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ProblemDefinition

E. Marczewski proved that every graph can be represented
by a list of sets where each vertex corresponds to a set and
the edges to nonempty intersections of sets. It is natural to
ask what sort of graphs would be most likely to arise if the
list of sets is generated randomly.

Consider the model of random graphs where each ver-
tex chooses randomly from a universal set the members
of its corresponding set, each independently of the others.
The probability space that is created is the space of ran-
dom intersection graphs, Gn;m;p , where n is the number
of vertices, m is the cardinality of a universal set of ele-
ments and p is the probability for each vertex to choose
an element of the universal set. The model of random in-
tersection graphs was first introduced by M. Karońsky, E.
Scheinerman, and K. Singer-Cohen in [4]. A rigorous defi-
nition of the model of random intersection graphs follows:

Definition 1 Let n,m be positive integers and 0 � p � 1.
The random intersection graph Gn;m;p is a probability
space over the set of graphs on the vertex set f1; : : : ; ng
where each vertex is assigned a random subset from a fixed

set of m elements. An edge arises between two vertices
when their sets have at least a common element. Each ran-
dom subset assigned to a vertex is determined by

Pr
	
vertex i chooses element j



= p

with these events mutually independent.

A common question for a graph is whether it has a cycle,
a set of edges that form a path so that the first and the last
vertex is the same, that visits all the vertices of the graph
exactly once. We call this kind of cycle the Hamilton cycle
and the graph that contains such a cycle is called a Hamil-
tonian graph.

Definition 2 Consider an undirected graph G = (V ; E)
where V is the set of vertices and E the set of edges. This
graph contains a Hamilton cycle if and only if there is
a simple cycle that contains each vertex in V .

Consider an instance of Gn;m;p , for specific values of its
parameters n,m, and p, what is the probability of that in-
stance to be Hamiltonian? Taking the parameter p, of the
model, to be a function of n andm, in [2], a threshold func-
tion P(n;m) has been found for the graph property “Con-
tains a Hamilton cycle”; i. e. a function P(n;m) is derived
such that

if p(n;m)� P(n;m)
lim

n;m!1
Pr
	
Gn;m;p Contains Hamilton cycle



= 0

if p(n;m)� P(n;m)
lim

n;m!1
Pr
	
Gn;m;p Contains Hamilton cycle



= 1

When a graph property, such as “Contains a Hamilton
cycle,” holds with probability that tends to 1 (or 0) as n,
m tend to infinity, then it is said that this property holds
(does not hold), “almost surely” or “almost certainly.”

If in Gn;m;p the parameter m is very small compared
to n, the model is not particularly interesting and when
m is exceedingly large (compared to n) the behavior of
Gn;m;p is essentially the same as the Erdös–Rényi model
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of random graphs (see [3]). If someone takes m = dn˛e,
for fixed real ˛ > 0, then there is some deviation from the
standard models, while allowing for a natural progression
from sparse to dense graphs. Thus, the parameterm is as-
sumed to be of the form m = dn˛e for some fixed positive
real ˛.

The proof of existence of a Hamilton cycle in Gn;m;p
is mainly based on the establishment of a stochastic order
relation between the model Gn;m;p and the Erdös–Rényi
random graph model Gn; p̂ .

Definition 3 Let n be a positive integer, 0 � p̂ � 1. The
random graphG(n; p̂) is a probability space over the set of
graphs on the vertex set f1; : : : ; ng determined by

Pr
	
i; j


= p̂

with these events mutually independent.

The stochastic order relation between the two models of
random graphs is established in the sense that if A is an
increasing graph property, then it holds that

Pr
	
Gn; p̂ 2A



� Pr

	
Gn;m;p 2A




where p̂ = f (p). A graph property A is increasing if and
only if given that A holds for a graph G(V ; E) then A
holds for any G(V ; E0): E0 � E.

Key Results

Theorem 1 Let m = dn˛e, where ˛ is a fixed real positive,
and C1;C2 be sufficiently large constants. If

p � C1
log n
m

for 0 < ˛ < 1 or

p � C2

r
log n
nm

for ˛ > 1

then almost all Gn;m;p are Hamiltonian. Our bounds are
asymptotically tight.

Note that the theorem above says nothing when m = n,
i. e. ˛ = 1.

