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Problem Definition

Computers contain a hierarchy of memory levels, with
vastly differing access times. Hence, the time for a mem-
ory access depends strongly on what is the innermost level
containing the data accessed. In analysis of algorithms, the
standard RAM (or von Neumann) model cannot capture
this effect, and external memory models were introduced
to better model the situation. The most widely used of
these models is the two-level I/O-model [1], also called the
External Memory model or the Disk Access model. The
I/0-model approximates the memory hierarchy by mod-
eling two levels, with the inner level having size M, the
outer level having infinite size, and transfers between the
levels taking place in blocks of B consecutive elements. The
cost of an algorithm is the number of memory transfers it
makes.

The cache-oblivious model, introduced by Frigo
et al. [18], elegantly generalizes the I/O-model to a multi-
level memory model by a simple measure: the algorithm is
not allowed to know the value of B and M. More precisely,
a cache-oblivious algorithm is an algorithm formulated in
the RAM model, but analyzed in the I/O-model, with an
analysis valid for any value of B and M. Cache replace-
ment is assumed to take place automatically by an opti-
mal oft-line cache replacement strategy. Since the analysis

holds for any B and M, it holds for all levels simultane-
ously.

The subject here is that of efficient cache-oblivious
data structures for the ordered dictionary problem, i.e.,
the problem of storing elements with keys from an ordered
universe while supporting searches, insertions, deletions,
and range searches. In full generality, searches are prede-
cessor searches, returning the element with the largest key
smaller than or equal to the key searched for.

Key Results

The first cache-oblivious dictionary was given by Pro-
kop [21], who showed how to lay out a static binary
tree in memory such that searches take O(log; n) mem-
ory transfers. This layout, often called the van Emde Boas
layout because it is reminiscent of the classic van Emde
Boas data structure, also ensures that range searches take
O(logy n + k/B) memory transfers [2], where k is the size
of the output. Both bounds are optimal for comparison-
based searching.

The first dynamic, cache-oblivious dictionary was
given by Bender et al. [10]. Making use of a variant of the
van Emde Boas layout, a density maintenance algorithm of
the type invented by Itai et al. [19], and weight-balanced
B-trees [5], they arrived at the following results:

Theorem 1 ([10]) There is a cache-oblivious dictionary
structure supporting searches in O(logy n) memory trans-
fers, and insertions and deletions in amortized O(logy n)
memory transfers.

Theorem 2 ([10]) There is a cache-oblivious dictionary
structure supporting searches in O(logy n) memory trans-
fers, insertions and deletions in amortized O(logzn +
(log? n)/B) memory transfers, and range searches in
O(logg n + k/B) memory transfers, where k is the size of
the output.

Later, Bender et al. [7] developed a cache-oblivious struc-
ture for maintaining linked lists which supports inser-
tion and deletion of elements in O(1) memory trans-
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fers and scanning of k consecutive elements in amortized
O(k/B) memory transfers. Combining this structure with
the structure of the first theorem above, the following re-
sult can be achieved.

Theorem 3 ([7,10]) There is a cache-oblivious dictio-
nary structure supporting searches in O(logy n) memory
transfers, insertions and deletions in amortized O(logy n)
memory transfers, and range searches in amortized
O(logy n + k/B) memory transfers, where k is the size of the
output.

A long list of extensions of these basic cache-oblivious dic-
tionary results has been given. We now survey these.

Bender et al. [11] and Brodal et al. [16] gave very sim-
ilar proposals for reproducing the result of Theorem 2,
but with significantly simpler structures (avoiding the use
of weight-balanced B-trees). On the basis of exponen-
tial trees, Bender et al.[8] gave a proposal with O(log, n)
worst-case queries and updates. They also gave a solu-
tion with partial persistence, where searches (in all ver-
sions of the structure) and updates (in the latest version of
the structure) require amortized O(logy(m + n)) memory
transfers, where m is the number of versions and # is the
number of elements in the version operated on. Bender et
al. [14] extended the cache-oblivious model to a concur-
rent setting, and gave three proposals for cache-oblivious
B-trees in this setting. Bender et al. [12] gave cache-obliv-
ious dictionary structures exploring trade-offs between
faster insertion costs and slower search cost. Franceschini
and Grossi [17] showed how to achieve O(logy 1) worst-
case queries and updates while using O(1) space besides
the space for the n elements stored. Extensions to dictio-
naries on other data types such as strings [13,15] and geo-
metric data [3,4,6] have been given.

It has been shown [9] that the best-possible multiplica-
tive constant in the @ (logy 1) search bound for compari-
son-based searching is different in the I/O-model and in
the cache-oblivious model.

Applications

Dictionaries solve a fundamental data structuring prob-
lem which is part of solutions for a very high number of
computational problems. Dictionaries for external mem-
ory are useful in settings where memory accesses are dom-
inating the running time, and cache-oblivious dictionaries
in particular stand out by their ability to optimize the ac-
cess to all levels of an unknown memory hierarchy. This is
an asset e. g. when developing programs to be run on di-
verse or unknown architectures (such as software libraries
or programs for heterogeneous distributed computing like

grid computing and projects such as SETI@home). Even
on a single, known architecture, the memory parameters
available to a computational process may be non-con-
stant if several processes compete for the same memory
resources. Since cache-oblivious algorithms are optimized
for all parameter values, they have the potential to adapt
more gracefully to these changes, and also to varying in-
put sizes forcing different memory levels to be in use.

Open Problems

For the one-dimensional ordered dictionary problem dis-
cussed here, one notable open problem is to find a data
structure achieving worst case versions of all the bounds
in Theorem 3.

Experimental Results

Cache-oblivious dictionaries have been evaluated empir-
ically in [11,13,16,20,22]. The overall conclusion of these
investigations is that cache-oblivious methods easily can
outperform RAM algorithms, although sometimes not as
much as algorithms tuned to the specific memory hier-
archy and problem size in question. On the other hand,
cache-oblivious algorithms seem to perform well on all
levels of the memory hierarchy, and to be more robust to
changing problem sizes.
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Model Definition

The memory system of contemporary computers consists
of a hierarchy of memory levels, with each level acting as
a cache for the next; a typical hierarchy may consist of
registers, level 1 cache, level 2 cache, level 3 cache, main
memory, and disk (Fig. 1). One characteristic of the hier-
archy is that the memory levels get larger and slower the
further they get from the processor, with the access time
increasing most dramatically between RAM memory and
disk. Another characteristic is that data is moved between
levels in blocks.

As a consequence of the differences in access time be-
tween the levels, the cost of a memory access depends
highly on what is the current lowest memory level hold-
ing the element accessed. Hence, the memory access pat-
tern of an algorithm has a major influence on its practi-
cal running time. Unfortunately, the RAM model (Fig. 2)
traditionally used to design and analyze algorithms is not

Disk

Ram
Cache 3

CPU ' Cache 1 Cache 2
Registers

Cache-Oblivious Model, Figure 1
The memory hierarchy

Memory

CPU

Cache-Oblivious Model, Figure 2
The RAM model
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The I/0-model

capable of capturing this, as it assumes that all memory ac-
cesses take equal time.

To better account for the effects of the memory hier-
archy, a number of computational models have been pro-
posed. The simplest and most successful is the two-level
I/0-model introduced by Aggarwal and Vitter [2] (Fig. 3).
In this model a two-level memory hierarchy is assumed,
consisting of a fast memory of size M and a slower mem-
ory of infinite size, with data transferred between the lev-
els in blocks of B consecutive elements. Computation can
only be performed on data in the fast memory, and algo-
rithms are assumed to have complete control over trans-
fers of blocks between the two levels. Such a block trans-
fer is denoted a memory transfer. The complexity mea-
sure is the number of memory transfers performed. The
strength of the I/O-model is that it captures part of the
memory hierarchy, while being sufficiently simple to make
design and analysis of algorithms feasible. Over the last
two decades, a large body of results for the I/O-model has
been produced, covering most areas of algorithmics. For
an overview, see the surveys [3,24,26,27].

More elaborate models of multi-level memory have
been proposed (see e.g. [26] for an overview) but these
models have been less successful than the I/O-model,
mainly because of their complexity which makes analy-
sis of algorithms harder. All these models, including the
I/O-model, assume that the characteristics of the memory
hierarchy (the level and block sizes) are known.

In 1999 the cache-oblivious model (Fig. 4) was intro-
duced by Frigo et al. [22]. A cache-oblivious algorithm is
an algorithm formulated in the RAM model but analyzed
in the I/O-model, with the analysis required to hold for
any block size B and memory size M. Memory transfers
are assumed to take place automatically by an optimal off-
line cache replacement strategy.

The crux of the cache-oblivious model is that because
the I/0O-model analysis holds for any block and memory

Slow
Memory
r—-——————-- 1
I Fast I
: memory :
| |
CPU | Block |
! 1
] ]
| |
I I
I I
| |
I Y - - - — — 4
Invisible

to algorithm

Cache-Oblivious Model, Figure 4
The cache-oblivious model

size, it holds for all levels of a multi-level memory hier-
archy (see [22,25] for detailed versions of this statement).
Put differently, by optimizing an algorithm to one un-
known level of the memory hierarchy, it is optimized to all
levels simultaneously. Thus, the cache-oblivious model el-
egantly generalizes the I/O-model to a multi-level memory
model by one simple measure: the algorithm is not allowed
to know the value of B and M. The challenge, of course, is
to develop algorithms having good memory transfer ana-
lyzes under these conditions.

Besides capturing the entire memory hierarchy in
a conceptually simple way, the cache-oblivious model has
other benefits: Algorithms developed in the model do not
rely on knowing the parameters of the memory hierarchy,
which is an asset when developing programs to be run on
diverse or unknown architectures (e. g. software libraries
or programs for heterogeneous distributed computing
such as grid computing and projects like SETI@home).
Even on a single, known architecture, the memory param-
eters available to a computational process may be non-
constant if several processes compete for the same mem-
ory resources. Since cache-oblivious algorithms are opti-
mized for all parameter values, they have the potential to
adapt more gracefully to these changes. Also, the same
code will adapt to varying input sizes forcing different
memory levels to be in use. Finally, cache-oblivious algo-
rithms automatically are optimizing the use of translation
lookaside buffers (a cache holding recently accessed parts
of the page table used for virtual memory) of the CPU,
which may be seen as a second memory hierarchy paral-
lel to the one mentioned in the introduction.

Possible weak points of the cache-oblivious model are
the assumption of optimal off-line cache replacement, and
the lack of modeling of the limited associativity of many of
the levels of the hierarchy. The first point is mitigated by



Cache-Oblivious Model

125

the fact that normally, the provided analysis of a proposed
cache-oblivious algorithm will work just as well assuming
a Least-Recently-Used cache replacement policy, which is
closer to actual replacement strategies of computers. The
second point is also a weak point of most other memory
models.

Key Results

This section surveys a number of the known results in
the cache-oblivious model. Other surveys available in-
clude [5,14,20,24].

First of all, note that scanning an array of N elements
takes O(N/B) memory transfers for any values of B and M,
and hence is an optimal cache-oblivious algorithm. Thus,
standard RAM algorithms based on scanning may already
possess good analysis in the cache-oblivious model - for
instance, the classic deterministic selection algorithm has
complexity O(N/B) [20].

For sorting, a fundamental fact in the I/O-model is that
comparison-based sorting of N elements takes @ (Sort(N))
memory transfers [2], where Sort(N) = % log,/5 % Also
in the cache-oblivious model, sorting can be carried out in
O (Sort(N)) memory transfer, if one makes the so-called
tall cache assumption M > B*¢ [15,22]. Such an assump-
tion has been shown to be necessary [16], which proves
a separation in power between cache-oblivious algorithms
and algorithms in the I/O-model (where this assumption
is not needed for the sorting bound).

For searching, B-trees have cost O(log; N), which is
optimal in the I/O-model for comparison-based searching.
This cost is also attainable in the cache-oblivious model,
as shown for the static case in [25] and for the dynamic
case in [13]. A number of later variants of cache-oblivious
search trees have appeared. Also for searching, a separa-
tion between cache-oblivious algorithms and algorithms
in the I/O-model has been shown [12] in the sense that the
constants attainable in the O(log; N) bound are provably
different.

Permuting in the I/O-model has complexity & (min{
Sort(N), N}), assuming that elements are indivisible [2]. It
has been proven [16] that this asymptotic complexity can-
not be attained in the cache-oblivious model, hence also
for this problem, a separation exists.

Cache-oblivious priority queues supporting opera-
tions in O(1/Blog,,,z N/M) memory transfers amortized
have been given.

Currently known cache-oblivious algorithms also in-
clude algorithms for problems in computational geom-
etry [1,6,7,8,10,15], for graph problems [4,17,18,23], for
scanning dynamic sets [9], for layout of static trees [11],

for search problems on multi-sets [21], for dynamic pro-
gramming [19], for partial persistence [10], for matrix op-
erations [22], and for the Fast Fourier Transform [22].

Applications

The cache-oblivious model is a means for design and anal-
ysis of algorithms that use the memory hierarchy of com-
puters efficiently.

Experimental Results

Cache-oblivious algorithms have been evaluated empiri-
cally in a number of areas, including sorting, searching,
matrix algorithms [22], and dynamic programming [19].
The overall conclusion of these investigations is that
cache-oblivious methods often outperform RAM algo-
rithms, but not always exactly as much as do algorithms
tuned to the specific memory hierarchy and problem size.
On the other hand, cache-oblivious algorithms seem to
perform well on all levels of the memory hierarchy, and
to be more robust to changing problem sizes.
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Problem Definition

Sorting a set of elements is one of the most well-studied
computational problems. In the cache-oblivious setting
the first study of sorting was presented in 1999 in the sem-
inal paper by Frigo et al. [8] that introduced the cache-
oblivious framework for developing algorithms aimed at
machines with (unknown) hierarchical memory.

Model

In the cache-oblivious setting the computational model
is a machine with two levels of memory: a cache of lim-
ited capacity and a secondary memory of infinite capac-
ity. The capacity of the cache is assumed to be M elements
and data is moved between the two levels of memory in
blocks of B consecutive elements. Computations can only
be performed on elements stored in cache, i.e. elements
from secondary memory need to be moved to the cache
before operations can access the elements. Programs are
written as acting directly on one unbounded memory, i. .
programs are like standard RAM programs. The necessary
block transfers between cache and secondary memory are
handled automatically by the model, assuming an optimal
offline cache replacement strategy. The core assumption of
the cache-oblivious model is that M and B are unknown to
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the algorithm whereas in the related I/O model introduced
by Aggarwal and Vitter [1] the algorithms know M and
B and the algorithms perform the block transfers explic-
itly. A thorough discussion of the cache-oblivious model
and its relation to multi-level memory hierarchies is given
in [8].

Sorting

For the sorting problem the input is an array of N elements
residing in secondary memory, and the output is required
to be an array in secondary memory storing the input ele-
ments in sorted order.

Key Results

In the I/O model tight upper and lower bounds were
proved for the sorting problem and the problem of
permuting an array [1]. In particular it was proved
that sorting requires G)(% log,/s %) block transfers and
permuting an array requires ©(min{N, % log,//s %})
block transfers. Since lower bounds for the I/O model
also hold for the cache-oblivious model, the lower
bounds from [1] immediately give a lower bound of
.Q(% log,/s %) block transfers for cache-oblivious sort-
ing and £2(min{N, & log,;z &}) block transfers for
cache-oblivious permuting. The upper bounds from [1]
can not be applied to the cache-oblivious setting since
these algorithms make explicit use of B and M.

Binary Mergesort performs O(N log, N) comparisons,
but analyzed in the cache-oblivious model it performs
O(% log, %) block transfers which is a factor ©(log %)
from the lower bound (assuming a recursive implemen-
tation of binary Mergesort, in order to get M in the de-
nominator in the log N/M part of the bound on the block
transfers). Another comparison-based sorting algorithm
is the classical Quicksort sorting algorithm from 1962
by Hoare [9], that performs expected O(Nlog, N) com-
parisons and expected O(% log, %) block transfers. Both
these algorithms achieve their relatively good performance
for the number of block transfers from the fact that they
are based on repeated scanning of arrays—a property not
shared with e. g. Heapsort [10] that has a very poor perfor-
mance of @(N log, %) block transfers. In the I/O model
the optimal performance of O(% log /s %) is achieved
by generalizing binary Mergesort to G)(%)—way Merge-
sort [1].

Frigo et al. in [8] presented two cache-oblivious sort-
ing algorithms (which can also be used to permute an ar-
ray of elements). The first algorithm [8, Section 4] is de-
noted Funnelsort and is a reminiscent of classical binary
Mergesort, whereas the second algorithm [8, Section 5]

is a distribution-based sorting algorithm. Both algorithms
perform optimal O(% log s %) block transfers - pro-
vided a tall cache assumption M = 2(B?) is satisfied.

Funnelsort

The basic idea of Funnelsort is to rearrange the sorting
process performed by binary Mergesort, such that the pro-
cessed data is stored “locally.” This is achieved by two ba-
sic ideas: (1) A top-level recursion that partitions the in-
put into N3 sequences of size N?3, Funnelsort these se-
quences recursively, and merge the resulting sorted sub-
sequences using an N'/3-merger. (2) A k-merger is recur-
sively defined to perform binary merging of k input se-
quences in a clever schedule with an appropriate recur-
sive layout of data in memory using buffers to hold sus-
pended merging processes (see Fig. 1). Subsequently two
simplifications were made, without sacrificing the asymp-
totic number of block transfers performed. In [3] it was
proved that the binary merging could be performed lazily,
simplifying the scheduling of merging. In [5] it was fur-
ther observed that the recursive layout of k-mergers is not
necessary. It is sufficient that a k-merger is stored in a con-
secutive array, i.e. the buffers can be laid out in arbitrary
order which simplifies the construction algorithm for the
k-merger.

Implicit Cache-Oblivious Sorting

Franceschini in [7] showed how to perform optimal cache-
oblivious sorting implicitly using only O(1) space, i.e. all
data is stored in the input array except for O(1) additional
words of information. In particular the output array is just
a permutation of the input array.

The Role of the Tall Cache Assumption

The role of the tall cache assumption on cache-oblivious
sorting was studied by Brodal and Fagerberg in [4]. If no
tall cache assumption is made, they proved the following
theorem:

Theorem 1 ([4], Corollary 3) Let By = 1 and B, = M/2.
For any cache-oblivious comparison-based sorting algo-
rithm, let t; and t; be upper bounds on the number of 1/Os
performed for block sizes B; and B,. If for a real num-
ber d > 0 it is satisfied that t, =d - Bﬁz logM/B2 B—Ii then
t1 > 1/8 - Nlog, N/M.

The theorem shows cache-oblivious comparison-based
sorting without a tall cache assumption cannot match the
performance of algorithms in the I/O model where M and
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Cache-Oblivious Sorting, Figure 1
The overall recursion of Funnelsort (left) and a 16-merger (right)

B are known to the algorithm. It also has the natural inter-
pretation that if a cache-oblivious algorithm is required to
be I/O-optimal for the case B = M/2, then binary Merge-
sort is best possible —any other algorithm will be the same
factor of ®(log M) worse than the optimal block transfer
bound for the case M > B.

For the related problem of permuting an array the fol-
lowing theorem states that for all possible tall cache as-
sumptions B < M%, no cache-oblivious permuting algo-
rithm exists with a block transfer bound (even only in the
average case sense) matching the worst case bound in the
I/0 model.

Theorem 2 ([4], Theorem 2) For all § >0, there
exists no cache-oblivious algorithm for permuting that
for all M > 2B and 1 < B < M3 achieves O(min{N, %
log,/5 %}) I/Os averaged over all possible permutations of
size N.

Applications

Many problems can be reduced to cache-oblivious sort-
ing. In particular Arge et al. [2] developed a cache-obliv-
ious priority queue based on a reduction to sorting. They
furthermore showed how a cache-oblivious priority queue
can be applied to solve a sequence of graph problems, in-
cluding list ranking, BFS, DFS, and minimum spanning
trees.

Brodal and Fagerberg in [3] showed how to modify
the cache-oblivious lazy Funnelsort algorithm to solve sev-
eral problems within computational geometry, including
orthogonal line segment intersection reporting, all near-
est neighbors, 3D maxima problem, and batched orthog-
onal range queries. All these problems can be solved by

a computation process very similarly to binary Mergesort
with an additional problem dependent twist. This general
framework to solve computational geometry problems is
denoted distribution sweeping.

Open Problems

Since the seminal paper by Frigo et al. [8] introducing the
cache-oblivious framework there has been a lot of work
on developing algorithms with a good theoretical perfor-
mance, but only a limited amount of work has been done
on implementing these algorithms. An important issue for
future work is to get further experimental results consol-
idating the cache-oblivious model as a relevant model for
dealing efficiently with hierarchical memory.

Experimental Results

A detailed experimental study of the cache-oblivious sort-
ing algorithm Funnelsort was performed in [5]. The main
result of [5] is that a carefully implemented cache-obliv-
ious sorting algorithm can be faster than a tuned imple-
mentation of Quicksort already for input sizes well within
the limits of RAM. The implementation is also at least as
fast as the recent cache-aware implementations included
in the test. On disk the difference is even more pro-
nounced regarding Quicksort and the cache-aware algo-
rithms, whereas the algorithm is slower than a careful im-
plementation of multiway Mergesort optimized for exter-
nal memory such as in TPIE [6].

URL to Code

http://kristoffer.vinther.name/projects/funnelsort/
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Problem Definition

This entry covers several problems, related with each
other. The first problem is concerned with maintaining the
causal relationship between events in a distributed system.
The motivation is to allow distributed systems to reason
about time with no explicit access to a physical clock. Lam-
port [5] defines a notion of logical clocks that can be used
to generate timestamps that are consistent with causal re-
lationships (in a conservative sense). He illustrates logical
clocks (also called Lamport clocks) with a distributed mu-
tual exclusion algorithm. The algorithm turns out to be
an illustration of state-machine replication. Basically, the
algorithm generates a total ordering of the events that is
consistent across processes. With all processes starting in
the same state, they evolve consistently with no need for
further synchronization.

System Model

The system consists of a collection of processes. Each pro-
cess consists of a sequence of events. Processes have no
shared memory and communicate only by exchanging
messages. The exact definition of an event depends on
the system actually considered and the abstraction level
at which it is considered. One distinguishes between three
kinds of events: internal (affects only the process executing
it), send, and receive events.

Causal Order

Causal order is concerned with the problem that the oc-
currence of some events may affect other events in the
future, while other events may not influence each other.
With processes that do not measure time, the notion of
simultaneity must be redefined in such a way that simul-
taneous events are those that cannot possibly affect each
other. For this reason, it is necessary to define what it
means for an event to happen before another event.

The following “happened before” relation is defined as
an irreflexive partial ordering on the set of all events in the
system [5].

Definition 1 The relation “—” on the set of events of

a system is the smallest relation satisfying the following

three conditions:

1. If a and b are events in the same process, and a comes
before b, then a — b.
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2. If a is the sending of a message by one process and b
is the receipt of the same message by another process,
thena — b.

3. Ifa—>band b — cthena — c.

Definition 2 Two distinct events a and b are said to be
concurrent if a /4 band b 4 a.

Logical Clocks

Lamport also defines clocks in a generic way, as follows.

Definition 3 A clock C; for a process p; is a function
which assigns a number C;(a) to any event a on that
process. The entire system of clocks is represented by the
function C which assigns to any event b the number C(b),
where C(b) = C;(b) if b is an event in process p;. The sys-
tem of clocks must meet the following clock condition.

e Foranyeventsaandb, if a — b then C(a) < C(b).

Assuming that there is some arbitrary total ordering <
of the processes (e. g., unique names ordered lexicograph-
ically), Lamport extends the “happened before” relation
and defines a relation “=" as a total ordering on the set
of all events in the system.

Definition 4 The total order relation = is defined as fol-
lows. If a is an event in process p; and b is an event in pro-
cess pj, then a = b if and only if either one of the follow-
ing conditions is satisfied.

1. Ci(a) < C;(b)

2. Ci{a) =Cj(b)and p; < p; .

In fact, Lamport [5] also discusses an adaptation of these
conditions to physical clocks, and provides a simple clock
synchronization algorithm. This is however not discussed
further here.

State Machine Replication

The problem of state-machine replication was originally
presented by Lamport [4,5]. In a later review of the prob-
lem, Schneider [8] defines the problem as follows (formu-
lation adapted to the context of the entry).

Problem 1 (State-machine replication)

INPUT: A set of concurrent requests.

OUTPUT: A sequence of the requests processed at each pro-

cess, such that:

1. Replica coordination: all replicas receive and process the
same sequence of requests.

2. Agreement: every non-faulty state-machine replica re-
ceives every request.

3. Order: every non-faulty state-machine replica processes
the requests it receives in the same relative order.

In his paper on logical time [5] and discussed in this entry,
Lamport does not consider failures. He does however con-
sider them in another paper on state-machine replication
for fault-tolerance [4], which he published the same year.

Key Results

Lamport [5] proposed many key results related to the
problems described above.

Logical Clocks

Lamport [5] defines an elegant system of logical clocks that
meets the clock condition presented in Definition 3. The
clock of a process p; is represented by a register C;, such
that C; (a) is the value held by C; when a occurs. Each mes-
sage m carries a timestamp T,,, which equals the time at
which m was sent. The clock system can be described in
terms of the following rules.
1. Each process p; increments C; between any two succes-
sive events.
2. If event a is the sending of a message m by process p;,
then the message m contains a timestamp Ty, = C;(a).
3. Upon receiving a message m, process p; sets C; to
max(Cj, T, + 1) (before actually executing the receive
event).

State Machine Replication

As an illustration for the use of logical clocks, Lamport [5]
describes a mutual exclusion algorithm. He also mentions
that the approach is more general and discusses the con-
cept of state-machine replication that he refines in a differ-
ent paper [4].

The mutual exclusion algorithm is based on the idea
that every process maintains a copy of a request queue,
and the algorithm ensures that the copies remain consis-
tent across the processes. This is done by generating a total
ordering of the request messages, according to timestamps
obtained from the logical clocks of the sending processes.

The algorithm described works under the following
simplifying assumptions:

o Every message that is sent is eventually received.

e For any processes p; and p;, messages from p; to p; are
received in the same order as they are sent.

e A process can send messages directly to every other
processes.

The algorithm requires that each process maintains its

own request queue, and ensures that the request queues

of different processes always remain consistent. Initially,

request queues contain a single message (T, po, request),

where pg is the process that holds the resource and the
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timestamp Ty is smaller than the initial value of every

clock. Then, the algorithm works as follows.

1. When a process p; requests the resource, it sends a re-
quest message (T, p;, request) to all other processes
and puts the message in its request queue.

2. When a process p; receives a message (T}, pi, request),
it puts that message in its request queue and sends an
acknowledgment (T, p;, ack) to p;.

3. When a process p; releases the resource, it removes all
instances of messages (—, p;, request) from its queue,
and sends a message (T, p;i, release) to all other pro-
cesses.

4. When a process p; receives a release message from
process p;, it removes all instances of messages
(—, pi,request) from its queue, and sends a times-
tamped acknowledgment to p;.

5. Messages in the queue are sorted according to the to-
tal order relation = of Definition 4. A process p; can
use the resource when (a) a message (T}, pi, request)
appears first in the queue, and (b) p; has received from
all other processes a message with a timestamp greater
than T, (or equal from any process p; where p; < p;).

Applications

A brief overview of some applications of the concepts pre-
sented in this entry has been provided.

First of all, the notion of causality in distributed sys-
tems (or lack thereof) leads to a famous problem in which
a user may potentially see an answer before she can see the
relevant question. The time-independent characterization
of causality of Lamport lead to the development of effi-
cient solutions to enforce causal order in communication.
In his later work, Lamport [3] gives a more general defi-
nition to the “happened before” relation, so that a system
can be characterized at various abstraction levels.

About a decade after Lamport’s work on logical clock,
Fidge [2] and Mattern [6] have developed the notion of
vector clocks, with the advantage of a complete charac-
terization of causal order. Indeed, the clock condition en-
forced by Lamport’s logical clocks is only a one-way im-
plication (see Definition 3). In contrast, vector clocks ex-
tend Lamport clocks by ensuring that, for any events a and
b, if C{a) < C(b), then a — b. This is for instance useful
for choosing a set of checkpoints after recovery of a dis-
tributed system, for distributed debugging, or for deadlock
detection. Other extensions of logical time have been pro-
posed, that have been surveyed by Raynal and Singhal [7].

The state-machine replication also has many applica-
tions. In particular, it is often used for replicating a dis-
tributed service over several processors, so that the service

can continue to operate even in spite of the failure of some
of the processors. State-machine replication ensures that
the different replicas remain consistent.

The mutual exclusion algorithm proposed by Lam-
port [5] and described in this entry is actually one of
the first known solution to the atomic broadcast problem
(see relevant entry). Briefly, in a system with several pro-
cesses that broadcast messages concurrently, the problem
requires that all processes deliver (and process) all mes-
sage in the same order. Nowadays, there exist several ap-
proaches to solving the problem. Surveying many algo-
rithms, Défago et al. [1] have classified Lamport’s algo-
rithm as communication history algorithms, because of the
way the ordering is generated.
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Problem Definition

This problem concerns the query complexity of proper
learning in a widely studied learning model: exact learn-
ing with membership and equivalence queries. Hellerstein
et al. [8] showed that the number of (polynomially sized)
queries required to learn a concept class in this model
is closely related to the size of certain certificates associ-
ated with that class. This relationship gives a combina-
torial characterization of the concept classes that can be
learned with polynomial query complexity. (Similar re-
sults were shown by Hegediis[7], based on the work of
Moshkov [11].)

The Exact Learning Model

Concepts are functions f : X — Y where X is an arbitrary
domain, and Y = {0, 1}. In exact learning, there is a hid-
den concept f from a known class of concepts C, and the
problem is to exactly identify the function f.

Algorithms in the exact learning model obtain infor-
mation about f, the target concept, by querying two or-
acles, a membership oracle and an equivalence oracle.
A membership oracle for f answers membership queries,
which are of the form “What is f(x)?” where x € X (point
evaluation queries). The membership oracle responds with
the value f(x). An equivalence oracle for f answers equiv-
alence queries, which are of the form “Is h = f?” where h
is a representation of a concept defined on the domain X.
Representation h is called a hypothesis. The equivalence
oracle responds “yes” if h(x) = f(x) for all x € X. Other-
wise, it returns a counterexample, a value x € X such that
F(x) # hx).

The exact learning model is due to Angluin [2].
Angluin viewed the combination of membership and
equivalence oracles as constituting a “minimally adequate
teacher.” Equivalence queries can be simulated both in
Valiant’s well-known PAC model, and in the on-line
mistake-bound learning model.

Let R be a set of representations of concepts, and let
Cr be the associated set of concepts. For example, if R
were a set of DNF formulas, then Cr would be the set of
Boolean functions (concepts) represented by those formu-
las. An exact learning algorithm is said to learn R if, given
access to membership and equivalence oracles for any f in
Cg, it ends by outputing a hypothesis 4 that is a represen-
tation of f.

Query Complexity of Exact Learning

There are two aspects to the complexity of exact learning,
query complexity and computational complexity. The re-
sults of Hellerstein et al. concern query complexity.

The query complexity of an exact learning algorithm
measures the number of queries it asks and the size of the
hypotheses it uses in those queries (and as the final out-
put). We assume that each representation class R has an
associated size function that assigns a non-negative num-
ber to each r € R. The size of a concept ¢ with respect to R,
denoted by | c|g, is the size of the smallest representation of
cinRjif ¢ & cp, |c|r = 0. Ideally, the query complexity of
an exact learning algorithm will be polynomial in the size
of the target and other relevant parameters of the problem.

Many exact learning results concern learning repre-
sentations of Boolean functions. Algorithms for learning
such classes R are said to have polynomial query com-
plexity if the number of hypotheses used, and the size of
those hypotheses, is bounded by some polynomial p(m, n),
where 7 is the number of variables on which the target f
is defined, and m = |f|gr. We assume that algorithms for
learning Boolean representation classes are given the value
of n as input.

Since the number and size of queries used by an al-
gorithm is a lower bound on the time taken by that al-
gorithm, query complexity lower bounds imply computa-
tional complexity lower bounds.

Improper Learning and the Halving Algorithm

An algorithm for learning a representation class R is said to
be proper if all hypotheses used in its equivalence queries
are from R, and it outputs a representation from R¢. Oth-
erwise, the algorithm is said to be improper.

When R¢ is a finite concept class, defined on a finite
domain X, a simple, generic algorithm called the halving
algorithm can be used to exactly learn R using log |Rc¢]|
equivalence queries and no membership queries. The halv-
ing algorithm is based on the following idea. For any
V C Rc, define the majority hypothesis MAJy to be the
concept defined on X such thatforallx € X, MAJy(x) =1
if g(x) = 1 for more than half the concepts g in V, and
MAJy(x) = 0 otherwise. The halving algorithm begins by
setting V' = Rc. It then repeats the following:

1. Ask an equivalence query with the hypothesis MAJy .

2. If the answer is yes, then output MAJy.

3. Otherwise, the answer is a counterexample x. Remove
from V all g such that g(x) = MAJy(x).

Each counterexample eliminates the majority of the el-
ements currently in V, so the size of V is reduced by a fac-
tor of at least 2 with each equivalence query. It follows that
the algorithm cannot ask more than log, |R¢| queries.

The halving algorithm cannot necessarily be imple-
mented as a proper algorithm, since the majority hypothe-
ses may not be representable in R¢c. Even when they are
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representable in R, the representations may be exponen-
tially larger than the target concept.

Proper Learning and Certificates

In the exact model, the query complexity of proper learn-
ing is closely related to the size of certain certificates.

For any concept f defined on a domain X, a certificate
that f has property P is a subset S € X such that for all
concepts g defined on X, if g(x) = f(x) for all x € X, then
g has property P. The size of the certificate S is |S|, the
number of elements in it.

We are interested in properties of the form “g is
not a member of the concept class C”. To take a sim-
ple example, let D be the class of constant-valued n-
variable Boolean functions, i. e. D consists of the two func-
tions fi(x1,...,x,) =1 and fo(x1,...,x,) =0. Then if
g is an n-variable Boolean function that is not a mem-
ber of D, a certificate that g is not in C could be just
a pair a € {0,1}" and b € {0, 1}" such that g(a) =1 and
g(b) =0.

For C a class of concepts defined on X, define the ex-
clusion dimension of C to be the maximum, over all con-
cepts g not in C, of the size of the smallest certificate that g
is not in C. Let XD(C) denote the exclusion dimension of
C. In the above example, XD(C) = 2.

Key Results

Theorem 1 Let R be a finite class of representations. Then
there exists a proper learning algorithm in the exact model
that learns C using at most XD(C)log|C| queries. Fur-
ther, any such algorithm for C must make at least X D(C)
queries.

Independently, Hegediis proved a theorem that is essen-
tially identical to the above theorem. The algorithm in the
theorem is a variant of the ordinary halving algorithm.
As noted by Hegediis, a similar result to Theorem 1 was
proved earlier by Moshkov, and Moshkov’s techniques
can be used to improve the upper bound by a factor of
1/XD(C).

An extension of the above result characterizes the rep-
resentation classes that have polynomial query complex-
ity. The following theorem presents the extended result
as it applies to representation classes of Boolean func-
tions.

Theorem 2 Let R be a class of representations of Boolean
functions. Then there exists a proper exact learning algo-
rithm for R with polynomial query complexity iff there ex-
ists a polynomial p(m, n) such that for all m,n > 0, and

all n-variable Boolean functions g, if the size of g is greater
than m, then there exists a certificate of size at most p(m, n)
proving that |g|r > m.

A concept class having certificates of the type specified in
this theorem is said to have polynomial certificates.

The algorithm in the above theorem does not run in
polynomial time. Hellerstein et al. give a more complex al-
gorithm that runs in polynomial time using a X} oracle,
provided R satisfies certain technical conditions. Kobler
and Lindner subsequently gave an algorithm using a X}
oracle [10].

Theorem 2 and its generalization give a technique for
proving bounds on proper learning in the exact model.
Proving upper bounds on the size of the appropriate cer-
tificates yields upper bounds on query complexity. Proving
lower bounds on the size of appropriate certificates yields
lower bounds on query complexity and hence also on
time complexity. Moreover, unlike many computational
hardness results in learning, computational hardness re-
sults achieved in this way do not rely on any unproven
complexity theoretic or cryptographic hardness assump-
tions.

One of the most widely studied problems in compu-
tational learning theory has been the question of whether
DNF formulas can be learned in polynomial time in com-
mon learning models. The following result on learning
DNF formulas was proved using Theorem 2, by bounding
the size of the relevant certificates.

Theorem 3 There is a proper algorithm that learns DNF
formulas in the exact model with query complexity bounded
above by a polynomial p(m,r,n), where m is the size of
the smallest DNF representing the target function f, n is the
number of variables on which f is defined, and r is the size
of the smallest CNF representing f.

The size of a DNF is the number of its terms; the size of
a CNF is the number of its clauses. The above theorem
does not imply polynomial-time learnability of arbitrary
DNF formulas, since the running time of the algorithm de-
pends not just on the size of the smallest DNF representing
the target, but also on the size of the smallest CNF.
Building on results of Alekhnovich et al., Feldman
showed that if NP & RP, DNF formulas cannot be learned
in polynomial time in the PAC model augmented with
membership queries. The same negative result then fol-
lows immediately for the exact model [1,6]. Hellerstein
and Raghavan used certificate size lower bounds and The-
orem 1 to prove that DNF formulas cannot be learned by
a proper exact algorithm with polynomial query complex-
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ity, if the algorithm is restricted to using DNF hypotheses
that are only slightly larger than the target [9].

The main results of Hellerstein et al. apply to learn-
ing with membership and equivalence queries. Hellerstein
et al. also considered the model of exact learning with
membership queries alone, and showed that in this model,
a projection-closed Boolean function class is polynomial
query learnable iff it has polynomial teaching dimension.
Teaching dimension was previously defined by Goldman
and Kearns. Hegediis defined the extended teaching di-
mension, and showed that all classes are polynomially
query learnable with membership queries alone iff they
have polynomial extended teaching dimension.

Balcazar et al. introduced the strong consistency di-
mension to characterize polynomial query learnability
with equivalence queries alone [5]. The abstract identi-
fication dimension of Balcdzar, Castro, and Guijarro is
a very general measure that can be used to characterize
polynomial query learnability for any set of example-based
queries [4].

Applications

None

Open Problems

It remains open whether DNF formulas can be learned in
polynomial time in the exact model, using hypotheses that
are not DNF formulas.

