Recently, Daskalakis et al. [5] showed that the prob-
lem of computing a Nash equilibrium in a game with 4 or
more players is PPAD-complete; this result was later ex-
tended to games with 3 players [8]. Eventually, Chen and
Deng [3] proved that the problem is PPAD-complete for
2-player games as well.

54

Approximations of Bimatrix Nash Equilibria

This fact emerged the computation of approximate
Nash equilibria. There are several versions of approximate
Nash equilibria that have been defined in the literature;
however the focus of this entry is on the notions of €-Nash
equilibrium and e-well-supported Nash equilibrium. An
€-Nash equilibrium is a strategy profile such that no de-
viating player could achieve a payoff higher than the one
that the specific profile gives her, plus €. A stronger no-
tion of approximate Nash equilibria is the e-well-supported
Nash equilibria; these are strategy profiles such that each
player plays only approximately best-response pure strate-
gies with non-zero probability.

Notation

For a n x 1 vector x denote by x1, ..., x,, the components
of xand by x" the transpose of x. Denote by e; the column
vector with a 1 at the ith coordinate and 0 elsewhere. For
an n X m matrix A, denote a;; the element in the i-th row
and j-th column of A. Let P” be the set of all probability
vectors in n dimensions: P" = {z € RLy:)i zi= 1}.

Bimatrix Games

Bimatrix games [18] are a special case of 2-player games
such that the payoff functions can be described by two real
n x m matrices A and B. The n rows of A, B represent
the action set of the first player (the row player) and the
m columns represent the action set of the second player
(the column player). Then, when the row player chooses
action i and the column player chooses action j, the for-
mer gets payoff a;; while the latter gets payoft b;;. Based on
this, bimatrix games are denoted by I" = (A, B).

A strategy for a player is any probability distribution
on her set of actions. Therefore, a strategy for the row
player can be expressed as a probability vector x € P"
while a strategy for the column player can be expressed as
a probability vector y € P™. Each extreme point ¢; € P"
(¢ € P™) that corresponds to the strategy assigning prob-
ability 1 to the i-th row (j-th column) is called a pure strat-
egy for the row (column) player. A strategy profile (x,y)
is a combination of (mixed in general) strategies, one for
each player. In a given strategy profile (x,y) the players
get expected payoffs X' Ay (row player) and x By (column
player).

If both payoff matrices belong to [0, 1]"*" then the
game is called a [0, 1]-bimatrix (or else, positively normal-
ized) game. The special case of bimatrix games in which all
elements of the matrices belong to {0, 1} is called a {0, 1}-
bimatrix (or else, win-lose) game. A bimatrix game (A, B)
is called zero sum if B = —A.

Approximate Nash Equilibria

Definition 1 (¢-Nash equilibrium) Foranye > 0a strat-
egy profile (x,y) is an e-Nash equilibrium for the n x m
bimatrix game I" = (A, B) if

1. For all pure strategies i € {1, ..., n} of the row player,
el Ay <x"Ay +eand
2. For all pure strategies j € {1,...,m} of the column

player, x"Bej < x"By +e.

Definition 2 (e-well-supported Nash equilibrium) For
any € > 0 a strategy profile (x,y) is an e-well-supported
Nash equilibrium for the n x m bimatrix game I" = (A, B)
if

1. For all pure strategies i € {1,..., n} of the row player,
xi>0=e/Ay>efAy—¢ Vke{l,...,n}

2. For all pure strategies j € {1,...,m} of the column
player,

yj>0:>xTBeijTBek—e Vke{l,...,m}.

Note that both notions of approximate equilibria are de-
fined with respect to an additive error term €. Although
(exact) Nash equilibria are known not to be affected by
any positive scaling, it is important to mention that ap-
proximate notions of Nash equilibria are indeed affected.
Therefore, the commonly used assumption in the litera-
ture when referring to approximate Nash equilibria is that
the bimatrix game is positively normalized, and this as-
sumption is adopted in the present entry.

Key Results

The work of Althofer [1] shows that, for any proba-
bility vector p there exists a probability vector p with
logarithmic supports, so that for a fixed matrix C,
max; |pTCej - f)TCej <, for any constant € > 0. Ex-
ploiting this fact, the work of Lipton, Markakis and
Mehta [13], shows that, for any bimatrix game and for any
constant € > 0, there exists an e-Nash equilibrium with
only logarithmic support (in the number n of available
pure strategies). Consider a bimatrix game I = (A, B) and
let (x, y) be a Nash equilibrium for I". Fix a positive integer
k and form a multiset S; by sampling k times from the set
of pure strategies of the row player, independently at ran-
dom according to the distribution x. Similarly, form a mul-
tiset S, by sampling k times from set of pure strategies of
the column player according to y. Let X be the mixed strat-
egy for the row player that assigns probability 1/k to each
member of §; and 0 to all other pure strategies, and let y

Approximations of Bimatrix Nash Equilibria

55

be the mixed strategy for the column player that assigns
probability 1/k to each member of S, and 0 to all other
pure strategies. Then % and ¥ are called k-uniform [13] and
the following holds:

Theorem 1 ([13]) For any Nash equilibrium (x,y) of
a n X n bimatrix game and for every € > 0, there exists,
foreveryk > (121n n)/€?, a pair of k-uniform strategies X, y
such that (X, V) is an e-Nash equilibrium.

This result directly yields a quasi-polynomial (n0n")) al-
gorithm for computing such an approximate equilibrium.
Moreover, as pointed out in [1], no algorithm that exam-
ines supports smaller than about In # can achieve an ap-
proximation better than 1/4.

Theorem 2 ([4]) The problem of computing a 1/n®W_

Nash equilibrium of a n x n bimatrix game is PPAD-
complete.

Theorem 2 asserts that, unless PPAD C P, there exists
no fully polynomial time approximation scheme for com-
puting equilibria in bimatrix games. However, this does
not rule out the existence of a polynomial approximation
scheme for computing an e€-Nash equilibrium when € is
an absolute constant, or even when € = © (1/poly(In n)).
Furthermore, as observed in [4], if the problem of finding
an €-Nash equilibrium were PPAD-complete when € is an
absolute constant, then, due to Theorem 1, all PPAD prob-
lems would be solved in quasi-polynomial time, which is
unlikely to be the case.

Two concurrent and independent works [6,10] were
the first to make progress in providing e€-Nash equilibria
and e-well-supported Nash equilibria for bimatrix games
and some constant 0 < € < 1. In particular, the work of
Kontogiannis, Panagopoulou and Spirakis [10] proposes
a simple linear-time algorithm for computing a 3/4-Nash
equilibrium for any bimatrix game:

Theorem 3 ([10]) Consider any nx m bimatrix game I" =
(A, B) and let Aiy,j; = Max; j aij and biz,jz = max;,j bi]‘.
Then the pair of strategies (X,y) where %;, = %i, = Jj, =
Vi, = 112 is a 3/4-Nash equilibrium for I'.

The above technique can be extended so as to obtain
a parametrized, stronger approximation:

Theorem 4 ([10]) Consider a nx m bimatrix game
I' = (A, B). Let AT (A}) be the minimum, among all Nash
equilibria of I, expected payoff for the row (column) player
and let A = max{A},AJ}. Then, there exists a (2+ A)/4-
Nash equilibrium that can be computed in time polynomial
in n and m.

The work of Daskalakis, Mehta and Papadimitriou [6]
provides a simple algorithm for computing a 1/2-Nash

equilibrium: Pick an arbitrary row for the row player, say
row i. Let j = argmaxy b;j. Let k = argmaxy ay/j. Thus,
j is a best-response column for the column player to the
row i, and k is a best-response row for the row player to
the column j. Let X = 1/2e; + 1/2ex and § = ¢;, i. e., the row
player plays row i or row k with probability 1/2 each, while
the column player plays column j with probability 1. Then:

Theorem 5 ([6]) The strategy profile (X,¥) is a 1/2-Nash
equilibrium.

A polynomial construction (based on Linear Program-
ming) of a 0.38-Nash equilibrium is presented in [7].

For the more demanding notion of well-supported
approximate Nash equilibrium, Daskalakis, Mehta and
Papadimitriou [6] propose an algorithm, which, under
a quite interesting and plausible graph theoretic conjec-
ture, constructs in polynomial time a 5/6-well-supported
Nash equilibrium. However, the status of this conjecture
is still unknown. In [6] it is also shown how to trans-
form a [0, 1]-bimatrix game to a {0, 1}-bimatrix game of
the same size, so that each e-well supported Nash equi-
librium of the resulting game is (1 + €)/2-well supported
Nash equilibrium of the original game.

The work of Kontogiannis and Spirakis [11] pro-
vides a polynomial algorithm that computes a 1/2-well-
supported Nash equilibrium for arbitrary win-lose games.
The idea behind this algorithm is to split evenly the di-
vergence from a zero sum game between the two players
and then solve this zero sum game in polynomial time
(using its direct connection to Linear Programming). The
computed Nash equilibrium of the zero sum game consid-
ered is indeed proved to be also a 1/2-well-supported Nash
equilibrium for the initial win-lose game. Therefore:

Theorem 6 ([11]) For any win-lose bimatrix game, there
is a polynomial time constructable profile that is a 1/2-well-
supported Nash equilibrium of the game.

In the same work, Kontogiannis and Spirakis [11]
parametrize the above methodology in order to apply it
to arbitrary bimatrix games. This new technique leads to
a weaker ¢-well-supported Nash equilibrium for win-lose
games, where ¢ = (v/5— 1)/2 is the golden ratio. Nev-
ertheless, this parametrized technique extends nicely to
a technique for arbitrary bimatrix games, which assures
a 0.658-well-supported Nash equilibrium in polynomial
time:

Theorem 7 ([11]) For any bimatrix game, a (Jﬁ/z - 1)-
well-supported Nash equilibrium is constructable in polyno-
mial time.

Two very new results improved the approximation status
of e- Nash Equilibria:

56

Approximations of Bimatrix Nash Equilibria

Theorem 8 ([2]) There is a polynomial time algorithm,
based on Linear Programming, that provides an 0.36392-
Nash Equilibrium.

The second result below is the best till now:

Theorem 9 ([17]) There exists a polynomial time algo-
rithm, based on the stationary points of a natural optimiza-
tion problem, that provides an 0.3393-Nash Equilibrium.

Kannan and Theobald [9] investigate a hierarchy of bi-
matrix games (A, B) which results from restricting the
rank of the matrix A + B to be of fixed rank at most k.
They propose a new model of e-approximation for games
of rank k and, using results from quadratic optimization,
show that approximate Nash equilibria of constant rank
games can be computed deterministically in time polyno-
mial in 1/€. Moreover, [9] provides a randomized approxi-
mation algorithm for certain quadratic optimization prob-
lems, which yields a randomized approximation algorithm
for the Nash equilibrium problem. This randomized al-
gorithm has similar time complexity as the deterministic
one, but it has the possibility of finding an exact solution
in polynomial time if a conjecture is valid. Finally, they
present a polynomial time algorithm for relative approxi-
mation (with respect to the payoffs in an equilibrium) pro-
vided that the matrix A + B has a nonnegative decomposi-
tion.

Applications

Non-cooperative game theory and its main solution con-
cept, i. e. the Nash equilibrium, have been extensively used
to understand the phenomena observed when decision-
makers interact and have been applied in many diverse
academic fields, such as biology, economics, sociology and
artificial intelligence. Since however the computation of
a Nash equilibrium is in general PPAD-complete, it is im-
portant to provide efficient algorithms for approximating
a Nash equilibrium; the algorithms discussed in this entry
are a first step towards this direction.

Cross References

» Complexity of Bimatrix Nash Equilibria
» General Equilibrium
» Non-approximability of Bimatrix Nash Equilibria

Recommended Reading

1. Althofer, I.: On sparse approximations to randomized strate-
gies and convex combinations. Linear Algebr. Appl. 199, 339-
355 (1994)

. Bosse, H., Byrka, J., Markakis, E.: New Algorithms for Approxi-

mate Nash Equilibria in Bimatrix Games. In: LNCS Proceedings
of the 3rd International Workshop on Internet and Network
Economics (WINE 2007), San Diego, 12-14 December 2007

. Chen, X., Deng, X.: Settling the complexity of 2-player Nash-

equilibrium. In: Proceedings of the 47th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS'06). Berke-
ley, 21-24 October 2005

. Chen, X, Deng, X., Teng, S.-H.: Computing Nash equilibria: Ap-

proximation and smoothed complexity. In: Proceedings of the
47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS'06), Berkeley, 21-24 October 2006

. Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity

of computing a Nash equilibrium. In: Proceedings of the 38th
Annual ACM Symposium on Theory of Computing (STOC'06),
pp. 71-78. Seattle, 21-23 May 2006

. Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approxi-

mate Nash equilibria. In: Proceedings of the 2nd Workshop on
Internet and Network Economics (WINE'06), pp. 297-306. Pa-
tras, 15-17 December 2006

. Daskalakis, C., Mehta, A., Papadimitriou, C: Progress in approxi-

mate Nash equilibrium. In: Proceedings of the 8th ACM Confer-
ence on Electronic Commerce (EC07), San Diego, 11-15 June
2007

. Daskalakis, C., Papadimitriou, C.. Three-player games are

hard. In: Electronic Colloquium on Computational Complexity
(ECCC) (2005)

. Kannan, R, Theobald, T.: Games of fixed rank: A hierarchy of

bimatrix games. In: Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms, New Orleans, 7-9 January 2007

. Kontogiannis, S., Panagopoulou, P.N., Spirakis, P.G.: Polyno-

mial algorithms for approximating Nash equilibria of bimatrix
games. In: Proceedings of the 2nd Workshop on Internet and
Network Economics (WINE'06), pp. 286-296. Patras, 15-17 De-
cember 2006

. Kontogiannis, S., Spirakis, P.G.: Efficient Algorithms for Con-

stant Well Supported Approximate Equilibria in Bimatrix
Games. In: Proceedings of the 34th International Colloquium
on Automata, Languages and Programming (ICALP'07, Track
A: Algorithms and Complexity), Wroclaw, 9-13 July 2007

. Lemke, C.E., Howson, J.T.. Equilibrium points of bimatrix

games. J. Soc. Indust. Appl. Math. 12, 413-423 (1964)

. Lipton, RJ., Markakis, E., Mehta, A.: Playing large games us-

ing simple startegies. In: Proceedings of the 4th ACM Confer-
ence on Electronic Commerce (EC'03), pp. 36-41. San Diego,
9-13 June 2003

. Nash, J.: Noncooperative games. Ann. Math. 54, 289-295

(1951)

. Papadimitriou, C.H.: On inefficient proofs of existence and

complexity classes. In: Proceedings of the 4th Czechoslovakian
Symposium on Combinatorics 1990, Prachatice (1991)

. Savani, R., von Stengel, B.: Exponentially many steps for find-

ing a nash equilibrium in a bimatrix game. In: Proceedings of
the 45th Annual IEEE Symposium on Foundations of Computer
Science (FOCS'04), pp. 258-267. Rome, 17-19 October 2004

. Tsaknakis, H., Spirakis, P.: An Optimization Approach for Ap-

proximate Nash Equilibria. In: LNCS Proceedings of the 3rd
International Workshop on Internet and Network Economics
(WINE 2007), also in the Electronic Colloquium on Computa-
tional Complexity, (ECCC), TRO7-067 (Revision), San Diego, 12—
14 December 2007

Approximation Schemes for Bin Packing

18. von Neumann, J., Morgenstern, O.: Theory of Games and
Economic Behavior. Princeton University Press, Princeton, NJ
(1944)

|
Approximation Schemes
for Bin Packing
1982; Karmarker, Karp

NIKHIL BANSAL
IBM Research, IBM, Yorktown Heights, NY, USA

Keywords and Synonyms

Cutting stock problem

Problem Definition

In the bin packing problem, the input consists of a collec-
tion of items specified by their sizes. There are also identi-
cal bins, which without loss of generality can be assumed
to be of size 1, and the goal is to pack these items using the
minimum possible number of bins.

