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ProblemDefinition

DIMACS Implementation Challenges (http://dimacs.
rutgers.edu/Challenges/) are scientific events devoted to
assessing the practical performance of algorithms in ex-
perimental settings, fostering effective technology transfer
and establishing common benchmarks for fundamental
computing problems. They are organized by DIMACS,
the Center for Discrete Mathematics and Theoretical
Computer Science. One of the main goals of DIMACS
Implementation Challenges is to address questions of de-
termining realistic algorithm performance where worst
case analysis is overly pessimistic and probabilistic models
are too unrealistic: experimentation can provide guides to
realistic algorithm performance where analysis fails. Ex-
perimentation also brings algorithmic questions closer to
the original problems that motivated theoretical work. It
also tests many assumptions about implementation meth-
ods and data structures. It provides an opportunity to
develop and test problem instances, instance generators,
and other methods of testing and comparing performance

of algorithms. And it is a step in technology transfer by
providing leading edge implementations of algorithms for
others to adapt.

The first Challenge was held in 1990–1991 and was
devoted to Network flows and Matching. Other ad-
dressed problems included:Maximum Clique, Graph Col-
oring, and Satisfiability (1992–1993), Parallel Algorithms
for Combinatorial Problems (1993–1994), Fragment As-
sembly and Genome Rearrangements (1994–1995), Pri-
ority Queues, Dictionaries, and Multi-Dimensional Point
Sets (1995–1996), Near Neighbor Searches (1998–1999),
Semidefinite and Related Optimization Problems (1999–
2000), and The Traveling Salesman Problem (2000–2001).

This entry addresses the goals and the results of the 9th
DIMACS Implementation Challenge, held in 2005–2006
and focused on Shortest Path problems.

The 9th DIMACS Implementation Challenge:
The Shortest Path Problem

Shortest path problems are among the most fundamental
combinatorial optimization problems with many applica-
tions, both direct and as subroutines in other combinato-
rial optimization algorithms. Algorithms for these prob-
lems have been studied since the 1950’s and still remain an
active area of research.

One goal of this Challenge was to create a reproducible
picture of the state of the art in the area of shortest path
algorithms, identifying a standard set of benchmark in-
stances and generators, as well as benchmark implemen-
tations of well-known shortest path algorithms. Another
goal was to enable current researchers to compare their
codes with each other, in hopes of identifying the more
effective of the recent algorithmic innovations that have
been proposed.

Challenge participants studied the following variants
of the shortest paths problem:
� Point to point shortest paths [4,5,6,9,10,11,14]: the

problem consists of answering multiple online queries
about the shortest paths between pairs of vertices
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and/or their lengths. The most efficient solutions for
this problem preprocess the graph to create a data
structure that facilitates answering queries quickly.

� External-memory shortest paths [2]: the problem con-
sists of finding shortest paths in a graph whose size is
too large to fit in internal memory. The problem actu-
ally addressed in the Challenge was single-source short-
est paths in undirected graphs with unit edge weights.

� Parallel shortest paths [8,12]: the problem consists of
computing shortest paths using multiple processors,
with the goal of achieving good speedups over tradi-
tional sequential implementations. The problem actu-
ally addressed in the Challenge was single-source short-
est paths.

� K-shortest paths [13,15]: the problem consists of rank-
ing paths between a pair of vertices by non decreasing
order of their length.

� Regular-language constrained shortest paths: [3] the
problem consists of a generalization of shortest path
problems where paths must satisfy certain constraints
specified by a regular language. The problems studied
in the context of the Challenge were single-source and
point-to-point shortest paths, with applications rang-
ing from transportation science to databases.

The Challenge culminated in a Workshop held at the
DIMACS Center at Rutgers University, Piscataway, New
Jersey on November 13–14, 2006. Papers presented at
the conference are available at the URL: http://www.dis.
uniroma1.it/~challenge9/papers.shtml. Selected contribu-
tions are expected to appear in a book published by the
American Mathematical Society in the DIMACS Book Se-
ries.

Key Results

The main results of the 9th DIMACS Implementation
Challenge include:
� Definition of common file formats for several variants

of the shortest path problem, both static and dynamic.
These include an extension of the famous DIMACS
graph file format used by several algorithmic software
libraries. Formats are described at the URL: http://
www.dis.uniroma1.it/~challenge9/formats.shtml.

� Definition of a common set of core input instances for
evaluating shortest path algorithms.

� Definition of benchmark codes for shortest path prob-
lems.

� Experimental evaluation of state-of-the-art implemen-
tations of shortest path codes on the core input families.

� A discussion of directions for further research in the
area of shortest paths, identifying problems critical in

real-world applications for which efficient solutions
still remain unknown.

The chief information venue about the 9th DIMACS
Implementation Challenge is the website http://www.dis.
uniroma1.it/~challenge9.

Applications

Shortest path problems arise naturally in a remarkable
number of applications. A limited list includes transporta-
tion planning, network optimization, packet routing, im-
age segmentation, speech recognition, document format-
ting, robotics, compilers, traffic information systems, and
dataflow analysis. It also appears as a subproblem of sev-
eral other combinatorial optimization problems such as
network flows. A comprehensive discussion of applica-
tions of shortest path problems appears in [1].

Open Problems

There are several open questions related to shortest path
problems, both theoretical and practical. One of the
most prominent discussed at the 9th DIMACS Chal-
lenge Workshop is modeling traffic fluctuations in point-
to-point shortest paths. The current fastest implementa-
tions preprocess the input graph to answer point-to-point
queries efficiently, and this operation may take hours on
graphs arising in large-scale road map navigation systems.
A change in the traffic conditions may require rescan-
ning the whole graph several times. Currently, no efficient
technique is known for updating the preprocessing in-
formation without rebuilding it from scratch. This would
have a major impact on the performance of routing soft-
ware.

Data Sets

The collection of benchmark inputs of the 9th DIMACS
Implementation Challenge includes both synthetic and
real-world data. All graphs are strongly connected. Syn-
thetic graphs include random graphs, grids, graphs em-
bedded on a torus, and graphs with small-world proper-
ties. Real-world inputs consist of graphs representing the
road networks of Europe andUSA. Europe graphs are pro-
vided by courtesy of the PTV company, Karlsruhe, Ger-
many, subject to signing a (no-cost) license agreement.
They include the road networks of 17 European coun-
tries: AUT, BEL, CHE, CZE, DEU, DNK, ESP, FIN, FRA,
GBR, IRL, ITA, LUX, NDL, NOR, PRT, SWE, with a to-
tal of about 19 million nodes and 23 million edges. USA
graphs are derived from the UA Census 2000 TIGER/Line
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Implementation Challenge for Shortest Paths, Table 1
USA Road Networks derived from the TIGER/Line collection

NAME DESCRIPTION NODES ARCS BOUNDING BOX LATITUDE (N) BOUNDING BOX LONGITUDE (W)
USA Full USA 23 947 347 58 333 344 – –
CTR Central USA 14 081 816 34 292 496 [25.0; 50.0] [79.0; 100.0]
W Western USA 6 262 104 15 248 146 [27.0; 50.0] [100.0; 130.0]
E Eastern USA 3 598 623 8 778 114 [24.0; 50.0] [-1; 79.0]
LKS Great Lakes 2 758 119 6 885 658 [41.0; 50.0] [74.0; 93.0]
CAL California and Nevada 1 890 815 4 657 742 [32.5; 42.0] [114.0; 125.0]
NE Northeast USA 1 524 453 3 897 636 [39.5, 43.0] [-1; 76.0]
NW Northwest USA 1 207 945 2 840 208 [42.0; 50.0] [116.0; 126.0]
FLA Florida 1 070 376 2 712 798 [24.0; 31.0] [79; 87.5]
COL Colorado 435 666 1 057 066 [37.0; 41.0] [102.0; 109.0]
BAY Bay Area 321 270 800 172 [37.0; 39.0] [121; 123]
NY New York City 264 346 733 846 [40.3; 41.3] [73.5; 74.5]

Implementation Challenge for Shortest Paths, Table 2
Results of the Challenge competition on the USA graph (23.9 million nodes and 58.3 million arcs) with unit arc lengths. The bench-
mark ratio is the average query time divided by the time required to answer a query using the Challenge Dijkstra benchmark code
on the same platform. Query times and node scans are average values per query over 1000 random queries

PREPROCESSING QUERY

CODE Time (minutes) Space (MB) Node scans Time (ms) Benchmark ratio
HH-based transit [14] 104 3664 n.a. 0.019 4.78 � 10�6

TRANSIT [4] 720 n.a. n.a. 0.052 10.77 � 10�6

HH Star [6] 32 2662 1082 1.14 287.32 � 10�6

REAL(16,1) [9] 107 2435 823 1.42 296.30 � 10�6

HH with DistTab [6] 29 2101 1671 1.61 405.77 � 10�6

RE [9] 88 861 3065 2.78 580.08 � 10�6

Files produced by the Geography Division of the US Cen-
sus Bureau, Washington, DC. The TIGER/Line collec-
tion is available at: http://www.census.gov/geo/www/tiger/
tigerua/ua_tgr2k.html. The Challenge USA core family
contains a graph representing the full USA road system
with about 24 million nodes and 58 million edges, plus 11
subgraphs obtained by cutting it along different bounding
boxes as shown in Table 1. Graphs in the collection include
also node coordinates and are given in DIMACS format.