Feldman’s results show the computational hardness of
proper learning of DNF in the exact learning model based
on complexity theoretic assumptions. However, it is un-
clear whether the hardness of proper learning of DNF is
a result of computational barriers, or whether query com-
plexity is also a barrier to efficient learning. It is still open
whether the class of DNF formulas has polynomial cer-
tificates; showing they do not have polynomial certificates
would give a hardness result for proper learning of DNF
based only on query complexity, with no complexity theo-
retic assumptions (and without the hypothesis-size restric-
tions used by Hellerstein and Raghavan). It is also open
whether the class of Boolean decision trees has polynomial
certificates.

Certificate techniques are used to prove lower bounds
on learning when we restrict the type of hypotheses
used by the learning algorithm. These types of results
are called representation dependent, since they depend
on the restriction of the representations used as hy-
potheses. Although there are some techniques for prov-
ing representation-independent hardness results, there is
a need for more powerful techniques.
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Problem Definition

One of the major problems facing wireless networks is
the capacity reduction due to interference among multiple
simultaneous transmissions. In wireless mesh networks
providing mesh routers with multiple-radios can greatly
alleviate this problem. With multiple-radios, nodes can
transmit and receive simultaneously or can transmit on
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multiple channels simultaneously. However, due to the
limited number of channels available the interference can-
not be completely eliminated and in addition careful chan-
nel assignment must be carried out to mitigate the ef-
fects of interference. Channel assignment and routing
are inter-dependent. This is because channel assignments
have an impact on link bandwidths and the extent to
which link transmissions interfere. This clearly impacts
the routing used to satisfy traffic demands. In the same
way traffic routing determines the traffic flows for each
link which certainly affects channel assignments. Chan-
nel assignments need to be done in a way such that the
communication requirements for the links can be met.
Thus, the problem of throughput maximization of wire-
less mesh networks must be solved through channel as-
signment, routing, and scheduling.

Formally, given a wireless mesh backbone network
modeled as a graph (V, E): The node t € V represents the
wired network. An edge e = (u, v) exists in E iff u and v
are within communication range Rr. The set Vg C V rep-
resents the set of gateway nodes. The system has a total
of K channels. Each node u € V has I(u) network inter-
face cards, and has an aggregated demand /(1) from its as-
sociated users. For each edge e the set I(e) C E denotes
the set of edges that it interferes with. A pair of nodes that
use the same channel and are within interference range Ryx
may interfere with each other’s communication, even if
they cannot directly communicate. Node pairs using dif-
ferent channels can transmit packets simultaneously with-
out interference. The problem is to maximize A where at
least AI(u) amount of throughput can be routed from each
node u to the Internet (represented by a node t). The A1(u)
throughput for each node u is achieved by computing g(1)
a network flow that associates with each edge e = (u, v)
values f(e(i)),1 < i < Kwhere f(e(i))is the rate at which
traffic is transmitted by node u for node v on channel i; (2)
a feasible channel assignment F(u) (F(u) is an ordered set
where the ith interface of u operates on the ith channel
in F(u)) such that, whenever f(e(i)) > 0, i € F(u) N F(v);
(3) a feasible schedule S that decides the set of edge chan-
nel pair (e, i) (edge e using channel, i. e. f(e(i)) > 0 sched-
uled at time slot 7, for T = 1,2,..., T where T is the pe-
riod of the schedule. A schedule is feasible if the edges
of no two edge pairs (ey, i), (e2, i) scheduled in the same
time slot for a common channel i interfere with each other
(e1 ¢ I(ey) and ey ¢ I(ey)). Thus, a feasible schedule is also
referred to as an interference free edge schedule. An in-
dicator variable X, ; r,e € E,i € F(e),t > 1is used. It is
assigned 1 if and only if link e is active in slot t on chan-
nel i. Note that 1/T Y, o, .1 Xe,i,zc(e) = f(e(i)). This is
because communication at rate c(e) happens in every slot

that link e is active on channel i and since f(e(i)) is the
average rate attained on link e for channel i. This implies

UT Y e Xeyie = L580.

Joint Routing, Channel Assignment,
and Link Scheduling Algorithm

Even the interference free edge scheduling sub-problem

given the edge flows is NP-hard [5]. An approximation al-

gorithm called RCL for the joint routing, channel assign-
ment, and link scheduling problem has been developed.

The algorithm performs the following steps in the given

order:

1. Solve LP: First optimally solve a LP relaxation of the
problem. This results in a flow on the flow graph along
with a not necessarily feasible channel assignment for
the node radios. Specifically, a node may be assigned
more channels than the number of its radios. However,
this channel assignment is “optimal” in terms of ensur-
ing that the interference for each channel is minimum.
This step also yields a lower bound on the A value which
is used in establishing the worst case performance guar-
antee of the overall algorithm.

2. Channel Assignment: This step presents a channel as-
signment algorithm which is used to adjust the flow on
the flow graph (routing changes) to ensure a feasible
channel assignment. This flow adjustment also strives
to keep the increase in interference for each channel to
a minimum.

3. Interference Free Link Scheduling: This step obtains
an interference free link schedule for the edge flows cor-
responding to the flow on the flow graph.

Each of these steps is described in the following subsec-

tions.

A Linear Programming-Based Routing Algorithm

A linear program LP (1) to find a flow that maximizes A is
given below:

max A (1)
Subject to
K K
M)+ D0 Y fley= Y Y flei),
e=(u,v)€E i=1 e=(v,u)€E i=1

YVve V-V (2)

fle(i)) <cle), Yee E (3)
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fle(d) fle(d)
151‘Z§K e:(;v)eE C(e) +e:(;u)€E C(e) - I(V)’
veV (4
fle(d) f(e'(i))
(o) /§e) @) @
VeeE, 1<i<K. (5

The first two constraints are flow constraints. The first
one is the flow conservation constraint; the second one
ensures no link capacity is violated. The third constraint
is the node radio constraints. Recall that a IWMN node
v € V has I(v) radios and hence can be assigned at most
I(v) channels from 1 < i < K. One way to model this con-
straint is to observe that due to interference constraints v
can be involved in at most I(v) simultaneous communica-
tions (with different one hop neighbors). In other words
this constraint follows from 3, ;g > ._(y.1)er Xe,ir +
D ol<i<k Ze:(v’u)eE Xe,i,r < I(v). The fourth constraint
is the link congestion constraints which are discussed in
detail in Sect. “Link Flow Scheduling”. Note that all the
constraints listed above are necessary conditions for any
feasible solution. However, these constraints are not nec-
essarily sufficient. Hence if a solution is found that satisfies
these constraints it may not be a feasible solution. The ap-
proach is to start with a “good” but not necessarily feasible
solution that satisfies all of these constraints and use it to
construct a feasible solution without impacting the quality
of the solution.

A solution to this LP can be viewed as a flow on a flow
graph H = (V, EH) where El = {e(i)|Ve € E,21 < i <
K7}. Although the optimal solution to this LP yields the best
possible A (say A*) from a practical point of view more
improvements may be possible:

e The flow may have directed cycles. This may be the
case since the LP does not try to minimize the amount
of interference directly. By removing the flow on the
directed cycle (equal amount off each edge) flow con-
servation is maintained and in addition since there are
fewer transmissions the amount of interference is re-
duced.

e The flow may be using a long path when shorter paths
are available. Note that longer paths imply more link
transmissions. In this case it is often the case that by
moving the flow to shorter paths, system interference
may be reduced.

The above arguments suggest that it would be practical to

find among all solutions that attain the optimal A value

of A* the one for which the total value of the following

quantity is minimized:

fe(i)
2 X

1<i<K e=(v,u)€E

The LP is then re-solved with this objective function and
with A fixed at A*.

Channel Assignment

The solution to the LP (1) is a set of flow values f(e(i))
for edge e and channel i that maximize the value A. Let
A* denote the optimal value of A. The flow f(e(i)) implies
a channel assignment where the two end nodes of edge e
are both assigned channel i if and only if f(e(i)) > 0. Note
that for the flow f(e(i)) the implied channel assignment
may not be feasible (it may require more than I(v) chan-
nels at node v). The channel assignment algorithm trans-
forms the given flow to fix this infeasibility. Below only
a sketch of the algorithm is given. More details can be
found in [1].

First observe that in an idle scenario, where all nodes v
have the same number of interfaces I (i.e. I = I(v)) and
where the number of available channels K is also I, the
channel assignment implied by the LP (1) is feasible. This
is because even the trivial channel assignment where all
nodes are assigned all the channels 1 to I is feasible. The
main idea behind the algorithm is to first transform the
LP (1) solution to a new flow in which every edge e has
flow f(e(i)) > 0 only for the channels 1 < i < I. The ba-
sic operation that the algorithm uses for this is to equally
distribute, for every edge e, the flow f(e(i)),forI < i <K
to the edges e(j), for 1 <i < 1. This ensures that all
f(e(i)) =0, for I < i < K after the operation. This op-
eration is called Phase I of the Algorithm. Note that the
Phase I operation does not violate the flow conservation
constraints or the node radio constraints (5) in the LP
(1). It can be shown that in the resulting solution the flow
f(e(i)) may exceed the capacity of edge e by at most a fac-
tor ¢ = K/I. This is called the “inflation factor” of Phase I.
Likewise in the new flow, the link congestion constraints (5)
may also be violated for edge e and channel i by no more
than the inflation factor ¢. In other words in the resulting
flow

fle(i)
c(e) " Z

e’€l(e)

fle' (i)

c(e’)

< ¢c(q) .

This implies that if the new flow is scaled by a fraction
1/¢ than it is feasible for the LP (1). Note that the im-
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plied channel assignment (assign channels 1 to I to ev-
ery node) is also feasible. Thus, the above algorithm finds
a feasible channel assignment with a A value of at least
A* .

One shortcoming of the channel assignment algorithm
(Phase I) described so far is that it only uses I of the K
available channels. By using more channels the interfer-
ence may be further reduced thus allowing for more flow
to be pushed in the system. The channel assignment algo-
rithm uses an additional heuristic for this improvement.
This is called Phase II of the algorithm.

Now define an operation called “channel switch op-
eration.” Let A be a maximal connected component (the
vertices in A are not connected to vertices outside A) in
the graph formed by the edges e for a given channel i for
which f(e(i)) > 0. The main observation to use is that for
a given channel j, the operation of completely moving flow
f(e(i)) to flow f(e(j)) for every edge e in A, does not im-
pact the feasibility of the implied channel assignment. This
is because there is no increase in the number of channels
assigned per node after the flow transformation: the end
nodes of edges e in A which were earlier assigned channel i
are now assigned channel j instead. Thus, the transforma-
tion is equivalent to switching the channel assignment of
nodes in A so that channel i is discarded and channel j is
gained if not already assigned.

The Phase II heuristic attempts to re-transform the un-
scaled Phase I flows f(e(i)) so that there are multiple con-
nected components in the graphs G(e, i) formed by the
edges e for each channel 1 < i < I. This re-transformation
is done so that the LP constraints are kept satisfied with an
inflation factor of at most ¢, as is the case for the unscaled
flow after Phase I of the algorithm.

Next in Phase III of the algorithm the connected com-
ponents within each graph G(e, i) are grouped such that
there are as close to K (but no more than) groups over-
all and such that the maximum interference within each
group is minimized. Next the nodes within the Ith group
are assigned channel , by using the channel switch oper-
ation to do the corresponding flow transformation. It can
be shown that the channel assignment implied by the flow
in Phase III is feasible. In addition the underlying flows
f(e(i)) satisfy the LP (1) constraints with an inflation fac-
tor of at most ¢ = K/I.

Next the algorithm scales the flow by the largest pos-
sible fraction (at least 1/¢) such that the resulting flow is
a feasible solution to the LP (1) and also implies a feasible
channel assignment solution to the channel assignment.
Thus, the overall algorithm finds a feasible channel assign-
ment (by not necessarily restricting to channels 1 to I only)
with a A value of at least 1*/¢.

Link Flow Scheduling

The results in this section are obtained by extending those
of [4] for the single channel case and for the Protocol
Model of interference [2]. Recall that the time slotted
schedule S is assumed to be periodic (with period T) where
the indicator variable X, ; r,e € E,i € F(e),t > 1is 1 if
and only if link e is active in slot 7 on channel i and i is
a channel in common among the set of channels assigned
to the end-nodes of edge e.

Directly applying the result (Claim 2) in [4] it fol-
lows that a necessary condition for interference free link
schedulingis that foreverye € E, i € F(e),t > 1: X, i+
> ereie) Xt < ¢(q). Here c(q) is a constant that only
depends on the interference model. In the interference
model this constant is a function of the fixed value g, the
ratio of the interference range R; to the transmission range
Ry, and an intuition for its derivation for a particular value
q = 2 is given below.

Lemmal c¢(g) =8 forq=2.

Proof Recallthatanedge ¢’ € I(e) if there exist two nodes
x,y € V which are at most 2Ry apart and such that edge e
is incident on node x and edge ¢ is incident on node y. Let
e = (u,v). Note that # and v are at most Ry apart. Con-
sider the region C formed by the union of two circles C,
and C, of radius 2Rt each, centered at node u and node v,
respectively. Then e’ = (u/,v') € I(e) if an only if at least
one of the two nodes u’, v is in C; Denote such a node by
C(e'). Given two edges ej, e; € I(e) that do not interfere
with each other it must be the case that the nodes C(e;)
and C(ey) are at least 2R apart. Thus, an upper bound
on how many edges in I(e) do not pair-wise interfere with
each other can be obtained by computing how may nodes
can be put in C that are pair-wise at least 2Ry apart. It can
be shown [1] that this number is at most 8. Thus, in sched-
ule S in a given slot only one of the two possibilities exist:
either edge e is scheduled or an “independent” set of edges
in I(e) of size at most 8 is scheduled implying the claimed
bound.[]

A necessary condition: (Link Congestion Constraint) Re-
call that + Yy Xe,ic = f(c‘zi’ Thus: Any valid “in-
terference free” edge flows must satisfy for every link e and

every channel i the Link Congestion Constraint:

fle(d) f(el(l))
c(e) Z c(e) <(@)- ©

e’€l(e)

A matching sufficient condition can also established [1].
A sufficient condition: (Link Congestion Constraint)
If the edge flows satisfy for every link e and every channel i
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the following Link Schedulability Constraint than an inter-
ference free edge communication schedule can be found
using an algorithm given in [1].

fle@) | ) f('(@) <1

’
C(e) e’€l(e) C(e )

@)

The above implies that if a flow f(e(i)) satisfies the
Link Congestion Constraint then by scaling the flow by
a fraction 1/¢(q) it can be scheduled free of interference.

Key Results

Theorem The RCL algorithm is a Kc(q)/1 approximation
algorithm for the Joint Routing and Channel Assignment
with Interference Free Edge Scheduling problem.

Proof Note that the flow f(e(i)) returned by the chan-
nel assignment algorithm in Sect. “Channel Assignment”
satisfies the Link Congestion Constraint. Thus, from the
result of Sect. “Link Flow Scheduling” it follows that by
scaling the flow by an additional factor of 1/¢(g) the flow
can be realized by an interference free link schedule. This
implies a feasible solution to the joint routing, channel as-
signment and scheduling problem with a A value of at least
A*/pc(q). Thus, the RCL algorithm is a ¢c(q) = Ke(g)/I
approximation algorithm.

Applications

Infrastructure mesh networks are increasingly been de-
ployed for commercial use and law enforcement. These
deployment settings place stringent requirements on the
performance of the underlying IWMNSs. Bandwidth guar-
antee is one of the most important requirements of ap-
plications in these settings. For these IWMNSs, topology
change is infrequent and the variability of aggregate traffic
demand from each mesh router (client traffic aggregation
point) is small. These characteristics admit periodic opti-
mization of the network which may be done by a system
management software based on traffic demand estimation.
This work can be directly applied to IWMN:S. It can also
be used as a benchmark to compare against heuristic algo-
rithms in multi-hop wireless networks.

Open Problems

For future work, it will be interesting to investigate
the problem when routing solutions can be enforced by
changing link weights of a distributed routing protocol
such as OSPF. Also, can the worst case bounds of the al-
gorithm be improved (e. g. a constant factor independent
of K and I)?
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Problem Definition

Circuit partitioning is a fundamental problem in many ar-
eas of VLSI layout and design. Min-cut balanced biparti-
tion is the problem of partitioning a circuit into two dis-
joint components with equal weights such that the number
of nets connecting the two components is minimized. The
min-cut balanced bipartition problem was shown to be
NP-complete [5]. The problem has been solved by heuris-
tic algorithms, e. g., Kernighan and Lin type (K&L) iter-
ative improvement methods [4,11], simulated annealing
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Algorithm: Flow-Balanced-Bipartition (FBB)
1. Pick a pair of nodes s and ¢ in N;
2. Find a min-net-cut C in N
Let X be the subcircuit reachable from s through
augmenting paths in the flow network, and X
the rest;
3if (1 —e)rW <wX) < (1 +e)rWw
return C as the answer;
4. if w(X) < (1 —e)rw
4.1. Collapse all nodes in X to s;
4.2. Pick a node v € X adjacent to C and collapse it to s;
4.3. Goto 1;
5.if w(X) > (1 +€)rw
5.1. Collapse all nodes in X to
5.2. Pick a node v € X adjacent to C and collapse it to t;
5.3. Goto 1;

Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut
Approach, Figure 1
FBB algorithm

Procedure: Incremental Flow Computation

1. while 3 an additional augmenting path from s to ¢
increase flow value along the augmenting
path;

2. Mark all nodes u s.t. 3 an augmenting path from s
to u;

3. Let C' be the set of bridging edges whose starting
nodes are marked and ending nodes are not
marked;

4. Return the nets corresponding to the bridging edges
in C’ as the min-net-cut C, and the marked
nodes as X.

Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut
Approach, Figure 2
Incremental max-flow computation

approaches [10], and analytical methods for the ratio-cut
objective [2,7,13,15]. Although it is a natural method for
finding a min-cut, the network max-flow min-cut tech-
nique [6,8] has been overlooked as a viable approach for
circuit partitioning. In [16], a method was proposed for
exactly modeling a circuit netlist (or, equivalently, a hyper-
graph) by a flow network, and an algorithm for balanced
bipartition based on repeated applications of the max-flow
min-cut technique was proposed as well. Our algorithm
has the same asymptotic time complexity as one max-flow
computation.

Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut
Approach, Figure 3
A circuit netlist with two net-cuts

A circuit netlist is defined as a digraph N = (V, E),
where V is a set of nodes representing logic gates and
registers and E is a set of edges representing wires be-
tween gates and registers. Each node v € V has a weight
w(v) € R*. The total weight of a subset U C V is denoted
by w(U) = X,euyw(v). W = w(V) denotes the total weight
of the circuit. A net n = (v;v1,...,v;) is a set of outgoing
edges from node v in N. Given two nodes s and ¢ in N,
an s — t cut (or cut for short) (X, X) of N is a bipartition
of the nodes in V such that s € X and t € X. The net-cut
net(X, X) of the cut is the set of nets in N that are incident
to nodes in both X and X. A cut (X, X) is a min-net-cut
if |net(X, X)| is minimum among all s — ¢ cuts of N. In
Fig. 3, net a = (r1; g1, g2), net cuts net(X, X) = {b, e} and
net(Y,Y) = {c,a, b, e}, and (X, X) is a min-net-cut.

Formally, given an aspect ratio r and a deviation fac-
tor €, min-cut r-balanced bipartition is the problem of
finding a bipartition (X, X) of the netlist N such that
1) A—erWw < W(X) <1 +e)rW and (2) the size of
the cut net(X, X) is minimum among all bipartitions satis-
fying (1). When r = 1/2, this becomes a min-cut balanced-
bipartition problem.

Key Results

Optimal-Network-Flow-Based Min-Net-Cut
Bipartition

The problem of finding a min-net-cutin N = (V, E) is re-

duced to the problem of finding a cut of minimum capac-

ity. Then the latter problem is solved using the max-flow

min-cut technique. A flow network N’ = (V’, E’) is con-

structed from N = (V, E) as follows (see Figs. 4 and 5):

1. V’ contains all nodes in V.

2. For eachnet n = (v;vy,...,v;) in N, add two nodes n;
and n, in V' and a bridging edge bridge(n) = (ny, na)
in E.
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A net n in circuit N The nodes and edges correspond to net n in N’

Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut Approach, Figure 4
Modeling a netin N in the flow network N

A bridging edge with unit capacity An ordinary edge with infinite capacity

Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut Approach, Figure 5
The flow network for Fig. 3

O Anun saturated net ® A saturated net @ A node to be collapsed to s or t

Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut Approach, Figure 6
FBB on the example in Fig. 5 for r = 1/2, € = 0.15 and unit weight for each node. The algorithm terminates after finding cut (X2, X3).
A small solid node indicates that the bridging edge corresponding to the net is saturated with flow
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Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut Approach, Table 1

Comparison of SN, PFM3, and FBB (r = 1/2,€ = 0.1)

Circuit Avg. net-cut size  FBB bipart. Improve. %

Name Gates and latches Nets Avg.deg SN PFM3 FBB ratio Over SN Over PFM3
C1355| 514 523 (3.0 389129.1 |26.0]1:1.08 33.2 10.7
C2670 | 1161 1254 (2.6 519146.0 |37.1]1:1.15 28.5 19.3
C3540 | 1667 1695 (2.7 90.3|71.0 |79.8]1:1.11 11.6 —124
C7552 | 3466 3565 | 2.7 443|81.8 [429]1:1.08 3.2 47.6
5838 478 511]26 27.1121.0 |14.7]1:1.04 45.8 30.0

Ave 1:1.10 24.5 19.0

Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut Approach, Table 2
Comparison of EIG1, PB, and FBB (r = 1/2, € = 0.1). All allow < 10% deviation

Circuit Best net-cut size Improve. % over FBB elaps.

Name  Gatesand latches Nets Avg.deg EIG1 PB FBB EIG1 PB sec.
S1423 731 743127 23 (1613 435 | 18.8 1.7
S9234 5808 5805 [ 2.4 227 (74|70 69.2 5.4 55.7
S$13207 | 8696 8606 (2.4 241 (91|74 69.3 | 189 100.0
$15850 | 10310 10310 | 2.4 215 |91 |67 688 | 264 96.5
S35932 (18081 17796 | 2.7 105 |62 |49 533 | 21.0 2808
$38584 |[20859 20593 | 2.7 76 |55 |47 382 | 145 1130
S38417 | 24033 23955 (2.4 121 |49 |58 52.1 [—184 2736
Average 585 113

3. Foreachnodeu € {v,vy,...,v;}incident on netn, add
two edges (u, n1) and (n2, u) in E'.

4. Let s be the source of N’ and ¢ the sink of N'.

5. Assign unit capacity to all bridging edges and infinite
capacity to all other edges in E'.

6. Foranodev € V' corresponding to anode in V, w(v) is
the weight of vin N. For anode u € V’ split from a net,
w(u) = 0.

Note that all nodes incident on net n are connected to

n; and are connected from 7, in N’. Hence the flow net-

work construction is symmetric with respect to all nodes

incident on a net. This construction also works when the
netlist is represented as a hypergraph.

It is clear that N’ is a strongly connected digraph.
This property is the key to reducing the bidirectional min-
net-cut problem to a minimum-capacity cut problem that
counts the capacity of the forward edges only.

Theorem 1 N has a cut of net-cut size at most C if and
only if N’ has a cut of capacity at most C.

Corollary 1 Let (X', X’) be a cut of minimum capac-
ity C in N'. Let Ny, = {n | bridge(n) € (X', X')}. Then
Newr = (X, X) is a min-net-cut in N and |N¢y;| = C.
Corollary 2 A min-net-cut in a circuit N = (V, E) can be
found in O(|V||E|) time.

Min-Cut Balanced-Bipartition Heuristic

First, a repeated max-flow min-cut heuristic algorithm,
flow-balanced bipartition (FBB), is developed for finding
an r-balanced bipartition that minimizes the number of
crossing nets. Then, an efficient implementation of FBB is
developed that has the same asymptotic time complexity as
one max-flow computation. For ease of presentation, the
FBB algorithm is described on the original circuit rather
than the flow network constructed from the circuit. The
heuristic algorithm is described in Fig. 1. Figure 6 shows
an example.

Table 2 compares the best bipartition net-cut sizes
of FBB with those produced by the analytical-method-
based partitioners EIG1 (Hagen and Kahng [7]) and
PARABOLI (PB) (Riess et al. [13]). The results produced
by PARABOLI were the best previously known results re-
ported on the benchmark circuits. The results for FBB
were the best of ten runs. On average, FBB outperformed
EIG1 and PARABOLI by 58.1% and 11.3% respectively.
For circuit S38417, the suboptimal result from FBB can
be improved by (1) running more times and (2) applying
clustering techniques to the circuit based on connectivity
before partitioning.

In the FBB algorithm, the node-collapsing method is
chosen instead of a more gradual method (e. g., [9]) to en-
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sure that the capacity of a cut always reflects the real net-
cut size. To pick a node at steps 4.2 and 5.2, a threshold R
is given for the number of nodes in the uncollapsed subcir-
cuit. A node is randomly picked if the number of nodes is
larger than R. Otherwise, all nodes adjacent to C are tried
and the one whose collapse induces a min-net-cut with the
smallest size is picked. A naive implementation of step 2
by computing the max-flow from the zero flow would in-
cur a high time complexity. Instead, the flow value in the
flow network is retained, and additional flow is explored
to saturate the bridging edges of the min-net-cut from one
iteration to the next. The procedure is shown in Fig. 2.
Initially, the flow network retains the flow function com-
puted in the previous iteration. Since the max-flow com-
putation using the augmenting-path method is insensitive
to the initial flow values in the flow network and the order
in which the augmenting paths are found, the above proce-
dure correctly finds a max-flow with the same flow value as
a max-flow computed in the collapsed flow network from
the zero flow.

Theorem 2 FBB has time complexity O(|V||E|) for a con-
nected circuit N = (V, E).

Theorem 3  The number of iterations and the final net-cut
size are nonincreasing functions of €.

In practice, FBB terminates much faster than this worst-
case time complexity as shown in the Sect. “Experimental
Results”. Theorem 3 allows us to improve the efficiency of
FBB and the partition quality for a larger €. This is not true
for other partitioning approaches such as the K&L heuris-
tics.

Applications

Circuit partitioning is a fundamental problem in many ar-
eas of VLSI layout and design automation. The FBB algo-
rithm provides the first efficient predictable solution to the
min-cut balanced-circuit-partitioning problem. It directly
relates the efficiency and the quality of the solution pro-
duced by the algorithm to the deviation factor €. The al-
gorithm can be easily extended to handle nets with differ-
ent weights by simply assigning the weight of a net to its
bridging edge in the flow network. K-way min-cut parti-
tioning for K > 2 can be accomplished by recursively ap-
plying FBB or by setting r = 1/K and then using FBB to
find one partition at a time. A flow-based method for di-
rectly solving the problem can be found in [12]. Preparti-
tioning circuit clustering according to the connectivity or
the timing information of the circuit can be easily incor-
porated into FBB by treating a cluster as a node. Heuristic

solutions based on K&L heuristics or simulated annealing
with low temperature can be used to further fine-tune the
solution.

Experimental Results

The FBB algorithm was implemented in SIS/MISII [1] and
tested on a set of large ISCAS and MCNC benchmark cir-
cuits on a SPARC 10 workstation with 36-MHz CPU and
32 MB memory.

Table 1 compares the average bipartition results of
FBB with those reported by Dasdan and Aykanat in [3]. SN
is based on the K&L heuristic algorithm in Sanchis [14].
PFM3 is based on the K&L heuristic with free moves as
described in [3]. For each circuit, SN was run 20 times and
PFM3 10 times from different randomly generated initial
partitions. FBB was run 10 times from different randomly
selected s and t. With only one exception, FBB outper-
formed both SN and PFM3 on the five circuits. On average,
FBB found a bipartition with 24.5% and 19.0% fewer cross-
ing nets than SN and PFM3 respectively. The runtimes of
SN, PFEM3, and FBB were not compared since they were
run on different workstations.
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Problem Definition

This problem is concerned with efficiently determining
constrained positions of objects while minimizing a mea-
sure of interconnect between the objects, as in physical
layout of integrated circuits, commonly done in 2-dimen-
sions. While most formulations are NP-hard, modern cir-
cuits are so large that practical algorithms for placement
must have near-linear runtime and memory requirements,

but not necessarily produce optimal solutions. While early
software for circuit placement was based on Simulated An-
nealing, research in algorithms identified more scalable
techniques which are now being adopted in the Electronic
Design Automation industry.

One models a circuit by a hypergraph G, (Vy,Ep,) with
(i) vertices Vj, = {vi,...,vy,} representing logic gates,
standard cells, larger modules, or fixed I/O pads and (ii)
hyperedges E;, = {ey, ..., e, } representing connections
between modules. Every incident pair of a vertex and a hy-
peredge connect through a pin for a total of P pins in the
hypergraph. Each vertex v; € Vj, has width w;, height
h; and area A;. Hyperedges may also be weighted. Given
Gy, circuit placement seeks center positions (x;,y;) for ver-
tices that optimize a hypergraph-based objective subject
to constraints (see below). A placement is captured by
X = (x1,- . xp)andy = (y1.--- . yn)-

Objective Let C; be the index set of the hyper-
graph vertices incident to hyperedge e;. The total half-
perimeter wirelength (HPWL) of the circuit hyper-
graph is given by HPWL(G,) = ZekEEh HPWL(ex) =
Yeier, [maxijecy [xi — xj| + maxi jec, |yi — yjl].
HPWL is piece-wise linear, separable in the x and y di-
rections, convex, but not strictly convex. Among many
objectives for circuit placement, it is the simplest and
most common.

Constraints

1. No overlap. The area occupied by any two vertices can-
not overlap; i.e., either |x; — xj| > $(w; + w;) or
|yi —y]| > %(h, + ]’!]), VV,‘,V]' e V.

2. Fixed outline. Each vertex v; € V}, must be placed en-
tirely within a specified rectangular region bounded by
Xmin(Ymin) and Xmax(¥max) which denote the left (bot-
tom) and right (top) boundaries of the specified region.

3. Discrete slots. There is only a finite number of discrete
positions, typically on a grid. However, in large-scale
circuit layout, slot constraints are often ignored during
global placement, and enforced only during legalization
and detail placement.

Other constraints may include alignment, minimum and
maximum spacing, etc. Many placement techniques tem-
porarily relax overlap constraints into density constraints
to avoid vertices clustered in small regions. A m X n reg-
ular bin structure B is superimposed over the fixed outline
and vertex area is assigned to bins based on the positions
of vertices. Let D;; denote the density of bin B;; € B, de-
fined as the total cell area assigned to bin Bj; divided by
its capacity. Vertex overlap is limited implicitly by D;; <
K,VB;j € B, for some K < 1 (density target).
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Problem 1 (Circuit Placement)

INPUT: Circuit hypergraph Gy(Vy,Ep) and a fixed outline
for the placement area.

OUTPUT: Positions for each vertex vi € Vj such that
(1) wirelength is minimized and (2) the area-density con-
straints D;; < K are satisfied for all B;; € B.

Key Results

An unconstrained optimal position of a single placeable
vertex connected to fixed vertices can be found in lin-
ear time as the median of adjacent positions [8]. Uncon-
strained HPWL minimization for multiple placeable ver-
tices can be formulated as a linear program [7,10]. For each
ex € Ey, upper and lower bound variables Uy and L are
added. The cost of e, (x-direction only) is the difference
between Uy and L. Each Uy (L) comes with py inequal-
ity constraints that restricts its value to be larger (smaller)
than the position of every vertex i € Cy. A hypergraph
with n vertices and m hyperedges is represented by a lin-
ear program with »n + 2m variables and 2P constraints.

Linear programming has poor scalability, and inte-
grating constraint-tracking into optimization is difficult.
Other approaches include non-linear optimization and
partitioning-based methods.

Combinatorial Techniques
for Wirelength Minimization

The no-overlap constraints are not convex and cannot be
directly added to the linear program for HPWL minimiza-
tion. Such a program is first solved directly or by casting its
dual as an instance of the min-cost max-flow problem [12].
Vertices often cluster in small regions of high density. One
can lower-bound the distance between closely-placed ver-
tices with a single linear constraint that depends on the rel-
ative placement of these vertices [10]. The resulting opti-
mization problem is incrementally re-solved, and the pro-
cess repeats until the desired density is achieved.

The min-cut placement technique is based on balanced
min-cut partitioning of hypergraphs and is more focused
on density constraints [11]. Vertices of the initial hyper-
graph are first partitioned in two similar-sized groups. One
of them is assigned to the left half of the placement region,
and the other one to the right half. Partitioning is per-
formed by the Multi-level Fiduccia-Mattheyses (MLFM)
heuristic [9] to minimize connections between the two
groups of vertices (the net-cut objective). Each half is par-
titioned again, but takes into account the connections to
the other half [11]. At the large scale, ensuring the simi-
lar sizes of bi-partitions corresponds to density constraints
and cut minimization corresponds to HPWL minimiza-

tion. When regions become small and contain < 10 ver-
tices, optimal positions can be found with respect to dis-
crete slot constraints by branch-and-bound [2]. Balanced
hypergaph partitioning is NP-hard [4], but the MLFM
heuristic takes O((V + E)log V') time. The entire min-cut
placement procedure takes O((V + E)(log V)?) time and
can process hypergraphs with millions of vertices in sev-
eral hours.

A special case of interest is that of one-dimensional
placement. When all vertices have identical width and
none of them are fixed, one obtains the NP-hard MIN-
IMUM LINEAR ARRANGEMENT problem [4] which can
be approximated in polynomial time within O(log V)
and solved exactly for trees in O(V?) time as shown by
Yannakakis. The min-cut technique described above also
works well for the related NP-hard MINIMUM-CUT LIN-
EAR ARRANGEMENT problem [4].

Nonlinear Optimization

Quadratic and generic non-linear optimization may be
faster than linear programming, while reasonably approx-
imating the original formulation. The hypergraph is rep-
resented by a weighted graph where w;; represents the
weight on the 2-pin edge connecting vertices v; and v; in
the weighted graph. When an edge is absent, w;; = 0, and
in general w;; = —Z',-#wij.

Quadratic Placement A quadratic placement (x-direc-
tion only) is given by

D(x) = Zwif [(xi —x))*] = %xTQx+ch+const. (1)
ij

The global minimum of @ (x) is found by solving Qx+c = 0
which is a sparse, symmetric, positive-definite system of
linear equations (assuming > 1 fixed vertex), efficiently
solved to sufficient accuracy using any number of itera-
tive solvers. Quadratic placement may have different op-
tima depending on the model (clique or star) used to rep-
resent hyperedges. However, for a k-pin hyperedge, if the
weight on the 2-pin edges introduced is set to W, in the
clique mode and kW, in the star model, then the models
are equivalent in quadratic placement [7].

Linearized Quadratic Placement Quadratic placement
can produce lower quality placements. To approximate the
linear objective, one can iteratively solve Eq. (1) with w;; =
1/|x; — x;j| computed at every iteration. Alternatively, one
can solve a single fB-regularized optimization problem

given by qﬁﬂ(x) = min, Zi’j wijy/ (xi — x]-)2 +pB, >0,
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e.g., using a Primal-Dual Newton method with quadratic
convergence [1].

Half-Perimeter Wirelength Placement HPWL can be
provably approximated by strictly convex and differen-
tiable functions. For 2-pin hyperedges, B-regularization
can be used [1]. For an m-pin hyperedge (m > 3), one
can rewrite HPWL as the maximum (loo-norm) of all
m(m — 1)/2 pairwise distances |x; — x;| and approximate
the loo-norm by the [,-norm (p-th root of the sum of p-
th powers). This removes all non-differentiabilities except
at 0 which is then removed with B-regularization. The re-
sulting HPWL approximation is given by

HPWL,_g_eg(Gp) = Y ( > Ixi—x,-l"+ﬂ)1/p

ex€E, i,jE€Ck

)

which overestimates HPWL with arbitrarily small relative
error as p — oo and 8 — 0 [7]. Alternatively, HPWL can
be approximated via the log-sum-exp formula given by

HPWLlog-sum-exp(Gh) =

« 2 (L ew(Q)) (X ew ()]

ex€Ey i€Cy vi€Cx

3)

where « > 0 is a smoothing parameter [6]. Both approxi-
mations can be optimized using conjugate gradient meth-
ods.

Analytic Techniques for Target Density Constraints

The target density constraints are non-differentiable and
are typically handled by approximation.

Force-Based Spreading The key idea is to add constant
forces f that pull vertices always from overlaps, and recom-
pute the forces over multiple iterations to reflect changes
in vertex distribution. For quadratic placement, the new
optimality conditions are Qx + ¢ + f = 0 [8]. The constant
force can perturb a placement in any number of ways to
satisfy the target density constraints. The force f is com-
puted using a discrete version of Poisson’s equation.

Fixed-Point Spreading A fixed point f is a pseudo-
vertex with zero area, fixed at (xf,yf), and connected to
one vertex H(f) in the hypergraph through the use of
a pseudo-edge with weight wy pr(r). Quadratic placement
with fixed points is given by @ (x) = Zi’j wi j(xi — x)% +

Zf wr h(p)(xm(s) — xf)*. Bach each fixed point f intro-
duces a quadratic term w, py(f) (xp(f)—x f)z. By manipulat-
ing the positions of fixed points, one can perturb a place-
ment to satisfy the target density constraints. Compared
to constant forces, fixed points improve the controllability
and stability of placement iterations [5].

Generalized Force-Directed Spreading The Helmholtz
equation models a diffusion process and makes it ideal for
spreading vertices [3]. The Helmholtz equation is given by

P¢(x. y) ) ¢ (x,y)
dx2 ay?

—€p(x.y) = D(x.y).

¢
R-- =
(x,y) € 3 0,

(x, y) on the boundary of R (4)

where € > 0, v is an outer unit normal, R represents the
fixed outline, and D(x,y) represents the continuous den-
sity function. The boundary conditions, d¢/dv = 0, spec-
ify that forces pointing outside of the fixed outline be set
to zero - this is a key difference with the Poisson method
which assumes that forces become zero at infinity. The
value ¢;; at the center of each bin Bj; is found by discretiza-
tion of Eq. (4) using finite differences. The density con-
straints are replaced by ¢;; = K, VB; j € B where K is
a scaled representative of the density target K. Wirelength
minimization subject to the smoothed density constraints
can be solved via Uzawa’s algorithm. For quadratic wire-
length, this algorithm is a generalization of force-based
spreading.

