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Problem Definition

Determination of the complexity of k-CNF satisfiability is
a celebrated open problem: given a Boolean formula in
conjunctive normal form with at most k literals per clause,
find an assignment to the variables that satisfies each of the
clauses or declare none exists. It is well-known that the de-
cision problem of k-CNF satisfiability is NP-complete for
k > 3. This entry is concerned with algorithms that signif-
icantly improve the worst case running time of the naive
exhaustive search algorithm, which is poly(#)2” for a for-
mula on 7 variables. Monien and Speckenmeyer [8] gave
the first real improvement by giving a simple algorithm
whose running time is 01—y with ¢ > 0 for all k.
In a sequence of results [1,3,5,6,7,9,10,11,12], algorithms
with increasingly better running times (larger values of &)
have been proposed and analyzed.

These algorithms usually follow one of two lines of at-
tack to find a satisfying solution. Backtrack search algo-
rithms make up one class of algorithms. These algorithms
were originally proposed by Davis, Logemann and Love-
land [4] and are sometimes called Davis—Putnam proce-
dures. Such algorithms search for a satisfying assignment

by assigning values to variables one by one (in some or-
der), backtracking if a clause is made false. The other class
of algorithms is based on local searches (the first guaran-
teed performance results were obtained by Schéning [12]).
One starts with a randomly (or strategically) selected as-
signment, and searches locally for a satisfying assignment
guided by the unsatisfied clauses.

This entry presents ResolveSat, a randomized algo-
rithm for k-CNF satisfiability which achieves some of the
best known upper bounds. ResolveSat is based on an ear-
lier algorithm of Paturi, Pudlék and Zane [10], which is es-
sentially a backtrack search algorithm where the variables
are examined in a randomly chosen order. An analysis of
the algorithm is based on the observation that as long as
the formula has a satisfying assignment which is isolated
from other satisfying assignments, a third of the variables
are expected to occur as unit clauses as the variables are
assigned in a random order. Thus, the algorithm needs to
correctly guess the values of at most 2/3 of the variables.
This analysis is extended to the general case by observing
that there either exists an isolated satisfying assignment, or
there are many solutions so the probability of guessing one
correctly is sufficiently high.

ResolveSat combines these ideas with resolution to
obtain significantly improved bounds [9]. In fact, Re-
solveSat obtains the best known upper bounds for k-
CNF satisfiability for all k > 5. For k = 3 and 4, Iwama
and Takami [6] obtained the best known upper bound
with their randomized algorithm which combines the
ideas from Schoning’s local search algorithm and Re-
solveSat. Furthermore, for the promise problem of unique
k-CNF satisfiability whose instances are conjectured to be
among the hardest instances of k-CNF satisfiability [2],
ResolveSat holds the best record for all kK > 3. Bounds ob-
tained by ResolveSat for unique k-SAT and k-SAT, for
k = 3,4,5,6 are shown in Table 1. Here, these bounds are
compared with those of of Schoning [12], subsequently
improved results based on local search [1,5,11], and the
most recent improvements due to Iwama and Takami [6].
The upper bounds obtained by these algorithms are ex-
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pressed in the form 2¢"~°(") and the numbers in the table
represent the exponent c. This comparison focuses only on
the best bounds irrespective of the type of the algorithm
(randomized versus deterministic).

Notation In this entry, a CNF boolean formula F(x,
X2,...,Xy) is viewed as both a boolean function and a set
of clauses. A boolean formula F is a k-CNF if all the clauses
have size at most k. For a clause C, write var(C) for the set
of variables appearing in C. If v € var(C), the orientation
of v is positive if the literal v is in C and is negative if ¥
is in C. Recall that if F is a CNF boolean formula on vari-
ables (x1,x2,...,x,) and a is a partial assignment of the
variables, the restriction of F by a is defined to be the for-
mula F' = F[, on the set of variables that are not set by
a, obtained by treating each clause C of F as follows: if C
is set to 1 by a then delete C, and otherwise replace C by
the clause C’ obtained by deleting any literals of C that are
set to 0 by a. Finally, a unit clause is a clause that contains
exactly one literal.

Key Results
ResolveSat Algorithm

The ResolveSat algorithm is very simple. Given a k-CNF
formula, it first generates clauses that can be obtained by
resolution without exceeding a certain clause length. Then
it takes a random order of variables and gradually assigns
values to them in this order. If the currently considered
variable occurs in a unit clause, it is assigned the only value
that satisfies the clause. If it occurs in contradictory unit
clauses, the algorithm starts over. At each step, the algo-
rithm also checks if the formula is satisfied. If the formula
is satisfied, then the input is accepted. This subroutine is
repeated until either a satisfying assignment is found or
a given time limit is exceeded.

The ResolveSat algorithm uses the following subrou-
tine, which takes an arbitrary assignment y, a CNF formula
F, and a permutation 7 as input, and produces an assign-
ment u. The assignment u is obtained by considering the
variables of y in the order given by 7 and modifying their
values in an attempt to satisfy F.

Function Modify(CNF formula G(x1, x2, . .. , X,), permu-
tation 7 of {1,2,...,n}, assignment y) —> (assignment
u)

Go =G.

fori=1ton
if G;—; contains the unit clause x ;)
then Ur(i) = 1

else if G; | contains the unit clause X (;
then u, ;=0
else ur (i) = yx(i)
Gi = Gi—l [xn(;):un(;)
end /* end for loop */
return u;

The algorithm Search is obtained by running Modi-
fy(G, 7, ) on many pairs (7, y), where 7 is a random
permutation and y is a random assignment.

Search(CNF-formula F, integer I)

repeat I times
7 = uniformly random permutation of 1, ..., n
y = uniformly random vector € {0, 1}"
u = Modify(F, 7, y);
if u satisfies F

then output(u); exit;
end/* end repeat loop */
output(‘Unsatisfiable’);

The ResolveSat algorithm is obtained by combining
Search with a preprocessing step consisting of bounded
resolution. For the clauses C; and C,, C; and C, conflict
on variable v if one of them contains v and the other
contains 7. C; and C, is a resolvable pair if they conflict
on exactly one variable v. For such a pair, their resolvent,
denoted R(Cy, Cy), is the clause C = D; vV D, where D;
and D, are obtained by deleting v and ¥ from C; and C;.
It is easy to see that any assignment satisfying C, and C,
also satisfies C. Hence, if F is a satisfiable CNF formula
containing the resolvable pair C;, C, then the formula
F' = F A R(Cy, Cy) has the same satisfying assignments as
F. The resolvable pair C;, C; is s-bounded if |C,|, |C,| <'s
and |R(Cy, C;)| <s. The following subroutine extends
a formula F to a formula F, by applying as many steps of
s-bounded resolution as possible.

Resolve(CNF Formula F, integer s)
Fs; = F.
while F; has an s-bounded resolvable pair C;, C,
with R(Cy, C,) ¢ F;
F; =F; A R(C], Cz)
return (F).

The algorithm for k-SAT is the following simple combina-
tion of Resolve and Search:

ResolveSat(CNF-formula F, integer s, positive integer I)
F, = Resolve(F,s).
Search(F;, I).
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This table shows the exponent c in the bound 2<"~° for the unique k-SAT and k-SAT from the ResolveSat algorithm, the bounds
for k-SAT from Schoning'’s algorithm [12], its improved versions for 3-SAT [1,5,11], and the hybrid version of [6]

k unique k-SAT[9] k-SAT[9] k-SAT[12] k-SAT[1,5,11] k-SAT[6]
3(0.386... 0.521... [0415... [0.409... 0.404 ...
410.554... 0.562... [0.584... 0.559...
5 0.650... 0.678...
6 0.711 ... 0.736....

Analysis of ResolveSat

The running time of ResolveSat(F, s, I) can be bounded
as follows. Resolve(F, s) adds at most O(n®) clauses to F
by comparing pairs of clauses, so a naive implementation
runs in time 7% poly(n) (this time bound can be improved,
but this will not affect the asymptotics of the main re-
sults). Search(F;, I) runs in time I(| F| + n*)poly(n). Hence
the overall running time of ResolveSat(F, s, I) is crudely
bounded from above by (n* + I(|F|+ n))poly(n). If
s = O(n/log n), the overall running time can be bounded
by I|F[2° since n* = 29 Tt will be sufficient to choose
s either to be some large constant or to be a slowly growing
function of n. That is, s(n) tends to infinity with » but is
O(log n).

The algorithm Search(F, I) always answers “unsatis-
fiable” if F is unsatisfiable. Thus the only problem is to
place an upper bound on the error probability in the case
that F is satisfiable. Define 7(F) to be the probability that
Modify(F, 7, y) finds some satisfying assignment. Then
for a satisfiable F the error probability of Search(F,I) is
equal to (1 — t(F))! < e7I*F), which is at most e~" pro-
vided that I > n/t(F). Hence, it suffices to give good upper
bounds on t(F).

Complexity analysis of ResolveSat requires certain
constants . for k > 2:

1
JG+ 1)

8

Mk =

I
—

i
It is straightforward to show that u3; =4 —4In2 > 1.226
using Taylor’s series expansion of In2. Using standard
facts, it is easy to show that ptx is an increasing function
of k with the limit 3%, (1/7%) = (7%/6) = 1.644 . ..
The results on the algorithm ResolveSat are summa-
rized in the following three theorems.

Theorem 1 (i) Let k > 5, and let s(n) be a function going
to infinity. Then for any satisfiable k-CNF formula F on n
variables,

o(B) > 27Tl

Hence, ResolveSat(F,s,I) with I =20—#k/(k=1)n+0(n)
has error probability O(1) and running time
20l (k=)0 oy any satisfiable k-CNF formula, pro-
vided that s(n) goes to infinity sufficiently slowly.

(ii) For k > 3, the same bounds are obtained provided
that F is uniquely satisfiable.

Theorem 1 is proved by first considering the uniquely
satisfiable case and then relating the general case to the
uniquely satisfiable case. When k > 5, the analysis reveals
that the asymptotics of the general case is no worse than
that of the uniquely satisfiable case. When k = 3 or k = 4,
it gives somewhat worse bounds for the general case than
for the uniquely satisfiable case.

Theorem 2 Let s = s(n) be a slowly growing function. For
any satisfiable n-variable 3-CNF formula, t(F;) > 270-521n
and so ResolveSat(F, s, I) with I = n2%21" has error prob-
ability O(1) and running time 20-3211+0(m)

Theorem 3 Let s = s(n) be a slowly growing function.
For any satisfiable n-variable 4-CNF formula, t(F;) >
2705625 " and so ResolveSat(F, s, I) with I = n20-5625" pgs
error probability O(1) and running time 20-5625n+0(n)

Applications

Various heuristics have been employed to produce imple-
mentations of 3-CNF satisfiability algorithms which are
considerably more efficient than exhaustive search algo-
rithms. The ResolveSat algorithm and its analysis provide
a rigorous explanation for this efficiency and identify the
structural parameters (for example, the width of clauses
and the number of solutions), influencing the complexity.

Open Problems

The gap between the bounds for the general case and the
uniquely satisfiable case when k € {3, 4} is due to a weak-
ness in analysis, and it is conjectured that the asymptotic
bounds for the uniquely satisfiable case hold in general for
all k. If true, the conjecture would imply that ResolveSat
is also faster than any other known algorithm in the k = 3
case.
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Another interesting problem is to better understand
the connection between the number of satisfying assign-
ments and the complexity of finding a satisfying assign-
ment [2]. A strong conjecture is that satisfiability for for-
mulas with many satisfying assignments is strictly easier
than for formulas with fewer solutions.

Finally, an important open problem is to design an
improved k-SAT algorithm which runs faster than the
bounds presented in here for the unique k-SAT case.
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Problem Definition

A setting is assumed in which » selfish users compete for
routing their loads in a network. The network is an s — ¢
directed graph with a single source vertex s and a single
destination vertex t. The users are ordered sequentially.
It is assumed that each user plays after the user before
her in the ordering, and the desired end result is a Pure
Nash Equilibrium (PNE for short). It is assumed that, when
a user plays (i.e. when she selects an s — ¢ path to route
her load), the play is a best response (i. e. minimum de-
lay), given the paths and loads of users currently in the net.
The problem then is to find the class of directed graphs for
which such an ordering exists so that the implied sequence
of best responses leads indeed to a Pure Nash Equilibrium.

The Model

A network congestion game is a tuple ((w;)ien, G, (de)ceE)
where N = {1,..., n} is the set of users where user i con-
trols w; units of traffic demand. In unweighted conges-
tion games w; =1 for i =1,...,n. G(V,E) is a directed
graph representing the communications network and d,
is the latency function associated with edge e € E. It is as-
sumed that the d,’s are non-negative and non-decreasing
functions of the edge loads. The edges are called identi-
cal if d,(x) = x, Ve € E. The model is further restricted
to single-commodity network congestion games, where G
has a single source s and destination ¢ and the set of users’
strategies is the set of s —  paths, denoted P. Without loss
of generality it is assumed that G is connected and that ev-
ery vertex of G lies on a directed s — ¢ path.

A vector P=(py,...,p,) consisting of an s—t
path p; for each user i is a pure strategies profile. Let
le(P) = 3_;..ep, Wi be the load of edge e in P. The authors

define the cost )L;(P) for user i routing her demand on
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path p in the profile P to be

APY= > de(Le(P)+ Y de(I(P)+w)) .

e€pNp; eEPPi

The cost A’ (P) of user i in P is just )L;x_ (P), i. e. the total
delay along her path.

A pure strategies profile P is a Pure Nash Equilibrium
(PNE) iff no user can reduce her total delay by unilaterally
deviating i. e. by selecting another s — f path for her load,
while all other users keep their paths.

Best Response

Let p; be the path of user i and pi = (pl, e ,pi) be the
pure strategies profile for users 1, ..., i. Then the best re-
sponse of user i + 1 is a path p;,; so that

2 (e (1 (P1) # i)

e€p

pi+1 = avg min
pEeP!

Flows and Common Best Response

A (feasible) flow on the set P of s — ¢ paths of G is a func-
tion f: P — Mg so that

pr = Xn:wi.

peP i=1

The single-commodity network congestion game
((Wi)ien, G, (de)ecr) has the Common Best Response
property if for every initial flow f(not necessarily feasible),
all users have the same set of best responses with respect
to £. That is, if a path p is a best response with respect to f
for some user, then for all users j and all paths p’

Dode(forw) = Y de(forw) .

e€pr e€p

Furthermore, every segment mw of a best response
path p is a best response for routing the demand of any
user between 7’s endpoints. It is allowed here that some
users may already have contributed to the initial flow f£.

Layered and Series-Parallel Graphs

A directed (multi)graph G(V,E) with a distinguished
source s and destination ¢ is layered iff all directed s — ¢
paths have exactly the same length and each vertex lies on
some directed s — ¢ path.

A multigraph is series-parallel with terminals (s, t) if
1. itis a single edge (s, t) or

2. it is obtained from two series-parallel graphs Gi, G,
with terminals (s1, t;) and (s3, f2) by connecting them
either in series or in parallel. In a series connection, #;
is identified with s, and s; becomes s and t, becomes t.
In a parallel connection, s =s; =sand t; =, = t.

Key Results
The Greedy Best Response Algorithm (GBR)

GBR considers the users one-by-one in non-increasing or-
der of weight (i.e. w; > wp > --- > w,,). Each user adopts
her best response strategy on the set of (already adopted
in the net) best responses of previous users. No user can
change her strategy in the future. Formally, GBR succeeds
if the eventual profile P is a Pure Nash Equilibrium (PNE).

The Characterization

In [3] it is shown:

Theorem 1 If G is an (s — t) series-parallel graph and the
game ((wi)ien, G, (d;)ccg) has the common best response
property, then GBR succeeds.

Theorem 2 A weighted single-commodity network conges-
tion game in a layered network with identical edges has the
common best response property for any set of user weights.