The benchmark input package also features query gen-
erators for the single-source and point-to-point shortest
path problems. For the single-source version, sources are
randomly chosen. For the point-to-point problem, both
random and local queries are considered. Local queries of
the form (s, t) are generated by randomly picking t among
the nodes with rank in [2i ; 2i+1) in the ordering in which
nodes are scanned by Dijkstra’s algorithm with source s,
for any parameter i. Clearly, the smaller i is, the closer
nodes s and t are in the graph. Local queries are impor-
tant to test how the algorithms’ performance is affected by
the distance between query endpoints.

The core input families of the 9thDIMACS Implemen-
tation Challenge are available at the URL: http://www.dis.
uniroma1.it/~challenge9/download.shtml.

Experimental Results

One of themain goals of the Challenge was to compare dif-
ferent techniques and algorithmic approaches. The most
popular topic was the point-to-point shortest path prob-
lem, studied by six research groups in the context of the
Challenge. For this problem, participants were addition-
ally invited to join a competition aimed at assessing the
performance and the robustness of different implementa-
tions. The competition consisted of preprocessing a ver-
sion of the full USA graph of Table 1 with unit edge
lengths and answering a sequence of 1,000 random dis-
tance queries. The details were announced on the first day
of the workshop and the results were due on the second
day. To compare experimental results by different partic-
ipants on different platforms, each participant ran a Dijk-
stra benchmark code [7] on the USA graph to do machine
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calibration. The final ranking was made by considering
each query time divided by the time required by the bench-
mark code on the same platform (benchmark ratio). Other
performance measures taken into account were space us-
age and the average number of nodes scanned by query
operations.

Six point-to-point implementations were run success-
fully on the USA graph defined for the competition.
Among them, the fastest query time was achieved by the
HH-based transit code [14]. Results are reported in Ta-
ble 2. Codes RE and REAL(16, 1) [9] were not eligible for
the competition, but used by the organizers as a proof that
the problem is feasible. Some other codes were not able to
deal with the size of the full USA graph, or incurred run-
time errors.

Experimental results for other variants of the shortest
paths problem are described in the papers presented at the
Challenge Workshop.

URL to Code

Generators of problem families and benchmark solvers for
shortest paths problems are available at the URL: http://
www.dis.uniroma1.it/~challenge9/download.shtml.
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ProblemDefinition

The Eighth DIMACS Implementation Challenge, spon-
sored by DIMACS, the Center for Discrete Mathematics
and Theoretical Computer Science, concerned heuristics
for the symmetric Traveling Salesman Problem. The Chal-
lenge began in June 2000 and was organized by David S.
Johnson, Lyle A. McGeoch, Fred Glover and César Rego.
It explored the state-of-the-art in the area of TSP heuris-
tics, with researchers testing a wide range of implementa-
tions on a common (and diverse) set of input instances.
The Challenge remained ongoing in 2007, with new re-
sults still being accepted by the organizers and posted on
the Challenge website: www.research.att.com/~dsj/chtsp.
A summary of the submissions through 2002 appeared in
a book chapter by Johnson and McGeoch [5].

Participants tested their heuristics on four types of in-
stances, chosen to test the robustness and scalability of dif-
ferent approaches:
1. The 34 instances that have at least 1000 cities in

TSPLIB, the instance library maintained by Gerd
Reinelt.

2. A set of 26 instances consisting of points uniformly
distributed in the unit square, with sizes ranging from
1000 to 10,000,000 cities.

3. A set of 23 randomly generated clustered instances,
with sizes ranging from 1000 to 316,000 cities.

4. A set of 7 instances based on random distance matrices,
with sizes ranging from 1000 to 10,000 cities.

The TSPLIB instances and generators for the random in-
stances are available on the Challenge website. In addition,
the website contains a collection of instances for the asym-
metric TSP problem.

For each instance upon which a heuristic was tested,
the implementers reported the machine used, the tour
length produced, the user time, and (if possible) memory
usage. Some heuristics could not be applied to all of the
instances, either because the heuristics were inherently ge-
ometric or because the instances were too large. To help
facilitate timing comparisons between heuristics tested on
different machines, participants ran a benchmark heuris-
tic (provided by the organizers) on instances of different
sizes. The benchmark times could then be used to normal-
ize, at least approximately, the observed running times of
the participants’ heuristics.

The quality of a tour was computed from a submit-
ted tour length in two ways: as a ratio over the opti-
mal tour length for the instance (if known), and as a ra-
tio over the Held-Karp (HK) lower bound for the in-
stance. The Concorde optimization package of Applegate
et al. [1] was able to find the optimum for 58 of the in-

stances in reasonable time. Concorde was used in a sec-
ond way to compute the HK lower bound for all but the
three largest instances. A third algorithm, based on La-
grangian relaxation, was used to compute an approximate
HK bound, a lower bound on true HK bound, for the
remaining instances. The Challenge website reports on
each of these three algorithms, presenting running times
and a comparison of the bounds obtained for each in-
stance.

The Challenge website permits a variety of reports to
be created:
1. For each heuristic, tables can be generated with results

for each instance, including tour length, tour quality,
and raw and normalized running times.

2. For each instance, a table can be produced showing
the tour quality and normalized running time of each
heuristic.

3. For each pair of heuristics, tables and graphs can be
produced that compare tour quality and running time
for instances of different type and size.
Heuristics for which results were submitted to the

Challenge fell into several broad categories:
Heuristics designed for speed. These heuristics – all of

which target geometric instances – have running times
within a small multiple of the time needed to read the in-
put instance. Examples include the strip and spacefilling-
curve heuristics. The speed requirement affects tour qual-
ity dramatically. Two of these algorithms produced tours
with 14% of the HK lower bound for a particular TSPLIB
instance, but none came within 25% on the other 89 in-
stances.

Tour construction heuristics.These heuristics construct
tours in various ways, without seeking to find improve-
ments once a single tour passing through all cities is found.
Some are simple, such as the nearest-neighbor and greedy
heuristics, while others are more complex, such as the fa-
mous Christofides heuristic. These heuristics offer a num-
ber of options in trading time for tour quality, and several
produce tours within 15% of the HK lower bound on most
instances in reasonable time. The best of them, a variant
of Christofides, produces tours within 8% on uniform in-
stances but is much more time-consuming than the other
algorithms.

Simple local improvement heuristics. These include the
well-known two-opt and three-opt heuristics and variants
of them. These heuristics outperform tour construction
heuristics in terms of tour quality on most types of in-
stances. For example, 3-opt gets within about 3% of theHK
lower bound on most uniform instances. The submissions
in this category explored various implementation choices
that affect the time-quality tradeoff.

http://www.research.att.com/~dsj/chtsp
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Lin-Kernighan and its variants. These heuristics ex-
tend the local search neighborhood used in 3-opt. Lin-
Kernighan can produce high-quality tours (for example,
within 2% of the HK lower bound on uniform instances) in
reasonable time. One variant, due to Helsgaun [3], obtains
tours within 1% on a wide variety of instances, although
the running time can be substantial.

Repeated local search heuristics. These heuristics are
based on repeated executions of a heuristic such as Lin-
Kernighan, with random kicks applied to the tour after
a local optimum is found. These algorithms can yield high-
quality tours at increased running time.

Heuristics that begin with repeated local search. One
example is the tour-merge heuristic [2], which runs re-
peated local search multiple times, builds a graph con-
taining edges found in the best tours, and does exhaustive
search within the resulting graph. This approach yields the
best known tours for some of the instances in the Chal-
lenge.

The submissions to the Challenge demonstrated the
remarkable effectiveness of heuristics for the traveling
salesman problem. They also showed that implementation
details, such a choice of data structure or whether to ap-
proximate aspects of the computation, can affect running
time and/or solution quality greatly. Results for a given
heuristic also varied enormously depending on the type of
instance to which it is applied.

URL to Code

www.research.att.com/~dsj/chtsp
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ProblemDefinition

A distributed system is composed of a collection of n pro-
cesses which communicate with one another. Two means
of interprocess communication have been heavily studied.
Message-passing systemsmodel computer networks where
each process can send information over message chan-
nels to other processes. In shared-memory systems, pro-
cesses communicate less directly by accessing information
in shared data structures. Distributed algorithms are of-
ten easier to design for shared-memory systems because
of their similarity to single-process system architectures.
However, many real distributed systems are constructed
as message-passing systems. Thus, a key problem in dis-
tributed computing is the implementation of sharedmem-
ory inmessage-passing systems. Such implementations are
also called simulations or emulations of shared memory.