Potential Function Spreading Target density con-
straints can also be satisfied via a penalty function. The
area assigned to bin Bj; by vertex v; is represented by
Potential(v;, B;;) which is a bell-shaped function. The use
of piecewise quadratic functions make the potential func-
tion non-convex, but smooth and differentiable [6]. The
penalty term given by

Penalty = Z ( Z Potential(v;, B;;) —K>2 (5)

B,‘]‘EB viEV)

can be combined with a wirelength approximation to ar-
rive at an unconstrained optimization problem which is
solved using an efficient conjugate gradient method [6].

Applications

Practical applications involve more sophisticated inter-
connect objectives, such as circuit delay, routing conges-
tion, power dissipation, power density, and maximum
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thermal gradient. The above techniques are adapted to
handle multi-objective optimization. Many such exten-
sions are based on heuristic assignment of net weights that
encourage the shortening of some (e.g., timing-critical
and frequently-switching) connections at the expense of
other connections. To moderate routing congestion, pre-
dictive congestion maps are used to decrease the maximal
density constraint for placement in congested regions. An-
other application is in physical synthesis, where incremen-
tal placement is used to evaluate changes in circuit topol-

ogy.

Experimental Results

Circuit placement has been actively studied for the past
30 years and a wealth of experimental results are reported
throughout the literature. A 2003 result demonstrated that
placement tools could produce results as much as 1.41x
to 2.09x known optimal wirelengths on average (advances
have been made since this study). A 2005 placement con-
test found that a set of tools produced placements with
wirelengths that differed by as much as 1.84x on average.
A 2006 placement contest found that a set of tools pro-
duced placements that differed by as much as 1.39x on av-
erage when the objective was the simultaneous minimiza-
tion of wirelength, routability and run time. Placement run
times range from minutes for smaller instances to hours
for larger instances, with several millions of variables.

Data Sets

Benchmarks include the ICCAD ‘04 suite (http://vlsicad.
eecs.umich.edu/BK/ICCADO04bench/), the ISPD ‘05 suite
(http://www.sigda.org/ispd2005/contest.htm) and the
ISPD ‘06 suite (http://www.sigda.org/ispd2006/contest.
htm). Instances in these benchmark suites contain be-
tween 10K to 2.5M placeable objects. Other common
suites can be found, including large-scale placement in-
stances problems with known optimal solutions (http://
cadlab.cs.ucla.edu/~pubbench).
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Problem Definition

Circuit retiming is one of the most effective structural
optimization techniques for sequential circuits. It moves
the registers within a circuit without changing its func-
tion. Besides clock period, retiming can be used to mini-
mize the number of registers in the circuit. It is also called
minimum area retiming problem. Leiserson and Saxe [3]
started the research on retiming and proposed algorithms
for both minimum period and minimum area retiming.
Both their algorithms for minimum area and minimum
period will be presented here.


http://vlsicad.eecs.umich.edu/BK/ICCAD04bench/
http://vlsicad.eecs.umich.edu/BK/ICCAD04bench/
http://www.sigda.org/ispd2005/contest.htm
http://www.sigda.org/ispd2006/contest.htm
http://www.sigda.org/ispd2006/contest.htm
http://cadlab.cs.ucla.edu/~pubbench
http://cadlab.cs.ucla.edu/~pubbench

Circuit Retiming 147

The problems can be formally described as follows.
Given a directed graph G = (V,E) representing a cir-
cuit—each node v € V represents a gate and each edge
e € E represents a signal passing from one gate to an-
other—with gate delays d: V — R* and register numbers
w: E — N, the minimum area problem asks for a relo-
cation of registers w': E — N such that the number of
registers in the circuit is minimum under a given clock pe-
riod ¢. The minimum period problem asks for a solution
with the minimum clock period.

Notations

To guarantee that the new registers are actually a reloca-
tion of the old ones, alabel r: V' — Z is used to represent
how many registers are moved from the outgoing edges
to the incoming edges of each node. Using this notation,
the new number of registers on an edge (u, v) can be com-
puted as

wlu,v] = wlu, v] + r[v] — rlu] .

The same notation can be extended from edges to paths.
However, between any two nodes u and v, there may be
more than one path. Among these paths, the ones with
the minimum number of registers will decide how many
registers can be moved outside of u and v. The number is
denoted by W[u, v] for any u, v € V, that is,

Z wlx, y]

(x,y)€p

A

Wlu, v] min
pru~>v

The maximal delay among all the paths from u to v
with the minimum number of registers is also denoted by
DJ[u, v], that is,

Dlu,v] £

> dix]

max
wlp: u~>v]=Wlu,v] ep

Constraints

Based on the notations, a valid retiming r should not have
any negative number of registers on any edge. Such a va-
lidity condition is given as

Po(r) 2 Y(u,v) € E: wlu,v] +r[v] —r[u] >0

On the other hand, given a retiming r, the minimum
number of registers between any two nodes u and v is
W{u, v] —r[u] +r[v]. This number will not be negative be-
cause of the previous constraint. However, when it is zero,
there will be a path of delay D[u, v] without any register on

it. Therefore, to have a retimed circuit working for clock
period ¢, the following constraint must be satisfied.

P1(r) £ Yu,v € V: D[u,v] > ¢
= Wlu,v]+r[v] —rlu] > 1

Key Results

The object of the minimum area retiming is to minimize
the total number of registers in the circuit, which is given
by > (u.vyer W'[u, v]. Expressing w'[u, v] in terms of r, the
objective becomes

Z(in[v] —out[v]) * r[v] + Z wlu,v]

vev (u,v)EE

where in[v] is the in-degree and out[v] is the out-degree of
node v. Since the second term is a constant, the problem
can be formulated as the following integer linear program.

Minimize Z(in[v] — out[v]) * r[v]
vev
s.t. wlu,v] +r[v] —r[u] >0 V(u,v) € E
Wlu,v] +r[v] —r[u] > 1 Vu,v € V: D[u,v] > ¢
rivleZ VveV

Since the constraints have only difference inequalities with
integer constant terms, solving the relaxed linear program
(without the integer constraint) will only give integer solu-
tions. Even better, it can be shown that the problem is the
dual of a minimum cost network flow problem, and thus
can be solved efficiently.

Theorem 1 The integer linear program for the minimum
area retiming problem is the dual of the following minimum
cost network flow problem.

Minimize Z wlu, v] % flu,v]

(u,v)€EE
+ Z (Wlu,v] —1) * flu,v]
Dlu,v]>¢
s.t. in[v] + Z flv,w] = out[v]

(vyw)EEVD[v,w]>¢

+ Z flu,v]

(u,v)EED[u,v]>¢
flu,v] >0 V(u,v) € ED[u,v] > ¢

VveV

From the theorem, it can be seen that the network graph
is a dense graph where a new edge (u, v) needs to be in-
troduced for any node pair u, v such that D[u,v] > ¢.
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There may be redundant constraints in the system. For ex-
ample, if W[u, w] = Wlu,v] + wlv,w] and D[u,v] > ¢
then the constraint W{u, w] + r[w] — r[u] > 1 is redun-
dant, since there are already W[u, v] + r[v] —r[u] > 1 and
wlv, w] + r[w] — r[v] > 0. However, it may not be easy to
check and remove all redundancy in the constraints.

In order to build the minimum cost flow network, it
is needed to first compute both matrices W and D. Since
W{u,v] is the shortest path from u to v in terms of w,
the computation of W can be done by an all-pair shortest
paths algorithm such as Floyd-Warshall’s algorithm [1].
Furthermore, if the ordered pair (w[x, y], —d[x]) is used
as the edge weight for each (x, y) € E, an all-pair short-
est paths algorithm can also be used to compute both W
and D. The algorithm will add weights by component-wise
addition and will compare weights by lexicographic order-
ing.

Leiserson and Saxe [3]’s first algorithm for the mini-
mum period retiming was also based on the matrices W
and D. The idea was that the constraints in the integer
linear program for the minimum area retiming can be
checked efficiently by Bellman-Ford’s shortest paths algo-
rithm [1], since they are just difference inequalities. This
gives a feasibility checking for any given clock period ¢.
Then the optimal clock period can be found by a binary
search on a range of possible periods. The feasibility check-
ing can be done in O(| V|?) time, thus the runtime of such
an algorithm is O(| V|* log | V|).

Their second algorithm got rid of the construction of
the matrices W and D. It still used a clock period feasibil-
ity checking within a binary search. However, the feasibil-
ity checking was done by incremental retiming. It works
as follows. Starting with r = 0, the algorithm computes the
arrival time of each node by the longest paths computation
on a DAG (Directed Acyclic Graph). For each node v with
an arrival time larger than the given period ¢, the r[v] will
be increased by one. The process of the arrival time com-
putation and r increasing will be repeated |V| — 1 times.
After that, if there is still arrival time that is larger than ¢,
then the period is infeasible. Since the feasibility checking
is done in O(]V||E|) time, the runtime for the minimum
period retiming is O(|V||E|log | V).

Applications

Shenoy and Rudell [7] implemented Leiserson and Saxe’s
minimum period and minimum area retiming algorithms
with some efficiency improvements. For minimum period
retiming, they implemented the second algorithm and,
in order to find out infeasibility earlier, they introduced
a pointer from one node to another where at least one

register is required between them. A cycle formed by the
pointers indicates the infeasibility of the given period. For
minimum area retiming, they removed some of the redun-
dancy in the constraints and used the cost-scaling algo-
rithm of Goldberg and Tarjan [2] for the minimum cost
flow computation.

Open Problems

As can be seen from the second minimum period retim-
ing algorithm here and Zhou’s algorithm [8] in another
entry (» Circuit Retiming: An Incremental Approach), in-
cremental computation of the longest combinational paths
(i. e. those without register on them) is more efficient than
constructing the dense graph (via matrices W and D).
However, the minimum area retiming algorithm is still
based on a minimum cost network flow on the dense
graph. An interesting open question is to see whether
a more efficient algorithm based on incremental retiming
can be designed for the minimum area problem.

Experimental Results

Sapatnekar and Deokar [6] and Pan [5] proposed con-
tinuous retiming as an efficient approximation for mini-
mum period retiming, and reported the experimental re-
sults. Maheshwari and Sapatnekar [4] also proposed some
efficiency improvements to the minimum area retiming al-
gorithm and reported their experimental results.
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Problem Definition

Circuit retiming is one of the most effective structural op-
timization techniques for sequential circuits. It moves the
registers within a circuit without changing its function.
The minimal period retiming problem needs to minimize
the longest delay between any two consecutive registers,
which decides the clock period.

The problem can be formally described as follows.
Given a directed graph G = (V,E) representing a cir-
cuit — each node v € V represents a gate and each edge
e € E represents a signal passing from one gate to an-
other — with gate delays d: V' — R* and register numbers
w: E — N, itasks for a relocation of registers w': E — N
such that the maximal delay between two consecutive reg-
isters is minimized.

Notations To guarantee that the new registers are ac-
tually a relocation of the old ones, a label r: V. — Z is
used to represent how many registers are moved from the
outgoing edges to the incoming edges of each node. Using
this notation, the new number of registers on an edge (u,v)
can be computed as

wu,v] = wlu, v] + r[v] — rlu] .

Furthermore, to avoid explicitly enumerating the paths in
finding the longest path, another label t: V' — R* is in-
troduced to represent the output arrival time of each gate,
that is, the maximal delay of a gate from any preceding reg-
ister. The condition for ¢ to be at least the combinational
delays is

Y(u,v) € E: wlu,v] =0 = t[v] > t{u] +d[v].

Constraints and Objective Based on the notations, a valid
retiming r should not have any negative number of regis-

ters on any edge. Such a validity condition is given as
Po(r) £ Y(u,v) € E: wlu,v] +r[v] —rlu] >0.

As already stated, the conditions for ¢ to be valid arrival
time is given by the following two predicates.

P1(t) 2 Vv e V: t[v] > d[v]
P2(r, t) 2 VY(u,v) € E: rlu] — r[v] = wlu,v]
= tlv] — tlu] > d[v].

A predicate P is used to denote the conjunction of the
above conditions:

P(r, t) £ PO(r) A P1(t) A P2(r, 1) .

A minimal period retiming is a solution (r, t) satisfying the
following optimality condition:

A

P32V, Y P(,t) = max(t) < max(t),

where

max(t) 2 max tv].
veV

Since only a valid retiming (+', ') will be discussed in the
sequel, to simplify the presentation, the range condition
P(r', ¢) will often be omitted; the meaning shall be clear
from the context.

Key Results

This section will show how an efficient algorithm is de-
signed for the minimal period retiming problem. Contrary
to the usual way of only presenting the final product, i.e.
the algorithm, but not the ideas on its design, a step-by-
step design process will be shown to finally arrive at the
algorithm.

To design an algorithm is to construct a procedure
such that it will terminate in finite steps and will sat-
isfy a given predicate when it terminates. In the minimal
period retiming problem, the predicate to be satisfied is
PO A P1 A P2 A P3. The predicate is also called the post-
condition. It can be argued that any non-trivial algorithm
will have at least one loop, otherwise, the processing length
is only proportional to the text length. Therefore, some
part of the post-condition will be iteratively satisfied by the
loop, while the remaining part will be initially satisfied by
an initialization and made invariant during the loop.

The first decision needed to make is to partition
the post-condition into possible invariant and loop goal.
Among the four conjuncts, the predicate P3 gives the op-
timality condition and is the most complex one. Therefore,
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it will be used as a loop goal. On the other hand, the pred-
icates PO and P1 can be easily satisfied by the following
simple initialization.

r,t:=0,d.

Based on these, the plan is to design an algorithm with the
following scheme.

r,t:=0,d
do{P0 A P1}

—P2 — update ¢

—P3 — update r
od{P0 A P1 A P2 A P3}.

The first command in the loop can be refined as

A(u,v) € E: rlu]l —r[v] = wlu, v] A t[v] — t{u] < d[v]
— tv] = tlu]l +d[v] .

This is simply the Bellman-Ford relaxations for comput-
ing the longest paths.

The second command is more difficult to refine. If
—P3, that is, there exists another valid retiming (r/, ')
such that max(¢) > max(t’), then on any node v such that
t[v] = max(¢) it must have #'[v] < t[v]. One property
known on these nodes is

Yve V:t[v] < tv]
= Que V:rul—rlv] > ru]l —rv]),

which means that if the arrival time of v is smaller in an-
other retiming (’, '), then there must be a node u such
that ' gives more registers between u and v. In fact, one
such a u is the starting node of the longest combinational
path to v that gives the delay of t[v].

To reduce the clock period, the variable r needs to be
updated to make it closer to 7. It should be noted that it
is not the absolute values of r but their differences that are
relevant in the retiming. If (r, t) is a solution to a retiming
problem, then (r + ¢, t), where ¢ € Z is an arbitrary con-
stant, is also a solution. Therefore r can be made “closer” to
7’ by allocating more registers between u and v, that is, by
either decreasing r[u] or increasing r[v]. Notice that v can
be easily identified by f[v] = max(t). No matter whether
r[v] or r[u] is selected to change, the amount of change
should be only one since r should not be over-adjusted.
Thus, after the adjustment, it is still true that r[v] —r[u] <
' [v] — #'[u], or equivalently r[v] — r'[v] < r[u] — 7' [u].
Since v is easy to identify, r[v] is selected to increase. The

arrival time ¢[v] can be immediately reduced to d[v]. This
gives a refinement of the second commend:

—=P3 AP2A3TveV:tv] =max(t)
— rlv], tlv] == rlv] + 1, d[v] .

Since registers are moved in the above operation, the pred-
icate P2 may be violated. However, the first command will
take care of it. That command will increase t on some
nodes; some may even become larger than max(t) before
the register move. The same reasoning using (7, ') shows
that their r values shall be increased, too. Therefore, to im-
plement this As-Soon-As-Possible (ASAP) increase of r,
a snapshot of max(t) needs to be taken when P2 is valid.
Physically, such a snapshot records one feasible clock pe-
riod ¢, and can be implemented by adding one more com-
mand in the loop:

P2 A ¢ > max(t) — ¢ = max(t) .

However, such an ASAP operation may increase r[u] even
when wlu, v] — r[u] + r[v] = 0 for an edge (u,v). It means
that PO may no longer be an invariant. But moving PO
from invariant to loop goal will not cause a problem since
one more command can be added in the loop to take care
of it:

I(u,v) € E: rlu]l — r[v] > wlu,v]

— r[v] = r[u] — wlu,v] .

Putting all things together, the algorithm now has the
following form.

r, t,p :=0,d,o00;
do{P1}
A(u,v) € E: r[u] — r[v] = wlu, v]
A tlv] — tlu] < d[v] — t[v] := t{u] + d[v]
—P3ATveV:tv]>¢
— rlv], tlv] := rlv] + 1,d[v]
PO A P2 A ¢ > max(t) — ¢ := max(t)
A(u,v) € E: rlu] —r[v] > wlu,v]
— r[v] = rlu] — wlu,v]
od{PO A P1 A P2 A P3}.

The remaining task to complete the algorithm is how
to check —P3. From previous discussion, it is already
known that —P3 implies that there is a node u such that
rlu]—7'[u] > r[v]—1'[v] every time after r[v] is increased.
This means that max,cy r[v] — #/[v] will not increase. In
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Experimental Results

name #gates clockperiod Y. r  #updates time(s) ASTRA
before after A(s) B(s)
51423 490 166 127 808 7619 |0.02 0.03 | 0.02
s1494 558 89 88 628 7765 |0.02 0.01]0.01
s9234 2027 89 81 2215 76943 |0.12 0.11]0.09
s9234.1 | 2027 89 81 2164 | 77644 |0.16 0.11]0.10
s13207 | 2573 143 82 4086 | 28395 |0.12 0.380.12
s15850 | 3448 186 77 12038 | 99314 |[0.36 0.43]0.17
s35932 | 12204 | 109 100 | 16373 | 108459 |[0.28 0.24 | 0.65
s38417 | 8709 110 56 9834 [ 155489 |0.58 0.89 | 0.64
s38584 | 11448 | 191 163 | 19692 | 155637 |[0.41 0.50 | 0.67
$38584.1 | 11448 | 191 183 9416 [ 114940 |0.48 0.55]0.78

other words, there is at least one node v whose r[v] will not
change. Before r[v] is increased, it also has wy,~, — r[u] +
r[v] < 0, where w;,~, > 0 is the original number of reg-
isters on one path from u to v, which gives r[v] — r[u] <1
even after the increase of r[v]. This implies that there will
be atleast i + 1 nodes whose r is at most i for 0 < i < |V/|.
In other words, the algorithm can keep increasing r and
when there is any r reaching | V| it shows that P3 is sat-
isfied. Therefore, the complete algorithm will have the
following form.

r.t,¢:=0,d,00;
do{P1}
A(u,v) € E: rlu] — r[v] = wlu, v]
A tv] — tlu] < d[v] — t[v] := tlu] + d[v]
Vv e Virlv] < |V])
ATv e V:tlv] > ¢ — r[v], tv] :
GveV:rlv] =1|V])
ANdve V:tv] > ¢ — rlv], tv] :
PO A P2 A ¢ > max(t) — ¢ := max(t)

A(u,v) € E: rlu] — r[v] > wlu,v]

rlv] +1,d[v]

rlv] +1,d[v]

— r[v] == r[u] — wlu,v]
0od{P0 A P1 A P2 A P3}.

The correctness of the algorithm can be proved easily by
showing that the invariant P1 is maintained and the nega-
tion of the guards implies PO A P2 A P3. The termination
is guaranteed by the monotonic increase of r and an upper
bound on it. In fact, the following theorem gives its worst
case runtime.

Theorem 1 The worst case running time of the given re-
timing algorithm is upper bounded by O(|V|*|E|).

The runtime bound of the retiming algorithm is got under
the worst case assumption that each increase on r will trig-

ger a timing propagation on the whole circuit (|E| edges).
This is only true when the r increase moves all registers in
the circuit. However, in such a case, the r is upper bounded
by 1, thus the running time is not larger than O(|V||E|).
On the other hand, when the r value is large, the circuit is
partitioned by the registers into many small parts, thus the
timing propagation triggered by one r increase is limited
within a small tree.

Applications

In the basic algorithm, the optimality P3 is verified by an
r[v] > |V|. However, in most cases, the optimality condi-
tion can be discovered much earlier. Since each time r[v]
is increased, there must be a “safe-guard” node u such that
r[u] — 7' [u] > r[v]—7[v] after the operation. Therefore, if
a pointer is introduced from v to u when r[v] is increased,
the pointers cannot form a cycle under —P3. In fact, the
pointers will form a forest where the roots have r = 0 and
a child can have an r at most one larger than its parent. Us-
ing a cycle by the pointers as an indication of P3, instead of
an r[v] > | V|, the algorithm can have much better practi-
cal performance.

Open Problems

Retiming is usually used to optimize either the clock pe-
riod or the number of registers in the circuit. The discussed
algorithm solves only the minimal period retiming prob-
lem. The retiming problem for minimizing the number of
registers under a given period has been solved by Leiserson
and Saxe [1] and is presented in another entry in this ency-
clopedia. Their algorithm reduces the problem to the dual
of a minimal cost network problem on a denser graph. An
interesting open question is to see whether an efficient it-
erative algorithm similar to Zhou’s algorithm can be de-
signed for the minimal register problem.



152

Clock Synchronization

Experimental Results

Experimental results are reported by Zhou [3] which
compared the runtime of the algorithm with an efficient
heuristic called ASTRA [2]. The results on the ISCAS89
benchmarks are reproduced here in Table 1 from [3],
where columns A and B are the running time of the two
stages in ASTRA.
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Problem Definition
Background and Overview

Coordinating processors located in different places is one
of the fundamental problems in distributed computing. In
his seminal work, Lamport [4,5] studied the model where
the only source of coordination is message exchange be-
tween the processors; the time that elapses between succes-
sive steps at the same processor, as well as the time spent by
amessage in transit, may be arbitrarily large or small. Lam-
port observed that in this model, called the asynchronous
model, temporal concepts such as “past” and “future” are
derivatives of causal dependence, a notion with a simple
algorithmic interpretation. The work of Patt-Shamir and
Rajsbaum [10] can be viewed as extending Lamport’s qual-
itative treatment with quantitative concepts. For example,
a statement like “event a happened before event b” may be
refined to a statement like “event a happened at least 2 time
units and at most 5 time units before event b”. This is in
contrast to most previous theoretical work, which focused

on the linear-programming aspects of clock synchroniza-
tion (see below).

The basic idea in [10] is as follows. First, the frame-
work is extended to allow for upper and lower bounds on
the time that elapses between pairs of events, using the
system’s real-time specification. The notion of real-time
specification is a very natural one. For example, most pro-
cessors have local clocks, whose rate of progress is typi-
cally bounded with respect to real time (these bounds are
usually referred to as the clock’s “drift bounds”). Another
example is send and receive events of a given message:
It is always true that the receive event occurs before the
send event, and in many cases, tighter lower and upper
bounds are available. Having defined real-time specifica-
tion, [10] proceeds to show how to combine these local
bounds global bounds in the best possible way using sim-
ple graph-theoretic concepts. This allows one to derive op-
timal protocols that say, for example, what is the current
reading of a remote clock. If that remote clock is the stan-
dard clock, then the result is optimal clock synchroniza-
tion in the common sense (this concept is called “external
synchronization” below).

Formal Model

The system consists of a fixed set of interconnected pro-
cessors. Each processor has a local clock. An execution of
the system is a sequence of events, where each event is ei-
ther a send event, a receive event, or an internal event. Re-
garding communication, it is only assumed that each re-
ceive event of a message m has a unique corresponding
send event of m. This means that messages may be ar-
bitrarily lost, duplicated or reordered, but not corrupted.
Each event e occurs at a single specified processor, and has
two real numbers associated with it: its local time, denoted
LT(e), and its real time, denoted RT(e). The local time of
an event models the reading of the local clock when that
event occurs, and the local processor may use this value,
e. g., for calculations, or by sending it over to another pro-
cessor. By contrast, the real time of an event is not observ-
able by processors: it is an abstract concept that exists only
in the analysis.

Finally, the real-time properties of the system are mod-
eled by a pair of functions that map each pair of events
to R U {—o0, 0o}: given two events e and ¢, L(e, e’) = ¢
means that RT(e’) — RT(e) > ¢, and H(e, ¢’) = h means
that RT(e’) — RT(e) < h, i.e., that the number of (real)
time units since the occurrence of event e until the occur-
rence of ¢’ is at least £ and at most 4. Without loss of gener-
ality, it is assumed that L(e, ¢’) = —H(¢’, e) for all events
e, ¢’ (just use the smaller of them). Henceforth, only the
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upper bounds function H is used to represent the real-time
specification.

Some special cases of real time properties are partic-
ularly important. In a completely asynchronous system,
H(é', e) = 0 if either e occurs before ¢’ in the same proces-
sor, or if e and ¢’ are the send and receive events, respec-
tively, of the same message. (For simplicity, it is assumed
that two ordered events may have the same real time of oc-
currence.) In all other cases H(e, ¢’) = co. On the other ex-
treme of the model spectrum, there is the drift-free clocks
model, where all local clocks run at exactly the rate of real
time. Formally, in this case H(e, ¢’) = LT(e’) — LT(e) for
any two events e and e’ occurring at the same processor.
Obviously, it may be the case that only some of the clocks
in the system are drift-free.

Algorithms

In this work, message generation and delivery is com-
pletely decoupled from message information. Formally,
messages are assumed to be generated by some “send mod-
ule”, and delivered by the “communication system”. The
task of algorithms is to add contents in messages and state
variables in each node. (The idea of decoupling synchro-
nization information from message generation was intro-
duced in [1].) The algorithm only has local information,
i e., contents of the local state variables and the local clock,
as well as the contents of the incoming message, if we are
dealing with a receive event. It is also assumed that the real
time specification is known to the algorithm. The conjunc-
tion of the events, their and their local times (but not their
real times) is called as the view of the given execution. Al-
gorithms, therefore, can only use as input the view of an
execution and its real time specification.

Problem Statement

The simplest variant of clock synchronization is external
synchronization, where one of the processors, called the
source, has a drift-free clock, and the task of all proces-
sors is to maintain the tightest possible estimate on the
current reading of the source clock. This formulation cor-
responds to the Newtonian model, where the processors
reside in a well-defined time coordinate system, and the
source clock is reading the standard time. Formally, in ex-
ternal synchronization each processor v has two output
variables A, and ¢,; the estimate of v of the source time
at a given state is LT, + A,, where LT, is the current lo-
cal time at v. The algorithm is required to guarantee that
the difference between the source time and it estimate is at
most &, (note that A,, as well as ¢,, may change dynami-
cally during the execution). The performance of the algo-

rithm is judged by the value of the ¢, variables: the smaller,
the better.

In another variant of the problem, called internal syn-
chronization, there is no distinguished processor, and the
requirement is essentially that all clocks will have values
which are close to each other. Defining this variant is not
as straightforward, because trivial solutions (e. g., “set all
clocks to 0 all the time”) must be disqualified.

Key Results

The key construct used in [10] is the synchronization graph
of an execution, defined by combining the concepts of lo-
cal times and real-time specification as follows.

Definition 1 Let B be a view of an execution of the sys-
tem, and let H be a real time specification for 8. The syn-
chronization graph generated by f and H is a directed
weighted graph I'gy = (V, E, w), where V is the set of
events in f, and for each ordered pair of events pg in f
such that H(p, q) < oo, there is a directed edge (p, q) € E.

The weight of an edge (p, q) is w(p, q) def H(p,q)—LT(p)+
LT(q).

The natural concept of distance from an event p to an event
q in a synchronization graph I', denoted d (p, g), is de-
fined by the length of the shortest weight path from p to g,
or infinity if q is not reachable from p. Since weights may
be negative, one has to prove that the concept is well de-
fined: indeed, it is shown that if I'gj; is derived from an
execution with view f that satisfies real time specification
H, then I'gy does not contain directed cycles of negative
weight.

The main algorithmic result concerning synchroniza-
tion graphs is summarized in the following theorem.

Theorem 1 Let o be an execution with view 8. Then «
satisfies the real time specification H if and only if RT(p) —
RT(q) < dr(p,q) + LT(p) — LT(q) for any two events p
and qin I'gy.

Note that all quantities in the r.h.s. of the inequality are
available to the synchronization algorithm, which can
therefore determine upper bounds on the real time that
elapses between events. Moreover, these bounds are the
best possible, as implied by the next theorem.

Theorem 2 Let I'gy = (V,E,w) be a synchronization
graph obtained from a view B satisfying real time specifica-
tion H. Then for any given event py € V, and for any finite
number N > 0, there exist executions oy and oy with view
B, both satisfying H, and such that the following real time
assignments hold.
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o Inap, forallq € V with dr(q, po) < 00, RTg,(q) =
LT(gq) + dr(q. po), and for all ¢ € V with dr(q, po) =
00, RTy,(q) > LT(q) + N.

o Inay, forallq € V withdr(po,q) < 0o, RTg,(q) =
LT(q) — dr(po. q), and for all g € V with dr(po, q) =
00, RTy,(q) < LT(q) — N.

From the algorithmic viewpoint, one important drawback
of results of Theorems 1 and 2 is that they depend on the
view of an execution, which may grow without bound.
Is it really necessary? The last general result in [10] an-
swers this question in the affirmative. Specifically, it is
shown that in some variant of the branching program
computational model, the space complexity of any syn-
chronization algorithm that works with arbitrary real time
specifications cannot be bounded by a function of the
system size. The result is proved by considering multi-
ple scenarios on a simple system of four processors on
a line.

Later Developments

Based on the concept of synchronization graph, Ostrovsky
and Patt-Shamir present a refined general optimal algo-
rithm for clock synchronization [9]. The idea in [9] is to
discard parts of the synchronization graphs that are no
longer relevant. Roughly speaking, the complexity of the
algorithm is bounded by a polynomial in the system size
and the ratio of processors speeds.

Much theoretical work was invested in the internal
synchronization variant of the problem. For example,
Lundelius and Lynch [7] proved that in a system of # pro-
cessors with full connectivity, if message delays can take
arbitrary values in [0, 1] and local clocks are drift-free,
then the best synchronization that can be guaranteed is
1 — 1. Helpern et al. [3] extended their result to general
graphs using linear-programming techniques. This work,
in turn, was extended by Attiya et al. [1] to analyze any
given execution (rather than only the worst case for a given
topology), but the analysis is performed off-line and in
a centralized fashion. The work of Patt-Shamir and Rajs-
baum [11] extended the “per execution” viewpoint to on-
line distributed algorithms, and shifted the focus of the
problem to external synchronization.

Recently, Fan and Lynch [2] proved that in a line of
n processors whose clocks may drift, no algorithm can
guarantee that the difference between the clock readings
of all pairs of neighbors is o(log n/loglog n).

Clock synchronization is very useful in practice. See,
for example, Liskov [6] for some motivation. It is worth
noting that the Internet provides a protocol for external
clock synchronization called NTP [8].

Applications

Theorem 1 immediately gives rise to an algorithm for
clock synchronization: every processor maintains a rep-
resentation of the synchronization graph portion known
to it. This can be done using a full information protocol:
In each outgoing message this graph is sent, and whenever
a message arrives, the graph is extended to include the new
information from the graph in the arriving message. By
Theorem 2, the synchronization graph obtained this way
represents at any point in time all information available
required for optimal synchronization. For example, con-
sider external synchronization. Directly from definitions
it follows that all events associated with a drift-free clock
(such as events in the source node) are at distance 0 from
each other in the synchronization graph, and can therefore
be considered, for distance computations, as a single node
s. Now, assuming that the source clock actually shows real
time, it is easy to see that for any event p,

RT(p) € [LT(p) — d(s. p). LT(p) + d(p.5)] .

and furthermore, no better bounds can be obtained by any
correct algorithm.

The general algorithm described above (maintaining
the complete synchronization graph) can be used also to
obtain optimal results for internal synchronization; details
are omitted.

An interesting special case is where all clocks are drift
free. In this case, the size of the synchronization graph re-
mains fixed: similarly to a source node in external synchro-
nization, all events occurring at the same processor can be
mapped to a single node; parallel edges can be replaced by
a single new edge whose weight is minimal among all old
edges. This way one can obtain a particularly efficient dis-
tributed algorithm solving external clock synchronization,
based on the distributed Bellman—Ford algorithm for dis-
tance computation.

Finally, note that the asynchronous model may also
be viewed as a special case of this general theory, where
an event p “happens before” an event g if and only if

d(p.q) <0.

Open Problems

One central issue in clock synchronization is faulty exe-
cutions, where the real time specification is violated. Syn-
chronization graphs detect any detectable error: views
which do not have an execution that conforms with
the real time specification will result in synchronization
graphs with negative cycles. However, it is desirable to
overcome such faults, say by removing from the synchro-
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nization graph some edges so as to break all negative-
weight cycles. The natural objective in this case is to re-
move the least number of edges. This problem is APX-
hard as it generalizes the Feedback Arc Set problem. Un-
fortunately, no non-trivial approximation algorithms for
it are known.
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Problem Definition

The problem of finding a center string that is “close” to
every given string arises and has applications in computa-
tional molecular biology and coding theory.

This problem has two versions: The first problem
comes from coding theory when we are looking for a code
not too far away from a given set of codes.

Problem 1 (The closest string problem)

INPUT: a set of strings S = {s1, $2, ..., Su}, each of length m.
OUTPUT: the smallest d and a string s of length m which is
within Hamming distance d to each s; € S.

The second problem is much more elusive than the Clos-
est String problem. The problem is formulated from appli-
cations in finding conserved regions, genetic drug target
identification, and genetic probes in molecular biology.

Problem 2 (The closest substring problem)

INPUT: an integer L and a set of strings S = {s1, 52, ...
each of length m.

OUTPUT: the smallest d and a string s, of length L, which is
within Hamming distance d away from a length L substring
tiofsifori=1,2,...n.

S Snbs

Key Results

The following results are from [1].

Theorem 1 There is a polynomial time approximation
scheme for the closest string problem.

Theorem 2 There is a polynomial time approximation
scheme for the closest substring problem.

Results for other measures can be found in [10,11,12].

Applications

Many problems in molecular biology involve finding sim-
ilar regions common to each sequence in a given set
of DNA, RNA, or protein sequences. These problems
find applications in locating binding sites and finding
conserved regions in unaligned sequences [2,7,9,13,14],
genetic drug target identification [8], designing genetic
probes [8], universal PCR primer design [4,8], and, out-
side computational biology, in coding theory [5,6]. Such
problems may be considered to be various generaliza-
tions of the common substring problem, allowing errors.
Many measures have been proposed for finding such re-
gions common to every given string. A popular and one of
the most fundamental measures is the Hamming distance.
Moreover, two popular objective functions are used in
these areas. One is the total sum of distances between the
center string (common substring) and each of the given
strings. The other is the maximum distance between the
center string and a given string. For more details, see [8].
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A more General Problem

The distinguishing substring selection problem has as input
two sets of strings, B and G. It is required to find a sub-
string of unspecified length (denoted by L) such that it is,
informally, close to a substring of every string in B and far
away from every length L substring of strings in G. How-
ever, we can go through all the possible L and we may as-
sume that every string in G has the same length L since G
can be reconstructed to contain all substrings of length L
in each of the good strings.

The problem is formally defined as follows: Given a set
B ={s1,82,...,5n, } of n; (bad) strings of length at least L,
andasetG = {g1, g2, ... gn, } of nz (good) strings of length
exactly L, as well as two integers d, and d, (dp < d,), the
distinguishing substring selection problem (DSSP) is to
find a string s such that for each string s; € B there ex-
ists a length-L substring t; of s; with d(s, t;) < d;, and for
any string g; € G, d(s, gi) > d,. Here d(,) represents the
Hamming distance between two strings. If all strings in B
are also of the same length L, the problem is called the dis-
tinguishing string problem (DSP).

The distinguishing string problem was first proposed
in [8] for generic drug target design. The following results
are from [3].

Theorem 3 There is a polynomial time approximation
scheme for the distinguishing substring selection problem.
That is, for any constant € > 0, the algorithm finds a string s
of length L such that for every s; € ‘B, there is a length-L
substring t; of s; with d(t;, s) < (1 + €)dy, and for every sub-
string u; of length L of every gi € G, d(u;j,s) > (1 — €)d,, if
a solution to the original pair (d, < dg) exists. Since there
are a polynomial number of such pairs (dy, dg), we can ex-
haust all the possibilities in polynomial time to find a good
approximation required by the corresponding application
problems.

Open Problems

The PTAS’s designed here use linear programming and
randomized rounding technique to solve some cases for
the problem. Thus, the running time complexity of the al-
gorithms for both the closest string and closest substring is
very high. An interesting open problem is to design more
efficient PTAS’s for both problems.
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Problem Definition

CLOSEST SUBSTRING is a core problem in the field of con-
sensus string analysis with, in particular, applications in
computational biology. Its decision version is defined as
follows.

CLOSEST SUBSTRING
Input: k strings s, sz, ..
negative integers d and L.
Question: Is there a string s of length L and, for all
i=1,...,k a length-L substring s; of s; such that
du(s,s) < d?

., Sk over alphabet ¥ and non-

Here dy (s, s;) denotes the Hamming distance between s
and s/, i. e., the number of positions in which s and s dif-
fer. Following the notation used in [7], m is used to denote
the average length of the input strings and 7 to denote the
total size of the problem input.

The optimization version of CLOSEST SUBSTRING asks
for the minimum value of the distance parameter d for
which the input strings still allow a solution.

Key Results

The classical complexity of CLOSEST SUBSTRING is given
by

Theorem 1 ([4,5]) CLOSEST SUBSTRING is NP-complete,
and remains so for the special case of the CLOSEST STRING
problem, where the requested solution string s has to be of
same length as the input strings. CLOSEST STRING is NP-
complete even for the further restriction to a binary alpha-
bet.

The following theorem gives the central statement con-
cerning the problem’s approximability:

Theorem 2 ([6]) CLOSEST SUBSTRING (as well as
CLOSEST STRING) admit polynomial time approximation
schemes (PTAS’s), where the objective function is the mini-
mum Hamming distance d.

In its randomized version, the PTAS cited by Theorem 2
computes, with high probability, a solution with Ham-
ming distance (1 +€)dop for an optimum value dop in
(k?m)©Ug| Zl/€") running time. With additional overhead,
this randomized PTAS can be derandomized. A straight-
forward and efficient factor-2 approximation for CLOSEST
STRING is obtained by trying all length-L substrings of one
of the input strings.

The following two statements address the problem’s
parametrized complexity, with respect to both obvious
problem parameters d and k:

Theorem 3 ([3]) CLOSEST SUBSTRING is W[1]-hard with
respect to the parameter k, even for binary alphabet.

Theorem 4 ([7]) CLOSEST SUBSTRING is W[1]-hard with
respect to the parameter d, even for binary alphabet.

