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ProblemDefinition

The problem is motivated by the need to manage data
on a set of storage devices to handle dynamically chang-
ing demand. To maximize utilization, the data layout (i. e.,
a mapping that specifies the subset of data items stored on
each disk) needs to be computed based on disk capacities
as well as the demand for data. Over time as the demand
for data changes, the system needs to create new data lay-
out. The datamigration problem is to compute an efficient
schedule for the set of disks to convert an initial layout to
a target layout.

The problem is defined as follows. Suppose that there
are N disks and � data items, and an initial layout and a
target layout are given (see Fig. 1a for an example). For
each item i, source disks Si is defined to be a subset of
disks which have item i in the initial layout. Destination
disks Di is a subset of disks that want to receive item i. In
other words, disks in Di have to store item i in the target
layout but do not have to store it in the initial layout. Fig-
ure 1b shows the corresponding Si and Di. It is assumed
that Si ¤ ; and Di ¤ ; for each item i. Data migration is
the transfer of data to have all Di receive data item i re-
siding in Si initially, and the goal is to minimize the total
amount of time required for the transfers.

Assume that the underlying network is fully connected
and the data items are all the same size. In other words, it
takes the same amount of time to migrate an item from
one disk to another. Therefore, migrations are performed

Data Migration, Figure 1
Left An example of initial and target layout and right their corre-
sponding Si’s and Di’s

in rounds. Consider the half-duplex model, where each
disk can participate in the transfer of only one item – either
as a sender or as a receiver. The objective is to find a mi-
gration schedule using the minimum number of rounds.
No bypass nodes1 can be used and therefore all data items
are sent only to disks that desire them.

Key Results

Khuller et al. [11] developed a 9.5-approximation for the
data migration problem, which was later improved to
6:5 + o(1). In the next subsection, the lower bounds of the
problem are first examined.

Notations and Lower Bounds

1. Maximum in-degree (ˇ): Let ˇj be the number of
data items that a disk j has to receive. In other words,
ˇ j = jfij j 2 Digj. Then ˇ = max j ˇ j is a lower bound
on the optimal as a disk can receive only one data item
in one round.

2. Maximum number of items that a disk may be
a source or destination for (˛): For each item i, at
least one disk in Si should be used as a source for the
item, and this disk is called a primary source. A unique
primary source si 2 Si for each item i that minimizes

1A bypass node is a node that is not the target of amove operation,
but is used as an intermediate holding point for a data item.
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˛ = max j=1;:::;N (jfij j = sigj + ˇ j) can be found using
a network flow. Note that ˛ � ˇ, and ˛ is also a lower
bound on the optimal solution.

3. Minimum time required for cloning (M): Let a disk j
make a copy of item i at the kth round. At the end of
the mth round, the number of copies that can be cre-
ated from the copy is at most 2m - k as in each round
the number of copies can only be doubled. Also note
that each disk can make a copy of only one item in one
round. Since at least |Di| copies of item i need to be cre-
ated, the minimumm that satisfies the following linear
program gives a lower bound on the optimal solution:
L(m):

X
j

mX
k=1

2m�kxi jk � jDi j for all i (1)

X
i

xi jk � 1 for all j; k (2)

0 � xi jk � 1 (3)

Data Migration Algorithm

A 9.5-approximation can be obtained as follows. The algo-
rithm first computes representative sets for each item and
sends the item to the representative sets first, which in turn
send the item to the remaining set. Representative sets are
computed differently depending on the size of Di.

Representatives for Big Sets For sets with size at least
ˇ, a disjoint collection of representative sets Ri ; i = 1 : : : �
has to satisfy the following properties: Each Ri should be
a subset of Di and jRi j = bjDi j/ˇc. The representative sets
can be found using a network flow.

Representatives for Small Sets For each item i, let
�i = jDi jmod k. A secondary representative ri inDi for the
items with �i ¤ 0 needs to be computed. A disk j can be
a secondary representative ri for several items as long asP

i2I j �i � 2ˇ � 1, where Ij is a set of items for which j
is a secondary representative. This can be done by apply-
ing the Shmoys–Tardos algorithm [17] for the generalized
assignment problem.

Scheduling Migrations Given representatives for all
data items, migrations can be done in three steps as fol-
lows:
1. Migration toRi: Each item i is first sent to the set Ri. By

converting a fractional solution given in L(M), one can
find a migration schedule from si to Ri and it requires
at most 2M + ˛ rounds.

2. Migration to ri: Item i is sent from primary source si
to ri. The migrations can be done in 1:5˛ rounds, using
an algorithm for edge coloring [16].

3. Migration to the remaining disks: A transfer graph
from representatives to the remaining disks can now be
created as follows. For each item i, add directed edges
from disks in Ri to (ˇ � 1)b jDi j

ˇ
c disks in Di n Ri such

that the out-degree of each node in Ri is at most ˇ � 1
and the in-degree of each node in Di n Ri from Ri is
1. A directed edge is also added from the secondary
representative ri of item i to the remaining disks in Di
which do not have an edge coming from Ri. It has been
shown that the maximum degree of the transfer graph
is at most 4ˇ � 5 and the multiplicity is ˇ + 2. There-
fore, migration for the transfer graph can be done in
5ˇ � 3 rounds using an algorithm for multigraph edge
coloring [18].

Analysis Note that the total number of rounds required
in the algorithm described in “DataMigration Algorithm”
is at most 2M + 2:5˛ + 5ˇ � 3. As ˛, ˇ and M are lower
bounds on the optimal number of rounds, the abovemen-
tioned algorithm gives a 9.5-approximation.

Theorem 1 ([11]) There is a 9.5-approximation algorithm
for the data migration problem.

Khuller et al. [10] later improved the algorithm and ob-
tained a (6:5 + o(1))-approximation.

Theorem 2 ([10]) There is a (6.5 + o(1))-approximation
algorithm for the data migration problem.

Applications

Data Migration in Storage Systems

Typically, a large storage server consists of several disks
connected using a dedicated network, called a storage area
network. To handle high demand, especially for multime-
dia data, a common approach is to replicate data objects
within the storage system. Disks typically have constraints
on storage as well as the number of clients that can ac-
cess data from a single disk simultaneously. Approxima-
tion algorithms have been developed to map known de-
mand for data to a specific data layout pattern to maxi-
mize utilization2 [4,8,14,15]. In the layout, they compute
not only how many copies of each item need to be created,
but also a layout pattern that specifies the precise subset of
items on each disk. The problem is NP-hard, but there are
polynomial-time approximation schemes [4,8,14]. Given

2The utilization is the total number of clients that can be assigned
to a disk that contains the data they want.
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the relative demand for data, the algorithm computes an
almost optimal layout.

Over time as the demand for data changes, the system
needs to create new data layouts. To handle high demand
for popular objects, new copies may have to be dynami-
cally created and stored on different disks. The data mi-
gration problem is to compute a specific schedule for the
set of disks to convert an initial layout to a target layout.
Migration should be done as quickly as possible since the
performance of the system will be suboptimal during mi-
gration.

Gossiping and Broadcasting

The data migration problem can be considered as a gen-
eralization of gossiping and broadcasting. The problems
of gossiping and broadcasting play an important role in
the design of communication protocols in various kinds of
networks and have been extensively studied (see for exam-
ple [6,7] and the references therein). The gossip problem is
defined as follows. There are n individuals and each indi-
vidual has an item of gossip that he/she wish to communi-
cate to everyone else. Communication is typically done in
rounds, where in each round an individual may commu-
nicate with at most one other individual. Some commu-
nication models allow for the full exchange of all items of
gossip known to each individual in a single round. In ad-
dition, there may be a communication graph whose edge
indicates which pairs of individuals are allowed to com-
municate directly in each round. In the broadcast problem,
one individual needs to convey an item of gossip to every
other individual. The data migration problem generalizes
the gossiping and broadcasting in three ways: (1) each item
of gossip needs to be communicated to only a subset of in-
dividuals; (2) several items of gossip may be known to an
individual; (3) a single item of gossip can initially be shared
by several individuals.

Open Problems

The datamigration problem is NP-hard by reduction from
the edge coloring problem. However, no inapproximabil-
ity results are known for the problem. As the current best
approximation factor is relatively high (6:5 + o(1)), it is an
interesting open problem to narrow the gap between the
approximation guarantee and the inapproximability.

Another open problem is to combine data placement
and migration problems. This question was studied by
Khuller et al. [9]. Given the initial layout and the new de-
mand pattern, their goal was to find a set of data migra-
tions that can be performed in a specific number of rounds
and gives the best possible layout to the current demand

pattern. They showed that even one-round migration is
NP-hard and presented a heuristic algorithm for the one-
round migration problem. The experiments showed that
performing a few rounds of one-round migration consec-
utively works well in practice. Obtaining nontrivial ap-
proximation algorithms for this problem would be inter-
esting future work.

Data migration in a heterogeneous storage system is
another interesting direction for future research. Most re-
search on data migration has focused mainly on homo-
geneous storage systems, assuming that disks have the
same fixed capabilities and the network connections are
of the same fixed bandwidth. In practice, however, large-
scale storage systems may be heterogenous. For instance,
disks tend to have heterogeneous capabilities as they are
added over time owing to increasing demand for storage
capacity. Lu et al. [13] studied the case when disks have
variable bandwidth owing to the loads on different disks.
They used a control-theoretic approach to generate adap-
tive rates of data migrations which minimize the degrada-
tion of the quality of the service. The algorithm reduces the
latency experienced by clients significantly compared with
the previous schemes. However, no theoretical bounds on
the efficiency of data migrations were provided. Coffman
et al. [2] studied the case when each disk i can handle pi
transfers simultaneously and provided approximation al-
gorithms. Some papers [2,12] considered the case when
the lengths of data items are heterogenous (but the system
is homogeneous), and present approximation algorithms
for the problem.

Experimental Results

Golubchik et al. [3] conducted an extensive study of the
performance of data migration algorithms under differ-
ent changes in user-access patterns. They compared the
9.5-approximation [11] and several other heuristic algo-
rithms. Some of these heuristic algorithms cannot provide
constant approximation guarantees, while for some of the
algorithms no approximation guarantees are known. Al-
though the worst-case performance of the algorithm by
Khuller et al. [11] is 9.5, in the experiments the num-
ber of rounds required was less than 3.25 times the lower
bound.

They also introduced the correspondence problem, in
which a matching between disks in the initial layout with
disks in the target layout is computed so as to minimize
changes. A good solution to the correspondence problem
can improve the performance of the data migration algo-
rithms by a factor of 4.4 in their experiments, relative to
a bad solution.
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URL to Code

http://www.cs.umd.edu/projects/smart/data-migration/

Cross References

� Broadcasting in Geometric Radio Networks
� Deterministic Broadcasting in Radio Networks
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multigraphs can now be applied to produce a migration
schedule since each color class represents a matching in
the graph that can be scheduled simultaneously. Comput-
ing a solution with the minimum number of rounds is
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Most of the results on the data migration problem deal
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ProblemDefinition

The NP-complete DOMINATING SET problem is a notori-
ously hard problem:

Problem 1 (Dominating Set)
INPUT: An undirected graph G = (V ; E) and an inte-
ger k � 0.

http://www.cs.umd.edu/projects/smart/data-migration/
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Data Reduction for Domination in Graphs, Figure 1
The left-hand side shows the partitioning of the neighborhood of a single vertex v. The right-hand side shows the result of applying
the presented data reduction rule to this particular (sub)graph

QUESTION: Is there an S 
 V with jSj � k such that every
vertex v 2 V is contained in S or has at least one neighbor
in S?

For instance, for an n-vertex graph its optimization ver-
sion is known to be polynomial-time approximable only
up to a factor of 	(log n) unless some standard complex-
ity-theoretic assumptions fail [9]. In terms of parametrized
complexity, the problem is shown to be W[2]-com-
plete [8]. Although still NP-complete when restricted to
planar graphs, the situation much improves here. In her
seminal work, Baker showed that there is an efficient
polynomial-time approximation scheme (PTAS) [6], and
the problem also becomes fixed-parameter tractable [2,4]
when restricted to planar graphs. In particular, the prob-
lem becomes accessible to fairly effective data reduction
rules and a kernelization result (see [16] for a general
description of data reduction and kernelization) can be
proven. This is the subject of this entry.

Key Results

The key idea behind the data reduction is preprocessing
based on locally acting simplification rules. Exemplary,
here we describe a rule where the local neighborhood of
each graph vertex is considered. To this end, we need the
following definitions.

We partition the neighborhood N(v) of an arbitrary
vertex v 2 V in the input graph into three disjoint sets
N1(v), N2(v), andN3(v) depending on local neighborhood
structure. More specifically, we define
� N1(v) to contain all neighbors of v that have edges to

vertices that are not neighbors of v;
� N2(v) to contain all vertices from N(v) n N1(v) that

have edges to at least one vertex from N1(v);
� N3(v) to contain all neighbors of v that are neither

in N1(v) nor in N2(v).
An example which illustrates such a partitioning is given
in Fig. 1 (left-hand side). A helpful and intuitive interpre-
tation of the partition is to see vertices in N1(v) as exits

because they have direct connections to the world outside
the closed neighborhood of v, vertices in N2(v) as guards
because they have direct connections to exits, and vertices
inN3(v) as prisoners because they do not see the world out-
side fvg [ N(v).

Now consider a vertex w 2 N3(v). Such a vertex only
has neighbors in fvg [ N2(v) [ N3(v). Hence, to domi-
nate w, at least one vertex of fvg [ N2(v) [ N3(v) must be
contained in a dominating set for the input graph. Since v
can dominate all vertices that would be dominated by
choosing a vertex from N2(v) [ N3(v) into the dominat-
ing set, we obtain the following data reduction rule.

If N3(v) 6= ; for some vertex v, then remove N2(v)
and N3(v) from G
and add a new vertex v0

with the edge fv; v0g to G.

Note that the new vertex v0 can be considered as a “gadget
vertex” that “enforces” v to be chosen into the dominat-
ing set. It is not hard to verify the correctness of this rule,
that is, the original graph has a dominating set of size k iff
the reduced graph has a dominating set of size k. Clearly,
the data reduction can be executed in polynomial time [5].
Note, however, that there are particular “diamond” struc-
tures that are not amenable to this reduction rule. Hence,
a second, somewhat more complicated rule based on con-
sidering the joint neighborhood of two vertices has been
introduced [5].

Altogether, the following core result could be
shown [5].

Theorem 1 A planar graph G = (V ; E) can be reduced in
polynomial time to a planar graph G0 = (V 0; E0) such that
G has a dominating set of size k iff G0 has a dominating set
of size k and jV 0j = O(k).

In other words, the theorem states that the DOMINATING
SET in planar graphs has a linear-size problem kernel. The
upper bound on |V 0| was first shown to be 335k [5] and
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was then further improved to 67k [7]. Moreover, the re-
sults can be extended to graphs of bounded genus [10]. In
addition, similar results (linear kernelization) have been
recently obtained for the FULL-DEGREE SPANNING TREE
problem in planar graphs [13]. Very recently, these re-
sults have been generalized into a methodological frame-
work [12].

Applications

DOMINATING SET is considered to be one of themost cen-
tral graph problems [14,15]. Its applications range from
facility location to bioinformatics.

Open Problems

The best lower bound for the size of a problem kernel for
DOMINATING SET in planar graphs is 2k [7]. Thus, there
is quite a gap between known upper and lower bounds. In
addition, there have been some considerations concern-
ing a generalization of the above-discussed data reduction
rules [3]. To what extent such extensions are of practical
use remains to be explored. Finally, a study of deeper con-
nections between Baker’s PTAS results [6] and linear ker-
nelization results for DOMINATING SET in planar graphs
seems to be worthwhile for future research. Links concern-
ing the class of problems amenable to both approaches
have been detected recently [12]. The research field of data
reduction and problem kernelization as a whole together
with its challenges is discussed in a recent survey [11].

Experimental Results

The above-described theoretical work has been accompa-
nied by experimental investigations on synthetic as well
as real-world data [1]. The results have been encourag-
ing in general. However, note that grid structures seem to
be a hard case where the data reduction rules remained
largely ineffective.
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ProblemDefinition

In order to ensure the integrity of data in the presence of
errors, an error-correcting code is used to encode data into
a redundant form (called a codeword). It is natural to view
both the original data (ormessage) as well as the associated
codeword as strings over a finite alphabet. Therefore, an
error-correcting code C is defined by an injective encoding
map E : ˙ k ! ˙ n , where k is called the message length,
and n the block length. The codeword, being a redundant
form of the message, will be longer than the message. The
rate of an error-correcting code is defined as the ratio k/n
of the length of the message to the length of the codeword.
The rate is a quantity in the interval (0; 1], and is ameasure
of the redundancy introduced by the code. LetR(C) denote
the rate of a code C.

The redundancy built into a codeword enables detec-
tion and hopefully also correction of any errors intro-
duced, since only a small fraction of all possible strings will
be legitimate codewords. Ideally, the codewords encoding
different messages should be “far-off” from each other, so
that one can recover the original codeword even when it
is distorted by moderate levels of noise. A natural measure
of distance between strings is the Hamming distance. The
Hamming distance between strings x; y 2 ˙� of the same
length, denoted dist(x; y), is defined to be the number of
positions i for which xi ¤ yi .

Theminimumdistance, or simply distance, of an error-
correcting code C, denoted d(C), is defined to be the
smallest Hamming distance between the encodings of two
distinct messages. The relative distance of a code C of
block length n, denoted ı(C), is the ratio between its
distance and n. Note that arbitrary corruption of any
b(d(C) � 1)/2c of locations of a codeword of C cannot
take it closer (in Hamming distance) to any other code-
word ofC. Thus in principle (i. e., efficiency considerations
apart) error patterns of at most b(d(C) � 1)/2c errors can
be corrected. This task is called unique decoding or decod-
ing up to half-the-distance. Of course, it is also possible,
and will often be the case, that error patterns with more
than d(C)/2 errors can also be corrected by decoding the
string to the closest codeword in Hamming distance. The
latter task is called Nearest-Codeword decoding or Maxi-
mum Likelihood Decoding (MLD).

One of the fundamental trade-offs in the theory of
error-correcting codes, and in fact one could say all of
combinatorics, is the one between rate R(C) and distance
d(C) of a code. Naturally, as one increases the rate and
thus number of codewords in a code, some two code-
words must come closer together thereby lowering the
distance. More qualitatively, this represents the tension

between the redundancy of a code and its error-resilience.
To correct more errors requires greater redundancy, and
thus lower rate.

A code defined by encoding map E : ˙ k ! ˙ n with
minimum distance d is said to be an (n; k; d) code. Since
there are j˙ jk codewords and only j˙ k�1j possible pro-
jections onto the first k = 1 coordinates, some two code-
words must agree on the first k � 1 positions, implying
that the distance d of the code must obey d � n � k + 1
(this is called the Singleton bound). Quite surprisingly,
over large alphabets ˙ there are well-known codes called
Reed–Solomon codes which meet this bound exactly and
have the optimal distance d = n � k + 1 for any given rate
k/n. (In contrast, for small alphabets, such as ˙ = f0; 1g,
the optimal trade-off between rate and relative distance for
an asymptotic family of codes is unknown and is a major
open question in combinatorics.)