Bin packing is a classic optimization problem, and
hundreds of its variants have been defined and studied un-
der various settings such as average case analysis, worst-
case offline analysis, and worst-case online analysis. This
note considers the most basic variant mentioned above
under the offline model where all the items are given in
advance. The problem is easily seen to be NP-hard by a re-
duction from the partition problem. In fact, this reduction
implies that unless P = NP, it impossible to determine in
polynomial time whether the items can be packed into two
bins or whether they need three bins.

Notations

The input to the bin packing problem is a set of n items
I specified by their sizes sy, ..., s,, where each s; is a real
number in the range (0, 1]. A subset of items S € I can be
packed feasibly in a bin if the total size of items in S is at
most 1. The goal is to pack all items in I into the minimum
number of bins. Let OPT(I) denote the value of the opti-
mum solution and Size(I) the total size of all items in I.
Clearly, OPT(I) > [Size(I)].

Strictly speaking, the problem does not admit a poly-
nomial-time algorithm with an approximation guarantee
better than 3/2. Interestingly, however, this does not rule
out an algorithm that requires, say, OPT(I) + 1 bins (un-
like other optimization problems, making several copies of
a small hard instance to obtain a larger hard instance does
not work for bin packing). It is more meaningful to con-
sider approximation guarantees in an asymptotic sense.

An algorithm is called an asymptotic p approximation if
the number of bins required by it is p - OPT(I) + O(1).

Key Results

During the 1960s and 1970s several algorithms with con-
stant factor asymptotic and absolute approximation guar-
antees and very efficient running times were designed
(see [1] for a survey). A breakthrough was achieved in
1981 by de la Vega and Lueker [3], who gave the first
polynomial-time asymptotic approximation scheme.

Theorem 1 ([3]) Given any arbitrary parameter € > 0,
there is an algorithm that uses (1 + €)OPT(I) + O(1) bins
to pack 1. The running time of this algorithm is O(n log n) +
(1/€)OWe),

The main insight of de la Vega and Lueker [3] was to
give a technique for approximating the original instance
by a simpler instance where large items have only O(1)
distinct sizes. Their idea was simple. First, it suffices to re-
strict attention to large items, say, with size greater than ¢.
These can be called I;,. Given an (almost) optimum pack-
ing of I, consider the solution obtained by greedily filling
up the bins with remaining small items, opening new bins
only if needed. Indeed, if no new bins are needed, then the
solution is still almost optimum since the packing for I,
was almost optimum. If additional bins are needed, then
each bin, except possibly one, must be filled to an extent
(1 — €), which gives a packing using Size(I)/(1 —€) +1 <
OPT(I)/(1 — €) + 1 bins. So it suffices to focus on solving
I, almost optimally. To do this, the authors show how to
obtain another instance I’ with the following properties.
First, I’ has only O(1/€?) distinct sizes, and second, I is an
approximation of I, in the sense that OPT(I;) > OPT(I')
and, moreover, any solution of I’ implies another solution
of I, using O(e - OPT(I)) additional bins. As I’ has only
1/€* distinct item sizes, and any bin can obtain at most 1/€
such items, there are at most O(1/€2)/€ ways to pack a bin.
Thus, I’ can be solved optimally by exhaustive enumer-
ation (or more efficiently using an integer programming
formulation described below).

Later, Karmarkar and Karp [4] proved a substantially
stronger guarantee.

Theorem 2 ([4]) Given an instance I, there is an algorithm
that produces a packing of I using OPT(I) + O(log2 OPT(I))
bins. The running time of this algorithm is O(n8).

Observe that this guarantee is significantly stronger than
that of [3] as the additive term is O(log2 OPT) as op-
posed to O(e - OPT). Their algorithm also uses the ideas
of reducing the number of distinct item sizes and ignoring

58

Approximation Schemes for Bin Packing

small items, but in a much more refined way. In partic-
ular, instead of obtaining a rounded instance in a single
step, their algorithm consists of a logarithmic number of
steps where in each step they round the instance “mildly”
and then solve it partially.

The starting point is an exponentially large linear pro-
gramming (LP) relaxation of the problem commonly re-
ferred to as the configuration LP. Here there is a variable xg
corresponding to each subset of items S that can be packed
feasibly in a bin. The objective is to minimize) ¢ xs sub-
ject to the constraint that for each item i, the sum of xg
over all subsets S that contain i is at least 1. Clearly, this
is a relaxation as setting xs = 1 for each set S correspond-
ing to a bin in the optimum solution is a feasible integral
solution to the LP. Even though this formulation has expo-
nential size, the separation problem for the dual is a knap-
sack problem, and hence the LP can be solved in polyno-
mial time to any accuracy (in particular within an accuracy
of 1) using the ellipsoid method. Such a solution is called
a fractional packing. Observe that if there are »; items each
of size exactly s;, then the constraints corresponding to i
can be “combined” to obtain the following LP:

mians
S
s.t. Zﬂs,ixs >n;
S

xs >0

V item sizes i

V feasible sets S.

Here ag ; is the number of items of size s; in the feasible S.
Let g(I) denote the number of distinct sizes in I. The num-
ber of nontrivial constraints in LP is equal to q(I), which
implies that there is a basic optimal solution to this LP that
has only g(I) variables set nonintegrally. Karmarkar and
Karp exploit this observation in a very clever way. The fol-
lowing lemma describes the main idea.

Lemma 3 Given any instance], suppose there is an algo-
rithmic rounding procedure to obtain another instance J'
such that J' has Size(])/2 distinct item sizes and] and J' are
related in the following sense: given any fractional packing
of] using £ bins gives a fractional packing of]’ with at most
£ bins, and given any packing of] using £’ bins gives a pack-
ing of] using £’ + c bins, where c is some fixed parameter.
Then] can be packed using OPT(]) + ¢ - log(OPT(])) bins.

Proof Let Iy =1 and let I; be the instance obtained
by applying the rounding procedure to Iy. By the prop-
erty of the rounding procedure, OPT(I) < OPT(I;) + ¢
and LP(I;) < LP(I). As I, has Size(Iy)/2 distinct sizes,
the LP solution for I has at most Size(I)/2 fractionally
set variables. Remove the items packed integrally in the

LP solution and consider the residual instance I;. Note
that Size(I}) < Size(Ip)/2. Now, again apply the round-
ing procedure to I/1 to obtain I, and solve the LP for I,.
Again, this solution has at most Size(I})/2 < Size(Iy)/4
fractionally set variables, and OPT(I}) < OPT(I) + ¢ and
LP(I,) < LP(I}). The above process is repeated for a few
steps. At each step, the size of the residual instance de-
creases by a factor of at least two, and the number of
bins required to pack Iy increases by additive c. After
log(Size(Ip)) (=~ log(OPT(I))) steps, the residual instance
has size O(1) and can be packed into O(1) additional
bins. |

It remains to describe the rounding procedure. Consider
the items in nondecreasing order s; > s, > ... > s, and
group them as follows. Add items to current group un-
til its size first exceeds 2. At this point close the group
and start a new group. Let Gy, ..., G denote the groups
formed and let n; = |G|, setting ny = 0 for convenience.
Define I’ as the instance obtained by rounding the size
of nj—; largest items in G; to the size of the largest item
in G; for i =1,..., k. The procedure satisfies the proper-
ties of Lemma 3 with ¢ = O(log ny) (left as an exercise to
the reader). To prove Theorem 2, it suffices to show that
n = O(Size(I)). This is done easily by ignoring all items
smaller than 1/Size(I) and filling them in only in the end
(as in the algorithm of de la Vega and Lueker).

In the case when the item sizes are not too small, the
following corollary is obtained.

Corollary 1 If all the item sizes are at least §, it is eas-
ily seen that ¢ = O(log 1/8), and the above algorithm im-
plies a guarantee of OPT + O(log(1/8) - log OPT), which is
OPT + O(log OPT) if § is a constant.

Applications

The bin packing problem is directly motivated from prac-
tice and has many natural applications such as packing
items into boxes subject to weight constraints, packing
files into CDs, packing television commercials into station
breaks, and so on. It is widely studied in operations re-
search and computer science. Other applications include
the so-called cutting-stock problems where some material
such as cloth or lumber is given in blocks of standard size
from which items of certain specified size must be cut.
Several variations of bin packing, such as generalizations
to higher dimensions, imposing additional constraints on
the algorithm and different optimization criteria, have also
been extensively studied. The reader is referred to [1,2] for
excellent surveys.

Approximation Schemes for Planar Graph Problems

59

Open Problems

Except for the NP-hardness, no other hardness results are
known and it is possible that a polynomial-time algorithm
with guarantee OPT + 1 exists for the problem. Resolving
this is a key open question. A promising approach seems
to be via the configuration LP (considered above). In fact,
no instance is known for which the additive gap between
the optimum configuration LP solution and the optimum
integral solution is more than 1. It would be very interest-
ing to design an instance that has an additive integrality
gap of two or more.

The OPT + O(log” OPT) guarantee of Karmarkar and
Karp has been the best known result for the last 25 years,
and any improvement to this would be an extremely inter-
esting result by itself.

Cross References

» Bin Packing
» Knapsack

Recommended Reading

1. Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algo-
rithms for bin packing: a survey. In: Hochbaum, D. (ed.) Ap-
proximation Algorithms for NP-hard Problems, pp. 46-93. PWS,
Boston (1996)

2. Gsirik, J., Woeginger, G.: On-line packing and covering problems.
In: Fiat, A., Woeginger, G. (eds.) Online Algorithms: The State of
the Art. LNCS, vol. 1442, pp. 147-177. Springer, Berlin (1998)

3. Fernandez de la Vega, W., Lueker, G.: Bin packing can be solved
within 1 + ¢ in linear time. Combinatorica 1, 349-355 (1981)

4, Karmarkar, N., Karp, R.M.: An efficient approximation scheme for
the one-dimensional bin-packing problem. In: Proceedings of
the 23rd IEEE Symposium on Foundations of Computer Science
(FOCS), 1982, pp. 312-320

|
Approximation Schemes
for Planar Graph Problems

1983; Baker
1994; Baker

ERIK D. DEMAINEI, MOHAMMADTAGHI HA]IAGHAYI2
! Computer Science and Artifical Intelligence Laboratory,
MIT, Cambridge, MA, USA
2 Department of Computer Science,
University of Pittsburgh,
Pittsburgh, PA, USA

Keywords and Synonyms

Approximation algorithms in planar graphs; Baker’s ap-
proach; Lipton-Tarjan approach

Problem Definition

Many NP-hard graph problems become easier to approxi-
mate on planar graphs and their generalizations. (A graph
is planar if it can be drawn in the plane (or the sphere)
without crossings. For definitions of other related graph
classes, see the entry on » bidimensionality (2004; De-
maine, Fomin, Hajiaghayi, Thilikos).) For example, max-
imum independent set asks to find a maximum subset of
vertices in a graph that induce no edges. This problem
is inapproximable in general graphs within a factor of
n'~¢ for any € > 0 unless NP = ZPP (and inapproximable
within n/27€ unless P = NP), while for planar graphs there
is a 4-approximation (or simple 5-approximation) by tak-
ing the largest color class in a vertex 4-coloring (or 5-color-
ing). Another is minimum dominating set, where the goal
is to find a minimum subset of vertices such that every
vertex is either in or adjacent to the subset. This prob-
lem is inapproximable in general graphs within € log n for
some € > 0 unless P = NP, but as we will see, for planar
graphs the problem admits a polynomial-time approxima-
tion scheme (PTAS): a collection of (1 + €)-approximation
algorithms for all € > 0.

There are two main general approaches to designing
PTASs for problems on planar graphs and their general-
izations: the separator approach and the Baker approach.

Lipton and Tarjan [15,16] introduced the first ap-
proach, which is based on planar separators. The first step
in this approach is to find a separator of O(/n) vertices
or edges, where 7 is the size of the graph, whose removal
splits the graph into two or more pieces each of which is
a constant fraction smaller than the original graph. Then
recurse in each piece, building a recursion tree of separa-
tors, and stop when the pieces have some constant size
such as 1/e. The problem can be solved on these pieces
by brute force, and then it remains to combine the solu-
tions up the recursion tree. The induced error can often be
bounded in terms of the total size of all separators, which
in turn can be bounded by € n. If the optimal solution is
at least some constant factor times , this approach often
leads to a PTAS.

There are two limitations to this planar-separator ap-
proach. First, it requires that the optimal solution be at
least some constant factor times #; otherwise, the cost in-
curred by the separators can be far larger than the desired
optimal solution. Such a bound is possible in some prob-
lems after some graph pruning (linear kernelization), e. g.,
independent set, vertex cover, and forms of the traveling
salesman problem. But, for example, Grohe [12] states that
the dominating set is a problem “to which the technique
based on the separator theorem does not apply.” Second,

60

Approximation Schemes for Planar Graph Problems

the approximation algorithms resulting from planar sepa-
rators are often impractical because of large constant fac-
tors. For example, to achieve an approximation ratio of
just 2, the base case requires exhaustive solution of graphs
of up to 22" vertices.