For non-binary alphabet the statement of Theorem 3 has
been shown independently by Evans et al. [2]. Theo-
rems 3 and 4 show that an exact algorithm for CLOSEST
SUBSTRING with polynomial running time is unlikely for
a constant value of d as well as for a constant value of k,
i.e. such an algorithm does not exist unless 3-SAT can be
solved in subexponential time.

Theorem 4 also allows additional insights into the
problem’s approximability: In the PTAS for CLOSEST
SUBSTRING, the exponent of the polynomial bounding the
running time depends on the approximation factor. These
are not “efficient” PTAS’s (EPTAS’s), i.e. PTAS’s with
a f(€) - n° running time for some function f and some
constant ¢, and therefore are probably not useful in prac-
tice. Theorem 4 implies that most likely the PTAS with the
) running time presented in [6] cannot be improved
to an EPTAS. More precisely, there is no f(e) - n°1og1/€)
time PTAS for CLOSEST SUBSTRING unless 3-SAT can
be solved in subexponential time. Moreover, the proof of
Theorem 4 also yields

Theorem 5 ([7]) There are no f(d, k) - n°1°¢9) time and
no g(d, k) - n°1o818%) exqact algorithms solving CLOSEST
SUBSTRING for some functions f and g unless 3-SAT can
be solved in subexponential time.

For unbounded alphabet the bounds have been strength-
ened by showing that Closest Substring has no PTAS with
running time f(€) - n°(/€) for any function f unless 3-SAT
can be solved in subexponential time [10 ]. The follow-
ing statements provide exact algorithms for CLOSEST SUB-
STRING with small fixed values of d and k, matching the
bounds given in Theorem 5:

Theorem 6 ([7]) CLOSEST SUBSTRING can be solved in
time f(d) - n®1°89) for some function f, where, more pre-
cisely, f(d) = | X|4Uogd+2),

Theorem 7 ([7]) CLOSEST SUBSTRING can be solved in
time g(d, k) - n9U°81985) for some function g, where, more
precisely, g(d, k) = (| 2| d)Okd),

With regard to problem parameter L, CLOSEST SUB-
STRING can be trivially solved in O(| X|* - n) time by try-
ing all possible strings over alphabet X'
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Applications

An application of CLOSEST SUBSTRING lies in the analy-
sis of biological sequences. In motif discovery, a goal is to
search “signals” common to a set of selected strings repre-
senting DNA or protein sequences. One way to represent
these signals are approximately preserved substrings oc-
curring in each of the input strings. Employing Hamming
distance as a biologically meaningful distance measure re-
sults in the problem formulation of CLOSEST SUBSTRING.

For example, Sagot [9] studies motif discovery by solv-
ing CLOSEST SUBSTRING (and generalizations thereof) us-
ing suffix trees; this approach has a worst-case running
time of O(k?m - L% - |X|%). In the context of motif dis-
covery, also heuristics applicable to CLOSEST SUBSTRING
were proposed, e. g., Pevzner and Sze [8] present an algo-
rithm called WINNOWER and Buhler and Tompa [1] use
a technique called random projections.

Open Problems

It is open [7 ] whether the nO(V/ € running time of the ap-
proximation scheme presented in [6] can be improved to
nOUog1/€) ' matching the bound derived from Theorem 4.

Cross References

The following problems are close relatives of CLOSEST

SUBSTRING:

e » Closest String is the special case of CLOSEST SUB-
STRING, where the requested solution string s has to be
of same length as the input strings.

e Distinguishing Substring Selection is the generalization
of CLOSEST SUBSTRING, where a second set of input
strings and an additional integer d’ are given and where
the requested solution string s has - in addition to the
requirements posed by CLOSEST SUBSTRING - Ham-
ming distance at least d’ with every length-L substring
from the second set of strings.

e Consensus Patterns is the problem obtained by replac-
ing, in the definition of CLOSEST SUBSTRING, the max-
imum of Hamming distances by the sum of Hamming
distances. The resulting modified question of CONSEN-
SUS PATTERNS is: Is there a string s of length L with

Y dus.s)) < d?

i=1,...,m

CONSENSUS PATTERNS is the special case of SUB-
STRING PARSIMONY in which the phylogenetic tree
provided in the definition of SUBSTRING PARSIMONY
is a star phylogeny.
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Problem Definition

Color coding [2] is a novel method used for solving, in
polynomial time, various subcases of the generally NP-
Hard subgraph isomorphism problem. The input for the
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subgraph isomorphism problem is an ordered pair of (pos-
sibly directed) graphs (G, H). The output is either a map-
ping showing that H is isomorphic to a (possibly induced)
subgraph of G, or false if no such subgraph exists. The sub-
graph isomorphism problem includes, as special cases, the
HAMILTON-PATH, CLIQUE, and INDEPENDENT SET
problems, as well as many others. The problem is also in-
teresting when H is fixed. The goal, in this case, is to de-
sign algorithms whose running times are significantly bet-
ter than the running time of the naive algorithm.

Method Description

The color coding method is a randomized method. The
vertices of the graph G = (V, E) in which a subgraph iso-
morphic to H = (Vy, Ey) is sought are randomly colored
by k = | V| colors. If | V| = O(log | V), then with a small
probability, but only polynomially small (i.e., one over
a polynomial), all the vertices of a subgraph of G which
is isomorphic to H, if there is such a subgraph, will be
colored by distinct colors. Such a subgraph is called color
coded. The color coding method exploits the fact that, in
many cases, it is easier to detect color coded subgraphs
than uncolored ones.

Perhaps the simplest interesting subcases of the sub-
graph isomorphism problem are the following: Given a di-
rected or undirected graph G = (V, E) and a number k,
does G contain a simple (directed) path of length k?
Does G contain a simple (directed) cycle of length ex-
actly k? The following describes a 2°®) . |E| time algo-
rithm that receives as input the graph G = (V, E), a color-
ingc: V—{1,...,k}and avertexs € V, and finds a col-
orful path of length k — 1 that starts at s, if one exists. To
find a colorful path of length k — 1 in G that starts some-
where, just add a new vertex s’ to V, color it with a new
color 0 and connect it with edges to all the vertices of V.
Now look for a colorful path of length k that starts at s'.

A colorful path of length k — 1 that starts at some
specified vertex s is found using a dynamic programming
approach. Suppose one is already given, for each vertex
v € V, the possible sets of colors on colorful paths of
length i that connect s and v. Note that there is no need
to record all colorful paths connecting s and v. Instead,
record the color sets appearing on such paths. For each
vertex v there is a collection of at most (]f) color sets.
Now, inspect every subset C that belongs to the collection
of v, and every edge (v, u) € E. If c(u) & C, add the set
C U {c(u)} to the collection of u that corresponds to col-
orful paths of length i + 1. The graph G contains a colorful
path of length k — 1 with respect to the coloring c if and
only if the final collection, that corresponding to paths of

length k — 1, of atleast one vertex is non-empty. The num-
ber of operations performed by the algorithm outlined is at
most O(Zik:0 z(]f) -|E|) which is clearly O(k2 - |E]).

Derandomization

The randomized algorithms obtained using the color cod-
ing method are derandomized with only a smallloss in effi-
ciency. All that is needed to derandomize them is a family
of colorings of G = (V, E) so that every subset of k ver-
tices of G is assigned distinct colors by at least one of these
colorings. Such a family is also called a family of perfect
hash functions from {1,2,...,|V|} to {1,2,..., k}. Such
a family is explicitly constructed by combining the meth-
ods of [1,9,12,16]. For a derandomization technique yield-
ing a constant factor improvement see [5].

Key Results

Lemmal LetG = (V,E) beadirected or undirected graph
andletc: V — {1,..., k} bea coloring of its vertices with k
colors. A colorful path of length k — 1 in G, if one exists, can
be found in 200 . |E| worst-case time.

Lemma2 LetG = (V, E) be adirected or undirected graph
andletc: V — {1,..., k} bea coloring of its vertices with k
colors. All pairs of vertices connected by colorful paths of
length k — 1 in G can be found in either 200 . |V||E| or
2000 . 1V|® worst-case time (here w < 2.376 denotes the
matrix multiplication exponent).

Using the above lemmata the following results are ob-
tained.

Theorem 3 A simple directed or undirected path of
length k — 1 in a (directed or undirected) graph G = (V, E)
that contains such a path can be found in 20%) . |V| ex-
pected time in the undirected case and in 2°® . |E| ex-
pected time in the directed case.

Theorem 4 A simple directed or undirected cycle of size k
in a (directed or undirected) graph G = (V,E) that con-
tains such a cycle can be found in either 200 . |V||E| or
200 | V| expected time.

A cycle of length k in minor-closed families of graphs
can be found, using color coding, even faster (for planar
graphs, a slightly faster algorithm appears in [6]).

Theorem 5 Let C be a non-trivial minor-closed family
of graphs and let k > 3 be a fixed integer. Then, there ex-
ists a randomized algorithm that given a graph G = (V, E)
from C, finds a Cy (a simple cycle of size k) in G, if one exists,
in O(|V|) expected time.
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As mentioned above, all these theorems can be derandom-
ized at the price of a log | V| factor. The algorithms are also
easily to parallelize.

Applications

The initial goal was to obtain efficient algorithms for find-
ing simple paths and cycles in graphs. The color cod-
ing method turned out, however, to have a much wider
range of applicability. The linear time (i.e., 20 - |E]|
for directed graphs and 2°%) . | V| for undirected graphs)
bounds for simple paths apply in fact to any forest on k
vertices. The 20%) . | V| bound for simple cycles applies
in fact to any series-parallel graph on k vertices. More
generally, if G = (V, E) contains a subgraph isomorphic
to a graph H = (Vy, Eg) whose tree-width is at most
t, then such a subgraph can be found in 200 .| V|1
expected time, where k = |Vy|. This improves an algo-
rithm of Plehn and Voigt [14] that has a running time
of kO .| V|1, As a very special case, it follows that the
LOG PATH problem is in P. This resolves in the affirma-
tive a conjecture of Papadimitriou and Yannakakis [13].
The exponential dependence on k in the above bounds is
probably unavoidable as the problem is NP-complete if k
is part of the input.

The color coding method has been a fruitful method
in the study of parametrized algorithms and parametrized
complexity [7,8]. Recently, the method has found inter-
esting applications in computational biology, specifically
in detecting signaling pathways within protein interaction
networks, see [10,17,18,19].

Open Problems

Several problems, listed below, remain open.

o Is there a polynomial time (deterministic or random-
ized) algorithm for deciding if a given graph G = (V, E)
contains a path of length, say, log®|V|? (This is un-
likely, as it will imply the existence of an algorithm that
decides in time 20v") whether a given graph on 7 ver-
tices is Hamiltonian.)

e Can the log|V/| factor appearing in the derandomiza-
tion be omitted?

e Is the problem of deciding whether a given graph
G =(V,E) contains a triangle as difficult as the
Boolean multiplication of two | V| x | V| matrices?

Experimental Results

Results of running the basic algorithm on biological data
have been reported in [17,19].
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Problem Definition

A mobile ad hoc network is a temporary dynamic in-
terconnection network of wireless mobile nodes without
any established infrastructure or centralized administra-
tion. A basic communication problem, in ad hoc mobile
networks, is to send information from a sender node, A,
to another designated receiver node, B. If mobile nodes A
and B come within wireless range of each other, then they
are able to communicate. However, if they do not, they
can communicate if other network nodes of the network
are willing to forward their packets. One way to solve this
problem is the protocol of notifying every node that the
sender A meets and provide it with all the information
hoping that some of them will eventually meet the re-
ceiver B.

Is there a more efficient technique (other than noti-
fying every node that the sender meets, in the hope
that some of them will then eventually meet the re-
ceiver) that will effectively solve the communication
establishment problem without flooding the network
and exhausting the battery and computational power
of the nodes?

The problem of communication among mobile nodes is
one of the most fundamental problems in ad hoc mo-
bile networks and is at the core of many algorithms, such
as for counting the number of nodes, electing a leader,
data processing etc. For an exposition of several important
problems in ad hoc mobile networks see [13]. The work
of Chatzigiannakis, Nikoletseas and Spirakis [5] focuses
on wireless mobile networks that are subject to highly
dynamic structural changes created by mobility, channel
fluctuations and device failures. These changes affect topo-
logical connectivity, occur with high frequency and may
not be predictable in advance. Therefore, the environment

where the nodes move (in three-dimensional space with
possible obstacles) as well as the motion that the nodes
perform are input to any distributed algorithm.

The Motion Space

The space of possible motions of the mobile nodes is com-
binatorially abstracted by a motion-graph, i. e. the detailed
geometric characteristics of the motion are neglected. Each
mobile node is assumed to have a transmission range
represented by a sphere tr centered by itself. Any other
node inside tr can receive any message broadcast by this
node. This sphere is approximated by a cube tc with vol-
ume V(tc), where V(tc) < V(tr). The size of tc can be
chosen in such a way that its volume V(tc) is the maxi-
mum that preserves V(tc) < V(tr), and if a mobile node
inside tc broadcasts a message, this message is received by
any other node in tc. Given that the mobile nodes are mov-
ing in the space S, S is divided into consecutive cubes of
volume V (tc).

Definition 1 The motion graph G(V, E), (|V| = n, |E| =
m), which corresponds to a quantization of S is con-
structed in the following way: a vertex u € G represents
a cube of volume V(tc) and an edge (u,v) € G exists if
the corresponding cubes are adjacent.

The number of vertices 1, actually approximates the ratio
between the volume V(S) of space S, and the space occu-
pied by the transmission range of a mobile node V (¢r). In
the extreme case where V(S) ~ V(tr), the transmission
range of the nodes approximates the space where they are
moving and n = 1. Given the transmission range tr, n de-
pends linearly on the volume of space S regardless of the
choice of tc,and n = O(V(S)/V (tr)). The ratio V(S)/V (tr)
is the relative motion space size and is denoted by p. Since
the edges of G represent neighboring polyhedra each ver-
tex is connected with a constant number of neighbors,
which yields that m = @& (n). In this example where tc is
a cube, G has maximum degree of six and m < 6n. Thus
motion graph G is (usually) a bounded degree graph as it
is derived from a regular graph of small degree by delet-
ing parts of it corresponding to motion or communication
obstacles. Let A be the maximum vertex degree of G.

The Motion of the Nodes-Adversaries

In the general case, the motions of the nodes are decided
by an oblivious adversary: The adversary determines mo-
tion patterns in any possible way but independently of the
distributed algorithm. In other words, the case where some
of the nodes are deliberately trying to maliciously affect the
protocol, e.g. avoid certain nodes, are excluded. This is
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a pragmatic assumption usually followed by applications.
Such kind of motion adversaries are called restricted mo-
tion adversaries.

For purposes of studying efficiency of distributed al-
gorithms for ad hoc networks on the average, the mo-
tions of the nodes are modeled by concurrent and indepen-
dent random walks. The assumption that the mobile nodes
move randomly, either according to uniformly distributed
changes in their directions and velocities or according to
the random waypoint mobility model by picking random
destinations, has been used extensively by other research.

Key Results

The key idea is to take advantage of the mobile nodes nat-
ural movement by exchanging information whenever mo-
bile nodes meet incidentally. It is evident, however, that
if the nodes are spread in remote areas and they do not
move beyond these areas, there is no way for informa-
tion to reach them, unless the protocol takes special care of
such situations. The work of Chatzigiannakis, Nikoletseas
and Spirakis [5] proposes the idea of forcing only a small
subset of the deployed nodes to move as per the needs of
the protocol; they call this subset of nodes the support of
the network. Assuming the availability of such nodes, they
are used to provide a simple, correct and efficient strategy
for communication between any pair of nodes of the net-
work that avoids message flooding.

Let k nodes be a predefined set of nodes that become
the nodes of the support. These nodes move randomly and
fast enough so that they visit in sufficiently short time the
entire motion graph. When some node of the support is
within transmission range of a sender, it notifies the sender
that it may send its message(s). The messages are then
stored “somewhere within the support structure”. When
a receiver comes within transmission range of a node of
the support, the receiver is notified that a message is “wait-
ing” for him and the message is then forwarded to the re-
ceiver.

Protocol 1 (The “Snake” Support Motion Coordina-
tion Protocol) Let Sy, Si,...,Sx—; be the members of
the support and let Sy denote the leader node (possibly
elected). The protocol forces Sy to perform a random walk
on the motion graph and each of the other nodes S; execute
the simple protocol “move where S;_; was before”. When
So is about to move, it sends a message to S; that states the
new direction of movement. S; will change its direction as
per instructions of Sy and will propagate the message to S,.
In analogy, S; will follow the orders of S; _; after transmit-
ting the new directions to S; . ;. Movement orders received
by S; are positioned in a queue Q; for sequential process-

ing. The very first move of §;, Vi € {1,2,...,k — 1} is de-
layed by a § period of time.

The purpose of the random walk of the head Sy is to ensure
a cover, within some finite time, of the whole graph G with-
out knowledge and memory, other than local, of topol-
ogy details. This memoryless motion also ensures fair-
ness, low-overhead and inherent robustness to structural
changes.

Consider the case where any sender or receiver is al-
lowed a general, unknown motion strategy, but its strategy
is provided by a restricted motion adversary. This means
that each node not in the support either (a) executes a de-
terministic motion which either stops at a vertex or cycles
forever after some initial part or (b) it executes a stochas-
tic strategy which however is independent of the motion of
the support. The authors in [5] prove the following cor-
rectness and efficiency results. The reader can refer to the
excellent book by Aldous and Fill [1] for a nice introduc-
tion on Makrov Chains and Random Walks.

Theorem 1 The support and the “snake” motion coordi-
nation protocol guarantee reliable communication between
any sender-receiver (A, B) pair in finite time, whose ex-
pected value is bounded only by a function of the relative
motion space size p and does not depend on the number of
nodes, and is also independent of how MHg, MHR move,
provided that the mobile nodes not in the support do not
deliberately try to avoid the support.

Theorem 2 The expected communication time of the
support and the “snake” motion coordination protocol is
bounded above by @(y/mc) when the (optimal) support
size k = «/2mc and c is e/(e — 1)u, u being the “separation
threshold time” of the random walk on G.

Theorem 3 By having the support’s head move on a reg-
ular spanning subgraph of G, there is an absolute constant
y > 0 such that the expected meeting time of A (or B) and
the support is bounded above by yn?/k. Thus the protocol
guarantees a total expected communication time of ©(p),
independent of the total number of mobile nodes, and their
movement.

The analysis assumes that the head Sy moves according to
a continuous time random walk of total rate 1 (rate of exit
out of a node of G). If Sy moves V¥ times faster than the
rest of the nodes, all the estimated times, except the inter-
support time, will be divided by . Thus the expected to-
tal communication time can be made to be as small as
O(yp//¥) where y is an absolute constant. In cases where
So can take advantage of the network topology, all the esti-
mated times, except the inter-support time are improved:
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Theorem 4 When the support’s head moves on a regular
spanning subgraph of G the expected meeting time of A (or
B) and the support cannot be less than (n — 1)?/2m. Since
m = ©O(n), the lower bound for the expected communica-
tion time is ©(n). In this sense, the “snake” protocol’s ex-
pected communication time is optimal, for a support size
which is ©(n).

The “on-the-average” analysis of the time-efficiency of the
protocol assumes that the motion of the mobile nodes not
in the support is a random walk on the motion graph G.
The random walk of each mobile node is performed inde-
pendently of the other nodes.

Theorem 5 The expected communication time of the
support and the “snake” motion coordination protocol is
bounded above by the formula

E(T) < G

n
o(7)+om.

The upper bound is minimized when k = /2n/A;(G),
where A is the second eigenvalue of the motion graph’s ad-
jacency matrix.

The way the support nodes move and communicate is ro-
bust, in the sense that it can tolerate failures of the sup-
port nodes. The types of failures of nodes considered are
permanent, i. e. stop failures. Once such a fault happens,
the support node of the fault does not participate in the
ad hoc mobile network anymore. A communication pro-
tocol is B-faults tolerant, if it still allows the members of
the network to communicate correctly, under the presence
of at most 8 permanent faults of the nodes in the support
(B > 1). [5] shows that:

Theorem 6 The support and the “snake” motion coordi-
nation protocol is 1-fault tolerant.

Applications

Ad hoc mobile networks are rapidly deployable and self-
configuring networks that have important applications in

many critical areas such as disaster relief, ambient in-
telligence, wide area sensing and surveillance. The abil-
ity to network anywhere, anytime enables teleconferenc-
ing, home networking, sensor networks, personal area net-
works, and embedded computing applications [13].

Related Work

The most common way to establish communication is to
form paths of intermediate nodes that lie within one an-
other’s transmission range and can directly communicate
with each other. The mobile nodes act as hosts and routers
at the same time in order to propagate packets along these
paths. This approach of maintaining a global structure
with respect to the temporary network is a difficult prob-
lem. Since nodes are moving, the underlying communi-
cation graph is changing, and the nodes have to adapt
quickly to such changes and reestablish their routes. Busch
and Tirthapura [2] provide the first analysis of the perfor-
mance of some characteristic protocols [8,13] and show
that in some cases they require 2(u?) time, where u is the
number of nodes, to stabilize, i. e. be able to provide com-
munication.

The work of Chatzigiannakis, Nikoletseas and Spi-
rakis [5] focuses on networks where topological connectiv-
ity is subject to frequent, unpredictable change and stud-
ies the problem of efficient data delivery in sparse net-
works where network partitions can last for a significant
period of time. In such cases, it is possible to have a small
team of fast moving and versatile vehicles, to implement
the support. These vehicles can be cars, motorcycles, heli-
copters or a collection of independently controlled mobile
modules, i. e. robots. This specific approach is inspired by
the work of Walter, Welch and Amato [14] that study the
problem of motion co-ordination in distributed systems
consisting of such robots, which can connect, disconnect
and move around.

The use of mobility to improve performance in ad hoc
mobile networks has been considered in different contexts
in [6,9,11,15]. The primary objective has been to provide
intermittent connectivity in a disconnected ad hoc net-
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work. Each solution achieves certain properties of end-to-
end connectivity, such as delay and message loss among
the nodes of the network. Some of them require long-
range wireless transmission, other require that all nodes
move pro-actively under the control of the protocol and
collaborate so that they meet more often. The key idea of
forcing only a subset of the nodes to facilitate communica-
tion is used in a similar way in [10,15]. However, [15] fo-
cuses in cases where only one node is available. Recently,
the application of mobility to the domain of wireless sen-
sor networks has been addressed in [3,10,12].

Open Problems

A number of problems related to the work of Chatzigian-
nakis, Nikoletseas and Spirakis [5] remain open. It is clear
that the size of the support, k, the shape and the way the
support moves affects the performance of end-to-end con-
nectivity. An open issue is to investigate alternative struc-
tures for the support, different motion coordination strate-
gies and comparatively study the corresponding effects on
communication times. To this end, the support idea is ex-
tended to hierarchical and highly changing motion graphs
in [4]. The idea of cooperative routing based on the ex-
istence of support nodes may also improve security and
trust.

An important issue for the case where the network
is sparsely populated or where the rate of motion is too
high is to study the performance of path construction and
maintenance protocols. Some work has be done in this di-
rection in [2] that can be also used to investigate the end-
to-end communication in wireless sensor networks. It is
still unknown if there exist impossibility results for dis-
tributed algorithms that attempt to maintain structural in-
formation of the implied fragile network of virtual links.

Another open research area is to analyze the proper-
ties of end-to-end communication given certain support
motion strategies. There are cases where the mobile nodes
interactions may behave in a similar way to the Physics
paradigm of interacting particles and their modeling. Stud-
ies of interaction times and propagation times in various
graphs are reported in [7] and are still important to fur-
ther research in this direction.

Experimental Results

In [5] an experimental evaluation is conducted via simu-
lation in order to model the different possible situations
regarding the geographical area covered by an ad-hoc mo-
bile network. A number of experiments were carried out
for grid-graphs (2D, 3D), random graphs (G, , model),
bipartite multi-stage graphs and two-level motion graphs.

All results verify the theoretical analysis and provide useful
insight on how to further exploit the support idea. In [4]
the model of hierarchical and highly changing ad-hoc net-
works is investigated. The experiments indicate that, the
pattern of the “snake” algorithm’s performance remains
the same even in such type of networks.
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Problem Definition

This problem studies the one round, sealed-bid auction
model where an auctioneer would like to sell an idiosyn-
cratic commodity with unlimited copies to # bidders and
each bidder i € {1, ..., n} will get at most one item.

First, for any i, bidder i bids a value b; representing
the price he is willing to pay for the item. They submit
the bids simultaneously. After receiving the bidding vector
b = (by,..., by,), the auctioneer computes and outputs the
allocation vector x = (x1,...,x,) € {0, 1}" and the price
vector p = (p1, ..., py). If for any i, x; = 1, then bidder i
gets the item and pays p; for it. Otherwise, bidder i loses
and pays nothing. In the auction, the auctioneer’s revenue

is 30 xp
Definition 1 (Optimal Single Price Omniscient

Auction F) Given a bidding vector b sorted in decreas-
ing order,

F(b)= max i-b;.
1<i<n
Further,

FM(b) = max i-b;.

m<i<n

Obviously, F maximizes the auctioneer’s revenue if only
uniform price is allowed.

However, in this problem each bidder i is associated
with a private value v; representing the item’s value in his
opinion. So if bidder i gets the item, his payoft should be
v; — pi. Otherwise, his payoff is 0. So for any bidder i, his
payoff function can be formulated as (v; — p;)x;. Further-
more, free will is allowed in the model. In other words,
each bidder would bid some b; different from his true value
vj, to maximize his payoft.

The objective of the problem is to design a truthful
auction which could still maximize the auctioneer’s rev-
enue. An auction is truthful if for every bidder i, bidding
his true value would maximize his payoff, regardless of the
bids submitted by the other bidders [11,12].

Definition 2 (Competitive Auctions)

INPUT: the submitted bidding vector b.

OUTPUT: the allocation vector x and the price vector p.

CONSTRAINTS:

(a) Truthful

(b) The auctioneer’s revenue is within a constant factor of
the optimal single pricing for all inputs.

Key Results

Let b—; = (b1,....bi—1.bjs1, ..
from b_; to the price.

., by). f is any function

1: fori=1tondo

2:  if f(b—;) < b; then

3 X; = landp,- = f(b,)
4. else

5: x;i =0

6: endif

7: end for

Competitive Auction, Algorithm 1
Bid-independent Auction: A¢(b)

Theorem 1 ([6]) An auction is truthful if and only if it is
equivalent to a bid-independent auction.

Definition 3 A truthful auction A is B-competitive
against £ if for all bidding vectors b, the expected profit
of A on b satisfies

F (b)

E(A(b
(Ab)) = 3

Definition 4 (CostSharec) ([10]) Given bids b, this
mechanism finds the largest k such that the highest k bid-
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ders’ bids are at least C/k. Charge each of such k bidders
Clk.

1: Partition bidding vector b uniformly at random into
two sets b’ and b”.

2: Computer F' = F(b') and F” = F(b").

3: Running CostShare 7~ on b" and CostShare 7 onb”.

Competitive Auction, Algorithm 2
Sampling Cost Sharing Auction (SCS)

Theorem 2 ([6]) SCS is 4-competitive against FD, and
the bound is tight.

Theorem 3 ([9]) Let A be any truthful randomized auc-
tion. There exists an input bidding vector b on which

FPm)
E(A(b)) < 555

Applications

As the Internet becomes more popular, more and more
auctions are beginning to appear. Further, the items on
sale in the auctions vary from antiques, paintings to digital
goods such as mp3, licenses and network resources. Truth-
ful auctions can reduce the bidders’ cost of investigating
the competitors’ strategies, since truthful auctions encour-
age bidders to bid their true values. On the other hand,
competitive auctions can also guarantee the auctioneer’s
profit. So this problem is very practical and significant.
Over the last two years, designing and analyzing compet-
itive auctions under various auction models have become
a hot topic [1,2,3,4,5,7,8].
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Problem Definition

In the middle of the last century, Nash [8] studied general
non-cooperative games and proved that there exists a set
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of mixed strategies, now commonly referred to as a Nash
equilibrium, one for each player, such that no player can
benefit if it changes its own strategy unilaterally. Since the
development of Nash’s theorem, researchers have worked
on how to compute Nash equilibria efficiently. Despite
much effort in the last half century, no significant progress
has been made on characterizing its algorithmic complex-
ity, though both hardness results and algorithms have been
developed for various modified versions.

An exciting breakthrough, which shows that com-
puting Nash equilibria is possibly hard, was made by
Daskalakis, Goldberg, and Papadimitriou [4], for games
among four players or more. The problem was proven
to be complete in PPAD (polynomial parity argument,
directed version), a complexity class introduced by Pa-
padimitriou in [9]. The work of [4] is based on the tech-
niques developed in [6]. This hardness result was then im-
proved to the three-player case by Chen and Deng [1],
Daskalakis and Papadimitriou [5], independently, and
with different proofs. Finally, Chen and Deng [2] proved
that NASH, the problem of finding a Nash equilibrium
in a bimatrix game (or two-player game), is PPAD-com-
plete.

A bimatrix game is a non-cooperative game between
two players in which the players have m and n choices
of actions (or pure strategies), respectively. Such a game
can be specified by two m x n matrices A = (a;;) and
B = (b,;). If the first player chooses action i and the sec-
ond player chooses action j, then their payoffs are a; ; and
b; j, respectively. A mixed strategy of a player is a probabil-
ity distribution over its choices. Let P" denote the set of all
probability vectors in R”, i. e., non-negative vectors whose
entries sum to 1. Nash’s equilibrium theorem on non-
cooperative games, when specialized to bimatrix games,
states that, for every bimatrix game G = (A, B), there ex-
ists a pair of mixed strategies (x* € P™, y* € P"), called
a Nash equilibrium, such that for all x € P™ andy € P”,

(X* )TAy* > XTAY* and (X* )TBy* > (X* )TBy

Computationally, one might settle with an approximate
Nash equilibrium. Let A; denote the ith row vector of
A, and B; denote the ith column vector of B. An e-well-
supported Nash equilibrium of game (A, B) is a pair of
mixed strategies (x*, y*) such that,

A,-y*>A]-y*+ezx;-k=O,Vi,j:lfi,jfm;
x)'B; > (*)'Bj+e =y} =0, Vi j:1<ij<n

Definition 1 (2-NASH and NASH) The input instance of
problem 2-NASH is a pair (G, 0%) where G is a bimatrix

game, and the output is a 2~*-well-supported Nash equi-
librium of G. The input of problem NASH is a bimatrix
game G and the output is an exact Nash equilibrium of G.

Key Results

A binary relation R C {0,1}* x {0, 1}* is polynomially
balanced if there exists a polynomial p such that for all
pairs (x, y) € R, |y| < p(|x]). It is a polynomial-time com-
putable relation if for each pair (x,y), one can decide
whether or not (x, y) € R in time polynomial in |x| + |y|.
The NP search problem Qg specified by R is defined as fol-
lows: Given x € {0, 1}*, if there exists y such that (x, y) €
R, return y, otherwise, return a special string “no”.

Relation R is total if for every x € {0,1}*, there ex-
ists a y such that (x, y) € R. Following [7], let TENP
denote the class of all NP search problems specified
by total relations. A search problem Qg, € TENP is
polynomial-time reducible to problem Qg, € TENP if
there exists a pair of polynomial-time computable func-
tions (f,g) such that for every x of R, if y satisfies that
(f(x), y) € Ry, then (x, g(¥)) € Ry. Furthermore, Qg, and
Qgr, are polynomial-time equivalent if Qg, is also re-
ducible to Qg,.

The complexity class PPAD is a sub-class of TFNP,
containing all the search problems which are polynomial-
time reducible to:

Definition 2 (Problem LEAFD) The input instance of
LEAFD is a pair (M, 0") where M defines a polynomial-
time Turing machine satisfying:
1. for every v € {0, 1}", M(v) is an ordered pair (u;, u3)
with uy,up € {0,1}" U {"no"};
2. M(0") = ("no", 1") and the first component of M(1") is
0".
This instance defines a directed graph G = (V, E) with
V ={0,1}". Edge (u, v) € E iff v is the second component
of M(u) and u is the first component of M(v).
The output of problem LEAFD is a directed leaf of G
other than 0”. Here a vertex is called a directed leaf if its
out-degree plus in-degree equals one.

A search problem in PPAD is said to be complete in PPAD
(or PPAD-complete), if there exists a polynomial-time re-
duction from LEAFD to it.

Theorem ([2]) 2-Nash and Nash are PPAD-complete.

Applications

The concept of Nash equilibria has traditionally been one
of the most influential tools in the study of many disci-
plines involved with strategies, such as political science
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and economic theory. The rise of the Internet and the
study of its anarchical environment have made the Nash
equilibrium an indispensable part of computer science.
Over the past decades, the computer science community
have contributed a lot to the design of efficient algorithms
for related problems. This sequence of results [1,2,3,4,5,6],
for the first time, provide some evidence that the problem
of finding a Nash equilibrium is possibly hard for P. These
results are very important to the emerging discipline, Al-
gorithmic Game Theory.

Open Problems

This sequence of works show that (r + 1)-player games
are polynomial-time reducible to r-player games for ev-
ery r > 2, but the reduction is carried out by first reduc-
ing (r + 1)-player games to a fixed point problem, and then
further to r-player games. Is there a natural reduction that
goes directly from (r + 1)-player games to r-player games?
Such a reduction could provide a better understanding for
the behavior of multi-player games.

Although many people believe that PPAD is hard for
P, there is no strong evidence for this belief or intuition.
The natural open problem is: Can one rigorously prove
that class PPAD is hard, under one of those generally be-
lieved assumptions in theoretical computer science, like
“NP is not in P” or “one way function exists”? Such a re-
sult would be extremely important to both Computational
Complexity Theory and Algorithmic Game Theory.

Cross References
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Problem Definition

The core is the most important solution concept in coop-
erative game theory, which is based on the coalition ratio-
nality condition: no subgroup of the players will do better
if they break away from the joint decision of all players to
form their own coalition. The principle behind this con-
dition is very similar and can be seen as an extension to
that of the Nash Equilibrium. The problem of determining
the core of a cooperative game naturally brings in issues of
algorithms and complexity. The work of Fang, Zhu, Cai,
and Deng [4] discusses the computational complexity is-
sues related to the cores of some cooperative game models,
such as, flow games and Steiner tree games.

A cooperative game with side payments is given by
the pair (N, v), where N = {1,2,--- , n} is the player set
and v: 2N — R is the characteristic function. For each
coalition S C N, the value ¥(S) is interpreted as the profit
or cost achieved by the collective action of players in §
without any assistance of players in N\ S. A game is
called a profit (cost) game if ¥(S) measures the profit
(cost) achieved by the coalition S. Here, the definitions
are only given for profit games, symmetric statements
hold for cost games. A vector x ={xj,x,-++,X,} is
called an imputation if it satisfies ) ;¢ xi = v(N) and
Vie N: x; > v({i}). The core of the game (N, v) is de-
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fined as:

C(v) ={x € R" : x(N) = v(N)
and x(S) > v(S), VS C N},

where x(8) = ), cqxi for S € N. A game is called bal-
anced, if its core is non-empty; and fotally balanced, if
every subgame (i. e., the game obtained by restricting the
player set to a coalition and the characteristic function to
the power set of that coalition) is balanced.

It is a challenge for the algorithmic study of the core,
since there are an exponential number of constraints im-
posed on its definition. The following computational com-
plexity questions have attracted much attention from re-
searchers:

(1)Testing balancedness: Can it be tested in polyno-
mial time whether a given instance of the game has a non-
empty core?

(2)Checking membership: Can it be checked in polyno-
mial time whether a given imputation belongs to the core?

(3)Finding a core member: Is it possible to find an im-
putation in the core in polynomial time?

In reality, however, there is an important case in which

the characteristic function value of a coalition can usu-
ally be evaluated via a combinatorial optimization prob-
lem, subject to constraints of resources controlled by the
players of this coalition. In such circumstances, the in-
put size of a game is the same as that of the related
optimization problem, which is usually polynomial in
the number of players. Therefore, this class of games,
called combinatorial optimization games, fits well into the
framework of algorithm theory. Flow games and Steiner
tree games discussed in Fang et al. [4] fall within this
scope.
FLOW GAME Let D = (V, E;w;s, t) be a directed flow
network, where V is the vertex set, E is the arc set,
w: E — R* is the arc capacity function, s and ¢ are the
source and the sink of the network, respectively. Assume
that each player controls one arc in the network. The
value of a maximum flow can be viewed as the profit
achieved by the players in cooperation. Then the flow
game 'y = (E, v) associated with the network D is defined
as follows:

(i) The player set is E;

(ii) VS C E, v(S) is the value of a maximum flow from
s to t in the subnetwork of D consisting only of arcs
belonging to S.

In Kailai and Zemel [6] and Deng et al. [2], it was shown
that the flow game is totally balanced and finding a core
member can be done in polynomial time.

Problem 1 (Checking membership for flow game)
INSTANCE: A flow network D = (V,E;w;s,t) and x :
E — R*.

QUESTION: Is it true that x(E) = v(E) and x(S) > v(S)
for all subsets S C E?

STEINER TREE GAME Let G=(V,E;w) be an
edge-weighted graph with V ={v;} UN U M, where
N, M C V \ {v} are disjoint. v, represents a central sup-
plier, N represents the consumer set, M represents the
switch set, and w(e) denotes the cost of connecting the
two endpoints of edge e directly. It is required to connect
all the consumers in N to the central supplier vy. The con-
nection is not limited to using direct links between two
consumers or a consumer and the central supplier, it may
pass through some switches in M. The aim is to construct
the cheapest connection and distribute the connection
cost among the consumers fairly. Then the associated
Steiner tree game Iy = (N, ) is defined as follows:

(i) The player set is N;

(ii) V S € N, p(S) is the weight of a minimum Steiner
tree on G w.r.t. the set S U {1y}, that is, y(S) =
min{ZeeEs w(e) : Ts = (Vs,Eg) is a subtree of G
with Vs 2 S U {vo}}.

Different from flow games, the core of a Steiner tree
game may be empty. An example with an empty core was
given in Megiddo [9].

Problem 2 (Testing balancedness for a Steiner tree game)
INSTANCE: An edge-weighted graph G = (V, E;w) with
V={w!UNUM.

QUESTION: Does there exist a vector x : N — R such
that x(N) = y(N) and x(S) < y(S) for all subsets S C N?

Problem 3 (Checking membership for a Steiner tree game)
INSTANCE: An edge-weighted graph G = (V, E; w) with
V={w}UNUMandx: N — R".

