
Learning with the Aid of an Oracle L 423

L

Learning with the Aid of an Oracle
1996; Bshouty, Cleve, Gavaldà, Kannan, Tamon

CHRISTINO TAMON
Department of Mathematics and Computer Science,
Clarkson University,
Potsdam, NY, USA

Keywords and Synonyms

Oracles and queries that are sufficient for exact learning

ProblemDefinition

In the exact learningmodel of Angluin [1], a learning algo-
rithm Amust discover an unknown function f : f0; 1gn !
f0; 1g that is a member of a known class C of Boolean func-
tions. The learning algorithm can make at least one of the
following types of queries about f:
� Equivalence query EQf(g), for a candidate function g:

The reply is either “yes”, if g, f, or a counterexample
a with g(a) ¤ f(a), otherwise.

� Membership query MQf(a), for some a 2 f0; 1gn : The
reply is the Boolean value f(a).

� Subset query SubQf(g), for a candidate function g: The
reply is “yes”, if g) f, or a counterexample a with
f(a) < g(a), otherwise.

� Superset query SupQf(g), for a candidate function g:
The reply is “yes”, if f) g, or a counterexample a with
g(a) < f(a), otherwise.

A Disjunctive Normal Formula (DNF) is a depth-2 OR-
AND circuit whose size is given by the number of its AND
gates. Likewise, a Conjunctive Normal Formula (CNF) is
a depth-2 AND-OR circuit whose size is given by the num-
ber of its OR gates. Any Boolean function can be repre-
sented as both a DNF or a CNF formula. A k-DNF is a DNF
where each AND gate has a fan-in of at most k; similarly, it
is possible to define k-CNF.

Problem

For a given class C of Boolean functions, such as poly-
nomial-size Boolean circuits or Disjunctive Normal Form
(DNF) formulas, the goal is to design polynomial-time
learning algorithms for any unknown f 2 C and ask a poly-
nomial number of queries. The output of the learning al-
gorithm should be a function g of polynomial size satisfy-
ing g , f . The polynomial functions bounding the run-
ning time, query complexity, and output size are defined in
terms of the number of inputs n and the size of the smallest
representation (Boolean circuit or DNF) of the unknown
function f

Key Results

One of the main results proved in [4] is that Boolean cir-
cuits and Disjunctive Normal Formulas are exactly learn-
able using equivalence queries and access to an NP oracle.

Theorem 1 The following tasks can be accomplished with
probabilistic polynomial-time algorithms that have access
to an NP oracle and make polynomially many equivalence
queries:
� Learning DNF formulas of size s using equivalence

queries that are depth-3 AND-OR-AND formulas of size
O(sn2/log2n).

� Learning Boolean circuits of size s using equivalence
queries that are circuits of size O(sn + n log n).

The idea behind this result is simple. Any class C of
Boolean functions is exactly learnable with equivalence
queries using the Halving algorithm of Littlestone [10].
This algorithm asks equivalence queries that are the ma-
jority of candidate functions from C. These are functions
in C that are consistent with the counterexamples obtained
so far by the learning algorithm. Since each such major-
ity query eliminates at least half of the candidate func-
tions, log2 jCj equivalence queries are sufficient to learn
any function in C. A problem with using the Halving al-

424 L Learning with the Aid of an Oracle

gorithm here is that the majority query has exponential
size. But, it can be shown that a majority of a polyno-
mial number of uniformly random candidate functions
is a good enough approximator to the majority of all
candidate functions. Moreover, with access to an NP or-
acle, there is a randomized polynomial time algorithm
for generating random uniform candidate functions due
to Jerrum, Valiant, and Vazirani [6]. This yields the re-
sult.

The next observation is that subset and superset
queries are apparently powerful enough to simulate both
equivalence queries and the NP oracle. This is easy
to see since the tautology test g, 1 is equivalent to
SubQf(g) ^ SubQf(g), for any unknown function f; and,
EQf(g) is equivalent to SubQf(g) ^ SupQf(g). Thus, the
following generalization of Theorem 1 is obtained.

Theorem 2 The following tasks can be accomplished with
probabilistic polynomial-time algorithms that make poly-
nomially many subset and superset queries:
� Learning DNF formulas of size s using equivalence

queries that are depth-3 AND-OR-AND formulas of size
O(sn2/log2n).

� Learning Boolean circuits of size s using equivalence
queries that are circuits of size O(sn + n log n).

Stronger deterministic results are obtained by allowing
more powerful complexity-theoretic oracles. The first of
these results employ techniques developed by Sipser and
Stockmeyer [11,12].

Theorem 3 The following tasks can be accomplished with
deterministic polynomial-time algorithms that have access
to an ˙ p

3 oracle and make polynomially many equivalence
queries:
� Learning DNF formulas of size s using equivalence

queries that are depth-3 AND-OR-AND formulas of size
O(sn2/log2n).

� Learning Boolean circuits of size s using equivalence
queries that are circuits of size O(sn + n log n).

In the following result, C is an infinite class of functions
containing functions of the form f : f0; 1g? ! f0; 1g. The
class C is p-evaluatable if the following tasks can be per-
formed in polynomial time:
� Given y, is y a valid representation for any function

fy 2 C?
� Given a valid representation y and x 2 f0; 1g?, is

fy(x) = 1?

Theorem 4 Let C be any p-evaluatable class. The following
statements are equivalent:

� C is learnable from polynomially many equivalence
queries of polynomial size (and unlimited computa-
tional power).

� C is learnable in deterministic polynomial time with
equivalence queries and access to a˙ p

5 oracle.

For exact learning with membership queries, the following
results are proved.

Theorem 5 The following tasks can be accomplished with
deterministic polynomial-time algorithms that have access
to an NP oracle and make polynomially many membership
queries (in n, DNF and CNF sizes of f, where f is the un-
known function):
� Learning monotone Boolean functions.
� Learning O(log n) � CNF

T
O(log n) � DNF.

The ideas behind the above result use techniques
from [1,3]. For a monotone Boolean function f, the stan-
dard closure algorithm uses both equivalence and mem-
bership queries to learn f using candidate functions g sat-
isfying g) f. The need for membership can be removed
using the following observation. Viewing :f as a mono-
tone function on the inverted lattice, it is possible to learn
f and :f simultaneously using candidate functions g,h, re-
spectively, that satisfy g) h. The NP oracle is used to ob-
tain an example a that either helps in learning f or in learn-
ing :f; when no such example can be found, fwas learned.