Theorem 3 For any single-commodity network congestion

game in series-parallel networks, GBR succeeds if

1. The users are identical (if w; = 1 for all i) and the edge-
delays are arbitrary but non-decreasing or

2. The graph is layered and the edges are identical (for ar-
bitrary user weights)

Theorem 4 If the network consists of bunches of parallel-
links connected in series, then a PNE is obtained by applying
GBR to each bunch.

Theorem 5

1. Ifthe network is not series-parallel then there exist games
where GBR fails, even for 2 identical users and identical
edges.

2. If the network does not have the common best response
property (and is not a sequence of parallel links graphs
connected in series) then there exist games where GBR
fails, even for 2-layered series-parallel graphs.

Examples of such games are provided in [3].

Applications

GBR has a natural distributed implementation based on
aleader election algorithm. Each player is now represented
by a process. It is assumed that processes know the net-
work and the edge latency functions. The existence of
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a message passing subsystem and an underlying synchro-
nization mechanism (e. g. logical timestamps) is assumed,
that allows a distributed protocol to proceed in logical
rounds.

Initially all processes are active. In each round they run
a leader election algorithm and determine the process of
largest weight (among the active ones). This process routes
its demand on its best response path, announces its strat-
egy to all active processes, and becomes passive. Notice
that each process can compute its best response locally.

Open Problems

What is the class of networks where (identical) users can
achieve a PNE by a k-round repetition of a best responses
sequence? What happens to weighted users? In general,
how the network topology affects best response sequences?
Such open problems are a subject of current research.
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Problem Definition

The theory of bidimensionality provides general tech-
niques for designing efficient fixed-parameter algorithms

and approximation algorithms for a broad range of NP-
hard graph problems in a broad range of graphs. This the-
ory applies to graph problems that are “bidimensional”
in the sense that (1) the solution value for the k x k grid
graph and similar graphs grows with k, typically as £2(k?),
and (2) the solution value goes down when contracting
edges and optionally when deleting edges in the graph.
Many problems are bidimensional; a few classic examples
are vertex cover, dominating set, and feedback vertex set.

Graph Classes

Results about bidimensional problems have been devel-
oped for increasingly general families of graphs, all gen-
eralizing planar graphs.

The first two classes of graphs relate to embeddings
on surfaces. A graph is planar if it can be drawn in the
plane (or the sphere) without crossings. A graph has (Eu-
ler) genus at most g if it can be drawn in a surface of Euler
characteristic g. A class of graphs has bounded genus if ev-
ery graph in the class has genus at most g for a fixed g.

The next three classes of graphs relate to excluding mi-
nors. Given an edge e = {v, w} in a graph G, the contrac-
tion of e in G is the result of identifying vertices v and w in
G and removing all loops and duplicate edges. A graph H
obtained by a sequence of such edge contractions start-
ing from G is said to be a contraction of G. A graph H is
a minor of G if H is a subgraph of some contraction of G.
A graph class C is minor-closed if any minor of any graph
in C is also a member of C. A minor-closed graph class
C is H-minor-free it H ¢ C. More generally, the term “H-
minor-free” refers to any minor-closed graph class that ex-
cludes some fixed graph H. A single-crossing graph is a mi-
nor of a graph that can be drawn in the plane with at most
one pair of edges crossing. A minor-closed graph class
is single-crossing-minor-free if it excludes a fixed single-
crossing graph. An apex graph is a graph in which the re-
moval of some vertex leaves a planar graph. A graph class
is apex-minor-free if it excludes some fixed apex graph.

Bidimensional Parameters

Although implicitly hinted at in [2,5,10,11], the first use of
the term “bidimensional” was in [3].

First, “parameters” are an alternative view on opti-
mization problems. A parameter P is a function mapping
graphs to nonnegative integers. The decision problem asso-
ciated with P asks, for a given graph G and nonnegative in-
teger k, whether P(G) < k. Many optimization problems
can be phrased as such a decision problem about a graph
parameter P.
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Now, a parameter is g(r)-bidimensional (or just bidi-
mensional) if it is at least g(r) in an rxr “grid-like
graph” and if the parameter does not increase when tak-
ing either minors g(r)(-minor-bidimensional) or contrac-
tions (g(r)-contraction-bidimensional). The exact defini-
tion of “grid-like graph” depends on the class of graphs
allowed and whether one considers minor- or contraction-
bidimensionality. For minor-bidimensionality and for any
H-minor-free graph class, the notion of a “grid-like graph”
is defined to be the r x r grid, i. e., the planar graph with
12 vertices arranged on a square grid and with edges con-
necting horizontally and vertically adjacent vertices. For
contraction-bidimensionality, the notion of a “grid-like
graph” is as follows:

1. For planar graphs and single-crossing-minor-free
graphs, a “grid-like graph” is an r x r grid partially tri-
angulated by additional edges that preserve planarity.

2. For bounded-genus graphs, a “grid-like graph” is such
a partially triangulated r x r grid with up to genus(G)
additional edges (“handles”).

3. For apex-minor-free graphs, a “grid-like graph” is an
r x r grid augmented with additional edges such that
each vertex is incident to O(1) edges to nonboundary
vertices of the grid. (Here O(1) depends on the excluded
apex graph.)

Contraction-bidimensionality is so far undefined for H-

minor-free graphs (or general graphs).

Examples of bidimensional parameters include the
number of vertices, the diameter, and the size of various
structures such as feedback vertex set, vertex cover, min-
imum maximal matching, face cover, a series of vertex-
removal parameters, dominating set, edge dominating set,
R-dominating set, connected dominating set, connected
edge dominating set, connected R-dominating set, un-
weighted TSP tour (a walk in the graph visiting all ver-
tices), and chordal completion (fill-in). For example, feed-
back vertex set is §2(r%)-minor-bidimensional (and thus
also contraction-bidimensional) because (1) deleting or
contracting an edge preserves existing feedback vertex sets,
and (2) any vertex in the feedback vertex set destroys at
most four squares in the r x r grid, and there are (r — 1)?
squares, so any feedback vertex set must have 2(2) ver-
tices. See [1,3] for arguments of either contraction- or
minor-bidimensionality for the other parameters.

Key Results

Bidimensionality builds on the seminal Graph Minor The-
ory of Robertson and Seymour, by extending some math-
ematical results and building new algorithmic tools. The
foundation for several results in bidimensionality are the

following two combinatorial results. The first relates any
bidimensional parameter to treewidth, while the second
relates treewidth to grid minors.

Theorem 1 ([1,8]) If the parameter P is g(r)-
bidimensional, then for every graph G in the family as-
sociated with the parameter P, tw(G) = O(g_l(P(G))).
In particular, if g(r) = ©(r*), then the bound becomes
tw(G) = O(VP(G)).

Theorem 2 ([8]) For any fixed graph H, every H-minor-
free graph of treewidth w has an 2(w) x $2(w) grid as a mi-
nor.

The two major algorithmic results in bidimensionality are
general subexponential fixed-parameter algorithm, and
general polynomial-time approximation scheme (PTASs):

Theorem 3 ([1,8]) Consider a g(r)-bidimensional pa-
rameter P that can be computed on a graph G in
h(w)n®W time given a tree decomposition of G of width
at most w. Then there is an algorithm computing P on
any graph G in P’s corresponding graph class, with run-
ning time [h(O(g_l(k))) + Zo(gil(k))]no(l). In particular,
ifg(r) = O(r%) and h(w) = 2°"), then this running time is
subexponential in k.

Theorem 4 ([7]) Consider a bidimensional problem sat-
isfying the “separation property” defined in [4,7]. Suppose
that the problem can be solved on a graph G with n ver-
tices in f(n, tw(G)) time. Suppose also that the problem
can be approximated within a factor of a in g(n) time.
For contraction-bidimensional problems, suppose further
that both of these algorithms also apply to the “general-
ized form” of the problem defined in [4,7]. Then there is
a (1 + €)-approximation algorithm whose running time is
O(nf(n, O(a?/€)) + n*g(n)) for the corresponding graph
class of the bidimensional problem.

Applications

The theorems above have many combinatorial and algo-
rithmic applications.

Applying the parameter-treewidth bound of Theo-
rem 1 to the parameter of the number of vertices in the
graph proves that every H-minor-free graph on n vertices
has treewidth O(4/n), thus (re)proving the separator the-
orem for H-minor-free graphs. Applying the parameter-
treewidth bound of Theorem 1 to the parameter of the
diameter of the graph proves a stronger form of Epp-
stein’s diameter-treewidth relation for apex-minor-free
graphs. (Further work shows how to further strengthen the
diameter-treewidth relation to linear [6].) The treewidth-
grid relation of Theorem 2 can be used to bound the
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gap between half-integral multicommodity flow and frac-
tional multicommodity flow in H-minor-free graphs. It
also yields an O(1)-approximation for treewidth in H-
minor-free graphs. The subexponential fixed-parameter
algorithms of Theorem 3 subsume or strengthen all pre-
vious such results. These results can also be generalized
to obtain fixed-parameter algorithms in arbitrary graphs.
The PTASs of Theorem 4 in particular establish the first
PTASs for connected dominating set and feedback vertex
set even for planar graphs. For details of all of these results,
see [4].

Open Problems

Several combinatorial and algorithmic open problems re-
main in the theory of bidimensionality and related con-
cepts.

Can the grid-minor theorem for H-minor-free graphs,
Theorem 2, be generalized to arbitrary graphs with
a polynomial relation between treewidth and the largest
grid minor? (The best relation so far is exponential.)
Such polynomial generalizations have been obtained for
the cases of “map graphs” and “power graphs” [9].
Good grid-treewidth bounds have applications to minor-
bidimensional problems.

Can the algorithmic results (Theorem 3 and Theo-
rem 4) be generalized to solve contraction-bidimensional
problems beyond apex-minor-free graphs? It is known
that the basis for these results, Theorem 1, does not gen-
eralize [1]. Nonetheless, Theorem 3 has been generalized
for one specific contraction-bidimensional problem, dom-
inating set [3].

Can the polynomial-time approximation schemes of
Theorem 4 be generalized to more general algorithmic
problems that do not correspond directly to bidimensional
parameters? One general family of such problems arises
when adding weights to vertices and/or edges, and the goal
is e.g. to find the minimum-weight dominating set. An-
other family of such problems arises when placing con-
straints (e. g., on coverage or domination) only on subsets
of vertices and/or edges. Examples of such problems in-
clude Steiner tree and subset feedback vertex set.

For additional open problems and details about the
problems above, see [4].
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Problem Definition
Boolean Functions

The concept of a Boolean function — a function whose do-
main is {0,1}" and range is {0,1} - is central to comput-
ing. Boolean functions are used in foundational studies of
complexity [7,9], as well as the design and analysis of logic
circuits [4,13]. A Boolean function can be represented us-
ing a truth table — an enumeration of the values taken by
the function on each element of {0,1}". Since the truth ta-
ble representation requires memory exponential in #, it is
impractical for most applications. Consequently, there is
a need for data structures and associated algorithms for
efficiently representing and manipulating Boolean func-
tions.

Boolean Circuits

Boolean functions can be represented in many ways. One
natural representation is a Boolean combinational circuit,
or circuit for short [6, Chapter 34]. A circuit consists of
Boolean combinational elements connected by wires. The
Boolean combinational elements are gates and primary in-
puts. Gates come in three types: NOT, AND, and OR. The
NOT gate functions as follows: it takes a single Boolean-
valued input, and produces a single Boolean-valued out-
put which takes value 0 if the input is 1, and 1 if the input
is 0. The AND gate takes two Boolean-valued inputs and
produce a single output; the output is 1 if both inputs are
1, and 0 otherwise. The OR gate is similar to AND, except
that its output is 1 if one or both inputs are 1, and 0 other-
wise.

Circuits are required to be acyclic. The absence of cy-
cles implies that a Boolean-assignment to the primary in-
puts can be unambiguously propagated through the gates
in topological order. It follows that a circuit on #n ordered
primary inputs with a designated gate called the primary
output corresponds to a Boolean function on {0,1}". Every
Boolean function can be represented by a circuit, e. g., by
building a circuit that mimics the truth table.

The circuit representation is very general — any deci-
sion problem that is computable in polynomial-time on
a Turing machine can be computed by circuits polynomial
in the instance size, and the circuits can be constructed ef-
ficiently from the Turing machine program [15]. However,
the key analysis problems on circuits, namely satisfiability
and equivalence, are NP-hard [7].

Boolean Formulas

A Boolean formula is defined recursively: a Boolean vari-
able x; is a Boolean formula, and if ¢ and ¥ are Boolean

formulas, then so are (—=¢), (P AVY), (pV ), (p — V), and
(¢ <> V). The operators —, V, A, —, <> are referred to as
connectives; parentheses are often dropped for notational
convenience. Boolean formulas also can be used to repre-
sent arbitrary Boolean functions; however, formula satisfi-
ability and equivalence are also NP-hard. Boolean formu-
las are not as succinct as Boolean circuits: for example, the
parity function has linear sized circuits, but formula repre-
sentations of parity are super-polynomial. More precisely,
XOR,,: {0,1}" + {0,1} is defined to take the value 1
on exactly those elements of {0, 1} which contain an odd
number of 1s. Define the size of a formula to be the num-
ber of connectives appearing in it. Then for any sequence
of formulas 6}, 8,, ... such that 8 represents XORy, the
size of 6y is §2(k°) for all ¢ € Z* [14, Chapters 11,12].

A disjunct is a Boolean formula in which A and — are
the only connectives, and — is applied only to variables;
for example, x; A —x3 A —xs is a disjunct. A Boolean for-
mula is said to be in Disjunctive Normal Form (DNF) if
it is of the form Dy vV D; V --- V Dy_;, where each D; is
a disjunct. DNF formulas can represent arbitrary Boolean
functions, e. g., by identifying each input on which the for-
mula takes the value 1 with a disjunct. DNF formulas are
useful in logic design, because it can be translated directly
into a PLA implementation [4]. While satisfiability of DNF
formulas is trivial, equivalence is NP-hard. In addition,
given DNF formulas ¢ and ¥, the formulas —¢ and ¢ A ¥
are not DNF formulas, and the translation of these formu-
las to DNF formulas representing the same function can
lead to exponential growth in the size of the formula.

Shannon Trees

Let f be a Boolean function on domain {0,1}". Associate
the n dimensions with variables xg, ..., x,—;. Then the
positive cofactor of f with respect to x;, denoted by fy,, is
the function on domain {0,1}", which is defined by

fxi(Ol(), ..
=f(Ol(), ..

The negative cofactor of f with respect to x;, denoted by
fxy is defined similarly, with 0 taking the place of 1 in the
right-hand side.

Every Boolean function can be decomposed using
Shannon’s expansion theorem:

f(xl,...,xn):xi-fx;+x;‘fx;.

This observation can be used to represent f by a Shan-
non tree — a full binary tree [6, Appendix B.5] of height n,
where each path to a leaf node defines a complete assign-
ment to the n variables that f is defined over, and the leaf

Q1)

Q1)

-1, a0, Uy, ..

o1, Loy, ..
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node holds a 0 or a 1, based on the value f takes for the
assignment.

The Shannon tree is not a particularly useful repre-
sentation, since the height of the tree representing every
Boolean function on {0,1}" is n, and the tree has 2" leaves.
The Shannon tree can be made smaller by merging iso-
morphic subtrees, and bypassing nodes which have identi-
cal children. At first glance the reduced Shannon tree rep-
resentation is not particularly useful, since it entails creat-
ing the full binary tree in the first place. Furthermore, it is
not clear how to efficiently perform computations on the
reduced Shannon tree representation, such as equivalence
checking or computing the conjunction of functions pre-
sented as reduced Shannon trees.

Bryant [5] recognized that adding the restriction that
variables appear in fixed order from root to leaves greatly
reduced the complexity of manipulating reduced Shannon
trees. He referred to this representation as a Binary Deci-
sion Diagram (BDD).