QUESTION: Is it true that x(N) = y(N) and x(S) < y(S)
for all subsets S C N?

Key Results

Theorem 1 It is N"P-complete to show that, given a flow
game I'y = (E,v) defined on network D = (V,E;w;s, t)
and a vector x: E — R* with x(E) = v(E), whether there
exists a coalition S C N such that x(S) < v(S). That is,
checking membership of the core for flow games is co-N P-
complete.

The proof of Theorem 1 yields directly the same conclu-
sion for linear production games. In Owen’s linear pro-
duction game [10], each player j (j € N) is in possession
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of an individual resource vector b’. For a coalition $ of
players, the profit obtained by S is the optimum value of
the following linear program:

max{c'y: Ay < ij, y =0}
jes

That is, the characteristic function value is what the coali-
tion can achieve in the linear production model with the
resources under their control. Owen showed that one im-
putation in the core can also be constructed through an
optimal dual solution to the linear program which deter-
mines the value of N. However, there are in general some
imputations in the core which cannot be obtained in this
way.

Theorem 2 Checking membership of the core for linear
production games is co-N P-complete.

The problem of finding a minimum Steiner tree in a net-
work is 2N'P-hard, therefore, in a Steiner tree game, the
value y (S) of each coalition S may not be obtained in poly-
nomial time. It implies that the complement problem of
checking membership of the core for Steiner tree games
may not be in N'P.

Theorem 3 It is N"P-hard to show that, given a Steiner
tree game I's = (N, y) defined on network G = (V, E;®)
and a vector x : N — R* with x(N) = y(N), whether there
exists a coalition S C N such that x(S) > y(S). That is,
checking membership of the core for Steiner tree games is
N P-hard.

Theorem 4 Testing balancedness for Steiner tree games is
N P-hard.

Given a Steiner tree game [ = (N, y) defined on net-
work G = (V, E;w) and a subset S C N, in the subgame
(S, ¥s), the value y(§) (S’ € S) is the weight of a mini-
mum Steiner tree of G w.r.t. the subset S’ U {v,}, where all
the vertices in N \ S are treated as switches but not con-
sumers. It is further proved in Fang et al. [4] that deter-
mining whether a Steiner tree game is totally balanced is
also N P-hard. This is the first example of N P-hardness
for the totally balanced condition.

Theorem 5 Testing total balancedness for Steiner tree
games is N P-hard.

Applications

The computational complexity results on the cores of
combinatorial optimization games have been as diverse as
the corresponding combinatorial optimization problems.
For example:

(1) In matching games [I1], testing balancedness,
checking membership, and finding a core member can all
be done in polynomial time;

(2) In flow games and minimum-cost spanning tree
games [3,4], although their cores are always non-empty
and a core member can be found in polynomial time, the
problem of checking membership is co- N P-complete;

(3) In facility location games [5], the problem of test-
ing balancedness is in general N"P-hard, however, given
the information that the core is non-empty, both finding
a core member and checking membership can be solved
efficiently;

(4) In a game of sum of edge weight defined on
a graph [2], all the problems of testing balancedness,
checking membership, and finding a core member are
N P-hard.

To make the study of complexity and algorithms for
cooperative games meaningful to corresponding applica-
tion areas, it is suggested that computational complexity
be taken as an important factor in considering rational-
ity and fairness of a solution concept, in a way derived
from the concept of bounded rationality [3,8]. That is, the
players are not willing to spend super-polynomial time to
search for the most suitable solution. In the case when the
solutions of a game do not exist or are difficult to com-
pute or check, it may not be simple to dismiss the problem
as hopeless, especially when the game arises from impor-
tant applications. Hence, various conceptual approaches
are proposed to resolve this problem.

When the core of a game is empty, it motivates con-
ditions ensuring non-emptiness of approximate cores.
A natural way to approximate the core is the least core.
Let (N, v) be a profit cooperative game. Given a real num-
ber ¢, the e-core is defined to contain the allocations such
that x(S) > v(S) — ¢ for each non-empty proper subset S
of N. The least core is the intersection of all non-empty
g-cores. Let * be the minimum value of & such that the
e-core is empty, then the least core is the same as the £*-
core.

The concept of the least core poses new challenges in
regard to algorithmic issues. The most natural problem is
how to efliciently compute the value ¢* for a given co-
operative game. The catch is that the computation of &*
requires solving of a linear program with an exponential
number of constrains. Though there are cases where this
value can be computed in polynomial time [7], it is in gen-
eral very hard. If the value of ¢* is considered to represent
some subsidies given by the central authority to ensure the
existence of the cooperation, then it is significant to give
the approximate value of it even when its computation is
N P-hard.
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Another possible approach is to interpret approxima-
tion as bounded rationality. For example, it would be in-
teresting to know if there is any game with a property that
for any ¢ > 0, checking membership in the g-core can be
done in polynomial time but it is 2N'P-hard to tell if an
imputation is in the core. In such cases, the restoration of
cooperation would be a result of bounded rationality. That
is to say, the players would not care an extra gain or loss
of ¢ as the expense of another order of degree of computa-
tional resources. This methodology may be further applied
to other solution concepts.

Cross References

» General Equilibrium
» Nucleolus
» Routing
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Problem Definition

Let ¢ be a given compression algorithm, and let c(A) de-
note the result of c compressing a string A. Given a pattern
string P and a compressed text string ¢(T), the compressed
pattern matching (CPM) problem is to find all occurrences
of P in T without decompressing T. The goal is to per-
form the task in less time compared with a decompres-
sion followed by a simple search, which takes O(|P| + | T|)
time (assuming O(|T|) time is enough for decompres-
sion). A CPM algorithm is said to be optimal if it runs in
O(|P| + |¢(T)|) time. The CPM problem was first defined
in the work of Amir and Benson [1], and many studies
have been made over different compression formats.

Collage Systems

Collage systems are useful CPM-oriented abstractions of
compression formats, introduced by Kida et al. [9]. Algo-
rithms designed for collage systems can be implemented
for many different compression formats. In the same paper
they designed a general Knuth—-Morris-Pratt (KMP) algo-
rithm for collage systems. A general Boyer-Moore (BM)
algorithm for collage systems was also designed by almost
the same authors [18].

A collage system is a pair (D, S) defined as follows.
D is a sequence of assignments X; = expr;X, =
expry;...; Xy = expr,, where, for each k=1,...,n, Xi
is a variable and expr, is any of the form:

aforae X U{e},
X,‘Xj fOI'i,j<k,

(primitive assignment)
(concatenation)

UlX; fori < kanda positive integer j,
(j length prefix truncation)

XIU] for i < k and a positive integer j ,

(j length suffix truncation)
(X;) fori < kanda positive integer; .

(j times repetition)

By the j length prefix (resp. suffix) truncation we mean an
operation on strings which takes a string w and returns
the string obtained from w by removing its prefix (resp.
suffix) of length j. The variables X represent the strings
X obtained by evaluating their expressions. The size of
D is the number n of assignments and denoted by |D].
Let height(D) denote the maximum dependence in D. S is
asequence X;, --- X;, of variables defined in D. The length
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collage systems

. LZ77 LZSS
truncation-free
Run length
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SEQUITUR  RE-PAIR BPE

Grammar-transform

simple
( Lz78 LZW ’

Compressed Pattern Matching, Figure 1
Hierarchy of collage systems

of S is the number £ of variables in S and denoted by |S]|.
It can thus be considered that |c(T)| = |D| + |S|.

A collage system (D, S) represents the string obtained
by concatenating the strings X;, ..., X;, represented by
variables X; ,...,X;, of S. It should be noted that any
collage system can be converted into the one with |S| = 1,
by adding a series of assignments with concatenation op-
erations into D. This may imply S is unnecessary. How-
ever, a variety of compression schemes can be captured
naturally by separating D (defining phrases) from S (giv-
ing a factorization of text T into phrases). How to ex-
press compressed texts for existing compression schemes
is found in [9].

A collage system is said to be truncation-free if D con-
tains no truncation operation, and regular if D contains
neither repetition nor truncation operation. A regular col-
lage system is simple if | Y| = 1 or | Z| = 1 for every assign-
ment X = YZ. Figure 1 gives the hierarchy of collage sys-
tems. The collage systems for RE-PAIR, SEQUITUR, Byte-
Pair-Encoding (BPE), and the grammar-transform based
compression scheme are regular. In the Lempel-Ziv fam-
ily, the collage systems for LZ78/LZW are simple, while
those for LZ77/LZSS are not truncation-free.

Key Results

It is straightforward to design an optimal solution for run-
length encoding. For the two-dimensional run-length en-
coding, used by FAX transmission, an optimal solution
was given by Amir, Benson, and Farach [3].

Theorem 1 (Amir et al. [3]) There exists an optimal so-
lution to the CPM problem for two-dimensional run-length
encoding scheme.

The same authors showed in [2] an almost optimal solu-
tion for LZW compression.

Theorem 2 (Amir et al. [2]) The first-occurrence ver-
sion of the CPM problem for LZW can be solved in
O(|P|* + |c(T)|) time and space.

An extension of [2] to the multi-pattern matching (dictio-
nary matching) problem was presented by Kida et al. [10],
together with the first experimental results in this area.

For LZ77 compression scheme, Farach and Thorup [6]
presented the following result.

Theorem 3 (Farach and Thorup [6]) Given an LZ77
compressed string Z of a text T, and given a pattern P, there
is a randomized algorithm to decide if P occurs in T which
runs in O(|Z| log*(| T|/|Z|) + | P|) time.

Lempel-Ziv factorization is a version of LZ77 compres-
sion without self-referencing. The following relation is
present between Lempel-Ziv factorizations and collage
systems.

Theorem 4 (Gasieniec et al. [7]; Rytter [16]) The Lem-
pel-Ziv factorization Z of T can be transformed into
a collage system of size O(|Z| -log|Z|) generating T in
O(|Z| -log|Z|) time, and into a regular collage system of
size O(|Z| - log | T|) generating T in O(|Z| - log |T|) time.

The result of Amir et al. [2] was generalized in the work of
Kida et al. [9] via the unified framework of collage systems.

Theorem 5 (Kida et al. [9]) The CPM problem for collage
systems can be solved in O((|D|+|S])-height(D)+|P|*+occ)
time using O(|D| + |P|?) space, where occ is the number
of pattern occurrences. The factor height(D) is dropped for
truncation-free collage systems.

The algorithm of [9] has two stages: First it preprocesses D
and P, and second it processes the variables of S. In the
second stage, it simulates the move of a KMP automa-
ton running on uncompressed text, by using two func-
tions Jump and Output. Both these functions take a state
q and a variable X as input. The former is used to sub-
stitute just one state transition for the consecutive state
transitions of the KMP automaton for the string X for
each variable X of S. The latter is used to report all pat-
tern occurrences found during the state transitions. Let
8 be the state-transition function of the KMP automa-
ton. Then Jump(q, X) = S(q,i) and Output(q, X) is the
set of lengths |w| of non-empty prefixes w of X such that
8(q, w) is the final state. A naive two-dimensional array im-
plementation of the two functions requires $2(|D| - |P|)
space. The data structures of [9] use only O(|D| + |P|?)
space, are built in O(|D| - height(D) + | P|?) time, and en-
able us to compute Jump(q, X) in O(1) time and enumer-
ate the set Output(g, X) in O(height(D) + £) time where
£ = |Output(q, X)|. The factor height(D) is dropped for
truncation-free collage systems.

Another criterion of CPM algorithms is focused on the
amount of extra space [4]. A CPM algorithm is inplace if
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the amount of extra space is proportional to the input size
of P.

Theorem 6 (Amir et al. [4]) There exists an inplace
CPM algorithm for a two-dimensional run-length encoding
scheme which runs in O(|c(T)| + |P|logo) time using ex-
tra O(c(P)) space, where o is the minimum of |P| and the
alphabet size.

Many variants of the CPM problem exist. In what follows,
some of them are briefly sketched. Fully-compressed pat-
tern matching (FCPM) is the complicated version where
both T and P are given in a compressed format. A straight-
line program is a regular collage system with |S| = 1.

Theorem 7 (Miyazaki et al. [13]) The FCPM problem for
straight-line programs is solved in O(|c(T)|? - |c(P)|?) time
using O(|c(T)| - |c(P)]) space.

Approximate compressed pattern matching (ACPM) refers
to the case where errors are allowed.

Theorem 8 (Kirkkidinen et al. [8]) Under the Levenshtein
distance model, the ACPM problem can be solved in O(k -
|P| - |c(T)| + occ) time for LZ78/LZW, and in O(|P| - (k? -
|D| + k- |S|)+ occ) time for regular collage systems, where k
is the given error threshold.

Theorem 9 (Makinen et al. [11]) Under a weighted edit
distance model, the ACPM problem for run-length encoding
can be solved in O(|P| - |c(P)| - |c(T)|) time.

Regular expression compressed pattern matching (RCPM)
refers to the case where P can be a regular expression.

Theorem 10 (Navarro [14]) The RCPM problem can
be solved in ORI +|P| - |e(T)| + occ - |P| -log |P|) time,
where occ is the number of occurrences of P in T.

Applications

CPM techniques enable us to search directly in com-
pressed text databases. One interesting application is
searching over compressed text databases on handheld de-
vices, such as PDAs, in which memory, storage, and CPU
power are limited.

Experimental Results

One important goal of the CPM problem is to per-
form a CPM task faster than a decompression followed
by a simple search. Kida et al. [10] showed experimen-
tally that their algorithms achieve the goal. Navarro and
Tarhio [15] presented BM type algorithms for LZ78/LZW
compression schemes, and showed they are twice as fast
as a decompression followed by a search using the best

algorithms. (The code is available at: www.dcc.uchile.cl/
gnavarro/software.)

Another challenging goal is to perform a CPM task
faster than a simple search over original files in the uncom-
pressed format. The goal is achieved by Manber [12] (with
his own compression scheme), and by Shibata et al. [17]
(with BPE). Their search time reduction ratios are nearly
the same as their compression ratios. Unfortunately the
compression ratios are not very high. Moura et al. [5]
achieved the goal by using a bytewise Huffman code on
words. The compression ratio is relatively high, but only
searching for whole words and phrases is allowed.

Cross References

» Multidimensional compressed pattern matching is the
complex version of CPM where the text and the pattern are
multidimensional strings in a compressed format. » Se-
quential exact string matching, » sequential approximate
string matching, » regular expression matching, respec-
tively, refer to the simplified versions of CPM, ACPM,
RCPM where the text and the pattern are given as uncom-
pressed strings.
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Problem Definition

Given a text string T = t1t, ... t, over an alphabet ¥ of
size o, the compressed full-text indexing (CFTI) problem
asks to create a space-efficient data structure capable of ef-
ficiently simulating the functionalities of a full-text index
build on T.

A simple example of a full-text index is suffix array
A[1, n] that contains a permutation of the interval [1, n],
such that T[A[i],n] < T[A[i+1],n] for all 1 <i<n,
where “<” between strings is the lexicographical order.
Using suffix array, the occurrences of a given pattern
P=pip2...pm in T can be found using two binary
searches in O(m log n) time.

The CFTI problem related to suffix arrays is easily
stated; find a space-efficient data structure supporting the

retrieval of value A[i] for any i efficiently. Such a solution
is called compressed suffix array. Usually compressed suffix
arrays support, as well, retrieving of the inverse A~![j] = i
for any given j.

If the compressed full-text index functions without
the text and contains enough information to retrieve any
substring of T, then this index is called self-index, as
it can be used as a representation of T. See the entry
Compressed Text Indexing for another approach to self-
indexing, and [9] for a comprehensive survey on the topic.

The CFTI problem can be stated on any full-text index,
as long as the set of operations the data structure should
support is rigorously defined. For example, a compressed
suffix tree should simulate all the operations of classical
suffix trees.

The classical full-text indexes occupy O(nlog n) bits,
typically with large constant factors. The typical goals in
CFTI can be characterized by the degree of ambition; find
a structure whose space-requirement is:

(i) proportional to the text size, i.e. O(n log o) bits;

(ii) asymptotically optimal in the text size, i.e. nlogo(1+
o(1)) bits;

(iii) proportional to the compressed text size, i.e. O(nHy,)
bits, where Hy, is the (empirical) k-th order entropy of
T'; or even

(iv) asymptotically optimal in the compressed text size,
i.e. nHy + o(nlog o) bits.

Key Results

The first solution to the problem is by Grossi and Vit-
ter [3] who exploit the regularities of suffix array via the
¥ -function:

Definition 1 Given suffix array A[l,n], function
¥ [1,n] — [1,n] is defined so that, for all 1 <i <n,
A[W¥(i)] = A[i] + 1. The exception is A[1] = n, in which
case the requirement is that A[¥(1)] = 1 so that ¥ is a per-
mutation.

Grossi and Vitter use a hierarchical decomposition of A
based on ¥2. Let us focus on the first level of that hier-
archical decomposition. Let Ay = A be the original suffix
array. A bit vector B°[1, n] is defined so that B[] = 1 iff
Ali] is even. Let also ¥[1, [n/2]] contain the sequence of
values ¥ (i) for arguments i where B°[i] = 0. Finally, let
A1[1, [n/2]] be the subsequence of Ay[1, n] formed by the
even Ag[i] values, divided by 2.

'Hy is the minimum average number of bits needed to code one
symbol using any compressor that fixes the code word based on the
k-symbol context following the the symbol to be coded. See [6] for
more formal definition.

2The description below follows closely the one given in [9]
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Then, A = Ag can be represented using only ¥, B°,
and A,. To retrieve A[i], first see if B°[i] = 1. If it is, then
A[i] is (divided by 2) somewhere in A;. The exact position
depends on how many 1’s are there in B® up to position
i, denoted rank(B°, i); that is, A[i] = 2 - A [rank,(B°, i)].
If B[i] = 0, then A[i] is odd and not represented in A;.
However, A[i] + 1 = A[¥/(i)] has to be even and thus rep-
resented in A;. Since ¥ collects only the ¥ values where
BO[i] = 0, it holds that A[W(i)] = A[Wy[ranke(B°, )]].
Once computing A[¥(i)] (for even ¥(i)), one simply ob-
tains A[i] = A[¥(i)] — 1.

The idea can be used recursively: Instead of represent-
ing A}, replace it with B2, W5, and A,. This is continued
until Ay is small enough to be represented explicitly. The
complexity is O(h) assuming constant-time rank; one can
attach o(n) bits data structures to a bit vector of length
n such that rank-queries can be be answered in constant
time [4,7].

It is convenient to use h = [loglog 1], so that the n/2"
entries of Ay, each of which requires O(log n) bits, take
overall O(n) bits. All the Bt arrays add up at most 2# bits
(as their length is halved from each level to the next), and
their additional rank structures add o(n) extra bits. The
only remaining problem is how to represent the ¥y arrays.
The following regularity due to lexicographic order can be
exploited:

Lemma 1 Given a text T[1,n], its suffix array A[l, n],
and the corresponding function ¥, it holds ¥ (i) < ¥(i + 1)
whenever Ty[i) = Ta[i+1)-

This piecewise increasing property of ¥ can be used to
represent each level of ¥ in %n log o bits [3]. Other trade-
offs are possible using different amount of levels:

Theorem 2 (Grossi and Vitter 2005 [3]) The Com-
pressed Suffix Array of Grossi and Vitter supports retriev-
ing A[i] in (i) O(loglog n) time using nlogo loglogn +
O(nloglog o) bits of space, or (ii) O(log® n) time using
énloga + O(nloglog o) bits of space, for any 0 < € < 1.

As a consequence, simulating the classical binary
searches [5] to find the range of suffix array containing all
the occurrences of a pattern P[1, m] in T[1, n], can then
be done in O(m log'*€ 1) time using space proportional to
the text size. Reporting the occ occurrence positions takes
occ x log® n time. This can be sped up when m is large
enough [3].

Grossi and Vitter also show how to modify a space-
efficient suffix tree [8] so as to obtain O(m/log, n+log® n)
search time, for any constant 0 < € < 1, using O(nlogo)
bits of space.

Sadakane [10] shows how the above compressed suffix
array can be converted into a self-index, and at the same
time optimized in several ways. He does not give direct
access to A[i], but rather to any prefix of T[A[{], n]. This
still suffices to use the binary search algorithm to locate the
pattern occurrences.

Sadakane represents both A and T using the full func-
tion ¥, and a few extra structures. Imagine one wishes to
compare P against T[A[{], n]. For the binary search, one
needs to extract enough characters from T[A[{], n] so that
its lexicographical relation to P is clear. Retrieving char-
acter T[A[i]] is easy; Use a bit vector F[1, n] marking the
suffixes of A[i] where the first character changes from that
of A[i — 1]. After preprocessing F for rank-queries, com-
puting j = rank;(F, i) tells us that T[A[i]] = c;, where ;
is the j-th smallest alphabet character. Once T[A[{]] = ¢;
is determined this way, one needs to obtain the next char-
acter, T[A[i] + 1]. But T[A[i] + 1] = T[A[W¥(i)]], so one
can simply move to i’ = ¥(i) and keep extracting charac-
ters with the same method, as long as necessary. Note that
at most | P| = m characters suffice to decide a comparison
with P. Thus the binary search is simulated in O(m log n)
time.

Up to now the space used is n + o(n) + o log o bits for
Fand X. Sadakane [10] gives an improved representation
for ¥ using nHy + O(nloglog o) bits, where Hy is the ze-
roth order entropy of T.

Sadakane also shows how A[i] can be retrieved, by
plugging in the hierarchical scheme of Grossi and Vitter.
He adds to the scheme the retrieval of the inverse A™![j].
This is used in order to retrieve arbitrary text substrings
T[p, r], by first applying i = A™![p] and then continu-
ing as before to retrieve r — p + 1 first characters of suf-
fix T[A[i], n]. This capability turns the compressed suffix
array into self-index:

Theorem 3 (Sadakane [10]) The Compressed Suf-
fix Array of Sadakane is a self-index occupying
énHo + O(nloglogo) bits, and supporting retrieval of
values Ali] and A™'[j] in O(log® n) time, counting of
pattern occurrences in O(mlogn) time, and displaying
any substring of T of length £ in O({ +1og® n) time. Here
0 < € < 1isan arbitrary constant.

Grossi, Gupta, and Vitter [1,2] have improved the space-
requirement of compressed suffix arrays to depend on the
k-th order entropy of T. The idea behind this improve-
ment is a more careful analysis of regularities captured by
the ¥-function when combined with the indexing capabil-
ities of their new elegant data structure, wavelet tree. They
obtain, among other results, the following tradeoft:
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Theorem 4 (Grossi, Gupta, and Vitter 2003 [2]) The
Compressed Suffix Array of Grossi, Gupta, and Vitter is
a self-index occupying é nHy + o(nlog o) bits, and support-
ing retrieval of values A[i] and A~ [j] in O(log"*€ n) time,
counting of pattern occurrences in O(mlogo +log™*€ n)
time, and displaying any substring of T of length { in
O(t/log, n +log'*® n) time. Here 0 < € <1 is an arbi-
trary constant, k < alog, n for some constant 0 < o < 1.

In the above, value k must be fixed before building the in-
dex. Later, they notice that a simple coding of ¥-values
yields the same nHj bound without the need of fixing k
beforehand [1].

Finally, compressed suffix arrays work as building
blocks to solve other CFTI problems. For example,
Sadakane [11] has created a fully functional compressed
suffix tree by plugging in the compressed suffix array
and the space-efficient suffix tree of Munro, Raman, and
Rao [8]. This compressed suffix tree occupies O(nlogo)
bits of space, simulating all suffix tree operations with at
most O(log 1) slowdown.

Applications

The application domains are the same as for the classi-
cal suffix arrays and trees, with the additional advantage
of scaling up to significantly larger data sets.

URL to Code

See the corresponding Compressed Text Indexing entry
for references to compressed suffix array implementations
and http://www.cs.helsinki.fi/group/suds/cst for an imple-
mentation of Sadakane’s compressed suffix tree.
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» Text Indexing

Recommended Reading

1. Foschini, L., Grossi, R, Gupta, A., Vitter, J.S.: When indexing
equals compression: Experiments with compressing suffix ar-
rays and applications. ACM Trans. Algorithms 2(4), 611-639
(2006)

2. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed
text indexes. In: Proc. 14th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), Baltimore, 12-14 January,
pp. 841-850 (2003)

3. Grossi, R, Vitter, J.: Compressed suffix arrays and suffix trees
with applications to text indexing and string matching. SIAM
J. Comput. 35(2), 378-407 (2006)

4. Jacobson, G.: Space-efficient static trees and graphs. In: Proc.
30th IEEE Symposium on Foundations of Computer Science
(FOCS), Research Triangle Park, 30 October — 1 November,
pp. 549-554 (1989)

5. Manber, U., Myers, G.: Suffix arrays: a new method for on-line
string searches. SIAM J. Comput. 22(5), 935-948 (1993)

6. Manzini, G.: An analysis of the Burrows-Wheeler transform.
J.ACM 48(3), 407-430 (2001)

7. Munro, |.: Tables. In: Proc. 16th Conference on Founda-
tions of Software Technology and Theoretical Computer Sci-
ence (FSTTCS). LNCS, vol. 1180, Hyderabad, 18-20 December,
pp. 37-42 (1996)

8. Munro, I, Raman, V., Rao, S.: Space efficient suffix trees. J. Algo-
rithms 39(2), 205-222 (2001)

9. Navarro, G., Makinen, V.. Compressed full-text indexes. ACM
Comput. Surv. 39(1), Article 2 (2007)

10. Sadakane, K.: New text indexing functionalities of the com-
pressed suffix arrays. J. Algorithms 48(2), 294-313 (2003)

11. Sadakane, K.: Compressed suffix trees with full functionality.
Theor. Comput. Syst. 41, 589-607 (2007)

|
Compressed Text Indexing
2005; Ferragina, Manzini

VELI MAKINEN'!, GONZALO NAVARRO?

! Department of Computer Science,
University of Helsinki, Helsinki, Finland

2 Department of Computer Science,
University of Chile, Santiago, Chile

Keywords and Synonyms

Space-efficient text indexing; Compressed full-text index-
ing; Self-indexing

Problem Definition

Given a text string T = t1t, ... t, over an alphabet X' of

size 0, the compressed text indexing (CTI) problem asks to

replace T with a space-efficient data structure capable of

efficiently answering basic string matching and substring

queries on T. Typical queries required from such an index

are the following:

e count(P): count how many times a given pattern string
P=pip2...pmoccursin T.

e Jocate(P): return the locations where P occurs in T.

o display(i, j): return TT[i, j].

Key Results

An elegant solution to the problem is obtained by ex-
ploiting the connection of Burrows-Wheeler Transform
(BWT) [1] and Suffix Array data structure [9]. The suf-
fix array SA[1l,n] of T is the permutation of text posi-
tions (1...n) listing the suffixes T[i, n] in lexicographic
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order. That is, T[SA[i], n] is the ith smallest suffix. The
BWT is formed by (1) a permutation T°"! of T defined
as TP'[i] = T[SA[i] — 1], where T[0] = T[n], and (2) the
number i* = SATI[1].

A property of the BWT is that symbols having the same
context (i. e., string following them in T') are consecutive in
TP, This makes it easy to compress T°" achieving space
close to high-order empirical entropies [10]. On the other
hand, the suffix array is a versatile text index, allowing for
example O(m log n) time counting queries (using two bi-
nary searches on SA) after which one can locate the occur-
rences in optimal time.

Ferragina and Manzini [3] discovered a way to com-
bine the compressibility of the BWT and the indexing
properties of the suffix array. The structure is essentially
a compressed representation of the BWT plus some small
additional structures to make it searchable.

We first focus on retrieving arbitrary substrings from
this compressed text representation, and later consider
searching capabilities. To retrieve the whole text from the
structure (that is, to support display(1, n)), it is enough
to invert the BWT. For this purpose, let us consider a table
LF[1, n] defined such that if T[i] is permuted to T°*![;]
and T[i —1] to T®[j] then LF[j] = j. It is then im-
mediate that T can be retrieved backwards by printing
TOWi*] - TP LF[i*]] - T°"Y[LE[LF[i*]]]... (by defini-
tion TPW![i*] corresponds to T'[n]).

To represent array LF space-efficiently, Ferragina and
Manzini noticed that each LF[i] can be expressed as fol-
lows:

Lemma 1 (Ferragina and Manzini 2005 [3]) LF[i] =
C(c) + rank.(i), where ¢ = T™![i], C(c) tells how many
times symbols smaller than c appear in T®' and rank.(i)
tells how many times symbol c appears in T®![1, i].

General display(i,j) queries rely on a regular sampling
of the text. Every text position of the form j - s, being s
the sampling rate, is stored together with SA™![j - 5], the
suffix array position pointing to it. To solve display(i, j)
we start from the smallest sampled text position j' - s > j
and apply the BWT inversion procedure starting with
SAT![j - 5] instead of i". This gives the characters in re-
verse order from j' - s — 1 to i, requiring at most j — i +s
steps.

It also happens that the very same two-part ex-
pression of LF[i] enables efficient count(P) queries.
The idea is that if one knows the range of the
suffix array, say SAl[sp;,ep;], such that the suffixes
T[SA[spi]l.n], T[SA[sp; + 1],n],..., T[SA[ep;], n] are
the only ones containing P[i,m] as a prefix, then one
can compute the new range SA[sp;—;,epi—;] where

the suffixes contain P[i—1,m] as a prefix, as fol-
lows: spj—1 = C(P[i —1]) + rankp[i—1j(sp;i —1) +1 and
epi—1 = C(P[i — 1]) + rankp[j—1j(ep;). It is then enough
to scan the pattern backwards and compute values C() and
rank.() 2m times to find out the (possibly empty) range
of the suffix array where all the suffixes start with the com-
plete P. Returning ep; — sp; + 1 solves the count(P) query
without the need of having the suffix array available at all.

For locating each such occurrence SA[i], sp; < i <
ep1, one can compute the sequence i, LF[i], LF[LF[i]],
..., until LF¥[i] is a sampled suffix array position and thus
it is explicitly stored in the sampling structure designed for
display(i,j) queries. Then SA[i] = SA[LF*[i]] + k. As we
are virtually moving sequentially on the text, we cannot do
more than s steps in this process.

Now consider the space requirement. Values C() can
be stored trivially in a table of o log, n bits. T°"![i] can
be computed in O(o) time by checking for which ¢ is
rank(i) # rank.(i — 1). The sampling rate can be cho-
sen as s = @(logpre n) so that the samples require o(n)
bits. The only real challenge is to preprocess the text for
rank.() queries. This has been a subject of intensive re-
search in recent years and many solutions have been pro-
posed. The original proposal builds several small partial
sum data structures on top of the compressed BWT, and
achieves the following result:

Theorem 2 (Ferragina and Manzini 2005 [3]) The
CTI problem can be solved using a so-called FM-
Index (FMI), of size 5nHy + o(nlogo) bits, that supports
count(P) in O(m) time, locate(P) in O(o log”E n) time
per occurrence, and display(i, j) in O(c(j — i +log'™ n))
time. Here Hy is the kth order empirical entropy of
T, 0 = o(log n/loglog n), k <log_(n/logn) — w(l), and
€ > 0 is an arbitrary constant.

The original FM-Index has a severe restriction on the al-
phabet size. This has been removed in follow-up works.
Conceptually, the easiest way to achieve a more alphabet-
friendly instance of the FM-index is to build a wavelet
tree [5] on TP, This is a binary tree on X' such that
each node v handles a subset S(v) of the alphabet, which
is split among its children. The root handles ¥ and each
leaf handles a single symbol. Each node v encodes those
positions i so that TP%[i] € S(v). For those positions,
node v only stores a bit vector telling which go to the left,
which to the right. The node bit vectors are preprocessed
for constant time rank; () queries using o(n)-bit data struc-
tures [6, 12]. Grossi et al. [4] show that the wavelet tree
built using the encoding of [12] occupies nHy + o(nlog o)
bits. It is then easy to simulate a single rank () query by
log, o rank;() queries. With the same cost one can obtain
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TP![{]. Some later enhancements have improved the time
requirement, so as to obtain, for example, the following re-
sult:

Theorem 3 (Mikinen and Navarro 2005 [7]) The CTI
problem can be solved using a so-called Succinct Suffix
Array (SSA), of size nHy + o(nlogo) bits, that supports
count(P) in O(m(1 +logo/loglog n)) time, locate(P) in
O(log'*€ nlogo/loglog n) time per occurrence, and dis-
play(i,j) in O((j — i +log' ™ n)log o/ loglog n) time. Here
H) is the zero-order entropy of T, o = o(n), and € > 0 is an
arbitrary constant.

Ferragina et al. [2] developed a technique called compres-
sion boosting that finds an optimal partitioning of T°"
such that, when one compresses each piece separately us-
ing its zero-order model, the result is proportional to the
kth order entropy. This can be combined with the idea of
SSA by building a wavelet tree separately for each piece
and some additional structures in order to solve global
rank.() queries from the individual wavelet trees:

Theorem 4 (Ferragina et al. [4]) The CTI problem can
be solved using a so-called Alphabet-Friendly FM-Index
(AF-FMI), of size nHy, + o(nlog o) bits, with the same time
complexities and restrictions of SSA with k < alog, n, for
any constant 0 < a < 1.

A very recent analysis [8] reveals that the space of the plain
SSA is bounded by the same nHj. + o(n log o) bits, making
the boosting approach to achieve the same result unneces-
sary in theory. In practice, implementations of [4, 7] are
superior by far to those building directly on this simplify-
ing idea.

Applications

Sequence analysis in Bioinformatics, search and re-
trieval on oriental and agglutinating languages, multime-
dia streams, and even structured and traditional database
scenarios.

URL to Code and Data Sets

Site Pizza-Chili http://pizzachili.dcc.uchile.cl or http://
pizzachili.di.unipi.it contains a collection of standardized
library implementations as well as data sets and experi-
mental comparisons.

Cross References
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» Sequential Exact String Matching
» Text Indexing
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Problem Definition

Suppose that a message M = (s1,s2,...,5,) of length
n = |M| symbols is to be represented, where each symbol
s; is an integer in the range 1 <'s; < U, for some upper
limit U that may or may not be known, and may or may
not be finite. Messages in this form are commonly the out-
put of some kind of modeling step in a data compression
system. The objective is to represent the message over a bi-
nary output alphabet {0, 1} using as few as possible output
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bits. A special case of the problem arises when the elements
of the message are strictly increasing, s; < s;;1. In this case
the message M can be thought of as identifying a subset
of {1,2,..., U}. Examples include storing sets of IP ad-
dresses or product codes, and recording the destinations
of hyperlinks in the graph representation of the world wide
web.

A key restriction in this problem is that it may not be
assumed that n > U. That is, it must be assumed that M is
too short (relative to the universe U) to warrant the calcu-
lation of an M-specific code. Indeed, in the strictly increas-
ing case, n < U is guaranteed. A message used as an exam-
ple belowis M; = (1,3,1,1,1,10, 8,2, 1, 1). Note that any
message M can be converted to another message M’ over
the alphabet U’ = Un by taking prefix sums. The transfor-
mation is reversible, with the inverse operation known as
“taking gaps”.

Key Results

A key limit on static codes is expressed by the Kraft-
McMillan inequality (see [13]): if the codeword for a sym-
bol x is of length ¢, then g:l 270 <1 4s required if
the code is to be left-to-right decodeable, with no code-
word a prefix of any other codeword. Another key bound
is the combinatorial cost of describing a set. If an n-
subset of 1...U is chosen at random, then a total of
log, (E{) ~ nlog,(U/n) bits are required to describe that
subset.

Unary and Binary Codes

As a first example method, consider Unary coding, in
which the symbol x is represented as x — 1 bits that are
1, followed by a single 0-bit. For example, the first three
symbols of message M; would be coded by “0-110-0,
where the dashes are purely illustrative and do not form
part of the coded representation. Because the Unary code
for x is exactly x bits long, this code strongly favors small
integers, and has a corresponding ideal symbol probabil-
ity distribution (the distribution for which this particular
pattern of codeword lengths yields the minimal message
length) given by Prob(x) = 27~.

Unary has the useful attribute of being an infinite code.
But unless the message M is dominated by small inte-
gers, Unary is a relatively expensive code. In particular, the
Unary-coded representation of a message M = (s ...s,)
requires ) _.s; bits, and when M is a gapped representa-
tion of a subset of 1... U, can be as long as U bits in total.

The best-known code in computing is Binary.
If 271 < U <2k for some integer k, then symbols
1 <'s; < U can be represented in k > log, U bits each. In

this case, the code is finite, and the ideal probability distri-
bution is given by Prob(x) = 27%. When U = 2, this then
implies that Prob(x) = 2~ logym = 1/p,

When U is known precisely, and is not a power of two,
2K — U of the codewords can be shortened to k — 1 bits
long, in a Minimal Binary code. It is conventional to assign
the short codewords to symbols 1---2% — U. The code-
words for the remaining symbols, (2¥ — U +1)--- U, re-
main k bits long.

Golomb Codes

In 1966 Solomon Golomb provided an elegant hybrid be-
tween Unary and Binary codes (see [15]). He observed
that if a random n-subset of the items 1--- U was selected,
then the gaps between consecutive members of the sub-
set were defined by a geometric probability distribution
Prob(x) = p(1 — p)*~!, where p = n/U is the probability
that any selected item is a member of the subset.

If b is chosen such that (1 —p)h = 0.5, this proba-
bility distribution suggests that the codeword for x + b
should be one bit longer than the codeword for x. The so-
lution b =1log0.5/log(1 — p) ~ 0.69/p ~ 0.69U/n spec-
ifies a parameter b that defines the Golomb code. To
then represent integer x, calculate 1+ ((x — 1) div b) as
a quotient, and code that part in Unary; and calculate
1+ ((x — 1) mod b) as a remainder part, and code it in
Minimal Binary, against a maximum bound of b. When
concatenated, the two parts form the codeword for integer
x. As an example, suppose that b = 5 is specified. Then the
five Minimal Binary codewords for the five possible binary
sufhix parts of the codewords are “00”, “01”, “10”,“1107,
and “111”. The number 8 is thus coded as a Unary prefix
of “10” to indicate a quotient part of 2, followed by a Min-
imal Binary remainder of “10” representing 3, to make an
overall codeword of “10-10".

Like Unary, the Golomb code is infinite; but by design
is adjustable to different probability distributions. When
b = 2 for integer k a special case of the Golomb code
arises, usually called a Rice code.

Elias Codes

Peter Elias (again, see [15]) provided further hybrids be-
tween Unary and Binary codes in work published in 1975.
This family of codes are defined recursively, with Unary
being the simplest member.