The most fundamental type of shared data structure to
implement is a (read-write) register, which stores a value,
taken from some domain D. It is initially assigned a value
from D and can be accessed by two kinds of operations,
read and write(v), where v 2 D. A register may be either
single-writer, meaning only one process is allowed to write
it, or multi-writer, meaning any process may write to it.
Similarly, it may be either single-reader or multi-reader.
Attiya and Welch [4] give a survey of how to build multi-
writer, multi-reader registers from single-writer, single-
reader ones.

If reads and writes are performed one at a time, they
have the following effects: a read returns the value stored
in the register to the invoking process, and a write(v)
changes the value stored in the register to v and returns
an acknowledgment, indicating that the operation is com-
plete. When many processes apply operations concur-
rently, there are several ways to specify a register’s behav-
ior [14]. A single-writer register is regular if each read re-
turns either the argument of the write that completedmost
recently before the read began or the argument of some

http://www.research.att.com/~dsj/chtsp
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write operation that runs concurrently with the read. (If
there is no write that completes before the read begins,
the read may return either the initial value of the register
or the value of a concurrent write operation.) A register
is atomic (see � linearizability) if each operation appears
to take place instantaneously. More precisely, for any con-
current execution, there is a total order of the operations
such that each read returns the value written by the last
write that precedes it in the order (or the initial value of
the register, if there is no such write). Moreover, this total
order must be consistent with the temporal order of op-
erations: if one operation finishes before another one be-
gins, the former must precede the latter in the total order.
Atomicity is a stronger condition than regularity, but it is
possible to implement atomic registers from regular ones
with some complexity overhead [12].

This article describes the problem of implementing
registers in an asynchronous message-passing system in
which processes may experience crash failures. Each pro-
cess can send a message, containing a finite string, to any
other process. To make the descriptions of algorithms
more uniform, it is often assumed that processes can send
messages to themselves. All messages are eventually deliv-
ered. In the algorithms described below, senders wait for
an acknowledgment of each message before sending the
next message, so it is not necessary to assume that the mes-
sage channels are first-in-first-out. The system is totally
asynchronous: there is no bound on the time required for
a message to be delivered to its recipient or for a process
to perform a step of local computation. A process that fails
by crashing stops executing its code, but other processes
cannot distinguish between a process that has crashed and
one that is running very slowly. (Failures of message chan-
nels [3] and more malicious kinds of process failures [15]
have also been studied.)

A t-resilient register implementation provides pro-
grammes to be executed by processes to simulate read and
write operations. These programmes can include any stan-
dard control structures and accesses to a process’s local
memory, as well as instructions to send a message to an-
other process and to read the process’s buffer, where in-
coming messages are stored. The implementation should
also specify how the processes’ local variables are initial-
ized to reflect any initial value of the implemented register.
In the case of a single-writer register, only one process may
execute the write programme. A process may invoke the
read andwrite programmes repeatedly, but it must wait for
one invocation to complete before starting the next one. In
any such execution where at most t processes crash, each
of a process’s invocations of the read or write programme
should eventually terminate. Each read operation returns

a result from the setD, and these results should satisfy reg-
ularity or atomicity.

Relevant measures of algorithm complexity include
the number of messages transmitted in the system to per-
form an operation, the number of bits per message, and
the amount of local memory required at each process. One
measure of time complexity is the time needed to per-
form an operation, under the optimistic assumption that
the time to deliver messages is bounded by � and local
computation is instantaneous (although algorithms must
work correctly even without these assumptions).

Key Results

Implementing a Regular Register

One of the core ideas for implementing shared registers
in message-passing systems is a construction that imple-
ments a regular single-writer multi-reader register. It was
introduced by Attiya, Bar-Noy and Dolev [3] and made
more explicit by Attiya [2]. A write(v) sends the value v
to all processes and waits until a majority of the processes
(

 n
2
˘
+ 1, including the writer itself) return an acknowl-

edgment. A reader sends a request to all processes for their
latest values. When it has received responses from a ma-
jority of processes, it picks the most recently written value
among them. If a write completes before a read begins, at
least one process that answers the reader has received the
write’s value prior to sending its response to the reader.
This is because any two sets that each contain a majority
of the processes must overlap. The time required by oper-
ations when delivery times are bounded is 2�.

This algorithm requires the reader to determine which
of the values it receives is most recent. It does this using
timestamps attached to the values. If the writer uses in-
creasing integers as timestamps, the messages grow with-
out bound as the algorithm runs. Using the bounded
timestamp scheme of Israeli and Li [13] instead yields the
following theorem.

Theorem 1 (Attiya [2]) There is an
˙ n�2

2
�
-resilient im-

plementation of a regular single-writer, multi-reader regis-
ter in a message-passing system of n processes. The imple-
mentation uses 	(n) messages per operation, with 	(n3)
bits per message. The writer uses 	(n4) bits of local mem-
ory and each reader uses	(n3) bits.

Theorem 1 is optimal in terms of fault-tolerance. If
˙ n
2
�

processes can crash, the network can be partitioned into
two halves of size


 n
2
˘
, with messages between the two

halves delayed indefinitely. A write must terminate be-
fore any evidence of the write is propagated to the half
not containing the writer, and then a read performed by
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a process in that half cannot return an up-to-date value.
For t �

˙ n
2
�
, registers can be implemented in a message-

passing system only if some degree of synchrony is present
in the system. The exact amount of synchrony required
was studied by Delporte-Gallet et al. [6].

Theorem 1 is within a constant factor of the optimal
number of messages per operation. Evidence of each write
must be transmitted to at least

˙ n
2
�
� 1 processes, requir-

ing˝(n) messages; otherwise this evidence could be oblit-
erated by crashes. A write must terminate even if only
 n
2
˘
+ 1 processes (including the writer) have received in-

formation about the valuewritten, since the rest of the pro-
cesses could have crashed. Thus, a read must receive in-
formation from at least

˙ n
2
�
processes (including itself) to

ensure that it is aware of the most recent write operation.
A t-resilient implementation, for t <

˙ n
2
�
, that uses

	(t) messages per operation is obtained by the follow-
ing adaptation. A set of 2t + 1 processes is preselected to
be data storage servers. Writes send information to the
servers, and wait for t + 1 acknowledgments. Reads wait
for responses from t + 1 of the servers and choose the one
with the latest timestamp.

Implementing an Atomic Register

Attiya, Bar-Noy and Dolev [3] gave a construction of an
atomic register in which readers forward the value they re-
turn to all processes and wait for an acknowledgment from
a majority. This is done to ensure that a read does not
return an older value than another read that precedes it.
Using unbounded integer timestamps, this algorithm uses
	(n) messages per operation. The time needed per opera-
tion when delivery times are bounded is 2� for writes and
4� for reads. However, their technique of bounding the
timestamps increases the number of messages per opera-
tion to	(n2) (and the time per operation to 12�). A better
implementation of atomic registers with boundedmessage
size is given by Attiya [2]. It uses the regular registers of
Theorem 1 to implement atomic registers using the “hand-
shaking” construction of Haldar and Vidyasankar [12],
yielding the following result.

Theorem 2 (Attiya [2]) There is an
˙ n�2

2
�
-resilient im-

plementation of an atomic single-writer, multi-reader reg-
ister in a message-passing system of n processes. The imple-
mentation uses 	(n) messages per operation, with 	(n3)
bits per message. The writer uses 	(n5) bits of local mem-
ory and each reader uses	(n4) bits.

Since atomic registers are regular, this algorithm is optimal
in terms of fault-tolerance and within a constant factor of
optimal in terms of the number of messages.The time used

when delivery times are bounded is at most 14� for writes
and 18� for reads.

Applications

Any distributed algorithm that uses shared registers can
be adapted to run in a message-passing system using the
implementations described above. This approach yielded
new or improved message-passing solutions for a number
of problems, including randomized consensus [1], multi-
writer registers [4], and snapshot objects � Snapshots.
The reverse simulation is also possible, using a straight-
forward implementation of message channels by single-
writer, single-reader registers. Thus, the two asynchronous
models are equivalent, in terms of the set of problems
that they can solve, assuming only a minority of processes
crash. However there is some complexity overhead in us-
ing the simulations.

If a shared-memory algorithm is implemented in
a message-passing system using the algorithms described
here, processes must continue to operate evenwhen the al-
gorithm terminates, to help other processes execute their
reads and writes. This cannot be avoided: if each pro-
cess must stop taking steps when its algorithm terminates,
there are some problems solvable with shared registers that
are not solvable in the message-passing model [5].

Using a majority of processes to “validate” each read
and write operation is an example of a quorum system,
originally introduced for replicated data by Gifford [10].
In general, a quorum system is a collection of sets of pro-
cesses, called quorums, such that every two quorums inter-
sect. Quorum systems can also be designed to implement
shared registers in other models of message-passing sys-
tems, including dynamic networks and systems with mali-
cious failures. For examples, see [7,9,11,15].