Theorem 6 Any class C of Boolean functions that is ex-
actly learnable using a polynomial number of member-
ship queries (and unlimited computational power) is exactly
learnable in expected polynomial time using a polynomial
number of membership queries and access to an NP oracle.

Moreover, any p-evaluatable class C that is exactly
learnable from a polynomially number membership queries
(and unlimited computational power), is also learnable in
deterministic polynomial time using a polynomial number
of membership queries and access to a˙ p

5 oracle.

Theorems 4 and 6 showed that information-theoretic
learnability using equivalence and membership queries
can be transformed into computational learnability at the
expense of using the˙ p

5 and NP oracles, respectively.

Applications

The learning algorithm for Boolean circuits using equiv-
alence queries and access to an NP oracle has found
an application in complexity theory. Watanabe (see [9])
showed an improvement on a known theorem of Karp

Learning Automata L 425

and Lipton [7]: if NP has polynomial-size circuits, then the
polynomial-time hierarchy PH collapses to ZPPNP.

Some techniques developed in Theorem 5 for exact
learning using membership queries of monotone Boolean
functions have found applications in data mining [5].

Open Problems

It is unknown if there are polynomial-time learning algo-
rithms for Boolean circuits andDNF formulas using equiv-
alence queries (without complexity-theoretic oracles).
There are strong cryptographic evidence that Boolean cir-
cuits are not learnable in polynomial-time (see [2] and
the references therein). The best running time for learn-
ing DNF formulas is 2Õ(n1/3) as given by Klivans and Serve-
dio [8]. It is unclear if membership queries help in this
case.

Cross References

For related learning results, see� Learning DNFFormulas
and� Learning Automata in this encyclopedia.

Recommended Reading

1. Angluin, D.: Queries and Concept Learning. Mach. Learn. 2,
319–342 (1988)

2. Angluin, D., Kharitonov, M.: When Won’t Membership Queries
Help? J. Comput. Syst. Sci. 50, 336–355 (1995)

3. Bshouty, N.H.: Exact Learning Boolean Function via the Mono-
tone Theory. Inform. Comput. 123, 146–153 (1995)

4. Bshouty, N.H., Cleve, R., Gavaldà, R., Kannan, S., Tamon, C.: Ora-
cles and Queries That Are Sufficient for Exact Learning. J. Com-
put. Syst. Sci. 52(3), 421–433 (1996)

5. Gunopolous, D., Khardon, R., Mannila, H., Saluja, S., Toivonen,
H., Sharma, R.S.: Discovering All Most Specific Sentences. ACM
Trans. Database Syst. 28, 140–174 (2003)

6. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random Generation of
Combinatorial Structures from a Uniform Distribution. Theor.
Comput. Sci. 43, 169–188 (1986)

7. Karp, R.M., Lipton, R.J.: Some Connections Between Nonuni-
form and Uniform Complexity Classes. In: Proc. 12th Ann. ACM
Symposium on Theory of Computing, 1980, pp. 302–309

8. Klivans, A.R., Servedio, R.A.: Learning DNF in Time 2Õ(n
1/3).

J. Comput. Syst. Sci. 68, 303–318 (2004)
9. Köbler, J., Watanabe, O.: New Collapse Consequences of NP

Having Small Circuits. SIAM J. Comput. 28, 311–324 (1998)
10. Littlestone, N.: Learning Quickly When Irrelevant Attributes

Abound: A New Linear-Threshold Algorithm. Mach. Learn. 2,
285–318 (1987)

11. Sipser, M.: A complexity theoretic approach to randomness. In:
Proc. 15th Annual ACM Symposium on Theory of Computing,
1983, pp. 330–334

12. Stockmeyer, L.J.: On approximation algorithms for #P. SIAM J.
Comput. 14, 849–861 (1985)

Learning Automata
2000; Beimel, Bergadano, Bshouty, Kushilevitz,
Varricchio

AMOS BEIMEL1, FRANCESCO BERGADANO2,
NADER H. BSHOUTY3, EYAL KUSHILEVITZ3,
STEFANO VARRICCHIO4

1 Ben-Gurion University, Beer Sheva, Israel
2 University of Torino, Torino, Italy
3 Technion, Haifa, Israel
4 Department of Computer Science, University of Roma,
Rome, Italy

Keywords and Synonyms

Computational learning; Machine learning; Multiplicity
automata; Formal series; Boolean formulas; Multivariate
polynomials

ProblemDefinition

This problem is concerned with the learnability of mul-
tiplicity automata in Angluin’s exact learning model and
applications to the learnability of functions represented by
small multiplicity automata.

The Learning Model It is the exact learning model [2]:
Let f be a target function. A learning algorithm may pro-
pose to an oracle, in each step, two kinds of queries:mem-
bership queries (MQ) and equivalence queries (EQ). In
a MQ it may query for the value of the function f on
a particular assignment z. The response to such a query
is the value f (z).1 In a EQ it may propose to the oracle
a hypothesis function h. If h is equivalent to f on all in-
put assignments then the answer to the query is YES and
the learning algorithm succeeds and halts. Otherwise, the
answer to the equivalence query is NO and the algorithm
receives a counterexample, i. e., an assignment z such that
f (z) ¤ h(z). One says that the learner learns a class of
functions C, if for every function f 2 C the learner outputs
a hypothesis h that is equivalent to f and does so in time
polynomial in the “size” of a shortest representation of f
and the length of the longest counterexample. The exact
learning model is strictly related to the Probably Approx-
imately Correct (PAC) model of Valiant [19]. In fact, ev-
ery equivalence query can be easily simulated by a sample
of random examples. Therefore, learnability in the exact
learning model also implies learnability in the PAC model
with membership queries [2,19].

1If f is boolean this is the standard membership query.