Applications

The Erdös–Rényi model of random graphs, Gn;p , is ex-
haustively studied in computer science because it provides
a framework for studying practical problems such as “re-
liable network computing” or it provides a “typical in-
stance” of a graph and thus it is used for average case anal-
ysis of graph algorithms. However, the simplicity of Gn;p
means it is not able to capture satisfactorily many practical

problems in computer science. Basically, this is because of
the fact that in many problems independent edge-events
are not well justified. For example, consider a graph whose
vertices represent a set of objects that either are placed or
move in a specific geographical region, and the edges are
radio communication links. In such a graph, we expect
that, any two vertices u, w are more likely to be adjacent
to each other, than any other, arbitrary, pair of vertices, if
both are adjecent to a third vertex v. Even epidemiological
phenomena (like the spread of disease) tend to be more ac-
curately captured by this proximity-sensitive random in-
tersection graph model. Other applications may include
oblivious resource sharing in a distributive setting, inter-
action of mobile agents traversing the web etc.

The model of random intersection graphs Gn;m;p was
first introduced by M. Karońsky, E. Scheinerman, and
K. Singer-Cohen in [4] where they explored the evolu-
tion of random intersection graphs by studying the thresh-
olds for the appearance and disappearance of small in-
duced subgraphs. Also, J.A. Fill, E.R. Scheinerman, and
K. Singer Cohen in [3] proved an equivalence theorem re-
lating the evolution of Gn;m;p and Gn;p , in particular they
proved that when m = n˛ where ˛ > 6, the total variation
distance between the graph random variables has limit 0.
S. Nikoletseas, C. Raptopoulos, and P. Spirakis in [8] stud-
ied the existence and the efficient algorithmic construc-
tion of close to optimal independent sets in random in-
tersection graphs. D. Stark in [12] studied the degree of
the vertices of the random intersection graphs. However,
after [2], Spirakis and Raptopoulos, in [11], provide al-
gorithms that construct Hamilton cycles in instances of
Gn;m;p , for p above the Hamiltonicity threshold. Finally,
Nikoletseas et.al in [7] study the mixing time and cover
time as the parameter p of the model varies.

Open Problems

As in many other random structures, e. g. Gn;p and ran-
dom formulae, properties of random intersection graphs
also appear to have threshold behavior. So far threshold
behavior has been studied for the induced subgraph ap-
pearance and hamiltonicity.

Other fields of research for random intersection
graphs may include the study of connectivity behavior, of
the model i. e. the path formation, the formation of gi-
ant components. Additionally, a very interesting research
question is how cover and mixing times vary with the pa-
rameter p, of the model.

Cross References

� Independent Sets in Random Intersection Graphs
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ProblemDefinition

The work of Pitt and Valiant [16] deals with learning
Boolean functions in the Probably Approximately Correct
(PAC) learningmodel introduced byValiant [17]. A learn-
ing algorithm in Valiant’s original model is given random
examples of a function f : f0; 1gn ! f0; 1g from a repre-
sentation class F and produces a hypothesis h 2 F that

closely approximates f . Here a representation class is a set
of functions and a language for describing the functions in
the set. The authors give examples of natural representa-
tion classes that areNP-hard to learn in this model whereas
they can be learned if the learning algorithm is allowed to
produce hypotheses from a richer representation classH .
Such an algorithm is said to learnF byH ; learning F by
F is called proper learning.

The results of Pitt and Valiant were the first to demon-
strate that the choice of representation of hypotheses can
have a dramatic impact on the computational complex-
ity of a learning problem. Their specific reductions from
NP-hard problems are the basis of several other follow-up
works on the hardness of proper learning [1,3,6].

Notation

Learning in the PAC model is based on the assumption
that the unknown function (or concept) belongs to a cer-
tain class of concepts C. In order to discuss algorithms that
learn and output functions one needs to define how these
functions are represented. Informally, a representation for
a concept class C is a way to describe concepts from C that
defines a procedure to evaluate a concept in C on any in-
put. For example, one can represent a conjunction of input
variables by listing the variables in the conjunction. More
formally, a representation class can be defined as follows.

Definition 1 A representation class F is a pair (L;R)
where
� L is a language over some fixed finite alphabet (e. g.
f0; 1g);

� R is an algorithm that for � 2 L, on input (�; 1n) re-
turns a Boolean circuit over f0; 1gn .