To move from one member of the family to the next,
the previous member is used to specify the number of bits
in the standard binary representation of the value x being
coded (that is, the value 1 + [log, x]); then, once the length
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has been specified, the trailing bits of x, with the top bit
suppressed, are coded in Binary.

For example, the second member of the Elias family is
Cy, and can be thought of as a Unary-Binary code: Unary
to indicate the prefix part, being the magnitude of x; and
then Binary to indicate the value of x within the range
specified by the prefix part. The first few C,, codewords are
thus “0”, “10-07, “10-1”, “110-007, and so on, where
the dashes are again purely illustrative. In general, the C,,
codeword for a value x requires 1 + |log, x| bits for the
Unary prefix part, and a further [log, x| for the binary suf-
fix part, and the ideal probability distribution is thus given
by Prob(x) > 1/(2x2).

After Cy, the next member of the Elias family is Cs.
The only difference between C,, codewords and the corre-
sponding Cs codewords is that in the latter C,, is used to
store the prefix part, rather than Unary. Further members
of the family of Elias codes can be generated by applying
the same process recursively, but for practical purposes Cg
is the last useful member of the family, even for relatively
large values of x. To see why, note that |C, (x)| < |Cs(x)|
whenever x < 31, meaning that Cs is longer than the next
Elias code only for values x > 232,

Fibonacci-Based Codes

Another interesting code is derived from the Fibonacci
sequence described (for this purpose) as F; =1, F, =2,
F3 =3, F; =5, Fs = 8, and so on. The Zeckendorf repre-
sentation of a natural number is a list of Fibonacci values
that add up to that number, with the restriction that no
two adjacent Fibonacci numbers may be used. For exam-
ple, the number 10 is the sum of 2 + 8 = F, + Fs.

The simplest Fibonacci code is derived directly from
the ordered Zeckendorf representation of the target value,
and consists of a “0” bit in the ith position (counting from
the left) of the codeword if F; does not appear in the sum,
and a “1” bit in that position if it does, with indices con-
sidered in increasing order. Because it is not possible for
both F; and Fj,; to be part of the sum, the last two bits
of this string must be “01”. An appended “1” bit is thus
sufficient to signal the end of each codeword. As always,
the assumption of monotonically decreasing symbol prob-
abilities means that short codes are assigned to small val-
ues. The code for integer one is “1-1”, and the next few
codewords are “01-17, “001-17, “101-1", “0001-17,
“1001-1", where, as before, the embedded dash is purely
illustrative.

Because F, ~ ¢" where ¢ is the golden ratio
¢ = (1++/5)/2 ~ 1.61803, the codeword for x is ap-
proximately 1 +log, x ~ 1+ 1.44log, x bits long, and is

shorter than C, for all values except x = 1. It is also as
good as, or better than, Cg over a wide range of prac-
tical values between 2 and Fj9 = 6,765. Higher-order Fi-
bonacci codes are also possible, with increased minimum
codeword lengths, and decreased coefficients on the loga-
rithmic term. Fenwick [8] provides good coverage of Fi-
bonacci codes.

Byte Aligned Codes

Performing the necessary bit-packing and bit-unpacking
operations to extract unrestricted bit sequences can be
costly in terms of decoding throughput rates, and a whole
class of codes that operate on units of bytes rather then bits
have been developed - the Byte Aligned codes.

The simplest Byte Aligned code is an interleaved eight-
bit analog of the Elias C,, mechanism. The top bit in each
byte is reserved for a flag that indicates (when “0”) that
“this is the last byte of this codeword” and (when “1”) that
“this is not the last byte of this codeword, take another
one as well”. The other seven bits in each byte are used for
data bits. For example, the number 1,234 is coded into two
bytes, “209-008”, and is reconstructed via the calcula-
tion (209 — 128 + 1) x 128° + (008 + 1) x 128! = 1,234.

In this simplest byte aligned code, a total of
8[(log, x)/7] bits are used, which makes it more effective
asymptotically than the 1 + 2|log, x| bits required by the
Elias C), code. However, the minimum codeword length
of eight bits means that Byte Aligned codes are expensive
on messages dominated by small values.

Byte Aligned codes are fast to decode. They also pro-
vide another useful feature - the facility to quickly “seek”
forwards in the compressed stream over a given number
of codewords. A third key advantage of byte codes is that if
the compressed message is to be searched, the search pat-
tern can be rendered into a sequence of bytes using the
same code, and then any byte-based pattern matching util-
ity be invoked [7]. The zero top bit in all final bytes means
that false matches are identified with a single additional
test.

An improvement to the simple Byte Aligned coding
mechanism arises from the observation that there is noth-
ing special about the value 128 as the separating value
between the stopper and continuer bytes, and that dif-
ferent values lead to different tradeoffs in overall code-
word lengths [3]. In these (S, C)-Byte Aligned codes, val-
ues of S and C such that S + C = 256 are chosen, and each
codeword consists of a sequence of zero or more con-
tinuer bytes with values greater than or equal to S, and
ends with a final stopper byte with a value less than S.
Other variants include methods that use bytes as the cod-
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ing units to form Huffman codes, either using eight-bit
coding symbols or tagged seven-bit units [7]; and meth-
ods that partially permute the alphabet, but avoid the need
for a complete mapping [6]. Culpepper and Moffat [6] also
describe a byte aligned coding method that creates a set of
byte-based codewords with the property that the first byte
uniquely identifies the length of the codeword. Similarly,
Nibble codes can be designed as a 4-bit analog of the Byte
Aligned approach, where one bit is reserved for a stopper-
continuer flag, and three bits are used for data.

Other Static Codes

There have been a wide range of other variants described
in the literature. Several of these adjust the code by alter-
ing the boundaries of the set of buckets that define the
code, and coding a value x as a Unary bucket identifier,
followed by a Minimal Binary offset within the specified
bucket (see [15]).

For example, the Elias C), code can be regarded as be-
ing a Unary-Binary combination relative to a vector of
bucket sizes (2°,2!,22,23,2%, ... ). Teuhola (see [ 15]) pro-
posed a hybrid in which a parameter k is chosen, and the
vector of bucket sizes is given by (2, 2k+1 2k+2 2k+3 "y,
One way of setting the parameter k is to take it to be
the length in bits of the median sequence value, so that
the first bit of each codeword approximately halves the
range of observed symbol values. Another variant method
is described by Boldi and Vigna [2], who use a vector
(2K — 1, (2K — 1)2k, (2F — 1)2%F (2F — 1)2%F,...) to ob-
tain a family of codes that are analytically and empirically
well-suited to power-law probability distributions, espe-
cially those associated with web-graph compression. In
this method k is typically in the range 2 to 4, and a Minimal
Binary code is used for the suffix part.

Fenwick [8] provides detailed coverage of a wide range
of static coding methods. Chen et al. [4] have also recently
considered the problem of coding messages over sparse al-
phabets.

A Context Sensitive Code

The static codes described in the previous sections use the
same set of codeword assignments throughout the encod-
ing of the message. Better compression can be achieved in
situations in which the symbol probability distribution is
locally homogeneous, but not globally homogeneous.
Moffat and Stuiver [12] provided an off-line method
that processes the message holisticly, in this case not be-
cause a parameter is computed (as is the case for the Bi-
nary code), but because the symbols are coded in a non-
sequential manner. Their Interpolative code is a recursive

coding method that is capable of achieving very compact
representations, especially when the gaps are not indepen-
dent of each other.

To explain the method, consider the subset form of the
example message, as shown by sequence M, in Table 1.
Suppose that the decoder is aware that the largest value in
the subset does not exceed 29. Then every item in M is
greater than or equal to lo = 1 and less than or equal to
hi = 29, and the 29 different possibilities could be coded
using Binary in fewer than [log,(29 — 1+ 1)] = 5bits
each. In particular, the mid-value in M, in this example
the value s5 = 7 (it doesn’t matter which mid-value is cho-
sen), can certainly be transmitted to the decoder using five
bits. Then, once the middle number is pinned down, all
of the remaining values can be coded within more precise
ranges, and might require fewer than five bits each.

Now consider in more detail the range of values that
the mid-value can span. Since there are n = 10 numbers
in the list overall, there are four distinct values that pre-
cede s5, and another five that follow it. From this argument
a more restricted range for s5 can be inferred: lo’ = lo + 4
and hi’ = hi —5, meaning that the fifth value of M, (the
number 7) can be Minimal Binary coded as a value within
the range [5, 24] using just 4 bits. The first row of Table 1
shows this process.

Now there are two recursive subproblems - transmit-
ting the left part, (1,4, 5, 6), against the knowledge that
every value is greater than lo=1and hi=7 —1 = 6; and
transmitting the right part, (17, 25,27, 28, 29), against the
knowledge that every value is greater than lo=7+1=38
and less than or equal to hi = 29. These two sublists are
processed recursively in the order shown in the remain-
der of Table 1, again with tighter ranges [lo’, hi'] calculated
and Minimal Binary codes emitted

One key aspect of the Interpolative code is that the sit-
uation can arise in which codewords that are zero bits long
are called for, indicated when lo’ = hi’. No bits need to be
emitted in this case, since only one value is within the in-
dicated range and the decoder can infer it. Four of the
symbols in M, benefit from this possibility. This feature
means that the Interpolative code is particularly effective
when the subset contains clusters of consecutive items, or
localized subset regions where there is a high density. In
the limit, if the subset contains every element in the uni-
versal set, no bits at all are required once U is known. More
generally, it is possible for dense sets to be represented in
fewer than one bit per symbol.

Table 1 presents the Interpolative code using (in the
final column) Minimal Binary for each value within its
bounded range. A refinement is to use a Centered Mini-
mal Binary code so that the short codewords are assigned
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Compressing Integer Sequences and Sets, Table 1

Example encodings of message M, = (1,4,5,6,7,17,25,27, 28, 29) using the Interpolative code. When a Minimal Binary code is
used, a total of 20 bits are required. When /o’ = hi’, no bits are output

Indexi Values; lo hi lo’ hi

{si—lo’,hi’ — o’} Binary

5 7 1129 5|24 | 2,19 000100010
2 4 1 41 22 10 11

1 1 1 11 3] 02 00 0

3 5 5 5[ 5[ 00 = =

4 6 6 6 6 0,0 = =

8 27 8(29(10(27 (1717 0111111111
6 17 826 8(25| 9,17 01001 |1001
7 25 1812618 26| 7,8 0111 |1110
9 28 28129(28|28| 0,0 = =

10 29 29129(29|29| 0,0 = =

in the middle of the range rather than at the beginning,
recognizing that the mid value in a set is more likely to be
near the middle of the range spanned by those items than
it is to the ends of the range. Adding this enhancement re-
quires a trivial restructure of Minimal Binary coding, and
tends to be beneficial in practice. But improvement is not
guaranteed, and, as it turns out, on sequence M, the use of
a Centered Minimal Binary code adds one bit to the length
of the compressed representation compared to the Mini-
mal Binary code shown in Table 1.

Cheng et al. [5] describe in detail techniques for fast
decoding of Interpolative codes.

Hybrid Methods

It was noted above that the message must be assumed
to be short relative to the total possible universe of sym-
bols, and that n < U. Fraenkel and Klein [9] observed
that the sequence of symbol magnitudes (that is, the se-
quence of values [log, s;]) in the message must be over
a much more compact and dense range than the message
itself, and it can be effective to use a principled code for
the prefix parts that indicate the magnitudes, in conjunc-
tion with straightforward Binary codes for the suffix parts.
That is, rather than using Unary for the prefix part, a Huft-
man (minimum-redundancy) code can be used.

In 1996 Peter Fenwick (see [13]) described a simi-
lar mechanism using Arithmetic coding, and as well in-
corporated an additional benefit. His Structured Arith-
metic coder makes use of adaptive probability estimation
and two-part codes, being a magnitude and a suffix part,
with both calculated adaptively. The magnitude parts have
a small range, and that code is allowed to adapt its inferred
probability distribution quickly, to account for volatile lo-
cal probability changes. The resultant two-stage coding

process has the unique benefit of “smearing” probabil-
ity changes across ranges of values, rather than confining
them to the actual values recently processed.

Other Coding Methods

Other recent context sensitive codes include the Binary
Adaptive Sequential code of Moffat and Anh [11]; and the
Packed Binary codes of Anh and Moffat [1]. More gener-
ally, Witten et al. [15] and Moffat and Turpin [13] provide
details of the Huffman and Arithmetic coding techniques
that are likely to yield better compression when the length
of the message M is large relative to the size of the source
alphabet U.

Applications

A key application of compressed set representation tech-
niques is to the storage of inverted indexes in large full-
text retrieval systems of the kind operated by web search
companies [15].

Open Problems

There has been recent work on compressed set representa-
tions that support operations such as rank and select, with-
out requiring that the set be decompressed (see, for exam-
ple, Gupta etal. [10] and Raman et al. [14]). Improvements
to these methods, and balancing the requirements of ef-
fective compression versus efficient data access, are active
areas of research.

Experimental Results

Comparisons based on typical data sets of a realistic size,
reporting both compression effectiveness and decoding ef-
ficiency are the norm in this area of work. Witten et al.[15]
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give details of actual compression performance, as do the
majority of published papers.

URL to Code

The page at http://www.csse.unimelb.edu.au/~alistair/
codes/ provides a simple text-based “compression” system
that allows exploration of the various codes described here.
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Problem Definition

This problem concerns the construction of pure Nash
equilibria (PNE) in a special class of atomic congestion
games, known as the Parallel Links Game (PLG). The pur-
pose of this note is to gather recent advances in the exis-
tence and tractability of PNE in PLG.

THE PURE PARALLEL LINKS GAME. Let N = [n]! be
a set of (selfish) players, each of them willing to have her

VkeN, [k] ={1,2,...,k}.
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good served by a unique shared resource (link) of a sys-
tem. Let E = [m] be the set of all these links. For each
link e € E, and each playeri € N,let D; .(-) : R>o = Rxg
be the charging mechanism according to which link e
charges player i for using it. Each player i € [n] comes
with a service requirement (e. g., traffic demand, or pro-
cessing time) Wi, e] > 0, if she is to be served by link
e € E. A service requirement Wi, e] is allowed to get the
value 00, to denote the fact that player i would never want
to be assigned to link e. The charging mechanisms are
functions of each link’s cumulative congestion.

Any element o0 € E is called a pure strategy for
a player. Then, this player is assumed to assign her own
good to link e. A collection of pure strategies for all the
players is called a pure strategies profile, or a configura-
tion of the players, or a state of the game.

The individual cost of player i wrt the profile o
is: IC;(0) = Di,g[(zje[n]:aj:m Wlj.o;]). Thus, the Pure
Parallel Links Game (PLG) is the game in strategic
form defined as I = (N, (X; = E)jen, (IC;)ien), whose
acceptable solutions are only PNE. Clearly, an arbi-
trary instance of PLG can be described by the tuple
(N,E,(Wli,el)ien,ecek, (Di,e("))ien,ecE)-

DEALING WITH SELFISH BEHAVIOR. The dominant
solution concept for finite games in strategic form, is the
Nash Equlibrium [14]. The definition of pure Nash Equi-
libria for PLG is the following:

Definition 1 (Pure Nash Equilibrium) For any instance
(N,E, (Wi, el)ien,eek, (Di,e(-)ien,eck) of PLG, a pure
strategies profile o € E" is a Pure Nash Equilibrium
(PNE in short), iff:

Vi e N,Ve € E,1C;(0) = D; g, (Zje[n]ﬂ/_:m W{j. Gi])
< Do (Wl el + Xjetmntiyoy-e Whiiel)-

A refinement of PNE are the k-robust PNE, for
n > k > 1[9]. These are pure profiles for which no subset
of at most k players may concurrently change their strate-
gies in such a way that the worst possible individual cost
among the movers is strictly decreased.

QUALITY OF PURE EQUILIBRIA. In order to deter-
mine the quality of a PNE, a social cost function that
measures it must be specified. The typical assumption
in the literature of PLG, is that the social cost func-
tion is the worst individual cost paid by the players:
VYo € E", SC(0) = max;en{IC;(0)} and Vp € (A4A,)",
SCp) = Y gepn (1 en Pi(0i))-max;en{ICi(0)}. Observe
that, for mixed profiles, the social cost is the expectation of
the maximum individual cost among the players.

The measure of the quality of an instance of PLG wrt
PNE, is measured by the Pure Price of Anarchy (PPoA in

short) [12]: PPoA = max {(SC(0))/OPT : 0 € E" isPNE}
where OPT = mingegn{SC(0)}.

DISCRETE DYNAMICS. Crucial concepts of strategic
games are the best and better responses. Given a config-
uration o € E", an improvement step, or selfish step,
or better response of player i € N is the choice by i
of a pure strategy o € E \ {0;}, so that player i would
have a positive gain by this unilateral change (i.e., pro-
vided that the other players maintain the same strate-
gies). That is, IC;(0) > IC;(0c ®; o) where, 0 ®; o =
(01,...,0i—1,0,0i41,...,0y,). A best response, or greedy
selfish step of player i, is any change from the current link
0; toan element o* € argmax,ep{IC;(0 ®; «)}. Anim-
provement path (aka a sequence of selfish steps [6], or
an elementary step system [3]) is a sequence of configu-
rations = = (0(1),...,0(k)) such that

V2 <r<k,3i, e N,da, € E:
[o(r) = o(r—1)®;,0,]A[IC;,(0(r) < IC;, (o(r—1))].

A game has the Finite Improvement Property (FIP) iff
any improvement path has finite length. A game has the
Finite Best Response Property (FBRP) iff any improve-
ment path, each step of whose is a best response of some
player, has finite length.

An alternative trend is to, rather than consider sequen-
tial improvement paths, let the players conduct selfish im-
provement steps concurrently. Nevertheless, the selfish de-
cisions are no longer deterministic, but rather distribu-
tions over the links, in order to have some notion of a pri-
ori Nash property that justifies these moves. The selfish
players try to minimize their expected individual costs this
time. Rounds of concurrent moves occur until a posteriori
Nash Property is achieved. This is called a selfish rerout-

ing policy [4].

Subclasses of PLG

[PLG;] Monotone PLG: The charging mechanism of each
pair of a link and a player, is a non-decreasing function of
the resource’s cumulative congestion.

[PLG;] Resource Specific Weights PLG (RSPLG):
Each player may have a different service demand from ev-
ery link.

[PLG3] Player Specific Delays PLG (PSPLG): Each
link may have a different charging mechanism for each
player. Some special cases of PSPLG are the following:

[PLG3,;] Linear Delays PSPLG: Every link has
a (player specific) affine charging mechanism: Vi € N,
Ve € E,Dj.(x) = ajx + bj, for some a;, > 0 and
bi,e = 0.
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[PLG3.;.1] Related Delays PSPLG: Every link has
a (player specific) non-uniformly related charging mech-
anism: Vi € N,Ve € E, W[i,e] = wijand D; .(x) = a;j ¢x
for some a; . > 0.

[PLG4] Resource Uniform Weights PLG (RUPLG):
Each player has a unique service demand from all the re-
sources. le, Vi € N,Ve € E, W[i,e] = w, > 0. A special
case of RUPLG is:

[PLG4.;] Unweighted PLG: All the players have iden-
tical demands from all the links: Vi € N,Ve € E,
Wli,e] =1.

[PLGs] Player Uniform Delays PLG (PUPLG): Each
resource adopts a unique charging mechanism, for all the
players. Thatis, Vi € N, Ve € E, D; .(x) = d.(x).

[PLGs ;] Unrelated Parallel Machines, or Load Bal-
ancing PLG (LBPLG): The links behave as parallel ma-
chines. That is, they charge each of the players for the
cumulative load assigned to their hosts. One may think
(wlog) that all the machines have as charging mecha-
nisms the identity function. That is, Vi € N,Ve € E,
Dj o(x) = x.

[PLGs..;] Uniformly Related Machines LBPLG:
Each player has the same demand at every link, and each
link serves players at a fixed rate. That is: Vi € N, Ve €
E,Wli,e] = w; and Dj.(x) = i Equivalently, ser-
vice demands proportional to the capacities of the ma-
chines are allowed, but the identity function is required
as the charging mechanism: Vi € N,Ve € E, W[i,e] =
‘;’—: and D; ((x) = x.

[PLGs.;.1.1] Identical Machines LBPLG: Each player
has the same demand at every link, and all the delay
mechanisms are the identity function: Vi € N,Ve € E,
Wli, e] = w;and D; .(x) = x.

[PLGs.; 2] Restricted Assignment LBPLG: Each traf-
fic demand is either of unit or infinite size. The machines
are identical. Te, Vi € N,Ve € E, W[i,e] € {1,000} and
Dj o(x) = x.

Algorithmic Questions concerning PLG
The following algorithmic questions are considered:
Problem 1 (PNEExistsInPLG(E, N, W, D))

INPUT:

An instance (N, E,(W/[i, el)ien,eck: (Di,e("))ieN,ccE) of
PLG

OUTPUT: Is there a configuration o € E" of the players to
the links, which is a PNE?

Problem 2 (PNEConstructionInPLG(E, N, W, D))
INPUT:

An instance (N, E, (Wi, e])ien,ecE, (Die(-))ien,ecE) of
PLG

OUTPUT: An assignment o € E" of the players to the links,
which is a PNE.

Problem 3 (BestPNEInPLG(E, N, W, D))

INPUT:

An instance (N, E,(W[i,e])ien,eck. (Di,e("))ien,ecE) of
PLG. A social cost function SC:(Rx()" +— Rx¢ that
characterizes the quality of any configuration o € EN.
OUTPUT: An assignment o € E" of the players to the links,
which is a PNE and minimizes the value of the social cost,
compared to other PNE of PLG.

Problem 4 (WorstPNEInPLG(E, N, W, D))

INPUT:

An instance (N, E,(W[i, e])ien,ecek, (Di,e("))ien,eck) of
PLG. A social cost function SC:(Rx()" > Rx¢ that
characterizes the quality of any configuration o € EN.
OUTPUT: An assignment o € E" of the players to the links,
which is a PNE and maximizes the value of the social cost,
compared to other PNE of PLG.

Problem 5 (DynamicsConvergeInPLG(E, N, W, D))
INPUT:

An instance (N, E,(W[i,e])ien,ecek, (Di,e("))ien,ecE) of
PLG

OUTPUT: Does FIP (or FBRP) hold? How long does it take
then to reach a PNE?

Problem 6 (ReroutingConvergeInPLG(E, N, W, D))
INPUT:

An instance (N, E,(W([i, el)ien,eee, (Di,e("))ien,ccE) of
PLG

OuUTPUT: Compute (if any) a selfish rerouting policy that
converges to a PNE.

Status of Problem 1

Player uniform, unweighted atomic congestion games al-
ways possess a PNE [15], with no assumption on mono-
tonicity of the charging mechanisms. Thus, Problem 1 is
already answered for all unweighted PUPLG. Neverthe-
less, this is not necessarily the case for weighted versions
of PLG:

Theorem 1 ([13]) There is an instance of (monotone)
PSPLG with only three players and three strategies per
player, possessing no PNE. On the other hand, any un-
weighted instance of monotone PSPLG possesses at least one
PNE.

Similar (positive) results were given for LBPLG. The key
observation that lead to these results, is the fact that the
lexicographically minimum vector of machine loads is al-
ways a PNE of the game.
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Theorem 2 There is always a PNE for any instance of Uni-
formly Related LBPLG [7], and actually for any instance of
LBPLG [3]. Indeed, there is a k—robust PNE for any in-
stance of LBPLG, and any 1 < k < n [9].

Status of Problems 2, 5 and 6

[13] gave a constructive proof of existence for PNE in un-
weighted, monotone PSPLG, and thus implies a path of
length at most n that leads to a PNE. Although this is a very
efficient construction of PNE, it is not necessarily an im-
provement path, when all players are considered to coex-
ist all the time, and therefore there is no justification for
the adoption of such a path by the players. Milchtaich [13]
proved that from an arbitrary initial configuration and al-
lowing only best reply defections, there is a best reply im-
provement path of length at most m - ("}"). Finally, [11]
proved for unweighted, Related PSPLG that it possesses
FIP. Nevertheless, the convergence time is poor.

For LBPLG, the implicit connection of PNE construc-
tion to classical scheduling problems, has lead to quite in-
teresting results.

Theorem 3 ([7]) The LPT algorithm of Graham, yields
a PNE for the case of Uniformly Related LBPLG, in time
O(mlog m).

The drawback of the LPT algorithm is that it is central-
ized and not selfishly motivated. An alternative approach,
called Nashification, is to start from an arbitrary initial
configuration ¢ € E” and then try to construct a PNE of at
most the same maximum individual cost among the play-
ers.

Theorem 4 ([6]) There is an Xnm?) time Nashification
algorithm for any instance of Uniformly Related PLG.

An alternative style of Nashification, is to let the players
follow an arbitrary improvement path. Nevertheless, it is
not always the case that this leads to a polynomial time
construction of a PNE, as the following theorem states:

Theorem 5 For Identical Machines LBPLG:
o There exist best response improvement paths of length

.Q(max {2*/;, (%)m}) [3,6].

o Any best response improvement path is of length (2")
[6].

o Any best response improvement path, which gives prior-
ity to players of maximum weight among those willing
to defect in each improvement step, is of length at most n
[3].

o If all the service demands are integers, then any im-
provement path which gives priority to unilateral im-

provement steps, and otherwise allows only selfish 2-flips
(ie, swapping of hosting machines between two goods)
converges to a 2-robust PNE in at most 3(3_;cn Wi)*
steps [9].

The following result concerns selfish rerouting policies:

Theorem 6 ([4])

o For unweighted Identical Machines LBPLG, a simple
policy (BALANCE) forcing all the players of overloaded
links to migrate to a new (random) link with probability
proportional to the load of the link, converges to a PNE
in KAloglog n + log m) rounds of concurrent moves. The
same convergence time holds also for a simple Nash
Rerouting Policy, in which each mover actually has an
incentive to move.

e For unweighted Uniformly Related LBPLG, BALANCE
has the same convergence time, but the Nash Rerouting
Policy may converge in §2(/n) rounds.

Finally, a generic result of [5] is mentioned, that computes
a PNE for arbitrary unweighted, player uniform symmetric
network congestion games in polynomial time, by a nice
exploitation of Rosenthal’s potential and the solution of
a proper minimum cost flow problem. Therefore, for PLG
the following result is implied:

Theorem 7 ([5]) For unweighted, monotone PUPLG,
a PNE can be constructed in polynomial time.

Of course, this result provides no answer, e.g., for Re-
stricted Assignment LBPLG, for which it is still not known
how to efficiently compute PNE.

Status of Problems 3 and 4

The proposed LPT algorithm of [7] for constructing PNE
in Uniformly Related LBPLG, actually provides a solution
which is at most 1.52 < PPoA(LPT) < 1.67 times worse
than the optimum PNE (which is indeed the allocation of
the goods to the links that minimizes the make-span). The
construction of the optimum, as well as the worst PNE
are hard problems, which nevertheless admits a PTAS (in
some cases):

Theorem 8 For LBPLG with a social cost function as de-

fined in the QUALITY OF PURE EQUILIBRIA paragraph:

o ForIdentical Machines, constructing the optimum or the
worst PNE is NP—hard [7].

e For Uniformly Related Machines, there is a PTAS for the
optimum PNE [6].



Computing Pure Equilibria in the Game of Parallel Links

187

e For Uniformly Related Machines, it holds that
PPoA = O (min {(log m)/(loglog m), 10g(smax)/(Smin)})
[2].

o For the Restricted Assignments, PPOA =
(loglog m)) [10].

e For a generalization of the Restricted Assignments,
where the players have goods of any positive, otherwise
infinite service demands from the links (and not only
elements of {1, co}), it holds that m — 1 < PPoOA < m

[10].

It is finally mentioned that a recent result [1] for un-
weighted, single commodity network congestion games
with linear delays, is translated to the following result for
PLG:

2((log m)/

Theorem 9 ([1]) For unweighted PUPLG with linear
charging mechanisms for the links, the worst case PNE may
be a factor of PPoA = 5/2 away from the optimum solution,
wrt the social cost defined in the QUALITY OF PURE EQUI-
LIBRIA paragraph.

Key Results

None

Applications

Congestion games in general have attracted much atten-
tion from many disciplines, partly because they capture
a large class of routing and resource allocation scenarios.

PLG in particular, is the most elementary (non-trivial)
atomic congestion game among a large number of players.
Despite its simplicity, it was proved ([8] that it is asymp-
totically the worst case instance wrt the maximum individ-
ual cost measure, for a large class atomic congestion games
involving the so called layered networks. Therefore, PLG is
considered an excellent starting point for studying conges-
tion games in large scale networks.

The importance of seeking for PNE, rather than arbi-
trary (mixed in general) NE, is quite obvious in sciences
like the economics, ecology, and biology. It is also impor-
tant for computer scientists, since it enforces deterministic
costs to the players, and both the players and the network
designer may feel safer in this case about what they will
actually have to pay.

The question whether the Nash Dynamics converge to
a PNE in a reasonable amount of time, is also quite im-
portant, since (in case of a positive answer) it justifies the
selfish, decentralized, local dynamics that appear in large
scale communications systems. Additionally, the selfish
rerouting schemes are of great importance, since this is

what should actually be expected from selfish, decentral-
ized computing environments.

Open Problems

Open Question 1 Determine the (in)existence of PNE for
all the instances of PLG that do not belong in LBPLG, or in
monotone PSPLG.

Open Question 2  Determine the (in)existence of
k—robust PNE for all the instances of PLG that do not
belong in LBPLG.

Open Question 3 Is there a polynomial time algorithm
for constructing k—robust PNE, even for the Identical Ma-
chines LBPLG and k > 1 being a constant?

Open Question 4 Do the improvement paths of instances
of PLG other than PSPLG and LBPLG converge to a PNE?

Open Question 5 Are there selfish rerouting policies of in-
stances of PLG other than Identical Machines LBPLG con-
verge to a PNE? How long much time would they need, in
case of a positive answer?
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A concurrent system is a collection of processors that com-
municate by reading and writing from a shared memory.
A distributed system is a collection of processors that com-
municate by sending messages over a communication net-
work. Such systems are used for various reasons: to allow
a large number of processors to solve a problem together
much faster than any processor can do alone, to allow the
distribution of data in several locations, to allow different
processors to share resources such as data items, printers
or discs, or simply to enable users to send electronic mail.

A process corresponds to a given computation. That is,
given some program, its execution is a process. Sometimes,
it is convenient to refer to the program code itself as a pro-
cess. A process runs on a processor, which is the physical
hardware. Several processes can run on the same processor
although in such a case only one of them may be active at
any given time. Real concurrency is achieved when several
processes are running simultaneously on several proces-
sors.

Processes in a concurrent system often need to syn-
chronize their actions. Synchronization between processes
is classified as either cooperation or contention. A typical
example for cooperation is the case in which there are two
sets of processes, called the producers and the consumers,
where the producers produce data items which the con-
sumers then consume.

Contention arises when several processes compete for
exclusive use of shared resources, such as data items, files,
discs, printers, etc. For example, the integrity of the data
may be destroyed if two processes update a common file at
the same time, and as a result, deposits and withdrawals
could be lost, confirmed reservations might have disap-
peared, etc. In such cases it is sometimes essential to allow
at most one process to use a given resource at any given
time.

Resource allocation is about interactions between pro-
cesses that involve contention. The problem is, how to re-
solve conflicts resulting when several processes are trying
to use shared resources. Put another way, how to allocate
shared resources to competing processes. A special case of
a general resource allocation problem is the mutual exclu-
sion problem where only a single resource is available.

The Mutual Exclusion Problem

The mutual exclusion problem, which was first introduced
by Edsger W. Dijkstra in 1965, is the guarantee of mutually
exclusive access to a single shared resource when there are
several competing processes [6]. The problem arises in op-
erating systems, database systems, parallel supercomput-
ers, and computer networks, where it is necessary to re-
solve conflicts resulting when several processes are trying
to use shared resources. The problem is of great signifi-
cance, since it lies at the heart of many interprocess syn-
chronization problems.

The problem is formally defined as follows: it is as-
sumed that each process is executing a sequence of in-
structions in an infinite loop. The instructions are divided
into four continuous sections of code: the remainder, en-
try, critical section and exit. Thus, the structure of a mutual
exclusion solution looks as follows:
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loop forever
remainder code;
entry code;
critical section;
exit code

end loop

A process starts by executing the remainder code. At some
point the process might need to execute some code in its
critical section. In order to access its critical section a pro-
cess has to go through an entry code which guarantees that
while it is executing its critical section, no other process
is allowed to execute its critical section. In addition, once
a process finishes its critical section, the process executes
its exit code in which it notifies other processes that it is no
longer in its critical section. After executing the exit code
the process returns to the remainder.

The Mutual exclusion problem is to write the code for
the entry code and the exit code in such a way that the fol-
lowing two basic requirements are satisfied.

Mutual exclusion: No two processes are in their critical
sections at the same time.

Deadlock-freedom: If a process is trying to enter its criti-
cal section, then some process, not necessarily the same one,
eventually enters its critical section.

The deadlock-freedom property guarantees that the sys-
tem as a whole can always continue to make progress.
However deadlock-freedom may still allow “starvation” of
individual processes. That is, a process that is trying to en-
ter its critical section, may never get to enter its critical
section, and wait forever in its entry code. A stronger re-
quirement, which does not allow starvation, is defined as
follows.

Starvation-freedom: If a process is trying to enter its crit-
ical section, then this process must eventually enter its criti-
cal section.

Although starvation-freedom is strictly stronger than
deadlock-freedom, it still allows processes to execute their
critical sections arbitrarily many times before some trying
process can execute its critical section. Such a behavior is
prevented by the following fairness requirement.

First-in-first-out (FIFO): No beginning process can enter
its critical section before a process that is already waiting for
its turn to enter its critical section.

The first two properties, mutual exclusion and deadlock
freedom, were required in the original statement of the
problem by Dijkstra. They are the minimal requirements

that one might want to impose. In solving the problem,
it is assumed that once a process starts executing its crit-
ical section the process always finishes it regardless of the
activity of the other processes. Of all the problems in inter-
process synchronization, the mutual exclusion problem is
the one studied most extensively. This is a deceptive prob-
lem, and at first glance it seems very simple to solve.

Key Results

Numerous solutions for the problem have been proposed
since it was first introduced by Edsger W. Dijkstra in
1965 [6]. Because of its importance and as a result of new
hardware and software developments, new solutions to the
problem are still being designed. Before the results are dis-
cussed, few models for interprocess communication are
mentioned.

Atomic Operations

Most concurrent solutions to the problem assumes an
architecture in which n processes communicate asyn-
chronously via a shared objects. All architectures sup-
port atomic registers, which are shared objects that sup-
port atomic reads and writes operations. A weaker no-
tion than an atomic register, called a safe register, is also
considered in the literature. In a safe register, a read not
concurrent with any writes must obtain the correct value,
however, a read that is concurrent with some write, may
return an arbitrary value. Most modern architectures sup-
port also some form of atomicity which is stronger than
simple reads and writes. Common atomic operations have
special names. Few examples are,

o Test-and-set: takes a shared registers r and a value val.
The value val is assigned to r, and the old value of r is
returned.

o Swap: takes a shared registers r and a local register £,
and atomically exchange their values.

o Fetch-and-increment: takes a register r. The value of r is
incremented by 1, and the old value of r is returned.

o Compare-and-swap: takes a register r, and two values:
new and old. If the current value of the register r is equal
to old, then the value of r is set to new and the value true
is returned; otherwise r is left unchanged and the value
false is returned.

Modern operating systems (such as Unix and Win-

dows) implement synchronization mechanisms, such as

semaphores, that simplify the implementation of mutual
exclusion locks and hence the design of concurrent ap-
plications. Also, modern programming languages (such as

Modula and Java) implement the monitor concept which
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is a program module that is used to ensure exclusive access
to resources.

Algorithms and Lower Bounds

There are hundreds of beautiful algorithms for solving the
problem some of which are also very efficient. Only few are
mentioned below. First algorithms that use only atomic
registers, or even safe registers, are discussed.

The Bakery Algorithm. The Bakery algorithm is one of
the most known and elegant mutual exclusion algorithms
using only safe registers [9]. The algorithm satisfies the
FIFO requirement, however it uses unbounded size reg-
isters. A modified version, called the Black-White Bak-
ery algorithm, satisfies FIFO and uses bounded number of
bounded size atomic registers [14].

Lower bounds. A space lower bound for solving mutual
exclusion using only atomic registers is that: any deadlock-
free mutual exclusion algorithm for n processes must use
at least n shared registers [5]. It was also shown in [5] that
this bound is tight. A time lower bound for any mutual ex-
clusion algorithm using atomic registers is that: there is no
a priori bound on the number of steps taken by a process
in its entry code until it enters its critical section (counting
steps only when no other process is in its critical section or
exit code) [2]. Many other interesting lower bounds exist
for solving mutual exclusion.

A Fast Algorithm. A fast mutual exclusion algorithm,
is an algorithm in which in the absence of contention
only a constant number of shared memory accesses to the
shared registers are needed in order to enter and exit a crit-
ical section. In [10], a fast algorithm using atomic registers
is described, however, in the presence of contention, the
winning process may have to check the status of all other
n processes before it is allowed to enter its critical section.
A natural question to ask is whether this algorithm can be
improved for the case where there is contention.

Adaptive Algorithms. Since the other contending pro-
cesses are waiting for the winner, it is particularly impor-
tant to speed their entry to the critical section, by the de-
sign of an adaptive mutual exclusion algorithm in which
the time complexity is independent of the total number of
processes and is governed only by the current degree of
contention. Several (rather complex) adaptive algorithms
using atomic registers are known [1,3,14]. (Notice that, the
time lower bound mention earlier implies that no adaptive
algorithm using only atomic registers exists when time is
measured by counting all steps.)

Local-spinning Algorithms. Many algorithms include
busy-waiting loops. The idea is that in order to wait, a pro-
cess spins on a flag register, until some other process ter-

minates the spin with a single write operation. Unfortu-
nately, under contention, such spinning may generate lots
of traffic on the interconnection network between the pro-
cess and the memory. An algorithm satisfies local spinning
if the only type of spinning required is local spinning. Lo-
cal Spinning is the situation where a process is spinning on
locally-accessible registers. Shared registers may be locally-
accessible as a result of either coherent caching or when
using distributed shared memory where shared memory is
physically distributed among the processors.

Three local-spinning algorithms are presented
in [4,8,11]. These algorithms use strong atomic operations
(i.e., fetch-and-increment, swap, compare-and-swap),
and are also called scalable algorithms since they are both
local-spinning and adaptive. Performance studies done,
have shown that these algorithms scale very well as con-
tention increases. Local spinning algorithms using only
atomic registers are presented in [1,3,14].