Key Results
Definitions

Technically, a BDD is a directed acyclic graph (DAG), with
a designated root, and at most two sinks — one labeled 0,
the other labeled 1. Nonsink nodes are labeled with a vari-
able. Each nonsink node has two outgoing edges - one la-
beled with a 1 leading to the I-child, the other is a 0, lead-
ing to the 0-child. Variables must be ordered - that is if the
variable label x; appears before the label x; on some path
from the root to a sink, then the label x; is precluded from
appearing before x; on any path from the root to a sink.
Two nodes are isomorphic if both are equi-labeled sinks, or
they are both nonsink nodes, with the same variable label,
and their 0- and 1-children are isomorphic. For the DAG
to be a valid BDD, it is required that there are no isomor-
phic nodes, and for no nodes are its 0- and 1-children the
same.

A key result in the theory of BDDs is that given a fixed
variable ordering, the representation is unique upto iso-
morphism, i.e., if F and G are both BDDs representing
f:40,1}" — {0, 1} under the variable ordering x; < x; <
-++xy,, then F and G are isomorphic.

The definition of isomorphism directly yields a re-
cursive algorithm for checking isomorphism. However,
the resulting complexity is exponential in the number of
nodes - this is illustrated for example by checking the iso-
morphism of the BDD for the parity function against itself.
On inspection, the exponential complexity arises from re-
peated checking of isomorphism between pairs of nodes -
this naturally suggest dynamic programming. Caching iso-

morphism checks reduces the complexity of isomorphism
checking to O(|F| - |G|), where |B| denotes the number of
nodes in the BDD B.

BDD Operations

Many logical operations can be implemented in polyno-
mial time using BDDs: bdd_and which computes a BDD
representing the logical AND of the functions represented
by two BDDs, bdd_or and bdd_not which are defined sim-
ilarly, and bdd_compose which takes a BDD representing
a function f, a variable v, and a BDD representing a func-
tion g and returns the BDD for f where v is substituted by g
are examples.

The example of bdd_and is instructive - it is based on
the identity f- g = x- (fi - g¢) + %/ (fxr - gu). The recur-
sion can be implemented directly: the base cases are when
either f or g are 0, and when one or both are 1. The recur-
sion chooses the variable v labeling either the root of the
BDD for f or g, depending on which is earlier in the vari-
able ordering, and recursively computes BDD:s for f, - g,
and f,-g,’; these are merged if isomorphic. Givena BDD F
for f, if v is the variable labeling the root of F, the BDDs for
f,r and f, respectively are simply the 0-child and 1-child
of F’s root.

The implementation of bdd_and as described has ex-
ponential complexity because of repeated subproblems
arising. Dynamic programming again provides a solu-
tion — caching the intermediate results of bdd_and re-
duced the complexity to O(|F| - |G|).

Variable Ordering

All symmetric functions on {0,1}", have a BDD that is
polynomial in #, independent of the variable ordering.
Other useful functions such as comparators, multiplexers,
adders, and subtracters can also be efficiently represented,
if the variable ordering is selected correctly. Heuristics
for ordering selection are presented in [1,2,11]. There are
functions which do not have a polynomial-sized BDD un-
der any variable ordering - the function representing the
n-th bit of the output of a multiplier taking two n-bit
unsigned integer inputs is an example [5]. Wegener [17]
presents many more examples of the impact of variable or-
dering.

Applications

BDDs have been most commonly applied in the context of
formal verification of digital hardware [8]. Digital hard-
ware extends the notion of circuit described above by
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adding state elements which hold a Boolean value between
updates, and are updated on a clock signal.

The gates comprising a design are often updated based
on performance requirements; these changes typically are
not supposed to change the logical functionality of the de-
sign. BDD-based approaches have been used for checking
the equivalence of digital hardware designs [10].

BDDs have also been used for checking properties of
digital hardware. A typical formulation is that a set of
“good” states and a set of “initial” states are specified us-
ing Boolean formulas over the state elements; the prop-
erty holds iff there is no sequence of inputs which leads
a state in the initial state to a state not in the set of good
states. Given a design with n registers, a set of states A
in the design can be characterized by a formula ¢4 over
n Boolean variables: ¢ 4 evaluates to true on an assignment
to the variables iff the corresponding state is in A. The
formula ¢4 represents a Boolean function, and so BDDs
can be used to represent sets of states. The key opera-
tion of computing the image of a set of states 4, i.e., the
set of states that can be reached on application of a sin-
gle input from states in A, can also be implemented using
BDDs [12].

BDDs have been used for fest generation. One ap-
proach to test generation is to specify legal inputs us-
ing constraints, in essence Boolean formulas over the the
primary input and state variables. Yuan et al. [18] have
demonstrated that BDDs can be used to solve these con-
straints very efficiently.

Logic synthesis is the discipline of realizing hardware
designs specified as logic equations using gates. Mapping
equations to gates is straightforward; however, in prac-
tice a direct mapping leads to implementations that are
not acceptable from a performance perspective, where per-
formance is measured by gate area or timing delay. Ma-
nipulating logic equations in order to reduce area (e.g.,
through constant propagation, identifying common sub-
expressions, etc.), and delay (e.g., through propagating
late arriving signals closer to the outputs), is conveniently
done using BDDs.

Experimental Results

Bryant reported results on verifying two qualitatively dis-
tinct circuits for addition. He was able to verify on a VAX
11/780 (a 1 MIP machine) that two 64-bit adders were
equivalent in 95.8 minutes. He used an ordering that he
derived manually.

Normalizing for technology, modern BDD packages
are two orders of magnitude faster than Bryant’s original
implementation. A large source the improvement comes

from the use of the strong canonical form, wherein a global
database of BDD nodes is maintained, and no new node is
added without checking to see if a node with the same label
and 0- and 1-children exists in the database [3]. (For this
approach to work, it is also required that the children of
any node being added be in strong canonical form.) Other
improvements stem from the use of complement point-
ers (if a pointer has its least-significant bit set, it refers to
the complement of the function), better memory manage-
ment (garbage collection based on reference counts, keep-
ing nodes that are commonly accessed together close in
memory), better hash functions, and better organization
of the computed table (which keeps track of sub-problems
that have already been encountered) [16].

Data Sets

The SIS (http://embedded.eecs.berkeley.edu/pubs/down
loads/sis/) system from UC Berkeley is used for logic syn-
thesis. It comes with a number of combinational and se-
quential circuits that have been used for benchmarking
BDD packages.

The VIS (http://embedded.eecs.berkeley.edu/pubs/
downloads/vis) system from UC Berkeley and UC Boul-
der is used for design verification; it uses BDDs to perform
checks. The distribution includes a large collection of veri-
fication problems, ranging from simple hardware circuits,
to complex multiprocessor cache systems.

URL to Code

A number of BDD packages exist today, but the pack-
age of choice is CUDD (http://vlsi.colorado.edu/~fabio/
CUDD/). CUDD implements all the core features for ma-
nipulating BDDs, as well as variants. It is written in C++,
and has extensive user and programmer documentation.
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Problem Definition

In the one-dimensional bin packing problem, one is given
a list L = (a1, az,...,a,) of items, each item a; having
a size s(a;) € (0,1]. The goal is to pack the items into
a minimum number of unit-capacity bins, that is, to parti-
tion the items into a minimum number of sets, each hav-
ing total size of at most 1. This problem is NP-hard, and
so much of the research on it has concerned the design
and analysis of approximation algorithms, which will be
the subject of this article.

Although bin packing has many applications, it is per-
haps most important for the role it has played as a prov-
ing ground for new algorithmic and analytical techniques.

Some of the first worst- and average-case results for ap-
proximation algorithms were proved in this domain, as
well as the first lower bounds on the competitive ratios of
online algorithms. Readers interested in a more detailed
coverage than is possible here are directed to two relatively
recent surveys [4,11].

Key Results
Worst-Case Behavior

Asymptotic Worst-Case Ratios For most minimization
problems, the standard worst-case metric for an approxi-
mation algorithm A is the maximum, over all instances I,
of the ratio A(I)/OPT(I), where A(I) is the value of the so-
lution generated by A and OPT(I) is the optimal solution
value. In the case of bin packing, however, there are lim-
itations to this “absolute worst-case ratio” metric. Here it
is already NP-hard to determine whether OPT(I) = 2, and
hence no polynomial-time approximation algorithm can
have an absolute worst-case ratio better than 1.5 unless P
= NP. To better understand the behavior of bin packing al-
gorithms in the typical situation where the given list L re-
quires a large number of bins, researchers thus use a more
refined metric for bin packing, the asymptotic worst-case
ratio RS°. This is defined in two steps as follows.

R} = max {A(L)/OPT(L): L is alist with OPT(L) = n}
R =limsup R}
n—o0

The first algorithm whose behavior was analyzed in these
terms was First Fit (FF). This algorithm envisions an infi-
nite sequence of empty bins By, B, ... and, starting with
the first item in the input list L, places each item in turn
into the first bin which still has room for it. In a technical
report from 1971 which was one of the very first papers
in which worst-case performance ratios were studied, Ull-
man [22] proved the following.

Theorem 1 ([22]) R$% = 17/10.

In addition to FF, five other simple heuristics received
early study and have served as the inspiration for later re-
search. Best Fit (BF) is the variant of FF in which each
item is placed in the bin into which it will fit with the
least space left over, with ties broken in favor of the ear-
liest such bin. Both FF and BF can be implemented to run
in time O(n log n) [12]. Next Fit (NF) is a still simpler and
linear-time algorithm in which the first item is placed in
the first bin, and thereafter each item is placed in the last
nonempty bin if it will fit, otherwise a new bin is started.
First Fit Decreasing (FFD) and Best Fit Decreasing (BFD)
are the variants of those algorithms in which the input list
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is first sorted into nonincreasing order by size and then
the corresponding packing rule is applied. The results for
these algorithms are as follows.

Theorem 2 ([12]) R{S = 2.
Theorem 3 ([13]) Rg% = 17/10.
Theorem 4 ([12,13]) Rgp, = Rpp = 11/9=1.222....

The abovementioned algorithms are relatively simple and
intuitive. If one is willing to consider more complicated
algorithms, one can do substantially better. The current
best polynomial-time bin packing algorithm is very good
indeed. This is the 1982 algorithm of Karmarkar and
Karp [15], denoted here as “KK.” It exploits the ellip-
soid algorithm, approximation algorithms for the knap-
sack problem, and a clever rounding scheme to obtain the
following guarantees.

Theorem 5 ([15]) Ry = 1 and there is a constant ¢ such
that for all lists L,

KK(L) < OPT(L) + clog*(OPT(L)) .

Unfortunately, the running time for KK appears to be
worse than O(#®), and BFD and FFD remain much more
practical alternatives.

Online Algorithms Three of the abovementioned algo-
rithms (FF, BF, and NF) are online algorithms, in that they
pack items in the order given, without reference to the
sizes or number of later items. As was subsequently ob-
served in many contexts, the online restriction can seri-
ously limit the ability of an algorithm to produce good
solutions. Perhaps the first limitation of this type to be
proved was Yao’s theorem [24] that no online algorithm A
for bin packing can have RS® < 1.5. The bound has since
been improved to the following.

Theorem 6 ([23]) IfA is an online algorithm for bin pack-
ing, then R > 1.540.. ..

Here the exact value of the lower bound is the solution to
a complicated linear program.

Yao’s paper also presented an online algorithm Revised
First Fit (RFF) that had R{3.; = 5/3 = 1.666 . .. and hence
got closer to this lower bound than FF and BF. This algo-
rithm worked by dividing the items into four classes based
on size and index, and then using different packing rules
(and packings) for each class. Subsequent algorithms im-
proved on this by going to more and more classes. The cur-
rent champion is the online Harmonic++ algorithm (H++)

of [21]:
Theorem 7 ([21]) RYy,, < 1.58889.

Bounded-Space Algorithms The NF algorithm, in ad-
dition to being online, has another property worth noting:
no more than a constant number of partially filled bins re-
main open to receive additional items at any given time.
In the case of NF, the constant is 1 — only the last partially
filled bin can receive additional items. Bounding the num-
ber of open bins may be necessary in some applications,
such as packing trucks on loading docks. The bounded-
space constraint imposes additional limits on algorithmic
behavior however.

Theorem 8 ([17]) For any online bounded-space algo-
rithm A, RG°® > 1.691. . ..

The constant 1.691... arises in many other bin pack-
ing contexts. It is commonly denoted by hoo and equals
>, (1/t;), where t; = 1and, for i > 1, ¢; = t;_j(tj— +1).

The lower bound in Theorem 8 is tight, owing to the
existence of the Harmonicy algorithms (Hy) of [17]. Hy is
a class-based algorithm in which the items are divided into
classes Cp,, 1 < h < k, with Cy, consisting of all items with
size 1/k or smaller, and Cy,, 1 < h < k, consisting of all a;
with 1/(h + 1) < s(a;) < 1/h. The items in each class are
then packed by NF into a separate packing devoted just to
that class. Thus, at most k bins are open at any time. In [17]
it was shown that limy_s oo Rm = hoo = 1.691 . ... This is
even better than the asymptotic worst-case ratio of 1.7 for
the unbounded-space algorithms FF and BF, although it
should be noted that the bounded-space variant of BF in
which all but the two most-full bins are closed also has
RP =17 [8].

Average-Case Behavior

Continuous Distributions Bin packing also served asan
early test bed for studying the average-case behavior of
approximation algorithms. Suppose F is a distribution on
(0,1] and L,, is a list of n items with item sizes chosen inde-
pendently according to F. For any list L, let s(L) denote the
lower bound on OPT(L) obtained by summing the sizes of

all the items in L. Then define

ER}{(F) = E[A(L,)/OPT(Ly)] .
ERY?(F) = lim sup ER’}
n—>00

EW'(F) = E[A(Ly) — s(Ly)]

The last definition is included since ERS°(F) = 1 occurs
frequently enough that finer distinctions are meaningful.
For example, in the early 1980s, it was observed that for the
distribution F = U(0, 1] in which item sizes are uniformly
distributed on the interval (0, 1], ERZS(F) = ERZ3(F) =
1, as a consequence of the following more-detailed results.
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Theorem 9 ([16,20])  For
EW,(U(0,1]) = ©(/n).

A € {FFD, BFD, OPT},

Somewhat surprisingly, it was later discovered that the on-
line FF and BF algorithms also had sublinear expected
waste, and hence ER(U(0, 1]) = 1.

Theorem 10 ([5,19])

EW!L(U(0,1]) = O(n*?)
EW2,(U(0,1]) = O(n'*1og** n)

This good behavior does not, however, extend to the
bounded-space algorithms NF and Hy:

Theorem 11 ([6,18])

ER(U(0,1]) = 4/3 = 1.333...
lim ERy, (U(0,1]) = 7%/3 —2 = 1.2899. ..
k—o00

All the above results except the last two exploit the fact
that the distribution U(0, 1] is symmetric about 1/2, and
hence an optimal packing consists primarily of two-item
bins, with items of size s > 1/2 matched with smaller
items of size very close to 1 —s. The proofs essentially
show that the algorithms in question do good jobs of
constructing such matchings. In practice, however, there
will clearly be situations where more than matching is re-
quired. To model such situations, researchers first turned
to the distributions U(0, b], 0 < b < 1, where item sizes
are chosen uniformly from the interval (0, b]. Simula-
tions suggest that such distributions make things worse
for the online algorithms FF and BF, which appear to
have ERF(U(0,b]) > 1 for all b € (0,1). Surprisingly,
they make things better for FFD and BFD (and the opti-
mal packing).

Theorem 12 ([2,14])

1. For0 < b <1/2and A € {FFD, BFD},
EW%(U(0, b]) = O(1).

2. For1/2 < b < 1 and A € {FFD, BED},
EW(U(0,b]) = On'?).

3. For0 < b <1, EW{,(U(0,b]) = O(1).

Discrete Distributions In many applications, the item
sizes come from a finite set, rather than a continuous dis-
tribution like those discussed above. Thus, recently the
study of average-case behavior for bin packing has turned
to discrete distributions. Such a distribution is specified by
a finite list s, s;,...,s4 of rational sizes and for each s;
a corresponding rational probability p;. A remarkable re-
sult of Courcoubetis and Weber [7] says the following.