Baker [1] introduced her approach to address the sec-
ond limitation, but it also addresses the first limitation to
a certain extent. This approach is based on decomposition
into overlapping subgraphs of bounded outerplanarity, as
described in the next section.

Key Results

Baker’s original result [1] is a PTAS for a maximum in-
dependent set (as defined above) on planar graphs, as
well as the following list of problems on planar graphs:
maximum tile salvage, partition into triangles, maximum
H-matching, minimum vertex cover, minimum dominat-
ing set, and minimum edge-dominating set.

Baker’s approach starts with a planar embedding of the
planar graph. Then it divides vertices into layers by iter-
atively removing vertices on the outer face of the graph:
layer j consists of the vertices removed at the jth iteration.
If one now removes the layers congruent to i modulo k, for
any choice of i, the graph separates into connected compo-
nents each with at most k consecutive layers, and hence the
graph becomes k-outerplanar. Many NP-complete prob-
lems can be solved on k-outerplanar graphs for fixed k
using dynamic programming (in particular, such graphs
have bounded treewidth). Baker’s approximation algo-
rithm computes these optimal solutions for each choice i
of the congruence class of layers to remove and returns the
best solution among these k solutions. The key argument
for maximization problems considers the optimal solution
to the full graph and argues that the removal of one of the
k congruence classes of layers must remove at most a 1/k
fraction of the optimal solution, so the returned solution
must be within a 1+ 1/k factor of optimal. A more deli-
cate argument handles minimization problems as well. For
many problems, such as maximum independent set, mini-
mum dominating set, and minimum vertex cover, Baker’s
approach obtains a (1 + €)-approximation algorithms with
a running time of 209 %M on planar graphs.

Eppstein [10] generalized Baker’s approach to
a broader class of graphs called graphs of bounded local
treewidth, i.e., where the treewidth of the subgraph in-
duced by the set of vertices at a distance of at most r from
any vertex is bounded above by some function f(r) inde-
pendent of n. The main differences in Eppstein’s approach
are replacing the concept of bounded outerplanarity with
the concept of bounded treewidth, where dynamic pro-

gramming can still solve many problems, and labeling
layers according to a simple breadth-first search. This
approach has led to PTASs for hereditary maximization
problems such as maximum independent set and max-
imum clique, maximum triangle matching, maximum
H-matching, maximum tile salvage, minimum vertex
cover, minimum dominating set, minimum edge-domi-
nating set, minimum color sum, and subgraph isomor-
phism for a fixed pattern [6,8,10]. Frick and Grohe [11]
also developed a general framework for deciding any prop-
erty expressible in first-order logic in graphs of bounded
local treewidth.

The foundation of these results is Eppstein’s character-
ization of minor-closed families of graphs with bounded
local treewidth [10]. Specifically, he showed that a minor-
closed family has bounded local treewidth if and only if
it excludes some apex graph, a graph with a vertex whose
removal leaves a planar graph. Unfortunately, the initial
proof of this result brought Eppstein’s approach back to
the realm of impracticality, because his bound on local
treewidth in a general apex-minor-free graph is doubly
exponential in r: 2277, Fortunately, this bound could be
improved to 20([3] and even the optimal O(r) [4]. The
latter bound restores Baker’s 20/€) %M running time
for (1 + €)-approximation algorithms, now for all apex-
minor-free graphs.

Another way to view the necessary decomposition of
Baker’s and Eppstein’s approaches is that the vertices or
edges of the graph can be split into any number k of pieces
such that deleting any one of the pieces results in a graph
of bounded treewidth (where the bound depends on k).
Such decompositions in fact exist for arbitrary graphs ex-
cluding any fixed minor H [9], and they can be found in
polynomial time [6]. This approach generalizes the Baker—
Eppstein PTASs described above to handle general H-
minor-free graphs.

This decomposition approach is effectively limited to
deletion-closed problems, whose optimal solution only im-
proves when deleting edges or vertices from the graph. An-
other decomposition approach targets contraction-closed
problems, whose optimal solution only improves when
contracting edges. These problems include classic prob-
lems such as dominating set and its variations, the trav-
eling salesman problem, subset TSP, minimum Steiner
tree, and minimum-weight c-edge-connected submulti-
graph. PTASs have been obtained for these problems in
planar graphs [2,13,14] and in bounded-genus graphs [7]
by showing that the edges can be decomposed into any
number k of pieces such that contracting any one piece re-
sults in a bounded-treewidth graph (where the bound de-
pends on k).

Approximation Schemes for Planar Graph Problems

61

Applications

Most applications of Baker’s approach have been limited
to optimization problems arising from “local” properties
(such as those definable in first-order logic). Intuitively,
such local properties can be decided by locally check-
ing every constant-size neighborhood. In [5], Baker’s ap-
proach is generalized to obtain PTASs for nonlocal prob-
lems, in particular, connected dominating set. This gen-
eralization requires the use of two different techniques.
The first technique is to use an e-fraction of a constant-
factor (or even logarithmic-factor) approximation to the
problem as a “backbone” for achieving the needed nonlo-
cal property. The second technique is to use subproblems
that overlap by ©(log n) layers instead of the usual ©(1) in
Baker’s approach.

Despite this advance in applying Baker’s approach to
more general problems, the planar-separator approach
can still handle some different problems. Recall, though,
that the planar-separator approach was limited to prob-
lems in which the optimal solution is at least some con-
stant factor times n. This limitation has been overcome
for a wide range of problems [5], in particular obtaining
a PTAS for feedback vertex set, to which neither Baker’s
approach nor the planar-separator approach could previ-
ously apply. This result is based on evenly dividing the op-
timum solution instead of the whole graph, using a rela-
tion between treewidth and the optimal solution value to
bound the treewidth of the graph, and thus obtaining an
O(+~/OPT) separator instead of an O(4/n) separator. The
O(+/OPT) bound on treewidth follows from the bidimen-
sionality theory described in the entry on » bidimension-
ality (2004; Demaine, Fomin, Hajiaghayi, Thilikos). We
can divide the optimum solution into roughly even pieces,
without knowing the optimum solution, by using exist-
ing constant-factor (or even logarithmic-factor) approx-
imations for the problem. At the base of the recursion,
pieces no longer have bounded size but do have bounded
treewidth, so fast fixed-parameter algorithms can be used
to construct optimal solutions.

Open Problems

An intriguing direction for future research is to build
a general theory for PTASs of subset problems. Although
PTASs for subset TSP and Steiner tree have recently been
obtained for planar graphs [2,14], there remain several
open problems of this kind, such as subset feedback ver-
tex set.

Another instructive problem is to understand the ex-
tent to which Baker’s approach can be applied to nonlo-
cal problems. Again there is an example of how to modify

the approach to handle the nonlocal problem of connected
dominating set [5], but for example the only known PTAS
for feedback vertex set in planar graphs follows the sepa-
rator approach.

Cross References

» Bidimensionality
» Separators in Graphs
» Treewidth of Graphs

Recommended Reading

1. Baker, B.S.: Approximation algorithms for NP-complete prob-
lems on planar graphs. J. Assoc. Comput. Mach. 41(1), 153-180
(1994)

2. Borradaile, G., Kenyon-Mathieu, C., Klein, P.N.: A polynomial-
time approximation scheme for Steiner tree in planar graphs.
In: Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2007

3. Demaine, E.D. Hajiaghayi, M.: Diameter and treewidth in
minor-closed graph families, revisited. Algorithmica 40(3),
211-215 (2004)

4. Demaine, E.D., Hajiaghayi, M.: Equivalence of local treewidth
and linear local treewidth and its algorithmic applications. In:
Proceedings of the 15th ACM-SIAM Symposium on Discrete Al-
gorithms (SODA’04), January 2004, pp. 833-842

5. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connec-
tions between FPT algorithms and PTASs. In: Proceedings of
the 16th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2005), Vancouver, January 2005, pp. 590-601

6. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.-1.: Algorithmic
graph minor theory: Decomposition, approximation, and col-
oring. In: Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, Pittsburgh, October 2005,
pp. 637-646

7. Demaine, E.D., Hajiaghayi, M., Mohar, B.: Approximation algo-
rithms via contraction decomposition. In: Proceedings of the
18th Annual ACM-SIAM Symposium on Discrete Algorithms,
New Orleans, 7-9 January 2007, pp. 278-287

8. Demaine, E.D., Hajiaghayi, M., Nishimura, N., Ragde, P., Thi-
likos, D.M.: Approximation algorithms for classes of graphs ex-
cluding single-crossing graphs as minors. J. Comput. Syst. Sci.
69(2), 166-195 (2004)

9. DeVos, M., Ding, G., Oporowski, B., Sanders, D.P., Reed, B., Sey-
mour, P, Vertigan, D.: Excluding any graph as a minor allows
a low tree-width 2-coloring. J. Comb. Theory Ser. B 91(1), 25—
41 (2004)

10. Eppstein, D.: Diameter and treewidth in minor-closed graph
families. Algorithmica 27(3-4), 275-291 (2000)

11. Frick, M., Grohe, M.: Deciding first-order properties of locally
tree-decomposable structures. J. ACM 48(6), 1184-1206 (2001)

12. Grohe, M.: Local tree-width, excluded minors, and approxima-
tion algorithms. Combinatorica 23(4), 613-632 (2003)

13. Klein, P.N.: A linear-time approximation scheme for TSP for pla-
nar weighted graphs. In: Proceedings of the 46th IEEE Sympo-
sium on Foundations of Computer Science, 2005, pp. 146-155

14. Klein, P.N.: A subset spanner for planar graphs, with application
to subset TSP. In: Proceedings of the 38th ACM Symposium on
Theory of Computing, 2006, pp. 749-756

62

Arbitrage in Frictional Foreign Exchange Market

15. Lipton, RJ., Tarjan, R.E.: A separator theorem for planar graphs.
SIAM J. Appl. Math. 36(2), 177-189 (1979)

16. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator the-
orem. SIAM J. Comput. 9(3), 615-627 (1980)

|
Arbitrage in Frictional Foreign

Exchange Market
2003; Cai, Deng

MAO-CHENG CAT', XIAOTIE DENG?

! Institute of Systems Science, Chinese Academy
of Sciences, Beijing, China

2 Department of Computer Science, City University
of Hong Kong, Hong Kong, China

Problem Definition

The simultaneous purchase and sale of the same securities,
commodities, or foreign exchange in order to profit from
a differential in the price. This usually takes place on differ-
ent exchanges or marketplaces. Also known as a “Riskless
profit”.

Arbitrage is, arguably, the most fundamental concept
in finance. It is a state of the variables of financial instru-
ments such that a riskless profit can be made, which is gen-
erally believed not in existence. The economist’s argument
for its non-existence is that active investment agents will
exploit any arbitrage opportunity in a financial market and
thus will deplete it as soon as it may arise. Naturally, the
speed at which such an arbitrage opportunity can be lo-
cated and be taken advantage of is important for the profit-
seeking investigators, which falls in the realm of analysis of
algorithms and computational complexity.

The identification of arbitrage states is, at friction-
less foreign exchange market (a theoretical trading en-
vironment where all costs and restraints associated with
transactions are non-existent), not difficult at all and can
be reduced to existence of arbitrage on three currencies
(see [11]). In reality, friction does exist. Because of fric-
tion, it is possible that there exist arbitrage opportuni-
ties in the market but difficult to find it and to exploit it
to eliminate it. Experimental results in foreign exchange
markets showed that arbitrage does exist in reality. Exam-
ination of data from ten markets over a twelve day period
by Mavrides [11] revealed that a significant arbitrage op-
portunity exists. Some opportunities were observed to be
persistent for a long time. The problem become worse at
forward and futures markets (in which futures contracts
in commodities are traded) coupled with covered inter-
est rates, as observed by Abeysekera and Turtle [1], and
Clinton [4]. An obvious interpretation is that the arbitrage

opportunity was not immediately identified because of in-
formation asymmetry in the market. However, that is not
the only factor. Both the time necessary to collect the mar-
ket information (so that an arbitrage opportunity would
be identified) and the time people (or computer programs)
need to find the arbitrage transactions are important fac-
tors for eliminating arbitrage opportunities.

The computational complexity in identifying arbi-
trage, the level in difficulty measured by arithmetic op-
erations, is different in different models of exchange sys-
tems. Therefore, to approximate an ideal exchange mar-
ket, models with lower complexities should be preferred
to those with higher complexities.

To model an exchange system, consider #n foreign cur-
rencies: N = {1,2, ..., n}. For each ordered pair (i,), one
may change one unit of currency i to r;; units of currency
j- Rate r;; is the exchange rate from i to j. In an ideal mar-
ket, the exchange rate holds for any amount that is ex-
changed. An arbitrage opportunity is a set of exchanges be-
tween pairs of currencies such that the net balance for each
involved currency is non-negative and there is at least one
currency for which the net balance is positive. Under ideal
market conditions, there is no arbitrage if and only if there
is no arbitrage among any three currencies (see [11]).

Various types of friction can be easily modeled in such
a system. Bid-offer spread may be expressed in the present
mathematical format as r;;7;; <1 for some i, j € N. In
addition, usually the traded amount is required to be in
multiples of a fixed integer amount, hundreds, thousands
or millions. Moreover, different traders may bid or offer
at different rates, and each for a limited amount. A more
general model to describe these market imperfections will
include, for pairs i # j € N, [;; different rates rffj of ex-
changes from currency i to j up to bf.‘. units of currency i,
k=1,...,1;j,wherel;is the number of different exchange
rates from currency i to j.

A currency exchange market can be represented by
a digraph G = (V, E) with vertex set V and arc set E such
that each vertex i € V represents currency i and each arc
afj € E represents the currency exchange relation from i
to j with rate r*. and bound bikj. Note that parallel arcs may
occur for different exchange rates. Such a digraph is called
an exchange digraph. Let x = (xfj) denote a currency ex-
change vector.