Only few representative results have been mentioned.
There are dozens of other very interesting algorithms and
lower bounds. All the results discussed above, and many
more, are described details in [15]. There are also many
results for solving mutual exclusion in distributed message
passing systems [13].

Applications

Synchronization is a fundamental challenge in computer
science. It is fast becoming a major performance and de-
sign issue for concurrent programming on modern archi-
tectures, and for the design of distributed and concurrent
systems.

Concurrent access to resources shared among several
processes must be synchronized in order to avoid inter-
ference between conflicting operations. Mutual exclusion
locks (i.e., algorithms) are the de facto mechanism for
concurrency control on concurrent applications: a pro-
cess accesses the resource only inside a critical section
code, within which the process is guaranteed exclusive ac-
cess. The popularity of this approach is largely due the
apparently simple programming model of such locks and
the availability of implementations which are efficient and
scalable. Essentially all concurrent programs (including
operating systems) use various types of mutual exclusion
locks for synchronization.

When using locks to protect access to a resource which
is a large data structure (or a database), the granularity of
synchronization is important. Using a single lock to pro-
tect the whole data structure, allowing only one process at
a time to access it, is an example of coarse-grained synchro-
nization. In contrast, fine-grained synchronization enables
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to lock “small pieces” of a data structure, allowing several
processes with non-interfering operations to access it con-
currently. Coarse-grained synchronization is easier to pro-
gram but is less efficient and is not fault-tolerant compared
to fine-grained synchronization. Using locks may degrade
performance as it enforces processes to wait for a lock to
be released. In few cases of simple data structures, such as
queues, stacks and counters, locking may be avoided by
using lock-free data structures.
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Problem Definition

Consider a graph G = (V,E). A subset C of V is called
a dominating set if every vertex is either in C or adjacent
to a vertex in C. If, furthermore, the subgraph induced by
Cis connected, then C is called a connected dominating set.
A connected dominating set with a minimum cardinality
is called a minimum connected dominating set (MCDS).
Computing a MCDS is an NP-hard problem and there
is no polynomial-time approximation with performance
ratio pH(A) for p < 1 unless NP € DTIME(nCrInn)
where H is the harmonic function and A is the maximum
degree of the input graph [10].

A unit disk is a disk with radius one. A unit disk graph
(UDG) is associated with a set of unit disks in the Eu-
clidean plane. Each node is at the center of a unit disk.
An edge exists between two nodes u and v if and only if
|uv| <1 where |uv| is the Euclidean distance between u
and v. This means that two nodes u and v are connected
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with an edge if and only if «’s disk covers v and v’s disk
covers u.

Computing an MCDS in a unit disk graph is still NP-
hard. How hard is it to construct a good approximation for
MCDS in unit disk graphs? Cheng et al. [5] answered this
question by presenting a polynomial-time approximation
scheme.

Historical Background

The connected dominating set problem has been studied
in graph theory for many years [22]. However, recently
it becomes a hot topic due to its application in wireless
networks for virtual backbone construction [4]. Guha and
Khuller [10] gave a two-stage greedy approximation for
the minimum connected dominating set in general graphs
and showed that its performance ratio is 3 + In A where
A is the maximum node degree in the graph. To design
a one-step greedy approximation to reach a similar per-
formance ratio, the difficulty is to find a submodular po-
tential function. In [21], Ruan et al. successfully designed
a one step greedy approximation that reaches a better per-
formance ratio ¢ + In A for any ¢ > 2. Duetal. [6] showed
that there exits a polynomial-time approximation with
a performance ratio a(1 + In A) for any a > 1. The impor-
tance of those works is that the potential functions used
in their greedy algorithm are non-submodular and they
managed to complete its theoretical performance evalua-
tion with fresh ideas.

Guha and Khuller [10] also gave a negative result
that there is no polynomial-time approximation with
a performance ratio pln A for p <1 unless NP C
DTIME(nOWlnmy - Ag indicated by [8], dominating sets
cannot be approximated arbitrarily well, unless P almost
equal to NP. These results move ones’ attention from gen-
eral graphs to unit disk graphs because the unit disk graph
is the model for wireless sensor networks and in unit disk
graphs, MCDS has a polynomial-time approximation with
a constant performance ratio. While this constant ratio is
getting improved step by step [1,2,19,24], Cheng et al. [5]
closed this story by showing the existence of a polynomial-
time approximation scheme (PTAS) for the MCDS in unit
disk graphs. This means that theoretically, the perfor-
mance ratio for polynomial-time approximation can be as
small as 1 + ¢ for any positive number .

Dubhashi et al. [7] showed that once a dominating set
is constructed, a connected dominating set can be eas-
ily computed in a distributed fashion. Most centralized
results for dominating sets are available at [18]. In par-
ticular, a simple constant approximation for dominating
sets in unit disk graphs was presented in [18]. Constant-

factor approximation for minimum-weight (connected)
dominating sets in UDGs was studied in [3]. A PTAS
for the minimum dominating set problem in UDGs was
proposed in [20]. Kuhn et al. [14] proved that a max-
imal independent set (MIS) (and hence also a domi-
nating set) can be computed in asymptotically optimal
time O(log n) in UDGs and a large class of bounded in-
dependence graphs. Luby [17] reported an elegant lo-
cal O(logn) algorithm for MIS on general graphs. Jia
et al. [11] proposed a fast O(log n) distributed approx-
imation for dominating set in general graphs. The first
constant-time distributed algorithm for dominating sets
that achieves a non-trivial approximation ratio for gen-
eral graphs was reported in [15]. The matching £2(log n)
lower bound is considered to be a classic result in dis-
tributed computing [16]. For UDGs a PTAS is achiev-
able in a distributed fashion [13]. The fastest determinis-
tic distributed algorithm for dominating sets in UDGs was
reported in [12], and the fastest randomized distributed
algorithm for dominating sets in UDGs was presented
in [9].

Key Results

The construction of PTAS for MCDS is based on the fact
that there is a polynomial-time approximation with a con-
stant performance ratio. Actually, this fact is quite easy to
see. First, note that a unit disk contains at most five inde-
pendent vertices [2]. This implies that every maximal inde-
pendent set has a size at most 1 + 4opt where opt is the size
of an MCDS. Moreover, every maximal independent set is
a dominating set and it is easy to construct a maximal in-
dependent set with a spanning tree of all edges with length
two. All vertices in this spanning tree form a connected
dominating set of a size at most 1 + 8opt. By improving
the upper bound for the size of a maximal independent
set [25] and the way to interconnecting a maximal inde-
pendent set [19], the constant ratio has been improved to
6.8 with a distributed implementation.

The basic techniques in this construction is nonadap-
tive partition and shifting. Its general picture is as fol-
lows: First, the square containing all vertices of the in-
put unit-disk graph is divided into a grid of small cells.
Each small cell is further divided into two areas, the cen-
tral area and the boundary area. The central area con-
sists of points h distance away from the cell boundary.
The boundary area consists of points within distance
h +1 from the boundary. Therefore, two areas are over-
lapping. Then a minimum union of connected dominat-
ing sets is computed in each cell for connected compo-
nents of the central area of the cell. The key lemma is to
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Connected Dominating Set, Figure 1
Squares Qand Q

prove that the union of all such minimum unions is no
more than the minimum connected dominating set for
the whole graph. For vertices not in central areas, just
use the part of an 8-approximation lying in boundary ar-
eas to dominate them. This part together with the above
union forms a connected dominating set for the whole
input unit-disk graph. By shifting the grid around to get
partitions at different coordinates, a partition having the
boundary part with a very small upper bound can be ob-
tained.

The following details the construction.

Given an input connected unit-disk graph G = (V, E)
residing in a square Q ={(x,y) |0 <x <¢q,0<y <gq}
where g <|V|. To construct an approximation with
a performance ratio 1+¢ for &> 0, choose an inte-
ger m = O((1/¢)In(1/e)). Let p = |g/m] + 1. Consider
the square Q = {(x,y) | -m < x < mp,—m < y < mp}.
Partition Q into (p+1)x(p+1) grids so that each cell
is an m x m square excluding the top and the right
boundaries and hence no two cells are overlapping each
other. This partition of Q is denoted by P(0) (Fig. 1).
In general, the partition P(a) is obtained from P(0) by
shifting the bottom-left corner of Q from (—m,—m) to
(—m + a,—m + a). Note that shifting from P(0) to P(a) for
0 < a < mkeeps Q covered by the partition.

For each cell e (an m x m square), C.(d) denotes
the set of points in e away from the boundary by dis-
tance at least d, e.g., C.(0) is the cell e itself. Denote
Be(d) = C.(0) — C.(d). Fix a positive integer h =
7+ 3Llog2(4m2/n)J. Call C,(h) the central area of e and
Be(h + 1) the boundary area of e. Hence the boundary area
and the central area of each cell are overlapping with width
one.

Central Area

Let G.(d) denote the part of input graph G lying in area
Ce(d). In particular, G.(h) is the part of graph G lying in
the central area of e. G.(h) may consist of several con-
nected components. Let K, be a subset of vertices in G.(0)
with a minimum cardinality such that for each connected
component H of G,(h), K, contains a connected compo-
nent dominating H. In other words, K, is a minimum
union of connected dominating sets in G(0) for the con-
nected components of G,(h).

Now, denote by K(a) the union of K, for e over all cells
in partition P(a). K(a) has two important properties:

Lemma 1 K(a) can be computed in time nOm?),

Lemma?2 |K%| <optfor0<a<m—1

Lemma 1 is not hard to see. Note that in a square with
edge length /2/2, all vertices induce a complete subgraph
in which any vertex must dominate all other vertices. It fol-
lows that the minimum dominating set for the vertices of
G, (0) has size at most ([+/2m])2. Hence, the size of K, is
at most 3([+/2m])? because any dominating set in a con-
nected graph has a spanning tree with an edge length at
most three. Suppose cell G,.(0) has n, vertices. Then the
number of candidates for K, is at most

3([/2m])?
> (ne) = n00m)
k=0 k

Hence, computing K(a) can be done in time

O(m?)
S (D) o
e e

However, the proof of Lemma 2 is quite tedious. The
reader who is interested in it may find it in [5].

Boundary Area

Let F be a connected dominating set of G satisfying
|F| < 8opt + 1. Denote by F(a) the subset of F lying in
the boundary area B,(h + 1). Since F is constructed in
polynomial-time, only the size of F(a) needs to be studied.

Lemma 3 Suppose h =7 + 3|log,(4m?/x)] and | m/(h +
1)] > 32/e. Then there is at least halfof i = 0, 1, ..., [ m/(h+
1)| — 1 such that |F(i(h + 1))| < & - opt.

Proof Let Fy(a) (Fy(a)) denote the subset of ver-
tices in F(a) each with distance < h + 1 from the hor-
izontal (vertical) boundary of some cell in P(a). Then
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F(a) = Fy(a) U Fy(a). Moreover, all Fy(i(h+1)) for
i=0,1,..., |m/(h +1)] — 1 are disjoint. Hence,

[m/(h+1)]—1
> [Puli(h+1)| < |F| < Sopt.
i=0
Similarly, all Fy(i(h+ 1)) for i =0,1,...,[m/(h +1)] — 1
are disjoint and

Lm/(h+1)]—1
> Fv(ith+ 1) < |F| < 8opt .

Thus

Lm/(h+1)|—1
> [EG(h+ 1)
i=0

Lm/(h+1)|—1

= X

(IFu(i(h + )] + |Fy(i(h + 1))

i=0
< 160pt .
That is,
) Lmi(h+1)] -1
D] VU] = @2)opt

i=0

This means that there are at least half of F(i(h + 1)) for
i=0,1, [m/(h+1)] — 1 satisfying

|F(i(h+1))] < e-opt. a

Putting Together

Now put K(a) and F(a). By Lemmas 2 and 3, there exists
aef{0,h+1,..,(|m/(h+1)] —1)(h+ 1)} such that

|K(a) U F(a)| < (1 +e)opt.

Lemma4 For0 <a < m—1,K(a)U F(a) is a connected
dominating for input connected graph G.

Proof K(a)U F(a) is clearly a dominating set for input
graph G. Its connectivity can be shown as follows. Note
that the central area and the boundary area are overlap-
ping with an area of width one. Thus, for any connected
component H of the subgraph G,(h), F(a) has a vertex
in H. Hence, F(a) must connect to any connected dom-
inating set for H, especially, the one Dy in K(a). This
means that Dy has making up the connections of F lost
from cutting a part in H. Therefore, the connectivity of
K(a) U F(a) follows from the connectivity of F. O

By summarizing the above results, the following result is
obtained:

Theorem 1 There is a (1 + ¢)-approximation for

MCDS in connected unit-disk graphs, running in time
10((1/8) log(1/8)?).

Applications

An important application of connected dominating sets is
to construct virtual backbones for wireless networks, espe-
cially, wireless sensor networks [4]. The topology of a wire-
less sensor network is often a unit disk graph.

Open Problems

In general, the topology of a wireless network is a disk
graph, that is, each vertex is associated with a disk. Differ-
ent disks may have different sizes. There is an edge from
vertex u to vertex v if and only if the disk at u covers
v. A virtual backbone in disk graphs is a subset of ver-
tices, which induces a strongly connected subgraph, such
that every vertex not in the subset has an in-edge coming
from a vertex in the subset and also has an out-edge go-
ing into a vertex in the subset. Such a virtual backbone can
be considered as a connected dominating set in disk graph.
Is there a polynomial-time approximation with a constant
performance ratio? It is open right now. Thai et al. [23] has
made some effort towards this direction.
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Problem Definition

A new model of random graphs was introduced in [7], that
of random regular graphs with edge faults (denoted here-
after by G}, ), obtained by selecting the edges of a random
member of the set of all regular graphs of degree r indepen-
dently and with probability p. Such graphs can represent
a communication network in which the links fail indepen-
dently and with probability f = 1 — p. A formal definition
of the probability space Gj, , follows.

Definition 1 (the G;, , probability space) Let G;, be the
probability space of all random regular graphs with n ver-
tices where the degree of each vertex is r. The probability
space G}, , of random regular graphs with edge faults is
constructed by the following two subsequent random ex-
periments: first, a random regular graph is chosen from the
space G}, and, second, each edge is randomly and indepen-
dently deleted from this graph with probability f = 1 — p.

Important connectivity properties of Gj, , are investigated
in this entry by estimating the ranges of r, f for which,
with high probability, G, , graphs a) are highly connected
b) become disconnected and ¢) admit a giant (i. e. of ©(n)
size) connected component of small diameter.

Notation The terms “almost certainly” (a.c.) and “with
high probability” (w.h.p.) will be frequently used with their
standard meaning for random graph properties. A prop-
erty defined in a random graph holds almost certainly
when its probability tends to 1 as the independent vari-
able (usually the number of vertices in the graph) tends
to infinity. “With high probability” means that the prob-
ability of a property of the random graph (or the success
probability of a randomized algorithm) is at least 1 — n™%,
where « > 0 is a constant and # is the number of vertices
in the graph.

The interested reader can further study [1] for an ex-
cellent exposition of the Probabilistic Method and its ap-
plications, [2] for a classic book on random graphs, as well
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as [6], an excellent book on the design and analysis of ran-
domized algorithms.

Key Results

Summary This entry studies several important connec-

tivity properties of random regular graphs with edge faults.

In order to deal with the G}, » model, [7] first extends the

notion of configurations and the translation lemma be-

tween configurations and random regular graphs provided
by B. Bollobds [2,3], by introducing the concept of ran-
dom configurations to account for edge faults, and by also
providing an extended translation lemma between ran-
dom configurations and random regular graphs with edge
faults.

For this new model of random regular graphs with
edge faults [7] shows that:

1. For all failure probabilities f=1—p <n~¢ (¢ > %
fixed) and any r > 3 the biggest part of G} , (i.e. the
whole graph except of O(1) vertices) remains connected
and this connected part can not be separated, almost
certainly, unless more than r vertices are removed. Note
interestingly that the situation for this range of f and r
is very similar, despite the faults, to the properties of G/,
which is r-connected for r > 3.

2. Gy, is disconnected a.c. for constant f and any r =
o(log n), but is highly connected, almost certainly, when
r > o log n, where o > 0 an appropriate constant.

3. Even when G}, , becomes disconnected, it still has a gi-
ant component of small diameter, even when r = O(1).
An O(nlog n)-time algorithm to construct a giant com-
ponent is provided.

Configurations and Translation Lemmata

Note that it is not as easy (from the technical point of view)
as in the G, case to argue about random regular graphs,
because of the stochastic dependencies on the existence of
the edges due to regularity. The following notion of con-
figurations was introduced by B. Bollobds [2,3] to trans-
late statements for random regular graphs to statements
for the corresponding configurations which avoid the edge
dependencies due to regularity and thus are much easier to
deal with:

Definition 2 (Bollobas, [3]) Letw = U;’Zl w; be a fixed set
of 2m = Z;':l d; labeled vertices where |w;| = d;. A con-
figuration F is a partition of w into m pairs of vertices,
called edges of F.

Given a configuration F, let §(F) be the (multi)graph with
vertex set V in which (7,5) is an edge if and only if F has

a pair (edge) with one element in w; and the other in w;.
Note that every regular graph G € GJ, is of the form 0(F)
for exactly (r!)" configurations. However not every con-
figuration F with d; = r for all j corresponds to a G € G,
since F may have an edge entirely in some w; or parallel
edges joining w; and w;.

Let ¢ be the set of all configurations F and let G}, be the
set of all regular graphs. Given a property (set) Q € GJ, let
Q* C ¢ such that Q* N 671(G) = 671(Q). By estimat-
ing the probability of possible cycles of length one (self-
loops) and two (loops) among pairs w;, w; in 6(F), The
following important lemma follows:

Lemma 1 (Bollobas, [2]) If r > 2 is fixed and property
Q* holds for a.e. configuration, then property Q holds for
a.e. r—regular graph.

The main importance of the above lemma is that when
studying random regular graphs, instead of considering
the set of all random regular graphs, one can study the
(much more easier to deal with) set of configurations.

In order to deal with edge failures, [7] introduces here
the following extension of the notion of configurations:

Definition 3 (random configurations) Let w = U;‘:le
be a fixed set of 2m = Z;f:l d; labeled “vertices” where
|w;| = d;. Let F be any configuration of the set ¢. For each
edge of F, remove it with probability 1 — p, independently.
Let ¢ be the new set of objects and F the outcome of the
experiment. F is called a random configuration.

By introducing probability p in every edge, an extension
of the proof of Lemma 1 leads (since in both Q and 0
each edge has the same probability and independence to
be deleted, thus the modified spaces follow the properties
of Q and Q%) to the following extension to random con-
figurations.

Lemma 2 (extended translation lemma) Let r > 2 fixed
and Q be a property for Gj,,p graphs. If Q holds for a.e.
random configuration, then the corresponding property Q
holds for a.e. graph in G}, ,.

Multiconnectivity Properties of G}, ,

The case of constant link failure probability f is studied,
which represents a worst case for connectivity preserva-
tion. Still, [7] shows that logarithmic degrees suffice to
guarantee that G}, , remains w.h.p. highly connected, de-
spite these constant edge failures. More specifically:

Theorem 3 Let G be an instance of G}, , where p = ©(1)
and r > alogn, where o > 0 an appropriate constant.
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Then G is almost certainly k-connected, where

k=0 (i) ,
loglogn

The proof of the above Theorem uses Chernoff bounds
to estimate the vertex degrees in G}, ,, and “similarity” of
Gj,,p and G,y (whose properties are known) for a suitably
chosen p’.

Now the (more practical) case in which f = 1 — p =
o(1) is considered and it is proved that the desired con-
nectivity properties of random regular graphs are almost
preserved despite the link failures. More specifically:

Theorem4 Letr>3andf=1—p=0(n"¢)fore > 2.
Then the biggest part of Gy, , (i. e. the whole graph except of
O(1) vertices) remains connected and this connected part
(excluding the vertices that were originally neighbors of the
O(1)-sized disconnected set) can not be separated unless
more than r vertices are removed, with probability tending

to 1 as n tends to +o0.

The proof is carefully extending, in the case of faults,
a known technique for random regular graphs about not
admitting small separators.

G, , Becomes Disconnected

Next remark that a constant link failure probability dra-
matically alters the connectivity structure of the regular
graph in the case of low degrees. In particular, by using the
notion of random configurations, [7] proves the following
theorem:

Theorem 5 When 2 <r < —‘120371 and p = O(1) then

G}, p has at least one isolated node with probability at least
1—nk k>2.

The regime for disconnection is in fact larger, since [7]
shows that Gj , is ac. disconnected even for any
r = o(log n) and constant f. The proof of this last claim is
complicated by the fact that due to the range for r one has
to avoid using the extended translation lemma.

Existence of a Giant Component in G}, ,

Since Gy , is ac. disconnected for r = o(logn) and
1 — p = f = ©(1), it would be interesting to know whether
at least a large part of the network represented by Gj, , is
still connected, i. e. whether the biggest connected compo-
nent of G}, , is large. In particular, [7] shows that:

Theorem 6 When f <1— 2 then Gy, admits a gi-

ant (i.e. @ (n)-sized) connected component for any r > 64

with probability at least 1 — O(log2 n)/(n®?), whereaw > 0
a constant that can be selected.

In fact, the proof of the existence of the component in-
cludes first proving the existence (w.h.p.) of a sufficiently
long (of logarithmic size) path as a basis for a BFS pro-
cess starting from the vertices of that path that creates the
component. The proof is quite complex: occupancy ar-
guments are used (bins correspond to the vertices of the
graphs while balls correspond to its edges); however, the
random variables involved are not independent, and in or-
der to use Chernoft-Hoeffding bounds for concentration
one must prove that these random variables, although not
independent, are negatively associated. Furthermore, the
evaluation of the success of the BFS process uses a careful,
detailed average case analysis.

The path construction and the BFS process can be
viewed as an algorithm that (in case of no failures) actu-
ally reveals a giant connected component. This algorithm
is very efficient, as shown by the following result:

Theorem 7 A giant component of G , can be con-
structed in O(nlogn) time, with probability at least
1— O(log2 n)/(n*3), where @ > 0 a constant that can be
selected.

Applications

In recent years the development and use of distributed sys-
tems and communication networks has increased dramat-
ically. In addition, state-of-the-art multiprocessor archi-
tectures compute over structured, regular interconnection
networks. In such environments, several applications may
share the same network while executing concurrently. This
may lead to unavailability of certain network resources
(e.g. links) for certain applications. Similarly, faults may
cause unavailability of links or nodes. The aspect of reli-
able distributed computing (which means computing with
the available resources and resisting faults) adds value to
applications developed in such environments.

When computing in the presence of faults, one cannot
assume that the actual structure of the computing environ-
ment is known. Faults may happen even in execution time.
In addition, what is a “faulty” or “unavailable” link for one
application may in fact be the de-allocation of that link be-
cause it is assigned (e. g. by the network operation system)
to another application. The problem of analyzing allocated
computation or communication in a network over a ran-
domly assigned subnetwork and in the presence of faults
has a nature different from fault analysis of special, well-
structured networks (e. g. hypercube), which does not deal
with network aspects. The work presented in this entry
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addresses this interesting issue, i. e. analyzing the average
case taken over a set of possible topologies and focuses on
multiconnectivity and existence of giant component prop-
erties, required for reliable distributed computing in such
randomly allocated unreliable environments.

The following important application of this work
should be noted: multitasking in distributed memory mul-
tiprocessors is usually performed by assigning an arbitrary
subnetwork (of the interconnection network) to each task
(called the computation graph). Each parallel program may
then be expressed as communicating processors over the
computation graph. Note that a multiconnectivity value k
of the computation graph means also that the execution of
the application can tolerate up to k — 1 on-line additional
Sfaults.

Open Problems

The ideas presented in [7] inspired already further inter-
esting research. Andreas Goerdt [4] continued the work
presented in a preliminary version [8] of [7] and showed
the following results: if the degree r is fixed then p = :11
is a threshold probability for the existence of a linear sized
component in the faulty version of almost all random reg-
ular graphs. In fact, he further shows that if each edge of an
arbitrary graph G with maximum degree bounded above
by r is present with probability p = %, when A <1,
then the faulty version of G has only components whose
size is at most logarithmic in the number of nodes, with
high probability. His result implies some kind of optimal-
ity of random regular graphs with edge faults. Further-
more, [5,10] investigates important expansion properties
of random regular graphs with edge faults, as well as [9]
does in the case of fat-trees, a common type of intercon-
nection networks. It would be also interesting to further
pursue this line of research, by also investigating other
combinatorial properties (and also provide efficient algo-
rithms) for random regular graphs with edge faults.
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Agreement problem

Problem Definition

Reaching agreement is one of the central issues in fault
tolerant distributed computing. One version of this prob-
lem, called Consensus, is defined over a fixed set IT =
{p1,...,pn} of n processes that communicate by ex-
changing messages along channels. Messages are cor-
rectly transmitted (no duplication, no corruption), but
some of them may be lost. Processes may fail by pre-
maturely stopping (crash), may omit to send or receive
some messages (omission), or may compute erroneous
values (Byzantine faults). Such processes are said to be
faulty. Every process p € IT has an initial value v, and
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non-faulty processes must decide irrevocably on a com-
mon value v. Moreover, if the initial values are all equal
to the same value v, then the common decision value
is v. The properties that define Consensus can be split
into safety properties (processes decide on the same value;
the decision value must be consistent with initial values)
and a liveness property (processes must eventually de-
cide).

Various Consensus algorithms have been de-
scribed [6,12] to cope with any type of process failures if
there is a known! bound on the transmission delay of mes-
sages (communication is synchronous) and a known bound
on process relative speeds (processes are synchronous). In
completely asynchronous systems, where there exists no
bound on transmission delays and no bound on process
relative speeds, Fischer, Lynch, and Paterson [8] have
proved that there is no Consensus algorithm resilient
to even one crash failure. The paper by Dwork, Lynch,
and Stockmeyer [7] introduces the concept of partial
synchrony, in the sense it lies between the completely syn-
chronous and completely asynchronous cases, and shows
that partial synchrony makes it possible to solve Consen-
sus in the presence of process failures, whatever the type
of failure is.

For this purpose, the paper examines the quite realistic
case of asynchronous systems that behave synchronously
during some “good” periods of time. Consensus algo-
rithms designed for synchronous systems do not work in
such systems since they may violate the safety properties
of Consensus during a bad period, that is when the sys-
tem behaves asynchronously. This leads to the following
question: is it possible to design a Consensus algorithm
that never violates safety conditions in an asynchronous
system, while ensuring the liveness condition when some
additional conditions are met?

Key Results

The paper has been the first to provide a positive and
comprehensive answer to the above question. More pre-
cisely, the paper (1) defines various types of partial syn-
chrony and introduces a new round based computational
model for partially synchronous systems, (2) gives vari-
ous Consensus algorithms according to the severity of fail-
ures (crash, omission, Byzantine faults with or without au-
thentication), and (3) shows how to implement the round
based computational model in each type of partial syn-
chrony.

ntuitively, “known bound” means that the bound can be “built
into” the algorithm. A formal definition is given in the next section.

Partial Synchrony

Partial synchrony applies both to communications and to
processes. Two definitions for partially synchronous com-
munications are given: (1) for each run, there exists an up-
per bound A on communication delays, but A is unknown
in the sense it depends on the run; (2) there exists an up-
per bound A on communication delays that is common
for all runs (A is known), but holds only after some time
T, called the Global Stabilization Time (GST) that may de-
pend on the run (GST is unknown). Similarly, partially
synchronous processes are defined by replacing “transmis-
sion delay of messages” by “relative process speeds” in
(1) and (2) above. That is, the upper bound on relative pro-
cess speed @ is unknown, or @ is known but holds only
after some unknown time.

Basic Round Model

The paper considers a round based model: computation is
divided into rounds of message exchange. Each round con-
sists of a send step, a receive step, and then a computation
step. In a send step, each process sends messages to any
subset of processes. In a receive step, some subset of the
messages sent to the process during the send step at the
same round is received. In a computation step, each pro-
cess executes a state transition based on its current state
and the set of messages just received.

Some of the messages that are sent may not be re-
ceived, i.e, some can be lost. However, the basic round
model assumes that there is some round GSR, such that
all messages sent from non faulty processes to non faulty
processes at round GSR or afterward are received.

Consensus Algorithm
for Benign Faults (requires f < n/2)

In the paper, the algorithm is only described informally
(textual form). A formal expression is given by Algo-
rithm 1: the code of each process is given round by round,
and each round is specified by the send and the com-
putation steps (the receive step is implicit). The con-
stant f denotes the maximum number of processes that
may be faulty (crash or omission). The algorithm requires
f < n/2.

Rounds are grouped into phases, where each phase
consists in four consecutive rounds. The algorithm in-
cludes the rotating coordinator strategy: each phase k is
led by a unique coordinator—denoted by coordy—defined
as process p; for phase k = i(mod n). Each process p
maintains a set Proper, of values that p has heard of
(proper values), initialized to {v,} where v, is p’s ini-
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1: Initialization:

2 Acceptablep :={v,}
3 Proper, = {vp}

4 votep = L

5: Lock, =0
6
7
8
9

: Round r = 4k — 3:
Send:
send (Acceptable,) to coordy

Compute:

vote, := select one of these common acceptable values

12: Round r =4k —2:

{v, is the initial value of p }

{All the lines for maintaining Proper), are trivial to write, and so are omitted}

0: if p = coord) and p receives at least > n — f messages containinga common value then
1 .

13: Send:

14: if p = coord and vote, # L then

15: send (vote,) toall processes

16:  Compute:

17: if received (v) from coord; then

18: Locky = Lock, \ {v,—}; Lock, = Lock, U {(v, k)};
19: Round r = 4k —1:

20: Send:

21: if3vst. (v, k) € Lock, then

22: send (ack) to coordy

23: Compute:

24: if p = coordy then

25: if received atleast > f + 1 ack messages then

26: DECIDE(vote, );

27: vote, := L

28: Round r = 4k :

29: Send:

30: send (Lock,) to all processes

31:  Compute:

32: forall (v, 0) € Lock, do

33: if received (w, 0) s.t. w # vand 6 > 6 then {release lock on v}
34: Lock, := Lock, U {(w, 0)} \ {(v,0)};

35: if [Lock,| =1 then

36: Acceptable) := v where (v, —) € Lock,

37: else

38: if Lock, = ) then Acceptable, := Proper), else Acceptable, := @

Consensus with Partial Synchrony, Algorithm 1

Consensus algorithm in the basic round model for benign faults (f < n/2)

tial value. Process p attaches Proper, to each message it
sends.

Process p may lock value v when p thinks that some
process might decide v. Thus value v is an acceptable value
to p if (1) v is a proper value to p, and (2) p does not have
a lock on any value except possibly v (lines 35 to 38).

At the first round of phase k (round 4k — 3), each pro-
cess sends the list of its acceptable values to coordy. If co-
ordy receives at least n — f sets of acceptable values that
all contain some value v, then coordy. votes for v (line 11),
and sends its vote to all at second round 4k — 2. Upon
receiving a vote for v, any process locks v in the current
phase (line 18), releases any earlier lock on v, and sends
an acknowledgment to coordy at the next round 4k — 1. If
the latter process receives acknowledgments from at least
f + 1 processes, then it decides (line 26). Finally locks are

released at round 4k—for any value v, only the lock from
the most recent phase is kept, see line 34—and the set of
values acceptable to p is updated (lines 35 to 38).

Consensus Algorithm
for Byzantine Faults (requires f < n/3)

Two algorithms for Byzantine faults are given. The first
algorithm assumes signed messages, which means that
any process can verify the origin of all messages. This
fault model is called Byzantine faults with authentica-
tion. The algorithm has the same phase structure as Al-
gorithm 1. The difference is that (1) messages are signed,
and (2) “proofs” are carried by some messages. A proof
carried by message m sent by some process p; in phase
k consists of a set of signed messages sgn;(m’, k), prov-
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ing that p; received message (', k) in phase k from p; be-
fore sending m. A proof is carried by the message send at
line 16 and line 30 (Algorithm 1). Any process receiving
a message carrying a proof accepts the message and be-
haves accordingly if—and only if the proof is found valid.
The algorithm requires f < n/3 (less than a third of the
processes are faulty).

The second algorithm does not assume a mechanism
for signing messages. Compared to Algorithm 1, the struc-
ture of a phase is slightly changed. The problem is related
to the vote sent by the coordinator (line 15). Can a Byzan-
tine coordinator fool other processes by not sending the
right vote? With signed messages, such a behavior can be
detected thanks to the “proofs” carried by messages. A dif-
ferent mechanism is needed in the absence of signature.

The mechanism is a small variation of the Con-
sistent Broadcast primitive introduced by Srikanth and
Toueg [15]. The broadcast primitive ensures that (1) if
a non faulty process broadcasts m, then every non faulty
process delivers m, and (2) if some non faulty pro-
cess delivers m, then all non faulty processes also even-
tually deliver m. The implementation of this broad-
cast primitive requires two rounds, which define a su-
perround. A phase of the algorithm consists now of
three superrounds. The superrounds 3k —2, 3k —1,
3k mimic rounds 4k — 3, 4k —2, and 4k — 1 of Algo-
rithm 1, respectively. Lock-release of phase k occurs at the
end of superround 3k, i. e., does not require an additional
round, as it does in the two previous algorithms. The algo-
rithm also requires f < n/3.

The Special Case of Synchronous Communication

By strengthening the round based computational model,
the authors show that synchronous communication allow
higher resiliency. More precisely, the paper introduces the
model called the basic round model with signals, in which
upon receiving a signal at round r, every process knows
that all the non faulty processes have received the mes-
sages that it has sent during round r. At each round af-
ter GSR, each non faulty process is guaranteed to receive
a signal. In this computational model, the authors present
three new algorithms tolerating less than # benign faults,
n/2 Byzantine faults with authentication, and n/3 Byzan-
tine faults respectively.

Implementation of the Basic Round Model

The last part of the paper consists of algorithms that sim-
ulate the basic round model under various synchrony as-
sumption, for crash faults and Byzantine faults: first with
partially synchronous communication and synchronous

processes (case 1), second with partially synchronous
communication and processes (case 2), and finally with
partially synchronous processes and synchronous com-
munication (case 3).

In case 1, the paper first assumes the basic case @ = 1,
i.e., all non faulty process progress exactly at the same
speed, which means that they have a common notion of
time. Simulating the basic round model is simple in this
case. In case 2 processes do not have a common notion of
time. The authors handle this case by designing an algo-
rithm for clock synchronization. Then each process uses
its private clock to determine its current round. So pro-
cesses alternate between steps of the clock synchroniza-
tion algorithm and steps simulating rounds of the basic
round model. With synchronous communication (case 3),
the authors show that for any type of faults, the so-called
basic round model with signals is implementable.

Note that, from the very definition of partial syn-
chrony, the six algorithms share the fundamental property
of tolerating message losses, provided they occur during
a finite period of time.

Upper Bound for Resiliency

In parallel, the authors exhibit upper bounds for the re-
siliency degree of Consensus algorithms in each partially
synchronous model, according to the type of faults. They
show that their Consensus algorithms achieve these upper
bounds, and so are optimal with respect to their resiliency
degree. These results are summarized in Table 1.

Applications

Availability is one of the key features of critical systems,
and is defined as the ratio of the time the system is oper-
ational over the total elapsed time. Availability of a sys-
tem can be increased by replicating its critical compo-
nents. Two main classes of replication techniques have
been considered: active replication and passive replica-
tion. The Consensus problem is at the heart of the im-
plementation of these replication techniques. For exam-
ple, active replication, also called state machine replica-
tion [10,14], can be implemented using the group commu-
nication primitive called Atomic Broadcast, which can be
reduced to Consensus [3].

Agreement needs also to be reached in the context of
distributed transactions. Indeed, all participants of a dis-
tributed transaction need to agree on the output commit or
abort of the transaction. This agreement problem, called
Atomic Commitment, differs from Consensus in the va-
lidity property that connects decision values (commit or
abort) to the initial values (favorable to commit, or de-
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Consensus with Partial Synchrony, Table 1

Tight resiliency upper bounds (P stands for “process”, C for “communication”; 0 means “asynchronous”, 1/2 means “partially syn-

chronous”, and 1 means “synchronous”)

P=0 C=0 P=1/2 C=1/2 P=1

C=12 P=1/2 C=1

Benign 0 [(n—1)/2] [(n—1)/2] n—1 n—1
Authenticated Byzantine | 0 [(n—1)/3] [(n—1)/3] [(n—1)/2] n—1
Byzantine 0 [(n—1)/3] [(n—1)/3] [(n—1)/3] [(n—1)/3]

manding abort) [9]. In the case decisions are required in
all executions, the problem can be reduced to Consensus if
the abort decision is acceptable although all processes were
favorable to commit, in some restricted failure cases.

Open Problems

A slight modification to each of the algorithms given in the
paper is to force a process repeatedly to broadcast the mes-
sage “Decide v” after it decides v. Then the resulting algo-
rithms share the property that all non faulty processes def-
initely make a decision within O(f) rounds after GSR, and
the constant factor varies between 4 (benign faults) and 12
(Byzantine faults). A question raised by the authors at the
end of the paper is whether this constant can be reduced.
Interestingly, a positive answer has been given later, in the
case of benign faults and f < n/3, with a constant factor
of 2 instead of 4. This can be achieved with deterministic
algorithms, see [4], based on the communication schema
of the Rabin randomized Consensus algorithm [13].

The second problem left open is the generalization
of this algorithmic approach—namely, the design of al-
gorithms that are always safe and that terminate when
a sufficiently long good period occurs—to other fault tol-
erant distributed problems in partially synchronous sys-
tems. The latter point has been addressed for the Atomic
Commitment and Atomic Broadcast problems (see Sect.
“Applications”).
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Problem Definition

A phylogenetic tree is a binary, rooted, unordered tree
whose leaves are distinctly labeled. A phylogenetic network
is a generalization of a phylogenetic tree formally defined
as a rooted, connected, directed acyclic graph in which:
(1) each node has outdegree at most 2; (2) each node has
indegree 1 or 2, except the root node, which has inde-
gree 0; (3) no node has both indegree 1 and outdegree 1;
and (4) all nodes with outdegree 0 are labeled by elements
from a finite set L in such a way that no two nodes are as-
signed the same label. Nodes of outdegree 0 are referred to
as leaves and identified with their corresponding elements
in L. For any phylogenetic network N, let U(N) be the
undirected graph obtained from N by replacing each di-
rected edge by an undirected edge. N is said to be a galled
phylogenetic network (galled network for short) if all cy-
cles in ‘U(N) are node-disjoint. Galled networks are also
known in the literature as topologies with independent re-
combination events [17], galled trees [3], gt-networks [13],
and level-1 phylogenetic networks [2,7].