In the context of efficient learning, only efficient repre-
sentations are considered, or, representations for whichR
is a polynomial-time algorithm. The concept class repre-
sented by F is set of functions over f0; 1gn defined by the
circuits in fR(�; 1n) j � 2 Lg. For most of the represen-
tations discussed in the context of learning it is straight-
forward to construct a language L and the corresponding
translating function R, and therefore they are not speci-
fied explicitly.

Associated with each representation is the complexity
of describing a Boolean function using this representation.
More formally, for a Boolean function f 2 C,F-size( f )
is the length of the shortest way to represent f using F , or
minfj� j j � 2 L; R(�; 1n) � f g.

In Valiant’s PAC model of learning, for a function f
and a distribution D over X, an example oracle EX( f ;D)
is an oracle that, when invoked, returns an example
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hx; f (x)i, where x is chosen randomly with respect to
D, independently of any previous examples. For � � 0,
a function g �-approximates a function f with respect to
distributionD if PrD[ f (x) ¤ g(x)] � �.

Definition 2 A representation class F is PAC learnable
by representation classH if there exist an algorithm that
for every � > 0, ı > 0, n, f 2 F , and distributionD over
X, given �, ı, and access to EX( f ;D), runs in time poly-
nomial in n; s = F-size(c); 1/� and 1/ı, and outputs,
with probability at least 1� ı, a hypothesis h 2H that �-
approximates f .

A DNF expression is defined as an OR of ANDs of liter-
als, where a literal is a possibly negated input variable. The
ANDs of a DNF formula are referred to as its terms. Let
DNF(k) denote the representation class of k-term DNF ex-
pressions. Similarly a CNF expression is anOR of ANDs of
literals. Let k-CNF denote the representation class of CNF
expressions with each AND having at most k literals.

For a real-valued vector c 2 Rn and � 2 R, a linear
threshold function (also called a halfspace) Tc;� (x) is the
function that equals 1 if and only if

P
i�n ci xi � � . The

representation class of Boolean threshold functions con-
sists of all linear threshold functions with c 2 f0; 1gn and
� an integer.

Key Results

Theorem 3 ([16]) For every k � 2, the representation
class of DNF(k) is not properly learnable unless RP = NP.

More specifically, Pitt and Valiant show that learning
DNF(k) by DNF(`) is at least as hard as coloring a k-
colorable graph using ` colors. For the case k = 2 they ob-
tain the result by reducing from Set Splitting (see [8] for
details on the problems). Theorem 3 is in sharp contrast
with the fact that DNF(k) is learnable by k-CNF [17].

Theorem 4 ([16]) The representation class of Boolean
threshold functions is not properly learnable unless
RP = NP.

This result is obtained via a reduction from the
NP-complete Zero-One Integer Programming problem
(see [8](p. 245) for details on the problem). The result is
contrasted by the fact that general linear thresholds are
properly learnable [4].

These results show that using a specific representation
of hypotheses forces the learning algorithm to solve a com-
binatorial problem that can be NP-hard. In most machine
learning applications it is not important which represen-
tation of hypotheses is used as long as the value of the un-

known function is predicted correctly. Therefore learning
in the PAC model is now defined without any restrictions
on the output hypothesis (other than it being efficiently
evaluatable). Hardness results in this setting are usually
based on cryptographic assumptions (cf. [14]).

Hardness results for proper learning based on assump-
tion NP ¤ RP are now known for several other represen-
tation classes and for other variants and extensions of
the PAC learning model. Blum and Rivest show that for
any k � 3, unions of k halfspaces are not properly learn-
able [3]. Hancock et al. prove that decision trees (cf. [15]
for the definition of this representation) are not learnable
by decision trees of somewhat larger size [10]. This result
was strengthened by Alekhnovich et al. who also prove
that intersections of two halfspaces are not learnable by in-
tersections of k halfspaces for any constant k, general DNF
expressions are not learnable by unions of halfspaces (and
in particular are not properly learnable), and k-juntas are
not properly learnable [1]. Feldman shows that DNF ex-
pressions are NP-hard to learn properly even if member-
ship queries, or the ability to query the unknown function
at any point, are allowed [6]. No efficient algorithms or
hardness results are known for any of the above learning
problems if no restriction is placed on the representation
of hypotheses.

The choice of representation is very important even
in powerful learning models. Feldman proved that nc-
term DNF are not properly learnable for any constant c
even when the distribution of examples is assumed to be
uniform and membership queries are available [6]. This
contrasts with Jackson’s celebrated algorithm for learning
DNF in this setting [12], which is not proper.