Open Problems

Although the algorithms described here are optimal in
terms of fault-tolerance and message complexity, it is not
known if the number of bits used in messages and local
memory is optimal. The exact time needed to do reads
and writes when messages are delivered within time � is
also a topic of ongoing research. (See, for example, [8].)
As mentioned above, the simulation of shared registers
can be used to implement shared-memory algorithms in
message-passing systems. However, because the simula-
tion introduces considerable overhead, it is possible that
some of those problems could be solvedmore efficiently by
algorithms designed specifically for message-passing sys-
tems.
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ProblemDefinition

Ensuring truthful evaluation of alternatives in human ac-
tivities has always been an important issue throughout
history. In sport, in particular, such an issue is vital and
practice of the fair play principle has been consistently put
forward as a matter of foremost priority. In addition to re-
lying on the code of ethics and professional responsibility
of players and coaches, the design of game rules is an im-
portant measure in enforcing fair play.

Ranking alternatives through pairwise comparisons
(or competitions) is the most common approach in sports
tournaments. Its goal is to find out the “true” ordering
among alternatives through complete or partial pairwise
competitions [1, 3, 4, 5, 6, 7]. Such studies have been
mainly based on the assumption that all the players play
truthfully, i. e., with their maximal effort. It is, however,
possible that some players form a coalition, and cheat for
group benefit. An interesting example can be found in [2].

Problem Description

The work of Chen, Deng, and Liu [2] considers the prob-
lem of choosing m winners out of n candidates.

Suppose a tournament is held among n players Pn =
fp1; : : : png and m winners are expected to be selected by
a selection protocol. Here a protocol f n,m is a predefined
function (which will become clear later) to choose win-
ners through pairwise competitions, with the intention of
finding m players of highest capacity. When the tourna-
ment starts, a distinct ID in Nn = f1; 2; : : : ng is assigned to
each player in Pn by a randomly picked indexing function
I : Pn ! Nn . Then a match is played between each pair of
players. The competition outcomes will form a graph G,
whose vertex set is Nn and edges represent the results of
all the matches. Finally, the graph will be treated as the in-
put to f n,m, and it will output a set of m winners. Now it



404 I Incentive Compatible Selection

should be clear that f n,m maps every possible tournament
graph G to a subset (of cardinalitym) of Nn.

Suppose there exists a group of bad players who play
dishonestly, i. e. they might lose a match on purpose to
gain overall benefit for the whole group, while the rest of
the players always play truthfully, i. e. they try their best to
win matches. The group of bad players gains benefit if they
are able to have more winning positions than that accord-
ing to the true ranking. Given knowledge of the selection
protocol f n,m, the indexing function I and the true ranking
of all players, the bad players try to find a cheating strategy
that can fool the protocol and gain benefit.

The problem is discussed under two models in which
the characterizations of bad players are different. Under
the collective incentive compatible model, bad players are
willing to sacrifice themselves to win group benefit; while
the ones under the alliance incentive compatible model
only cooperate if their individual interests are well main-
tained in the cheating strategy.

The goal is to find an “ideal” protocol, under which
players or groups of players maximize their benefits only
by strictly following the fair play principle, i. e. always play
with maximal effort.

Formal Definitions

When the tournament begins, an indexing function I is
randomly picked, which assigns ID I(p) 2 Nn to each
player p 2 Pn . Then a match is played between each pair
of players, and the results are represented as a directed
graphG. Finally,G is fed into the predefined selection pro-
tocol f n,m, to produce a set of m winners I�1(W), where
W = fn;m(G) � Nn .

Notations An indexing function I for a tournament
attended by n players Pn = fp1; p2; : : : png is a one-
to-one correspondence from Pn to the set of IDs:
Nn = f1; 2; : : : ng. A ranking function R is a one-to-one
correspondence from Pn to f1; 2; : : : ng. R(p) represents
the underlying true ranking of player p among the n play-
ers. The smaller, the stronger.

A tournament graph of size n is a directed graph
G = (Nn ; E) such that, for all i 6= j 2 Nn , either i j 2 E
(player with ID i beats player with ID j) or ji 2 En . Let Kn
denote the set of all such graphs. A selection protocol f n,m,
which choosesmwinners out of n candidates, is a function
from Kn to fS � Nn and jSj = mg.

A tournament Tn among players Pn is a pair Tn =
(R; B) where R is a ranking function from Pn to Nn and
B � Pn is the group of bad players.

Definition 1 (Benefit) Given a protocol f n,m, a tourna-
ment Tn = (R; B), an indexing function I and a tourna-
ment graphG 2 Kn , the benefit of the group of bad players
is

Ben( fn;m; Tn ; I;G) =
ˇ̌
ˇ˚i 2 fn;m(G); I�1(i) 2 B

�ˇ̌ˇ
�
ˇ̌
ˇ˚p 2 B; R(p) � m

�ˇ̌ˇ:

Given knowledge of f n,m, Tn and I, not every G 2 Kn is
a feasible strategy for B: the group of bad players. First,
it depends on the tournament Tn = (R; B), e. g. a player
pb 2 B cannot win a player pg … B if R(pb ) > R(pg ). Sec-
ond, it depends on the property of bad players which is
specified by the model considered. Tournament graphs,
which are recognized as feasible strategies, are character-
ized below, for eachmodel. The key difference is that, a bad
player in the alliance incentive compatible model is not
willing to sacrifice his ownwinning position, while a player
in the other model fights for group benefit at all costs.

Definition 2 (Feasible Strategy) Given f n,m, Tn = (R; B)
and I, graph G 2 Kn is c-feasible if
1 For every two players pi ; p j … B, if R(pi ) < R(p j), then

I(pi)I(p j) 2 E;
2 For all pg … B and pb 2 B, if R(pg ) < R(pb), then edge

I(pg)I(pb) 2 E.
Graph G 2 Kn is a-feasible if it is c-feasible and also satis-
fies
3 For every bad player p 2 B, if R(p) � m, then I(p) 2

fn;m(G).

A cheating strategy is then a feasible tournament graph G
that can be employed by the group of bad players to gain
positive benefit.

Definition 3 (Cheating Strategy) Given f n,m, Tn =
(R; B) and I, a cheating strategy for the group of bad play-
ers under the collective incentive compatible (alliance in-
centive compatible) model is a graph G 2 Kn which is c-
feasible (a-feasible) and satisfies Ben( fn;m; Tn ; I;G) > 0.

The following two problems are studied in [2]: (1) Is there
a protocol f n,m such that for all Tn and I, no cheating
strategy exists under the collective incentive compatible
model? (2) Is there a protocol f n,m such that for all Tn and
I, no cheating strategy exists under the alliance incentive
compatible model?

Key Results

Definition 4 For all integers n andm such that 2 � m �
n � 2, a tournament graph Gn;m = (Nn ; E) 2 Kn , which
consists of three parts T1, T2, and T3, is defined as follows:
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1 T1 = f1; 2; : : :m � 2g. For all i < j 2 T1, edge i j 2 E;
2 T2 = fm � 1;m;m + 1g. (m � 1)m, m(m + 1), (m + 1)

(m � 1) 2 E;
3 T3 = fm + 2;m + 3; : : : ng. For all i < j 2 T3, edge

i j 2 E;
4 For all i0 2 Ti and j0 2 Tj such that i < j, edge i0 j0 2 E.

Theorem 1 Under the collective incentive compatible
model, for every selection protocol f n, m with 2 � m � n�2,
if Tn = (R; B) satisfies: (1) At least one bad player ranks as
high as m � 1; (2) The ones ranked m + 1 and m + 2 are
both bad players; (3) The one ranked m is a good player,
then there always exists an indexing function I such that
Gn,m is a cheating strategy.

Theorem 2 Under the alliance incentive compatible
model, if n � m � 3, then there exists a selection proto-
col f n,m [2] such that, for every tournament Tn, indexing
function I and a-feasible strategy G 2 Kn, Ben( fn;m; Tn ; I;
G) � 0.

Applications

The result shows that, if players are willing to sacrifice
themselves, no protocol is able to prevent malicious coali-
tions from obtaining undeserved benefits.

The result may have potential applications in the de-
sign of output truthful mechanisms.

Open Problems

Under the collective incentive compatible model, the work
of Chen, Deng, and Liu indicates that cheating strategies
are available in at least 1/8 tournaments, assuming the
probability for each player to be in the bad group is 1/2.
Could this bound be improved? Or could one find a good
selection protocol in the sense that the number of tourna-
ments with cheating strategies is close to this bound? On
the other hand, although no ideal protocol exists in this
model, does there exist any randomized protocol, under
which the probability of having cheating strategies is neg-
ligible?
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Existence and efficient construction of independent sets of
vertices in general random intersection graphs

ProblemDefinition

This problem is concerned with the efficient construc-
tion of an independent set of vertices (i. e. a set of ver-
tices with no edges between them) with maximum cardi-
nality, when the input is an instance of the uniform ran-
dom intersection graphs model. This model was intro-
duced by Karoński, Sheinerman, and Singer-Cohen in [4]
and Singer-Cohen in [10] and it is defined as follows

Definition 1 (Uniform random intersection graph)
Consider a universe M = f1; 2; : : : ;mg of elements and
a set of vertices V = fv1; v2; : : : ; vng. If one assigns inde-
pendently to each vertex vj, j = 1; 2; : : : ; n, a subset Sv j of
M by choosing each element independently with probabil-
ity p and puts an edge between two vertices v j1 ; v j2 if and
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only if Sv j1
\ Sv j2

¤ ;, then the resulting graph is an in-
stance of the uniform random intersection graph Gn;m;p .