A phylogenetic tree with exactly three leaves is called
a rooted triplet. The unique rooted triplet on a leaf set
{x, y,z} in which the lowest common ancestor of x and
y is a proper descendant of the lowest common ancestor
of x and z (or, equivalently, where the lowest common an-
cestor of x and y is a proper descendant of the lowest com-
mon ancestor of y and z) is denoted by ({x, y}, z). For any
phylogenetic network N, a rooted triplet  is said to be con-
sistent with N if t is an induced subgraph of N, and a set 7'
of rooted triplets is consistent with N if every rooted triplet
in T is consistent with N.

Denote the set of leaves in any phylogenetic network N
by A(N), and for any set 7 of rooted triplets, define
A(T) = Uyer Alti). Aset T of rooted triplets is dense
if for each {x, y,z} € A(7) at least one of the three pos-
sible rooted triplets ({x, y},z), ({x,z}, y), and ({y, z}, x)
belongs to 7. If T is dense, then | T'| = @(|A(T)|). Fur-
thermore, for any set 7 of rooted tripletsand L' € A(T),
define 7| L’ as the subset of T consisting of all rooted
triplets t with A(t) € L’. The problem [8] considered here
is as follows.

Problem 1 GivenasetT of rooted triplets, output a galled
network N with A(N) = A(T) such that N and T are
consistent, if such a network exists; otherwise, output null.
(See Fig. 1 for an example.)

Another related problem is the forbidden triplet prob-
lem [4]. It is defined as follows.

Problem 2 Given two sets T and T of rooted triplets,
a galled network N A(N) = A(T) such that (1) N and T

At AN
a b a b
a d
a d
c d b c
Constructing a Galled Phylogenetic Network, Figure 1
A dense set T of rooted triplets with leaf set {a, b, c,d} and

a galled phylogenetic network which is consistent with 7". Note
that this solution is not unique

are consistent and (2) every rooted triplet in F is not consis-
tent with N. If such a network N exists, it is to be reported;
otherwise, output null.

Below, write L = A(T) and n = |L|.

Key Results

Theorem 1 Given a dense set T of rooted triplets with leaf
set L, a galled network consistent with T in On3) time can
be reported, where n = |L|.

Theorem 2 Given a nondense set T of rooted triplets, it is
NP-hard to determine if there exists a galled network that
is consistent with T . Also, it is NP-hard to determine if
there exists a simple phylogenetic network that is consistent

with T .

Below, the problem of returning a galled network N con-
sistent with the maximum number of rooted triplets in
T for any (not necessarily dense) 7 is considered. Since
Theorem 2 implies that this problem is NP-hard, approx-
imation algorithms are studied. An algorithm is called k-
approximable if it always returns a galled network N such
that N(T)/|T| > k, where N(T') is the number of rooted
triplets in 7 that are consistent with N.

Theorem 3 Given a set of rooted triplets T, there is no ap-
proximation algorithm that infers a galled network N such
that N(T)/|T| > 0.4883.

Theorem 4 Given a set of rooted triplets T , there exists
an approximation algorithm for inferring a galled network
N such that N(T)/|T| = 5/12. The running time of the
algorithm is O(|A(T)||T ).

The next theorem considers the forbidden triplet problem.
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Theorem 5 Given two sets of rooted triplets T and T,
there exists an O(|LI?|T|(|T| + |F|))-time algorithm for
inferring a galled network N that guarantees |[N(T)| —
IN(P)| = 5112(1T | = | FD.

Applications

Phylogenetic networks are used by scientists to describe
evolutionary relationships that do not fit the traditional
models in which evolution is assumed to be treelike (see,
e.g., [12,16]). Evolutionary events such as horizontal gene
transfer or hybrid speciation (often referred to as recom-
bination events) that suggest convergence between objects
cannot be represented in a single tree [3,5,13,15,17] but
can be modeled in a phylogenetic network as internal
nodes having more than one parent. Galled networks are
an important type of phylogenetic network that have at-
tracted special attention in the literature [2,3,13,17] due
to their biological significance (see [3]) and their simple,
almost treelike, structure. When the number of recombi-
nation events is limited and most of the recombination
events have occurred recently, a galled network may suf-
fice to accurately describe the evolutionary process un-
der study [3].

An open challenge in the field of phylogenetics is to de-
velop efficient and reliable methods for constructing and
comparing phylogenetic networks. For example, to con-
struct a meaningful phylogenetic network for a large sub-
set of the human population (which may subsequently be
used to help locate regions in the genome associated with
some observable trait indicating a particular disease) in the
future, efficient algorithms are crucial because the input
can be expected to be very large.

The motivation behind the rooted triplet approach
taken in this paper is that a highly accurate tree for
each cardinality three subset of a leaf set can be obtained
through maximume-likelihood-based methods such as [1]
or Sibley-Ahlquist-style DNA-DNA hybridization exper-
iments (see [10]). Hence, the algorithms presented in [7]
and here can be used as the merging step in a divide-
and-conquer approach to constructing phylogenetic net-
works analogous to the quartet method paradigm for in-
ferring unrooted phylogenetic trees [9,11] and other su-
pertree methods (see [6,14] and references therein). Dense
input sets in particular are considered since this case can
be solved in polynomial time.

Open Problems

For the rooted triplet problem, the current approxima-
tion ratio is not tight (0.4883 > N(7)/|T| > 5/12). It is
open if a tight approximation ratio can be found for this

problem. Similarly, a tight approximation ratio needs to
be found for the forbidden triplet problem.

Another direction is to work on a fixed-parameter
polynomial-time algorithm. Assume the number of hybrid
nodes is bounded by h. Can an algorithm that is polyno-
mial in |7 | while exponential in h be given?

Cross References
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Problem Definition

This problem is concerned with a Walrasian equilibrium
model to determine the prices of CPU time. In a market
model of a CPU job scheduling problem, the owner of the
CPU processing time sells time slots to customers and the
prices of each time slot depends on the seller’s strategy
and the customers’ bids (valuation functions). In a Wal-
rasian equilibrium, the market is clear and each customer
is most satisfied according to its valuation function and
current prices. The work of Deng, Huang, and Li [1] estab-
lishes the existence conditions of Walrasion equilibrium,
and obtains complexity results to determine the existence
of equilibrium. It also discusses the issues of excessive sup-
ply of CPU time and price dynamics.

Notations

Consider a combinatorial auction (£2, 1, V):

Commodities: The seller sells m kinds of indivisible

commodities. Let £2 = {w; X §1,...,wy X 8,,} denote

the set of commodities, where J; is the available quan-

tity of the item w;.

o Agents: There are n agents in the market acting as buy-
ers,denoted by I = {1,2, ..., n}.

e Valuation functions: Each buyer i € I has a valua-
tion function v; : 2% — R* to submit the maximum
amount of money he is willing to pay for a certain bun-
dle of items. Let V = {vy,v2, ..., v, }.

An XOR combination of two valuation functions v; and v,

is defined by:

(vi XOR¥,)(S) = max {v(S), v2(S)}

An atomic bid is a valuation function v denoted by a pair
(S, q), where S C 2 and g € R*:

q, ifSCT

v(T) =
0, otherwise

Any valuation function v; can be expressed by an XOR
combination of atomic bids,

vi = (Si1.gi1) XOR(S;2,g:2) ... XOR(Siy, gin)

Given (£2,1, V) as the input, the seller will determine an

allocation and a price vector as the output:

e An allocation X = {Xy, X1, X2,...,X,} is a partition
of 2, in which X; is the bundle of commodities as-
signed to buyer i and Xj is the set of unallocated com-
modities.

e A price vector p is a non-negative vector in R™, whose
jth entry is the price of good w; € £2.

For any subset T = {w; X 01,...,0n X 0} C £2, define

p(T) by p(T) = Z;’ll ojpj. If buyer i is assigned to a bun-

dle X;, his utility is u;(X;, p) = vi(X;) — p(X;).

Definition A Walrasian equilibrium for a combinatorial
auction (§2, I, V) is a tuple (X, p), where X = {X,, X1, ...,
X, } is an allocation and p is a price vector, satisfying that:

(1) p(Xo) = 05

VBC 2, V1<i<n

(2) ui(Xi, p) = ui(B, p),

Such a price vector is also called a market clearing price, or
Walrasian price, or equilibrium price.

The CPU Job-Scheduling Problem

There are two types of players in a market-driven CPU re-
source allocation model: a resource provider and n con-
sumers. The provider sells to the consumers CPU time
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slots and the consumers each have a job that requires
a fixed number of CPU time, and its valuation function
depends on the time slots assigned to the job, usually the
last assigned CPU time slot. Assume that all jobs are re-
leased at time ¢ = 0 and the ith job needs s; time units. The
jobs are interruptible without preemption cost, as is often
modeled for CPU jobs.

Translating into the language of combinatorial auc-
tions, there are m commodities (time units), 2 = {wy, ...,
®m}, and n buyers (jobs) , I ={1,2,...,n}, in the mar-
ket. Each buyer has a valuation function v;, which only
depends on the completion time. Moreover, if not ex-
plicitly mentioned, every job’s valuation function is non-
increasing w.r.t. the completion time.

Key Results

Consider the following linear programming problem:

n ki
e Y3 s

i=1 j=1

s.t. Z Xij <6r, Ywp € 2

i,jlox€Sij

ri

> xij<1. Vi<i<n
j=1

0=<x;;<1, Vi,j

Denote the problem by LPR and its integer restriction by
IP. The following theorem shows that a non-zero gap be-
tween the integer programming problem IP and its lin-
ear relaxation implies the non-existence of the Walrasian
equilibrium.

Theorem 1 In a combinatorial auction, the Walrasian
equilibrium exists if and only if the optimum of IP equals
the optimum of LPR. The size of the LP problem is linear to
the total number of XOR bids.

Theorem 2 Determination of the existence of Walrasian
equilibrium in a CPU job scheduling problem is strong NP-
hard.

Now consider a job scheduling problem in which the cus-
tomers’ valuation functions are all linear. Assume 7 jobs
are released at the time ¢ = 0 for a single machine, the jth
job’s time span is s; € N* and weight w; > 0. The goal
of the scheduling is to minimize the weighted completion
time: Z?Zl wit;, where t; is the completion time of job i.
Such a problem is called an MWCT (Minimal Weighted
Completion Time) problem.

Theorem 3 In a single-machine MWCT job schedul-
ing problem, Walrasian equilibrium always exists when
m > EM + A, where m is the total number of processor
time, EM =Y ! ;'s; and A = maxy {s}. The equilibrium
can be computed in polynomial time.

The following theorem shows the existence of a non-
increasing price sequence if Walrasian equilibrium exists.

Theorem 4 If there exists a Walrasian equilibrium in a job
scheduling problem, it can be adjusted to an equilibrium
with consecutive allocation and a non-increasing equilib-
rium price vector.

Applications

Information technology has changed people’s lifestyles
with the creation of many digital goods, such as word
processing software, computer games, search engines, and
online communities. Such a new economy has already
demanded many theoretical tools (new and old, of eco-
nomics and other related disciplines) be applied to their
development and production, marketing, and pricing. The
lack of a full understanding of the new economy is mainly
due to the fact that digital goods can often be re-produced
at no additional cost, though multi-fold other factors could
also be part of the difficulty. The work of Deng, Huang,
and Li [1] focuses on CPU time as a product for sale in
the market, through the Walrasian pricing model in eco-
nomics. CPU time as a commercial product is extensively
studied in grid computing. Singling out CPU time pricing
will help us to set aside other complicated issues caused by
secondary factors, and a complete understanding of this
special digital product (or service) may shed some light on
the study of other goods in the digital economy.

The utilization of CPU time by multiple customers has
been a crucial issue in the development of operating sys-
tem concept. The rise of grid computing proposes to fully
utilize computational resources, e. g. CPU time, disk space,
bandwidth. Market-oriented schemes have been proposed
for efficient allocation of computational grid recourses,
by [2,5]. Later, various practical and simulation systems
have emerged in grid resource management. Besides the
resource allocation in grids, an economic mechanism has
also been introduced to TCP congestion control problems,
see Kelly [4].
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Problem Definition

Given a point set V, a graph of the vertex set V in which
two vertices have an edge if and only if the distance be-
tween them is at most r for some positive real number
r is called a r-disk graph over the vertex set V and de-
noted by G, (V). If r; < r,, obviously G,, (V) C G, (V).
A graph property is monotonic (increasing) if a graph is
with the property, then every supergraph with the same
vertex set also has the property. The critical-range problem
(or critical-radius problem) is concerned with the minimal
range r such that G, (V) is with some monotonic property.
For example, graph connectivity is monotonic and crucial
to many applications. It is interesting to know whether
G, (V) is connected or not. Let pcon (V) denote the min-
imal range r such that G, (V) is connected. Then, G, (V)
is connected if ¥ > pcon (V), and otherwise not connected.
Here pcon (V) is called the critical range for connectivity of
V. Formally, the critical-range problem is defined as fol-
lows.

Definition 1 The critical range for a monotonic graph
property  over a point set V , denoted by p, (V), is the
smallest range r such that G, (V') has property 7.

From another aspect, for a given geometric property,
a corresponding geometric structure is usually embedded.
In many cases, the critical-range problem for graph prop-
erties is related or equivalent to the longest-edge prob-
lem of corresponding geometric structures. For exam-
ple, if G, (V) is connected, it contains a Euclidean min-
imal spanning tree (EMST), and pcon (V) is equal to the
largest edge length of the EMST. So the critical range
for connectivity problem is equivalent to the longest edge
of the EMST problem, and the critical range for con-
nectivity is the smallest r such that G, (V) contains the
EMST.

In most cases, given an instance, the critical range can
be calculated by polynomial time algorithms. So it is not
a hard problem to decide the critical range. Researchers are
interested in the probabilistic analysis of the critical range,
especially asymptotic behaviors of r-disk graphs over ran-
dom point sets. Random geometric graphs [8] is a general
term for the theory about r-disk graphs over random point
sets.

Key Results

In the following, problems are discussed in a 2D plane.
Let X;, X, - - be independent and uniformly distributed
random points on a bounded region A. Given a posi-
tive integer n, the point process {X;, X5,...,X,}is re-
ferred to as the uniform n-point process on A, and
is denoted by X, (A). Given a positive number A, let
Po (L) be a Poisson random variable with parameter
A, independent of {X;, X5, ...}. Then the point process
{Xl,Xz, .. ,Xpo(n)} is referred to as the Poisson point
process with mean 7 on A, and is denoted by P, (A). A is
called a deployment region. An event is said to be asymp-
totic almost sure if it occurs with a probability that con-
verges to 1 as n — 00.

In a graph, a node is “isolated” if it has no neighbor.
If a graph is connected, there exists no isolated node in
the graph. The asymptotic distribution of the number of
isolated nodes is given by the following theorem [2,6,14].

\/ 1“7:'—+$ and 2 be a unit-area disk

Theorem 1 Let r, = -
or square. The number of isolated nodes in G, (X,(£2)) or

Gy (P,(82)) is asymptotically Poisson with mean et

According to the theorem, the probability of the event
that there is no isolated node is asymptotically equal to

exp (— e_$>. In the theory of random geometric graphs, if
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a graph has no isolated node, it is almost surely connected.
Thus, the next theorem follows [6,8,9].

Inn+§

Theorem 2 Letr, = |/ == and §2 be a unit-area disk or

square. Then,

Pr |G, (X, (82)) is connected| — exp (— e_‘5> , and

Pr [G, (P,(£2))is connected] — exp (— e_g) .

In wireless sensor networks, the deployment region is
k-covered if every point in the deployment region is within
the coverage ranges of at least k sensors (vertices). Assume
the coverage ranges are disks of radius r centered at the
vertices. Let k be a fixed non-negative integer, and £2 be the
unit-area square or disk centered at the origin o. For any
real number ¢, let t§2 denote the set {tx: x € £2}, i.e., the
square or disk of area 2 centered at the origin. Let C,, , (re-
spectively, C), ) denote the event that £2 is (k + 1)-covered
by the (open or closed) disks of radius r centered at the
points in P, (§2) (respectively, X, (£2)). Let K;,,, (respec-
tively, Ké,n) denote the event that \/s(2 is (k + 1)-covered
by the unit-area (closed or open) disks centered at the
points in P, (/s§2) (respectively, X, (+/5£2)). To simplify
the presentation, let  denote the peripheral of §2, which
is equal to 4 (respectively, 2./7) if §2 is a square (respec-
tively, disk). For any £ € R, let

2

(‘/fnﬂe_%
(vt
16( 24/n+e” 2
V£

2k+6 (fe42)! ¢

a(§) =

and

) (ﬁ+ ﬁ) ne_%,

VEr =
kg 1€ s

B €)=

ol

ifk>1.

The asymptotics of Pr [C,,,,] and Pr [C/n’,] as n ap-
proaches infinity, and the asymptotics of Pr|[K; ,]| and
Pr[K ;’n] as s approaches infinity are given in the following
two theorems [4,10,16].

Theorem 3 Let Iy = In n+(2k+1) Inln n+{-',,'

mn
Iflim, o0 &y = € for some & € R, then

, 1
1—ﬁ($) < nli)rréoPr [Cn,rn] < Tx(f) s (lf’ld
1

1- () < nli)néopr [C/n’,n] =< Td(f) .

If lim, o0 &, = 00, then

lim Pr[Cy,,]= lim Pr[C, ]=1.

n—>00 n—>00

If lim, o &, = —00,then

lim Pr[C,,,|= lim Pr[C,

n—00 n—00 m:rn

]=0.

Theorem 4 Let p(s) = Ins + 2(k+1)Inlns + £(s). If
lims_ o0 & (s) = & for some & € R, then

1- ﬂ (é) = sl—1>nolo Pr [Ks,u(s)s] = 1++“(§_) , and
11— ﬂ (é) = sl—1>nolo Pr I:K;’/‘L(S)S:I < 1++“(§_) .

If lim; 500 & (s) = 00, then

Sl_lflgo Pr [KS,M(S)S] = Sl_lfgo Pr I:K;’M(S)S:I =1.
If lims_so0 £ (s) = —00, then

lim Pr[K, 0] = lim Pr [K;, Ms)s] - 0.

§—>00 —00

In Gabriel graphs (GG), two nodes have an edge if and
only if there is no other node in the disk using the segment
of these two nodes as its diameter. If V is a point set and
I is a positive real number, we use pgg (V) to denote the
largest edge length of the GG over V, and N (V, I) denotes
the number of GG edges over V whose length is at least [.
Wan and Yi (2007) [11] gave the following theorem.

Theorem 5 Let §2 be a unit-area disk. For any constant
& N (P22

mean 2e%, and

Inn+§

W) is asymptotically Poisson with

an; E:| = exp (—Ze_§> .

Let ppe1 (V) denote the largest edge length of the Delaunay
triangulation over a point set V. The following theorem is
given by Kozma et al. [3].

lim Pr |:pGG (P.(£2) <2
n—00

Theorem 6 Let $2 be a unit-area disk. Then,

5/1
ppet (Xn(£2) = O (\/%) .

In wireless networks with greedy forward routing (GFR),
each node discards a packet if none of its neighbors is
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closer to the destination of the packet than itself, or oth-
erwise forwards the packet to the neighbor that is the clos-
est to the destination. Since each node only needs to main-
tain the locations of its one-hop neighbors and each packet
should contain the location of the destination node, GFR
can be implemented in a localized and memoryless man-
ner. Because of the existence of local minima where none
of the neighbors is closer to the destination than the cur-
rent node, a packet may be discarded before it reaches its
destination. To ensure that every packet can reach its des-
tination, all nodes should have sufficiently large transmis-
sion radii to avoid the existence of local minima. Apply-
ing the r-disk model, we assume every node has the same
transmission radius r, and each pair of nodes with distance
at most r has a link. For a point set V, the critical transmis-
sion radius for GFR is given by

pen (V)= max ( min ||w—u||)-
(u,v)eV2,uztv \llw=vl<l|lu—v|

In the definition, (u,v) is a source-destination pair and
w is a node that is closer to v than u. If every node
is with a transmission radius not less than pggr (V),
GFR can guarantee the deliverability between any source-
destination pair [12].

Theorem 7 Let §2 be a unit-area convex compact region

with bounded curvature, and o = 1/ (2/3 — \/3/2n) ~

1.62. Suppose that nwr2 = (B + o (1)) In n for some f > 0.

Then,

1. If B > Po, then pger (P, (£2)) < ry is asymptotically al-
most sure.

2. If B < Po, then pgrr (Pn(82)) > 1, is asymptotically al-
most sure.

Applications

In the literature, r-disk graphs (or unit disk graphs by
proper scaling) are widely used to model homogeneous
wireless networks in which each node is equipped with
an omnidirectional antenna. According to the path loss of
radio frequency, the transmission ranges (radii) of wire-
less devices depend on transmission powers. For simplic-
ity, the power assignment problem usually is modeled by
a corresponding transmission range assignment problem.
Recently, wireless ad-hoc networks have attracted atten-
tion from a lot of researchers because of various possible
applications. In many of the possible applications, since
wireless devices are powered by batteries, transmission
range assignment has become one of the most important
tools for prolonging system lifetime. By applying the the-
ory of critical ranges, a randomly deployed wireless ad-hoc

network may have good properties in high probability if
the transmission range is larger than some critical value.

One application of critical ranges is to connectivity of
networks. A network is k-vertex-connected if there exist
k node-disjoint paths between any pair of nodes. With
such a property, at least k distinct communication paths
exist between any pair of nodes, and the network is con-
nected even if k — 1 nodes fail. Thus, with a higher de-
gree of connectivity, a network may have larger bandwidth
and higher fault tolerance capacity. In addition, in [9,14],
and [15], networks with node or link failures were consid-
ered.

Another application is in topology control. To effi-
ciently operate wireless ad-hoc networks, subsets of net-
work topology will be constructed and maintained. The re-
lated topics are called topology control. A spanner is a sub-
set of the network topology in which the minimal total cost
of a path between any pair of nodes, e.g. distance or en-
ergy consumption, is only a constant fact larger than the
minimal total cost in the original network topology. Hence
spanners are good candidates for virtual backbones. Geo-
metric structures, including Euclidean minimal spanning
trees, relative neighbor graphs, Gabriel graphs, Delaunay
triangulations, Yao’s graphs, etc., are widely used ingredi-
ents to construct spanners [1,5,13]. By applying the knowl-
edge of critical ranges, the complexity of algorithm design
can be reduced, e. g. [3,11].

Open Problems

A number of problems related to critical ranges remain
open. Most problems discussed here apply 2-D plane ge-
ometry. In other words, the point set is in the plane. The
first direction for future work is to study those problems in
high-dimension spaces. Another open research area is on
the longest-edge problems for other geometric structures,
e.g. relative neighbor graphs and Yao’s graphs. A third
direction for future work involves considering relations
between graph properties. A well-known result in ran-
dom geometric graphs is that vanishment of isolated nodes
asymptotically implies connectivity of networks. But for
the wireless networks with unreliable links, this property
is still open. In addition, in wireless sensor networks, the
relations between connectivity and coverage are also inter-
esting.
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Problem Definition

This paper deals with proving negative results for distribu-
tion-free PAC learning. The crux of the problem is prov-
ing that a polynomial-time algorithm for learning various
concept classes in the PAC model implies that several well-
known cryptosystems are insecure. Thus, if we assume
a particular cryptosystem is secure we can conclude that
it is impossible to efficiently learn a corresponding set of
concept classes.

PAC Learning

We recall here the PAC learning model. Let C be a concept
class (a set of functions over n variables), and let D be a dis-
tribution over the input space {0, 1}". With C we associate
a size function size that measures the complexity of each
¢ € C. For example if C is a class of Boolean circuits then
size(c) is equal to the number of gates in c. Let A be a ran-
domized algorithm that has access to an oracle which re-
turns labeled examples (x, c(x)) for some unknown ¢ € C;
the examples x are drawn according to D. Algorithm A
PAC-learns concept class C by hypothesis class H if for
any ¢ € C, for any distribution D over the input space, and
any €,8 > 0, A runs in time poly(n, 1/€,1/8, size(c)) and
produces a hypothesis h € H such that with probability
at least (1 — §), Prp[c(x) # h(x)] < €. This probability is
taken over the random coin tosses of A as well as over the
random labeled examples seen from distribution D. When
H = C (the hypothesis must be some concept in C) then
A is a proper PAC learning algorithm. In this article is not
assumed H = C, i.e. hardness results for representation-
independent learning algorithms are discussed. The only
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assumption made on H is that for each h € H, h can be
evaluated in polynomial time for every input of length .

Cryptographic Primitives

Also required is knowledge of various cryptographic prim-
itives such as public-key cryptosystems, one-way func-
tions, and one-way trapdoor functions. For a formal treat-
ment of these primitives refer to Goldreich [3].

Informally, a function f is one-way if, after choosing
arandom x of length n and giving an adversary A only f (x),
it is computationally intractable for A to find y such that
f(y) = f(x). Furthermore, given x, f(x) can be evaluated
in polynomial time. That is, f is easy to compute one-way,
but there is no polynomial-time algorithm for finding pre-
images of f on randomly chosen inputs. Say a function f
is trapdoor if f is one-way, but if an adversary A is given
access to a secret “trapdoor” d, then A can efficiently find
random pre-images of f.

Trapdoor functions that are permutations are closely
related to public-key cryptosystems: imagine a person Alice
who wants to allow others to secretly communicate with
her. She publishes a one-way trapdoor permutation f so
that it is publicly available to everyone, but keeps the “trap-
door” d to herself. Then Bob can send Alice a secret mes-
sage x by sending her f(x). Only Alice is able to invert f
(recall f is a permutation) and recover x because only she
knows d.

Key Results

The main insight in Kearns and Valiant’s work is the fol-
lowing: if f is a trapdoor one-way function, and C is a cir-
cuit class containing the set of functions capable of invert-
ing f given access to the trap-door, then C is not efficiently
PAC learnable. I.e., assuming the difficulty of inverting
trap-door function f, there is a distribution on {0,1}"
where no learning algorithm can succeed in learning f’s
associated decryption function.

The following theorem is stated in the (closely related)
language of public-key cryptosystems:

Theorem 1 (cryptography and learning; cf. Kearns &
Valiant[4]) Consider a public-key cryptosystem for en-
crypting individual bits into n-bit strings. Let C be a concept
class that contains all the decryption functions {0,1}" —
{0, 1} of the cryptosystem. If C is PAC-learnable in poly-
nomial time then there is a polynomial-time distinguisher
between the encryptions of 0 and 1.

The intuition behind the proof is as follows: fix an encryp-
tion function f, associated secret key d, and let C be a class
of functions such that the problem of inverting f (x) given d

can be computed by an element ¢ of C; notice that knowl-

edge of d is not necessary to generate a polynomial-size

sample of (x, f(x)) pairs.

If C is PAC learnable, then given a relatively small
number of encrypted messages (x, f(x)), a learning algo-
rithm A can find a hypothesis h that will approximate ¢
and thus have a non-negligible advantage for decrypting
future randomly encrypted messages. This violates the se-
curity properties of the cryptosystem.

A natural question follows: “what is the simplest con-
cept class that can compute the decryption function for se-
cure public-key cryptosystems?” For example, if a public-
key cryptosystem is proven to be secure, and encrypted
messages can be decrypted (given the secret key) by
polynomial-size DNF formulas, then, by Theorem 1, one
could conclude that polynomial-size DNF formulas can-
not be learned in the PAC model.

Kearns and Valiant do not obtain such a hardness re-
sult for learning DNF formulas (it is still an outstanding
open problem), but they do obtain a variety of hardness re-
sults assuming the security of various well-known public-
key cryptosystems based on the hardness of number-theo-
retic problems such as factoring.

The following list summarizes their main results:

e Let C be the class of polynomial-size Boolean for-
mulas (not necessarily DNF formulas) or polynomial-
size circuits of logarithmic depth. Assuming that the
RSA cryptosystem is secure, or recognizing quadratic
residues is intractable, or factoring Blum integers is in-
tractable, C is not PAC learnable.

o Let C be the class of polynomial-size deterministic fi-
nite automata. Under the same assumptions as above,
Cis not PAC learnable.

o Let Cbe the class of constant depth threshold circuits of
polynomial size. Under the same assumptions as above,
C is not PAC learnable. The depth of the circuit class is
not specified but it can be seen to be at most 4.

Kearns and Valiant also prove the intractability of finding

optimal solutions to related coloring problems assuming

the security of the above cryptographic primitives (break-
ing RSA, for example).

Relationship to Hardness Results for Proper Learning

The key results above should not be confused with the ex-
tensive literature regarding hardness results for properly
PAC learning concept classes. For example, it is known [1]
that, unless RP=NP, it is impossible to properly PAC learn
polynomial-size DNF formulas (i.e., require the learner
to learn DNF formulas by outputting a DNF formula as
its hypothesis). Such results are incomparable to the work
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of Kearns and Valiant, as they require something much
stronger from the learner but take a much weaker assump-
tion (RP=NP is a weaker assumption than the assumption
that RSA is secure).

Applications and Related Work

Valiant [10] was the first to observe that the existence of
a particular cryptographic primitive (pseudorandom func-
tions) implies hardness results for PAC learning concept
classes. The work of Kearns and Valiant has subsequently
found many applications. Klivans and Sherstov have re-
cently shown [7] that the problem of PAC learning in-
tersections of halfspaces (a very simple depth-2 thresh-
old circuit) is intractable unless certain lattice-based cryp-
tosystems due to Regev [9] are not secure. Their result
makes use of the Kearns and Valiant approach. Angluin
and Kharitonov [2] have extended the Kearns and Valiant
paradigm to give cryptographic hardness results for learn-
ing concept classes even if the learner has query access to
the unknown concept. Kharitonov [6] has given hardness
results for learning polynomial-size, constant depth cir-
cuits that assumes the existence of secure pseudorandom
generators rather than the existence of public-key cryp-
tosystems.

Open Problems

The major open problem in this line of research is to
prove a cryptographic hardness result for PAC learning
polynomial-size DNF formulas. Currently, polynomial-
size DNF formulas seem far too weak to compute cryp-
tographic primitives such as the decryption function for
a well-known cryptosystem. The fastest known algorithm
for PAC learning DNF formulas runs in time 200 [8].
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Problem Definition

A dictionary (also known as an associative array) is an
abstract data structure capable of storing a set S of ele-
ments, referred to as keys, and information associated with
each key. The operations supported by a dictionary are in-
sertion of a key (and associated information), deletion of
a key, and lookup of a key (retrieving the associated infor-
mation). In case a lookup is made on a key that is not in S,
this must be reported by the data structure.

Hash tables is a class of data structures used for imple-
menting dictionaries in the RAM model of computation.
Open addressing hash tables is a particularly simple type of
hash tables, where the data structure is an array such that
each entry either contains a key of S or is marked “empty”.
Cuckoo hashing addresses the problem of implementing
an open addressing hash table with worst case constant
lookup time. Specifically, a constant number of entries in
the hash table should be associated with each key x, such
that x is present in one of these entries if x € S.

In the following it is assumed that a key as well as
the information associated with a key are single machine
words. This is essentially without loss of generality: If
more associated data is wanted, it can be referred to using
a pointer. If keys are longer than one machine word, they
can be mapped down to a single (or a few) machine words
using universal hashing [3], and the described method
used on the hash values (which are unique to each key with
high probability). The original key must then be stored as
associated data. Let n denote an upper bound on the size
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of S. To allow the size of the set to grow beyond #, global
rebuilding can be used.

Key Results
Prehistory

It has been known since the advent of universal hashing [3]
that if the hash table has r > n? entries, a lookup can be
implemented by retrieving just a single entry in the hash
table. This is done by storing a key x in entry h(x) of the
hash table, where / is a function from the set of machine
words to {1, ..., n*}. If h is chosen at random from a uni-
versal family of hash functions [3] then with probability
at least 1/2 every key in S is assigned a unique entry. The
same behavior would be seen if & was a random func-
tion, but in contrast to random functions there are univer-
sal families that allow efficient storage and evaluation of h
(constant number of machine words, and constant evalu-
ation time).

This overview concentrates on the case where the
space used by the hash table is linear, r = O(n). It was
shown by Azar et al. [1] that it is possible to combine lin-
ear space with worst case constant lookup time. It was not
considered how to construct the data structure. Since ran-
domization is used, all schemes discussed have a probabil-
ity of error. However, this probability is small, O(1/n) or
less for all schemes, and an error can be handled by rehash-
ing (changing the hash functions and rebuilding the hash
table). The result of [1] was shown under the assumption
that the algorithm is given free access to a number of truly
random hash functions. In many of the subsequent papers
it is shown how to achieve the bounds using explicitly de-
fined hash functions. However, no attempt is made here to
cover these constructions.

In the following, let ¢ denote an arbitrary positive con-
stant. Pagh [9] showed that retrieving two entries from the
hash table suffices when r > (2 + ¢)n. Specifically, lookup
of akey x can be done by retrieving entries /; (x) and A, (x)
of the hash table, where h; and h, are random hash func-
tions mapping machine words to {1,..., r}. The same re-
sult holds if h; has range {1,...,7/2} and h, has range
{r/2+1,...,r}, thatis, if the two lookups are done in dis-
joint parts of memory.

It follows from [9] that it is not possible to perform
lookup by retrieving a single entry in the worst case unless
the hash table is of size n>~°(1),

Cuckoo Hashing

Pagh and Rodler [10] showed how to maintain the data
structure of Pagh [9] under insertions. They considered

the variant in which the lookups are done in disjoint parts
of the hash table. It will be convenient to think of these
as separate arrays, T; and T,. Let L denote the contents
of an empty hash table entry, and let x <> y express that
the values of variables x and y are swapped. The proposed
dynamic algorithm, called cuckoo hashing, performs inser-
tions by the following procedure:

procedure insert(x)

i:=1;
repeat
x < Tilhi(x)];i:=3—i;
until x = |
end

At any time the variable x holds a key that needs to be in-
serted in the table, or L. The value of i changes between 1
and 2 in each iteration, so the algorithm is alternately ex-
changing the contents of x with a key from Table 1 and
Table 2. Conceptually, what happens is that the algorithm
moves a sequence of zero or more keys from one table
to the other to make room for the new key. This is done
in a greedy fashion, by kicking out any key that may be
present in the location where a key is being moved. The
similarity of the insertion procedure and the nesting habits
of the European cuckoo is the reason for the name of the
algorithm.

The pseudocode above is slightly simplified. In general
the algorithm needs to make sure not to insert the same
key twice, and handle the possibility that the insertion may
not succeed (by rehashing if the loop takes too long).

Theorem 1 Assuming that r > (2 + €)n the expected time
for the cuckoo hashing insertion procedure is O(1).

Generalizations of Cuckoo Hashing

Cuckoo hashing has been generalized in two directions.
First of all, consider the case of k hash functions, for k > 2.
Second, the hash table may be divided into “buckets” of
size b, such that the lookup procedure searches an entire
bucket for each hash function. Let (k, b)-cuckoo denote
a scheme with k hash functions and buckets of size b. What
was described above is a (2, 1)-cuckoo scheme. Already in
1999, (4, 1)-cuckoo was described in a patent application
by David A. Brown (US patent 6,775,281). Fotakis et al. de-
scribed and analyzed a (k, 1)-cuckoo scheme in [7], and
a (2, b)-cuckoo scheme was described and analyzed by Di-
etzfelbinger and Weidling [4]. In both cases, it was shown
that space utilization arbitrarily close to 100% is possible,
and that the necessary fraction of unused space decreases
exponentially with k and b. The insertion procedure con-
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sidered in [4,7] is a breadth first search for the shortest
sequence of key moves that can be made to accommo-
date the new key. Panigrahy [11] studied (2, 2)-cuckoo
schemes in detail, showing that a space utilization of 83%
can be achieved dynamically, still supporting constant
time insertions using breadth first search. Independently,
Fernholz and Ramachandran [6] and Cain, Sanders, and
Wormald [2] determined the highest possible space uti-
lization for (2, k)-cuckoo hashing in a static setting with
no insertions. For k =2, 3,4, 5 the maximum space uti-
lization is roughly 90%, 96%, 98%, and 99%, respectively.

Applications

Dictionaries have a wide range of uses in computer sci-
ence and engineering. For example, dictionaries arise in
many applications in string algorithms and data struc-
tures, database systems, data compression, and various in-
formation retrieval applications. No attempt is made to
survey these further here.

Open Problems

The results above provide a good understanding of the
properties of open addressing schemes with worst case
constant lookup time. However, several aspects are still not
understood satisfactorily.

First of all, there is no practical class of hash functions
for which the above results can be shown. The only ex-
plicit classes of hash functions that are known to make the
methods work either have evaluation time ®(log n) or use
space nM Ttis an intriguing open problem to construct
a class having constant evaluation time and space usage.

For the generalizations of cuckoo hashing the use of
breadth first search is not so attractive in practice, due to
the associated overhead in storage. A simpler approach
that does not require any storage is to perform a ran-
dom walk where keys are moved to a random, alternative
position. (This generalizes the cuckoo hashing insertion
procedure, where there is only one alternative position to
choose.) Panigrahy [11] showed that this works for (2, 2)-
cuckoo when the space utilization is low. However, it is
unknown whether this approach works well as the space
utilization approaches 100%.

Finally, many of the analyzes that have been given
are not tight. In contrast, most classical open addressing
schemes have been analyzed very precisely. It seems likely
that precise analysis of cuckoo hashing and its generaliza-
tions is possible using techniques from analysis of algo-
rithms, and tools from the theory of random graphs. In
particular, the relationship between space utilization and
insertion time is not well understood. A precise analysis of

the probability that cuckoo hashing fails has been given by
Kutzelnigg [8].

Experimental Results

All experiments on cuckoo hashing and its generaliza-
tions so far presented in the literature have been done us-
ing simple, heuristic hash functions. Pagh and Rodler [10]
presented experiments showing that, for space utilization
1/3, cuckoo hashing is competitive with open addressing
schemes that do not give a worst case guarantee. Zukowski
et al. [12] showed how to implement cuckoo hashing such
that it runs very efficiently on pipelined processors with
the capability of processing several instructions in paral-
lel. For hash tables that are small enough to fit in cache,
cuckoo hashing was 2 to 4 times faster than chained hash-
ing in their experiments. Erlingsson et al. [5] considered
(k, b)-cuckoo schemes for various combinations of small
values of k and b, showing that very high space utiliza-
tion is possible even for modestly small values of k and
b. For example, a space utilization of 99.9% is possible
for k = b = 4. It was further found that the resulting algo-
rithms were very robust. Experiments in [7] indicate that
the random walk insertion procedure performs as well as
one could hope for.
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