In the agnostic learning model of Haussler [11] and
Kearns et al. [13] even the representation classes of con-
junctions, halfspaces, and parity functions are NP-hard to
learn properly (cf. [2,7,9] and references therein). Here
again the status of these problems in the representation-
independent setting is largely unknown.

Applications

A large number of practical algorithms use representations
for which hardness results are known (most notably deci-
sion trees, halfspaces, and neural networks). Hardness of
learning F byH implies that an algorithm that usesH
to represent its hypotheses will not be able to learn F in
the PAC sense. Therefore such hardness results elucidate
the limitations of algorithms used in practice. In particu-
lar, the reduction from an NP-hard problem used to prove
the hardness of learning F byH can be used to generate
hard instances of the learning problem.
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Open Problems

A number of problems related to proper learning in the
PAC model and its extensions are open. Almost all hard-
ness of proper learning results are for learning with respect
to unrestricted distributions. For most of the problems
mentioned in Sect. “Key Results” it is unknown whether
the result is true if the distribution is restricted to belong
to some natural class of distributions (e. g. product distri-
butions). It is unknown whether decision trees are learn-
able properly in the PAC model or in the PAC model with
membership queries. This question is open even in the
PAC model restricted to the uniform distribution only.
Note that decision trees are learnable (non-properly) if
membership queries are available [5] and are learnable
properly in time O(nlog s ), where s is the number of leaves
in the decision tree [1].

An even more interesting direction of research would
be to obtain hardness results for learning by richer repre-
sentations classes, such as AC0 circuits, classes of neural
networks and, ultimately, unrestricted circuits.

Cross References

� Cryptographic Hardness of Learning
� Graph Coloring
� Learning DNF Formulas
� PAC Learning
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Experimental algorithmics

ProblemDefinition

Algorithm engineering refers to the process required to
transform a pencil-and-paper algorithm into a robust, effi-
cient, well tested, and easily usable implementation. Thus
it encompasses a number of topics, from modeling cache
behavior to the principles of good software engineering;
its main focus, however, is experimentation. In that sense,
it may be viewed as a recent outgrowth of Experimen-
tal Algorithmics [14], which is specifically devoted to the
development of methods, tools, and practices for assess-
ing and refining algorithms through experimentation. The
ACM Journal of Experimental Algorithmics (JEA), at URL
www.jea.acm.org, is devoted to this area.

High-performance algorithm engineering [2] focuses
on one of the many facets of algorithm engineering: speed.
The high-performance aspect does not immediately imply
parallelism; in fact, in any highly parallel task, most of the
impact of high-performance algorithm engineering tends
to come from refining the serial part of the code.

The term algorithm engineering was first used with
specificity in 1997, with the organization of the firstWork-
shop on Algorithm Engineering (WAE 97). Since then, this
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workshop has taken place every summer in Europe. The
1998Workshop on Algorithms and Experiments (ALEX98)
was held in Italy and provided a discussion forum for re-
searchers and practitioners interested in the design, ana-
lyzes and experimental testing of exact and heuristic algo-
rithms. A sibling workshop was started in the Unites States
in 1999, the Workshop on Algorithm Engineering and Ex-
periments (ALENEX99), which has taken place every win-
ter, colocated with theACM/SIAM Symposium on Discrete
Algorithms (SODA).

Key Results

Parallel computing has two closely relatedmain uses. First,
with more memory and storage resources than available
on a single workstation, a parallel computer can solve
correspondingly larger instances of the same problems.
This increase in size can translate into running higher-
fidelity simulations, handling higher volumes of informa-
tion in data-intensive applications, and answering larger
numbers of queries and datamining requests in corpo-
rate databases. Secondly, with more processors and larger
aggregate memory subsystems than available on a single
workstation, a parallel computer can often solve problems
faster. This increase in speed can also translate into all of
the advantages listed above, but perhaps its crucial advan-
tage is in turnaround time. When the computation is part
of a real-time system, such as weather forecasting, finan-
cial investment decision-making, or tracking and guid-
ance systems, turnaround time is obviously the critical is-
sue. A less obvious benefit of shortened turnaround time
is higher-quality work: when a computational experiment
takes less than an hour, the researcher can afford the lux-
ury of exploration—running several different scenarios in
order to gain a better understanding of the phenomena be-
ing studied.