The universe M is sometimes called label set and its ele-
ments labels. Also, denote by Ll, for l 2 M, the set of ver-
tices that have chosen label l.

Because of the dependence of edges, this model can ab-
stract more accurately (than the Bernoulli random graphs
model Gn;p that assumes independence of edges) many
real-life applications. Furthermore, Fill, Sheinerman, and
Singer-Cohen show in [3] that for some ranges of the pa-
rameters n;m; p (m = n˛; ˛ > 6), the spaces Gn;m;p and
Gn; p̂ are equivalent in the sense that the total variation dis-
tance between the graph random variables has limit 0. The
work of Nikoletseas, Raptopoulos, and Spirakis [7] intro-
duces two new models, namely the general random inter-
section graphs model Gn;m;Ep; Ep = [p1; p2; : : : ; pm] and the
regular random intersection graphs model Gn;m;
; � > 0
that use a different way to randomly assign labels to ver-
tices, but the edge appearance rule remains the same. The
Gn;m;Ep model is a generalization of the uniform model
where each label i 2 M is chosen independently with
probability pi, whereas in the Gn;m;
 model each vertex
chooses a random subset ofM with exactly � labels.

The authors in [7] first consider the existence of inde-
pendent sets of vertices of a given cardinality in general
random intersection graphs and provide exact formulae
for the mean and variance of the number of independent
sets of vertices of cardinality k. Furthermore, they present
and analyze three polynomial time (on the number of la-
bels m and the number of vertices n) algorithms for con-
structing large independent sets of vertices when the input
is an instance of the Gn;m;p model. To the best knowledge
of the entry authors, this work is the first to consider algo-
rithmic issues for these models of random graphs.

Key Results

The following theorems concern the existence of indepen-
dent sets of vertices of cardinality k in general random in-
tersection graphs. The proof of Theorem 1 uses the linear-
ity of expectation of sums of random variables.

Theorem 1 Let X(k) denote the number of independent
sets of size k in a random intersection graph G(n;m; Ep),
where Ep = [p1; p2; : : : ; pm]. Then

E
h
X(k)

i
=

 
n
k

! mY
i=1

�
(1 � pi )k + kpi(1 � pi)k�1

�
:

Theorem 2 Let X(k) denote the number of independent
sets of size k in a random intersection graph G(n;m; Ep),

where Ep = [p1; p2; : : : ; pm]. Then

Var
�
X(k)� =

kX
s=1

 
n

2k � s

! 
2k � s

s

!

�
� (k; s) E

	
X(k)


(nk)
�

E2	X(k)


(nk)
2

�

where E
	
X(k)
 is the mean number of independent sets of

size k and

� (k; s) =
mY
i=1

�
(1 � pi )k�s + (k � s)pi (1 � pi )k�s�1

�
1 � s p i

1+(k�1)pi

��
:

Theorem 2 is proved by first writing the variance as the
sum of covariances and then applying a vertex contrac-
tion technique that merges several vertices into one super-
vertex with similar probabilistic behavior in order to com-
pute the covariances. By using the secondmomentmethod
(see [1]) one can derive thresholds for the existence of in-
dependent sets of size k.

One of the three algorithms that were proposed in [7]
is presented below. The algorithm starts with V (i. e. the
set of vertices of the graph) as its “candidate” indepen-
dent set. In every subsequent step it chooses a label and
removes from the current candidate independent set all
vertices having that label in their assigned label set except
for one. Because of the edge appearance rule, this ensures
that after doing this for every label in M, the final candi-
date independent set will contain only vertices that do not
have edges between them and so it will be indeed an inde-
pendent set.

Algorithm:
Input: A random intersection graph Gn;m;p .
Output: An independent set of vertices Am.
1. set A0 := V ; set L := M;
2. for i = 1 tom do
3. begin
4. select a random label li 2 L; set L := L � flig;
5. set Di := fv 2 Ai�1 : li 2 Svg;
6. if (jDi j � 1) then select a random vertex u 2 Di and

set Di := Di � fug;
7. set Ai := Ai�1 � Di ;
8. end
9. output Am;

The following theorem concerns the cardinality of the in-
dependent set produced by the algorithm. The analysis
of the algorithm uses Wald’s equation (see [9]) for sums
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of a random number of random variables to calculate
the mean value of jAmj, and also Chernoff bounds (see
e. g. [6]) for concentration around the mean.

Theorem 3 For the case mp = ˛ log n, for some constant
˛ > 1 and m � n, and for some constant ˇ > 0, the follow-
ing hold with high probability:
1. If np!1 then jAmj � (1 � ˇ) n

log n .
2. If np! b where b > 0 is a constant then
jAmj � (1 � ˇ)n(1 � e�b).

3. If np! 0 then jAm j � (1 � ˇ)n.

The above theorem shows that the algorithm manages to
construct a quite large independent set with high proba-
bility.

Applications

First of all, note that (as proved in [5]) any graph can
be transformed into an intersection graph. Thus, the ran-
dom intersection graphs models can be very general.
Furthermore, for some ranges of the parameters n;m; p
(m = n˛ ; ˛ > 6) the spaces Gn;m;p and Gn;p are equiv-
alent (as proved by Fill, Sheinerman, and Singer-Cohen
in [3], showing that in this range the total variation dis-
tance between the graph random variables has limit 0).

Second, random intersection graphs (and in partic-
ular the general intersection graphs model of [7]) may
model real-life applications more accurately (compared to
the Gn;p case). In particular, such graphs can model re-
source allocation in networks, e. g. when network nodes
(abstracted by vertices) access shared resources (abstracted
by labels): the intersection graph is in fact the conflict
graph of such resource allocation problems.

Other Related Work

In their work [4] Karoński et al. consider the problem of
the emergence of graphs with a constant number of ver-
tices as induced subgraphs of Gn;m;p graphs. By observ-
ing that the Gn;m;p model generates graphs via clique cov-
ers (for example the sets Ll ; l 2 M constitute an obvious
clique cover) they devise a natural way to use them to-
gether with the first and second moment methods in order
to find thresholds for the appearance of any fixed graph H
as an induced subgraph of Gn;m;p for various values of the
parameters n,m and p.

The connectivity threshold for Gn;m;p was considered
by Singer-Cohen in [10]. She studies the casem = n˛ ; ˛ >
0 and distinguishes two cases according to the value of ˛.
For the case ˛ > 1, the results look similar to the Gn;p
graphs, as the mean number of edges at the connectiv-
ity thresholds are (roughly) the same. On the other hand,

for ˛ � 1 we get denser graphs in the Gn;m;p model. Be-
sides connectivity, [10] examines also the size of the largest
clique in uniform random intersection graphs for certain
values of n,m and p.

The existence of Hamilton cycles inGn;m;p graphs was
considered by Efthymiou and Spirakis in [2]. The authors
use coupling arguments to show that the threshold of ap-
pearance of Hamilton cycles is quite close to the con-
nectivity threshold of Gn;m;p . Efficient probabilistic algo-
rithms for finding Hamilton cycles in uniform random in-
tersection graphs were presented by Raptopoulos and Spi-
rakis in [8]. The analysis of those algorithms verify that
they perform well w.h.p. even for values of p that are close
to the connectivity threshold of Gn;m;p . Furthermore, in
the samework, an expected polynomial algorithm for find-
ing Hamilton cycles in Gn;m;p graphs with constant p is
given.

In [11] Stark gives approximations of the distribution
of the degree of a fixed vertex in the Gn;m;p model. More
specifically, by applying a sieve method, the author pro-
vides an exact formula for the probability generating func-
tion of the degree of some fixed vertex and then analyzes
this formula for different values of the parameters n,m
and p.

Open Problems

A number of problems related to random intersection
graphs remain open. Nearly all the algorithms proposed
so far concerning constructing large independent sets and
finding Hamilton cycles in random intersection graphs
are greedy. An interesting and important line of research
would be to find more sophisticated algorithms for these
problems that outperform the greedy ones. Also, all these
algorithms were presented and analyzed in the uniform
random intersection graphs model. Very little is known
about how the same algorithms would perform when their
input was an instance of the general or even the regular
random intersection graph models.

Of course, many classical problems concerning ran-
dom graphs have not yet been studied. One such exam-
ple is the size of the minimum dominating set (i. e. a set of
vertices that has the property that all vertices of the graph
either belong to this set or are connected to it) in a ran-
dom intersection graph. Also, what is the degree sequence
of Gn;m;p graphs? Note that this is very different from the
problem addressed in [11].