This article will describe the best known algorith-
mic results for error-correction of Reed–Solomon codes.
These are of central theoretical and practical interest given
the above-mentioned optimal trade-off achieved by Reed–
Solomon codes, and their ubiquitous use in our every-
day lives ranging from compact disc players to deep-space
communication.

Reed–Solomon Codes

Definition 1 A Reed–Solomon code (or RS code),
RSF ;S [n; k], is parametrized by integers n; k satisfying
1 � k � n, a finite field F of size at least n, and a tuple
S = (˛1; ˛2; : : : ; ˛n) of n distinct elements from F . The
code is described as a subset of Fn as:

RSF ;S [n; k] = f(p(˛1); p(˛2); : : : ; p(˛n))jp(X) 2 F[X]
is a polynomial of degree � k � 1g :

In other words, the message is viewed as a polynomial, and
it is encoded by evaluating the polynomial at n distinct
field elements ˛1; : : : ; ˛n . The resulting code is linear of
dimension k, and its minimum distance equals n � k + 1,
which matches the Singleton bound.

The distance property of RS codes follows from the fact
that the evaluations of two distinct polynomials of degree
less than k can agree on at most k � 1 field elements. Note
that in the absence of errors, given a codeword y 2 F n , one
can recover its corresponding message by polynomial in-
terpolation on any k out of the n codeword positions. In
fact, this also gives an erasure decoding algorithm when
all but the information-theoretically bare minimum nec-
essary k symbols are erased from the codeword (but the
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receiver knows which symbols have been erased and the
correct values of the rest of the symbols). The RS decoding
problem, therefore, amounts to a noisy polynomial inter-
polation problem when some of the evaluation values are
incorrect.

The holy grail in decoding RS codes would be to find
the polynomial p(X) whose RS encoding is closest in Ham-
ming distance to a noisy string y 2 F n . One could then
decode y to this message p(X) as the maximum likelihood
choice. No efficient algorithm for such nearest-codeword
decoding is known for RS codes (or for that matter any
family of “good” or non-trivial codes), and it is believed
that the problem is NP-hard. Guruswami and Vardy [6]
proved the problem to NP-hard over exponentially large
fields, but this is a weak negative result since normally one
considers Reed–Solomon codes over fields of size at most
O(n).

Given the intractability of nearest-codeword decoding
in its extreme generality, lot of attention has been devoted
to the bounded distance decoding problem, where one as-
sumes that the string y 2 F n to be decoded has at most
e errors, and the goal is to find the Reed–Solomon code-
word(s) within Hamming distance e from y.

When e < (n � k)/2, this corresponds to decoding up
to half the distance. This is a classical problem for which
a polynomial time algorithm was first given by Peter-
son [8]. (It is notable that this even before the notion of
polynomial time was put forth as the metric of theoret-
ical efficiency.) The focus of this article is on a list decod-
ing algorithm for Reed–Solomon codes due to Guruswami
and Sudan [5] that decode beyond half the minimum dis-
tance. The formal problem and the key results are stated
next.

Key Results

In this section, the main result of focus concerning de-
coding Reed–Solomon codes is stated. Given the target
of decoding errors beyond half-the-minimum distance,
one needs to deal with inputs where there may be more
than one codeword within the radius e specified in the
bounded distance decoding problem. This is achieved by
a relaxation of decoding called list decoding where the de-
coder outputs a list of all codewords (or the corresponding
messages) within Hamming distance e from the received
word. If one wishes, one can choose the closest codeword
among the list as the “most likely” answer, but there are
many applications of Reed–Solomon decoding, for exam-
ple to decoding concatenated codes and several applica-
tions in complexity theory and cryptography, where hav-
ing the entire list of codewords adds to the power of the

decoding primitive. The main result of Guruswami and
Sudan [5], building upon the work of Sudan [9], is the fol-
lowing:

Theorem 1 ([5]) Let C = RSF ;S[n; k] be a Reed–Solomon
code over a field F of size q � n with S = (˛1; ˛2; : : : ; ˛n).
There is a deterministic algorithm running in time poly-
nomial in q that on input y 2 F n

q outputs a list of
all polynomials p(X) 2 F[X] of degree less than k for
which p(˛i ) ¤ yi for less than n �

p
(k � 1)n positions

i 2 f1; 2; : : : ; ng. Further, at most O(n2) polynomials will
be output by the algorithm in the worst-case.

Alternatively, one can correct a RS code of block length
n and rate R = k/n up to n �

p
(k � 1) errors, or equiva-

lently a fraction 1�
p
R of errors.

The Reed–Solomon decoding algorithm is based on
the solution to the following more general polynomial re-
construction problem which seems like a natural algebraic
question in itself. (The problem is more general than RS
decoding since the ˛i ’s need not be distinct.)

Problem 1 (Polynomial Reconstruction)
Input: Integers k; t � n and n distinct pairs f(˛i ; yi )gni=1
where ˛i ; yi 2 F .
Output: A list of all polynomials p(X) 2 F[X] of degree
less than k which satisfy p(˛i ) = yi for at least t values of
i 2 [n].

Theorem 2 The polynomial reconstruction problem
can be solved in time polynomial in n; jF j, provided
t >
p
(k � 1)n.

The reader is referred to the original papers [5,9], or
a recent survey [1], for details on the above algorithm.
A quick, high level peek into the main ideas is given below.
The first step in the algorithm consists of an interpolation
step where a nonzero bivariate polynomial Q(X,Y) is “fit”
through the n pairs (˛i ; yi ), so that Q(˛i ; yi ) = 0 for every
i. The key is to do this with relatively low degree; in partic-
ular one can find such a Q(X,Y) with so-called (1; k � 1)-
weighted degree at most D 	

p
2(k � 1)n. This degree

budget on Q implies that for any polynomial p(X) of de-
gree less than k, Q(X; p(X)) will have degree at most D.
Now whenever p(˛i ) = yi , Q(˛i ; p(˛)i)) = Q(˛i ; yi) = 0.
Therefore, if a polynomial p(X) satisfies p(˛i ) = yi for
at least t values of i, then Q(X; p(X)) has at least t
roots. On the other hand the polynomial Q(X; p(X)) has
degree at most D. Therefore, if t > D, one must have
Q(X; p(X)) = 0, or in other words Y � p(X) is a fac-
tor of Q(X,Y). The second step of the algorithm factor-
ized the polynomial Q(X,Y), and all polynomials p(X)
that must be output will be found as factors Y � p(X) of
Q(X,Y).
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Note that since D 	
p
2(k � 1)n this gives an algo-

rithm for polynomial reconstruction provided the agree-
ment parameter t satisfies t >

p
2(k � 1)n [9]. To get an

algorithm for t >
p
(k � 1)n, and thus decode beyond half

the minimum distance (n � k)/2 for all parameter choices
for k, n, Guruswami and Sudan [5] use the crucial idea of
allowing “multiple roots” in the interpolation step. Specif-
ically, the polynomial Q is required to have r � 1 roots
at each pair (˛i ; yi) for some integer multiplicity param-
eter r (the notion needs to be formalized properly, see [5]
for details). This necessitates an increase in the (1; k � 1)-
weighted degree of a factor of about r/

p
2, but the gain

is that one gets a factor r more roots for the polynomial
Q(X; p(X)). These facts together lead to an algorithm that
works as long as t >

p
(k � 1)n.

There is an additional significant benefit offered by the
multiplicity based decoder. The multiplicities of the inter-
polation points need not all be equal and they can picked
in proportion to the reliability of different received sym-
bols. This gives a powerful way to exploit “soft” informa-
tion in the decoding stage, leading to impressive coding
gains in practice. The reader is referred to the paper by
Koetter and Vardy [7] for further details on using mul-
tiplicities to encode symbol level reliability information
from the channel.

Applications

Reed–Solomon codes have been extensively studied and
are widely used in practice. The above decoding algorithm
corrects more errors beyond the traditional half the dis-
tance limit and therefore directly advances the state of the
art on this important algorithmic task. The RS list decod-
ing algorithm has also been the backbone for many fur-
ther developments in algorithmic coding theory. In partic-
ular, using this algorithm in concatenation schemes leads
to good binary list-decodable codes. A variant of RS codes
called folded RS codes have been used to achieve the opti-
mal trade-off between error-correction radius and rate [3]
(see the companion encyclopedia entry by Rudra on folded
RS codes).

The RS list decoding algorithm has also found many
surprising applications beyond coding theory. In partic-
ular, it plays a key role in several results in cryptogra-
phy and complexity theory (such as constructions of ran-
domness extractors and pseudorandom generators, hard-
ness amplification, constructions to hardcore predicates,
traitor tracing, reductions connecting worst-case hardness
to average-case hardness, etc.); more information can be
found, for instance, in [10] or Chap. 12 in [2].

Open Problems

The most natural open question is whether one can im-
prove the algorithm further and correct more than a frac-
tion 1 �

p
R of errors for RS codes of rate R. It is important

to note that there is a combinatorial limitation to the num-
ber of errors one can list decode from. One can only list de-
code in polynomial time from a fraction � of errors if for
every received word y the number of RS codewords within
distance e = �n of y is bounded by a polynomial function
of the block length n. The largest � for which this holds
as a function of the rate R is called the list decoding ra-
dius �LD = �LD(R) of RS codes. The RS list decoding algo-
rithm discussed here implies that �LD(R) � 1 �

p
R, and

it is trivial to see than �LD(R) � 1 � R. Are there RS codes
(perhaps based on specially structured evaluation points)
for which �LD(R) > 1 �

p
R? Are there RS codes for which

the 1 �
p
R radius (the so-called “Johnson bound”) is ac-

tually tight for list decoding? For the more general poly-
nomial reconstruction problem the

p
(k � 1)n agreement

cannot be improved upon [4], but this is not known for RS
list decoding.

Improving the NP-hardness result of [6] to hold for RS
codes over polynomial sized fields and for smaller decod-
ing radii remains an important challenge.
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ProblemDefinition

A dynamic graph algorithm maintains a given property P
on a graph subject to dynamic changes, such as edge in-
sertions, edge deletions and edge weight updates. A dy-
namic graph algorithm should process queries on property
P quickly, and perform update operations faster than re-
computing from scratch, as carried out by the fastest static
algorithm. An algorithm is fully dynamic if it can handle
both edge insertions and edge deletions. A partially dy-
namic algorithm can handle either edge insertions or edge
deletions, but not both: it is incremental if it supports in-
sertions only, and decremental if it supports deletions only.

This entry addressed the decremental version of the
all-pairs shortest paths problem (APSP), which consists
of maintaining a directed graph with real-valued edge
weights under an intermixed sequence of the following op-
erations:

delete(u, v): delete edge (u ,v) from the graph.
distance(x, y): return the distance from vertex x to

vertex y.
path(x, y): report a shortest path from vertex x to ver-

tex y, if any.

A natural variant of this problem supports a general-
ized delete operation that removes a vertex and all edges
incident to it. The algorithms addressed in this entry
can deal with this generalized operation within the same
bounds.

History of the Problem

A simple-minded solution to this problem would be to re-
build shortest paths from scratch after each deletion using
the best static APSP algorithm so that distance and path
queries can be reported in optimal time. The fastest known
static APSP algorithm for arbitrary real weights has a run-
ning time of O(mn + n2 log log n), wherem is the number
of edges and n is the number of vertices in the graph [13].
This is ˝(n3) in the worst case. Fredman [6] and later
Takaoka [19] showed how to break this cubic barrier: the
best asymptotic bound is by Takaoka, who showed how to
solve APSP in O(n3

p
log log n/ log n) time.

Another simple-minded solution would be to answer
queries by running a point-to-point shortest paths com-
putation, without the need to update shortest paths at each
deletion. This can be done with Dijkstra’s algorithm [3] in
O(m+n log n) time using the Fibonacci heaps of Fredman
and Tarjan [5]. With this approach, queries are answered
in O(m + n log n) worst-case time and updates require op-
timal time.

The dynamic maintenance of shortest paths has a long
history, and the first papers date back to 1967 [11,12,17].
In 1985 Even and Gazit [4] presented algorithms for
maintaining shortest paths on directed graphs with arbi-
trary real weights. The worst-case bounds of their algo-
rithm for edge deletions were comparable to recomputing
APSP from scratch. Also Ramalingam and Reps [15,16]
and Frigioni et al. [7,8] considered dynamic shortest path
algorithms with real weights, but in a different model.
Namely, the running time of their algorithm is ana-
lyzed in terms of the output change rather than the in-
put size (output bounded complexity). Again, in the worst
case the running times of output-bounded dynamic al-
gorithms are comparable to recomputing APSP from
scratch.

The first decremental algorithm that was provably
faster than recomputing from scratch was devised by King
for the special case of graphs with integer edge weights less
than C: her algorithm can update shortest paths in a graph
subject to a sequence of ˝(n2) deletions in O(C � n2)
amortized time per deletion [9]. Later, Demetrescu and
Italiano showed how to deal with graphs with real non-
negative edge weights in O(n2 log n) amortized time per
deletion [2] in a sequence of ˝(m/n) operations. Both
algorithms work in the more general case where edges
are not deleted from the graph, but their weight is in-
creased at each update. Moreover, since they update short-
est paths explicitly after each deletion, queries are an-
swered in optimal time at any time during a sequence of
operations.
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Key Results

The decremental APSP algorithm by Demetrescu and Ital-
iano hinges upon the notion of locally shortest paths [2].

Definition 1 A path is locally shortest in a graph if all of
its proper subpaths are shortest paths.

Notice that by the optimal-substructure property, a short-
est path is locally shortest. The main idea of the algo-
rithm is to keep information about locally shortest paths
in a graph subject to edge deletions. The following theo-
rem derived from [2] bounds the number of changes in
the set of locally shortest paths due to an edge deletion:

Theorem 1 If shortest paths are unique in the graph, then
the number of paths that start or stop being shortest at each
deletion is O(n2) amortized over ˝(m/n) update opera-
tions.

The result of Theorem 1 is purely combinatorial and as-
sumes that shortest paths are unique in the graph. The lat-
ter can be easily achieved using any consistent tie-breaking
strategy (see, e. g., [2]). It is possible to design a deletions-
only algorithm that pays only O(log n) time per change in
the set of locally shortest paths, using a simple modifica-
tion of Dijkstra’s algorithm [3]. Since by Theorem 1 the
amortized number of changes is bounded by O(n2), this
yields the following result:

Theorem 2 Consider a graph with n vertices and an ini-
tial number of m edges subject to a sequence of ˝(m/n)
edge deletions. If shortest paths are unique and edge weights
are non-negative, it is possible to support each delete op-
eration in O(n2 log n) amortized time, each distance
query in O(1) worst-case time, and each path query in
O(`) worst-case time, where ` is the number of vertices in
the reported shortest path. The space used is O(mn).

Applications

Application scenarios of dynamic shortest paths include
network optimization [1], document formatting [10],
routing in communication systems, robotics, incremen-
tal compilation, traffic information systems [18], and
dataflow analysis. A comprehensive review of real-world
applications of dynamic shortest path problems appears
in [14].

URL to Code

An efficient C language implementation of the decremen-
tal algorithm addressed in Section “Key Results” is avail-
able at the URL: http://www.dis.uniroma1.it/~demetres/
experim/dsp.
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ProblemDefinition

An important requirement of wireless ad hoc networks
is that they should be self-organizing, and transmission
ranges and data paths may need to be dynamically re-
structured with changing topology. Energy conservation
and network performance are probably the most critical
issues in wireless ad hoc networks, because wireless de-
vices are usually powered by batteries only and have lim-
ited computing capability and memory. Hence, in such
a dynamic and resource-limited environment, each wire-
less node needs to locally select communication neighbors
and adjust its transmission power accordingly, such that
all nodes together self-form a topology that is energy effi-
cient for both unicast and broadcast communications.

To support energy-efficient unicast, the topology is
preferred to have the following features in the literature:
1. POWER SPANNER: [1,9,13,16,17] Formally speaking,

a subgraph H is called a power spanner of a graph G
if there is a positive real constant � such that for any
two nodes, the power consumption of the shortest path
in H is at most � times of the power consumption of
the shortest path inG. Here � is called the power stretch
factor or spanning ratio.

2. DEGREE BOUNDED: [1,9,11,13,16,17] It is also desir-
able that the logical node degree in the constructed
topology is bounded from above by a small constant.
Bounded logical degree structures find applications in
Bluetooth wireless networks since a master node can
have only seven active slaves simultaneously. A struc-
ture with small logical node degree will save the cost
of updating the routing table when nodes are mobile.
A structure with a small degree and using shorter links
could improve the overall network throughout [6].

3. PLANAR:[1,4,13,14,16] A network topology is also pre-
ferred to be planar (no two edges crossing each other in
the graph) to enable some localized routing algorithms
to work correctly and efficiently, such as Greedy Face
Routing (GFG) [2], Greedy Perimeter Stateless Rout-
ing (GPSR) [5], Adaptive Face Routing (AFR) [7], and
Greedy Other Adaptive Face Routing (GOAFR) [8]. No-
tice that with planar network topology as the underly-
ing routing structure, these localized routing protocols
guarantee the message delivery without using a routing
table: each intermediate node can decide which logical
neighboring node to forward the packet to using only
local information and the position of the source and the
destination.

To support energy-efficient broadcast [15], the locally con-
structed topology is preferred to be low-weighted [10,12]:
the total link length of the final topology is within a con-
stant factor of that of EMST. Recently, several localized
algorithms [10,12] have been proposed to construct low-
weighted structures, which indeed approximate the energy
efficiency of EMST as the network density increases. How-
ever, none of them is power efficient for unicast routing.

Before this work, all known topology control algo-
rithms could not support power efficient unicast and
broadcast in the same structure. It is indeed challenging
to design a unified topology, especially due to the trade off
between spanner and low weight property. The main con-
tribution of this algorithm is to address this issue.

Key Results

This algorithm is the first localized topology control al-
gorithm for all nodes to maintain a unified energy-effi-
cient topology for unicast and broadcast in wireless ad
hoc/sensor networks. In one single structure, the follow-
ing network properties are guaranteed:
1. Power efficient unicast: given any two nodes, there

is a path connecting them in the structure with total
power cost no more than 2� + 1 times the power cost
of any path connecting them in the original network.
Here � > 1 is some constant that will be specified later
in this algorithm. It assumes that each node u can ad-
just its power sufficiently to cover its next-hop v on any
selected path for unicast.