In algorithm engineering, the aim is to present repeat-
able results through experiments that apply to a broader
class of computers than the specific make of com-
puter system used during the experiment. For sequen-
tial computing, empirical results are often fairly machine-
independent. While machine characteristics such as word
size, cache and main memory sizes, and processor and
bus speeds differ, comparisons across different unipro-
cessor machines show the same trends. In particular, the
number of memory accesses and processor operations re-
mains fairly constant (or within a small constant factor).
In high-performance algorithm engineering with parallel
computers, on the other hand, this portability is usually
absent: each machine and environment is its own special
case. One obvious reason is major differences in hardware

that affect the balance of communication and computation
costs—a true shared-memory machine exhibits very dif-
ferent behavior from that of a cluster based on commodity
networks.

Another reason is that the communication libraries
and parallel programming environments (e. g., MPI [12],
OpenMP [16], and High-Performance Fortran [10]), as
well as the parallel algorithm packages (e. g., fast Fourier
transforms using FFTW [6] or parallelized linear algebra
routines in ScaLAPACK [4]), often exhibit differing per-
formance on different types of parallel platforms. When
multiple library packages exist for the same task, a user
may observe different running times for each library ver-
sion evenon the same platform. Thus a running-time anal-
ysis should clearly separate the time spent in the user code
from that spent in various library calls. Indeed, if partic-
ular library calls contribute significantly to the running
time, the number of such calls and running time for each
call should be recorded and used in the analysis, thereby
helping library developers focus on the most cost-effective
improvements. For example, in a simple message-passing
program, one can characterize the work done by keep-
ing track of sequential work, communication volume, and
number of communications. A more general program us-
ing the collective communication routines of MPI could
also count the number of calls to these routines. Several
packages are available to instrumentMPI codes in order to
capture such data (e. g., MPICH’s nupshot [8], Pablo [17],
and Vampir [15]). The SKaMPI benchmark [18] allows
running-time predictions based on such measurements
even if the target machine is not available for program
development. SKaMPI was designed for robustness, ac-
curacy, portability, and efficiency; For example, SKaMPI
adaptively controls how often measurements are repeated,
adaptively refines message-length and step-width at “in-
teresting” points, recovers from crashes, and automatically
generates reports.

Applications

The following are several examples of algorithm engineer-
ing studies for high-performance and parallel computing.
1. Bader’s prior publications (see [2] and http://www.

cc.gatech.edu/~bader) contain many empirical studies
of parallel algorithms for combinatorial problems like
sorting, selection, graph algorithms, and image pro-
cessing.

2. In a recent demonstration of the power of high-per-
formance algorithm engineering, a million-fold speed-
up was achieved through a combination of a 2,000-fold
speedup in the serial execution of the code and a 512-

http://www.cc.gatech.edu/~bader
http://www.cc.gatech.edu/~bader
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fold speedup due to parallelism (a speed-up, however,
that will scale to any number of processors) [13]. (In
a further demonstration of algorithm engineering, ad-
ditional refinements in the search and bounding strate-
gies have added another speedup to the serial part of
about 1,000, for an overall speedup in excess of 2 bil-
lion)

3. JáJá and Helman conducted empirical studies for prefix
computations, sorting, and list-ranking, on symmetric
multiprocessors. The sorting research (see [9]) extends
Vitter’s external Parallel Disk Model to the internal
memory hierarchy of SMPs and uses this new computa-
tional model to analyze a general-purpose sample sort
that operates efficiently in shared-memory. The per-
formance evaluation uses 9 well-defined benchmarks.
The benchmarks include input distributions commonly
used for sorting benchmarks (such as keys selected uni-
formly and at random), but also benchmarks designed
to challenge the implementation through load imbal-
ance and memory contention and to circumvent algo-
rithmic design choices based on specific input prop-
erties (such as data distribution, presence of duplicate
keys, pre-sorted inputs, etc.).

4. In [3] Blelloch et al. compare through analysis and im-
plementation three sorting algorithms on the Thinking
Machines CM-2. Despite the use of an outdated (and
no longer available) platform, this paper is a gem and
should be required reading for every parallel algorithm
designer. In one of the first studies of its kind, the au-
thors estimate running times of four of the machine’s
primitives, then analyze the steps of the three sorting
algorithms in terms of these parameters. The experi-
mental studies of the performance are normalized to
provide clear comparison of how the algorithms scale
with input size on a 32K-processor CM-2.