Theorem 13 ([7]) For any discrete distribution F,
EWP p(F) is either ©(n), ©(y/n), or O(1).

The discrete analogue of the continuous distribution
U(0, b] is the distribution U{j, k}, where the sizes are
1/k,2/k, ..., jlk and all the probabilities equal 1/j. Sim-
ulations suggest that the behavior of FF and BF in the dis-
crete case are qualitatively similar to the behavior in the
continuous case, whereas the behavior of FFD and BFD
is considerably more bizarre [3]. Of particular note is the
distribution F = U{6, 13}, for which ERg%,(F) is strictly
greater than ERP(F), in contrast to all the previously im-
plied comparisons between the two algorithms.

For discrete distributions, however, the standard algo-
rithms are all dominated by a new online algorithm called
the Sum-of-Squares (SS) algorithm. Note that since the
item sizes are all rational, they can be scaled so that they
(and the bin size B) are all integral. Then at any given point
in the operation of an online algorithm, the current pack-
ing can be summarized by giving, for each h, 1 < h < B,
the number #, of bins containing items of total size h. In

SS, one packs each item so as to minimize Zﬁ:ll ny.

Theorem 14 ([9]) For any discrete distribution F, the fol-
lowing hold.
1. IfEW},(F) = O(/n), then EW§4(F) = O(/n).
2. IfEW{p(F) = O(1),

then EW(((F) € {O(1), ©(log n)}.
In addition, a simple modification to SS can eliminate the
O(log n) case of condition 2.

Applications

There are many potential applications of one-dimensional
bin packing, from packing bandwidth requests into fixed-
capacity channels to packing commercials into station
breaks. In practice, simple heuristics like FFD and BFD are
commonly used.

Open Problems

Perhaps the most fundamental open problem related to
bin packing is the following. As observed above, there
is a polynomial-time algorithm (KK) whose packings are
within O(logz(OPT)) bins of optimal. Is it possible to do
better? As far as is currently known, there could still be
a polynomial-time algorithm that always gets within one
bin of optimal, even if P # NP.

Experimental Results

Bin packing has been a fertile ground for experimental
analysis, and many of the theorems mentioned above were
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first conjectured on the basis of experimental results. For
example, the experiments reported in [1] inspired Theo-
rems 10 and 12, and the experiments in [10] inspired The-
orem 14.
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Keywords and Synonyms

High-order compression models; Context-aware com-
pression

Problem Definition

Informally, a boosting technique is a method that, when
applied to a particular class of algorithms, yields improved
algorithms. The improvement must be provable and well
defined in terms of one or more of the parameters charac-
terizing the algorithmic performance. Examples of boost-
ers can be found in the context of Randomized Algorithms
(here, a booster allows one to turn a BPP algorithm into
an RP one [6]) and Computational Learning Theory (here,
a booster allows one to improve the prediction accuracy
of a weak learning algorithm [10]). The problem of Com-
pression Boosting consists of designing a technique that
improves the compression performance of a wide class of
algorithms. In particular, the results of Ferragina et al. pro-
vide a general technique for turning a compressor that uses
no context information into one that always uses the best
possible context.

The classic Huffman and Arithmetic coding algo-
rithms [1] are examples of statistical compressors which
typically encode an input symbol according to its overall
frequency in the data to be compressed.! This approach
is efficient and easy to implement but achieves poor com-
pression. The compression performance of statistical com-
pressors can be improved by adopting higher-order mod-
els that obtain better estimates for the frequencies of the
input symbols. The PPM compressor [9] implements this
idea by collecting (the frequency of) all symbols which
follow any k-long context, and by compressing them via
Arithmetic coding. The length k of the context is a param-
eter of the algorithm that depends on the data to be com-
pressed: it is different if one is compressing English text,
a DNA sequence, or an XML document. There exist other
examples of sophisticated compressors that use context in-
formation in an implicit way, such as Lempel-Ziv and Bur-
rows—Wheeler compressors [9]. All these context-aware
algorithms are effective in terms of compression perfor-
mance, but are usually rather complex to implement and
difficult to analyze.

Applying the boosting technique of Ferragina et al. to
Huffman or Arithmetic Coding yields a new compression
algorithm with the following features: (i) the new algo-
rithm uses the boosted compressor as a black box, (ii) the
new algorithm compresses in a PPM-like style, automat-

Tn their dynamic versions these algorithms consider the fre-
quency of a symbol in the already scanned portion of the input.

ically choosing the optimal value of k, (iii) the new algo-
rithm has essentially the same time/space asymptotic per-
formance of the boosted compressor. The following sec-
tions give a precise and formal treatment of the three prop-
erties (i)-(iii) outlined above.

Key Results
Notation: The Empirical Entropy

Let s be a string over the alphabet X' = {a,, ..., a;} and,
for each a; € X, let n; be the number of occurrences of
a; in s. The Oth order empirical entropy of the string s is
defined as Hy(s) = — Zf-':l(ni/|s|) log(n;/|s|), where it is
assumed that all logarithms are taken to the base 2 and
0log 0 = 0. It is well known that Hy is the maximum com-
pression one can achieve using a uniquely decodable code
in which a fixed codeword is assigned to each alphabet
symbol. Greater compression is achievable if the codeword
of a symbol depends on the k symbols following it (namely,
its context).? Let us define w; as the string of single symbols
immediately preceding the occurrences of w in s. For ex-
ample, for s = bcabcabdca it is ca; = bbd. The value

Hk(s)=|%| S Iwil Holw,) M

weXxk

is the k-th order empirical entropy of s and is a lower
bound to the compression one can achieve using code-
words which only depend on the k symbols immediately
following the one to be encoded.

Example 1 Let s=mississippi. For k=1 it is
i; =mssp, s; = isis, ps; = ip. Hence,

4 4 2

Hi(s) = ﬁHo(mssp) + ﬁHo(isis) + ﬁHo(ip)
6 4 2 12

—t —+— = —.

11 11 11 11

Note that the empirical entropy is defined for any string
and can be used to measure the performance of com-
pression algorithms without any assumption on the in-
put source. Unfortunately, for some (highly compress-
ible) strings, the empirical entropy provides a lower bound
that is too conservative. For example, for s = a” it is
|s| Hr(s) = 0 for any k > 0. To better deal with highly

2In data compression it is customary to define the context looking
at the symbols preceding the one to be encoded. The present entry
uses the non-standard “forward” contexts to simplify the notation of
the following sections. Note that working with “forward” contexts is
equivalent to working with the traditional “backward” contexts on the
string s reversed (see [3] for details).
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compressible strings [7] introduced the notion of 0th order
modified empirical entropy H;(s) whose property is that
|s|Hg (s) is at least equal to the number of bits needed to
write down the length of s in binary. The kth order modi-
fied empirical entropy Hy is then defined in terms of Hy as
the maximum compression one can achieve by looking at
no more than k symbols following the one to be encoded.

The Burrows-Wheeler Transform

Given a string s, the Burrows-Wheeler transform [2]
(bwt) consists of three basic steps: (1) append to the end
of s a special symbol § smaller than any other symbol
in X (2) form a conceptual matrix M whose rows are
the cyclic shifts of the string s$, sorted in lexicographic or-
der; (3) construct the transformed text § = bwt(s) by tak-
ing the last column of ‘M (see Fig. 1). In [2] Burrows and
Wheeler proved that § is a permutation of s, and that from
§ it is possible to recover s in O(]s|) time.

To see the power of the bwt the reader should reason
in terms of empirical entropy. Fix a positive integer k. The
first k columns of the bwt matrix contain, lexicographi-
cally ordered, all length-k substrings of s (and k substrings
containing the symbol $). For any length-k substring w
of s, the symbols immediately preceding every occurrence
of win s are grouped together in a set of consecutive posi-
tions of § since they are the last symbols of the rows of M
prefixed by w. Using the notation introduced for defining
Hy, it is possible to rephrase this property by saying that
the symbols of w; are consecutive within §, or equivalently,
that § contains, as a substring, a permutation 7, (w;) of the
string w;.

Example 2 Let s =mississippi and k = 1. Figure 1
shows that §[1, 4] = pssmis a permutation of 1; = mssp.
In addition, §[6,7] = p1i is a permutation of p; = ip, and
$[8,11] = ssii isa permutation of s; = isis.

Since permuting a string does not change its (modi-
fied) Oth order empirical entropy (that is, Ho(s,, (ws)) =
Hy(ws)), the Burrows—Wheeler transform can be seen as
a tool for reducing the problem of compressing s up to its
kth order entropy to the problem of compressing distinct
portions of § up to their 0th order entropy. To see this, as-
sume partitioning of § into the substrings m,, (w;) by vary-
ing w over X*. Tt follows that § = | |, < sk 7, (w;) where
|| denotes the concatenation operator among strings.3

3In addition to U, e sk Ty (W), the string § also contains the last k
symbols of s (which do not belong to any w;) and the special symbol $.
For simplicity these symbols will be ignored in the following part of
the entry.

By (1) it follows that

D Imw(w) Ho(mw(we)) = Y |wilHo(ws) = [s|Hi(s).

weXk weXk

Hence, to compress s up to |s| Hi(s) it suffices to com-
press each substring m,, (w;) up to its Oth order empirical
entropy. Note, however, that in the above scheme the pa-
rameter k must be chosen in advance. Moreover, a sim-
ilar scheme cannot be applied to H; which is defined in
terms of contexts of length at most k. As a result, no effi-
cient procedure is known for computing the partition of
§ corresponding to HZ (s). The compression booster [3] is
a natural complement to the bwt and allows one to com-
press any string s up to Hy(s) (or H Z(s)) simultaneously
forall k > 0.

The Compression Boosting Algorithm

A crucial ingredient of compression boosting is the rela-
tionship between the bwt matrix and the suffix tree data
structure. Let 7 denote the suffix tree of the string s§. 7'
has |s| + 1 leaves, one per suffix of s$, and edges labeled
with substrings of s$ (see Fig. 1). Any node u of 7~ has im-
plicitly associated a substring of s$, given by the concate-
nation of the edge labels on the downward path from the
root of 7 to u. In that implicit association, the leaves of 7'
correspond to the suffixes of s§. Assume that the suffix tree
edges are sorted lexicographically. Since each row of the
bwt matrix is prefixed by one suffix of s$ and rows are lexi-
cographically sorted, the ith leaf (counting from the left) of
the suffix tree corresponds to the ith row of the bwt matrix.
Associate to the ith leaf of 7" the ith symbol of § = bwt(s).
In Fig. 1 these symbols are represented inside circles.

For any suffix tree node u, let §(u) denote the substring
of § obtained by concatenating, from left to right, the sym-
bols associated to the leaves descending from node u. Of
course §{root(7)) = 5. A subset L of T’s nodes is called
a leaf cover if every leaf of the suffix tree has a unique ances-
tor in L. Any leaf cover £ = {uy, ..., u,} naturally induces
a partition of the leaves of 7. Because of the relationship
between T and the bwt matrix this is also a partition of §,
namely {8(u1),....5(up)}.

Example 3 Consider the suffix tree in Fig. 1. A leaf cover
consists of all nodes of depth one. The partition of § in-
duced by this leaf cover is {1, pssm, $,pi, ssii}.

Let C denote a function that associates to every string x
over X' U {$} a positive real value C(x). For any leaf cover
L, defineits costas C(£) = Y, , C(§{u)). In other words,
the cost of the leaf cover £ is equal to the sum of the costs
of the strings in the partition induced by L. A leaf cover
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Boosting Textual Compression, Figure 1

The bwt matrix (left) and the suffix tree (right) for the string s = mississippi$. The output of the bwt is the last column of the bwt

matrix, i.e., § = bwt(s) = ipssm$pissii

L yin is called optimal with respect to C if C(Lyyin) < C(L),
for any leaf cover L.

Let A be a compressor such that, for any string x,
its output size is bounded by |x|Ho(x) + n|x| + p bits,
where 1 and u are constants. Define the cost function
Ca(x) = |x|Ho(x) + n|x| + p. In [3] Ferragina et al. exhibit
a linear-time greedy algorithm that computes the optimal
leaf cover Ly, with respect to Ca. The authors of [3] also
show that, for any k > 0, there exists a leaf cover L of
cost Ca(Ly) = |s| Hi(s) + n|s| + O(|E|k). These two cru-
cial observations show that, if one uses A to compress each
substring in the partition induced by the optimal leaf cover
L yin, the total output size is bounded in terms of |s| Hy(s),
for any k > 0. In fact,

> Cald(u)) =CalLmin) < CalLy)
UE Lin

=|s| He(s) +nls| + O(| X5

In summary, boosting the compressor A over the string s

consists of three main steps:

1. Compute § = bwt(s);

2. Compute the optimal leaf cover L, with respect to
Ca, and partition § according to Lyyin;

3. Compress each substring of the partition using the al-
gorithm A

So the boosting paradigm reduces the design of effective

compressors that use context information, to the (usually

easier) design of Oth order compressors. The performance

of this paradigm is summarized by the following theorem.

Theorem 1 (Ferragina et al. 2005) Let A be a compressor
that squeezes any string x in at most | x| Ho(x)+n|x|+ u bits.

The compression booster applied to A produces an output
whose size is bounded by |s| Hi(s) +log |s| + n|s| + O(| 2 |¥)
bits simultaneously for all k > 0. With respect to A, the
booster introduces a space overhead of O(|s| log |s|) bits and
no asymptotic time overhead in the compression process. [

A similar result holds for the modified entropy Hj, as well
(but it is much harder to prove): Given a compressor A
that squeezes any string x in at most A|x| Hy (x) + w bits,
the compression booster produces an output whose size
is bounded by A|s| Hj (s) + log |s| + O(] X |¥) bits, simulta-
neously for all kK > 0. In [3] the authors also show that no
compression algorithm, satisfying some mild assumptions
on its inner working, can achieve a similar bound in which
both the multiplicative factor A and the additive logarith-
mic term are dropped simultaneously. Furthermore [3]
proposes an instantiation of the booster which compresses
any string s in at most 2.5[s|H} (s) + log|s| + O(] 2 |*) bits.
This bound is analytically superior to the bounds proven
for the best existing compressors including Lempel-Ziv,
Burrows—-Wheeler, and PPM compressors.

Applications

Apart from the natural application in data compression,
compressor boosting has been used also to design Com-
pressed Full-text Indexes [8].

Open Problems

The boosting paradigm may be generalized as follows:
Given a compressor A, find a permutation 2 for the sym-
bols of the string s and a partitioning strategy such that the
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boosting approach, applied to them, minimizes the out-
put size. These pages have provided convincing evidence
that the Burrows—Wheeler Transform is an elegant and
efficient permutation ?. Surprisingly enough, other clas-
sic Data Compression problems fall into this framework:
Shortest Common Superstring (which is MAX-SNP hard),
Run Length Encoding for a Set of Strings (which is polyno-
mially solvable), LZ77 and minimum number of phrases
(which is MAX-SNP-Hard). Therefore, the boosting ap-
proach is general enough to deserve further theoretical and
practical attention [5].

Experimental Results

An investigation of several compression algorithms based
on boosting, and a comparison with other state-of-the-art
compressors is presented in [4]. The experiments show
that the boosting technique is more robust than other bwt-
based approaches, and works well even with less effective
Oth order compressors. However, these positive features
are achieved using more (time and space) resources.

Data Sets

The data sets used in [4] are available from http://www.
mfn.unipmn.it/~manzini/boosting. Other data sets for
compression and indexing are available at the Pizza&Chili
site http://pizzachili.di.unipi.it/.

URL to Code

The Compression Boosting page
unipmn.it/~manzini/boosting) contains the source code
of all the algorithms tested in [4]. The code is organized
in a highly modular library that can be used to boost any
compressor even without knowing the bwt or the boosting
procedure.