426 L Learning Automata

Multiplicity Automata Let K be a field, ˙ be an al-
phabet, � be the empty string. A multiplicity automaton
(MA) A of size r consists of j˙ j matrices f�� : � 2 ˙g
each of which is an r � r matrix of elements from K
and an r-tuple E� = (�1; : : : ; �r) 2Kr . The automaton A
defines a function fA : ˙� !K as follows. First, define
a mapping �, which associates with every string in ˙�

an r � r matrix overK, by �(�) , ID, where ID denotes
the identity matrix, and for a string w = �1�2 : : : �n , let
�(w) , ��1 � ��2 � � ���n . A simple property of � is that
�(x ı y) = �(x) � �(y), where ı denotes concatenation.
Now, fA(w) , [�(w)]1 � E� (where [�(w)]i denotes the ith
row of the matrix �(w)). Let f : ˙� !K be a function.
Associate with f an infinite matrix F, where each of its rows
is indexed by a string x 2 ˙� and each of its columns is in-
dexed by a string y 2 ˙�. The (x, y) entry of F contains the
value f (x ı y). The matrix F is called theHankel Matrix of
f . The xth row of F is denoted by Fx. The (x, y) entry of F
may be therefore denoted as Fx(y) and as Fx;y . The follow-
ing result relates the size of the minimal MA for f to the
rank of F (cf. [4] and references therein).

Theorem 1 Let f : ˙� ! K such that f 6� 0 and let F
be its Hankel matrix. Then, the size r of the smallest multi-
plicity automaton A such that fA � f satisfies r = rank(F)
(over the fieldK).

Key Results

The learnability of multiplicity automata has been proved
in [7] and, independently, in [17]. In what follows letK be
a field, f : ˙� !K be a function and F its Hankel matrix
such that r = rank(F) (overK).

Theorem 2 ([4]) The function f is learnable by an algo-
rithm in time O(j˙ j � r �M(r) + m � r3) using r equivalence
queries and O((j˙ j + logm)r2)membership queries, where
m is the size of the longest counterexample obtained during
the execution of the algorithm, and M(r) is the complexity
of multiplying two r � r matrices.

Some extensions of the above result can be found
in [8,13,16]. In many cases of interest the domain of the
target function f is not˙� but rather˙ n for some value n,
i. e., f : ˙ n !K. The length of counterexamples, in this
case, is always n and so m = n. Denote by Fd the subma-
trix of F whose rows are strings in˙ d and its columns are
strings in ˙ n�d and let rmax = maxnd=0 rank(F

d) (where
rank is taken overK).

Theorem 3 ([4]) The function f is learnable by an algo-
rithm in time O(j˙ jrn �M(rmax)) using O(r) equivalence
queries and O((j˙ j + log n)r � rmax)membership queries.

The time complexity of the two above results has been re-
cently further improved [9].

Applications

The results of this section can be found in [3,4,5,6]. They
show the learnability of various classes of functions as
a consequence of Theorems 2 and 3. This can be done by
proving that for every function f in the class in question,
the corresponding Hankelmatrix F has low rank. As is well
known, any nondeterministic automaton can be regarded
as a multiplicity automaton, whose associated function re-
turns the number of accepting paths of the nondetermin-
istic automaton on w. Therefore, the learnability of mul-
tiplicity automata gives a new algorithm for learning de-
terministic automata and unambiguous automata2. The
learnability of deterministic automata has been proved
in [1]. By [14], the class of deterministic automata con-
tains the class of O(log n)-term DNF, i. e., DNF formulae
over n boolean variables with O(log n) number of terms.
Hence, this class can be learned using multiplicity au-
tomata.

Classes of Polynomials

Theorem 4 Let pi; j : ˙ ! K be arbitrary functions of
a single variable (1 � i � t, 1 � j � n). Let gi : ˙ n ! K
be defined by

Qn
j=1 pi; j(z j). Finally, let f : ˙

n !K be de-
fined by f =

Pt
i=1 gi . Let F be the Hankel matrix corre-

sponding to f , and Fd the sub-matrices defined in the previ-
ous section. Then, for every 0 � d � n, rank(Fd) � t.

Corollary 5 The class of functions that can be expressed as
functions over GF(p) with t summands, where each sum-
mand Ti is a product of the form pi;1(x1) � � � pi;n(xn) (and
pi; j : GF(p)! GF(p) are arbitrary functions) is learnable
in time poly(n; t; p).

The above corollary implies as a special case the learn-
ability of polynomials over GF(p). This extends the re-
sult of [18] from multi-linear polynomials to arbitrary
polynomials. The algorithm of Theorem 3, for polynomi-
als with n variables and t terms, uses O(nt) equivalence
queries and O(t2n log n) membership queries. The spe-
cial case of the above class – the class of polynomials over
GF(2) – was known to be learnable before [18]. Their al-
gorithm uses O(nt) equivalence queries and O(t3n) mem-
bership queries. The following theorem extends the latter
result to infinite fields, assuming that the functions pi; j are
bounded-degree polynomials.

2A nondeterministic automata is unambiguous if for every
w 2 ˙� there is at most one accepting path.

Learning Automata L 427

Theorem 6 The class of functions over a field K that
can be expressed as t summands, where each summand Ti
is of the form pi;1(x1) � � � pi;n(xn), and pi; j :K !K are
univariate polynomials of degree at most k, is learnable in
time poly(n; t; k). Furthermore, if jKj � nk + 1 then this
class is learnable from membership queries only in time
poly(n; t; k) (with small probability of error).

Classes of Boxes

Let [`] denotes the set f0; 1; : : : ; `� 1g. A box in [`]n is
defined by two corners (a1; : : : ; an) and (b1; : : : ; bn) (in
[`]n) as follows:

Ba1;:::;an ;b1;:::;bn = f(x1; : : : ; xn) : 8i; ai � xi � bi g :

A box can be represented by its characteristic function in
[`]n . The following result concerns a more general class of
functions.

Theorem 7 Let pi; j : ˙ ! f0; 1g be arbitrary func-
tions of a single variable (1 � i � t, 1 � j � n). Let
gi : ˙ n ! f0; 1g be defined by

Qn
j=1 pi; j(z j). Assume that

there is no point x 2 ˙ n such that gi (x) = 1 for more
than s functions gi. Finally, let f : ˙ n ! f0; 1g be defined
by f =

Wt
i=1 gi . Let F be the Hankel matrix correspond-

ing to f . Then, for every fieldK and for every 0 � d � n,
rank(Fd) �

Ps
i=1
�t
i
�
.

Corollary 8 The class of unions of disjoint boxes can be
learned in time poly(n; t; `) (where t is the number of boxes
in the target function). The class of unions of O(log n) boxes
can be learned in time poly(n; `).