5. Vitter et al. provide the canonical theoretic founda-
tion for I/O-intensive experimental algorithmics using
external parallel disks (e. g., see [1,19,20]). Examples
from sorting, FFT, permuting, and matrix transposi-
tion problems are used to demonstrate the parallel disk
model.

6. Juurlink and Wijshoff [11] perform one of the first de-
tailed experimental accounts on the preciseness of sev-
eral parallel computation models on five parallel plat-
forms. The authors discuss the predictive capabilities
of the models, compare the models to find out which
allows for the design of the most efficient parallel algo-
rithms, and experimentally compare the performance
of algorithms designed with the model versus those de-
signed with machine-specific characteristics in mind.
The authors derive model parameters for each plat-

form, analyses for a variety of algorithms (matrix mul-
tiplication, bitonic sort, sample sort, all-pairs shortest
path), and detailed performance comparisons.

7. The LogP model of Culler et al. [5] provides a realis-
tic model for designing parallel algorithms for message-
passing platforms. Its use is demonstrated for a number
of problems, including sorting.

8. Several research groups have performed extensive al-
gorithm engineering for high-performance numerical
computing. One of the most prominent efforts is that
led by Dongarra for ScaLAPACK [4], a scalable lin-
ear algebra library for parallel computers. ScaLAPACK
encapsulates much of the high-performance algorithm
engineering with significant impact to its users who re-
quire efficient parallel versions of matrix–matrix lin-
ear algebra routines. New approaches for automatically
tuning the sequential library (e. g., LAPACK) are now
available as the ATLAS package [21].

Open Problems

All of the tools and techniques developed over the last
several years for algorithm engineering are applicable to
high-performance algorithm engineering. However, many
of these tools need further refinement. For example, cache-
efficient programming is a key to performance but it is not
yet well understood, mainly because of complex machine-
dependent issues like limited associativity, virtual address
translation, and increasingly deep hierarchies of high-per-
formance machines. A key question is whether one can
find simple models as a basis for algorithm development.
For example, cache-oblivious algorithms [7] are efficient
at all levels of the memory hierarchy in theory, but so far
only few work well in practice. As another example, pro-
filing a running program offers serious challenges in a se-
rial environment (any profiling tool affects the behavior
of what is being observed), but these challenges pale in
comparison with those arising in a parallel or distributed
environment (for instance, measuring communication
bottlenecks may require hardware assistance from the net-
work switches or at least reprogramming them, which
is sure to affect their behavior). Designing efficient and
portable algorithms for commodity multicore and many-
core processors is an open challenge.
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ProblemDefinition

An instance I of the Hospitals/Residents problem
(HR) [5,6,14] involves a set R = fr1; : : : ; rng of residents
and a set H = fh1; : : : ; hmg of hospitals. Each hospital
hj 2 H has a positive integral capacity, denoted by cj. Also,
each resident ri 2 R has a preference list in which he ranks
in strict order a subset ofH. A pair (ri ; hj) 2 R � H is said
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to be acceptable if hj appears in ri’s preference list; in this
case ri is said to find hj acceptable. Similarly each hospital
hj 2 H has a preference list in which it ranks in strict or-
der those residents who find hj acceptable. Given any three
agents x; y; z 2 R [ H, x is said to prefer y to z if x finds
each of y and z acceptable, and y precedes z on x’s prefer-
ence list. Let C =

P
h j2H c j .

Let A denote the set of acceptable pairs in I, and let
L = jAj. An assignment M is a subset of A. If (ri ; hj) 2 M,
ri is said to be assigned to hj, and hj is assigned ri. For each
q 2 R [ H, the set of assignees of q in M is denoted by
M(q). If ri 2 R and M(ri) = ;, ri is said to be unassigned,
otherwise ri is assigned. Similarly, any hospital hj 2 H
is under-subscribed, full or over-subscribed according as
jM(hj)j is less than, equal to, or greater than cj, respec-
tively.

A matching M is an assignment such that jM(ri)j � 1
for each ri 2 R and jM(hj)j � c j for each hj 2 H (i. e., no
resident is assigned to an unacceptable hospital, each res-
ident is assigned to at most one hospital, and no hospi-
tal is over-subscribed). For notational convenience, given
a matching M and a resident ri 2 R such that M(ri) ¤ ;,
where there is no ambiguity the notationM(ri) is also used
to refer to the single member of M(ri).