(http://www.mfn.

Cross References

» Arithmetic Coding for Data Compression
» Burrows-Wheeler Transform

» Compressed Text Indexing

» Table Compression

» Tree Compression and Indexing

Recommended Reading

1. Bell, T.C,, Cleary, J.G., Witten, |.H.: Text compression. Prentice
Hall, NJ (1990)

2. Burrows, M. Wheeler, D.: A block sorting lossless data compres-
sion algorithm. Tech. Report 124, Digital Equipment Corpora-
tion (1994)

3. Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting
textual compression in optimal linear time. J. ACM 52, 688-713
(2005)

4. Ferragina, P., Giancarlo, R, Manzini, G.: The engineering of
a compression boosting library: Theory vs practice in bwt com-
pression. In: Proc. 14th European Symposium on Algorithms
(ESA).LNCS, vol. 4168, pp. 756-767. Springer, Berlin (2006)

5. Giancarlo, R, Restivo, A., Sciortino, M.: From first principles to
the Burrows and Wheeler transform and beyond, via combina-
torial optimization. Theor. Comput. Sci. 387(3):236-248 (2007)

6. Karp, R, Pippenger, N., Sipser, M.: A Time-Randomness trade-
off. In: Proc. Conference on Probabilistic Computational Com-
plexity, AMS, 1985, pp. 150-159

7. Manzini, G.: An analysis of the Burrows-Wheeler transform.
J.ACM 48, 407-430 (2001)

8. Navarro, G., Makinen, V.: Compressed full text indexes. ACM
Comput. Surv. 39(1) (2007)

9. Salomon, D.: Data Compression: the Complete Reference, 4th
edn. Springer, London (2004)

10. Schapire, R.E.: The strength of weak learnability. Mach. Learn.
2,197-227 (1990)

I
Branchwidth of Graphs
2003; Fomin, Thilikos

FEDOR FOMIN', DIMITRIOS THILIKOS?

! Department of Informatics, University of Bergen,
Bergen, Norway

2 Department of Mathematics, National and Kapodistrian
University of Athens, Athens, Greece

Keywords and Synonyms

Tangle Number

Problem Definition

Branchwidth, along with its better-known counterpart,
treewidth, are measures of the “global connectivity” of
a graph.

Definition

Let G be a graph on n vertices. A branch decomposition of
G is a pair (T, t), where T is a tree with vertices of degree
1 or 3 and 7 is a bijection from the set of leaves of T to the
edges of G. The order, we denote it as a(e), of an edge e in
T is the number of vertices v of G such that there are leaves
t1, t; in T in different components of T(V(T), E(T) — e)
with t(t;) and z(,) both containing v as an endpoint.
The width of (T, t) is equal to max,eg(r)fa(e)}, i. e. is
the maximum order over all edges of T. The branchwidth
of G is the minimum width over all the branch decomposi-
tions of G (in the case where |E(G)| < 1, then we define the
branchwidth to be 0; if |[E(G)| = 0, then G has no branch
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decomposition; if | E(G)| = 1, then G has a branch decom-
position consisting of a tree with one vertex - the width of
this branch decomposition is considered to be 0).

The above definition can be directly extended to hy-
pergraphs where 7 is a bijection from the leaves of T to
the hyperedges of G. The same definition can easily be ex-
tended to matroids.

Branchwidth was first defined by Robertson and Sey-
mour in [25] and served as a main tool for their proof of
Wagner’s Conjecture in their Graph Minors series of pa-
pers. There, branchwidth was used as an alternative to the
parameter of treewidth as it appeared easier to handle for
the purposes of the proof. The relation between branch-
width and treewidth is given by the following result.

Theorem 1 ([25]) If G is a graph, then branchwidth(G) <
treewidth(G) + 1 < |3/2 branchwidth(G)].

The algorithmic problems related to branchwidth are of
two kinds: first find fast algorithms computing its value
and, second, use it in order to design fast dynamic pro-
gramming algorithms for other problems.

Key Results
Algorithms for Branchwidth

Computing branchwidth is an NP-hard problem ([29]).
Moreover, the problem remains NP-hard even if we re-
strict its input graphs to the class of split graphs or bipartite
graphs [20].

On the positive side, branchwidth is computable in
polynomial time on interval graphs [20,24], and circular
arc graphs [21]. Perhaps the most celebrated positive result
on branchwidth is an O(n?) algorithm for the branchwidth
of planar graphs, given by Seymour and Thomas in [29]. In
the same paper they also give an O(n?) algorithm to com-
pute an optimal branch decomposition. (The running time
of this algorithm has been improved to O(n?)in [18].) The
algorithm in [29] is basically an algorithm for a parame-
ter called carving width, related to telephone routing and
the result for branchwidth follows from the fact that the
branch width of a planar graph is half of the carving-width
of its medial graph.

The algorithm for planar graphs [29] can be used to
construct an approximation algorithm for branchwidth of
some non-planar graphs. On graph classes excluding a sin-
gle crossing graph as a minor branchwidth can be approx-
imated within a factor of 2.25 [7] (a graph H is a minor of
a graph G if H can be obtained by a subgraph of G after
applying edge contractions). Finally, it follows from [13]
that for every minor closed graph class, branchwidth can
be approximated by a constant factor.

Branchwidth cannot increase when applying edge con-
tractions or removals. According to the Graph Minors
theory, this implies that, for any fixed k, there is a finite
number of minor minimal graphs of branchwidth more
than k and we denote this set of graphs by Bj. Checking
whether a graph G contains a fixed graph as a minor can be
done in polynomial time [27]. Therefore, the knowledge
of By implies the construction of a polynomial time algo-
rithm for deciding whether branchwidth(G) < k, for any
fixed k. Unfortunately By is known only for small values
of k. In particular, By = {P,}, By = {P4, Kz}, B, = {K4}
and B3 = {Ks, Vg, Mg, Q3} (here K, is a clique on r ver-
tices, P, is a path on r edges, Vg is the graph obtained
by a cycle on 8 vertices if we connect all pairs of ver-
tices with cyclic distance 4, Mg is the octahedron, and
Q; is the 3-dimensional cube). However, for any fixed
k, one can construct a linear, on n = |V(G)|, algorithm
that decides whether an input graph G has branchwidth
< k and, if so, outputs the corresponding branch de-
composition (see [3]). In technical terms, this implies
that the problem of asking, for a given graph G, whether
branchwidth(G) < k, parameterized by k is fixed parame-
ter tractable (i. e. belongs in the parameterized complexity
class FPT). (See [12] for further references on parameter-
ized algorithms and complexity.) The algorithm in [3] is
complicated and uses the technique of characteristic se-
quences, which was also used in order to prove the anal-
ogous result for treewidth. For the particular cases where
k < 3, simpler algorithms exist that use the “reduction
rule” technique (see [4]). We stress that B4 remains un-
known while several elements of it have been detected
so far (including the dodecahedron and the icosahedron
graphs). There is a number of algorithms that for a given k
in time 20 . OO either decide that the branchwidth of
a given graph is at least k, or construct a branch decompo-
sition of width O(k) (see [26]). These results can be gener-
alized to compute the branchwidth of matroids and even
more general parameters.

An exact algorithm for branchwidth appeared in [14].
Its complexity is O((2 - +/3)" - n°W). The algorithm ex-
ploits special properties of branchwidth (see also [24]).

In contrast to treewidth, edge maximal graphs of given
branchwidth are not so easy to characterize (for treewidth
there are just k-trees, i. e. chordal graphs with all maximal
cliques of size k + 1). An algorithm for generating such
graphs has been given in [23] and reveals several structural
issues on this parameter.

It is known that a large number of graph theoretical
problems can be solved in linear time when their inputs
are restricted to graphs of small (i. e. fixed) treewidth or
branchwidth (see [2]).
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Branchwidth of Graphs, Figure 1
Example of a graph and its branch decomposition of width 3

Branchwidth appeared to be a useful tool in the design
of exact subexponential algorithms on planar graphs and
their generalizations. The basic idea behind this approach
is very simple: Let 7 be a problem on graphs and G be
a class of graphs such that
e For every graph G € G of branchwidth at most £, the

problem  can be solved in time 2 - 10, where c is

a constant, and;

e For every graph G € G on #n vertices a branch decom-
position (not necessarily optimal) of G of width at most
h(n) can be constructed in polynomial time, where h(n)
is a function.

Then for every graph G € G, the problem 2 can be solved

in time 2¢"(" . n9W) Thus, everything boils down to com-

putations of constants ¢ and functions /(n). These compu-
tations can be quite involved. For example, as was shown
in [17], for every planar graph G on n vertices, the branch-
width of G is at most v/4.5n < 2.1214./n. For extensions
of this bound to graphs embeddable on a surface of genus

g, see [15].

Dorn [9] used fast matrix multiplication in dynamic
programming to estimate the constants ¢ for a number
of problems. For example, for the MAXIMUM INDEPEN-
DENT SET problem, ¢ < w/2, where w < 2.376 is the ma-
trix product exponent over a ring, which implies that the
INDEPENDENT SET problem on planar graphs is solv-
able in time O(2%52v"). For the MINIMUM DOMINAT-
ING SET problem, ¢ < 4, thus implying that the branch de-
composition method runs in time O(2>9°V"). It appears
that algorithms of running time 204" can be designed
even for some of the “non-local” problems, such as the
HAMILTONIAN CYCLE, CONNECTED DOMINATING SET,
and STEINER TREE, for which no time 20 . n°W) algo-

€l €g

rithm on general graphs of branchwidth £ is known [11].
Here one needs special properties of some optimal planar
branch decompositions, roughly speaking that every edge
of T corresponds to a disk on a plane such that all edges
of G corresponding to one component of T — e are inside
the disk and all other edges are outside. Some of the subex-
ponential algorithms on planar graphs can be generalized
for graphs embedded on surfaces [10] and, more gener-
ally, to graph classes that are closed under taking of mi-
nors [8].

A similar approach can be used for parameterized
problems on planar graphs. For example, a parameter-
ized algorithm that finds a dominating set of size < k (or
reports that no such set exists) in time 20000 can
be obtained based on the following observations: there
is a constant ¢ such that every planar graph of branch-
width at least c+/k does not contain a dominating set of
size at most k. Then for a given k the algorithm com-
putes an optimal branch decomposition of a palanar graph
G and if its width is more than ¢v/k concludes that G
has no dominating set of size k. Otherwise, find an opti-
mal dominating set by performing dynamic programming
in time 220VK 0 There are several ways of bound-
ing a parameter of a planar graph in terms of its branch-
width or treewidth including techniques similar to Baker’s
approach from approximation algorithms [1], the use
of separators, or by some combinatorial arguments, as
shown in [16]. Another general approach of bounding the
branchwidth of a planar graph by parameters, is based on
the results of Robertson et al. [28] regarding quickly ex-
cluding a planar graph. This brings us to the notion of
bidimensionality [6]. Parameterized algorithms based on
branch decompositions can be generalized from planar
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graphs to graphs embedded on surfaces and to graphs ex-
cluding a fixed graph as a minor.

Applications

See [5] for using branchwidth for solving TSP.

Open Problems

1.

It is known that any planar graph G has branchwidth at
most v/4.5 - /| V(G)] (or at most % -V |EG)|+2) [17].
Is it possible to improver this upper bound? Any possi-
ble improvement would accelerate many of the known
exact or parameterized algorithms on planar graphs
that use dynamic programming on branch decompo-
sitions.

. In contrast to treewidth, very few graph classes are

known where branchwidth is computable in polyno-
mial time. Find graphs classes where branchwidth can
be computed or approximated in polynomial time.

. Find By for values of k bigger than 3. The only struc-

tural result on By is that its planar elements will be ei-
ther self-dual or pairwise-dual. This follows from the
fact that dual planar graphs have the same branch-
width [29,16].

. Find an exact algorithm for branchwidth of complexity

O*(2") (the notation O*() assumes that we drop the
non-exponential terms in the classic O() notation).

. The dependence on k of the linear time algorithm for

branchwidth in [3] is huge. Find an 2000 . 50 step
algorithm, deciding whether the branchwidth of an
n-vertex input graph is at most k.

Cross References
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Problem Definition
The Model Overview

Consider a set of stations (nodes) modeled as points in
the plane, labeled by natural numbers, and equipped with
transmitting and receiving capabilities. Every node u has
a range r,, depending on the power of its transmitter, and
it can reach all nodes at distance at most r, from it. The
collection of nodes equipped with ranges determines a di-
rected graph on the set of nodes, called a geometric ra-
dio network (GRN), in which a directed edge (uv) exists
if node v can be reached from u. In this case u is called
a neighbor of v. If the power of all transmitters is the same
then all ranges are equal and the corresponding GRN is
symmetric.

Nodes send messages in synchronous rounds. In every
round every node acts either as a transmitter or as a re-
ceiver. A node gets a message in a given round, if and only
if, it acts as a receiver and exactly one of its neighbors

transmits in this round. The message received in this case
is the one that was transmitted. If at least two neighbors
of a receiving node u transmit simultaneously in a given
round, none of the messages is received by u in this round.
In this case it is said that a collision occurred at u.

The Problem

Broadcasting is one of the fundamental network commu-
nication primitives. One node of the network, called the
source, has to transmit a message to all other nodes. Re-
mote nodes are informed via intermediate nodes, along di-
rected paths in the network. One of the basic performance
measures of a broadcasting scheme is the total time, i.e.,
the number of rounds it uses to inform all the nodes of the
network.

For a fixed real s > 0, called the knowledge radius, it
is assumed that each node knows the part of the network
within the circle of radius s centered at it, i. e., it knows the
positions, labels and ranges of all nodes at distance at most
s. The following problem is considered:

How the size of the knowledge radius influences deter-
ministic broadcasting time in GRN?

Terminology and Notation

Fix a finite set R = {ry,..., r,} of positive reals such that
rp <.+ < r,.Realsr; are called ranges. A node v is a triple
[1, (x, y), ri], where | is a binary sequence called the label
of v, (x,y) are coordinates of a point in the plane, called
the position of v, and r; € R is called the range of v. It is
assumed that labels are consecutive integers 1 to n, where
n is the number of nodes, but all the results hold if labels
are integers in the set {1, ..., M}, where M € O(n). More-
over, it is assumed that all nodes know an upper bound I
on n, where I" is polynomial in #. One of the nodes is dis-
tinguished and called the source. Any set of nodes C with
a distinguished source, such that positions and labels of
distinct nodes are different is called a configuration.

With any configuration C the following directed graph
G(C) is associated. Nodes of the graph are nodes of the
configuration and a directed edge (uv) exists in the graph,
if and only if the distance between u and v does not ex-
ceed the range of u. (The word “distance” always means
the geometric distance in the plane and not the distance in
a graph.) In this case u is called a neighbor of v. Graphs of
the form G(C) for some configuration C are called geomet-
ric radio networks (GRN). In what follows, only configura-
tions C such that in G(C) there exists a directed path from
the source to any other node, are considered. If the size
of the set R of ranges is p, a resulting configuration and
the corresponding GRN are called a p-configuration and
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p-GRN, respectively. Clearly, all 1-GRN are symmetric
graphs. D denotes the eccentricity of the source in a GRN,
i. e,, the maximum length of all shortest paths in this graph
from the source to all other nodes. D is of order of the di-
ameter if the graph is symmetric but may be much smaller
in general. £2(D) is an obvious lower bound on broadcast-
ing time.

Given any configuration, fix a non-negative real s,
called the knowledge radius, and assume that every node of
C has initial input consisting of all nodes whose positions
are at distance at most s from its own. Thus it is assumed
that every node knows a priori labels, positions and ranges
of all nodes within a circle of radius s centered at it. All
nodes also know the set R of available ranges.