Finally, notice that none of the results presented in the
bibliography for general or uniform random intersection
graphs carries over immediately to regular random inter-
section graphs. Of course, for some values of n;m; p and
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�, certain graph properties shown for Gn;m;p could also be
proved for Gn;m;
 by showing concentration of the num-
ber of labels chosen by any vertex via Chernoff bounds.
Other than that, the fixed sizes of the sets assigned to each
vertex impose more dependencies to the model.
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4. Karoński, M., Scheinerman, E.R., Singer-Cohen, K.B.: On random
intersection graphs: The subgraph problem. Adv. Appl. Math.
8, 131–159 (1999)

5. Marczewski, E.: Sur deux propriétés des classes d‘ ensembles.
Fund. Math. 33, 303–307 (1945)

6. Motwani, R., Raghavan, P.: Randomized Algorithms. Cam-
bridge University Press (1995)

7. Nikoletseas, S., Raptopoulos, C., Spirakis, P.: The existence and
efficient construction of large independent sets in general
random intersection graphs. In: Proceedings of 31st Interna-
tional colloquium on Automata, Languages and Programming
(ICALP), pp. 1029–1040. Springer, Berlin Heidelberg (2004) Also
in the Theoretical Computer Science (TCS) Journal, accepted,
to appear in 2008

8. Raptopoulos, C., Spirakis, P.: Simple and efficient greedy algo-
rithms for hamiltonian cycles in random intersection graphs.
In: Proceedings of the 16th International Symposium on Algo-
rithms and Computation (ISAAC), pp 493–504. Springer, Berlin
Heidelberg (2005)

9. Ross, S.: Stochastic Processes. Wiley (1995)
10. Singer-Cohen, K.B.: Random Intersection Graphs. Ph. D. thesis,

John Hopkins University, Balimore (1995)
11. Stark, D.: The vertex degree distribution of random intersec-

tion graphs. Random Struct. Algorithms 24, 249–258 (2004)

Indexed Approximate
StringMatching
2006; Chan, Lam, Sung, Tam, Wong

WING-KIN SUNG
Department of Computer Science, National University
of Singapore, Singapore, Singapore

Keywords and Synonyms

Indexed inexact pattern matching problem; Indexed pat-
tern searching problem based on hamming distance or edit
distance; Indexed k-mismatch problem; Indexed k-differ-
ence problem

ProblemDefinition

Consider a text S[1::n] over a finite alphabet˙ . One wants
to build an index for S such that for any query pattern
P[1::m] and any integer k � 0, one can report efficiently
all locations in S thatmatch Pwith atmost k errors. If error
is measured in terms of the Hamming distance (number of
character substitutions), the problem is called the k-mis-
match problem. If error is measured in term of the edit
distance (number of character substitutions, insertions or
deletions), the problem is called the k-difference problem.
The two problems are formally defined as follows.

Problem 1 (k-mismatch problem) Consider a text
S[1::n] over a finite alphabet ˙ . For any pattern P and
threshold k, position i is an occurrence of P if the hamming
distance between P and S[i::i0] is less than k for some i0.
The k-mismatch problem asks for an index I for S such that,
for any pattern P, one can report all occurrences of P in S
efficiently.

Problem 2 (k-difference problem) Consider a text
S[1::n] over a finite alphabet ˙ . For any pattern P and
threshold k, position i is an occurrence of P if the edit dis-
tance between P and S[i::i0] is less than k for some i0. The
k-difference problem asks for an index I for S such that, for
any pattern P, one can report all occurrences of P in S effi-
ciently.

The major concern of the two problems is how to achieve
efficient pattern searching without using a large amount of
space for storing the index.

Below, assume j˙ j (the size of the alphabet) is con-
stant.

Key Results

Table 1 summarizes the related results in the literature. Be-
low, briefly describes the current best results.

For indexes for exact matching (k = 0), the best results
utilize data structures like the suffix tree, compressed suf-
fix array, and FM-index. Theorems 1 and 2 describe those
results.

Theorem 1 (Weiner, 1973 [17]) Given a suffix tree of size
O(n) words, one can support exact (0-mismatch) matching
in O(m + occ) time where occ is the number of occurrences.
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Indexed Approximate String Matching, Table 1
Known results for k-difference matching. c is some positive constant and " is some positive constant smaller than 1

Space k = 1
O(n log2 n) words O(m log n log log n + occ) [1]
O(n log n) words O(m log log n + occ)

O(m + occ + log n log log n)
[2]
[8]

O(n) words O(minfn;m2g + occ)
O(m log n + occ)
O(kn� log n)
O(n� )
O(m + occ + log3 n log log n)
O(m + occ + log n log log n)

[6]
[11]
[14]
[15]
[3]
[4]

O(n
p
log n) bits O(m log log n + occ) [12]

O(n) bits O(m log2 n + occ log n)
O((m log log n + occ) log� n)
O(m + (occ + log4 n log log n) log� n)

[11]
[12]
[3]

O(j˙ jn) words in avg O(m + occ) [13]
O(j˙ jn) words O(m + occ) in avg [13]

Space k = O(1)
O(n logk n) words O(m + occ + 1

k! (c log n)
k log log n) [8]

O(n logk�1 n) words O(m + k33kocc + 1
k! (c log n)

k log log n) [3]
O(n) words O(minfn; j˙ jkmk+2g + occ)

O((j˙ jm)k log n + occ)
O(m + k33kocc + (c log n)k(k+1) log log n)
O(j˙ jkmk�1 log n log log n + k33kocc)

[6]
[11]
[3]
[4]

O(n
p
log n) bits O((j˙ jm)k log log n + occ) [12]

O(n) bits O((j˙ jm)k log2 n + occ log n)
O(((j˙ jm)k log log n + occ) log� n)
O(m + (k33kocc + (c log n)k

2+2k log log n) log� n)

[11]
[12]
[3]

O(j˙ jkn logk n) words in avg O(m + occ) [13]
O(j˙ jkn logk n) words O(m + occ) in avg [13]
O(n logk n) words in avg O(3kmk+1 + occ) [7]

Theorem2 (Ferragina andManzini, 2000 [9]; Grossi and
Vitter [10]) Given a compressed suffix array or an FM-
index of size O(n) bits, one can support exact (0-mismatch)
matching in O(m + occ log� n) time, where occ is the num-
ber of occurrences and " is any positive constant smaller
than or equal to 1.

For inexact matching (k ¤ 0), there are solutions whose
indexes can help answer a k-mismatch/k-difference pat-
tern query for any k � 0. Those indexes are created by
augmenting the suffix tree and its variants. Theorems 3
to 7 summarize the current best results in such direction.

Theorem 3 (Chan, Lam, Sung, Tam, and Wong,
2006 [3]) Given an index of size O(n) words, one can sup-
port k-mismatch lookup in O(m + occ + (c log n)k(k+1) �
log log n) time where c is a positive constant. For k-differ-
ence lookup, the term occ becomes k33kocc.

Theorem 4 (Chan, Lam, Sung, Tam, and Wong,
2006 [3]) Given an index of size O(n) bits, one can sup-
port k-mismatch lookup in O(m + (occ + (c log n)k(k+2) �
log log n) log� n) time where c is a positive constant and " is
any positive constant smaller than or equal to 1. For k-dif-
ference lookup, the term occ becomes k33kocc.

Theorem 5 (Lam, Sung, andWong, 2005 [12]) Given an
index of size O(n

p
log n) bits, one can support k-mismatch/

k-difference lookup in O((j˙ jm)k (k+log log n)+occ) time.

Theorem 6 (Lam, Sung, andWong, 2005 [12]) Given an
index of size O(n) bits, one can support k-mismatch/k-dif-
ference lookup in O(log�((j˙ jm)k(k+log log n)+occ)) time
where " is any positive constant smaller than or equal to 1.

Theorem 7 (Chan, Lam, Sung, Tam, and Wong,
2006 [4]) Given an index of size O(n) words, one can sup-
port k-mismatch lookup in O(j˙ jkmk�1 log n log log n +



410 I Indexed Approximate StringMatching

occ) time. For k-difference lookup, the term occ becomes
k33kocc.

When k is given, one can create indexes whose sizes de-
pend on k. Those solutions create the so-called k-error suf-
fix tree and its variants. Theorems 8 to 11 summarize the
current best results in this direction.

Theorem 8 (Maas and Nowak, 2005 [13]) Given an in-
dex of size O(j˙ jkn logk n) words, one can support k-mis-
match/k-difference lookup in O(m + occ) expected time.

Theorem 9 (Maas and Nowak, 2005 [13]) Consider
a uniformly and independently generated text of length n.
One can construct an index of size O(j˙ jkn logk n) words
on average, such that a k-mismatch/k-difference lookup
query can be supported in O(m + occ) worst case time.