Problem 1 The existence of arbitrage in a frictional ex-
change market can be formulated as follows.

l/';

lij
PR PEETED B SHEL SN

j#i k=1 j#i k=1

.n, o, (D)

Arbitrage in Frictional Foreign Exchange Market

63

Arbitrage in Frictional Foreign Exchange Market, Figure 1
Digraph G;

at least one strict inequality holds

O<xfi<bi,1<k<ljl<ifj<n, (2)
x,k] is integer, 1 < k < lij,lfi#jfn. (3)

Note that the first term in the right hand side of (1) is the
revenue at currency i by selling other currencies and the
second term is the expense at currency i by buying other
currencies.

The corresponding optimization problem is

Problem 2 The maximum arbitrage problem in a fric-
tional foreign exchange market with bid-ask spreads, bound
and integrality constraints is the following integer linear
programming (P):

l[/'

n Lji
o k .k k
maximize E wi E E Lrjixji — E Xjj
k=1

i=1 j#i \ k=1

subject to

Lji lij
Z Z[r;‘ix]]-‘ij—foj >0, i=1,...,n, (4
i#i \ k=1 k=1
o<xb bl 1<k<lj. 1<ifj<n. (5
xfjisinteger, 1<k=<lj, 1<i#j<n, (6)

where w; >0 is a given weight for currency i,

i=1,2,...,n, with at least one w; > 0.
Finally consider another

Problem 3 In order to eliminate arbitrage, how many
transactions and arcs in a exchange digraph have to be used
for the currency exchange system?

Key Results

A decision problem is called nondeterministic polyno-
mial (NP for short) if its solution (if one exists) can be
guessed and verified in polynomial time; nondeterminis-
tic means that no particular rule is followed to make the
guess. If a problem is NP and all other NP problems are
polynomial-time reducible to it, the problem is NP-com-
plete. And a problem is called NP-hard if every other prob-
lem in NP is polynomial-time reducible to it.

Theorem 1 It is NP-complete to determine whether there
exists arbitrage in a frictional foreign exchange market with
bid-ask spreads, bound and integrality constraints even if
all lij =1

Then a further inapproximability result is obtained.

Theorem 2 There exists fixed € > 0 such that approximat-
ing (P) within a factor of n® is NP-hard even for any of the
following two special cases:

(Pl) all lij =1 andw,- =1.
(Py) alll;j = 1 and all but one w; = 0.

Now consider two polynomially solvable special cases
when the number of currencies is constant or the exchange
digraph is star-shaped (a digraph is star-shaped if all arcs
have a common vertex).

Theorem 3 There are polynomial time algorithms for (P)
when the number of currencies is constant.

Theorem 4 It is polynomially solvable to find the maxi-
mum revenue at the center currency of arbitrage in a fric-
tional foreign exchange market with bid-ask spread, bound

64

Arbitrage in Frictional Foreign Exchange Market

I gn 892 ap 00l gn SRy g
< > .\ > < 7 N 4 ~ { ~ ,.
\) ole * AN
N LD/ INED @) : an e NAD /
/3.0 @n an|an n \wn » wn a.n| @D
1
(1/3,1) (1/3,1) {1/3,1)
) /3. \(1/3,1) (@0 \as3.0) s, OWZE
AT IRN DALV 07 Z VDRI § 75N\ \
e > Ve 5o o PNV 5. LN
pt1 U0 WE) 3.0 WY j @730 k), 080 TR,

Arbitrage in Frictional Foreign Exchange Market, Figure 2
Digraph G,

and integrality constraints when the exchange digraph is
star-shaped.

However, if the exchange digraph is the coalescence of
a star-shaped exchange digraph and its copy, shown by Di-
graph Gy, then the problem becomes NP-complete.

Theorem 5 It is NP-complete to decide whether there ex-
ists arbitrage in a frictional foreign exchange market with
bid-ask spreads, bound and integrality constraints even if
its exchange digraph is coalescent.

Finally an answer to Problem 3 is as follows.

Theorem 6 There is an exchange digraph of order n
such that at least |n/2][n/2] — 1 transactions and at least
n?/4+n—3 arcs are in need to bring the system back to
non-arbitrage states.

For instance, consider the currency exchange market cor-
responding to digraph G, = (V, E), where the number of
currencies is n = | V|, p = [n/2] and K = n?.

Set

C={a;j€E|1<i<pp+1=Zj=<n}
Ufaipent \ a1} Ulaii-n 12 < i < p}
Ulaiylp+1<i<n-—1}.

Then |C| = [n/2|[n/2] + n—2 = |E|/2 > n?/4+n—3.Tt
follows easily from the rates and bounds that each arc in C
has to be used to eliminate arbitrage. And | n/2][n/2] — 1
transactions corresponding to {a;; € E|1 < i < p,p+
1 < j < n}\{a(p1)1} are in need to bring the system back
to non-arbitrage states.

Applications

The present results show that different foreign exchange
systems exhibit quite different computational complexi-
ties. They may shed new light on how monetary system
models are adopted and evolved in reality. In addition, it
provides with a computational complexity point of view to
the understanding of the now fast growing Internet elec-
tronic exchange markets.

Open Problems

The dynamic models involving in both spot markets (in
which goods are sold for cash and delivered immediately)
and futures markets are the most interesting ones. To
develop good approximation algorithms for such general
models would be important. In addition, it is also impor-
tant to identify special market models for which polyno-
mial time algorithms are possible even with future mar-
kets. Another interesting paradox in this line of study is
why friction constraints that make arbitrage difficult are
not always eliminated in reality.

Cross References

» General Equilibrium

Recommended Reading

1. Abeysekera, S.P., Turtle H.J.: Long-run relations in exchange
markets: a test of covered interest parity. J. Financial Res. 18(4),
431-447 (1995)

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-
Spaccamela, A., Protasi, M.: Complexity and approximation:
combinatorial optimization problems and their approximabil-
ity properties. Springer, Berlin (1999)

Arithmetic Coding for Data Compression

65

3. Cai, M., Deng, X.: Approximation and computation of arbitrage
in frictional foreign exchange market. Electron. Notes Theor.
Comput. Sci. 78, 1-10(2003)

4. Clinton, K.: Transactions costs and covered interest arbitrage:
theory and evidence. J. Politcal Econ. 96(2), 358-370 (1988)

5. Deng, X, Li, Z.F., Wang, S.: Computational complexity of arbi-
trage in frictional security market. Int. J. Found. Comput. Sci.
13(5), 681-684 (2002)

6. Deng, X., Papadimitriou, C.: On the complexity of coopera-
tive game solution concepts. Math. Oper. Res. 19(2), 257-266
(1994)

7. Deng, X., Papadimitriou, C., Safra, S.: On the complexity of price
equilibria. J. Comput. System Sci. 67(2), 311-324 (2003)

8. Garey, MR, Johnson, D.S.. Computers and intractability:
a guide of the theory of NP-completeness. Freeman, San Fran-
cisco (1979)

9. Jones, C.K.: A network model for foreign exchange arbitrage,
hedging and speculation. Int. J. Theor. Appl. Finance 4(6), 837-
852 (2001)

10. Lenstra Jr., H.W.: Integer programming with a fixed number of
variables. Math. Oper. Res. 8(4), 538-548 (1983)

11. Mavrides, M.: Triangular arbitrage in the foreign exchange
market - inefficiencies, technology and investment opportu-
nities. Quorum Books, London (1992)

12. Megiddo, N.: Computational complexity and the game theory
approach to cost allocation for a tree. Math. Oper. Res. 3, 189—
196 (1978)

13. Mundell, R.A.: Currency areas, exchange rate systems, and
international monetary reform, paper delivered at Uni-
versidad del CEMA, Buenos Aires, Argentina. http://www.
robertmundell.net/pdf/Currency (2000). Accessed 17 Apr 2000

14. Mundell, R.A.: Gold Would Serve into the 21st Century. Wall
Street Journal, 30 September 1981, pp. 33

15. Zhang, S., Xu, C., Deng, X.: Dynamic arbitrage-free asset pricing
with proportional transaction costs. Math. Finance 12(1), 89—
97 (2002)

|
Arithmetic Coding

for Data Compression
1994; Howard, Vitter

PAUL G. HOWARD', JEFFREY SCOTT VITTER?

! Microway, Inc., Plymouth, MA, USA

2 Department of Computer Science, Purdue University,
West Lafayette, IN, USA

Keywords and Synonyms

Entropy coding; Statistical data compression

Problem Definition

Often it is desirable to encode a sequence of data efficiently
to minimize the number of bits required to transmit or
store the sequence. The sequence may be a file or message
consisting of symbols (or letters or characters) taken from
a fixed input alphabet, but more generally the sequence

can be thought of as consisting of events, each taken from
its own input set. Statistical data compression is concerned
with encoding the data in a way that makes use of prob-
ability estimates of the events. Lossless compression has
the property that the input sequence can be reconstructed
exactly from the encoded sequence. Arithmetic coding is
a nearly-optimal statistical coding technique that can pro-
duce a lossless encoding.

Problem (Statistical data compression)

INPUT: A sequence of m events ay, aa,...,an. The ith
event a; is taken from a set of n distinct possible events
€i,1,€i2,---5€in with an accurate assessment ofthe prob—
ability distribution P; of the events. The distributions P;
need not be the same for each event a;.

OUTPUT: A succinct encoding of the events that can be de-
coded to recover exactly the original sequence of events.

The goal is to achieve optimal or near-optimal encoding
length. Shannon [10] proved that the smallest possible ex-
pected number of bits needed to encode the ith event is the
entropy of P;, denoted by

n
H(P) = Z —piklog, pik
k=1
where p; is the probability that e; occurs as the ith event.
An optimal code outputs —log, p bits to encode an event
whose probability of occurrence is p.

The well-known Huffman codes [6] are optimal only
among prefix (or instantaneous) codes, that is, those in
which the encoding of one event can be decoded before
encoding has begun for the next event. Hu-Tucker codes
are prefix codes similar to Huffman codes, and are de-
rived using a similar algorithm, with the added constraint
that coded messages preserve the ordering of original mes-
sages.

When an instantaneous code is not needed, as is often
the case, arithmetic coding provides a number of benefits,
primarily by relaxing the constraint that the code lengths
must be integers: 1) The code length is optimal (—log, p
bits for an event with probability p), even when proba-
bilities are not integer powers of 3. 2) There is no loss
of coding efficiency even for events with probability close
to 1. 3) It is trivial to handle probability distributions that
change from event to event. 4) The input message to out-
put message ordering correspondence of Hu-Tucker cod-
ing can be obtained with minimal extra effort.

As an example, consider a 5-symbol input alphabet.
Symbol probabilities, codes, and code lengths are given in
Table 1.

The average code length is 2.13 bits per input symbol
for the Huffman code, 2.22 bits per symbol for the Hu-

http://www.robertmundell.net/pdf/Currency
http://www.robertmundell.net/pdf/Currency

66

Arithmetic Coding for Data Compression

Arithmetic Coding for Data Compression, Table 1

Comparison of codes for Huffman coding, Hu-Tucker coding, and arithmetic coding for a sample 5-symbol alphabet

Symbol Prob. Huffman Hu-Tucker Arithmetic
ek pk —log,px Code Length Code Length Length

a 0.04 | 4.644 1111 |4 000 |3 4.644

b 0.18 | 2.474 110 |3 001 |3 2474

c 0.43]1.218 0 1 01 2 1.218

d 0.15]2.737 1110 | 4 10 2 2.737

e 0.20|2.322 10 2 1 2 2322

Tucker code, and 2.03 bits per symbol for arithmetic cod-
ing.

Key Results

In theory, arithmetic codes assign one “codeword” to each
possible input sequence. The codewords consist of half-
open subintervals of the half-open unit interval [0, 1), and
are expressed by specifying enough bits to distinguish the
subinterval corresponding to the actual sequence from
all other possible subintervals. Shorter codes correspond
to larger subintervals and thus more probable input se-
quences. In practice, the subinterval is refined incremen-
tally using the probabilities of the individual events, with
bits being output as soon as they are known. Arithmetic
codes almost always give better compression than prefix
codes, but they lack the direct correspondence between the
events in the input sequence and bits or groups of bits in
the coded output file.

The algorithm for encoding a file using arithmetic cod-
ing works conceptually as follows:

1. The “current interval” [L, H) is initialized to [0, 1).
2. For each event in the file, two steps are performed.

(a) Subdivide the current interval into subintervals,
one for each possible event. The size of a event’s
subinterval is proportional to the estimated proba-
bility that the event will be the next event in the file,
according to the model of the input.

(b) Select the subinterval corresponding to the event
that actually occurs next and make it the new cur-
rent interval.

3. Output enough bits to distinguish the final current in-
terval from all other possible final intervals.

The length of the final subinterval is clearly equal to the
product of the probabilities of the individual events, which
is the probability p of the particular overall sequence of
events. It can be shown that | —log, p| + 2 bits are enough
to distinguish the file from all other possible files.

For finite-length files, it is necessary to indicate the end
of the file. In arithmetic coding this can be done easily

by introducing a special low-probability event that can be
be injected into the input stream at any point. This adds
only O(log m) bits to the encoded length of an m-symbol
file.

In step 2, one needs to compute only the subinterval
corresponding to the event a; that actually occurs. To do
this, it is convenient to use two “cumulative” probabilities:
the cumulative probability Pc = Z};i pk and the next-
cumulative probability Py = Pc + p; = 22:1 Pk The new
subinterval is [L + Pc(H — L), L + Py(H — L)). The need
to maintain and supply cumulative probabilities requires
the model to have a sophisticated data structure, such as
that of Moffat [7], especially when many more than two
events are possible.

Modeling

The goal of modeling for statistical data compression is to
provide probability information to the coder. The mod-
eling process consists of structural and probability esti-
mation components; each may be adaptive (starting from
a neutral model, gradually build up the structure and prob-
abilities based on the events encountered), semi-adaptive
(specify an initial model that describes the events to be en-
countered in the data, then modify the model during cod-
ing so that it describes only the events yet to be coded), or
static (specify an initial model, and use it without modifi-
cation during coding).

In addition there are two strategies for probability es-
timation. The first is to estimate each event’s probability
individually based on its frequency within the input se-
quence. The second is to estimate the probabilities collec-
tively, assuming a probability distribution of a particular
form and estimating the parameters of the distribution, ei-
ther directly or indirectly. For direct estimation, the data
can yield an estimate of the parameter (the variance, for
instance). For indirect estimation [5], one can start with
a small number of possible distributions and compute the
code length that would be obtained with each; the one with
the smallest code length is selected. This method is very

Arithmetic Coding for Data Compression

67

general and can be used even for distributions from differ-
ent families, without common parameters.