It is not assumed that nodes know any global parame-
ters of the network, such as its size or diameter. The only
global information that nodes have about the network is
a polynomial upper bound on its size. Consequently, the
broadcast process may be finished but no node needs to be
aware of this fact. Hence the adopted definition of broad-
casting time is the same as in [3]. An algorithm accom-
plishes broadcasting in t rounds, if all nodes know the
source message after round ¢, and no messages are sent
after round ¢.

Only deterministic algorithms are considered. Nodes
can transmit messages even before getting the source mes-
sage, which enables preprocessing in some cases. The al-
gorithms are adaptive, i.e., nodes can schedule their ac-
tions based on their local history. A node can obviously
gain knowledge from previously obtained messages. There
is, however, another potential way of acquiring informa-
tion during the communication process. The availability
of this method depends on what happens during a colli-
sion, i. e., when u acts as a receiver and two or more neigh-
bors of u transmit simultaneously. As mentioned above,
u does not get any of the messages in this case. However,
two scenarios are possible. Node u may either hear noth-
ing (except for the background noise), or it may receive in-
terference noise different from any message received prop-
erly but also different from background noise. In the first
case it is said that there is no collision detection, and in
the second case — that collision detection is available (cf.,
e.g., [1]). A discussion justifying both scenarios can be
found in [1,7].

Related Work

Broadcasting in geometric radio networks and some of
their variations was considered, e. g., in [6,8,10,11]. In [11]
the authors proved that scheduling optimal broadcasting
is NP-hard even when restricted to such graphs, and gave

an O(nlog n) algorithm to schedule an optimal broadcast
when nodes are situated on a line. In [10] broadcasting was
considered in networks with nodes randomly placed on
a line. In [8] the authors discussed fault-tolerant broad-
casting in radio networks arising from regular locations of
nodes on the line and in the plane, with reachability re-
gions being squares and hexagons, rather than circles. Fi-
nally, in [6] broadcasting with restricted knowledge was
considered but the authors studied only the special case of
nodes situated on the line.

Key Results

The results summarized below are based on the paper [5]
of which [4] is a preliminary version.

Arbitrary GRN in the Model
Without Collision Detection

Clearly all upper bounds and algorithms are valid in the
model with collision detection as well.

Large Knowledge Radius

Theorem 1 The minimum time to perform broadcasting
in an arbitrary GRN with source eccentricity D and knowl-
edge radius s > r,, (or with global knowledge of the net-
work) is ©@(D).

This result yields a centralized O(D) broadcasting algo-
rithm when global knowledge of the GRN is available. This
is in sharp contrast with broadcasting in arbitrary graphs,
as witnessed by the graph from [9] which has bounded di-
ameter but requires time §2(log n) for broadcasting.

Knowledge Radius Zero Next consider the case when
knowledge radius s = 0, i. e., when every node knows only
its own label, position and range. In this case it is possi-
ble to broadcast in time O(n) for arbitrary GRN. It should
be stressed that this upper bound is valid for arbitrary
GRN, not only symmetric, unlike the algorithm from [3]
designed for arbitrary symmetric graphs.

Theorem 2 It is possible to broadcast in arbitrary n-node
GRN with knowledge radius zero in time O(n).

The above upper bound for GRN should be contrasted
with the lower bound from [2,3] showing that some graphs
require broadcasting time §2(#log n). Indeed, the graphs
constructed in [2,3] and witnessing to this lower bound
are not GRN. Surprisingly, this sharper lower bound does
not require very unusual graphs. While counterexamples
from [2,3] are not GRN, it turns out that the reason for
a longer broadcasting time is really not the topology of the
graph but the difference in knowledge available to nodes.
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Recall that in GRN with knowledge radius 0 it is assumed
that each node knows its own position (apart from its la-
bel and range): the upper bound O(#n) uses this geometric
information extensively.

If this knowledge is not available to nodes (i.e., each
node knows only its label and range) then there exists
a family of GRN requiring broadcasting time §2(n log n).
Moreover it is possible to show such GRN resulting from
configurations with only 2 distinct ranges. (Obviously for
1-configurations this lower bound does not hold, as these
configurations yield symmetric GRN and in [3] the au-
thors showed an O(n) algorithm working for arbitrary
symmetric graphs).

Theorem 3 If every node knows only its own label and
range (and does not know its position) then there exist n-
node GRN requiring broadcasting time §2(nlog n).

Symmetric GRN

The Model with Collision Detection In the model with
collision detection and knowledge radius zero optimal
broadcast time is established by the following pair of re-
sults.

Theorem 4 In the model with collision detection and
knowledge radius zero it is possible to broadcast in any n-
node symmetric GRN of diameter D in time O(D + log n).

The next result is the lower bound £2(logn) for broad-
casting time, holding for some GRN of diameter 2. To-
gether with the obvious bound §2(D) this matches the up-
per bound from Theorem 4.

Theorem 5 For any broadcasting algorithm with colli-
sion detection and knowledge radius zero, there exist n-node
symmetric GRN of diameter 2 for which this algorithm re-
quires time §2(log n).

The Model Without Collision Detection For the model
without collision detection. it is possible to maintain com-
plexity O(D + log n) of broadcasting. However, a stronger
assumption concerning knowledge radius is needed: it is
no longer 0, but positive, although arbitrarily small.

Theorem 6 In the model without collision detection, it is
possible to broadcast in any n-node symmetric GRN of di-
ameter D in time O(D + log n), for any positive knowledge
radius.

Applications

The radio network model is applicable to wireless net-
works using a single frequency. The specific model of ge-

ometric radio networks described in Sect. “Problem Def-
inition” is applicable to wireless networks where stations
are located in a relatively flat region without large obsta-
cles (natural or human made), e. g, in the sea or a desert,
as opposed to a large city or a mountain region. In such
a terrain, the signal of a transmitter reaches receivers at
the same distance in all directions, i. e., the set of potential
receivers of a transmitter is a disc.

Open Problems

1. Is it possible to broadcast in time o(n) in arbitrary
n-node GRN with eccentricity D sublinear in #, for
knowledge radius zero?

Note: in view of Theorem 2 it is possible to broadcast in
time O(n).

2. Is it possible to broadcast in time O(D + log n) in all
symmetric n-node GRN with eccentricity D, without
collision detection, when knowledge radius is zero?
Note: in view of Theorems 4 and 6, the answer is posi-
tive if either collision detection or a positive (even arbi-
trarily small) knowledge radius is assumed.

Cross References

» Deterministic Broadcasting in Radio Networks
» Randomized Broadcasting in Radio Networks
» Randomized Gossiping in Radio Networks

» Routing in Geometric Networks
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Problem Definition

This problem is concerned with storing a linearly ordered
set of elements such that the DICTIONARY operations
FIND, INSERT, and DELETE can be performed efficiently.

In 1972, Bayer and McCreight introduced the class of
B-trees as a possible way of implementing an “index for
a dynamically changing random access file” [6, p. 173].
B-trees have received considerable attention both in the
database and in the algorithms community ever since;
a prominent witness to their immediate and widespread
acceptance is the fact that the authoritative survey on B-
trees authored by Comer [9] appeared as soon as 1979 and,
already at that time, referred to the B-tree data structure as
the “ubiquitous B-tree”.

Notations

A B-tree is a multiway search tree defined as follows (the
definition of Bayer and McCreight [6] is restated accord-
ing to Knuth [16, Sect. 6.2.4] and Cormen et al. [10, Chap.
18.1]):

Definition 1 Let m > 3 be a positive integer. A tree T is
a B-tree of degree m if it is either empty or fulfills the fol-
lowing properties:

1. All leaves of T appear on the same level of T.

2. Every node of T has at most m children.

3. Every node of T, except for the root and the leaves, has
at least m/2 children.

4. The root of T is either a leaf or has at least two children.

5. Aninternal node with k children ¢; [v], ..., ¢ [v] stores
k — 1 keys, and a leaf stores between m/2 —1and m — 1
keys. The keys key;[v],1 <i < k—1,ofanodev € T
are maintained in sorted order, i.e. key,[v] < --- <
key,_,[v].

6. If v is an internal node of T with k children ¢{[v], ...,
ck[v], the k — 1 keys key, [v], ... key,_,[v] of v sep-
arate the range of keys stored in the subtrees rooted at
the children of v. If x; is any key stored in the subtree
rooted at ¢;[v], the following holds:

x1 < key, [v] < x5 <key,[v] < ...

< xp—1 < key,_ [v] < x¢.

To search a B-tree for a given key x, the algorithm starts
with the root of the tree being the current node. If x
matches one of the current node’s keys, the search termi-
nates successfully. Otherwise, if the current node is a leaf,
the search terminates unsuccessfully. If the current node’s
keys do not contain x and if the current node is not a leaf,
the algorithm identifies the unique subtree rooted at child
of the current node that may contain x and recurses on this
subtree. Since the keys of a node guide the search process,
they are also referred to as routing elements.

Variants and Extensions

Knuth [16] defines a B*-tree to be a B-tree where Prop-
erty 3 in Definition 1 is modified such that every node (ex-
cept for the root) contains at least 2m/3 keys.

A B*-tree is a leaf-oriented B-tree, i.e. a B-tree that
stores the keys in the leaves only. Additionally, the leaves
are linked in left-to-right order to allow for fast sequential
traversal of the keys stored in the tree. In a leaf-oriented
tree, the routing elements usually are copies of certain keys
stored in the leaves (key, [v] can be set to be the largest key
stored in the subtree rooted at ¢;[v]), but any set of rout-
ing elements that fulfills Properties 5 and 6 of Definition 1
can do as well.

Huddleston and Mehlhorn [13] extended Definition 1
to describe a more general class of multiway search trees
that includes the class of B-trees as a special case. Their
class of so-called (a, b)-trees is parametrized by two inte-
gers a and b with a > 2 and 2a — 1 < b. Property 2 of
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Definition 1 is modified to allow each node to have up to
b children and Property 3 is modified to require that, ex-
cept for the root and the leaves, every node of an (a, b)-tree
has at least a children. All other properties of Definition 1
remain unchanged for (a, b)-trees. Usually, (a, b)-trees are
implemented as leaf-oriented trees.

By the above definitions, a B-tree is a (b/2, b)-tree (if
b is even) or an (a,2a — 1)-tree (if b is odd). The sub-
tle difference between even and odd maximum degree be-
comes relevant in an important amortization argument of
Huddleston and Mehlhorn (see below) where the inequal-
ity b > 2ais required to hold. This amortization argument
actually caused (g, b)-trees with b > 24 to be given a spe-
cial name: weak B-trees [13].

Update Operations

An INSERT operation on an (a, b)-tree first tries to locate
the key x to be inserted. After an unsuccessful search that
stops at some leaf /, x is inserted into £’s set of keys. If
£ becomes too full, i. e. contains more than b elements, two
approaches are possible to resolve this overflow situation:
(1) the node £ can be split around its median key into two
nodes with at least a keys each or (2) the node £ can have
some of its keys be distributed to its left or right siblings
(if this sibling has enough space to accommodate the new
keys). In the first case, a new routing element separating
the keys in the two new subtrees of £’s parent u has to
be inserted into the key set of i1, and in the second case,
the routing element in p separating the keys in the sub-
tree rooted at £ from the keys rooted at £’s relevant sibling
needs to be updated. If £ was split, the node p needs to
be checked for a potential overflow due to the insertion of
a new routing element, and the split may propagate all the
way up to the root.

A DELETE operation also first locates the key x to be
deleted. If (in a non-leaf-oriented tree) x resides in an in-
ternal node, x is replaced by the largest key in the left sub-
tree of x (or the smallest key in the right subtree of x)
which resides in a leaf and is deleted from there. In a leaf-
oriented tree, keys are deleted from leaves only (the cor-
rectness of a routing element on a higher levels is not af-
fected by this deletion). In any case, a DELETE operation
may result in a leaf node £ containing less than a elements.
Again, there are two approaches to resolve this underflow
situation: (1) the node £ is merged with its left or right
sibling node or (2) keys from £’s left or right sibling node
are moved to £ (unless the sibling node would underflow
as a result of this). Both underflow handling strategies re-
quire updating the routing information stored in the par-
ent of £ which (in the case of merging) may underflow it-

self. As with overflow handling, this process may propa-
gate up to the root of the tree.

Note that the root of the tree can be split as a result of
an INSERT operation and that it may disappear if the only
two children of the root are merged to form the new root.
This implies that B-trees grow and shrink at the top, and
thus all leaves a guaranteed to appear on the same level of
the tree (Property 1 of Definition 1).

Key Results

Since B-trees are the premier index structure for exter-
nal storage, the results given in this section are stated not
only in the RAM-model of computation but also in the
I/0-model of computation introduced by Aggarwal and
Vitter [1]. In the I/O-model, not only the number N of
elements in the problem instance, but also the number
M of elements that simultaneously can be kept in main
memory and the number B of elements that fit into one
disk block are (non-constant) parameters, and the com-
plexity measure is the number of I/O-operations needed
to solve a given problem instance. If B-trees are used in
an external-memory setting, the degree m of the B-tree is
usually chosen such that one node fits into one disk block,
i.e.,, m € ©(B), and this is assumed implicitly whenever
the I/O-complexity of B-trees is discussed.

Theorem 1 The height of an N-key B-tree of degree m > 3
is bounded by logrmm ((N + 1)/2).

Theorem 2 ([18]) The storage utilization for large B-trees
of high order under random insertions and deletions is ap-
proximately In 2 ~ 69%.

Theorem 3 A B-tree may be used to implement the ab-
stract data type Dictionary such that the operations Find,
Insert, and Delete on a set of N elements from a linearly
ordered domain can be performed in O(log N) time (with
O(logy N) I/O-operations) in the worst case.

Remark 1 By threading the nodes of a B-tree, i. e. by link-
ing the nodes according to their in-order traversal num-
ber, the operations PREV and NEXT can be performed in
constant time (with a constant number of I/O-operations).

A (one-dimensional) range query asks for all keys that fall
within a given query range (interval).

Lemma 1 A B-tree supports (one-dimensional) range
queries with O(log N + K) time complexity (O(logg N +
K/B) I/O-complexity) in the worst case where K is the num-
ber of keys reported.

Under the convention that each update to a B-tree results
in a new “version” of the B-tree, a multiversion B-tree is
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a B-tree that allows for updates of the current version but
also supports queries in earlier versions.

Theorem 4 ([8]) A multiversion B-tree can be constructed
from a B-tree such that it is optimal with respect to the
worst-case complexity of the Find, Insert, and Delete oper-
ations as well as to the worst-case complexity of answering
range queries.

Applications
Databases

One of the main reasons for the success of the B-tree lies
in its close connection to databases: any implementation
of Codd’s relational data model (introduced incidentally
in the same year as B-trees were invented) requires an effi-
cient indexing mechanism to search and traverse relations
that are kept on secondary storage. If this index is realized
as a B*-tree, all keys are stored in a linked list of leaves
which is indexed by the top levels of the B*-tree, and thus
both efficient logarithmic searching and sequential scan-
ning of the set of keys is possible.

Due to the importance of this indexing mechanism,
a wide number of results on how to incorporate B-
trees and their variants into database systems and how
to formulate algorithms using these structures have be
published in the database community. Comer [9] and
Graefe [12] summarize early and recent results but due to
the bulk of results even these summaries cannot be fully
comprehensive. Also, B-trees have been shown to work
well in the presence of concurrent operations [7], and
Mehlhorn [17, p. 212] notes that they perform especially
well if a top-down splitting approach is used. The details
of this splitting approach may be found, e. g., in the text-
book of Cormen et al. [10, Chap. 18.2].

Priority Queues

A B-tree may be used to serve as an implementation of the
abstract data type PRIORITYQUEUE since the smallest key
always resides in the first slot of the leftmost leaf.

Lemma 2 An implementation of a priority queue that uses
a B-tree supports the Min operation in O(1) time (with
O(1) I/O-operations). All other operations (including De-
creaseKey) have a time complexity of O(log N) (an I/O-
complexity of O(logy N)) in the worst case.