Classes of DNF Formulae

The learnability of DNF formulae has been widely investi-
gated. The following special case of Corollary 5 solves an
open problem of [18]:

Corollary 9 The class of functions that can be expressed as
exclusive-OR of t (not necessarily monotone) monomials is
learnable in time poly(n; t).

While Corollary 9 does not refer to a subclass of DNF, it
already implies the learnability of disjoint (i. e., satisfy-1)
DNF. Since DNF is a special case of union of boxes (with
` = 2), one obtains also the learnability of disjoint DNF
from Corollary 8. Positive results for satisfy-s DNF (i. e.,
DNF formulae in which each assignment satisfies at most
s terms) can be obtained, with larger values of s. The fol-
lowing two important corollaries follow from Theorem 7.
Note that Theorem 7 holds in any field. For convenience
(and efficiency), letK = GF(2).

Theorem 10 Let f = T1 _ T2 _ � � � _ Tt be a satisfy-s
DNF (that is, each Ti is a monomial). Let F be the Han-
kel matrix corresponding to f . Then, rank(Fd) �

Ps
i=1
�t
i
�

� ts .

Corollary 11 The class of satisfy-s DNF formulae, for
s = O(1), is learnable in time poly(n; t).

Corollary 12 The class of satisfy-s, t-term DNF for-
mulae is learnable in time poly(n) for the following
choices of s and t: (1) t = O(log n); (2) t = polylog(n)
and s = O(log n/ log log n); (3) t = 2O(log n/ log log n) and
s = O(log log n).

Classes of Decision Trees

The algorithm of Theorem 3 efficiently learns the class
of disjoint DNF formulae. This includes the class of
decision trees. Therefore, decision trees of size t on n
variables are learnable using O(tn) equivalence queries
and O(t2n log n) membership queries. This is better than
the best known algorithm for decision trees [11] (which
uses O(t2) equivalence queries and O(t2n2) member-
ship queries). The following results concern more general
classes of decision trees.

Corollary 13 Consider the class of decision trees that
compute functions f : GF(p)n ! GF(p) as follows: each
node v contains a query of the form “xi 2 Sv ?”, for some
Sv
 GF(p). If xi 2 Sv then the computation proceeds to
the left child of v and if xi … Sv the computation proceeds
to the right child. Each leaf ` of the tree is marked by
a value �` 2 GF(p) which is the output on all the assign-
ments which reach this leaf. Then, this class is learnable in
time poly(n; jLj; p), where L is the set of leaves.

The above result implies the learnability of decision trees
with “greater-than” queries in the nodes, solving a prob-
lem of [11]. Every decision tree with “greater-than” queries
that computes a boolean function can be expressed as the
union of disjoint boxes. Hence, this case can also be de-
rived from Corollary 8. The next theorem will be used to
learn more classes of decision trees.

Theorem 14 Let gi : ˙ n ! K be arbitrary functions
(1 � i � `). Let f : ˙ n !K be defined by f =

Q`
i=1 gi .

Let F be the Hankel matrix corresponding to f , and
Gi be the Hankel matrix corresponding to gi. Then,
rank(Fd) �

Q`
i=1 rank(G

d
i).

This theorem has some interesting applications. The first
application states that arithmetic circuits of depth two with
multiplication gate of fan-in O(log n) at the top level and
addition gates with unbounded fan-in in the bottom level
are learnable.

428 L Learning Automata

Corollary 15 Let C be the class of functions that can be
expressed in the following way: Let pi; j : ˙ !K be arbi-
trary functions of a single variable (1 � i � `, 1 � j � n).
Let ` = O(log n) and gi : ˙ n !K (1 � i � `) be defined
by ˙ n

j=1pi; j(z j). Finally, let f : ˙ n !K be defined by

f =
Q`

i=1 gi . Then, C is learnable in time poly(n; j˙ j).

Corollary 16 Consider the class of decision trees of depth s,
where the query at each node v is a boolean function f v
with rmax � t (as defined in Section "Key Results") such
that (t + 1)s = poly(n). Then, this class is learnable in time
poly(n; j˙ j).
The above class contains, for example, all the decision trees
of depth O(log n) that contain in each node a term or
a XOR of a subset of variables as defined in [15] (in this
case rmax � 2).

Negative Results

In [4] some limitation of the learnability via the automa-
ton representation has been proved. One can show that the
main algorithm does not efficiently learn several impor-
tant classes of functions. More precisely, these classes con-
tain functions f that have no “small” automaton, i. e., by
Theorem 1, the corresponding Hankel matrix F is “large”
over every fieldK.
Theorem 17 The following classes are not learnable in
time polynomial in n and the formula size using multiplic-
ity automata (over any field K): DNF, Monotone DNF,
2-DNF, Read-once DNF, k-term DNF, for k = !(log n),
Satisfy-s DNF, for s = !(1), Read-j satisfy-s DNF, for
j = !(1) and s = ˝(log n).
Some of these classes are known to be learnable by
other methods, some are natural generalizations of
classes known to be learnable as automata (O(log n)-term
DNF [11,12,14], and satisfy-s DNF for s = O(1) (Corol-
lary 11)) or by other methods (read-j satisfy-s for js =
O(log n/ log log n) [10]), and the learnability of some of
the others is still an open problem.

Cross References

� Learning Constant-Depth Circuits
� Learning DNF Formulas

Recommended Reading
1. Angluin, D.: Learning regular sets from queries and counterex-

amples. Inf. Comput. 75, 87–106 (1987)
2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4),

319–342 (1988)
3. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varric-

chio, S.: On the applications of multiplicity automata in learn-
ing. In: Proc. of the 37th Annu. IEEE Symp. on Foundations of

Computer Science, pp. 349–358, IEEE Comput. Soc. Press, Los
Alamitos (1996)

4. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varric-
chio, S.: Learning Functions Represented as Multiplicity Au-
tomata. J. ACM 47, 506–530 (2000)

5. Beimel, A., Kushilevitz, E.: Learning boxes in high dimension.
In: Ben-David S. (ed.) 3rd European Conf. on Computational
Learning Theory (EuroCOLT ’97), Lecture Notes in Artificial In-
telligence, vol. 1208, pp. 3–15. Springer, Berlin (1997) Journal
version: Algorithmica 22, 76–90 (1998)

6. Bergadano, F., Catalano, D., Varricchio, S.: Learning sat-k-DNF
formulas frommembership queries. In: Proc. of the 28th Annu.
ACM Symp. on the Theory of Computing, pp. 126–130. ACM
Press, New York (1996)