Arithmetic coding is often applied to text compres-
sion. The events are the symbols in the text file, and the
model consists of the probabilities of the symbols consid-
ered in some context. The simplest model uses the overall
frequencies of the symbols in the file as the probabilities;
this is a zero-order Markov model, and its entropy is de-
noted Hy. The probabilities can be estimated adaptively
starting with counts of 1 for all symbols and increment-
ing after each symbol is coded, or the symbol counts can
be coded before coding the file itself and either modified
during coding (a decrementing semi-adaptive code) or left
unchanged (a static code). In all cases, the code length is
independent of the order of the symbols in the file.

Theorem 1 For all input files, the code length La of an
adaptive code with initial 1-weights is the same as the code
length Lsp of the semi-adaptive decrementing code plus the
code length Ly of the input model encoded assuming that
all symbol distributions are equally likely. This code length
is less than Ls = mHg + Ly, the code length of a static code
with the same input model. In other words, Ly = Lgsp +
Ly <mHy+ Ly = Ls.

It is possible to obtain considerably better text compres-
sion by using higher order Markov models. Cleary and
Witten [2] were the first to do this with their PPM method.
PPM requires adaptive modeling and coding of probabili-
ties close to 1, and makes heavy use of arithmetic coding.

Implementation Issues

Incremental Output. The basic implementation of
arithmetic coding described above has two major difficul-
ties: the shrinking current interval requires the use of high
precision arithmetic, and no output is produced until the
entire file has been read. The most straightforward solu-
tion to both of these problems is to output each leading bit
as soon as it is known, and then to double the length of
the current interval so that it reflects only the unknown
part of the final interval. Witten, Neal, and Cleary [11]
add a clever mechanism for preventing the current inter-
val from shrinking too much when the endpoints are close
to 1 but straddle 5. In that case one does not yet know
the next output bit, but whatever it is, the following bit
will have the opposite value; one can merely keep track
of that fact, and expand the current interval symmetri-
cally about % This follow-on procedure may be repeated
any number of times, so the current interval size is always
strictly longer than 1.

Before [11] other mechanisms for incremental trans-
mission and fixed precision arithmetic were developed
through the years by a number of researchers beginning
with Pasco [8]. The bit-stuffing idea of Langdon and oth-
ers at IBM [9] that limits the propagation of carries in the
additions serves a function similar to that of the follow-on
procedure described above.

Use of Integer Arithmetic. In practice, the arithmetic
can be done by storing the endpoints of the current in-
terval as sufficiently large integers rather than in floating
point or exact rational numbers. Instead of starting with
the real interval [0, 1), start with the integer interval [0, N),
N invariably being a power of 2. The subdivision pro-
cess involves selecting non-overlapping integer intervals
(of length at least 1) with lengths approximately propor-
tional to the counts.

Limited-Precision Arithmetic Coding. Arithmetic
coding as it is usually implemented is slow because of
the multiplications (and in some implementations, divi-
sions) required in subdividing the current interval accord-
ing to the probability information. Since small errors in
probability estimates cause very small increases in code
length, introducing approximations into the arithmetic
coding process in a controlled way can improve cod-
ing speed without significantly degrading compression
performance. In the Q-Coder work at IBM [9], the time-
consuming multiplications are replaced by additions and
shifts, and low-order bits are ignored.

Howard and Vitter [4] describe a different approach to
approximate arithmetic coding. The fractional bits charac-
teristic of arithmetic coding are stored as state information
in the coder. The idea, called quasi-arithmetic coding, is
to reduce the number of possible states and replace arith-
metic operations by table lookups; the lookup tables can
be precomputed.

The number of possible states (after applying the inter-
val expansion procedure) of an arithmetic coder using the
integer interval [0, N) is 3N?/16. The obvious way to re-
duce the number of states in order to make lookup tables
practicable is to reduce N. Binary quasi-arithmetic coding
causes an insignificant increase in the code length com-
pared with pure arithmetic coding.

Theorem 2 In a quasi-arithmetic coder based on full inter-
val [0, N), using correct probability estimates, and exclud-
ing very large and very small probabilities, the number of
bits per input event by which the average code length ob-
tained by the quasi-arithmetic coder exceeds that of an ex-

68

Assignment Problem

act arithmetic coder is at most

4 2 1 1 0.497 1
— (log, —) =+0(—= |~ -2 +0(—
an(ngean)N+ (NZ) N (NZ) ’
and the fraction by which the average code length obtained
by the quasi-arithmetic coder exceeds that of an exact arith-

metic coder is at most
I 2 ! +0 !
0 —_— [—_—
& 2 log, N (log N)?

N 0.0861 0 1
(logN)2)~

~ +

log, N
General-purpose algorithms for parallel encoding and de-
coding using both Huffman and quasi-arithmetic coding
are given in [3].

Applications

Arithmetic coding can be used in most applications of data
compression. Its main usefulness is in obtaining maxi-
mum compression in conjunction with an adaptive model,
or when the probability of one event is close to 1. Arith-
metic coding has been used heavily in text compression. It
has also been used in image compression in the JPEG in-
ternational standards for image compression and is an es-
sential part of the JBIG international standards for bilevel
image compression. Many fast implementations of arith-
metic coding, especially for a two-symbol alphabet, are
covered by patents; considerable effort has been expended
in adjusting the basic algorithm to avoid infringing those
patents.

Open Problems

The technical problems with arithmetic coding itself have
been completely solved. The remaining unresolved issues
are concerned with modeling: decomposing an input data
set into a sequence of events, the set of events possible at
each point in the data set being described by a probability
distribution suitable for input into the coder. The model-
ing issues are entirely application-specific.

Experimental Results

Some experimental results for the Calgary and Canterbury
corpora are summarized in a report by Arnold and Bell [1].

Data Sets

Among the most widely used data sets suitable for re-
search in arithmetic coding are: the Calgary Corpus: (ftp://
ftp.cpsc.ucalgary.ca/pub/projects), the Canterbury Corpus

(corpus.canterbury.ac.nz), and the Pizza&Chili Corpus
(pizzachili.dcc.uchile.cl).

URL to Code

A number of implementations of arithmetic coding are
available on the Compression Links Info page, www.
compression-links.info/ArithmeticCoding. The code at
the ucalgary.ca FTP site, based on [11], is especially use-
ful for understanding arithmetic coding.

Cross References

» Boosting Textual Compression
» Burrows—Wheeler Transform

Recommended Reading

1. Arnold, R., Bell, T.: A corpus for the evaluation of lossless com-
pression algorithms. In: Proceedings of the I[EEE Data Compres-
sion Conference, Snowbird, Utah, March 1997, pp. 201-210

2. Cleary, J.G., Witten, |.H.: Data compression using adaptive cod-
ing and partial string matching. IEEE Transactions on Commu-
nications, COM-32, pp. 396-402 (1984)

3. Howard, P.G,, Vitter, J.S.: Parallel lossless image compression
using Huffman and arithmetic coding. In: Proceedings of the
IEEE Data Compression Conference, Snowbird, Utah, March
1992, pp. 299-308

4. Howard, P.G., Vitter, J.S.: Practical implementations of arith-
metic coding. In: Storer, J.A. (ed.) Images and Text Com-
pression. Kluwer Academic Publishers, Norwell, Massachusetts
(1992)

5. Howard, P.G,, Vitter, J.S.: Fast and efficient lossless image com-
pression. In: Proceedings of the IEEE Data Compression Con-
ference, Snowbird, Utah, March 1993, pp. 351-360

6. Huffman, D.A.: A method for the construction of minimum re-
dundancy codes. Proceedings of the Institute of Radio Engi-
neers, 40, pp. 1098-1101 (1952)

7. Moffat, A.: An improved data structure for cumulative proba-
bility tables. Softw. Prac. Exp. 29, 647-659 (1999)

8. Pasco, R.: Source Coding Algorithms for Fast Data Compres-
sion, Ph. D. thesis, Stanford University (1976)

9. Pennebaker, W.B., Mitchell, J.L, Langdon, G.G., Arps, R.B.: An
overview of the basic principles of the Q-coder adaptive binary
arithmetic coder. IBM J. Res. Develop. 32, 717-726 (1988)

10. Shannon, C.E.: A mathematical theory of communication. Bell
Syst. Tech. J. 27, 398-403 (1948)

11. Witten, I.H., Neal, R.M,, Cleary, J.G.: Arithmetic coding for data
compression. Commun. ACM 30, 520-540 (1987)

|
Assignment Problem
1955; Kuhn
1957; Munkres

SAMIR KHULLER
Department of Computer Science,
University of Maryland, College Park, MD, USA

ftp://ftp.cpsc.ucalgary.ca/pub/projects
ftp://ftp.cpsc.ucalgary.ca/pub/projects
http://corpus.canterbury.ac.nz
http://pizzachili.dcc.uchile.cl
http://www.compression-links.info/ArithmeticCoding
http://www.compression-links.info/ArithmeticCoding

Assignment Problem

69

Keywords and Synonyms

Weighted bipartite matching

Problem Definition

Assume that a complete bipartite graph, G(X, Y, X x Y),
with weights w(x, y) assigned to every edge (x, y) is given.
A matching M is a subset of edges so that no two
edges in M have a common vertex. A perfect match-
ing is one in which all the nodes are matched. As-
sume that |X| = |Y| = n. The weighted matching prob-
lem is to find a matching with the greatest total weight,
where w(M) =)", o), w(e). Since G is a complete bipartite
graph, it has a perfect matching. An algorithm that solves
the weighted matching problem is due to Kuhn [4] and
Munkres [6]. Assume that all edge weights are nonnega-
tive.

Key Results

Define a feasible vertex labeling { as a mapping from the
set of vertices in G to the reals, where

Lx)+L(y) = w(x,y).

Call £(x) the label of vertex x. It is easy to compute a feasi-
ble vertex labeling as follows:

VyeY £(y)=0
and

Vx e X {(x)=maxw(x,y).
yeEY

€

Define the equality subgraph, Gy, to be the spanning sub-
graph of G, which includes all vertices of G but only those
edges (x, y) that have weights such that

w(x, y) =L(x) +L£(y) .

The connection between equality subgraphs and maxi-
mum-weighted matchings is provided by the following
theorem.

Theorem 1 If the equality subgraph, Gy, has a perfect
matching, M, then M is a maximum-weighted matching
inG.

In fact, note that the sum of the labels is an upper bound
on the weight of the maximum-weighted perfect match-
ing. The algorithm eventually finds a matching and a fea-
sible labeling such that the weight of the matching is equal
to the sum of all the labels.

High-Level Description

The above theorem is the basis of an algorithm for find-
ing a maximum-weighted matching in a complete bipar-
tite graph. Starting with a feasible labeling, compute the
equality subgraph and then find a maximum matching in
this subgraph (here one can ignore weights on edges). If
the matching found is perfect, the process is done. If it
is not perfect, more edges are added to the equality sub-
graph by revising the vertex labels. After adding edges to
the equality subgraph, either the size of the matching goes
up (an augmenting path is found) or the Hungarian tree
continues to grow.! In the former case, the phase termi-
nates and a new phase starts (since the matching size has
gone up). In the latter case, the Hungarian tree, grows by
adding new nodes to it, and clearly this cannot happen
more than » times.

Let S be the set of free nodes in X. Grow Hungarian
trees from each node in S. Let T be the nodes in Y encoun-
tered in the search for an augmenting path from nodes in
S. Add all nodes from X that are encountered in the search
to S.

Note the following about this algorithm:

S=X\S.
T=Y\T.
S| > |T].

There are no edges from S to T since this would imply that
one did not grow the Hungarian trees completely. As the
Hungarian trees in are grown in Gy, alternate nodes in the
search are placed into S and T. To revise the labels, take
the labels in S and start decreasing them uniformly (say,
by A), and at the same time increase the labels in T by A.
This ensures that the edges from S to T do not leave the
equality subgraph (Fig. 1).

As the labels in S are decreased, edges (in G) from S to
T will potentially enter the equality subgraph, G;. As we
increase A, at some point in time, an edge enters the equal-
ity subgraph. This is when one stops and updates the Hun-
garian tree. If the node from T added to T is matched to
anode in S, both these nodes are moved to S and T, which
yields a larger Hungarian tree. If the node from T is free,
an augmenting path is found and the phase is complete.
One phase consists of those steps taken between increases
in the size of the matching. There are at most n phases,
where is the number of vertices in G (since in each phase

I'This is the structure of explored edges when one starts BFS si-
multaneously from all free nodes in S. When one reaches a matched
node in T, one only explores the matched edge; however, all edges
incident to nodes in S are explored.

70

Asynchronous Consensus Impossibility

Only edges in G are shown
T

>

ﬂ

11

S
Assignment Problem, Figure 1
Sets S and T as maintained by the algorithm

the size of the matching increases by 1). Within each phase
the size of the Hungarian tree is increased at most n times.
It is clear that in O(n?) time one can figure out which edge
from S to T is the first to enter the equality subgraph (one
simply scans all the edges). This yields an O(n*) bound on
the total running time. How to implement it in O(n?) time
is now shown.

More Efficient Implementation
Define the slack of an edge as follows:

slack(x, y) = £(x) + £(y) — w(x, y) .
Then

A= min_slack(x,y).
x€S,yET

Naively, the calculation of A requires O(n?) time. For every
vertex y € T, keep track of the edge with the smallest slack,
ie,

slack[y] = migl slack(x, y) .
xX€E

The computation of slack[y] (for all y € T) requires O(n?)
time at the start of a phase. As the phase progresses, it is

easy to update all the slack values in O(n) time since all of
them change by the same amount (the labels of the ver-
tices in S are going down uniformly). Whenever a node u
is moved from S to S one must recompute the slacks of the
nodes in T, requiring O(n) time. But a node can be moved
from S to S at most # times.

Thus each phase can be implemented in O(n?) time.
Since there are 7 phases, this gives a running time of O(n*).
For sparse graphs, there is a way to implement the algo-
rithm in O(n(m + nlog n)) time using min cost flows [1],
where m is the number of edges.

Applications

There are numerous applications of biparitite match-
ing, for example, scheduling unit-length jobs with inte-
ger release times and deadlines, even with time-dependent
penalties.

Open Problems

Obtaining a linear, or close to linear, time algorithm.