Mehlhorn [17, Sect. III, 5.3.1] examined B-trees (and,
more general, (a, b)-trees with a > 2 and b > 2a — 1) in
the context of mergeable priority queues. Mergeable prior-
ity queues are priority queues that additionally allow for

concatenating and splitting priority queues. Concatenat-
ing priority queues foraset §; # @ andaset S, # @ isonly
defined if max{x | x € $;} < min{x | x € S,} and results
in a single priority queue for S; U S,. Splitting a priority
queue for a set S3 # @ according to some y € dom(S3) re-
sults in a priority queue for the set Sy := {x € S3 | x < y}
and a priority queue for the set S5 := {x € S3 | x > y} (one
of these sets may be empty). Mehlhorn’s result restated in
the context of B-trees is as follows:

Theorem 5 (Theorem 6, Sect. III, 5.3.1 in [7]) If
sets S1 # 9 and Sy # O are represented by a B-tree
each then operation Concatenate(S;,S;) takes time
O(log max{|S,|,|Sz2|}) (has an I/O-complexity of
O(logg max{|S1|,|S2|})) and operation Split(S, y) takes
time O(log|S1|) (has an I/O-complexity of O(logg |S1])).
All bounds hold in the worst case.

Buffered Data Structures

Many applications (including sorting) that involve mas-
sive data sets allow for batched data processing. A variant
of B-trees that exploits this relaxed problem setting is the
so-called buffer tree proposed by Arge [3]. A buffer tree is
a B-trees of degree m € ®(M/B) (instead of m € ©(B))
where each node is assigned a buffer of size ®(M). These
buffers are used to collect updates and query requests that
are passed further down the tree only if the buffer gets full
enough to allow for cost amortization.

Theorem 6 (Theorem 1 in [3]) The total cost of
an arbitrary sequence of N intermixed Insert and
Delete operations on an initially empty buffer tree is
O(N/Blog,,z NI/B) I/O operations, that is the amortized
I/O-cost of an operation is O(1/Blog,,,; N/B).

As a consequence, N elements can be sorted spending
an optimal number of O(N/Blog,,,; N/B) I/O-operations
by inserting them into a (leaf-oriented) buffer tree in
a batched manner and then traversing the leaves. By the
preceding discussion, buffer trees can also be used to im-
plement (batched) priority queues in the external mem-
ory setting. Arge [3] extended his analysis of buffer trees to
show that they also support DELETEMIN operations with
an amortized I/O-cost of O(1/Blog,,,; N/B).

Since the degree of a buffer tree is too large to allow for
efficient single-shot, i. e. non-batched operations, Arge et
al. [4] discussed how buffers can be attached to (and later
detached from) a multiway tree while at the same time
keeping the degree of the base structure in @(B). Their
discussion uses the R-tree index structure as a running ex-
ample, the techniques presented, however, carry over to
the B-tree. The resulting data structure is accessed through
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standard methods and additionally allows for batched up-
date operations, e. g. bulk loading, and queries. The amor-
tized I/O-complexity of all operations is analogous to the
complexity of the buffer tree operations.

B-trees as Base Structures

Several external memory data structures are derived from
B-trees or use a B-tree as their base structure—see the sur-
vey by Arge [2] for a detailed discussion. One of these
structures, the so-called weight-balanced B-tree is partic-
ularly useful as a base tree for building dynamic external
data structures that have secondary structures attached to
all (or some) of their nodes. The weight-balanced B-tree,
developed by Arge and Vitter [5], is a variant of the B-tree
that requires all subtrees of a node to have approximately,
i.e., up to a small constant factor, the same number of
leaves. Weight-balanced B-trees can be shown to have the
following property:

Theorem 7 ( [5]) In a weight-balanced B-tree, rebal-
ancing after an update operation is performed by splitting
or merging nodes. When a rebalancing operation involves
a node v that is the root of a subtree with w(v) leaves, at
least ©®(w(v)) update operations involving leaves below v
have to be performed before v itself has to be rebalanced
again.

Using the above theorem, amortized bounds for maintain-
ing secondary data structures attached to nodes of the base
tree can be obtained—as long as each such structure can
be updated with an I/O-complexity linear in the number
of elements stored below the node it is attached to [2,5].

Amortized Analysis

Most of the amortization arguments used for (g, b)-trees,
buffer trees, and their relatives are based upon a theo-
rem due to Huddleston and Mehlhorn [13, Theorem 3].
This theorem states that the total number of rebalancing
operations in any sequence of N intermixed insert and
delete operations performed on an initially empty weak
B-tree, i.e. an (a, b)-tree with b > 24, is at most linear
in N. This result carries over to buffer trees since they
are (M/4B, M/B)-trees. Since B-trees are (a, b)-trees with
b =2a —1(if bis odd), the result in its full generality is not
valid for B-trees, and Huddleston and Mehlhorn present
a simple counterexample for (2, 3)-trees.

A crucial fact used in the proof of the above amorti-
zation argument is that the sequence of operations to be
analyzed is performed on an initially empty data structure.
Jacobsen et al. [14] proved the existence of non-extreme
(a, b)-trees, i.e. (a,b)-trees where only few nodes have

a degree of a or b. Based upon this, they re-established the
above result that the rebalancing cost in a sequence of op-
erations is amortized constant (and thus the related result
for buffer trees) also for operations on initially non-empty
data structures.

In connection with concurrent operations in database
systems, it should be noted that the analysis of Huddleston
and Mehlhorn actually requires b > 2a + 2 if a top-down
splitting approach is used. In can be shown, though, that
even in the general case, few node splits (in an amortized
sense) happen close to the root.

URL to Code

There is a variety of (commercial and free) implemen-
tations of B-trees and (a,b)-trees available for down-
load. Representatives are the C++-based implementa-
tions that are part of the LEDA-library (http://www.
algorithmic-solutions.com), the STXXL-library (http://
stxxl.sourceforge.net), and the TPIE-library (http://www.
cs.duke.edu/TPIE) as well as the Java-based implemen-
tation that is part of the javaxxl-library (http://www.
xxl-library.de). Furthermore, (pseudo-code) implementa-
tions can be found in almost every textbook on database
systems or on algorithms and data structures—see,
e.g. [10,11]. Since textbooks almost always leave develop-
ing the implementation details of the DELETE operation as
an exercise to the reader, the discussion by Jannink [15] is
especially helpful.

Cross References

» Cache-Oblivious B-Tree
» I/O-model
» R-Trees
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Problem Definition

The Burrows-Wheeler transform is a technique used for
the lossless compression of data. It is the algorithmic core
of the tool bzip2 which has become a standard for the cre-
ation and distribution of compressed archives.

Before the introduction of the Burrows-Wheeler
transform, the field of lossless data compression was dom-
inated by two approaches (see [1,15] for comprehensive

surveys). The first approach dates back to the pioneering
works of Shannon and Huffman, and it is based on the idea
of using shorter codewords for the more frequent sym-
bols. This idea has originated the techniques of Huffman
and Arithmetic Coding, and, more recently, the PPM (Pre-
diction by Partial Matching) family of compression algo-
rithms. The second approach originated from the works
of Lempel and Ziv and is based on the idea of adaptively
building a dictionary and representing the input string
as a concatenation of dictionary words. The best-known
compressors based on this approach form the so-called
ZIP-family; they have been the standard for several years
and are available on essentially any computing platform
(e.g. 9zip, zip, winzip, just to cite a few).

The Burrows-Wheeler transform introduced a com-
pletely new approach to lossless data compression based
on the idea of transforming the input to make it easier to
compress. In the authors’ words: “(this) technique [...]
works by applying a reversible transformation to a block
of text to make redundancy in the input more accessible to
simple coding schemes” [3, Sect. 7]. Not only has this tech-
nique produced some state-of-the-art compressors, but it
also originated the field of compressed indexes [14] and
it has been successfully extended to compress (and index)
structured data such as XML files [7] and tables [16].

Key Results
Notation

Let s be a string of length # drawn from an alphabet X'. For
i=0,...,n—1,s[i] denotes the i-th character of s, and
s[i, n — 1] denotes the suffix of s starting at position i (that
is, starting with the character s[i]). Given two strings s and
t, the notation s < ¢ is used to denote that s lexicographi-
cally precedes t.

The Burrows—-Wheeler Transform

In [3] Burrows and Wheeler introduced a new com-

pression algorithm based on a reversible transformation,

now called the Burrows—Wheeler Transform (bwt). Given

a string s, the computation of bwt(s) consists of three basic

steps (see Fig. 1):

1. Append to the end of s a special symbol $ smaller than
any other symbol in X;

2. Form a conceptual matrix M whose rows are the cyclic
shifts of the string s$ sorted in lexicographic order;

3. Construct the transformed text § = bwt(s) by taking the
last column of M.

Notice that every column of M, hence also the trans-

formed text §, is a permutation of s$. As an example
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mississippis$

$ mississipp i
ississippiS$m i Smississip p
ssissippis$mi i ppiS$missis s
sissippiSmis i ssippis$mis s
issippiSmiss 1 ssissippi$ m
ssippi$missi m ississippi $
sippi$missis e p iSmississi p
ippiSmississ p piSmississ i
ppiSmississi s ippiSmissi s
piSmississip s issippiS$mi s
i$mississipp S sippiSmiss 1
Smississippi S sissippiSm i

Burrows-Wheeler Transform, Figure 1

Example of Burrows-Wheeler transform for the string
s=mississippi. The matrix on the right has the rows
sorted in lexicographic order. The output of the bwt is the
last column of the sorted matrix; in this example the output is
$ = bwt(s) = ipssm$pissii

F, the first column of the bwt matrix M, consists of
all characters of s alphabetically sorted. In Fig. 1 it is
F=$iiiimppssss.

Although it is not obvious from its definition, the bwt
is an invertible transformation and both the bwt and its
inverse can be computed in O(n) optimal time. To be con-
sistent with the more recent literature, the following no-
tation and proof techniques will be slightly different from
the ones in [3].

Definition 1 For 1 < i < n, let s[k;, n — 1] denote the
suffix of s prefixing row i of M, and define ¥(i) as the in-
dex of the row prefixed by s[k; + 1,n — 1].

For example, in Fig. 1 it is ¥(2) = 7 since row 2 of M is
prefixed by ippi and row 7 is prefixed by ppi. Note that
W (i) is not defined for i = 0 since row 0 is not prefixed by
a proper suffix of s.!

Lemmal Fori=1,...,n,itisF[i] = s[¥(i)].

Proof Since each row contains a cyclic shift of s$, the
last character of the row prefixed by s[k; +1,n —1] is
s[k;]. Definition 1 then implies §[¥(i)] = s[k;] = F[i] as
claimed. |

Lemma 2 then

w(i) < W()).

If 1<i<j<n and F[i]=F[j]

Proof Let s[k;,n—1] (resp. s[kj,n—1]) denote the
suffix of s prefixing row i (resp. row j). The hypothe-

n [3] instead of ¥ the authors make use of a map which is es-
sentially the inverse of W. The use of ¥ has been introduced in the
literature of compressed indexes where ¥ and its inverse play an im-
portant role (see [14]).

sis i < j implies that s[k;, n — 1] < s[k;j, n — 1]. The hy-
pothesis F[i] = F[j] implies s[k;] = s[k;] hence it must
be s[k; +1,n—1] < s[kj + 1,n —1]. The thesis follows
since by construction ¥(i) (resp. ¥(j)) is the lexico-
graphic position of the row prefixed by s[k; + 1, n — 1]
(resp. s[kj +1,n —1]). O

Lemma 3 For any character ¢ € X, if F[j] is the {-th
occurrence of ¢ in F, then S[W(j)] is the £-th occurrence
ofcins.

Proof Take an index h such that h < j and F[h] =
F[j] = c (the case h > j is symmetric). Lemma 2 implies
¥ (h) < ¥(j) and Lemma 1 implies §[¥ (h)] = §[¥(j)] = c.
Consequently, the number of ¢’s preceding (resp. follow-
ing) F[j] in F coincides with the number of ¢’s preceding
(resp. following) $[¥(j)] in § and the lemma follows. [

In Fig. 1 it is ¥(2) = 7 and both F[2] and §[7] are the sec-
ond i in their respective strings. This property is usually
expressed by saying that corresponding characters main-
tain the same relative order in both strings F and s.

Lemma 4 For any i, ¥(i) can be computed from § =
bwt(s).

Proof Retrieve F simply by sorting alphabetically the
symbols of s. Then compute ¥(i) as follows: (1) set
¢ = F[i], (2) compute £ such that F[i] is the £-th occur-
rence of ¢ in F, (3) return the index of the £-th occurrence
of cin s. O

Referring again to Fig. 1, to compute ¥(10) it suffices to
set ¢ = F[10] = s and observe that F[10] is the second s in
F. Then it suffices to locate the index j of the second s in §,
namely j = 4. Hence ¥(10) = 4, and in fact row 10 is pre-
fixed by sissippi and row 4 is prefixed by issippi.

Theorem 5 The original string s can be recovered from
bwt(s).

Proof Lemma 4 implies that the column F and the map
¥ can be retrieved from bwt(s). Let jo denote the in-
dex of the special character $ in $. By construction, the
row jo of the bwt matrix is prefixed by s[0, n — 1], hence
s[0] = F[jol. Let j1 = ¥(jo). By Definition 1 row j; is
prefixed by s[1, n — 1] hence s[1] = F[j;]. Continuing in
this way it is straightforward to prove by induction that
s[i] = F[¥i(jo)l, fori=1,...,n—1. O

Algorithmic Issues

A remarkable property of the bwt is that both the direct
and the inverse transform admit efficient algorithms that
are extremely simple and elegant.
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Procedure sa2bwt

Burrows-Wheeler Transform, Figure 2

Procedure bwt2psi

Procedure psi2text

1. bwt[0]=s[n-1]; 71. for(i=0;i<=n;i++) 89L. k = j0; i=0;
2. for(i=1l;i<=n;i++) 2. ¢ = bwt[i]; 2. do
3. if(sali]l == 1) 3. if(c == 's") 3. k = psilk];
4. bwt[il="$"; 4. jO = i; 4. s[i++] = bwt[k];
5. else 5. else while(i<n) ;
6. bwt[i]=s[sali]-11; 6. h = count[c]++;

7. psilhl=i;

Algorithms for computing and inverting the Burrows-Wheeler Transform. Procedure sa2bwt computes bwt(s) given s and its suffix
array sa. Procedure bwt2psi takes bwt(s) as input and computes the ¥ map storing it in the array psi. bwt2psi also stores in 30 the
index of the row prefixed by s[0, n — 11. bwt2psi uses the auxiliary array count[1, | ¥'|] which initially contains in count [1] the
number of occurrences in bwt(s) of the symbols 1,...,i — 1.Finally, procedure psi2text recovers the string s given bwt(s), the array

psi, and the value jo

Theorem 6 Let s[1, n] be a string over a constant size al-
phabet X. String § = bwt(s) can be computed in O(n) time
using O(n log n) bits of working space.

Proof The Suffix Array of s can be computed in O(n) time
and O(nlog n) bits of working space by using, for exam-
ple, the algorithm in [11]. The Suffix Array is an array of
integers sa[l, n] such that for i = 1,...,n,s[sa[i],n — 1]
is the i-th suffix of s in the lexicographic order. Since each
row of M is prefixed by a unique suffix of s followed by
the special symbol $, the Suffix Array provides the order-
ing of the rows in M. Consequently, bwt(s) can be com-
puted from sa in linear time using the procedure sa2bwt
of Fig. 2. O

Theorem 7 Let s[1, n] be a string over a constant size al-
phabet X. Given bwt(s), the string s can be retrieved in
O(n) time using O(n log n) bits of working space.