7. Bergadano, F., Varricchio, S.: Learning behaviors of automata
from multiplicity and equivalence queries. In: Proc. of 2nd
Italian Conf. on Algorithms and Complexity. Lecture Notes in
Computer Science, vol. 778, pp. 54–62. Springer, Berlin (1994).
Journal version: SIAM J. Comput. 25(6), 1268–1280 (1996)

8. Bergadano, F., Varricchio, S.: Learning behaviors of automata
from shortest counterexamples. In: EuroCOLT ’95, Lecture
Notes in Artificial Intelligence, vol. 904, pp. 380–391. Springer,
Berlin (1996)

9. Bisht, L., Bshouty, N.H., Mazzawi, H.: On Optimal Learning Algo-
rithms for Multiplicity Automata. In: Proc. of 19th Annu. ACM
Conf. Comput. Learning Theory, Lecture Notes in Computer
Science. vol. 4005, pp. 184–198. Springer, Berlin (2006)

10. Blum, A., Khardon, R., Kushilevitz, E., Pitt, L., Roth, D.: On learn-
ing read-k-satisfy-j DNF. In: Proc. of 7th Annu. ACM Conf. on
Comput. Learning Theory, pp. 110–117. ACM Press, New York
(1994)

11. Bshouty, N.H.: Exact learning via themonotone theory. In: Proc.
of the 34th Annu. IEEE Symp. on Foundations of Computer
Science, pp. 302–311. IEEE Comput. Soc. Press, Los Alami-
tos (1993). Journal version: Inform. Comput. 123(1), 146–153
(1995)

12. Bshouty, N.H.: Simple learning algorithms using divide and
conquer. In: Proc. of 8th Annu. ACM Conf. on Comput. Learn-
ing Theory, pp. 447–453. ACM Press, New York (1995). Journal
version: Computational Complexity, 6, 174–194 (1997)

13. Bshouty, N.H., Tamon, C., Wilson, D.K.: Learning Matrix Func-
tions over Rings. Algorithmica 22(1/2), 91–111 (1998)

14. Kushilevitz, E.: A simple algorithm for learning O(log n)-term
DNF. In: Proc. of 9th Annu. ACM Conf. on Comput. Learning
Theory, pp 266–269, ACM Press, New York (1996). Journal ver-
sion: Inform. Process. Lett. 61(6), 289–292 (1997)

15. Kushilevitz, E., Mansour, Y.: Learning decision trees using the
Fourier spectrum. SIAM J. Comput. 22(6), 1331–1348 (1993)

16. Melideo, G., Varricchio, S.: Learning unary output two-tape au-
tomata from multiplicity and equivalence queries. In: ALT ’98.
Lecture Notes in Computer Science, vol. 1501, pp. 87–102.
Springer, Berlin (1998)

17. Ohnishi, H., Seki, H., Kasami, T.: A polynomial time learning al-
gorithm for recognizable series. IEICE Transactions on Informa-
tion and Systems, E77-D(10)(5), 1077–1085 (1994)

18. Schapire, R.E., Sellie, L.M.: Learning sparse multivariate polyno-
mials over a field with queries and counterexamples. J. Com-
put. Syst. Sci. 52(2), 201–213 (1996)

19. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11),
1134–1142 (1984)

Learning Constant-Depth Circuits L 429

Learning Constant-Depth Circuits
1993; Linial, Mansour, Nisan

ROCCO SERVEDIO
Department of Computer Science, Columbia University,
New York, NY, USA

Keywords and Synonyms

Learning AC0 circuits

ProblemDefinition

This problem deals with learning “simple” Boolean func-
tions f : f0; 1gn ! f�1; 1g from uniform random labeled
examples. In the basic uniform distribution PAC frame-
work, the learning algorithm is given access to a uniform
random example oracle EX(f ,U) which, when queried,
provides a labeled random example (x; f (x)) where x
is drawn from the uniform distribution U over the
Boolean cube f0; 1gn : Successive calls to the EX(f ,U) or-
acle yield independent uniform random examples. The
goal of the learning algorithm is to output a representa-
tion of a hypothesis function h : f0; 1gn ! f�1; 1g which
with high probability has high accuracy; formally, for any
�; ı > 0, given � and ı the learning algorithm should
output an h which with probability at least 1� ı has
Prx2U [h(x) ¤ f (x)] � �.

Many variants of the basic framework described above
have been considered. In the distribution-independent
PAC learning model, the random example oracle is
EX(f ;D) where D is an arbitrary (and unknown to the
learner) distribution over f0; 1gn ; the hypothesis h should
now have high accuracy with respect toD, i. e. with prob-
ability 1 � ı it must satisfy Prx2D[h(x) ¤ f (x)] � �: An-
other variant that has been considered is when the dis-
tribution D is assumed to be an unknown product dis-
tribution; such a distribution is defined by n parameters
0 � p1; : : : ; pn � 1, and a draw fromD is obtained by in-
dependently setting each bit xi to 1 with probability pi. Yet
another variant is to consider learning with the help of
amembership oracle: this is a “black-box” oracleMQ(f) for
f which, when queried on an input x 2 f0; 1gn , returns the
value of f (x): The model of uniform distribution learn-
ing with a membership oracle has been well studied, see
e. g. [4,11].

There are many ways to make precise the notion of
a “simple” Boolean function; one common approach is
to stipulate that the function be computed by a Boolean
circuit of some restricted form. A circuit of size s and
depth d consists of s AND and OR gates (of unbounded

fanin) in which the longest path from any input literal
x1; : : : ; xn; x1; : : : ; xn to the output node is of length d.
Note that a circuit of size s and depth 2 is simply a CNF for-
mula or DNF formula. The complexity class consisting of
those Boolean functions computed by poly(n)-size, O(1)-
depth circuits is known as nonuniform AC0.