Recommended Reading

Several books on combinatorial optimization describe al-
gorithms for weighted bipartite matching (see [2,5]). See
also Gabow’s paper [3].

1. Ahuja, R, Magnanti, T., Orlin, J.: Network Flows: Theory, Algo-
rithms and Applications. Prentice Hall, Englewood Cliffs (1993)

2. Cook, W., Cunningham, W., Pulleyblank, W., Schrijver, A.: Combi-
natorial Optimization. Wiley, New York (1998)

3. Gabow, H.: Data structures for weighted matching and near-
est common ancestors with linking. In: Symp. on Discrete Algo-
rithms, 1990, pp. 434-443

4. Kuhn, H.: The Hungarian method for the assignment problem.
Naval Res. Logist. Quart. 2, 83-97 (1955)

5. Lawler, E.: Combinatorial Optimization: Networks and Matroids.
Holt, Rinehart and Winston (1976)

6. Munkres, J.: Algorithms for the assignment and transportation
problems. J. Soc. Ind. Appl. Math. 5, 32-38 (1957)

|
Asynchronous Consensus

Impossibility
1985; Fischer, Lynch, Paterson
MAURICE HERLIHY

Department of Computer Science, Brown University,
Providence, RI, USA

Keywords and Synonyms

Wait-free consensus; Agreement

Asynchronous Consensus Impossibility

71

Problem Definition

Consider a distributed system consisting of a set of pro-

cesses that communicate by sending and receiving mes-

sages. The network is a multiset of messages, where each

message is addressed to some process. A process is a state

machine that can take three kinds of steps.

e In a send step, a process places a message in the net-
work.

e In a receive step, a process A either reads and removes
from the network a message addressed to A, or it reads
a distinguished null value, leaving the network un-
changed. If a message addressed to A is placed in the
network, and if A subsequently performs an infinite
number of receive steps, then A will eventually receive
that message.

e Ina computation state, a process changes state without
communicating with any other process.

Processes are asynchronous: there is no bound on their rel-

ative speeds. Processes can crash: they can simply halt and

take no more steps. This article considers executions in

which at most one process crashes.
In the consensus problem, each process starts with

a private input value, communicates with the others, and

then halts with a decision value. These values must satisty

the following properties:

o Agreement: all processes’ decision values must agree.

o Validity: every decision value must be some process’ in-
put.

e Termination: every non-fault process must decide in
a finite number of steps.

Fischer, Lynch, and Paterson showed that there is no pro-

tocol that solves consensus in any asynchronous message-

passing system where even a single process can fail. This

result is one of the most influential results in Distributed

Computing, laying the foundations for a number of subse-

quent research efforts.

Terminology

Without loss of generality, one can restrict attention to bi-
nary consensus, where the inputs are 0 or 1. A protocol
state consists of the states of the processes and the multi-
set of messages in transit in the network. An initial state
is a protocol state before any process has moved, and a fi-
nal state is a protocol state after all processes have finished.
The decision value of any final state is the value decided by
all processes in that state.

Any terminating protocol’s set of possible states forms
a tree, where each node represents a possible protocol
state, and each edge represents a possible step by some
process. Because the protocol must terminate, the tree is

finite. Each leaf node represents a final protocol state with
decision value either 0 or 1.

A bivalent protocol state is one in which the eventual
decision value is not yet fixed. From any bivalent state,
there is an execution in which the eventual decision value
is 0, and another in which it is 1. A univalent protocol state
is one in which the outcome is fixed. Every execution start-
ing from a univalent state decides the same value. A I-va-
lent protocol state is univalent with eventual decision value
1, and similarly for a 0-valent state.

A protocol state is critical if
e Itis bivalent, and
e If any process takes a step, the protocol state becomes

univalent.

Key Results

Lemma 1 Every consensus protocol has a bivalent initial
state.

Proof Assume, by way of contradiction, that there ex-
ists a consensus protocol for (n + 1) threads Ag,---, A,
in which every initial state is univalent. Let s; be the ini-
tial state where processes A;,---, A, have input 0 and
Ay, ..., A;_; have input 1. Clearly, s¢ is 0-valent: all pro-
cesses have input 0, so all must decide 0 by the validity
condition. If s; is 0-valent, so is s;;1. These states differ
only in the input to process A; : 0in s;, and 1 in s;,;. Any
execution starting from s; in which A; halts before taking
any steps is indistinguishable from an execution starting
from s;;1 in which A; halts before taking any steps. Since
processes must decide 0 in the first execution, they must
decide 1 in the second. Since there is one execution start-
ing from s;,, that decides 0, and since s;,; is univalent by
hypothesis, s;.1 is 0-valent. It follows that the state 5,41, in
which all processes start with input 1, is 0-valent, a contra-
diction. O

Lemma 2 Every consensus protocol has a critical state.

Proof by contradiction. By Lemma 1, the protocol has
a bivalent initial state. Start the protocol in this state. Re-
peatedly choose a process whose next step leaves the pro-
tocol in a bivalent state, and let that process take a step.
Either the protocol runs forever, violating the termination
condition, or the protocol eventually enters a critical state.

O

Theorem 3 There is no consensus protocol for an asyn-
chronous message-passing system where a single process can
crash.

Proof Assume by way of contradiction that such a proto-
col exists. Run the protocol until it reaches a critical state

72

Asynchronous Consensus Impossibility

s. There must be two processes A and B such that A’s next
step carries the protocol to a 0-valent state, and B’s next
step carries the protocol to a 1-valent state.

Starting from s, let s4 be the state reached if A takes the
first step, sp if B takes the first step, s4p if A takes a step
followed by B, and so on. States s4 and s4p are 0-valent,
while sp and sp4 are 1-valent. The rest is a case analysis.

Of all the possible pairs of steps A and B could be about
to execute, most of them commute: states sy and sgy are
identical, which is a contradiction because they have dif-
ferent valences.

The only pair of steps that do not commute occurs
when A is about to send a message to B (or vice versa).
Let s4p be the state resulting if A sends a message to B and
B then receives it, and let sp4 be the state resulting if B re-
ceives a different message (or null) and then A sends its
message to B. Note that every process other than B has
the same local state in ssp and sp4. Consider an execu-
tion starting from s,p in which every process other than
B takes steps in round-robin order. Because s4p is 0-va-
lent, they will eventually decide 0. Next, consider an exe-
cution starting from sg, in which every process other than
B takes steps in round-robin order. Because sgy is 1-valent,
they will eventually decide 1. But all processes other than
B have the same local states at the end of each execution,
so they cannot decide different values, a contradiction. O

In the proof of this theorem, and in the proofs of the
preceding lemmas, we construct scenarios where at most
a single process is delayed. As a result, this impossibility
result holds for any system where a single process can fail
undetectably.

Applications

The consensus problem is a key tool for understanding the
power of various asynchronous models of computation.

Open Problems

There are many open problems concerning the solvabil-
ity of consensus in other models, or with restrictions on
inputs.

Related Work

The original paper by Fischer, Lynch, and Paterson [8] is
still a model of clarity.

Many researchers have examined alternative models
of computation in which consensus can be solved. Dolev,
Dwork, and Stockmeyer [5] examine a variety of alterna-
tive message-passing models, identifying the precise as-

sumptions needed to make consensus possible. Dwork,
Lynch, and Stockmeyer [6] derive upper and lower bounds
for a semi-synchronous model where there is an upper and
lower bound on message delivery time. Ben-Or [1] showed
that introducing randomization makes consensus possible
in an asynchronous message-passing system. Chandra and
Toueg [3] showed that consensus becomes possible if in
the presence of an oracle that can (unreliably) detect when
a process has crashed. Each of the papers cited here has in-
spired many follow-up papers. A good place to start is the
excellent survey by Fich and Ruppert [7].

A protocol is wait-free if it tolerates failures by all but
one of the participants. A concurrent object implementa-
tion is linearizable if each method call seems to take effect
instantaneously at some point between the method’s in-
vocation and response. Herlihy [9] showed that shared-
memory objects can each be assigned a consensus num-
ber, which is the maximum number of processes for which
there exists a wait-free consensus protocol using a com-
bination of read-write memory and the objects in ques-
tion. Consensus numbers induce an infinite hierarchy on
objects, where (simplifying somewhat) higher objects are
more powerful than lower objects. In a system of n or more
concurrent processes, it is impossible to construct a lock-
free implementation of an object with consensus number
n from an object with a lower consensus number. On the
other hand, any object with consensus number n is uni-
versal in a system of n or fewer processes: it can be used to
construct a wait-free linearizable implementation of any
object.

In 1990, Chaudhuri [4] introduced the k-set agreement
problem (sometimes called k-set consensus, which gen-
eralizes consensus by allowing k or fewer distinct deci-
sion values to be chosen. In particular, 1-set agreement is
consensus. The question whether k-set agreement can be
solved in asynchronous message-passing models was open
for several years, until three independent groups [2,10,11]
showed that no protocol exists.

Cross References

» Linearizability
» Topology Approach in Distributed Computing

Recommended Reading

1. Ben-Or, M.: Another advantage of free choice (extended ab-
stract): Completely asynchronous agreement protocols. In:
PODC '83: Proceedings of the second annual ACM symposium
on Principles of distributed computing, pp. 27-30. ACM Press,
New York (1983)

Atomic Broadcast

73

2. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for
t-resilient asynchronous computations. In: Proceedings of the
1993 ACM Symposium on Theory of Computing, May 1993.
pp. 206-215

3. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225-267 (1996)

4. Chaudhuri, S.: Agreement is harder than consensus: Set con-
sensus problems in totally asynchronous systems. In: Proceed-
ings Of The Ninth Annual ACM Symposium On Principles of
Distributed Computing, August 1990. pp. 311-234

5. Chandhuri, S.: More Choices Allow More Faults: Set Consen-
sus Problems in Totally Asynchronous Systems. Inf. Comput.
105(1), 132-158, July 1993

6. Dwork, C, Lynch, N., Stockmeyer, L.: Consensus in the presence
of partial synchrony. J. ACM 35(2), 288-323 (1988)

7. Fich, F.,, Ruppert, E.: Hundreds of impossibility results for dis-
tributed computing. Distrib. Comput. 16(2-3), 121-163 (2003)

8. Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed
consensus with one faulty process. J. ACM 32(2), 374-382
(1985)

9. Herlihy, M.: Wait-free synchronization. ACM Trans. Program.
Lang. Syst. (TOPLAS) 13(1), 124-149 (1991)

10. Herlihy, M., Shavit, N.: The topological structure of asyn-
chronous computability. J. ACM 46(6), 858-923 (1999)

11. Saks, M.E., Zaharoglou, F.: Wait-free k-set agreement is im-
possible: The topology of public knowledge. SIAM J. Comput.
29(5), 1449-1483 (2000)

|
Atomic Broadcast

1995; Cristian, Aghili, Strong, Dolev

XAVIER DEFAGO

School of Information Science, Japan Advanced Institute
of Science and Technology (JAIST),

Ishikawa, Japan

Keywords and Synonyms

Atomic multicast; Total order broadcast; Total order mul-
ticast

Problem Definition

The problem is concerned with allowing a set of processes
to concurrently broadcast messages while ensuring that all
destinations consistently deliver them in the exact same se-
quence, in spite of the possible presence of a number of
faulty processes.

The work of Cristian, Aghili, Strong, and Dolev [7]
considers the problem of atomic broadcast in a system
with approximately synchronized clocks and bounded
transmission and processing delays. They present suc-
cessive extensions of an algorithm to tolerate a bounded

number of omission, timing, or Byzantine failures, respec-
tively.

Related Work

The work presented in this entry originally appeared as
a widely distributed conference contribution [6], over
a decade before being published in a journal [7], at which
time the work was well-known in the research community.
Since there was no significant change in the algorithms, the
historical context considered here is hence with respect to
the earlier version.

Lamport [11] proposed one of the first published al-
gorithms to solve the problem of ordering broadcast mes-
sages in a distributed systems. That algorithm, presented
as the core of a mutual exclusion algorithm, operates
in a fully asynchronous system (i.e., a system in which
there are no bounds on processor speed or communi-
cation delays), but does not tolerate failures. Although
the algorithms presented here rely on physical clocks
rather than Lamport’s logical clocks, the principle used
for ordering messages is essentially the same: message
carry a timestamp of their sending time; messages are de-
livered in increasing order of the timestamp, using the
sending processor name for messages with equal times-
tamps.

At roughly the same period as the initial publication of
the work of Cristian et al. [6], Chang and Maxemchuck [3]
proposed an atomic broadcast protocol based on a token
passing protocol, and tolerant to crash failures of proces-
sors. Also, Carr [1] proposed the Tandem global update
protocol, tolerant to crash failures of processors.

Cristian [5] later proposed an extension to the
omission-tolerant algorithm presented here, under the as-
sumption that the communication system consists of f + 1
independent broadcast channels (where f is the maximal
number of faulty processors). Compared with the more
general protocol presented here, its extension generates
considerably fewer messages.

Since the work of Cristian, Aghili, Strong, and Do-
lev [7], much has been published on the problem of atomic
broadcast (and its numerous variants). For further read-
ing, Défago, Schiper, and Urban [8] surveyed more than
sixty different algorithms to solve the problem, classifying
them into five different classes and twelve variants. That
survey also reviews many alternative definitions and ref-
erences about two hundred articles related to this subject.
This is still a very active research area, with many new re-
sults being published each year.

Hadzilacos and Toueg [10] provide a systematic clas-
sification of specifications for variants of atomic broadcast

74

Atomic Broadcast

as well as other broadcast problems, such as reliable broad-
cast, FIFO broadcast, or causal broadcast.

Chandra and Toueg [2] proved the equivalence be-
tween atomic broadcast and the consensus problem. Thus,
any application solved by a consensus can also be solved
by atomic broadcast and vice-versa. Similarly, impossibil-
ity results apply equally to both problems. For instance, it
is well-known that consensus, thus atomic broadcast, can-
not be solved deterministically in an asynchronous system
with the presence of a faulty process [9].

Notations and Assumptions

The system G consists of #n distributed processors and

m point-to-point communication links. A link does not

necessarily exists between every pair of processors, but it

is assumed that the communication network remains con-
nected even in the face of faults (whether processors or
links). All processors have distinct names and there exists

a total order on them (e. g., lexicographic order).