Theorem 10 (Chan, Lam, Sung, Tam, and Wong,
2006 [3]) Given an index of size O(n logk�h+1 n) words
where h� k, one can support k-mismatch lookup in O(m +
occ + ck2 logmaxfkh;k+hg n log log n) time where c is a posi-
tive constant. For k-difference lookup, the term occ becomes
k33kocc.

Theorem 11 (Chan, Lam, Sung, Tam, and Wong,
2006 [4]) Given an index of size O(n logk�1 n) words, one
can support k-mismatch lookup in O(m + occ + logk n �
log log n) time. For k-difference lookup, the term occ be-
comes k33kocc.

In addition, there are indexes which are efficient in prac-
tice for small k/m but give no worst case complexity guar-
antees. Those methods are based on filtration. The basic
idea is to partition the pattern into short segments and
locate those short segments in the text, allowing zero or
a small number of errors. Those short segments help to
identify candidate regions for the occurrences of the pat-
tern. Finally, by verifying those candidate regions, one can
recover all occurrences of the pattern. See [16] for a sum-
mary of those results. One of the best results based on fil-
tration is stated in the following theorem.

Theorem 12 (Myers, 1994 [14]; Navarro and Baeza-
Yates, 2000 [15]) Consider an index of size O(n) words.
If k/m < 1 � O(1/

p
˙), one can support a k-mismatch/

k-difference search in O(n�) expected time where " is a pos-
itive constant smaller than 1.

All the above approaches either tried to index the strings
with errors or are based on filtering. There are also so-
lutions which use radically different approaches. For in-
stance, there are solutions which transform approximate
string searching into range queries in metric space [5].

Applications

Due to the advance in both internet and biological tech-
nologies, enormous text data is accumulated. For example,
there is a 60G genomic sequence data in a gene bank. The
data size is expected to grow exponentially.

To handle the huge data size, indexing techniques are
vital to speed up the pattern matching queries. Moreover,
exact pattern matching is no longer sufficient for both in-
ternet and biological data. For example, biological data
usually contains a lot of differences due to experimental er-
ror and mutation and evolution. Therefore, approximate
pattern matching becomes more appropriate. This gives
the motivation for developing indexing techniques that al-
low pattern matching with errors.

Open Problems

The complexity for indexed approximate matching is still
not fully understood. One would like to know the answers
for a number of questions. For instance, one haves the
following two questions. (1) Given a fixed index size of
O(n) words, what is the best time complexity of a k-mis-
match/k-difference query? (2) If the k-mismatch/k-differ-
ence query time is fixed to O(m + occ), what is the best
space complexity of the index?
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ProblemDefinition

The theory of inductive inference is concerned with the
capabilities and limitations of machine learning. Here the
learningmachine, the concepts to be learned, as well as the
hypothesis space aremodeled in recursion theoretic terms,
based on the framework of identification in the limit [1,8].

Formally, considering recursive functions (mapping
natural numbers to natural numbers) as target concepts,
a learner (inductive inference machine) is supposed to
process, step by step, gradually growing segments of the

graph of a target function. In each step, the learner out-
puts a program in some fixed programming system, where
successful learning means that the sequence of programs
returned in this process eventually stabilizes on some pro-
gram actually computing the target function.

Case and Smith [2,3] have proposed several variants
of this model in order to study the influence that cer-
tain constraints or relaxations may have on the capabili-
ties of learners, thereby restricting (i) the number of mind
changes (i. e., changes of output programs) a learner is al-
lowed for in this process and (ii) the number of errors the
program eventually hypothesized may have when com-
pared to the target function.

One major result of studying the corresponding effects
is a hierarchy of inference types culminating in a model
general enough to allow for the identification of the whole
class of recursive functions by a single inductive inference
machine.

Notations

The target concepts for learning in the model discussed
below are recursive functions [13] mapping natural num-
bers to natural numbers. Such functions, as well as par-
tial recursive functions in general, are considered as com-
putable in an arbitrary, but fixed acceptable numbering
' = ('i )i2N . Here N = f0; 1; 2; : : : g denotes the set of all
natural numbers. � is interpreted as a programming sys-
tem, where each i 2 N is called a program for the partial
recursive function 'i .

Suppose f and g are partial recursive functions and
n 2 N . Below f =n g is written if the set fx 2 N j f (x) ¤
g(x)g is of cardinality at most n. If the set fx 2 N j f (x) ¤
g(x)g is finite, this is denoted by f =� g. One considers �
as a special symbol for which the<-relation is extended by
n < � for all n 2 N . For any recursive f and any z 2 N , let
f [z] denote (z; ( f (0); : : : ; f (z))) for short.

For further basic recursion theoretic notions, the
reader is referred to [13].

Learning Models

Case and Smith [3] build their theory upon the fundamen-
tal model of identification in the limit [1,8]. There a learner
can be understood as an algorithmic device, called an in-
ductive inference machine, which, given any ‘graph seg-
ment’ f [z] as its input, returns a program i 2 N . Such
a learner M identifies a recursive function f in the limit,
if there is some j 2 N such that

' j = f and M( f [z]) = j for all but finitely many z 2 N :
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A class of recursive functions is learnable in the limit, if
there is an inductive inference machine identifying each
function in the class in the limit. Identification in the limit
is called EX-identification, since a program for f is termed
an explanation for f .

For instance, the class of all primitive recursive func-
tions is EX-identifiable, whereas the class of all recursive
functions is not [8].

The central questions discussed by Case and Smith [3]
are how the limitations of EX-learners are affected by pos-
ing certain requirements on the success criterion, concern-
ing
� convergence criteria,

– e. g., when restricting the number of permittedmind
changes,

– e. g., when relaxing the constraints on syntactical
convergence of the sequence of programs returned
in the learning process,

� accuracy,
– e. g., when relaxing the number of permitted

anomalies in the programs returned eventually.

Problem 1 In which way do modifications of EX-identifi-
cation in terms of accuracy and convergence criteria affect
the capabilities of the corresponding learners?

Problem 2 In particular, if inaccuracies are permitted, can
EX-learners always refute inaccurate hypotheses?

Problem 3 Howmuch relaxation of the model of EX-iden-
tification is needed to achieve learnability of the full class of
recursive functions?

Key Results

Accuracy and Convergence Constraints

In order to systematically address these problems, Case
and Smith [3] have defined inference types reflecting re-
strictions and relaxations of EX-identification as follows.

Definition 1 Suppose S is a class of recursive functions
and m; n 2 N [ f�g. S is EXm

n -identifiable, if there is an
inductive inference machineM, such that for any function
f 2 S there is some j 2 N satisfying
� M( f [z]) = j for all but finitely many z 2 N ,
� ' j =m f , and
� the cardinality of the set fz 2 N j M( f [z]) ¤ M( f [z +

1])g is at most n.

EXm
n denotes the set of all classes of recursive functions

which are EXm
n -identifiable.

Definition 2 Suppose S is a class of recursive functions
and m 2 N [ f�g. S is BCm-identifiable, if there is an

inductive inference machine M, which, for any function
f 2 S, satisfies
� 'M( f [z]) =m f for all but finitely many z 2 N.

BCm denotes the set of all classes of recursive functions
which are BCm-identifiable. BC is short for behaviorally
correct—the difference to EX-learning is that convergence
of the sequence of programs returned by the learner is de-
fined only in terms of semantics, no longer in terms of syn-
tax.

The Impact of Accuracy and Convergence Constraints

In general, each permission of mind changes or anoma-
lies increases the capabilities of learners; however mind
changes cannot be traded in for anomalies or vice versa.

Theorem 1 Let a; b; c; d 2 N [ f�g. Then EXa
b 
 EXc

d if
and only if a � c and b � d.

Corollary 1 For any m; n 2 N the following inclusions
hold.
1. EXm

n � EXm+1
n � EX�n .

2. EXm
n � EXm

n+1 � EXm
� .

Theorem 2 Let n 2 N . Then EX�� � BCn � BCn+1 �

BC�.

These results are essential concerning Problem 1.

Refutability

In particular, refutability demands in the sense that every
incorrect hypothesis should be refutable (see [12]) are not
applicable in the theory of inductive inference, see Prob-
lem 2.

Formally, Case and Smith [3] consider refutability as
a property guaranteed by Popperian machines, the latter
being defined as follows:

Definition 3 Suppose M is an inductive inference ma-
chineM.M is Popperian if, on any input,M returns a pro-
gram of a recursive function.

Results thereon include:

Theorem 3 There is an EX-identifiable class S of recursive
functions for which there is no Popperian IIM witnessing its
EX-identifiability.

Corollary 2 There is an EX1-identifiable class S of recur-
sive functions for which there is no Popperian IIM witness-
ing its EX1-identifiability.

Additionally, in EX1-identification, Popper’s refutability
principle can not be applied even if it concerns only those
hypotheses returned in the limit.
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Learning All Recursive Functions

Since the results above yield a hierarchy of inference types
with strictly growing collections of learnable classes, there
is also an implicit answer to Problem 3: the class of recur-
sive functions is neither in EXm

n for any m; n 2 N [ f�g
nor in BCm for any m 2 N . In contrast to that, Case and
Smith [3] prove

Theorem 4 The class of all recursive functions is in BC�.