Key Results

Positive Results

Linial et al. [12] showed that almost all of the “Fourier
weight” of any constant-depth circuit is on low-degree
Fourier coefficients:

Lemma 1 Let f : f0; 1gn ! f�1; 1g be a Boolean function
that is computed by a circuit of size s and depth d. Then for
any integer t � 0,

X
S�f1;:::;ng;jSj>t

f̂ (S)2 � 2s2�t
1/d /20:

(Hastad [3] has given a refined version of Lemma 1 with
slightly sharper bounds; see also [17] for a streamlined
proof.) They also showed that any Boolean function can
be well approximated by approximating its Fourier spec-
trum:

Lemma 2 Let f : f0; 1gn ! f�1; 1g be any Boolean
function and let g : f0; 1gn ! R be an arbitrary func-
tion such that

P
S	f1;:::;ng(f̂ (S) � ĝ(S))2 � �: Then

Prx2U [f (x) ¤ sign(g(x))] � �:

Using the above two results together with a procedure
that estimates all the “low-order” Fourier coefficients, they
obtained a quasipolynomial-time algorithm for learning
constant-depth circuits:

Theorem 3 There is an n(O(log(n/�)))d -time algorithm that
learns any poly(n)-size, depth-d Boolean circuit to accuracy
� with respect to the uniform distribution, using uniform
random examples only.

Furst et al. [2] extended this result to learning under
constant-bounded product distributions. A product dis-
tribution D is said to be constant-bounded if each of its
n parameters p1,� � � ,pn is bounded away from 0 and 1, i. e.
satisfies minfpi ; 1 � pig = 	(1):

Theorem 4 There is an n(O(log(n/�)))d -time algorithm that
learns any poly(n)-size, depth-d Boolean circuit to accu-
racy � given random examples drawn from any constant-
bounded product distribution.

By combining the Fourier arguments of Linial et al. with
hypothesis boosting, Jackson et al. [5] were able to extend

430 L Learning Constant-Depth Circuits

Theorem 3 to a broader class of circuits, namely constant-
depth AND/OR circuits that additionally contain (a lim-
ited number of) majority gates. A majority gate over r
Boolean inputs is a binary gate which outputs “true” if and
only if at least half of its r Boolean inputs are set to “true”.

Theorem 5 There is an nlog
O(1)(n/�)-time algorithm that

learns any poly(n)-size, constant-depth Boolean circuit that
contains polylog(n) many majority gates to accuracy � with
respect to the uniform distribution, using uniform random
examples only.

Negative Results

Kharitonov [7] showed that under a strong but plausible
cryptographic assumption, the algorithmic result of The-
orem 3 is essentially optimal. A Blum integer is an integer
N = P � Q where both P and Q are congruent to 3 mod-
ulo 4. Kharitonov proved that if the problem of factor-
ing a randomly chosen n-bit Blum integer is 2n� -hard for
some fixed � > 0, then any algorithm that (even weakly)
learns polynomial-size depth-d circuits must run in time
2log

˝(d) n , even if it is only required to learn under the
uniform distribution and can use a membership oracle.
This implies that there is no polynomial-time algorithm
for learning polynomial-size, depth-d circuits (for d larger
than some absolute constant).

Using a cryptographic construction of Naor and Rein-
gold [14], Jackson et al. [5] proved a related result
for circuits with majority gates. They showed that un-
der Kharitonov’s assumption, any algorithm that (even
weakly) learns depth-5 circuits consisting of logk n many
majority gates must run in time 2log

˝(k) n time, even if it is
only required to learn under the uniform distribution and
can use a membership oracle.

Applications

The technique of learning by approximating most of the
Fourier spectrum (Lemma 2 above) has found many ap-
plications in subsequent work on uniform distribution
learning. It is a crucial ingredient in the current state-
of-the-art algorithms for learning monotone DNF formu-
las [16], monotone decision trees [15], and intersections
of halfspaces [8] from uniform random examples only.
Combined with a membership-oracle based procedure for
identifying large Fourier coefficients, this technique is at
the heart of an algorithm for learning decision trees [11];
this algorithm in turn plays a crucial role in the cele-
brated polynomial-time algorithm of Jackson [4] for learn-
ing polynomial-size depth-2 circuits under the uniform
distribution.

The ideas of Linial et al. have also been applied
for the difficult problem of agnostic learning. In the
agnostic learning framework there is a joint distribu-
tion D over example-label pairs f0; 1gn � f�1; 1g; the
goal of an agnostic learning algorithm for a class C
of functions is to construct a hypothesis h such that
Pr(x;y)2D[h(x) ¤ y] � min f2C Pr(x;y)2D[f (x) ¤ y] + �.
Kalai et al. [6] gave agnostic learning algorithms for half-
spaces and related classes via an algorithm which may be
viewed as a generalization of Linial et al.’s algorithm to
a broader class of distributions.

Finally, there has been some applied work on learning
using Fourier representations as well [13].

Open Problems

Perhaps themost outstanding open question related to this
work is whether polynomial-size circuits of depth two –
i. e. DNF formulas – can be learned in polynomial time
from uniform random examples only. Blum [1] has of-
fered a cash prize for a solution to a restricted version of
this problem. A hardness result for learning DNF would
also be of great interest; recent work of Klivans and Sher-
stov [10] gives a hardness result for learning ANDs of ma-
jority gates, but hardness for DNF (ANDs of ORs) remains
an open question.

Another open question is whether the quasipolyno-
mial-time algorithms for learning constant-depth circuits
under uniform distributions and product distributions
can be extended to the general distribution-independent
model. Known results in complexity theory imply that
quasipolynomial-time distribution-independent learning
algorithms for constant-depth circuits would follow from
the existence of efficient linear threshold learning al-
gorithms with a sufficiently high level of tolerance to
“malicious” noise. Currently no nontrivial distribution-
independent algorithms are known for learning circuits of
depth 3; for depth-2 circuits the best known running time
in the distribution-independent setting is the 2Õ(n1/3)-time
algorithm of Klivans and Servedio [9].

A third direction for future work is to extend the re-
sults of [5] to a broader class of circuits. Can constant-
depth circuits augmented with MODp gates, or with
weighted majority gates, be learned in quasipolynomial
time? [5] discusses the limitations of current techniques
to address these extensions.