A pair (ri ; hj) 2 AnM blocks a matching M, or is
a blocking pair forM, if the following conditions are satis-
fied relative toM:
1. ri is unassigned or prefers hj toM(ri);
2. hj is under-subscribed or prefers ri to at least one mem-

ber ofM(hj) (or both).

M := ;;
while (some resident ri is unassigned and ri has a non-empty list) {

hj := first hospital on ri ’s list;
/* ri applies to hj */
M := M [ f(ri ; hj)g;
if (hj is over-subscribed) {

rk := worst resident in M(hj) according to hj ’s list;
M := Mnf(rk ; hj)g;

}
if (hj is full) {

rk := worst resident in M(hj) according to hj ’s list;
for (each successor rl of rk on hj ’s list)

delete the pair (rl ; hj);
}

}

Hospitals/Residents Problem, Figure 1
Gale/Shapley algorithm for HR

A matching M is said to be stable if it admits no block-
ing pair. Given an instance I of HR, the problem is to find
a stable matching in I.

Key Results

HR was first defined by Gale and Shapley [5] under the
name “College Admissions Problem”. In their seminal pa-
per, the authors’ primary consideration is the classical Sta-
ble Marriage problem (SM; see � Stable Marriage and
� Optimal Stable Marriage), which is a special case of HR
in which n = m, A = R � H, and c j = 1 for all hj 2 H – in
this case, the residents and hospitals are more commonly
referred to as the men and women respectively. Gale and
Shapley show that every instance I of HR admits at least
one stable matching. Their proof of this result is construc-
tive, i. e., an algorithm for finding a stable matching in
I is described. This algorithm has become known as the
Gale/Shapley algorithm.

An extended version of the Gale/Shapley algorithm
for HR is shown in Fig. 1. The algorithm involves a se-
quence of apply and delete operations. At each iteration of
the while loop, some unassigned resident ri with a non-
empty preference list applies to the first hospital hj on his
list, and becomes provisionally assigned to hj (this assign-
ment could subsequently be broken). If hj becomes over-
subscribed as a result of this assignment, then hj rejects its
worst assigned resident rk. Next, if hj is full (irrespective
of whether hj was over-subscribed earlier in the same loop
iteration), then for each resident rl that hj finds less de-
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sirable than its worst resident rk, the algorithm deletes the
pair (rl, hj), which comprises deleting hj from rl’s prefer-
ence list and vice versa.

Given that the above algorithm involves residents ap-
plying to hospitals, it has become known as the Resident-
oriented Gale/Shapley algorithm, or RGS algorithm for
short [6, Sect. 1.6.3]. The RGS algorithm terminates with
a stable matching, given an instance of HR [5,6, The-
orem 1.6.2]. Using a suitable choice of data structures
(extending those described in [6, Sect. 1.2.3]), the RGS
algorithm can be implemented to run in O(L) time.
This algorithm produces the stable matching that is si-
multaneously best-possible for all residents [5,6, Theo-
rem 1.6.2]. These observations may be summarized as fol-
lows:

Theorem 1 Given an instance of HR, the RGS algorithm
constructs, in O(L) time, the unique stable matching in
which each assigned resident obtains the best hospital that
he could obtain in any stable matching, whilst each unas-
signed resident is unassigned in every stable matching.

A counterpart of the RGS algorithm, known as the
Hospital-oriented Gale/Shapley algorithm, or HGS algo-
rithm for short [6, Sect. 1.6.2], gives the unique stable
matching that similarly satisfies an optimality property for
the hospitals [6, Theorem 1.6.1].

Although there may be many stable matchings for
a given instance I of HR, some key structural prop-
erties hold regarding unassigned residents and under-
subscribed hospitals with respect to all stable matchings
in I, as follows.

Theorem 2 For a given instance of HR,
� the same residents are assigned in all stable matchings;
� each hospital is assigned the same number of residents in

all stable matchings;
� any hospital that is under-subscribed in one stable

matching is assigned exactly the same set of residents in
all stable matchings.

These results are collectively known as the “Rural Hos-
pitals Theorem” (see [6, Sect. 1.6.4] for further details).
Furthermore, the set of stable matchings in I forms a dis-
tributive lattice under a natural dominance relation [6,
Sect. 1.6.5].