Proof The algorithm for retrieving s follows almost ver-
batim the procedure outlined in the proof of Theorem 5.
The only difference is that, for efficiency reasons, all the
values of the map ¥ are computed in one shot. This is done
by the procedure bwt2psi in Fig. 2. In bwt2psi instead of
working with the column F, it uses the array count which
is a “compact” representation of F. At the beginning of
the procedure, for any character ¢ € X, count[c] provides
the index of the first row of M prefixed by c. For exam-
ple, in Fig. 1 count[i] = 1, count[m] = 5, and so on. In the
main for loop of bwt2psi the array bwt is scanned and
count[c] is increased every time an occurrence of char-
acter ¢ is encountered (line 6). Line 6 also assigns to h
the index of the £-th occurrence of ¢ in F. By Lemma 3,
line 7 stores correctly in psi[h] the value i = ¥(h). After
the computation of array psi, s is retrieved by using the

procedure psi2text of Fig. 2, whose correctness immedi-
ately follows from Theorem 5.

Clearly, the procedures bwt2psi and psi2text in Fig. 2
run in O(n) time. Their working space is dominated by the
cost of storing the array psi which takes O(n log n) bits. O

The Burrows—Wheeler Compression Algorithm

The rationale for using the bwt for data compression
is the following. Consider a string w that appears k
times within s. In the bwt matrix of s there will be k
consecutive rows prefixed by w, say rows r,, + 1,1, +
2,...,1y + k. Hence, the positions r,, + 1,...,7r, + k
bwt(s) will contain precisely the symbols that
immediately precede w in s. If in s certain patterns are
more frequent than others, then for many substrings
w the corresponding positions 1, + 1,...,7, + k of §
will contain only a few distinct symbols. For example, if
sisan English text and w is the string his, the correspond-
ing portion of § will likely contain many t’s and blanks
and only a few other symbols. Hence § is a permutation
of s that is usually locally homogeneous, in that its “short”
substrings usually contain only a few distinct symbols.?
To take advantage of this property, Burrows and
Wheeler proposed to process the string § using move-to-
front encoding [2] (mtf). mtf encodes each symbol with
the number of distinct symbols encountered since its pre-
vious occurrence. To this end, mtf maintains a list of the
symbols ordered by recency of occurrence; when the next
symbol arrives the encoder outputs its current rank and
moves it to the front of the list. Note that mtf produces

of § =

2Obviously this is true only if s has some regularity: if s is a random
string § will be random as well!



Burrows-Wheeler Transform

115

a string which has the same length as § and, if § is lo-
cally homogeneous, the string mtf($) will mainly consist
of small integers.> Given this skewed distribution, mtf(s)
can be easily compressed: Burrows and Wheeler proposed
to compress it using Huffman or Arithmetic coding, pos-
sibly preceded by the run-length encoding of runs of equal
integers.

Burrows and Wheeler were mainly interested in
proposing an algorithm with good practical performance.
Indeed their simple implementation outperformed, in
terms of compression ratio, the tool gzip that was the cur-
rent standard for lossless compression. A few years after
the introduction of the bwt, [9,12] have shown that the
compression ratio of the Burrows-Wheeler compression
algorithm can be bounded in terms of the k-th order em-
pirical entropy of the input string for any k > 0. For ex-
ample, Kaplan et al. [9] showed that for any input string
s and real u > 1, the length of the compressed string is
bounded by unHy(s) + nlog(¢(p)) + pgi + O(log n) bits,
where {(u) is the standard Zeta function and g is a func-
tion depending only on k and the size of ¥'. This bound
holds pointwise for any string s, simultaneously for any
k > 0and i > 1,and it is remarkable since similar bounds
have not been proven for any other known compressor.
The theoretical study on the performance of bwt-based
compressors is currently a very active area of research. The
reader is referred to the recommended readings for further
information.

Applications

After the seminal paper of Burrows and Wheeler, many
researchers have proposed compression algorithms based
on the bwt (see [4,5] and references therein). Of particular
theoretical interest are the results in [6] showing that the
bwt can be used to design a “compression booster”, that
is, a tool for improving the performance of other compres-
sors in a well-defined and measurable way.

Another important area of application of the bwt is
the design of Compressed Full-text Indexes [14]. These in-
dexes take advantage of the relationship between the bwt
and the Suffix Array to provide a compressed representa-
tion of a string supporting the efficient search and retrieval
of the occurrences of an arbitrary pattern.

Open Problems

In addition to the investigation on the performance of
bwt-based compressors, an open problem of great prac-

3If s is an English text, mtf($) usually contains more that 50% ze-
roes.

tical significance is the space efficient computation of the
bwt. Given a string s of length 7 over an alphabet X, both
sand § = bwt(s) take O(nlog | ¥'|) bits. Unfortunately, the
linear time algorithms shown in Fig. 2 make use of auxil-
iary arrays (i. e. sa and psi) whose storage takes ®(nlog n)
bits. This poses a serious limitation to the size of the largest
bwt that can be computed in main memory. Space efficient
algorithms for inverting the bwt have been obtained in the
compressed indexing literature [14], while the problem of
space- and time-efficient computation of the bwt is still
open even if interesting preliminary results are reported
in [8,10,13].

Experimental Results

An experimental study of the performance of several com-
pression algorithms based on the bwt and a comparison
with other state-of-the-art compressors is presented in [4].

Data Sets

The data sets used in [4] are available from http://www.
mfn.unipmn.it/~manzini/boosting. Other data sets rele-
vant for compression and compressed indexing are avail-
able at the Pizza&Chili site http://pizzachili.di.unipi.it/.

URL to Code

The Compression Boosting page (http://www.mfn.
unipmn.it/~manzini/boosting) contains the source code
of the algorithms tested in [4]. A more “lightweight” code
for the computation of the bwt and its inverse (without
compression) is available at http://www.mfn.unipmn.it/
~manzini/lightweight. The code of bzip2 is available at
http://www.bzip.org.

Cross References

» Arithmetic Coding for Data Compression
» Boosting Textual Compression

» Compressed Suffix Array

» Compressed Text Indexing

» Suffix Array Construction

» Table Compression

» Tree Compression and Indexing
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Problem Definition

The study of Pease, Shostak and Lamport was among the
first to consider the problem of achieving a coordinated

behavior between processors of a distributed system in the
presence of failures [21]. Since the paper was published,
this subject has grown into an extensive research area. Be-
low is a presentation of the main findings regarding the
specific questions addressed in their paper. In some cases
this entry uses the currently accepted terminology in this
subject, rather than the original terminology used by the
authors.

System Model

A distributed system is considered to have n independent
processors, pi, ... ,pn, each modeled as a (possibly infinite)
state machine. The processors are linked by a communi-
cation network that supports direct communication be-
tween every pair of processors. The processors can com-
municate only by exchanging messages, where the sender
of every message can be identified by the receiver. While
the processors may fail, it is assumed that the communi-
cation subsystem is fail-safe. It is not known in advance
which processors will not fail (remain correct) and which
ones will fail. The types of processor failures are classified
according to the following hierarchy.

Crash failure A crash failure means that the processor no
longer operates (ad infinitum, starting from the failure
point). In particular, other processors will not receive
messages from a faulty processor after it crashes.

Omission failure A processor fails to send and receive an
arbitrary subset of its messages.

Byzantine failure A faulty processor behaves arbitrarily.

The Byzantine failure is further subdivided into two cases,
according to the ability of the processors to create unfal-
sifiable signatures for their messages. In the authenticated
Byzantine failure model it is assumed that each message
is signed by its sender and that no other processor can
fake a signature of a correct processor. Thus, even if such
a message is forwarded by other processors, its authentic-
ity can be verified. If the processors represent malevolent
(human) users of a distributed system, a Public Key In-
frastructure (PKI) is typically used to sign the messages
(which involves cryptography related issues [17], not dis-
cussed here). Practically, in systems where processors are
just “processors”, a simple signature, such as CRC (cyclic
redundancy check), might be sufficient [13]. In the unau-
thenticated Byzantine failure model there are no message
signatures.

Definition of the Byzantine Agreement Problem

In the beginning, each processor p; has an externally pro-
vided input value v;, from some set V' (of at least size 2). In
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the Byzantine Agreement (BA) problem, every correct pro-
cessor p; is required to decide on an output value d; € V
such that the following conditions hold:

Termination Eventually, p; decides, i.e., the algorithm
cannot run indefinitely.

Validity If the input value of all the processors is v, then
the correct processors decide v.

Agreement All the correct processors decide on the same
value.

For crash failures and omission failures there exists
a stronger agreement condition:

Uniform Agreement No two processors (either correct
or faulty) decide differently.

The termination condition has the following stronger ver-
sion.

Simultaneous Termination All the correct processors
decide in the same round (see definition below).

Timing Model

The BA problem was originally defined for synchronous
distributed systems [18,21]. In this timing model the pro-
cessors are assumed to operate in lockstep, which allows
to partition the execution of a protocol to rounds. Each
round consists of a send phase, during which a processor
can send a (different) message to each processor directly
connected to it, followed by a receive phase, in which it
receives messages sent by these processors in the current
round. Unlimited local computations (state transitions)
are allowed in both phases, which models the typical situ-
ation in real distributed systems, where computation steps
are faster than the communication steps by several orders
of magnitude.

Overview

This entry deals only with deterministic algorithms for
the BA problem in the synchronous model. For algo-
rithms involving randomization see the » Probabilistic
Synchronous Byzantine Agreement entry in this volume.
For results on BA in other models of synchrony, see
» Asynchronous Consensus Impossibility, » Failure De-
tectors, » Consensus with Partial Synchrony entries in this
volume.

Key Results

The maximum possible number of faulty processors is as-
sumed to be bounded by an a priori specified number ¢

(e.g., estimated from the failure probability of individual
processor and the requirements on the failure probability
of the system as a whole). The number of processors that
actually become faulty in a given execution is denoted by
f, where f <t.

The complexity of synchronous distributed algorithms
is measured by three complementary parameters. The first
is the round complexity, which measures the number of
rounds required by the algorithm. The second is the mes-
sage complexity, i.e., the total number of messages (and
sometimes also their size in bits) sent by all the proces-
sors (in case of Byzantine failures, only messages sent by
correct processors are counted). The third complexity pa-
rameter measures the number of local operations, as in se-
quential algorithms.

All the algorithms presented bellow are efficient, i.e.,
the number of rounds, the number of messages and their
size, and the local operations performed by each processor
are polynomial in n. In most of the algorithms, both the
exchanged messages and the local computations involve
only the basic data structures (e.g., arrays, lists, queues).
Thus, the discussion is restricted only to the round and
the message complexities of the algorithms.

The network is assumed to be fully connected, unless
explicitly stated otherwise.

Crash Failures

A simple BA algorithm which runs in ¢ + 1 rounds and
sends O(n?) messages, together with a proof that this
number of rounds is optimal, can be found in textbooks
on distributed computing [19]. Algorithms for deciding
in f + 1 rounds, which is the best possible, are presented
in [7,23] (one additional round is necessary before the
processors can stop [11]). Simultaneous termination re-
quires ¢ + 1 rounds, even if no failures actually occur [11],
however there exists an algorithm that in any given exe-
cution stops in the earliest possible round [14]. For uni-
form agreement, decision can be made in min(f + 2, + 1)
rounds, which is tight [7].

In case of crash failures it is possible to solve the
BA problem with O(n) messages, which is also the lower
bound. However, all known message-optimal BA algo-
rithms require a superlinear time. An algorithm that runs
in O(f + 1) rounds and uses only O(n polylog n) mes-
sages, is presented in [8], along with an overview of other
results on BA message complexity.

Omission Failures

The basic algorithm used to solve the crash failure BA
problem works for omission failures as well, which al-
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lows to solve the problem in ¢ + 1 rounds [23]. An algo-
rithm which terminates in min(f + 2, t + 1) rounds was
presented in [22]. Uniform agreement is impossible for
t > n/2 [23]. For t < n/2, there is an algorithm that
achieves uniform agreement in min(f + 2, t + 1) rounds
(and O(nzf) message complexity) [20].

Byzantine Failures with Authentication

A (t + 1)-round BA algorithm is presented in [12]. An al-
gorithm which terminates in min(f + 2, ¢t + 1) rounds can
be found in [24]. The message complexity of the problem
is analyzed in [10], where it is shown that the number of
signatures and the number of messages in any authenti-
cated BA algorithm are £2(nt) and §2(n + 12), respectively.
In addition, it is shown that £2(nt) is the bound on the
number of messages for the unauthenticated BA.

Byzantine Failures Without Authentication

In the unauthenticated case, the BA problem can be solved
if and only if n > 3t. The proof can be found in [1,19].
An algorithm that decides in min(f + 3, t + 1) rounds (it
might require two additional rounds to stop) is presented
in [16]. Unfortunately, this algorithm is complicated.
Simpler algorithms, that run in min(2f +4,2¢+ 1) and
3min(f + 2, t + 1) rounds, are presented in [24] and [5],
respectively. In these algorithms the number of sent mes-
sages is O(n?), moreover, in the latter algorithm the mes-
sages are of constant size (2 bits). Both algorithms assume
V ={0,1}. To solve the BA problem for a larger V, sev-
eral instances of a binary algorithm can be run in paral-
lel. Alternatively, there exists a simple 2-round protocol
that reduces a BA problem with arbitrary initial values to
the binary case, e. g., see Sect. 6.3.3 in [19]. For algorithms
with optimal O(nt) message complexity and ¢ + o(t) round
complexity see [4,9].

Arbitrary Network Topologies

When the network is not fully connected, BA can be solved
for crash, omission and authenticated Byzantine failures if
and only ifitis (t + 1)-connected [12]. In case of Byzantine
failures without authentication, BA has a solution if and
only if the network is (2t + 1)-connected and n > 3¢ [19].
In both cases the BA problem can be solved by simulat-
ing the algorithms for the fully connected network, using
the fact that the number of disjoint communication paths
between any pair of non-adjacent processors exceeds the
number of faulty nodes by an amount that is sufficient for
reliable communication.

Interactive Consistency and Byzantine Generals

The BA (consensus) problem can be stated in several simi-
lar ways. Two widely used variants are the Byzantine Gen-
erals (BG) problem and the Interactive Consistency (IC)
problem. In the BG case there is a designated processor,
say p1, which is the only one to have an input value. The
termination and agreement requirements of the BG prob-
lem are exactly as in BA, while the validity condition re-
quires that if the input value of p; is v and p; is correct,
then the correct processors decide v. The IC problem is
an extension of BG, where every processor is “designated”,
so that each processor has to decide on a vector of n val-
ues, where the conditions for the i-th entry are as in BG,
with p; as the designated processor. For deterministic syn-
chronous algorithms BA, BG and IC problems are essen-
tially equivalent, e. g., see the discussion in [15].

Firing Squad

The above algorithms assume that the processors share
a “global time”, i.e., all the processors start in the same
(first) round, so that their round counters are equal
throughout the execution of the algorithm. However, there
are cases in which the processors run in a synchronous
network, yet each processor has its own notion of time
(e.g., when each processor starts on its own, the round
counter values are distinct among the processors). In these
cases, it is desirable to have a protocol that allows the
processors to agree on some specific round, thus creating
a common round which synchronizes all the correct pro-
cessors. This synchronization task, known as the Byzan-
tine firing squad problem [6], is tightly realted to BA.

General Translation Techniques

One particular direction that was pursued as part of the
research on the BA problem is the development of meth-
ods that automatically translate any protocol that tolerates
a more benign failure type into one which tolerates more
severe failures [24]. Efficient translations spanning the en-
tire failure hierarchy, starting from crash failures all the
way to unauthenticated Byzantine failures, can be found
in [3] and in Ch. 12 of [1].

Applications

Due to the very tight synchronization assumptions made
in the algorithms presented above, they are used mainly in
real-time, safety-critical systems, e. g., aircraft control [13].
In fact, the original interest of Pease, Shostak and Lamport
in this problem was raised by such an application [21]. In
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addition, BA protocols for the Byzantine failure case serve
as a basic building block in many cryptographic proto-
cols, e. g., secure multi-party computation [17], by provid-
ing a broadcast channel on top of pairwise communication
channels.
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