2. Power efficient broadcast: the power consumption for
broadcast is within a constant factor of the optimum
among all locally constructed structures. As proved in
[10], to prove this, it equals to prove that the structure is
low-weighted. Here we called a structure low-weigthed,
if its total edge length is within a constant factor of
the total length of the Euclidean Minimum Spanning



Degree-Bounded Planar Spanner with Low Weight D 229

1: First, each node self-constructs the Gabriel graphGG locally. The algorithm to constructGG locally is well-known,
and a possible implementation may refer to [13]. Initially, all nodes mark themselvesWHITE, i. e., unprocessed.

2: Once a WHITE node u has the smallest ID among all its WHITE neighbors in N(u), it uses the following strategy
to select neighbors:
1. Node u first sorts all its BLACK neighbors (if available) in N(u) in the distance-increasing order, then sorts

all its WHITE neighbors (if available) in N(u) similarly. The sorted results are then restored to N(u), by first
writing the sorted list of BLACK neighbors then appending the sorted list of WHITE neighbors.

2. Node u scans the sorted list N(u) from left to right. In each step, it keeps the current pointed neighborw in the
list, while deletes every conflicted node v in the remainder of the list. Here a node v is conflicted with w means
that node v is in the �-dominating region of node w. Here � = 2
/k (k � 9) is an adjustable parameter.

Node u thenmarks itself BLACK, i. e. processed, and notifies each deleted neighboring node v in N(u) by a broad-
casting message UPDATEN.

3: Once a node v receives the message UPDATEN from a neighbor u in N(v), it checks whether itself is in the nodes
set for deleting: if so, it deletes the sending node u from list N(v), otherwise, marks u as BLACK in N(v).

4: When all nodes are processed, all selected links fuvjv 2 N(u);8v 2 GGg form the final network topology,
denoted by S	GG. Each node can shrink its transmission range as long as it sufficiently reaches its farthest
neighbor in the final topology.

Degree-Bounded Planar Spanner with LowWeight, Algorithm 1
S�GG: Power-Efficient Unicast Topology

Tree (EMST). For broadcast or generally multicast, it
assumes that each node u can adjust its power suffi-
ciently to cover its farthest down-stream node on any
selected structure (typically a tree) for multicast.

3. Bounded logical node degree: each node has to com-
municate with at most k � 1 logical neighbors, where
k � 9 is an adjustable parameter.

4. Bounded average physical node degree: the expected
average physical node degree is at most a small con-
stant. Here the physical degree of a node u in a struc-
tureH is defined as the number of nodes inside the disk
centered at u with radius maxuv2H kuvk.

5. Planar: there are no edges crossing each other. This
enables several localized routing algorithms, such
as [2,5,7,8], to be performed on top of this structure and
guarantee the packet delivery without using the routing
table.

6. Neighbors �-separated: the directions between any
two logical neighbors of any node are separated by at
least an angle � , which reduces the communication in-
terferences.

It is the first known localized topology control strategy for
all nodes together to maintain such a single structure with
these desired properties. Previously, only a centralized al-
gorithm was reported in [1]. The first step is Algorithm 1
that can construct a power-efficient topology for unicast,
then it extends to the final algorithm (Algorithm 2) that
can support power-efficient broadcast at the same time.

Definition 1 (� -Dominating Region) For each neighbor
node v of a node u, the � -dominating region of v is the
2�-cone emanated from u, with the edge uv as its axis.

Let NUDG(u) be the set of neighbors of node u in UDG,
and let N(u) be the set of neighbors of node u in the final
topology, which is initialized as the set of neighbor nodes
in GG.

Algorithm 1 constructs a degree-(k � 1) planar power
spanner.

Lemma 1 Graph S	GG is connected if the underlying
graph GG is connected. Furthermore, given any two nodes u
and v, there exists a path fu; t1; : : : ; tr ; vg connecting them
such that all edges have length less than

p
2kuvk.

Theorem 2 The structure S	GG has node degree at most
k � 1 and is planar power spanner with neighbors 	-sep-
arated. Its power stretch factor is at most � =

p
2ˇ /

(1 � (2
p
2 sin �k )

ˇ ), where k � 9 is an adjustable parame-
ter.

Obviously, the construction is consistent for two end-
points of each edge: if an edge uv is kept by node u, then
it is also kept by node v. It is worth mentioning that, the
number 3 in criterion kxyk > max(kuvk; 3kuxk; 3kvyk)
is carefully selected.

Theorem 3 The structure LS	GG is a degree-bounded
planar spanner. It has a constant power spanning ratio
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1: All nodes together construct the graph S	GG in a localized manner, as described in Algorithm 1. Then, each
node marks its incident edges in S	GG unprocessed.

2: Each node u locally broadcasts its incident edges in S	GG to its one-hop neighbors and listens to its neighbors.
Then, each node x can learn the existence of the set of 2-hop links E2(x), which is defined as follows: E2(x) =
fuv 2 S	GG j u or v 2 NUDG(x)g. In other words, E2(x) represents the set of edges in S	GG with at least one
endpoint in the transmission range of node x.

3: Once a node x learns that its unprocessed incident edge xy has the smallest ID among all unprocessed links in
E2(x), it will delete edge xy if there exists an edge uv 2 E2(x) (here both u and v are different from x and y),
such that kxyk > max(kuvk; 3kuxk; 3kvyk); otherwise it simply marks edge xy processed. Here assume that
uvyx is the convex hull of u, v, x and y. Then the link status is broadcasted to all neighbors through a message
UPDATESTATUS(XY).

4: Once a node u receives a message UPDATESTATUS(XY), it records the status of link xy at E2(u).
5: Each node repeats the above two steps until all edges have been processed. Let LS	GG be the final structure

formed by all remaining edges in S	GG.

Degree-Bounded Planar Spanner with LowWeight, Algorithm 2
Construct LS�GG: Planar Spanner with Bounded Degree and LowWeight

2� + 1, where � is the power spanning ratio of S	GG. The
node degree is bounded by k � 1where k � 9 is a customiz-
able parameter in S	GG.

Theorem 4 The structure LS	GG is low-weighted.

Theorem 5 Assuming that both the ID and the geome-
try position can be represented by log n bits each, the to-
tal number of messages during constructing the structure
LS	GG is in the range of [5n; 13n], where each message
has at most O(log n) bits.

Compared with previous known low-weighted struc-
tures [10,12], LS	GG not only achieves more desirable
properties, but also costs much less messages during con-
struction. To construct LS	GG, each node only needs
to collect the information E2(x) which costs at most 6n
messages for n nodes. The Algorithm 2 can be gener-
ally applied to any known degree-bounded planar span-
ner to make it low-weighted while keeping all its previous
properties, except increasing the spanning ratio from � to
2� + 1 theoretically.

In addition, the expected average node interference in
the structure is bounded by a small constant. This is signif-
icant on its own due to the following reasons: it has been
taken for granted that “a network topology with small logi-
cal node degree will guarantee a small interference” and re-
cently Burkhart et al. [3] showed that this is not true gener-
ally. This work also shows that, although generally a small
logical node degree cannot guarantee a small interference,
the expected average interference is indeed small if the log-
ical communication neighbors are chosen carefully.

Theorem 6 For a set of nodes produced by a Poisson
point process with density n, the expected maximum node
interferences of EMST, GG, RNG, and Yao are at least
	(log n).

Theorem 7 For a set of nodes produced by a Poisson point
process with density n, the expected average node interfer-
ences of EMST are bounded from above by a constant.

This result also holds for nodes deployed with uniform
random distribution.

Applications

Localized topology control in wireless ad hoc networks
are critical mechanisms to maintain network connectiv-
ity and provide feedback to communication protocols.
Themajor traffic in networks are unicast communications.
There is a compelling need to conserve energy and im-
prove network performance by maintaining an energy-ef-
ficient topology in localized ways. This algorithm achieves
this by choosing relatively smaller power levels and size
of communication neighbors for each node (e. g., reduc-
ing interference). Also, broadcasting is often necessary
in MANET routing protocols. For example, many uni-
cast routing protocols such as Dynamic Source Routing
(DSR), Ad Hoc On Demand Distance Vector (AODV),
Zone Routing Protocol (ZRP), and Location Aided Rout-
ing (LAR) use broadcasting or a derivation of it to establish
routes. It is highly important to use power-efficient broad-
cast algorithms for such networks since wireless devices
are often powered by batteries only.
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ProblemDefinition

The problem is to construct a spanning tree of small
degree for a connected undirected graph G = (V ; E). In
the Steiner version of the problem, a set of distinguished
vertices D 
 V is given along with the input graph G.
A Steiner tree is a tree in G which spans at least the set D.

As finding a spanning or Steiner tree of the smallest
possible degree�� isNP-hard, one is interested in approx-
imating this minimization problem. For many such com-
binatorial optimization problems, the goal is to find an ap-
proximation in polynomial time (a constant or larger fac-
tor). For the spanning and Steiner tree problems, the iter-
ative polynomial time approximation algorithms of Fürer
and Raghavachari [8] (see also [14]) findmuch better solu-
tions. The degree� of the solution tree is at most�� + 1.

There are very few natural NP-hard optimization
problems for which the optimum can be achieved up
to an additive term of 1. One such problem is coloring
a planar graph, where coloring with four colors can be
done in polynomial time. On the other hand, 3-coloring is
NP-complete even for planar graphs. An other such prob-
lem is edge coloring a graph of degree �. While coloring
with� + 1 colors is always possible in polynomial time,�
edge coloring is NP-complete.

Chvátal [3] has defined the toughness �(G) of a graph
as the minimum ratio jXj/c(X) such that the subgraph
of G induced by VnX has c(X) � 2 connected compo-



232 D Degree-Bounded Trees

nents. The inequality 1/�(G) � �� immediately follows.
Win [17] has shown that �� < 1

�(G) + 3; i. e., the inverse
of the toughness is actually a good approximation of��.

A set X, such that the ratio jXj/c(X) is the tough-
ness �(G), can be viewed as witnessing the upper
bound jXj/c(X) on �(G) and therefore the lower bound
c(X)/jXj on ��. Strengthening this notion, Fürer and
Raghavachari [8] define X to be a witness set for �� � d
if d is the smallest integer greater or equal to (jXj+ c(X)�
1)/jXj. Their algorithm not only outputs a spanning tree,
but also a witness set X, proving that its degree is at most
�� + 1.

Key Results

The minimum degree spanning tree and Steiner tree
problems are easily seen to be NP-hard, as they contain
the Hamiltonian path problem. Hence, we cannot expect
a polynomial time algorithm to find a solution of minimal
possible degree ��. The same argument also shows that
an approximation by a factor less than 3/2 is impossible in
polynomial time unless P = NP.

Initial approximation algorithms obtained solutions of
degree O(�� log n) [6], where n = jV j is the number of
vertices. The optimal result for the spanning tree case has
been obtained by Fürer and Raghavachari [7, 8].

Theorem 1 Let�� be the degree of an unknownminimum
degree spanning tree of an input graph G = (V ; E). There is
a polynomial time approximation algorithm for the mini-
mum degree spanning tree problem that finds a spanning
tree of degree at most�� + 1.

Later this result has been extended to the Steiner tree
case [8].

Theorem 2 Assume a Steiner tree problem is defined by
a graph G = (V ; E) and an arbitrary subset D of vertices
V. Let �� be the degree of an unknown minimum degree
Steiner tree of G spanning at least the set D. There is a poly-
nomial time approximation algorithm for the minimumde-
gree Steiner tree problem that finds a Steiner tree of degree
at most�� + 1.

Both approximation algorithms run in time O(mn �
log n ˛(m; n)), where m is the number of edges and ˛ is
the inverse Ackermann function.

Applications

Some possible direct applications are in networks for non-
critical broadcasting, where it might be desirable to bound
the load per node, and in designing power grids, where the

cost of splitting increases with the degree. Another major
benefit of a small degree network is limiting the effect of
node failure.

Furthermore, the main results on approximating the
minimumdegree spanning and Steiner tree problems have
been the basis for approximating various network design
problems, sometimes involving additional parameters.

Klein, Krishnan, Raghavachari and Ravi [11] find
2-connected subgraphs of approximately minimal degree
in 2-connected graphs, as well as approximately mini-
mal degree spanning trees (branchings) in directed graphs.
Their algorithms run in quasi-polynomial time, and ap-
proximate the degree�� by (1 + �)�� + O(log1+� n).

Often the goal is to find a spanning tree that simulta-
neously has a small degree and a small weight. For a graph
having an minimum weight spanning tree (MST) of de-
gree �� and weight w, Fischer [5] finds a spanning tree
with degree O(�� + log n) and weight w, (i. e., an MST of
small weight) in polynomial time.

Könemann and Ravi [12,13] provide a bi-criteria ap-
proximation. For a given B� � ��, let w be the minimum
weight of any spanning tree of degree at most B�. The
polynomial time algorithm finds a spanning tree of degree
O(B� + log n) and weight O(w). In the second paper, the
algorithm adapts to the case of a different degree bound
on each vertex. Chaudhuri et al. [2] further improved this
result to approximate both the degree B� and the weight w
by a constant factor.

In another extension of the minimumdegree spanning
tree problem, Ravi and Singh [15] have obtained a strict
generalization of the �� + 1 spanning tree approxima-
tion [8]. Their polynomial time algorithm finds an MST
of degree �� + k for the case of a graph with k distinct
weights on the edges.

Recently, there have been some drastic improvements.
Again, let w be the minimum cost of a spanning tree of
given degree B�. Goemans [9] obtains a spanning tree of
cost w and degree B� + 2. Finally, Singh and Lau [16] de-
crease the degree to B� + 1 and also handle individual de-
gree bounds��v for each vertex v in the same way.

Interesting approximation algorithms are also known
for the 2-dimensional Euclidian minimum weight
bounded degree spanning tree problem, where the ver-
tices are points in the plane and edge weights are the
Euclidian distances. Khuller, Raghavachari, and Young
[10] show factor 1.5 and 1.25 approximations for degree
bounds 3 and 4 respectively. These bounds have later been
improved slightly by Chan [1]. Slightly weaker results are
obtained by Fekete et al. [4], using flow-based methods,
for the more general case where the weight function just
satisfies the triangle inequality.
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Open Problems

The time complexity of the minimum degree spanning
and Steiner tree algorithms [8] is O(mn ˛(m; n) log n).
Can it be improved to O(mn)? In particular, what can
be gained by initially selecting a reasonable Steiner tree
with some greedy technique instead of starting the itera-
tion with an arbitrary Steiner tree?

Is there an efficient parallel algorithm that can obtain
a �� + 1 approximation in poly-logarithmic time? Fürer
and Raghavachari [6] have obtained such an NC-algo-
rithm, but only with a factor O(log n) approximation of
the degree.
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� Steiner Trees
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ProblemDefinition

One of the most fundamental communication problems in
wired as well as wireless networks is broadcasting, where
one distinguished source node has a message that needs to
be sent to all other nodes in the network.

The radio network abstraction captures the features
of distributed communication networks with multi-access
channels, with minimal assumptions on the channel
model and processors’ knowledge. Directed edges model
uni-directional links, including situations in which one
of two adjacent transmitters is more powerful than the
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other. In particular, there is no feedback mechanism (see,
for example, [13]). In some applications, collisions may
be difficult to distinguish from the noise that is normally
present on the channel, justifying the need for protocols
that do not depend on the reliability of the collision de-
tection mechanism (see [9,10]). Some network configura-
tions are subject to frequent changes. In other networks,
topologies could be unstable or dynamic; for example,
when mobile users are present. In such situations, algo-
rithms that do not assume any specific topology are more
desirable.

More formally a radio network is a directed graph
where by n we denote the number of nodes in this graph.
If there is an edge from u to v, then we say that v is an
out-neighbor of u and u is an in-neighbor of v. Each node
is assigned a unique identifier from the set f1; 2; : : : ; ng.
In the broadcast problem, one node, for example node 1,
is distinguished as the source node. Initially, the nodes do
not possess any other information. In particular, they do
not know the network topology.

The time is divided into discrete time steps. All nodes
start simultaneously, have access to a common clock, and
work synchronously. A broadcasting algorithm is a pro-
tocol that for each identifier id, given all past messages
received by id, specifies, for each time step t, whether id
will transmit a message at time t, and if so, it also speci-
fies the message. A messageM transmitted at time t from
a node u is sent instantly to all its out-neighbors. An out-
neighbor v of u receives M at time step t only if no col-
lision occurred, that is, if the other in-neighbors of v do
not transmit at time t at all. Further, collisions cannot be
distinguished from background noise. If v does not receive
any message at time t, it knows that either none of its in-
neighbors transmitted at time t, or that at least two did, but
it does not know which of these two events occurred. The
running time of a broadcasting algorithm is the smallest t
such that for any network topology, and any assignment of
identifiers to the nodes, all nodes receive the source mes-
sage no later than at step t.

All efficient radio broadcasting algorithms are based
on the following purely combinatorial concept of selectors.

Selectors Consider subsets of f1; : : : ; ng. We say that
a set S hits a set X iff jS \ Xj = 1, and that S avoids Y iff
S \ Y = ;. A family S of sets is aw-selector if it satisfies the
following property:

(�) For any two disjoint sets X, Y with w/2 � jXj � w,
jY j � w, there is a set in S which hits X and avoids Y .

A complete layered network is a graph consisting
of layers L0; : : : ; Lm�1; in which each node in layer Li

is directly connected to every node in layer Li+1; for all
i = 0; : : : ;m � 1: The layer L0 contains only the source
node s.

Key Results

Theorem 1 ([5]) For all positive integers w and n; s.t.,
w � n there exists a w-selector S̄ with O(w log n) sets.

Theorem 2 ([5]) There exists a deterministic O(n log2 n)-
time algorithm for broadcasting in radio networks with ar-
bitrary topology.

Theorem 3 ([5]) There exists a deterministic O(n log n)-
time algorithm for broadcasting in complete layered radio
networks.

Applications

Prior to this work, Bruschi and Del Pinto showed in [1]
that radio broadcasting requires time ˝(n logD) in the
worst case. In [2], Chlebus et al. presented a broadcasting
algorithm with time complexity O(n11/6) – the first sub-
quadratic upper bound. This upper bound was later im-
proved to O(n5/3 log3 n) by De Marco and Pelc [8], and by
Chlebus et al. [3] to O(n3/2) by application of finite geome-
tries.

Recently, Kowalski and Pelc in [12] proposed a faster
O(n log n logD)�time radio broadcasting algorithm,
where D is the eccentricity of the network. Later, Czu-
maj and Rytter showed in [6] how to reduce this bound
to O(n log2 D). The results presented in [5], see Theo-
rems 1, 2, and 3, as well as further improvements in [6,12]
are existential (non-constructive). The proofs are based
on the probabilistic method. A discussion on efficient
explicit construction of selectors was initiated by Indyk
in [11], and then continued by Chlebus and Kowalski
in [4].