Applications

The work of Case and Smith [3] has been of high impact
in learning theory.

A consequence of the discussion of anomalies has been
that refutability principles in general do not hold for iden-
tification in the limit. This result has given rise to later
studies on methods and techniques inductive inference
machines might apply in order to discover their errors [6]
and thus to further insights into the nature of inductive
inference.

Concerning the study of mind change hierarchies,
among others, their lifting to transfinite ordinal num-
bers [7] is a notable extension.

Moreover, the theory of learning as proposed by Case
and Smith [3] has been applied for the development of the
theory of identifying recursive [10] or recursively enumer-
able [9] languages.

Open Problems

Among the currently open problems in inductive infer-
ence, one key challenge is to find a reasonable notion of
the complexity of learning problems (i. e., of classes of re-
cursive functions) involving the run-time complexity of
learners as well as the number of mind changes required
to learn the functions in a class. In particular, special natu-
ral classes of functions should be analyzed in terms of such
a complexity notion.

Though of course the hierarchies EXm
0 � EXm

1 �

EXm
2 � : : : for any m 2 N reflect some increase of com-

plexity in that sense, a corresponding complexity notion
would not address the aspect of run-time complexity of
learners. Different complexity notions have been intro-
duced, such as the so-called intrinsic complexity [5] (ne-
glecting run-time complexity) and the ‘measure under the
curve’ [4] (respecting the number of examples required,
but neglecting the number of mind changes). In partic-
ular, for learning deterministic finite automata, different
notions of run-time complexity have been discussed [11].

However, the definition of a more capacious complex-
ity notion remains an open issue.
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Definition

The Input/Output model (I/O-model) [1] views the com-
puter as consisting of a processor, internalmemory (RAM),
and external memory (disk). See Fig. 1. The internal mem-
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I/O-model, Figure 1
The I/O-model

I/O-model, Figure 2
The parallel disk model

ory is of limited size, large enough to hold M data items.
The external memory is of conceptually unlimited size and
is divided into blocks of B consecutive data items. All com-
putation has to happen on data in internal memory. Data
is brought into internal memory and written back to exter-
nal memory using I/O-operations (I/Os), which are per-
formed explicitly by the algorithm. Each such operation
reads or writes one block of data from or to external mem-
ory. The complexity of an algorithm in this model is the
number of I/Os it performs.

The parallel disk model (PDM) [10] is an extension of
the I/O-model that allows the external memory to consist
of D � 1 parallel disks. See Fig. 2. In this model, a sin-
gle I/O-operation is capable of reading or writing up to
D independent blocks, as long as each of them is stored on
a different disk.

Key Results

A few complexity bounds are of importance to virtually
every I/O-efficient algorithm or data structure. The search-
ing bound of 	(logB n) I/Os, which can be achieved using
a B-tree [4], is the cost of searching for an element in an
ordered collection of n elements, using comparisons only.

It is thus the equivalent of the 	(log n) searching bound
in internal memory.

Scanning a list of n consecutive data items obviously
takes dn/Be I/Os or, in the PDM, dn/DBe I/Os. This scan-
ning bound is usually referred to as a “linear number of
I/Os” because it is the equivalent of the O(n) time bound
required to do the same in internal memory.

The sorting bound of sort(n) = 	((n/B) logM/B(n/B))
I/Os denotes the cost of sorting n elements using compar-
isons only. It is thus the equivalent of the 	(n log n) sort-
ing bound in internal memory. In the PDM, the sorting
bound becomes 	((n/DB) logM/B(n/B)). This bound can
be achieved using a range of sorting algorithms, including
external merge sort [1,6] and distribution sort [1,5].

Arguably the most interesting bound is the permu-
tation bound, that is, the cost of rearranging n elements
in a given order, which is 	(min(sort(n); n)) [1] or,
in the PDM, 	(min(sort(n); n/D)) [10]. For all prac-
tical purposes, this is the same as the sorting bound.
Note the contrast to internal memory where, up to con-
stant factors, permuting has the same cost as a linear
scan. Since almost all non-trivial algorithmic problems in-
clude a permutation problem, this implies that only ex-
ceptionally simple problems can be solved in O(scan(n))
I/Os; most problems have an ˝(perm(n)), that is, es-
sentially an ˝(sort(n)) lower bound. Therefore, while
internal-memory algorithms aiming for linear time have
to carefully avoid the use of sorting as a tool, external-
memory algorithms can sort without fear of significantly
exceeding the lower bound. This makes the design of
I/O-optimal algorithms potentially easier than the de-
sign of optimal internal-memory algorithms. It is, how-
ever, counterbalanced by the fact that, unlike in inter-
nal memory, the sorting bound is not equal to n times
the searching bound, which implies that algorithms based
on querying a tree-based search structure O(n) times
usually do not translate into I/O-efficient algorithms.
Buffer trees [3] achieve an amortized search bound of
O((1/B) logM/B(N/B)) I/O, but can be used only if the
entire update and query sequence is known in advance
and thus provide only a limited solution to this prob-
lem.

Apart from these fundamental results, there exist
a wide range of interesting techniques, particularly for
solving geometric and graph problems. For surveys, refer
to [2,9].

Applications

Modern computers are equipped withmemory hierarchies
consisting of several levels of cache memory, main mem-



I/O-model I 415

ory (RAM), and disk(s). Access latencies increase with the
distance from the processor, as do the sizes of the memory
levels. To amortize these increasing access latencies, data
are transferred between different levels of cache in blocks
of consecutive data items. As a result, the cost of a mem-
ory access depends on the level in the memory hierarchy
currently holding the data item—the difference in access
latency between L1 cache and disk is about 106—and the
cost of a sequence of accesses to data items stored at the
same level depends on the number of blocks over which
these items are distributed.

Traditionally, algorithms have been designed to min-
imize the number of computation steps; the access local-
ity necessary to solve a problem using few data transfers
between memory levels has been largely ignored. Hence,
the designed algorithms work well on data sets of mod-
erate size, but do not take noticeable advantage of cache
memory and usually break down completely in out-of-
core computations. Since the difference in access laten-
cies is largest between main memory and disk, the I/O-
model focuses on minimizing this I/O-bottleneck. This
two-level view of the memory hierarchy keeps the model
simple and useful for analyzing sophisticated algorithms,
while providing a good prediction of their practical per-
formance.

Much effort has been made already to translate prov-
ably I/O-efficient algorithms into highly efficient imple-
mentations. Examples include TPIE [8] and STXXL [7],
two libraries that aim to provide highly optimized and
powerful primitives for the implementation of I/O-
efficient algorithms. In spite of these efforts, a significant
gap between the theory and practice of I/O-efficient algo-
rithms remains (see next section).

Open Problems

There are a substantial number of open problems in the
area of I/O-efficient algorithms. The most important ones
concern graph and geometric problems.

Traditional graph algorithms usually use a well-
organized graph traversal such as depth-first search or
breadth-first search to gain information about the struc-
ture of the graph and then use this information to solve the
problem at hand. In the I/O-model, no I/O-efficient depth-
first search algorithm is known and for breadth-first search
and shortest paths, progress has been made only recently
on undirected graphs. For directed graphs, even such sim-
ple problems as deciding whether there exists a directed
path between two vertices are currently open. The main
research focus in this area is therefore to either develop
I/O-efficient general traversal algorithms or to continue

the current strategy of devising graph algorithms that de-
part from traditional traversal-based approaches.

Techniques for solving geometric problems I/O-
efficiently are much better understood than is the case
for graph algorithms, at least in two dimensions. Never-
theless, there are a few important frontiers that remain.
Arguably the most important one is the development of
I/O-efficient algorithms and data structures for higher-
dimensional geometric problems. Motivated by database
applications, higher-dimensional range searching is one
of the problems to be studied in this context. Little work
has been done in the past on solving proximity prob-
lems, which pose another frontier currently explored by
researchers in the field. Motivated by the need for such
structures in a range of application areas and in partic-
ular in geographic information systems, there has been
some recent focus on the development of multifunctional
data structures, that is, structures that can answer differ-
ent types of queries efficiently. Most existing structures are
carefully tuned to efficiently support one particular type of
query.

For both, I/O-efficient graph algorithms and compu-
tational geometry, there is a substantial gap between the
obtained theoretical results and what is known to be prac-
tical, even though more experimental work has been done
on geometric algorithms than on graph algorithms. Thus,
if I/O-efficient algorithms in these areas are to have any
practical impact, increased efforts are needed to bridge this
gap by developing practically I/O-efficient algorithms that
are still provably efficient.

Cross References

For details on � External Sorting and Permuting, please
refer to the corresponding entry. Details on one- and
higher-dimensional searching are provided in the entries
on� B-trees and� R-trees. The reader interested in algo-
rithms that focus on efficiency at all levels of the memory
hierarchy should consult the entry on the � Cache-Obliv-
ious Model.
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