Cross References
� Cryptographic Hardness of Learning
� Learning DNF Formulas
� PAC Learning
� Statistical Query Learning

Learning DNF Formulas L 431

Recommended Reading

1. Blum, A.: Learning a function of r relevant variables (open
problem). In: Proceedings of the 16th Annual Conference on
Learning Theory, pp. 731–733, Washington, 24–27 August
2003

2. Furst, M., Jackson, J., Smith, S.: Improved learning of AC0 func-
tions. In: Proceedings of the Fourth AnnualWorkshop on Com-
putational Learning Theory, pp. 317–325, Santa Cruz, (1991)

3. Håstad, J.: A slight sharpening of LMN. J. Comput. Syst. Sci.
63(3), 498–508 (2001)

4. Jackson, J.: An efficientmembership-query algorithm for learn-
ing DNF with respect to the uniform distribution. J. Comput.
Syst. Sci. 55, 414–440 (1997)

5. Jackson, J., Klivans, A., Servedio, R.: Learnability beyond AC0. In:
Proceedings of the 34th ACM Symposium on Theory of Com-
puting, pp. 776–784, Montréal, 23–25 May 2002

6. Kalai, A., Klivans, A., Mansour, Y., Servedio, R.: Agnostically
learning halfspaces. In: Proceedings of the 46th IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 11–20,
Pittsburgh, PA, USA, 23–25 October 2005

7. Kharitonov, M.: Cryptographic hardness of distribution-
specific learning. In: Proceedings of the 25th Annual Sympo-
sium on Theory of Computing, pp. 372–381. (1993)

8. Klivans, A., O’Donnell, R., Servedio, R.: Learning intersections
and thresholds of halfspaces. J. Comput. Syst. Sci. 68(4), 808–
840 (2004)

9. Klivans, A., Servedio, R.: Learning DNF in time 2Õ(n
1/3) . J. Com-

put. Syst. Sci. 68(2), 303–318 (2004)
10. Klivans, A., Sherstov, A.: Cryptographic hardness results for

learning intersections of halfspaces. In: Proceedings of the
47th Annual Symposium on Foundations of Computer Sci-
ence, pp. 553–562, Berkeley, 22–24 October 2006

11. Kushilevitz, E., Mansour, Y.: Learning decision trees using the
Fourier spectrum. SIAM J. Comput. 22(6), 1331–1348 (1993)

12. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits,
Fourier transform and learnability. J. ACM 40(3), 607–620
(1993)

13. Mansour, Y., Sahar, S.: Implementation Issues in the Fourier
Transform Algorithm. Mach. Learn. 40(1), 5–33 (2000)

14. Naor, M., Reingold, O.: Number-theoretic constructions of effi-
cient pseudo-random functions. J. ACM 51(2), 231–262 (2004)

15. O’Donnell, R., Servedio, R.: Learning monotone decision trees
in polynomial time. In: Proceedings of the 21st Conference on
Computational Complexity (CCC), pp. 213–225, Prague, 16–20
July 2006

16. Servedio, R.: On learning monotone DNF under product distri-
butions. Inform Comput 193(1), 57–74 (2004)

17. Stefankovic, D.: Fourier transforms in computer science. Mas-
ters thesis, TR-2002-03, University of Chicago (2002)

Learning DNF Formulas
1997; Jackson

JEFFREY C. JACKSON
Department of Mathematics and Computer Science,
Duquesne University, Pittsburgh, PA, USA

Keywords and Synonyms

Sum of products notation; Learning disjunctive normal
form formulas (or expressions); Learning sums of prod-
ucts

ProblemDefinition

A Disjunctive Normal Form (DNF) expression is
a Boolean expression written as a disjunction of terms,
where each term is the conjunction of Boolean vari-
ables that may or may not be negated. For example,
(v1 ^ v2) _ (v2 ^ v3) is a two-term DNF expression over
three variables. DNF expressions occur frequently in dig-
ital circuit design, where DNF is often referred to as sum
of products notation. From a learning perspective, DNF
expressions are of interest because they provide a natural
representation for certain types of expert knowledge. For
example, the conditions under which complex tax rules
apply can often be readily represented as DNFs. Another
nice property of DNF expressions is their universality:
every n-bit Boolean function f : f0; 1gn ! f0; 1g can be
represented as a DNF expression F over at most n vari-
ables.

Informally, the problem to be addressed is the fol-
lowing. A learning algorithm is given access to an oracle
MEM(f) that, for some fixed integer n > 0, on an n-bit in-
put will return a 1-bit response. The output of the oracle
is determined by an n-bit Boolean function f that can be
represented by an s-term DNF expression F over n vari-
ables. All that is known about f and F is n. The algorithm’s
goal is to produce, with high probability over the random
choices it makes, an n-bit Boolean function h that agrees
with f on all but a small fraction of the 2n elements of
the domain of f and h. Furthermore, the algorithm must
run in time polynomial in n and s (and other parameters
given in the formal problem definition). The algorithm is
not required to output a DNF representation of the ap-
proximating function h, but hmust be computable in time
comparable to that needed to evaluate f . In particular, h(x)
should be computable in time polynomial in n and s for all
x 2 f0; 1gn .

In the following formal problem definition, Un repre-
sents the uniform distribution over f0; 1gn .

Problem 1 (UDNFL)
Input: Positive integer n; "; ı > 0; oracle MEM(f) for
f : f0; 1gn ! f0; 1g expressible as DNF with s terms over
n variables.
Output: With probability at least 1 � ı over the random
choices made by the algorithm, a function h : f0; 1gn !
f0; 1g (not necessarily a DNF expression) such that

432 L Learning DNF Formulas

Prx
Un [h(x) ¤ f (x)] < ". The algorithmmust run in time
polynomial in n, s, 1/", and 1/ı, and for all x 2 f0; 1gn, h(x)
must be computable in time polynomial in n and s.

Threshold of Parities (TOP) is another interesting univer-
sal representation for Boolean functions. For a and x in
f0; 1gn , the even parity function ea(x) returns 1 if the dot
product a � x is even and 0 otherwise. That is, the output
is 1 if the parity of the bits in x indexed by a is even and 0
otherwise. Similarly, define the odd parity function oa(x) to
return 1 if the parity of the bits in x indexed by a is odd and
0 otherwise. A parity function is either an even or an odd
parity function. Then a TOP representation of size s is de-
fined by a collection of s parity functions (p1; p2; : : : ; ps),
where pi is allowed to be the same as pj for i ¤ j (i. e., there
may be fewer than s distinct functions in the collection).
The value of a TOP F on input x is the majority value of
pi(x) over the s parity functions defining F (with value 0 in
the case of no majority).