More careful analysis and further discussion on selec-
tors in the context of combinatorial group testing can be
found in [7], where DeBonis et al. proved that the size of
selectors is	(w log n

w ):

Open Problems

The exact complexity of radio broadcasting remains an
open problem, although the gap between the lower and
upper bounds ˝(n logD) and O(n log2 D) is now only
a factor of logD. Another promising direction for further
studies is improvement of efficient explicit construction of
selectors.
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ProblemDefinition

The problem is to design a strategy for a searcher (or
a number of searchers) located initially at some start point
on a line to reach an unknown target point. The target
point is detected only when a searcher is located on it.
There are several variations depending on the informa-
tion about the target point, how many parallel searchers
are available and how they can communicate, and the type
of algorithm. The cost of the search algorithm is defined as
the distance traveled until finding the point relative to the
distance of the starting point to the target. This entry only
covers deterministic algorithms.

Key Results

Consider just one searcher. If one knows the direction to
the target, the solution is trivial and the relative cost is 1.
If one knows the distance to the target, the solution is also
simple. Walk that distance to one side and if the target is
not found, go back and travel to the other side until the
target is found. In the worst case the cost of this algorithm
is 3.

If no information is known about the target, the so-
lution is not trivial. The optimal algorithm follows a lin-
ear logarithmic spiral with exponent 2 and has cost 9 plus
lower order terms. That is, one takes 1, 2, 4, 8, ..., 2i, ... steps
to each side in an alternating fashion, each time return-
ing to the origin, until the target is found. This result was
first discovered by Gal and rediscovered independently by
Baeza-Yates et al.

If one has more searchers, saym, the solution is trivial
if they have instantaneous communication. Two searchers
walk in opposite directions and the rest stay at the origin.
The searcher that finds the target communicates this to all
the others. Hence, the cost for all searchers is m+ 2, as-
suming that all of them must reach the target. If they do
not have communication the solution is more complicated
and the optimal algorithm is still an open problem.

The searching setting can also be changed, like finding
a point in a set of r rays, where the optimal algorithm has
cost 1 + 2rr /(r � 1)r�1, which tends to 1 + 2e	 6.44.

Other variations are possible. For example, if one is in-
terested in the average case one can have a probability dis-
tribution for finding the target point, obtaining paradoxi-
cal results, as an optimal finite distance algorithm with an
infinite number of turning points. On the other hand, in
the worst case, if there is a cost d associated with each turn,
the optimal distance is 9 OPT+ 2d, where OPT is the dis-
tance between the origin and the target. This last case has
also been solved for r rays.
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The same ideas of doubling in each step can be ex-
tended to find a target point in an unknown simple poly-
gon or to find a line with known slope in the plane. The
same spiral search can also be used to find an arbitrary line
in the plane with cost 13.81. The optimality of this result is
still an open problem.

Applications

This problem is a basic element for robot navigation in un-
known environments. For example, it arises when a robot
needs to find where a wall ends, if the robot can only sense
the wall but not see it.
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ProblemDefinition
The problem of lossless data compression is the problem
of compactly representing data in a format that admits the
faithful recovery of the original information. Lossless data
compression is achieved by taking advantage of the redun-
dancy which is often present in the data generated by ei-
ther humans or machines.

Dictionary-based data compression has been “the so-
lution” to the problem of lossless data compression for
nearly 15 years. This technique originated in two theoret-
ical papers of Ziv and Lempel [15,16] and gained popu-
larity in the “80s” with the introduction of the Unix tool
compress (1986) and of the gif image format (1987). Al-
though today there are alternative solutions to the problem
of lossless data compression (e. g., Burrows-Wheeler com-
pression and Prediction by Partial Matching), dictionary-
based compression is still widely used in everyday appli-
cations: consider for example the zip utility and its vari-
ants, the modem compression standards V.42bis and V.44,
and the transparent compression of pdf documents. The
main reason for the success of dictionary-based compres-
sion is its unique combination of compression power and
compression/decompression speed. The reader should re-
fer to [13] for a review of several dictionary-based com-
pression algorithms and of their main features.

Key Results
Let T be a string drawn from an alphabet ˙ . Dictionary-
based compression algorithms work by parsing the in-
put into a sequence of substrings (also called words)
T1; T2; : : : ; Td and by encoding a compact representation
of these substrings. The parsing is usually done incremen-
tally and on-line with the following iterative procedure.
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Assume the encoder has already parsed the substrings
T1; T2; : : : ; Ti�1. To proceed, the encoder maintains a dic-
tionary of potential candidates for the next word Ti and
associates a unique codeword with each of them. Then,
it looks at the incoming data, selects one of the candi-
dates, and emits the corresponding codeword. Different
algorithms use different strategies for establishing which
words are in the dictionary and for choosing the next word
Ti. A larger dictionary implies a greater flexibility for the
choice of the next word, but also longer codewords. Note
that for efficiency reasons the dictionary is usually not built
explicitly: the whole process is carried out implicitly using
appropriate data structures.

Dictionary-based algorithms are usually classified into
two families whose respective ancestors are two parsing
strategies, both proposed by Ziv and Lempel and today
universally known as LZ78 [16] and LZ77 [15].

The LZ78 Algorithm

Assume the encoder has already parsed the words
T1; T2; : : : ; Ti�1, that is, T = T1T2 � � � Ti�1T̂i for some text
suffix T̂i . The LZ78 dictionary is defined as the set of
strings obtained by adding a single character to one of the
words T1; : : : ; Ti�1 or to the empty word. The next word
Ti is defined as the longest prefix of T̂i which is a dictio-
nary word. For example, for T = aabbaaabaabaabba the
LZ78 parsing is: a, ab, b, aa, aba, abaa, bb, a. It is easy to see
that all words in the parsing are distinct, with the possible
exception of the last one (in the example the word a). Let
T0 denote the empty word. If Ti = Tj˛, with 0 � j < i and
˛ 2 ˙ , the codeword emitted by LZ78 for Ti will be the
pair (j,˛). Thus, if LZ78 parses the string T into t words,
its output will be bounded by t log t + t log j˙ j +	(t) bits.

The LZ77 Algorithm

Assume the encoder has already parsed the words
T1; T2; : : : ; Ti�1, that is, T = T1T2 � � � Ti�1T̂i for some text
suffix T̂i . The LZ77 dictionary is defined as the set of
strings of the form w˛ where ˛ 2 ˙ and w is a substring
of T starting in the already parsed portion of T. The next
word Ti is defined as the longest prefix of T̂i which is a dic-
tionary word. For example, for T = aabbaaabaabaabba
the LZ77 parsing is: a, ab, ba, aaba, abaabb, a. Note that, in
some sense, T5 = abaabb is defined in terms of itself: it is
a copy of the dictionary wordw˛ withw starting at the sec-
ond a of T4 and extending into T5! It is easy to see that all
words in the parsing are distinct, with the possible excep-
tion of the last one (in the example the word a), and that
the number of words in the LZ77 parsing is smaller than
in the LZ78 parsing. If Ti = w˛ with ˛ 2 ˙ , the codeword

for Ti is the triplet (si ; `i ; ˛) where si is the distance from
the start of Ti to the last occurrence of w in T1T2 � � � Ti�1,
and `i = jwj.

Entropy Bounds

The performance of dictionary-based compressors has
been extensively investigated since their introduction.
In [15] it is shown that LZ77 is optimal for a certain fam-
ily of sources, and in [16] it is shown that LZ78 achieves
asymptotically the best compression ratio attainable by
a finite-state compressor. This implies that, when the in-
put string is generated by an ergodic source, the compres-
sion ratio achieved by LZ78 approaches the entropy of the
source. More recent work has established similar results
for other Ziv–Lempel compressors and has investigated
the rate of convergence of the compression ratio to the en-
tropy of the source (see [14] and references therein).

It is possible to prove compression bounds without
probabilistic assumptions on the input, using the notion
of empirical entropy. For any string T, the order k em-
pirical entropy Hk(T) is the maximum compression one
can achieve using a uniquely decodable code in which the
codeword for each character may depend on the k char-
acters immediately preceding it [6]. The following lemma
is a useful tool for establishing upper bounds on the com-
pression ratio of dictionary-based algorithms which hold
pointwise on every string T.

Lemma 1 ([6, Lemma 2.3]) Let T = T1T2 � � � Td be a pars-
ing of T such that each word Ti appears at most M times.
Then, for any k � 0

d log d � jTjHk(T)+d log(jTj/d)+d logM+	(kd+d);

where Hk(T) is the k-th order empirical entropy of T. �

Consider, for example, the algorithm LZ78. It parses the
input T into t distinct words (ignoring the last word
in the parsing) and produces an output bounded by
t log t + t log j˙ j +	(t) bits. Using Lemma 1 and the fact
that t = O(jTj/ log T), one can prove that LZ780s output is
at most jTjHk(T) + o(jTj) bits. Note that the bound holds
for any k � 0: this means that LZ78 is essentially “as pow-
erful” as any compressor that encodes the next character
on the basis of a finite context.

Algorithmic Issues

One of the reasons for the popularity of dictionary-based
compressors is that they admit linear-time, space-efficient
implementations. These implementations sometimes re-
quire non-trivial data structures: the reader is referred
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to [12] and references therein for further reading on this
topic.

Greedy vs. Non-Greedy Parsing

Both LZ78 and LZ77 use a greedy parsing strategy in the
sense that, at each step, they select the longest prefix of the
unparsed portion which is in the dictionary. It is easy to see
that for LZ77 the greedy strategy yields an optimal pars-
ing; that is, a parsing with the minimum number of words.
Conversely, greedy parsing is not optimal for LZ78: for any
sufficiently large integerm there exists a string that can be
parsed to O(m) words and that the greedy strategy parses
in ˝(m3/2) words. In [9] the authors describe an efficient
algorithm for computing an optimal parsing for the LZ78
dictionary and, indeed, for any dictionary with the prefix-
completeness property (a dictionary is prefix-complete if
any prefix of a dictionary word is also in the dictionary).
Interestingly, the algorithm in [9] is a one-step lookahead
greedy algorithm: rather than choosing the longest possi-
ble prefix of the unparsed portion of the text, it chooses the
prefix that results in the longest advancement in the next
iteration.

Applications

The natural application field of dictionary-based compres-
sors is lossless data compression (see, for example [13]).
However, because of their deep mathematical properties,
the Ziv–Lempel parsing rules have also found applications
in other algorithmic domains.

Prefetching

Krishnan and Vitter [7] considered the problem of
prefetching pages from disk into memory to anticipate
users’ requests. They combined LZ78 with a pre-existing
prefetcher P1 that is asymptotically at least as good as the
best memoryless prefetcher, to obtain a new algorithm P
that is asymptotically at least as good as the best finite-
state prefetcher. LZ780s dictionary can be viewed as a trie:
parsing a string means starting at the root, descending one
level for each character in the parsed string and, finally,
adding a new leaf. Algorithm P runs LZ78 on the string of
page requests as it receives them, and keeps a copy of the
simple prefetcher P1 for each node in the trie; at each step,
P prefetches the page requested by the copy of P1 associ-
ated with the node LZ78 is currently visiting.

String Alignment

Crochemore, Landau and Ziv-Ukelson [4] applied LZ78
to the problem of sequence alignment, i. e., finding the

cheapest sequence of character insertions, deletions and
substitutions that transforms one string T into another
T0 (the cost of an operation may depend on the charac-
ter or characters involved). Assume, for simplicity, that
jTj = jT 0j = n. In 1980 Masek and Paterson proposed an
O(n2/ log n)-time algorithm with the restriction that the
costs be rational; Crochemore et al.’s algorithm allows
real-valued costs, has the same asymptotic cost in the
worst case, and is asymptotically faster for compressible
texts.

The idea behind both algorithms is to break into
blocks the matrix A[1 : : : n; 1 : : : n] used by the obvi-
ous O(n2)-time dynamic programming algorithm. Masek
and Paterson break it into uniform-sized blocks, whereas
Crochemore et al. break it according to the LZ78 pars-
ing of T and T0. The rationale is that, by the nature
of LZ78 parsing, whenever they come to solve a block
A[i : : : i0; j : : : j0], they can solve it in O(i0 � i + j0 � j)
time because they have already solved blocks identical
to A[i : : : i0 � 1; j : : : j0] and A[i : : : i0; j : : : j0 � 1] [8]. Lif-
shits, Mozes, Weimann and Ziv-Ukelson [8 recently used
a similar approach to speed up the decoding and training
of hidden Markov models.

Compressed Full-Text Indexing

Given a text T, the problem of compressed full-text in-
dexing is defined as the task of building an index for T
that takes space proportional to the entropy of T and that
supports the efficient retrieval of the occurrences of any
pattern P in T. In [10] Navarro proposed a compressed
full-text index based on the LZ78 dictionary. The basic
idea is to keep two copies of the dictionary as tries: one
storing the dictionary words, the other storing their re-
versal. The rationale behind this scheme is the follow-
ing. Since any non-empty prefix of a dictionary word
is also in the dictionary, if the sought pattern P occurs
within a dictionary word, then P is a suffix of some word
and easy to find in the second dictionary. If P overlaps
two words, then some prefix of P is a suffix of the first
word—and easy to find in the second dictionary—and
the remainder of P is a prefix of the second word—and
easy to find in the first dictionary. The case when P over-
laps three or more words is a generalization of the case
with two words. Recently, Arroyuelo et al. [1] improved
the original data structure in [10]. For any text T, the
improved index uses (2 + �)jTjHk(T) + o(jTj log j˙ j) bits
of space, where Hk(T) is the k-th order empirical en-
tropy of T, and reports all occ occurrences of P in T in
O(jPj2 log jPj + (jPj + occ) log jTj) time.
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Independently of [10], in [5] the LZ78 parsing was
used together with the Burrows-Wheeler compression
algorithm to design the first full-text index that uses
o(jTj log jTj) bits of space and reports the occ occurrences
of P in T in O(jPj + occ) time. If T = T1T2 � � � Td is the
LZ78 parsing of T, in [5] the authors consider the string
T$ = T1$T2$ � � � $Td$ where $ is a new character not be-
longing to ˙ . The string T$ is then compressed using the
Burrows-Wheeler transform. The $’s play the role of an-
chor points: their positions in T$ are stored explicitly so
that, to determine the position in T of any occurrence of P,
it suffices to determine the position with respect to any of
the $’s. The properties of the LZ78 parsing ensure that the
overhead of introducing the $’s is small, but at the same
time the way they are distributed within T$ guarantees the
efficient location of the pattern occurrences.

Related to the problem of compressed full-text index-
ing is the compressed matching problem in which text
and pattern are given together (so the former cannot be
preprocessed). Here the task consists in performing string
matching in a compressed text without decompressing it.
For dictionary-based compressors this problem was first
raised in 1994 by A. Amir, G. Benson, and M. Farach, and
has received considerable attention since then. The reader
is referred to [11] for a recent review of the many theoret-
ical and practical results obtained on this topic.

Substring Compression Problems

Substring compression problems involve preprocessing T
to be able to efficiently answer queries about compress-
ing substrings: e. g., how compressible is a given sub-
string s in T? what is s’s compressed representation? or,
what is the least compressible substring of a given length
`? These are important problems in bioinformatics be-
cause the compressibility of a DNA sequence may give
hints as to its function, and because some clustering al-
gorithms use compressibility to measure similarity. The
solutions to these problems are often trivial for sim-
ple compressors, such as Huffman coding or run-length
encoding, but they are open for more powerful algo-
rithms, such as dictionary-based compressors, BWT com-
pressors, and PPM compressors. Recently, Cormode and
Muthukrishnan [3] gave some preliminary solutions for
LZ77. For any string s, let C(s) denote the number of
words in the LZ77-parsing of s, and let LZ77(s) denote
the LZ77-compressed representation of s. In [3] the au-
thors show that, with O(|T| polylog(|T|)) time preprocess-
ing, for any substring s of T they can: a) compute LZ77(s)
in O(C(s) log jTj log log jTj) time, b) compute an approx-
imation of C(s) within a factor O(log jTj log� jTj) in O(1)

time, c) find a substring of length ` that is close to being the
least compressible in O(jTj`/ log `) time. These bounds
also apply to general versions of these problems, in which
queries specify another substring t in T as context and ask
about compressing substrings when LZ77 starts with a dic-
tionary already containing the words in the LZ77 parsing
of t.

Grammar Generation

Charikar et al. [2] considered LZ78 as an approximation
algorithm for the NP-hard problem of finding the small-
est context-free grammar that generates only the string
T. The LZ78 parsing of T can be viewed as a context-
free grammar in which for each dictionary word Ti = Tj˛

there is a production Xi ! Xj˛. For example, for T =
aabbaaabaabaabba the LZ78 parsing is: a, ab, b, aa, aba,
abaa, bb, a, and the corresponding grammar is: S !
X1 : : : X7X1; X1 ! a; X2 ! X1b; X3 ! b; X4 ! X1a;
X5 ! X2a; X6 ! X5a; X7 ! X3b. Charikar et al. showed
LZ78’s approximation ratio is in O((jTj/ log jTj)2/3) \
˝(jTj2/3 log jTj); i. e., the grammar it produces has size at
most f (jTj) � m�, where f (|T|) is a function in this inter-
section and m� is the size of the smallest grammar. They
also showed m� is at least the number of words output by
LZ77 on T, and used LZ77 as the basis of a new algorithm
with approximation ratio O(log(jTj/m�)).

URL to Code

The source code of the gzip tool (based on LZ77) is
available at the page http://www.gzip.org/. An LZ77-based
compression library zlib is available from http://www.zlib.
net/. A more recent, and more efficient, dictionary-based
compressor is LZMA (Lempel–Ziv Markov chain Algo-
rithm), whose source code is available from http://www.
7-zip.org/sdk.html.
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ProblemDefinition

Indexing and dictionary matching are generalized models
of pattern matching. These models have attained impor-
tance with the explosive growth of multimedia, digital li-
braries, and the Internet.

1. Text Indexing: In text indexing one desires to prepro-
cess a text t, of length n, and to answer where subse-
quent queries p, of lengthm, appear in the text t.

2. Dictionary Matching: In dictionary matching one is
given a dictionary D of strings p1; : : : ; pd to be prepro-
cessed. Subsequent queries provide a query string t, of
length n, and ask for each location in t at which patterns
of the dictionary appear.

Key Results

Text Indexing

The indexing problem assumes a large text that is to be
preprocessed in a way that will allow the following efficient
future queries. Given a query pattern, one wants to find all
text locations that match the pattern in time proportional
to the pattern length and to the number of occurrences.

To solve the indexing problem, Weiner [14] invented
the suffix tree data structure (originally called a posi-
tion tree), which can be constructed in linear time, and
subsequent queries of length m are answered in time
O(m log j˙ j + tocc), where tocc is the number of pattern
occurrences in the text.