A component (link or processor) is said to be correct if
its behavior is consistent with its specification, and faulty
otherwise. The paper considers three classes of component
failures, namely, omission, timing, and Byzantine failures.
e An omission failure occurs when the faulty component

fails to provide the specified output (e. g., loss of a mes-

sage).

e A timing failure occurs when the faulty component
omits a specified output, or provides it either too early
or too late.

o A Byzantine failure [12] occurs when the component
does not behave according to its specification, for in-
stance, by providing output different from the one
specified. In particular, the paper considers authenti-
cation-detectable Byzantine failures, that is, ones that
are detectable using a message authentication proto-
col, such as error correction codes or digital signa-
tures.

Each processor p has access to a local clock C, with the

properties that (1) two separate clock readings yield dif-

ferent values, and (2) clocks are e-synchronized, meaning
that, at any real time ¢, the deviation in readings of the
clocks of any two processors p and ¢ is at most €.

In addition, transmission and processing delays, as
measured on the clock of a correct processor, are bounded
by a known constant §. This bound accounts not only for
delays in transmission and processing, but also for delays
due to scheduling, overload, clock drift or adjustments.
This is called a synchronous system model.

The diffusion time d§ is the time necessary to prop-
agate information to all correct processes, in a surviving

network of diameter d with the presence of a most 7 pro-
cessor failures and A link failures.

Problem Definition

The problem of atomic broadcast is defined in a syn-
chronous system model as a broadcast primitive which sat-
isfies the following three properties: atomicity, order, and
termination.

Problem 1 (Atomic broadcast)

Input: A stream of messages broadcast by n concurrent pro-

cessors, some of which may be faulty.

Output: The messages delivered in sequence, with the fol-

lowing properties:

1. Atomicity: if any correct processor delivers an update at
time U on its clock, then that update was initiated by
some processor and is delivered by each correct processor
at time U on its clock.

2. Order: all updates delivered by correct processors are de-
livered in the same order by each correct processor.

3. Termination: every update whose broadcast is initiated
by a correct processor at time T on its clock is delivered
at all correct processors at time T + A on their clock.

Nowadays, problem definitions for atomic broadcast that
do not explicitly refer to physical time are often preferred.
Many variants of time-free definitions are reviewed by
Hadzilacos and Toueg [10] and Défago et al. [8]. One such
alternate definition is presented below, with the terminol-
ogy adapted to the context of this entry.

Problem 2 (Total order broadcast)

Input: A stream of messages broadcast by n concurrent pro-

cessors, some of which may be faulty.

Output: The messages delivered in sequence, with the fol-

lowing properties:

1. Validity: if a correct processor broadcasts a message m,
then it eventually delivers m.

2. Uniform agreement: if a processor delivers a message m,
then all correct processors eventually deliver m.

3. Uniform integrity: for any message m, every processor
delivers m at most once, and only if m was previously
broadcast by its sending processor.

4. Gap-free uniform total order: if some processor delivers
message m’ after message m, then a processor delivers m’
only after it has delivered m.

Key Results

The paper presents three algorithms for solving the prob-
lem of atomic broadcast, each under an increasingly de-
manding failure model, namely, omission, timing, and

Atomic Broadcast

75

Byzantine failures. Each protocol is actually an extension
of the previous one.

All three protocols are based on a classical flooding, or
information diffusion, algorithm [14]. Every message car-
ries its initiation timestamp T, the name of the initiating
processor s, and an update 0. A message is then uniquely
identified by (s, T'). Then, the basic protocol is simple. Each
processor logs every message it receives until it is deliv-
ered. When it receives a message that was never seen be-
fore, it forwards that message to all other neighbor proces-
sors.

Atomic Broadcast for Omission Failures

The first atomic broadcast protocol, supporting omission
failures, considers a termination time A, as follows.

Ay =7mé+dS+e¢. (1)

The delivery deadline T + A, is the time by which a pro-
cessor can be sure that it has received copies of every mes-
sage with timestamp T (or earlier) that could have been
received by some correct process.

The protocol then works as follows. When a proces-
sor initiates an atomic broadcast, it propagates that mes-
sage, similar to the diffusion algorithm described above.
The main exception is that every message received after the
local clock exceeds the delivery deadline of that message, is
discarded. Then, at local time T + A,, a processor delivers
all messages timestamped with T, in order of the name of
the sending processor. Finally, it discards all copies of the
messages from its logs.

Atomic Broadcast for Timing Failures

The second protocol extends the first one by introduc-
ing a hop count (i.e., a counter incremented each time
a message is relayed) to the messages. With this informa-
tion, each relaying processor can determine when a mes-
sage is timely, that is, if a message timestamped T with hop
count h is received at time U then the following condition
must hold.

T—he<U<T+h@+e¢).)

Before relaying a message, each processor checks the ac-
ceptance test above and discard the message if it does not
satisfy it. The termination time A; of the protocol for tim-
ing failures is as follows.

Ar=n+e)+d+e. (3)

The authors point out that discarding early messages is not
necessary for correctness, but ensures that correct proces-
sors keep messages in their log for a bounded amount of
time.

Atomic Broadcast for Byzantine Failures

Given some text, every processor is assumed to be able to
generate a signature for it, that cannot be faked by other
processors. Furthermore, every processor knows the name
of every other processors in the network, and has the abil-
ity to verify the authenticity of their signature.

Under the above assumptions, the third protocol ex-
tends the second one by adding signatures to the messages.
To prevent a Byzantine processor (or link) from tamper-
ing with the hop count, a message is co-signed by every
processor that relays it. For instance, a message signed by
k processors p1, ..., px is as follows.

(relayed, e (relayed, (ﬁrst, T,o.p1, sl) , D2, 52) ,
.o Dk Sk)

Where o is the update, T the timestamp, p; the message
source, and s; the signature generated by processor p;. Any
message for which one of the signature cannot be authenti-
cated is simply discarded. Also, if several updates initiated
by the same processor p carry the same timestamp, this in-
dicates that p is faulty and the corresponding updates are
discarded. The remainder of the protocol is the same as
the second one, where the number of hops is given by the
number of signatures. The termination time Ay, is also as
follows.

Ay=n(l+e)+dé+e. (4)

The authors insist however that, in this case, the transmis-
sion time § must be considerably larger than in the previ-
ous case, since it must account for the time spent in gen-
erating and verifying the digital signatures; usually a costly
operation.

Bounds

In addition to the three protocols presented above and
their correctness, Cristian et al. [7] prove the following two
lower bounds on the termination time of atomic broadcast
protocols.

Theorem 1 If the communication network G requires
x steps, then any atomic broadcast protocol tolerant of up
to i processor and A link omission failures has a termina-
tion time of at least x§ + e.

76

Atomicity

Theorem 2 Any atomic broadcast protocol for a Hamil-
tonian network with n processors that tolerate n —2
authentication-detectable Byzantine processor failures can-
not have a termination time smaller than (n — 1)(8 + ¢).

Applications

The main motivation for considering this problem is
its use as the cornerstone for ensuring fault-tolerance
through process replication. In particular, the authors con-
sider a synchronous replicated storage, which they define
as a distributed and resilient storage system that displays
the same content at every correct physical processor at
any clock time. Using atomic broadcast to deliver updates
ensures that all updates are applied at all correct proces-
sors in the same order. Thus, provided that the replicas
are initially consistent, they will remain consistent. This
technique, called state-machine replication [11,13] or also
active replication, is widely used in practice as a means of
supporting fault-tolerance in distributed systems.

In contrast, Cristian et al. [7] consider atomic broad-
cast in a synchronous system with bounded transmission
and processing delays. Their work was motivated by the
implementation of a highly-available replicated storage
system, with tightly coupled processors running a real-
time operating system.

Atomic broadcast has been used as a support for the
replication of running processes in real-time systems or,
with the problem reformulated to isolate explicit timing
requirements, has also been used as a support for fault-
tolerance and replication in many group communication
toolkits (see survey of Chockler et al. [4]).

In addition, atomic broadcast has been used for the
replication of database systems, as a means to reduce
the synchronization between the replicas. Wiesmann and
Schiper [15] have compared different database replication
and transaction processing approaches based on atomic
broadcast, showing interesting performance gains.

Cross References

» Asynchronous Consensus Impossibility

» Causal Order, Logical Clocks, State Machine
Replication

» Clock Synchronization

» Failure Detectors

Recommended Reading

1. Carr, R.: The Tandem global update protocol. Tandem Syst.
Rev. 1, 74-85 (1985)

2. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43, 225-267 (1996)

3. Chang, J.-M., Maxemchuk, N.F.: Reliable broadcast protocols.
ACM Trans. Comput. Syst. 2, 251-273 (1984)

4. Chockler, G., Keidar, I, Vitenberg, R.: Group communication
specifications: A comprehensive study. ACM Comput. Surv. 33,
427-469 (2001)

5. Cristian, F.: Synchronous atomic broadcast for redundant
broadcast channels. Real-Time Syst. 2, 195-212 (1990)

6. Cristian, F., Aghili, H., Strong, R., Dolev, D.: Atomic Broadcast:
From simple message diffusion to Byzantine agreement. In:
Proc. 15th Intl. Symp. on Fault-Tolerant Computing (FTCS-15),
Ann Arbor, June 1985 pp. 200-206. IEEE Computer Society
Press

7. Cristian, F., Aghili, H., Strong, R., Dolev, D.: Atomic broadcast:
From simple message diffusion to Byzantine agreement. In-
form. Comput. 118, 158-179 (1995)

8. Défago, X., Schiper, A., Urban, P.: Total order broadcast and
multicast algorithms: Taxonomy and survey. ACM Comput.
Surveys 36, 372-421 (2004)

9. Fischer, M.J,, Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32,
374-382(1985)

10. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and re-
lated problems. In: Mullender, S. (ed.) Distributed Systems, 2nd
edn., pp. 97-146. ACM Press Books, Addison-Wesley (1993). Ex-
tended version appeared as Cornell Univ. TR 94-1425

11. Lamport, L.: Time, clocks, and the ordering of events in a dis-
tributed system. Comm. ACM 21, 558-565 (1978)

12. Lamport, L., Shostak, R, Pease, M.: The Byzantine generals
problem. ACM Trans. Prog. Lang. Syst. 4, 382-401 (1982)

13. Schneider, F.B.: Implementing fault-tolerant services using the
state machine approach: a tutorial. ACM Comput. Surveys 22,
299-319 (1990)

14. Segall, A.: Distributed network protocols. IEEE Trans. Inform.
Theory 29, 23-35 (1983)

15. Wiesmann, M., Schiper, A.: Comparison of database replication
techniques based on total order broadcast. IEEE Trans. Knowl.
Data Eng. 17, 551-566 (2005)

|
Atomicity

» Best Response Algorithms for Selfish Routing

» Linearizability

» Selfish Unsplittable Flows: Algorithms for Pure
Equilibria

» Snapshots in Shared Memory

I
Atomic Multicast

» Atomic Broadcast

|
Atomic Network Congestion Games

» Selfish Unsplittable Flows: Algorithms for Pure
Equilibria

Attribute-Efficient Learning

77

T
Atomic Scan

» Snapshots in Shared Memory

T
Atomic Selfish Flows

» Best Response Algorithms for Selfish Routing

|
Attribute-Efficient Learning
1987; Littlestone

JYRKI KIVINEN
Department of Computer Science, University of Helsinki,
Helsinki, Finland

Keywords and Synonyms

Learning with irrelevant attributes

Problem Definition

Given here is a basic formulation using the online mistake
bound model, which was used by Littlestone [9] in his sem-
inal work.

Fix a class C of Boolean functions over n variables. To
start a learning scenario, a target function fy € C is cho-
sen but not revealed to the learning algorithm. Learning
then proceeds in a sequence of trials. At trial ¢, an input
x; € {0,1}" is first given to the learning algorithm. The
learning algorithm then produces its prediction j;, which
is its guess as to the unknown value fi(x;). The correct
value y; = f«(x;) is then revealed to the learner. If y; # J,
the learning algorithm made a mistake. The learning algo-
rithm learns C with mistake bound m, if the number of
mistakes never exceeds m, no matter how many trials are
made and how f« and x1, x5, ... are chosen.

Variable (or attribute) X; is relevant for func-
tion f:{0,1}" — {0,1} if f(x1,....%xi,...,%n) F#
f(x1,...,1—=xi,...,x,) holds for some X € 0,1". Sup-
pose now that for some k <n, every function f € C has
at most k relevant variables. It is said that a learning algo-
rithm learns class C attribute-efficiently, if it learns C with
a mistake bound polynomial in k and log n. Additionally,
the computation time for each trial is usually required to
be polynomial in n.

Key Results

The main part of current research of attribute-efficient
learning stems from Littlestones Winnow algorithm [9].

The basic version of Winnow maintains a weight vec-
tor wy = (We1, ..., we,,) € R". The prediction for input
x¢ € {0, 1}" is given by

J¢ = sign (Z We,iXe,i — 9)

i=1

where 0 is a parameter of the algorithm. Initially w; =
(1,...,1), and after trial t each component w; ; is updated
according to

aw:,; ify;=1,9=0andx;; =1
Wern,i =3 Wweilae ify,=0,9,=1landx,; =1 (1)
wy,i otherwise

where o > 1 is a learning rate parameter.

Littlestone’s basic result is that with a suitable choice
of 6 and o, Winnow learns the class of monotone k-literal
disjunctions with mistake bound O(k log n). Since the al-
gorithm changes its weights only when a mistake occurs,
this bound also guarantees that the weights remain small
enough for computation times to remain polynomial in
n. With simple transformations, Winnow also yields at-
tribute-efficient learning algorithms for general disjunc-
tions and conjunctions. Various subclasses of DNF formu-
las and decision lists [3] can be learned, too.

Winnow is quite robust against noise, i. e., errors in in-
put data. This is extremely important for practical applica-
tions. Remove now the assumption about a target func-
tion fx € C satistying y; = f«(x;) for all . Define attribute
error of a pair (x, y) with respect to a function f as the
minimum Hamming distance between x and x such that
f(x') = y. The attribute error of a sequence of trials with
respect to f is the sum of attribute errors of the individual
pairs (x¢, y¢). Assuming the sequence of trials has attribute
error at most A with respect to some k-literal disjunc-
tion, Auer and Warmuth [1] show that Winnow makes
O(A + klog n) mistakes. The noisy scenario can also be
analyzed in terms of hinge loss [5].