Applications

Practical applications of HR are widespread, most notably
arising in the context of centralized automated matching

schemes that assign applicants to posts (for examplemedi-
cal students to hospitals, school-leavers to universities, and
primary school pupils to secondary schools). Perhaps the
best-known example of such a scheme is the National Res-
ident Matching Program (NRMP) in the US [16], which
annually assigns around 31,000 graduating medical stu-
dents (known as residents) to their first hospital posts, tak-
ing into account the preferences of residents over hospitals
and vice versa, and the hospital capacities. Counterparts of
the NRMP are in existence in other countries, including
Canada [17], Scotland [18] and Japan [19]. These match-
ing schemes essentially employ extensions of the RGS al-
gorithm for HR.

Centralized matching schemes based largely on HR
also occur in other practical contexts, such as school place-
ment in New York [1], university faculty recruitment in
France [3] and university admission in Spain [12].

Extensions of HR

One key extension of HR that has considerable practical
importance arises when an instance may involve a set of
couples, each of which submits a joint preference list over
pairs of hospitals (typically in order that the members of
a given couple can be located geographically close to one
another, for example). The extension of HR in which cou-
ples may be involved is denoted by HRC; the stability def-
inition in HRC is a natural extension of that in HR (see [6,
Sect. 1.6.6] for a formal definition of HRC). It is known
that an instance of HRC need not admit a stable match-
ing (see [6, Section 1.6.6] and [14, Sect. 5.4.3]). Moreover,
the problem of deciding whether an HRC instance admits
a stable matching is NP-complete [13].

HR may be regarded as a many-one generalization of
SM. A further generalization of SM is to a many-many sta-
ble matching problem, in which both residents and hos-
pitals may be multiply assigned subject to capacity con-
straints. In this case, residents and hospitals are more com-
monly referred to as workers and firms respectively. There
are two basic variations of themany-many stablematching
problem according to whether (i) workers rank acceptable
firms in order of preference and vice versa, or (ii) work-
ers rank acceptable subsets of firms in order of preference
and vice versa. Previous work relating to both models is
surveyed in [4].

Other variants of HR may be obtained if preference
lists include ties. This extension is again important from
a practical perspective, since it may be unrealistic to ex-
pect a popular hospital to rank a large number of appli-
cants in strict order, particularly if it is indifferent among
groups of applicants. The extension of HR in which pref-
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erence lists may include ties is denoted by HRT. In this
context three natural stability definitions arise, so-called
weak stability, strong stability and super-stability (see [8]
for formal definitions of these concepts). Given an in-
stance I of HRT, it is known that weakly stable match-
ings may have different sizes, and the problem of find-
ing a maximum cardinality weakly stable matching is NP-
hard (see � Stable Marriage with Ties and Incomplete
Lists for further details). On the other hand, in contrast
to the case for weak stability, a super-stable matching in I
need not exist, though there is an O(L) algorithm to find
a such a matching if one does [7]. Analogous results hold
in the case of strong stability – in this case an O(L2) algo-
rithm [8] was improved by an O(CL) algorithm [10] and
extended to themany-many case [11]. Furthermore, coun-
terparts of the Rural Hospitals Theorem hold for HRT un-
der each of the super-stability and strong stability crite-
ria [7,15].

A further generalization of HR arises when each hos-
pital may be split into several departments, where each de-
partment has a capacity, and residents rank individual de-
partments in order of preference. This variant is modeled
by the Student-Project Allocation problem [2]. Finally, the
Stable Fixtures problem [9] is a non-bipartite extension of
HR in which there is a single set of agents, each of whom
has a capacity and ranks a subset of the others in order of
preference.

Open Problems

Several approximation algorithms for finding a maximum
cardinality weakly stable matching have been formulated,
given an instance of HRT where each hospital has capac-
ity 1 (see� Stable Marriage with Ties and Incomplete Lists
for further details). It remains open to extend these algo-
rithms or to formulate effective heuristics for the case of
HRT with arbitrary capacities. This problem is particu-
larly relevant from the practical perspective, since as al-
ready noted in Sect. “Applications”, hospitals may wish to
include ties in their preference lists. In this case weak sta-
bility is the most commonly-used stability criterion, due
to the guaranteed existence of such a matching. Attempt-
ing to match as many residents as possible motivates the
search for large weakly stable matchings.

URL to Code

Ada implementations of the RGS and HGS algorithms for
HR may be found via the following URL: http://www.dcs.
gla.ac.uk/research/algorithms/stable.
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