Weiner’s suffix tree in effect solved the indexing prob-
lem for exactmatching of fixed texts. The construction was
simplified by the algorithms of McCreight and, later, Chen
and Seiferas. Ukkonen presented an online construction
of the suffix tree. Farach presented a linear time construc-
tion for large alphabets (specifically, when the alphabet is
f1; : : : ; ncg, where n is the text size and c is some fixed
constant). All results, besides the latter, work by handling
one suffix at a time. The latter algorithm uses a divide
and conquer approach, dividing the suffixes to be sorted
to even-position suffixes and odd-position suffixes. See the
entry on Suffix Tree Construction for full details. The stan-
dard query time for finding a pattern p in a suffix tree is
O(m log j˙ j). By slightly adjusting the suffix tree one can
obtain a query time of O(m + log n), see [12].

Another popular data structure for indexing is suf-
fix arrays. Suffix arrays were introduced by Manber and
Myers. Others proposed linear time constructions for lin-
early bounded alphabets. All three extend the divide and
conquer approach presented by Farach. The construction
in [11] is especially elegant and significantly simplifies the
divide and conquer approach, by dividing the suffix set
into three groups instead of two. See the entry on Suffix
Array Construction for full details. The query time for suf-
fix arrays is O(m + log n) achievable by embedding addi-
tional lcp (longest common prefix) information into the
data structure. See [11] for reference to other solutions.
Suffix Trayswere introduced in [5] as amerge between suf-
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fix trees and suffix arrays. The construction time of suffix
trays is the same as for suffix trees and suffix arrays. The
query time is O(m + log j˙ j).

Solutions for the indexing problem in dynamic texts,
where insertions and deletions (of single characters or
entire substrings) are allowed, appear in several papers,
see [2] and references therein.

Dictionary Matching

Dictionary matching is, in some sense, the “inverse” of text
indexing. The large body to be preprocessed is a set of pat-
terns, called the dictionary. The queries are texts whose
length is typically significantly smaller than the dictionary
size. It is desired to find all (exact) occurrences of dictio-
nary patterns in the text in time proportional to the text
length and to the number of occurrences.

Aho and Corasick [1] suggested an automaton-based
algorithm that preprocesses the dictionary in time O(d)
and answers a query in time O(n + docc), where docc is
the number of occurrences of patterns within the text. An-
other approach to solving this problem is to use a gener-
alized suffix tree. A generalized suffix tree is a suffix tree
for a collection of strings. Dictionary matching is done for
the dictionary of patterns. Specifically, a suffix tree is cre-
ated for the generalized string p1$1p2$2 � � � $pd$d , where
the $i’s are not in the alphabet. A randomized solution us-
ing a fingerprint scheme was proposed in [3]. In [7] a par-
allel work-optimal algorithm for dictionary matching was
presented. Ferragina and Luccio [8] considered the prob-
lem in the external memory model and suggested a solu-
tion based upon the String B-tree data structure along with
the notion of a certificate for dictionary matching. Two
Dimensional Dictionary Matching is another fascinating
topic which appears as a separate entry. See also the entry
on Multidimensional String Matching.

Dynamic Dictionary Matching: Here one allows in-
sertion and deletion of patterns from the dictionary D.
The first solution to the problem was a suffix tree-based
method for solving the dynamic dictionary matching
problem. Idury and Schäffer [10] showed that the failure
function (function mapping from one longest matching
prefix to the next longest matching prefix, see [1]) ap-
proach and basic scanning loop of the Aho–Corasick al-
gorithm can be adapted to dynamic dictionary matching
for improved initial dictionary preprocessing time. They
also showed that faster search time can be achieved at the
expense of slower dictionary update time.

A further improvement was later achieved by reducing
the problem to maintaining a sequence of well-balanced
parentheses under certain operations. In [13] an optimal

method was achieved based on a labeling paradigm, where
labels are given to, sometimes overlapping, substrings of
different lengths. The running times are: O(jDj) prepro-
cessing time, O(m) update time, and O(n + docc) time for
search. See [13] for other references.

Text Indexing and Dictionary Matching with Errors

In most real-life systems there is a need to allow errors.
With the maturity of the solutions for exact indexing and
exact dictionary matching, the quest for approximate so-
lutions began. Two of the classical measures for approx-
imating closeness of strings, Hamming distance and Edit
distance, were the first natural measures to be considered.

ApproximateText Indexing: For approximate text in-
dexing, given a distance k, one preprocesses a specified
text t. The goal is to find all locations ` of t within dis-
tance k of the query p, i. e. for the Hamming distance all
locations ` such that the length m substring of t begin-
ning at that location can be made equal to p with at most k
character substitutions. (An analogous statement applies
for the edit distance.) For k = 1 [4] one can preprocess
in time O(n log2 n) and answer subsequent queries p in
time O(m

p
log n log log n + occ). For small k � 2, the fol-

lowing naive solutions can be achieved. The first possi-
ble solution is to traverse a suffix tree checking all pos-
sible configurations of k, or less, mismatches in the pat-
tern. However, while the preprocessing needed to build
a suffix tree is cheap, the search is expensive, namely,
O(mk+1j˙ jk + occ). Another possible solution, for the
Hamming distance measure only, leads to data structures
of size approximately O(nk+1) embedding all mismatch
possibilities into the tree. This can be slightly improved by
using the data structures for k = 1, which reduce the size
to approximately O(nk ).

Approximate Dictionary Matching: The goal is to
preprocess the dictionary along with a threshold parame-
ter k in order to support the following subsequent queries:
Given a query text, seek all pairs of patterns (from the dic-
tionary) and text locations which match within distance k.
Here once again there are several algorithms for the case
where k = 1 [4,9]. The best solution for this problem has
query time O(m log log n + occ); the data structure uses
space O(n log n) and can be built in time O(n log n):

The solutions for k = 1 in both problems (Approxi-
mate Text Indexing and Approximate Dictionary Match-
ing) are based on the following, elegant idea, presented
in Indexing terminology. Say a pattern p matches a text t
at location i with one error at location j of p (and at lo-
cation i + j � 1 of t). Obviously, the j � 1-length prefix
of p matches the aligned substring of t and so does the
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m � j � 1 length suffix. If t and p are reversed then the
j � 1-th length prefix of p becomes a j � 1-th length suf-
fix of pR (that is p reverse). Notice that there is a match
with, at most one error, if (1) the suffix of p starting at
location j + 1 matches the (prefix of the) suffix of t start-
ing at location i + j and (2) the suffix of pR starting at lo-
cation m � j + 1 (the reverse of the j � 1-th length pre-
fix of p) matches the (prefix of the) suffix of tR starting
at location m � i � j + 3. So, the problem now becomes
a search for locations j which satisfy the above. To do so,
the above-mentioned solutions, naturally, use two suffix
trees, one for the text and one for its reverse (with addi-
tional data structure tricks to answer the query fast). In
dictionary matching the suffix trees are defined on the dic-
tionary. The problem is that this solution does not carry
over for k � 2. See the introduction of [6] for a full list of
references.

Text Indexing and Dictionary Matching
within (Small) Distance k

Cole et al. [6] proposed a new method that yields a unified
solution for approximate text indexing, approximate dic-
tionary matching, and other related problems. However,
since the solution is somewhat involved it will be simpler
to explain the ideas on the following problem. The desire is
to index a text t to allow fast searching for all occurrences
of a pattern containing, at most, k don’t cares (don’t cares
are special characters which match all characters).

Once again, there are two possible, relatively straight-
forward, solutions to be elaborated. The first is to use a suf-
fix tree, which is cheap to preprocess, but causes the search
to be expensive, namely, O(mj˙ jk + occ) (if considering
k mismatches this would increase to O(mk+1j˙ jk + occ).
To be more specific, imagine traversing a path in a suffix
tree. Consider the point where a don’t care is reached. If
in the middle of an edge the only text suffixes (represent-
ing substrings) that can match the pattern with this don’t
care must also go through this edge. So simply continue
traversing. However, if at a node, then all the paths leaving
this node must be explored. This explains the mentioned
time bound.

The second solution is to create a tree that contains all
strings that are at Hamming distance k from a suffix. This
allows fast search but leads to trees of size exponential in
k, namely, O(nk+1) size trees. To elaborate, the tree, called
a k-error-trie, is constructed as follows. First, consider the
case for one don’t care, i. e. a 1-error-trie, and then extend
it. At any node v a don’t care may need to be evaluated.
Therefore, create a special subtree branching off this node
that represents a don’t care at this node. To understand

this subtree, note that the subtree (of the suffix tree) rooted
at v is actually a compressed trie of (some of the) suffixes
of the text. Denote the collection of suffixes Sv. The first
character of all these suffixes have to be removed (or, per-
haps better imagined as a replacement with a don’t care
character). Each will be a new suffix of the text. Denote the
new collection as S0v . Now, create a new compressed trie
of suffixes for S0v , calling this new subtree an error tree. Do
so for every v. The suffix tree along with its error trees is
a 1-error-trie. Turning to queries in the 1-error-trie, when
traversing the 1-error-trie, do so with the suffix tree up till
the don’t care at node v. Move into the error tree at node v
and continue the traversal of the pattern.

To create a 2-error-trie, simply take each error tree and
construct an error tree for each node within. A (k+1)-error
trie is created recursively from a k-error trie. Clearly the 1-
error trie is of size O(n2), since any node u in the original
suffix tree will appear in all the new subtrees of the 1-error
trie created for each of the nodes v which are ancestors of
u. Likewise, the k-error-trie is of size O(nk+1).

The method introduced in Cole et al. [6] uses the idea
of the error trees to form a new data structure, which is
called a k-errata trie. The k-errata triewill bemuch smaller
than O(nk+1). However, it comes at the cost of a some-
what slower search time. To understand the k-errata tries
it is useful to first consider the 1-errata-tries and to ex-
tend. The 1-errata-trie is constructed as follows. The suffix
tree is first decomposed with a centroid path decomposi-
tion (which is a decomposition of the nodes into paths,
where all nodes along a path have their subtree sizes within
a range 2r and 2r+1, for some integer r). Then, as before,
error trees are created for each node v of the suffix tree
with the following difference. Namely, consider the sub-
tree, Tv, at node v and consider the edge (v; x) going from
v to child x on the centroid path. Tv can be partitioned into
two subtrees, Tx [ (v; x), and T 0v all the rest of Tv. An er-
ror tree is created for the suffixes in T 0v . The 1-errata-trie is
the suffix tree with all of its error trees. Likewise, a (k+1)-
errata trie is created recursively from a k-errata trie. The
contents of a k-errata trie should be viewed as a collec-
tion of error trees, k levels deep, where error trees at each
level are constructed on the error trees of the previous level
(at level 0 there is the original suffix tree). The following
lemma helps in obtaining a bound on the size of the k-er-
rata trie.

Lemma 1 Let C be a centroid decomposition of a tree T.
Let u be an arbitrary node of T and 
 be the path from the
root to u. There are at most log n nodes v on 
 for which v
and v’s parent on 
 are on different centroid paths.
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The implication is that every node u in the original suffix
tree will only appear in log n error trees of the 1-errata trie
because each ancestor v of u is on the path 
 from the root
to u and only log n such nodes are on different centroid
paths than their children (on 
). Hence, u appears in only
logk n error trees in the k-errata trie. Therefore, the size of
the k-errata trie is O(n logk n). Creating the k-errata tries
in O(n logk+1 n) can be done. To answer queries on a k-er-
rata trie, given the pattern with (at most) k don’t cares, the
0th level of the k-errata trie, i. e. the suffix tree, needs to
be traversed. This is to be done until the first don’t care,
at location j, in the pattern is reached. If at node v in the
0th level of the k-errata trie, enter the (1st level) error tree
hanging off of v and traverse this error tree from location
j + 2 of the pattern (until the next don’t care is met). How-
ever, the error tree hanging off of node v does not contain
the subtree hanging off of v that is along the centroid path.
Hence, continue traversing the pattern in the 0th level of
the k-errata trie, starting along the edge on the centroid
path leaving v (until the next don’t care is met). The search
is done recursively for k don’t cares and, hence, yields an
O(2km) time search.

Recall that a solution for indexing text that supports
queries of a pattern with k don’t cares has been de-
scribed. Unfortunately, when indexing to support k mis-
match queries, not to mention k edit operation queries, the
traversal down a k-errata trie can be very time consuming
as frequent branching is required since an error may occur
at any location of the pattern. To circumvent this problem
search many error trees in parallel. In order to do so, the
error trees have to be grouped together. This needs to be
done carefully, see [6] for the full details. Moreover, edit
distance needs even more careful handling. The time and
space of the algorithms achieved in [6] are as follows:

Approximate Text Indexing: The data structure
for mismatches uses space O(n logk n), takes time
O(n logk+1 n) to build, and answers queries in time
O((logk n) log log n + m + occ). For edit distance, the
query time becomesO((logk n) log log n + m + 3k � occ). It
must be pointed out that this result is mostly effective for
constant k.

Approximate Dictionary Matching: For k mis-
matches the data structure uses space O(n + d logk d), is
built in time O(n + d logk+1 d), and has a query time of
O((m + logkd) � log log n + occ). The bounds for edit dis-
tance are modified as in the indexing problem.

Applications

Approximate Indexing has a wide array of applications
in signal processing, computational biology, and text re-

trieval among others. Approximate Dictionary Matching
is important in digital libraries and text retrieval systems.

Cross References

� Compressed Text Indexing
� Indexed Approximate String Matching
�Multidimensional String Matching
� Sequential Multiple String Matching
� Suffix Array Construction
� Suffix Tree Construction in Hierarchical Memory
� Suffix Tree Construction in RAM
� Text Indexing
� Two-Dimensional Pattern Indexing
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ProblemDefinition

Notations

Let G = (V ; E) be a plane geometric network, whose ver-
tex setV is a finite set of point sites inR2, connected by an
edge set E of non-crossing straight line segments with end-
points in V . For two points p 6= q 2 V let �G(p; q) denote
a shortest path from p to q in G. Then

�(p; q) :=
j�G(p; q)j
jpqj

(1)

is the detour one encounters when using networkG, in or-
der to get from p to q, instead of walking straight. Here, j:j
denotes the Euclidean length.

The dilation of G is defined by

�(G) := max
p 6=q2V

�(p; q) : (2)

This value is also known as the spanning ratio or the
stretch factor of G. It should, however, not be confused
with the geometric dilation of a network, where the points
on the edges are also being considered, in addition to the
vertices.

Given a finite set S of points in the plane, one would
like to find a plane geometric network G = (V ; E) whose
dilation �(G) is as small as possible, such that S is con-
tained in V . The value of

˙(S) := inff �(G); G = (V ; E) finite plane
geometric network where S � V g

is called the dilation of point set S. The problem is in com-
puting, or bounding,˙(S) for a given set S.

Related Work

If edge crossings were allowed one could use spanners
whose stretch can be made arbitrarily close to 1; see
the monographs by Eppstein [6] or Narasimhan and
Smid [12]. Different types of triangulations of S are known
to have their stretch factors bounded from above by small
constants, among them the Delaunay triangulation of
stretch� 2:42; see Dobkin et al. [3], Keil and Gutwin [10],
and Das and Joseph [2]. Eppstein [5] has characterized
all triangulations T of dilation �(T) = 1; these triangula-
tions are shown in Fig. 1. Trivially,˙(S) = 1 holds for each
point set S contained in the vertex set of such a triangula-
tion T.

Key Results

The previous remark’s converse turns also out to be true.

Theorem 1 ([11]) If S is not contained in one of the vertex
sets depicted in Fig. 1 then˙(S) > 1.

That is, if a point set S is not one of these special sets then
each plane network including S in its vertex set has a dila-
tion larger than some lower bound 1 + �(S). The proof of
Theorem 1 uses the following density result. Suppose one
connects each pair of points of S with a straight line seg-
ment. Let S0 be the union of S and the resulting crossing
points. Now the same construction is applied to S0, and
repeated. For the limit point set S1 the following theorem
holds. It generalizes work by Hillar and Rhea [8] and by
Ismailescu and Radoičić [9] on the intersections of lines.

Theorem 2 ([11]) If S is not contained in one of the vertex
sets depicted in Fig. 1 then S1 lies dense in some polygonal
part of the plane.

For certain infinite structures can concrete lower bounds
be proven.

Theorem 3 ([4]) Let N be an infinite plane network all of
whose faces have a diameter bounded from above by some
constant. Then �(N) > 1:00156 holds.

Dilation of Geometric Networks, Figure 1
The triangulations of dilation 1
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Dilation of Geometric Networks, Figure 2
A network of dilation ~ 1.1247

Theorem 4 ([4]) Let C denote the (infinite) set of all points
on a closed convex curve. Then˙(C) > 1:00157 holds.

Theorem 5 ([4]) Given n families Fi ; 2 � i � n, each
consisting of infinitely many equidistant parallel lines. Sup-
pose that these families are in general position. Then their
intersection graph G is of dilation at least 2/

p
3.

The proof of Theorem 5 makes use of Kronecker’s the-
orem on simultaneous approximation. The bound is at-
tained by the packing of equiangular triangles.

Finally, there is a general upper bound to the dilation
of finite point sets.

Theorem 6 ([4]) Each finite point set S is of dilation
˙(S) < 1:1247.

To prove this upper bound one can embed any given fi-
nite point set S in the vertex set of a scaled, and slightly
deformed, finite part of the network depicted in Fig. 2. It
results from a packing of equilateral triangles by replacing
each vertex with a small triangle, and by connecting neigh-
boring triangles as indicated.

Applications

A typical university campus contains facilities like lecture
halls, dorms, library, mensa, and supermarkets, which are
connected by some path system. Students in a hurry are
tempted to walk straight across the lawn, if the shortcut
seems worth it. After a while, this causes new paths to ap-
pear. Since their intersections are frequented bymany peo-
ple, they attract coffee shops or other new facilities. Now,

Dilation of Geometric Networks, Figure 3
The best known embedding for S5

people will walk across the lawn to get quickly to a coffee
shop, and so on.

D. Eppstein [5] has asked what happens to the lawn
if this process continues. The above results show that (1)
part of the lawn will be completely destroyed, and (2) the
temptation to walk across the lawn cannot, in general, be
made arbitrarily small by a clever path design.

Open Problems

For practical applications, upper bounds to the weight
(= total edge length) of a geometric network would be
valuable, in addition to upper dilation bounds. Some theo-
retical questions require further investigation, too. Is˙(S)
always attained by a finite network? How to compute, or
approximate, ˙(S) for a given finite set S? Even for a set
as simple as S5, the corners of a regular 5-gon, is the di-
lation unknown. The smallest dilation value known, for
a triangulation containing S5 among its vertices, equals
1.0204; see Fig. 3. Finally, what is the precise value of
supf˙(S); S finiteg?

Cross References

� Geometric Dilation of Geometric Networks
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Let S = fs1; s2; : : : ; sng be a set of elements called objects,
and let C = fc1; c2; : : : ; cmg be a set of functions from S
to f0; 1g called characters. For each object si 2 S and char-
acter c j 2 C, it is said that si has cj if c j(si ) = 1 or that si
does not have cj if c j(si ) = 0, respectively (in this sense,
characters are binary). Then the set S and its relation to C
can be naturally represented by a matrixM of size (n � m)
satisfying M[i; j] = c j(si ) for every i 2 f1; 2; : : : ; ng and
j 2 f1; 2; : : : ;mg. Such a matrixM is called a binary char-
acter state matrix.