The update rule (1) has served as a model for a whole
family of multiplicative update algorithms. For example,
Kivinen and Warmuth [7] introduce the Exponentiated
Gradient algorithm, which is essentially Winnow modified
for continuous-valued prediction, and show how it can be
motivated by a relative entropy minimization principle.

Consider a function class C where each function can
be encoded using O(p(k)log n) bits for some polynomial
p- An example would be Boolean formulas with k rele-
vant variables, when the size of the formula is restricted
to p(k) ignoring the size taken by the variables. The cardi-
nality of C is then |C| = 20(P(F)1og") The classical Halving

78

Automated Search Tree Generation

Algorithm (see [9] for discussion and references) learns
any class consisting of m Boolean functions with mistake
bound log, m, and would thus provide an attribute-effi-
cient algorithm for such a class C. However, the running
time would not be polynomial. Another serious drawback
would be that the Halving Algorithm does not tolerate any
noise. Interestingly, a multiplicative update similar to (1)
has been used in Littlestone and Warmuth’s Weighted
Majority Algorithm [10], and also Vovk’s Aggregating Al-
gorithm [14], to produce a noise-tolerant generalization of
the Halving Algorithm.

Attribute-efficient learning has also been studied in
other learning models than the mistake bound model, such
as Probably Approximately Correct learning [4], learning
with uniform distribution [12], and learning with mem-
bership queries [3]. The idea has been further developed
into learning with a potentially infinite number of at-
tributes [2].

Applications

Attribute-efficient algorithms for simple function classes
have a potentially interesting application as a component
in learning more complex function classes. For exam-
ple, any monotone k-term DNF formula over variables
X1,. . Xy can be represented as a monotone k-literal dis-
junction over 2" variables z4, where z4 = [, xi for A €
{1,...,n} is defined. Running Winnow with the trans-
formed inputs z € {0, l}zn would give a mistake bound
O(klog2") = O(kn). Unfortunately the running time
would be linear in 2", at least for a naive implementa-
tion. Khardon et al. [6] provide discouraging computa-
tional hardness results for this potential application.

Online learning algorithms have a natural application
domain in signal processing. In this setting, the sender
emits a true signal y; at time ¢, fort=1,2,3,.... At some
later time (f + d), a receiver receives a signal z;, which is
a sum of the original signal y, and various echoes of earlier
signals yy, t' < t, all distorted by random noise. The task
is to recover the true signal y; based on received signals
Z¢, Zt—1, ..., 21— over some time window [. Currently at-
tribute-efficient algorithms are not used for such tasks, but
see [11] for preliminary results.

Attribute-efficient learning algorithms are similar in
spirit to statistical methods that find sparse models. In par-
ticular, statistical algorithms that use L; regularization are
closely related to multiplicative algorithms such as Win-
now and Exponentiated Gradient. In contrast, more clas-
sical L, regularization leads to algorithms that are not at-
tribute-efficient [13].

Cross References

» Boosting Textual Compression
» Learning DNF Formulas

Recommended Reading

1. Auer, P, Warmuth, M.K.: Tracking the best disjunction. Mach.
Learn. 32(2), 127-150 (1998)

2. Blum, A, Hellerstein, L., Littlestone, N.: Learning in the pres-
ence of finitely or infinitely many irrelevant attributes. J. Comp.
Syst. Sci. 50(1), 32-40 (1995)

3. Bshouty, N., Hellerstein, L.: Attribute-efficient learning in query
and mistake-bound models. J. Comp. Syst. Sci. 56(3), 310-319
(1998)

4. Dhagat, A., Hellerstein, L.: PAC learning with irrelevant at-
tributes. In: Proceedings of the 35th Annual Symposium on
Foundations of Computer Science, Santa Fe, pp 64-74. |IEEE
Computer Society, Los Alamitos (1994)

5. Gentile, C, Warmuth, M.K:: Linear hinge loss and average mar-
gin. In: Kearns, M.J,, Solla, S.A., Cohn, D.A. (eds.) Advances in
neural information processing systems 11, p. 225-231. MIT
Press, Cambridge (1999)

6. Khardon, R., Roth, D., Servedio, R.A.: Efficiency versus conver-
gence of boolean kernels for on-line learning algorithms. J. Ar-
tif. Intell. Res. 24, 341-356 (2005)

7. Kivinen, J.,, Warmuth, M.K.: Exponentiated gradient versus gra-
dient descent for linear predictors. Inf. Comp. 132(1), 1-64
(1997)

8. Klivans, A.R. Servedio, R.A.: Toward attribute efficient learning
of decision lists and parities. J. Mach. Learn. Res. 7(Apr), 587-
602 (2006)

9. Littlestone, N.: Learning quickly when irrelevant attributes
abound: A new linear threshold algorithm. Mach. Learn. 2(4),
285-318(1988)

10. Littlestone, N., Warmuth, M.K.: The weighted majority algo-
rithm. Inf. Comp. 108(2), 212-261 (1994)

11. Martin, R.K,, Sethares, W.A., Williamson, R.C., Johnson, Jr., C.R.:
Exploiting sparsity in adaptive filters. IEEE Trans. Signal Pro-
cess. 50(8), 1883-1894 (2002)

12. Mossel, E., O'Donnell, R., Servedio, R.A.: Learning functions of
k relevant variables. J. Comp. Syst. Sci. 69(3), 421-434 (2004)

13. Ng, A.Y.: Feature selection, L; vs. L, regularization, and rota-
tional invariance. In: Greiner, R., Schuurmans, D. (eds.) Proceed-
ings of the 21st International Conference on Machine Learn-
ing, pp 615-622. The International Machine Learning Society,
Princeton (2004)

14. Vovk, V.: Aggregating strategies. In: Fulk, M., Case, J. (eds.)
Proceedings of the 3rd Annual Workshop on Computational
Learning Theory, p. 371-383. Morgan Kaufmann, San Mateo
(1990)

|
Automated Search Tree Generation

2004; Gramm, Guo, Hiiffner, Niedermeier
FALK HUFFNER

Department of Math and Computer Science,
University of Jena, Jena, Germany

Automated Search Tree Generation

79

Keywords and Synonyms

Automated proofs of upper bounds on the running time
of splitting algorithms

Problem Definition

This problem is concerned with the automated develop-
ment and analysis of search tree algorithms. Search tree
algorithms are a popular way to find optimal solutions to
NP-complete problems.! The idea is to recursively solve
several smaller instances in such a way that at least one
branch is a yes-instance if and only if the original instance
is. Typically, this is done by trying all possibilities to con-
tribute to a solution certificate for a small part of the input,
yielding a small local modification of the instance in each
branch.

For example, consider the NP-complete CLUSTER
EDITING problem: can a given graph be modified by
adding or deleting up to k edges such that the resulting
graph is a cluster graph, that is, a graph that is a disjoint
union of cliques? To give a search tree algorithm for CLUS-
TER EDITING, one can use the fact that cluster graphs are
exactly the graphs that do not contain a P; (a path of
3 vertices) as an induced subgraph. One can thus solve
CLUSTER EDITING by finding a P3 and splitting it into
3 branches: delete the first edge, delete the second edge,
or add the missing edge. By this characterization, when-
ever there is no P; found, one already has a cluster graph.
The original instance has a solution with k modifications if
and only if at least one of the branches has a solution with
k — 1 modifications.

Analysis

For NP-complete problems, the running time of a search
tree algorithm only depends on the size of the search tree
up to a polynomial factor , which depends on the num-
ber of branches and the reduction in size of each branch.
If the algorithm solves a problem of size s and calls it-
self recursively for problems of sizes s —d,...,s —dj,
then (dy, ..., d;) is called the branching vector of this re-
cursion. It is known that the size of the search tree is
then O(o*), where the branching number o is the only pos-
itive real root of the characteristic polynomial

g (1)

where d = max{d;,...,d;}. For the simple CLUSTER
EDITING search tree algorithm and the size measure k, the

!For ease of presentation, only decision problems are considered;
adaption to optimization problems is straightforward.

branching vectoris (1, 1, 1) and the branching number is 3,
meaning that the running time is up to a polynomial fac-
tor O(3%).

Case Distinction

Often, one can obtain better running times by distinguish-
ing a number of cases of instances, and giving a specialized
branching for each case. The overall running time is then
determined by the branching number of the worst case.
Several publications obtain such algorithms by hand (e. g.,
a search tree of size O(2.27%) for CLUSTER EDITING [4]);
the topic of this work is how to automate this. That is, the
problem is the following:

Problem 1 (Fast Search Tree Algorithm)

INPUT: An NP-hard problem P and a size measure s(I) of
an instance I of P where instances I with s(I) = 0 can be
solved in polynomial time.

OUTPUT: A partition of the instance set of P into cases, and
for each case a branching such that the maximum branch-
ing number over all branchings is as small as possible.

Note that this problem definition is somewhat vague; in
particular, to be useful, the case an instance belongs to
must be recognizable quickly. It is also not clear whether
an optimal search tree algorithm exists; conceivably, the
branching number can be continuously reduced by in-
creasingly complicated case distinctions.

Key Results

Gramm et al. [3] describe a method to obtain fast search
tree algorithms for CLUSTER EDITING and related prob-
lems, where the size measure is the number of editing op-
erations k. To get a case distinction, a number of subgraphs
are enumerated such that each instance is known to con-
tain at least one of these subgraphs. It is next described
how to obtain a branching for a particular case.

A standard way of systematically obtaining specialized
branchings for instance cases is to use a combination of
basic branching and data reduction rules. Basic branching
is typically a very simple branching technique, and data re-
duction rules replace an instance with a smaller, solution-
equivalent instance in polynomial time. Applying this to
CLUSTER EDITING first requires a small modification of
the problem: one considers an annotated version, where
an edge can be marked as permanent and a non-edge can
be marked as forbidden. Any such annotated vertex pair
cannot be edited anymore. For a pair of vertices, the basic
branching then branches into two cases: permanent or for-
bidden (one of these options will require an editing opera-
tion). The reduction rules are: if two permanent edges are

Automated Search Tree Generation

Automated Search Tree Generation, Figure 1

Branching for a CLUSTER EDITING case using only basic branch-
ing on vertex pairs (double circles), and applications of the re-
duction rules (asterisks). Permanent edges are marked bold,
forbidden edges dashed. The numbers next to the subgraphs
state the change of the problem size k. The branching vector
is (1,2, 3, 3, 2), corresponding to a search tree size of 0(2.27%)

adjacent, the third edge of the triangle they induce must
also be permanent; and if a permanent and a forbidden
edge are adjacent, the third edge of the triangle they in-
duce must be forbidden.

Figure 1 shows an example branching derived in this
way.

Using a refined method of searching the space for all
possible cases and to distinguish all branchings for a case,
Gramm etal. [3] derive a number of search tree algorithms
for graph modification problems.

Applications

Gramm et al. [3] apply the automated generation of search
tree algorithms to several graph modification problems
(see also Table 1). Further, Hiiffner [5] demonstrates an
application of DOMINATING SET on graphs with maxi-
mum degree 4, where the size measure is the size of the
dominating set.

Fedin and Kulikov [2] examine variants of SAT; how-
ever, their framework is limited in that it only proves up-
per bounds for a fixed algorithm instead of generating al-
gorithms.

Skjernaa [6] also presents results on variants of SAT.
His framework does not require user-provided data reduc-
tion rules, but determines reductions automatically.

Automated Search Tree Generation, Table 1

Summary of search tree sizes where automation gave improve-
ments. “Known” is the size of the best previously published
“hand-made” search tree. For the satisfiability problems, mis the
number of clauses and / is the length of the formula

Problem Trivial Known New
CLUSTEREDITING 3 227 1.92 [3]
CLUSTER DELETION 2 1.77 1.53 [3]
CLUSTER VERTEX DELETION 3 2.27 2.26 [3]
BOUNDED DEGREE DOMINATINGSET |4 3.71[5]
X3SAT, size measure m 3 1.1939 | 1.1586 [6]
(n, 3)-MAXSAT, size measure m 2 1.341 1.2366 [2]
(n, 3)-MAXSAT, size measure / 2 1.1058 | 1.0983 [2]

Open Problems

The analysis of search tree algorithms can be much
improved by describing the “size” of an instance by
more than one variable, resulting in multivariate recur-
rences [1]. It is open to introduce this technique into an
automation framework.

It has frequently been reported that better running
time bounds obtained by distinguishing a large number
of cases do not necessarily speed up, but in fact can slow
down, a program. A careful investigation of the tradeoffs
involved and a corresponding adaption of the automation
frameworks is an open task.

Experimental Results

Gramm et al. [3] and Hiffner [5] report search tree sizes
for several NP-complete problems. Further, Fedin and Ku-
likov [2] and Skjernaa [6] report on variants of satisfiabil-
ity. Table 1 summarizes the results.

Cross References

» Vertex Cover Search Trees

Acknowledgments

Partially supported by the Deutsche Forschungsgemeinschaft, Emmy
Noether research group PIAF (fixed-parameter algorithms), NI
369/4.

Recommended Reading

1. Eppstein, D.: Quasiconvex analysis of backtracking algorithms.
In: Proc. 15th SODA, ACM/SIAM, pp. 788-797 (2004)

2. Fedin, S.S., Kulikov, A.S.: Automated proofs of upper bounds
on the running time of splitting algorithms. J. Math. Sci. 134,
2383-2391 (2006). Improved results at http://logic.pdmi.ras.ru/
~kulikov/autoproofs.html

http://logic.pdmi.ras.ru/~kulikov/autoproofs.html
http://logic.pdmi.ras.ru/~kulikov/autoproofs.html

Automated Search Tree Generation

81

3. Gramm, J,, Guo, J., Huffner, F., Niedermeier, R.: Automated gen-
eration of search tree algorithms for hard graph modification
problems. Algorithmica 39, 321-347 (2004)

4. Gramm, J., Guo, J., Hiffner, F., Niedermeier, R.: Graph-modeled
data clustering: Exact algorithms for clique generation. Theor.
Comput. Syst. 38, 373-392 (2005)

. Huffner, F.: Graph Modification Problems and Automated

Search Tree Generation. Diplomarbeit, Wilhelm-Schickard-Insti-
tut fir Informatik, Universitat Tlibingen (2003)

. Skjernaa, B.: Exact Algorithms for Variants of Satisfiability and

Colouring Problems. Ph. D. thesis, University of Aarhus, Depart-
ment of Computer Science (2004)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