Next, for each si 2 S, define the set Csi = fc j 2
C : si has c jg. A phylogeny for S is a tree whose leaves are
bijectively labeled by S, and a directed perfect phylogeny for
(S, C) (if one exists) is a rooted phylogeny T for S in which
each c j 2 C is associated with exactly one edge of T in such
a way that for any si 2 S, the set of all characters associated

with the edges on the path in T from the root to leaf si is
equal to Csi . See Figs. 1 and 2 for two examples.

Now, define the following problem.

Problem 1 (TheDirected Perfect Phylogeny Problem for
Binary Characters)
INPUT: A binary character statematrixM for some S andC.
OUTPUT: A directed perfect phylogeny for (S, C), if one ex-
ists; otherwise, null.

Key Results
For the presentation below, for each c j 2 C, define a set
Sc j = fsi 2 S : si has c jg. The next lemma is the key to
solving The Directed Perfect Phylogeny Problem for Bi-
nary Characters efficiently. It was first proved by Es-
tabrook, Johnson, and McMorris [2,3], and is also known
in the literature as the pairwise compatibility theorem.
A constructive proof of the lemma can be found in,
e. g., [7,11].

Lemma 1([2,3]) There exists a directed perfect phylogeny
for (S, C) if and only if for all c j; ck 2 C it holds that
Sc j \ Sck = ;, Sc j 
 Sck , or Sck 
 Sc j .

Using Lemma 1, it is straightforward to construct a top-
down algorithm for the problem that runs in O(nm2)
time. However, a faster algorithm is possible. Gusfield [6]
observed that after sorting the columns of M in non-
increasing order all duplicate copies of a column appear in
a consecutive block of columns and column j is to the right
of column k if Sc j is a proper subset of Sck , and exploited
this fact together with Lemma 1 to obtain the following
result:

Theorem 2 ([6]) The Directed Perfect Phylogeny Problem
for Binary Characters can be solved in O(nm) time.

For a detailed description of the original algorithm and
a proof of its correctness, see [6] or [11]. A conceptually
simplified version of the algorithm based on keyword trees
can be found in [7]. Gusfield [6] also gave an adversary ar-
gument to prove a corresponding lower bound of ˝(nm)
on the running time, showing that his algorithm is time
optimal:

Theorem 3 ([6]) Any algorithm that decides if a given
binary character state matrix M admits a directed perfect
phylogeny must, in the worst case, examine all entries of M.

Agarwala, Fernández-Baca, and Slutzki [1] noted that the
input binary character state matrix is often sparse, i. e., in
general, most of the objects will not have most of the char-
acters. In addition, they noted that for the sparse case, it
is more efficient to represent the input (S,C) by all the
sets Sc j for j 2 f1; 2; : : : ;mg, where each set Sc j is defined

http://www.ics.uci.edu/~eppstein/junkyard/dilation-free/
http://www.ics.uci.edu/~eppstein/junkyard/dilation-free/
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Directed Perfect Phylogeny (Binary Characters), Figure 1
a A (5 × 8)-binary character state matrixM. b A directed perfect phylogeny for (S,C)

M c1 c2

s1 1 0
s2 1 1
s3 0 1

Directed Perfect Phylogeny (Binary Characters), Figure 2
This binary character state matrix admits no directed perfect
phylogeny

as above and each Sc j is specified as a linked list, than by
using a binary character state matrix. Agarwala et al. [1]
proved that with this alternative representation of S and C,
the algorithm of Gusfield can be modified to run in time
proportional to the total number of 1’s in the correspond-
ing binary character state matrix1:

Theorem 4 ([1]) The variant of The Directed Perfect Phy-
logeny Problem for Binary Characters in which the in-
put is given as linked lists representing all the sets Sc j
for j 2 f1; 2; : : : ;mg can be solved in O(h) time, where
h =

Pm
j=1 jSc j j.

For a description of the algorithm, refer to [1] or [5].

Applications

Directed perfect phylogenies for binary characters are used
to describe the evolutionary history for a set of objects that
share some observable traits and that have evolved from
a “blank” ancestral object which has none of the traits.
Intuitively, the root of a directed perfect phylogeny cor-
responds to the blank ancestral object and each directed
edge e = (u; v) corresponds to an evolutionary event in
which the hypothesized ancestor represented by u gains
the characters associated with e, transforming it into the
hypothesized ancestor or object represented by v. It is as-

1Note that Theorem 4 does not contradict Theorem 3; in fact,
Gusfield’s lower bound argument considers an input matrix consist-
ing mostly of 1’s.

sumed that each character can emerge once only during
the evolutionary history and is never lost after it has been
gained2, so a leaf si is a descendant of the edge associated
with a character cj if and only if si has cj.

Binary characters are commonly used by biologists and
linguists. Traditionally, morphological traits or directly
observable features of species were employed by biolo-
gists as binary characters, and recently, binary characters
based on genomic information such as substrings in DNA
or protein sequences, protein regulation data, and shared
gaps in a given multiple alignment have become more and
more prevalent. Section 17.3.2 in [7] mentions several ex-
amples where phylogenetic trees have been successfully
constructed based on such types of binary character data.
In the context of reconstructing the evolutionary history
of natural languages, linguists often use phonological and
morphological characters with just two states [9].

The Directed Perfect Phylogeny Problem for Binary
Characters is closely related to The Perfect Phylogeny Prob-
lem, a fundamental problem in computational evolution-
ary biology and phylogenetic reconstruction [4,5,11]. This
problem (also described in more detail in entry � Per-
fect Phylogeny (Bounded Number of States)) introduces
non-binary characters so that each character c j 2 C has
a set of allowed states f0; 1; : : : ; r j � 1g for some in-
teger rj, and for each si 2 S, character cj is in one of
its allowed states. Generalizing the notation used above,
define the set Sc j;˛ for every ˛ 2 f0; 1; : : : ; r j � 1g by
Sc j;˛ = fsi 2 S : the state of si on c j is ˛g. Then, the ob-
jective of The Perfect Phylogeny Problem is to construct (if
possible) an unrooted phylogeny T for S such that the fol-
lowing holds: for each c j 2 C and distinct states ˛; ˇ of cj,

2When this requirement is too strict, one can relax it to permit
errors; for example, let characters be associated with more than one
edge in the phylogeny (i. e., allow each character to emerge many
times) but minimize the total number of associations (Camin–Sokal
optimization), or keep the requirement that each character emerges
only once but allow it to be lost multiple times (Dollo parsimony) [4,5]
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the minimal subtree of T that connects Sc j;˛ and the min-
imal subtree of T that connects Sc j;ˇ are vertex-disjoint.
McMorris [10] showed that the special case with r j = 2
for all c j 2 C can be reduced to The Directed Perfect
Phylogeny Problem for Binary Characters in O(nm) time
(for each c j 2 C, if the number of 1’s in column j of M
is greater than the number of 0’s then set entry M[i; j] to
1�M[i; j] for all i 2 f1; 2; : : : ; ng). Therefore, another ap-
plication of Gusfield’s algorithm [6] is as a subroutine for
solving The Perfect Phylogeny Problem when r j = 2 for
all c j 2 C in O(nm) time. Even more generally, The Per-
fect Phylogeny Problem for directed as well as undirected
cladistic characters can be solved in polynomial time by
a similar reduction to The Directed Perfect Phylogeny
Problem for Binary Characters (see [5]).

In addition to the above, it is possible to apply Gus-
field’s algorithm to determine whether two given trees de-
scribe compatible evolutionary history, and if so, merge
them into a single tree so that no branching information
is lost (see [6] for details). Finally, Gusfield’s algorithm has
also been used by Hanisch, Zimmer, and Lengauer [8] to
implement a particular operation on documents defined
in their Protein Markup Language (ProML) specification.

Cross References

� Perfect Phylogeny (Bounded Number of States)
� Perfect Phylogeny Haplotyping
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The performance of a communication network is affected
by the packet collisions which occur when two or more
packets appear simultaneously in the same network node
(router) and all these packets wish to follow the same out-
going link from the node. Since network links have limited
available bandwidth, the collided packets wait on buffers
until the collisions are resolved. Collisions cause delays in
the packet delivery time and also contribute to the network
performance degradation.

Direct routing is a packet delivery method which
avoids packet collisions in the network. In direct routing,
after a packet is injected into the network it follows a path
to its destination without colliding with other packets, and
thus without delays due to buffering, until the packet is ab-
sorbed at its destination node. The only delay that a packet
experiences is at the source node while it waits to be in-
jected into the network.

In order to formulate the direct routing problem, the
network is modeled as a graph where all the network nodes
are synchronized with a common time clock. Network
links are bidirectional, and at each time step any link can
be crossed by at most two packets, one packet in each di-
rection. Given a set of packets, the routing time is defined
to be the time duration between the first packet injection
and the last packet absorbtion.

Consider a set of N packets, where each packet has
its own source and destination node. In the direct rout-

http://www.bioinfo.de/isb/2002/02/0029/
http://www.bioinfo.de/isb/2002/02/0029/
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ing problem, the goal is first to find a set of paths for the
packets in the network, and second, to find appropriate
injection times for the packets, so that if the packets are
injected at the prescribed times and follow their paths they
will be delivered to their destinations without collisions.
The direct scheduling problem is a variation of the above
problem, where the paths for the packets are given a pri-
ori, and the only task is to compute the injection times for
the packets.

A direct routing algorithm solves the direct routing
problem (similarly, a direct scheduling algorithm solves the
direct scheduling problem). The objective of any direct al-
gorithm is to minimize the routing time for the packets.
Typically, direct algorithms are offline, that is, the paths
and the injection schedule are computed ahead of time,
before the packets are injected into the network, since the
involved computation requires knowledge about all pack-
ets in order to guarantee the absence of collisions between
them.

Key Results

Busch, Magdon-Ismail, Mavronicolas, and Spirakis,
present in [6] a comprehensive study of direct algorithms.
They study several aspects of direct routing such as the
computational complexity of direct problems and also the
design of efficient direct algorithms. The main results of
their work are described below.

Hardness of Direct Routing

It is shown in [Sect. 4 in 6] that the optimal direct schedul-
ing problem, where the paths are given and the objective is
to compute an optimal injection schedule (that minimizes
the routing time) is an NP-complete problem. This result
is obtained with a reduction from vertex coloring, where
vertex coloring problems are transformed to appropriate
direct scheduling problems in a 2-dimensional grid. In ad-
dition, it is shown in [6] that approximations to the direct
scheduling problem are as hard to obtain as approxima-
tions to vertex coloring. A natural question is what kinds
of approximations can be obtained in polynomial time.
This question is explored in [6] for general and specific
kinds of graphs, as described below.

Direct Routing in General Graphs

A direct algorithm is given in [Section 3 in 6] that solves
approximately the optimal direct scheduling problem in
general network topologies. Suppose that a set of packets
and respective paths are given. The injection schedule is
computed in polynomial time with respect to the size of
the graph and the number of packets. The routing time is

measured with respect to the congestion C of the packet
paths (the maximum number of paths that use an edge),
and the dilation D (the maximum length of any path).

The result in [6] establishes the existence of a sim-
ple greedy direct scheduling algorithm with routing time
rt = O(C � D). In this algorithm, the packets are pro-
cessed in an arbitrary order and each packet is assigned
the smallest available injection time. The resulting routing
time is worst-case optimal, since there exist instances of
direct scheduling problems for which no direct schedul-
ing algorithm can achieve a better routing time. A trivial
lower bound on the routing time of any direct scheduling
problem is ˝(C + D), since no algorithm can deliver the
packets faster than the congestion or dilation of the paths.
Thus, in the general case, the algorithm in [6] has routing
time rt = O((rt�)2), where rt� is the optimal routing time.

Direct Routing in Specific Graphs
Several direct algorithms are presented in [6] for spe-
cialized network topologies. The algorithms solve the di-
rect routing problem where first good paths are con-
structed and then an efficient injection schedule is com-
puted. Given a set of packets, let C* and D* denote the op-
timal congestion and dilation, respectively, for all possible
sets of paths for the packets. Clearly, the optimal routing
time is rt� = ˝(C� + D�). The upper bounds in the di-
rect algorithm in [6] are expressed in terms of this lower
bound. All the algorithms run in time polynomial to the
size of the input.

Tree The graph G is an arbitrary tree. A direct routing
algorithm is given in [Section 3.1 in 6], where each packet
follows the shortest path from its source to the destina-
tion. The injection schedule is obtained using the greedy
algorithm with a particular ordering of the packets. The
routing time of the algorithm is asymptotically optimal:
rt � 2C� + D� � 2 < 3 � rt�.

Mesh The graphG is a d-dimensional mesh (grid) with n
nodes [10]. A direct routing algorithm is proposed in [Sec-
tion 3.2 in 6], which first constructs efficient paths for the
packets with congestion C = O(d log n � C�) and dilation
D = O(d2 � D�) (the congestion is guaranteed with high
probability). Then, using these paths the injection sched-
ule is computed giving a direct algorithm with the routing
time:

rt = O(d2 log2 n � C� + d2 � D�) = O(d2 log2 n � rt�) :

This result follows from a more general result which
is shown in [6], that says that if the paths contain at
most b “bends”, i. e. at most b dimension changes, then
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there is a direct scheduling algorithm with routing time
O(b � C + D). The result follows because the constructed
paths have b = O(d log n) bends.

Butterfly The graph G is a butterfly network with n in-
put and n output nodes [10]. In [Section 3.3 in 6] the au-
thors examine permutation routing problems in the but-
terfly, where each input (output) node is the source (des-
tination) of exactly one packet. An efficient direct rout-
ing algorithm is presented in [6] which first computes
good paths for the packets using Valiant’s method [14,15]:
two butterflies are connected back to back, and each path
is formed by choosing a random intermediate node in
the output of the first butterfly. The chosen paths have
congestion C = O(lg n) (with high probability) and dila-
tion D = 2 lg n = O(D�). Given the paths, there is a di-
rect schedule with routing time very close to optimal:
rt � 5 lg n = O(rt�).

Hypercube The graph G is a hypercube with n
nodes [10]. A direct routing algorithm is given in [Sec-
tion 3.4 in 6] for permutation routing problems. The al-
gorithm first computes good paths for the packets by se-
lecting a single random intermediate node for each packet.
Then an appropriate injection schedule gives routing time
rt < 14 lg n, which is worst-case optimal since there exist
permutations for which D� = ˝(lg n).

Lower Bound for Buffering

In [Section 5 in 6] an additional problem has been stud-
ied about the amount of buffering required to provide
small routing times. It is shown in [6] that there is a di-
rect scheduling problem for which every direct algo-
rithm requires routing time ˝(C � D); at the same time,
C + D = 	(

p
C � D) = o(C � D). If buffering of packets is

allowed, then it is well known that there exist packet
scheduling algorithms ([11,12]) with routing time very
close to the optimal O(C + D). In [6] it is shown that for
the particular packet problem, in order to convert a direct
injection schedule of routing time O(C � D) to a packet
schedule with routing time O(C + D), it is necessary to
buffer packets in the network nodes in total˝(N4/3) times,
where a packet buffering corresponds to keeping a packet
in an intermediate node buffer for a time step, andN is the
number of packets.

Related Work

The only previous work which specifically addresses di-
rect routing is for permutation problems on trees [3,13]. In
these papers, the resulting routing time isO(n) for any tree
with n nodes. This is worst-case optimal, while the result

in [6] is asymptotically optimal for all routing problems in
trees.

Cypher et al. [7] study an online version of direct
routing in which a worm (packet of length L) can be re-
transmitted if it is dropped (they also allow the links to
have bandwidth B � 1). Adler et al. [1] study time con-
strained direct routing, where the task is to schedule as
many packets as possible within a given time frame.They
show that the time constrained version of the problem is
NP-complete, and also study approximation algorithms on
trees and meshes. Further, they discuss how much buffer-
ing could help in this setting.

Other models of bufferless routing are matching rout-
ing [2] where packets move to their destinations by swap-
ping packets in adjacent nodes, and hot-potato rout-
ing [4,5,8,9] in which packets follow links that bring them
closer to the destination, and if they cannot move closer
(due to collisions) they are deflected toward alternative di-
rections.

Applications

Direct routing represent collision-free communication
protocols, in which packets spend the smallest amount of
time possible time in the network once they are injected.
This type of routing is appealing in power or resource con-
strained environments, such as optical networks, where
packet buffering is expensive, or sensor networks where
energy resources are limited. Direct routing is also impor-
tant for providing quality of service in networks. There
exist applications where it is desirable to provide guaran-
tees on the delivery time of the packets after they are in-
jected into the network, for example in streaming audio
and video. Direct routing is suitable for such applications.

Cross References

� Oblivious Routing
� Packet Routing
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Department of Computer Science, University
of Montreal, Montreal, QC, Canada

Keywords and Synonyms

Learning an evolutionary tree

ProblemDefinition

Introduction

From a mathematical point of view, a phylogeny defines
a probability space for random sequences observed at the
leaves of a binary tree T. The tree T represents the un-
known hierarchy of common ancestors to the sequences.

It is assumed that (unobserved) ancestral sequences are
associated with the inner nodes. The tree along with the
associated sequences models the evolution of a molecular
sequence, such as the protein sequence of a gene. In the
conceptually simplest case, each tree node corresponds to
a species, and the gene evolves within the organismal lin-
eages by vertical descent.

Phylogeny reconstruction consists of finding T from
observed sequences. The possibility of such reconstruction
is implied by fundamental principles of molecular evolu-
tion, namely, that random mutations within individuals
at the genetic level spreading to an entire mating popu-
lation are not uncommon, since often they hardly influ-
ence evolutionary fitness [15]. Such mutations slowly ac-
cumulate, and, thus, differences between sequences indi-
cate their evolutionary relatedness.

The reconstruction is theoretically feasible in several
known situations. In some cases, distances can be com-
puted between the sequences, and used in a distance-based
algorithm. Such an algorithm is fast-converging if it al-
most surely recovers T, using sequences that are polyno-
mially long in the size of T. Fast-converging algorithms
exploit statistical concentration properties of distance es-
timation.

Formal Definitions

An evolutionary topology U(X) is an unrooted binary tree
in which leaves are bijectively mapped to a set of speciesX.
A rooted topology T is obtained by rooting a topologyU on
one of the edges uv: a new node � is added (the root), the
edge uv is replaced by two edges �v and �u, and the edges
are directed outwards on paths from � to the leaves. The
edges, vertices, and leaves of a rooted or unrooted topol-
ogy T are denoted by E(T),V (T) and L(T), respectively.

The edges of an unrooted topology U may be
equipped with a a positive edge length function
d : E(U) 7! (0;1). Edge lengths induce a tree met-
ric d : V (U) �V (U) 7! [0;1) by the extension
d(u; v) =

P
e2u v d(e), where u v denotes the unique

path from u to v. The value d(u, v) is called the distance
between u and v. The pairwise distances between leaves
form a distance matrix.

An additive treemetric is a function ı : X�X 7! [0;1)
that is equivalent to the distance matrix induced by some
topology U(X) and edge lengths. In certain random mod-
els, it is possible to define an additive tree metric that can
be estimated from dissimilarities between sequences ob-
served at the leaves.

In aMarkov model of character evolution over a rooted
topology T, each node u has an associated state, which
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is a random variable �(u) taking values over a fixed al-
phabet A = f1; 2; : : : rg. The vector of leaf states consti-
tutes the character � =

�
�(u) : u 2 L(T)

�
. The states form

a first-order Markov chain along every path. The joint dis-
tribution of the node states is specified by the marginal
distribution of the root state, and the conditional proba-
bilities Pf�(v) = bj�(u) = ag = pe(a! b) on each edge e,
called edge transition probabilities.

A sample of length ` consists of independent and iden-
tically distributed characters � =

�
�i : i = 1; : : : `

�
. The

random sequence associated with the leaf u is the vector
�(u) =

�
�i(u) : i = 1; : : : `

�
.

A phylogeny reconstruction algorithm is a function F
mapping samples to unrooted topologies. The success
probability is the probability that F(�) equals the true
topology.

Popular RandomModels

Neyman Model [14] The edge transition probabilities
are

pe(a! b) =

(
1 � �e if a = b ;
�e
r�1 if a ¤ b

with some edge-specific mutation probability 0 < �e <

1� 1/r. The root state is uniformly distributed. A distance
is usually defined by

d(u; v) = �
r � 1
r

ln
�
1 �

r
r � 1

Pf�(u) ¤ �(v)g
�
:

General Markov Model There are no restrictions on
the edge transition probabilities in the general Markov
model. For identifiability [1,16], however, it is usually
assumed that 0 < detPe < 1, where Pe is the stochas-
tic matrix of edge transition probabilities. Possible dis-
tances in this model include the paralinear distance [12,1]
and the LogDet distance [13,16]. This latter is defined by
d(u; v) = � ln det Juv , where Juv is thematrix of joint prob-
abilities for �(u) and �(v).

It is often assumed in practice that sequence evolu-
tion is effected by a continuous-time Markov process op-
erating on the edges. Accordingly, the edge length directly
measures time. In particular, Pe = eQ�d(e) on every edge e,
whereQ is the instantaneous rate matrix of the underlying
process.

Key Results

It turns out that the hardness of reconstructing an un-
rooted topologyU from distances is determined by its edge
depth �(U). Edge depth is defined as the smallest integer k

for which the following holds. From each endpoint of ev-
ery edge e 2 E(U), there is a path leading to a leaf, which
does not include e and has at most k edges.

Theorem 1 (Erdős, Steel, Székely, Warnow [6]) If U
has n leaves, then �(U) � 1 + log2(n � 1). Moreover, for
almost all random n-leaf topologies under the uniform or
Yule-Harding distributions, �(U) 2 O(log log n)

Theorem 2 (Erdős, Steel, Székely, Warnow [6]) For the
Neyman model, there exists a polynomial-time algorithm
that has a success probability (1 � ı) for random samples of
length

` = O
� log n + log 1

ı

f 2(1 � 2g)4�+6
�
; (1)

where 0 < f = mine �e and g = maxe �e < 1/2 are ex-
tremal edge mutation probabilities, and � is the edge depth
of the true topology.

Theorem 2 can be extended to the general Markov model
with analogous success rates for LogDet distances [7], as
well as to a number of other Markov models [2].

Equation (1) shows that phylogenies can be recon-
structed with high probability from polynomially long se-
quences. Algorithms with such sample size requirements
were dubbed fast-converging [9]. Fast convergence was
proven for the short quartet methods of Erdős et al. [6,7],
and for certain variants [11] of the so-called disk-covering
methods introduced by Huson et al. [9]. All these al-
gorithms run in ˝(n5) time. Csürös and Kao [3] initi-
ated the study of computationally efficient fast-converging
algorithms, with a cubic-time solution. Csürös [2] gave
a quadratic-time algorithm. King et al. [10] designed an
algorithm with an optimal running time of O(n log n) for
producing a phylogeny from a matrix of estimated dis-
tances.

The short quartet methods were revisited recently: [4]
described an O(n4)-time method that aims at succeeding
even if only a short sample is available. In such a case, the
algorithm constructs a forest of “trustworthy” edges that
match the true topology with high probability.

All known fast-converging distance-based algorithms
have essentially the same sample bound as in (1), but
Daskalakis et al. [5] recently gave a twist to the notion of
fast convergence. They described a polynomial-time algo-
rithm, which outputs the true topology almost surely from
a sample of size O(log n), given that edge lengths are not
too large. Such a bound is asymptotically optimal [6]. In-
terestingly, the sample size bound does not involve expo-
nential dependence on the edge depth: the algorithm does
not rely on a distance matrix.
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Applications

Phylogenies are often constructed in molecular evolution
studies, from aligned DNA or protein sequences. Fast-
converging algorithms have mostly a theoretical appeal
at this point. Fast convergence promises a way to han-
dle the increasingly important issue of constructing large-
scale phylogenies: see, for example, the CIPRES project
(http://www.phylo.org/).
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6. Erdős, P.L., Steel, M.A., Székely, L.A., Warnow, T.J.: A few logs
suffice to build (almost) all trees (I). Random Struct. Algorithm
14, 153–184 (1999) Preliminary version as DIMACS TR97-71
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ProblemDefinition

A phylogeny is an evolutionary tree tracing the shared
history, including common ancestors, of a set of extant
taxa. Phylogenies have been historically reconstructed us-
ing character-based (parsimony) methods, but in recent
years the advent of DNA sequencing, along with the de-
velopment of large databases of molecular data, has led
to more involved methods. Sophisticated techniques such
as likelihood and Bayesian methods are used to estimate
phylogenies with sound statistical justifications. However,
these statistical techniques suffer from the discrete nature
of tree topology space. Since the number of tree topolo-
gies increases exponentially as a function of the number of
taxa, and each topology requires separate likelihood cal-
culation, it is important to restrict the search space and
to design efficient heuristics. Distance methods for phy-
logeny reconstruction serve this purpose by inferring trees
in a fraction of the time required for the more statisti-
cally rigorous methods. They allow dealingwith thousands
of taxa, while the current implementations of statistical
approaches are limited to a few hundreds, and distance
methods also provide fairly accurate starting trees to be
further refined by more sophisticated methods. Moreover,
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the input of distance methods is the matrix of pairwise
evolutionary distances among taxa, which are estimated by
maximum likelihood, so that distance methods also have
sound statistical justifications.

Mathematically, a phylogenetic tree is a triple
T = (V ; E; l) where V is the set of nodes representing
extant taxa and ancestral species, E is the set of edges
(branches), and l is a function that assigns positive lengths
to each edge in E. Evolution proceeds through the tree
structure as a stochastic process with a finite state space
corresponding to the DNA bases or amino acids present
in the DNA or protein sequences, respectively.

Any phylogenetic tree T defines a metric DT on its
leaf set L(T) : let PT (u; v) define the unique path through
T from u to v, then the distance from u to v is set to
DT (u; v) =

P
e2PT (u;v) l(e).

Distance methods for phylogeny reconstruction rely
on the observation [13] that the map T ! DT is re-
versible; i. e., a tree T can be reconstructed from its tree
metric. While in practice DT is not known, by using mod-
els of evolution (e. g. [10], reviewed in [5]) one can use
molecular sequence data to estimate a distance matrix D
that approximatesDT . As the amount of sequence data in-
creases, the consistency of the various models of sequence
evolution implies that D should converge to DT . Thus for
a distance method to be consistent, it is necessary that for
any tree T, and for distance matrices D “close enough” to
DT , the algorithm will output T.

The present chapter deals with the question of when
any distance algorithm for phylogeny reconstruction can
be guaranteed to output the correct phylogeny as a func-
tion of the divergence between the metric underlying the
true phylogeny and themetric estimated from the data. At-
teson [1] demonstrated that this consistency can be shown
for Neighbor Joining (NJ) [11], the most popular distance
method, and a number of NJ’s variants.

The Neighbor Joining (NJ) Algorithm
of Saitou and Nei (1987)
NJ is agglomerative: it works by using the input matrixD to
identify a pair of taxa x; y 2 L that are neighbors in T, i. e.
there exists a node u 2 V such that f(u; x); (u; y)g � E.
The algorithm creates a node c that is connected to x and y,
extends the distance matrix to c, and then solves the re-
duced problem on L [ fcgnfx; yg. The pair (x; y) is cho-
sen to minimize the following sum:

SD(x; y) = (jLj � 2) �D(x; y)�
X
z2L

�
D(z; x) + D(z; y)

�
:

The soundness of NJ is based on the observation that, if
D = DT for a tree T, the value SD(x; y) will be minimized

for a pair (x; y) that are neighbors in T. A number of pa-
pers (reviewed in [8]) have been dedicated to the various
interpretations and properties of the SD criterion.

The Fast Neighbor Joining (FNJ) Algorithm
of Elias and Lagergren (2005)

NJ requires ˝(n3) computations, where n is the number
of taxa in the data set. Since a distance matrix only has n2

entries, many attempts have been made to construct a dis-
tance algorithm that would only require O(n2) computa-
tions while retaining the accuracy of NJ. To this end, the
best result so far is the Fast Neighbor Joining (FNJ) algo-
rithm of Elias and Lagergren [4].

Most of the computation of NJ is used in the re-
calculations of the sums SD(x; y) after each agglomera-
tion step. Although each recalculation can be performed
in constant time, the number of such pairs is˝(k2) when
k nodes are left to agglomerate, and thus, summing over k,
˝(n3) computations are required in all.

Elias and Lagergren take a related approach to agglom-
eration, which does not exhaustively seek the minimum
value of SD(x; y) at each step, but instead uses a heuris-
tic to maintain a list of candidates of “visible pairs” (x; y)
for agglomeration. At the (n � k)th step, when two neigh-
bors are agglomerated from a k-taxa tree to form a (k-
1)-taxa tree, FNJ has a list of O(k) visible pairs for which
SD(x; y) is calculated. The pair joined is selected from this
list. By trimming the number of pairs considered, Elias
and Lagergren achieved an algorithm which requires only
O(n2) computations.

Safety Radius-Based Performance Analysis
(Atteson 1999)

Short branches in a phylogeny are difficult to resolve, espe-
cially when they are nested deep within a tree, because rel-
atively few mutations occurring on a short branch as op-
posed to on much longer pendant branches, which hides
phylogenetic signal. One is faced with the choice between
leaving certain evolutionary relationships unresolved (i. e.,
having an internal node with degree > 3), or examining
when confidence can be had in the resolution of a short
internal edge.

A natural formulation [9] of this question is: how long
must be molecular sequences before one can have con-
fidence in an algorithm’s ability to reconstruct T accu-
rately? An alternative formulation [1] appropriate for dis-
tance methods: if D is a distance matrix that approximates
a tree metric DT , can one have some confidence in an al-
gorithm’s ability to reconstruct T given D, based on some
measure of the distance betweenD andDT? For twomatri-
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ces, D1 and D2, the L1 distance between them is defined
by kD1 � D2k1 = maxi; j jD1(i; j) � D2(i; j)j. Moreover,
let �(T) denote the length of the shortest internal edge of
a tree T.

The latter formulation leads to a definition: The safety
radius of an algorithm A is the greatest value of r with
the property that: given any phylogeny T, and any distance
matrixD satisfying kD � DTk1 < r � �(T);A will return
the tree T.

Key Results

Atteson [1] answered the second question affirmatively,
with two theorems.

Theorem 1 The safety radius of NJ is 1/2.

Theorem 2 For no distance algorithmA is the safety ra-
dius ofA greater than 1/2.

Indeed, given any �, one can find two different trees
T1; T2and a distancematrixD such that� = �(T1) = �(T2)
and kD � DT1k1 = �/2 = kD � DT2k1. Since D is
equidistant from two distinct tree metrics, no algorithm
could assign it to the “closest” tree.

In their presentation of an optimally fast version of the
NJ algorithm, Elias and Lagergren updated Atteson’s re-
sults for the FNJ algorithm. They showed

Theorem 3 The safety radius of FNJ is 1/2.

Elias and Lagergren showed that if D is a distance matrix
and DT is a tree metric with kD � DTk1 < �(T)/2, then
FNJ will output the same tree (T) as NJ.

Applications

Phylogeny is a quite active field within evolutionary biol-
ogy and bioinformatics. As more proteins and DNA se-
quences become available, the need for fast and accurate
phylogeny estimation algorithms is ever increasing as phy-
logeny not only serves to reconstruct species history but
also to decipher genomes. To date, NJ remains one of the
most popular algorithms for phylogeny building, and is by
far the most popular of the distance methods, with well
over 1000 citations per year.

Open Problems

With increasing amounts of sequence data becoming
available for an increasing number of species, distance al-
gorithms such as NJ should be useful for quite some time.
Currently, the bottleneck in the process of building phy-
logenies is not the problem of searching topology space,
but rather the problem of building distance matrices. The

brute force method to build a distance matrix on n taxa
from sequences with l positions requires ˝(ln2) compu-
tations, and typically l � n. Elias and Lagergren proposed
an ˝(ln1:376) algorithm based on Hamming distance and
matrix calculations. However, this algorithm only applies
to over-simple distance estimators [10]. Extending this re-
sult to more realistic models would be a great advance.

A number of distance-based tree building algorithms
have been analyzed in the safety radius framework. Atte-
son [1] dealt with a large class of neighbor joining-like al-
gorithms, andGascuel andMcKenzie [7] studied the ultra-
metric setting where the correct treeT is rooted and all tree
leaves are at the same distance from the root. Such trees
are very common; they are called “molecular clock” trees
in phylogenetics and “indexed hierarchies” in data analy-
sis. In this setting, the optimal safety radius is equal to 1
(instead of 1/2) and a number of standard algorithms (e. g.
UPGMA, with time complexity in O(n2)) have a safety
radius of 1. However, experimental studies (see below)
showed that not all algorithms with optimal safety radius
achieve the same accuracy, indicating that the safety radius
approach should be sharpened to provide better theoreti-
cal analysis of method performance.

Experimental Results

Computer simulation is the most standard way to assess
algorithm accuracy in phylogenetics. A tree is randomly
generated as well as a sequence at tree root, whose evo-
lution is simulated along the tree edges. A reconstruction
algorithm is tested using the sequences observed at the
tree leaves, thus mimicking the phylogenetic task. Vari-
ous measures exist to compare the correct and the inferred
trees, and algorithm performance is assessed as the aver-
age measure over repeated experiments. Elias and Lager-
gren [4] showed that FNJ (in O(n2)) is just slightly out-
performed by NJ (in O(n3)), while numerous simulations
(e. g. [3,12]) indicated that NJ is beaten by more recent al-
gorithms (all inO(n3) or less), namely BioNJ [6], WEIGH-
BOR [2], FastME [3] and STC [12].

Data Sets

A large number of data sets is stored by the TreeBASE
project, at http://www.treebase.org.

URL to Code

For a list of leading phylogeny packages, see Joseph Felsen-
stein’s website at http://evolution.genetics.washington.
edu/phylip/software.html

http://www.treebase.org
http://evolution.genetics.washington.edu/phylip/software.html
http://evolution.genetics.washington.edu/phylip/software.html
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ProblemDefinition

Consider a communication network, modeled by an
undirected weighted graph G = (V ; E), where jVj = n,
jEj = m. Each vertex of V represents a processor of un-
limited computational power; the processors have unique
identity numbers (ids), and they communicate via the
edges of E by sending messages to each other. Also, each
edge e 2 E has associated a weight w(e), known to the
processors at the endpoints of e. Thus, a processor knows
which edges are incident to it, and their weights, but it
does not know any other information about G. The net-
work is asynchronous: each processor runs at an arbitrary
speed, which is independent of the speed of other proces-
sors. A processor may wake up spontaneously, or when
it receives a message from another processor. There are
no failures in the network. Each message sent arrives at
its destination within a finite but arbitrary delay. A dis-
tributed algorithm A for G is a set of local algorithms, one
for each processor of G, that include instructions for send-
ing and receivingmessages along the edges of the network.
Assuming that A terminates (i. e. all the local algorithms
eventually terminate), its message complexity is the total
number of messages sent over any execution of the algo-
rithm, in the worst case. Its time complexity is the worst
case execution time, assuming processor steps take neg-
ligible time, and message delays are normalized to be at
most 1 unit.

A minimum spanning tree (MST) of G is a subset E0

of E such that the graph T = (V ; E0) is a tree (connected
and acyclic) and its total weight, w(E0) =

P
e2E0 w(e) is as

small as possible. The computation of an MST is a central
problem in combinatorial optimization, with a rich history
dating back to 1926 [2], and up to now; the book [12] col-
lects properties, classical results, applications, and recent
research developments.

In the distributed MST problem the goal is to design
a distributed algorithmA that terminates always, and com-
putes anMST T ofG. At the end of an execution, each pro-
cessor knows which of its incident edges belong to the tree
T and which not (i. e. the processor writes in a local output
register the corresponding incident edges). It is remark-
able that in the distributed version of the MST problem,
a communication network is solving a problem where the
input is the network itself. This is one of the fundamental
starting points of network algorithms.

It is not hard to see that if all edge weights are dif-
ferent, the MST is unique. Due to the assumption that
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processors have unique ids, it is possible to assume that
all edge weights are different: whenever two edge weights
are equal, ties are broken using the processor ids of the
edge endpoints. Having a unique MST facilitates the de-
sign of distributed algorithms, as processors can locally se-
lect edges that belong to the unique MST. Notice that if
processors do not have unique ids, and edge weights are
not different, there is no deterministicMST (nor any span-
ning tree) distributed algorithm, because it may be impos-
sible to break the symmetry of the graph, for example, in
the case it is a cycle with all edge weights equal.

Key Results

The distributedMST problem has been studied since 1977,
and dozens of papers have been written on the subject. In
1983, the fundamental distributed GHS algorithm in [5]
was published, the first to solve the MST problem with
O(m + n log n) message complexity. The paper has had
a very significant impact on research in distributed com-
puting and won the 2004 Edsger W. Dijkstra Prize in Dis-
tributed Computing.

It is not hard to see that any distributedMST algorithm
must have˝(m) message complexity (intuitivelly, at least
onemessagemust traverse each edge). Also, results in [3,4]
imply an ˝(n log n) message complexity lower bound for
the problem. Thus, the GHS algorithm is optimal in terms
of message complexity.

The ˝(m + n log n) message complexity lower bound
for the construction of anMST applies also to the problem
of finding an arbitrary spanning tree of the graph. How-
ever, for specific graph topologies, it may be easier to find
an arbitrary spanning tree than to find anMST. In the case
of a complete graph,˝(n2) messages are necessary to con-
struct an MST [8], while an arbitrary spanning tree can be
constructed in O(n log n) messages [7].

The time complexity of the GHS algorithm is
O(n log n). In [1] it is described how to improve its time
complexity to O(n), while keeping the optimal O(m +
n log n) message complexity. It is clear that ˝(D) time is
necessary for the construction of a spanning tree, where
D is the diameter of the graph. And in the case of an
MST the time complexity may depend on other param-
eters of the graph. For example, due to the need for in-
formation flow among processors residing on a common
cycle, as in an MST construction, at least one edge of
the cycle must be excluded from the MST. If messages of
unbounded size are allowed, an MST can be easily con-
structed in O(D) time, by collecting the graph topology
and edge weights in a root processor. The problem be-
comes interesting in the more realistic model where mes-

sages are of sizeO(log n), and an edge weight can be sent in
a single message.When the number of messages is not im-
portant, one can assume without loss of generality that the
model is synchronous. For near time optimal algorithms
and lower bounds see [10] and references herein.

Applications

The distributed MST problem is important to solve, both
theoretically and practically, as anMST can be used to save
on communication, in various tasks such as broadcast and
leader election, by sending the messages of such applica-
tions over the edges of the MST.

Also, research on the MST problem, and in particu-
lar the MST algorithm of [5], has motivated a lot of work.
Most notably, the algorithm of [5], introduced various
techniques that have been in widespread use for multi-
casting, query and reply, cluster coordination and routing,
protocols for handshake, synchronization, and distributed
phases. Although the algorithm is intuitive and is easy to
comprehend, it is sufficiently complicated and interesting
that it has become a challenge problem for formal verifica-
tion methods e. g. [11].

Open Problems

There are many open problems in this area, only a few sig-
nificant ones arementioned. As far asmessage complexity,
although the asymptotically tight bound of O(m + n log n)
for the MST problem in general graphs is known, finding
the actual constants remains an open problem. There are
smaller constants known for general spanning trees than
for MST though [6].

As mentioned above, near time optimal algorithms
and lower bounds appear in [10] and references herein.
The optimal time complexity remains an open problem.
Also, in a synchronous model for overlay networks, where
all processors are directly connected to each other, an
MST can be constructed in sublogarithmic time, namely
O(log log n) communication rounds [9], and no corre-
sponding lower bound is known.
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ProblemDefinition

The vertex coloring problem takes as input an undirected
graph G := (V ; E) and computes a vertex coloring, i. e.
a function, c : V ! [k] for some positive integer k such
that adjacent vertices are assigned different colors (that is,
c(u) 6= c(v) for all (u; v) 2 E). In the (� + 1) vertex color-
ing problem, k is set equal to � + 1 where � is the maxi-
mum degree of the input graph G. In general, (� + 1) col-
ors could be necessary as the example of a clique shows.
However, if the graph satisfies certain properties, it may
be possible to find colorings with far fewer colors. Finding
the minimum number of colors possible is a computation-
ally hard problem: the corresponding decision problems
are NP-complete [5]. In Brooks–Vizing colorings, the goal
is to try to find colorings that are near optimal.

In this paper, the model of computation used is the
synchronous, message passing framework as used in stan-
dard distributed computing [11]. The goal is then to de-
scribe very simple algorithms that can be implemented
easily in this distributed model that simultaneously are ef-
ficient as measured by the number of rounds required and
have good performance quality as measured by the num-
ber of colors used. For efficiency, the number of rounds is
require to be poly-logarithmic in n, the number of vertices
in the graph and for performance quality, the number of
colors used is should be near-optimal.

Key Results

Key theoretical results related to distributed (� + 1)-
vertex coloring are due to Luby [9] and Johansson [7].
Both show how to compute a (� + 1)-coloring in O(log n)
rounds with high probability. For Brooks–Vizing color-
ings, Kim [8] showed that if the graph is square or triangle
free, then it is possible to color it with O(�/ log�) colors.
If, moreover, the graph is regular of sufficiently high de-
gree (�� lg n), then Grable and Panconesi [6] show how
to color it with O(�/ log�) colors in O(log n) rounds.
See [10] for a comprehensive discussion of probabilistic
techniques to achieve such colorings.

The present paper makes a comprehensive experimen-
tal analysis of distributed vertex coloring algorithms of the
kind analyzed in these papers on various classes of graphs.
The results are reported in Sect. “Experimental Results”
below and the data sets used are described in Sect. “Data
Sets”.
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Applications

Vertex coloring is a basic primitive in many applications:
classical applications are scheduling problems involving
a number of pairwise restrictions on which jobs can be
done simultaneously. For instance, in attempting to sched-
ule classes at a university, two courses taught by the same
faculty member cannot be scheduled for the same time
slot. Similarly, two course that are required by the same
group of students also should not conflict. The problem of
determining the minimum number of time slots needed
subject to these restrictions can be cast as a vertex color-
ing problem. One very active application for vertex color-
ing is register allocation. The register allocation problem is
to assign variables to a limited number of hardware regis-
ters during program execution. Variables in registers can
be accessed much quicker than those not in registers. Typ-
ically, however, there are far more variables than registers
so it is necessary to assign multiple variables to registers.
Variables conflict with each other if one is used both be-
fore and after the other within a short period of time (for
instance, within a subroutine). The goal is to assign vari-
ables that do not conflict so as to minimize the use of non-
register memory. A simple approach to this is to create
a graph where the nodes represent variables and an edge
represents conflict between its nodes. A coloring is then
a conflict-free assignment. If the number of colors used is
less than the number of registers then a conflict-free reg-
ister assignment is possible. Modern applications include
assigning frequencies to mobile radios and other users of
the electro-magnetic spectrum. In the simplest case, two
customers that are sufficiently close must be assigned dif-
ferent frequencies, while those that are distant can share
frequencies. The problem of minimizing the number of
frequencies is then a vertex coloring problem For more
applications and references, see Michael Trick’s coloring
page [12].

Open Problems

The experimental analysis shows convincingly and rather
surprisingly that the simplest, trivial, version of the al-
gorithm actually performs best uniformly! In particular,it
significantly outperforms the algorithms which have been
analyzed rigorously. The authors give some heuristic re-
currences that describe the performance of the trivial algo-
rithm. It is a challenging and interesting open problem to
give a rigorous justification of these recurrences. Alterna-
tively, and less appealing, a rigorous argument that shows
that the trivial algorithm dominates the ones analyzed by
Luby and Johansson is called for. Other issues about how
local structure of the graph impacts on the performance of

such algorithms (which is hinted at in the paper) is worth
subjecting to further experimental and theoretical analysis.

Experimental Results

All the algorithms analyzed start by assigning an initial
palette of colors to each vertex, and then repeating the fol-
lowing simple iteration round:
1. Wake up!: Each vertex independently of the others

wakes up with a certain probability to participate in the
coloring in this round.

2. Try!: Each vertex independently of the others, selects
a tentative color from its palette of colors at this round.

3. Resolve conflicts!: If no neighbor of a vertex selects the
same tentative color, then this color becomes final. Such
a vertex exits the algorithm, and the remaining vertices
update their palettes accordingly. If there is a conflict,
then it is resolved in one of two ways: Either all con-
flicting vertices are deemed unsuccessful and proceed
to the next round, or an independent set is computed,
using the so-called Hungarian heuristic, amongst all the
vertices that chose the same color. The vertices in the
independent set receive their final colors and exit. The
Hungarian heuristic for independent set is to consider
the vertices in random order, deleting all neighbors of
an encountered vertex which itself is added to the in-
dependent set, see [1, p. 91] for a cute analysis of this
heuristic to prove Turan’s Theorem.

4. Feed the Hungry!: If a vertex runs out of colors in its
palette, then fresh new colors are given to it.
Several parameters can be varied in this basic scheme:

the wake up probability, the conflict resolution and the size
of the initial palette are the most important ones.

In (� + 1)-coloring, the initial palette for a vertex v is
set to [�] := f1; � � � ; � + 1g (global setting) or [d(v) + 1]
(where d(v) is the degree of vertex v) (local setting). The
experimental results indicate that (a) the best wake-up
probability is 1, (b) the local palette version is as good as
the global one in running time, but can achieve significant
color savings and (c) the Hungarian heuristic can be used
with vertex identities rather than random numbers giving
good results.

In the Brooks–Vizing colorings, the initial palette is set
to [d(v)/s] where s is a shrinking factor. The experimental
results indicate that uniformly, the best algorithm is the
one where the wake-up probability is 1, and conflicts are
resolved by the Hungarian heuristic. This is both with re-
spect to the running time, as well as the number of colors
used. Realistically useful values of s are between 4 and 6
resulting in�/s-colorings. The running time performance
is excellent, with even graphs with a thousand vertices col-
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ored within 20–30 rounds. When compared to the best se-
quential algorithms, these algorithms use between twice or
thrice as many colors, but are much faster.

Data Sets

Test data was both generated synthetically using various
random graph models, and benchmark real life test sets
from the second DIMACS implementation challenge [3]
and Joe Culberson’s web-site [2] were also used.
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ProblemDefinition

The dynamic tree problem is that of maintaining an ar-
bitrary n-vertex forest that changes over time through
edge insertions (links) and deletions (cuts). Depending on
the application, one associates information with vertices,
edges, or both. Queries and updates can deal with indi-
vidual vertices or edges, but more commonly they refer
to entire paths or trees. Typical operations include find-
ing the minimum-cost edge along a path, determining the
minimum-cost vertex in a tree, or adding a constant value
to the cost of each edge on a path (or of each vertex of
a tree). Each of these operations, as well as links and cuts,
can be performed in O(log n) time with appropriate data
structures.

Key Results

The obvious solution to the dynamic tree problem is to
represent the forest explicitly. This, however, is inefficient
for queries dealingwith entire paths or trees, since it would
require actually traversing them. Achieving O(log n) time
per operation requires mapping each (possibly unbal-
anced) input tree into a balanced tree, which is better
suited tomaintaining information about paths or trees im-
plicitly. There are three main approaches to perform the
mapping: path decomposition, tree contraction, and lin-
earization.

Path Decomposition

The first efficient dynamic tree data structure was Sleator
and Tarjan’s ST-trees [13,14], also known as link-cut trees
or simply dynamic trees. They are meant to represent
rooted trees, but the user can change the root with the ev-
ert operation. The data structure partitions each input tree
into vertex-disjoint paths, and each path is represented as
a binary search tree in which vertices appear in symmet-
ric order. The binary trees are then connected according
to how the paths are related in the forest. More precisely,
the root of a binary tree becomes a middle child (in the
data structure) of the parent (in the forest) of the topmost

http://web.cs.ualberta.ca/~joe/Coloring/index.html
http://web.cs.ualberta.ca/~joe/Coloring/index.html
ftp://dimacs.rutgers.edu/pub/challenge/
ftp://dimacs.rutgers.edu/pub/challenge/
http://mat.gsia.cmu.edu/COLOR/color.html
http://mat.gsia.cmu.edu/COLOR/color.html
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Dynamic Trees, Figure 1
An ST-tree (adapted from [14]). On the left, the original tree, rooted at a and already partitioned into paths; on the right, the actual
data structure. Solid edges connect nodes on the same path; dashed edges connect different paths

vertex of the corresponding path. Although a node has no
more than two children (left and right) within its own bi-
nary tree, it may have arbitrarily many middle children.
See Fig. 1. The path containing the root (qlifcba in the ex-
ample) is said to be exposed, and is represented as the top-
most binary tree. All path-related queries will refer to this
path. The expose operation can be used to make any vertex
part of the exposed path.

With standard balanced binary search trees (such as
red-black trees), ST-trees support each dynamic tree op-
eration in O(log2 n) amortized time. This bound can be
improved to O(log n) amortized with locally biased search
trees, and toO(log n) in the worst case with globally biased
search trees. Biased search trees (described in [5]), how-
ever, are notoriously complicated. Amore practical imple-
mentation of ST-trees uses splay trees, a self-adjusting type
of binary search trees, to support all dynamic tree opera-
tions in O(log n) amortized time [14].

Tree Contraction

Unlike ST-trees, which represent the input trees directly,
Frederickson’s topology trees [6,7,8] represent a contrac-
tion of each tree. The original vertices constitute level 0
of the contraction. Level 1 represents a partition of these
vertices into clusters: a degree-one vertex can be combined
with its only neighbor; vertices of degree two that are adja-
cent to each other can be clustered together; other vertices
are kept as singletons. The end result will be a smaller tree,
whose own partition into clusters yields level 2. The pro-
cess is repeated until a single cluster remains. The topology

tree is a representation of the contraction, with each clus-
ter having as children its constituent clusters on the level
below. See Fig. 2.

With appropriate pieces of information stored in each
cluster, the data structure can be used to answer queries
about the entire tree or individual paths. After a link or
cut, the affected topology trees can be rebuilt in O(log n)
time.

The notion of tree contraction was developed inde-
pendently by Miller and Reif [11] in the context of par-
allel algorithms. They propose two basic operations, rake
(which eliminates vertices of degree one) and compress
(which eliminates vertices of degree two). They show that
O(log n) rounds of these operations are sufficient to con-
tract any tree to a single cluster. Acar et al. translated
a variant of their algorithm into a dynamic tree data struc-
ture, RC-trees [1], which can also be seen as a randomized
(and simpler) version of topology trees.

A drawback of topology trees and RC-trees is that
they require the underlying forest to have vertices with
bounded (constant) degree in order to ensure O(log n)
time per operation. Similarly, although ST-trees do not
have this limitation when aggregating information over
paths, they require bounded degrees to aggregate over
trees. Degree restrictions can be addressed by “ternariz-
ing” the input forest (replacing high-degree vertices with
a series of low-degree ones [9]), but this introduces a host
of special cases.

Alstrup et al.’s top trees [3,4] have no such limitation,
which makes them more generic than all data structures
previously discussed. Although also based on tree con-
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Dynamic Trees, Figure 2
A topology tree (adapted from [7]). On the left, the original tree and its multilevel partition; on the right, a corresponding topology
tree

traction, their clusters behave not like vertices, but like
edges. A compress cluster combines two edges that share
a degree-two vertex, while a rake cluster combines an edge
with a degree-one endpoint with a second edge adjacent to
its other endpoint. See Fig. 3.

Top trees are designed so as to completely hide from
the user the inner workings of the data structure. The user
only specifies what pieces of information to store in each
cluster, and (through call-back functions) how to update
them after a cluster is created or destroyed when the tree
changes. As long as the operations are properly defined,
applications that use top trees are completely independent
of how the data structure is actually implemented, i. e., of
the order in which rakes and compresses are performed.

In fact, top trees were not even proposed as stand-
alone data structures, but rather as an interface on top of
topology trees. For efficiency reasons, however, one would
rather have a more direct implementation. Holm, Tar-
jan, Thorup and Werneck have presented a conceptually
simple stand-alone algorithm to update a top tree after
a link or cut in O(log n) time in the worst case [17]. Tarjan
and Werneck [16] have also introduced self-adjusting top
trees, a more efficient implementation of top trees based
on path decomposition: it partitions the input forest into
edge-disjoint paths, represents these paths as splay trees,

Dynamic Trees, Figure 3
The rake and compress operations, as used by top trees
(from [16]))

and connects these trees appropriately. Internally, the data
structure is very similar to ST-trees, but the paths are edge-
disjoint (instead of vertex-disjoint) and the ternarization
step is incorporated into the data structure itself. All the
user sees, however, are the rakes and compresses that char-
acterize tree contraction.

Linearization

ET-trees, originally proposed by Henzinger and King [10]
and later slightly simplified by Tarjan [15], use yet an-
other approach to represent dynamic trees: linearization.
It maintains an Euler tour of the each input tree, i. e.,
a closed path that traverses each edge twice—once in each
direction. The tour induces a linear order among the ver-
tices and arcs, and therefore can be represented as a bal-
anced binary search tree. Linking and cutting edges from
the forest corresponds to joining and splitting the af-
fected binary trees, which can be done in O(log n) time.
While linearization is arguably the simplest of the three
approaches, it has a crucial drawback: because each edge
appears twice, the data structure can only aggregate infor-
mation over trees, not paths.

Lower Bounds

Dynamic tree data structures are capable of solving the
dynamic connectivity problem on acyclic graphs: given
two vertices v and w, decide whether they belong to the
same tree or not. P ătraşcu and Demaine [12] have proven
a lower bound of ˝(log n) for this problem, which is
matched by the data structures presented here.

Applications

Sleator and Tarjan’s original application for dynamic trees
was Dinic’s blocking flow algorithm [13]. Dynamic trees
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are used to maintain a forest of arcs with positive resid-
ual capacity. As soon as the source s and the sink t be-
come part of the same tree, the algorithm sends as much
flow as possible along the s-t path; this reduces to zero
the residual capacity of at least one arc, which is then cut
from the tree. Several maximum flow and minimum-cost
flow algorithms incorporating dynamic trees have been
proposed ever since (some examples are [9,15]). Dynamic
tree data structures, especially those based on tree contrac-
tion, are also commonly used within dynamic graph algo-
rithms, such as the dynamic versions of minimum span-
ning trees [6,10], connectivity [10], biconnectivity [6], and
bipartiteness [10]. Other applications include the evalua-
tion of dynamic expression trees [8] and standard graph
algorithms [13].

Experimental Results

Several studies have compared the performance of differ-
ent dynamic-tree data structures; in most cases, ST-trees
implemented with splay trees are the fastest alternative.
Frederickson, for example, found that topology trees take
almost 50%more time than splay-based ST-trees when ex-
ecuting dynamic tree operations within a maximum flow
algorithm [8]. Acar et al. [2] have shown that RC-trees are
significantly slower than splay-based ST-trees when most
operations are links and cuts (such as in network flow al-
gorithms), but faster when queries and value updates are
dominant. The reason is that splaying changes the struc-
ture of ST-trees even during queries, while RC-trees re-
main unchanged.

Tarjan and Werneck [17] have presented an exper-
imental comparison of several dynamic tree data struc-
tures. For random sequences of links and cuts, splay-based
ST-trees are the fastest alternative, followed by splay-based
ET-trees, self-adjusting top trees, worst-case top trees,
and RC-trees. Similar relative performance was observed
in more realistic sequences of operations, except when
queries far outnumber structural operations; in this case,
the self-adjusting data structures are slower than RC-trees
and worst-case top trees. The same experimental study
also considered the “obvious” implementation of ST-trees,
which represents the forest explicitly and require linear
time per operation in the worst case. Its simplicity makes it
significantly faster than the O(log n)-time data structures
for path-related queries and updates, unless paths are hun-
dred nodes long. The sophisticated solutions aremore use-
ful when the underlying forest has high diameter or there
is a need to aggregate information over trees (and not only
paths).
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