Problem 2 (UTOPL)
Input: Positive integer n; "; ı > 0; oracle MEM(f) for
f : f0; 1gn ! f0; 1g expressible as TOP of size s over n vari-
ables.
Output: With probability at least 1 � ı over the random
choices made by the algorithm, a function h : f0; 1gn !
f0; 1g (not necessarily a TOP) such that Prx
Un [h(x) ¤
f (x)] < ". The algorithm must run in time polynomial in
n, s, 1/", and 1/ı, and for all x 2 f0; 1gn, h(x) must be com-
putable in time polynomial in n and s.

TOP and DNF representations of the same Boolean func-
tion f can be related as follows. For every f : f0; 1gn !
f0; 1g, if f can be represented by an s-termDNF expression
then there is a TOP representation of f of size O(ns2) [7].
On the other hand, a DNF of size 2n�1 is required to repre-
sent the parity function e1n () (even parity in which all bits
are relevant). So the DNF expression for a function is at
most polynomially more succinct than the optimal equiv-
alent TOP expression, whereas TOP expressions may be
exponentially more succinct than the optimal equivalent
DNF expressions.

From a learning viewpoint, this means that UTOPL is
a harder problem then UDNFL. This is because the only
difference between the problems is in how the size parame-
ter s is defined, with larger values of s allowing the learning
algorithm more time. Thus, since the DNF size of a func-
tion f is never much smaller than the TOP size of f and
may be much larger, the learning algorithm is effectively
allowed more time for DNF learning than it is for TOP
learning.

Another direction in which the DNF problem can nat-
urally be extended is to non-Boolean inputs. A DNF with

s terms can be viewed as a union of s subcubes of the
Boolean hypercube f0; 1gn , with the portion of the hyper-
cube covered by this union corresponding to the 1 val-
ues of the DNF. Similarly, for any fixed positive integer b,
a function f : f0; 1; : : : ; b � 1gn ! f0; 1g can be defined
as a union of rectangles over f0; 1; : : : ; b � 1gn , where
a rectangle is the set of all elements in a Cartesian productQn

i=1f`i ; `i + 1; : : : ; ui g, where for all i, 0 � `i � ui < b.
As in the Boolean case, the 1 values of f correspond exactly
to those inputs included in this union of rectangles. Such
a representation of f as a union of s rectangles will be called
a UBOX of size s. Defining Ub

n to be the uniform distribu-
tion over f0; 1; : : : ; b � 1gn , this gives rise to the following
problem:

Problem 3 (UUBOXL) Input: Positive integers n and b;
"; ı > 0; oracle MEM(f) for f : f0; 1; : : : ; b�1gn ! f0; 1g
expressible as UBOX of size s over n variables.

Output: With probability at least 1 � ı over the
random choices made by the algorithm, a function
h : f0; 1; : : : ; b � 1gn ! f0; 1g (not necessarily a UBOX)
such that Prx
Ub

n
[h(x) ¤ f (x)] < ". The algorithm must

run in time polynomial in n, s, 1/", and 1/ı, and for all
x 2 f0; 1gn, h(x) must be computable in time polynomial
in n and s (b is taken to be a constant).

Key Results

Theorem 1 There is an algorithm—the Harmonic
Sieve[7,9,10]—that solves both UDNFL and UTOPL.

The run time1 of the original version of the Harmonic
Sieve [7] is Õ(ns10/"12+c), where c is an arbitrarily small
positive constant and the Õ() notation is the same as big-
O notation except that logarithmic factors are suppressed
(in particular, the run-time dependence on 1/ı is loga-
rithmic). This bound was improved in [4] and [11] to
Õ(ns6/"2), and Feldman [6] has further improved the run
time to Õ(ns4/"). All of the improvements use the same
overall algorithmic structure as the Harmonic Sieve, but
some components of the structure are replaced with more
efficient approaches. The output h of the original Sieve is
a TOP, but this is not the case for the more efficient ver-
sions of the algorithm.

Learnability of TOP implies learnability of several
other classes that are, for purposes of uniform learning,
special cases of TOP [7]. This includes the class of those
functions that can be defined as a majority of arbitrary
(log n)-bit Boolean functions (size measure is the number

1See [4] for an explanation of an error in the time bound given
in [7]

Learning DNF Formulas L 433

of functions) and the class of those functions that can be
expressed as a parity-DNF, that is, as an OR of ANDs of
parity functions (size measure is the number of ANDs).

Theorem 2 A variation of the Harmonic Sieve solves
UUBOXL.

An algorithm for UUBOXL is given in [7].

Applications

An extended version of the Harmonic Sieve can tolerate
false responses by the oracle MEM(f). In particular, in
the uniform persistent classification noise learning model,
a constant noise rate 0 � � < 1/2 is fixed and an oracle
MEM�(f) is defined as follows: if the query x has not been
presented to the oracle previously, thenMEM�(f) returns
f (x) with probability 1� � and the complement f (x) with
probability �. If x has been presented to the oracle previ-
ously, then it returns the same response that it did on the
first query with x. Jackson et al. [8] showed how to mod-
ify the Harmonic Sieve to efficiently learn DNF (and TOP,
although the referenced paper does not state this) in the
uniform persistent classification noise model.

Bshouty and Jackson [3] defined a uniform quantum
example oracle QEX(f ;Un) that, for a fixed unknown
function f : f0; 1gn ! f0; 1g, produces a quantum super-
position of the 2n labeled-example pairs hx; f (x)i, one pair
for each x 2 f0; 1gn . All pairs have the same amplitude,
2�n/2. Bshouty and Jackson then showed that such an ora-
cle QEX(f ;Un) cannot simulate the oracle MEM(f) used
by the Harmonic Sieve to learn DNF and TOP, and there-
fore is a weaker form of oracle. Nevertheless, building on
the Harmonic Sieve, they gave an efficient quantum algo-
rithm for learning DNF and TOP from a uniform quan-
tum example oracle.

Bshouty et al. [5] defined a model of learning from
uniform random walks over f0; 1gn . Unlike the oracle
MEM(f), where the learning algorithm actively selects ex-
amples to be queried, in the random walk model the
learner passively accepts random examples from the ran-
dom walk oracle. Building in part on the Harmonic Sieve,
Bshouty et al. showed that DNF is efficiently learnable in
the uniform random walk model. In addition, for fixed
0 � � � 1, Bshouty et al. defined a �-Noise Sensitivity ex-
ample oracle NS � EX�(f) that, when invoked, selects
an input x 2 f0; 1gn uniformly at random, forms an in-
put y by flipping each bit of x independently at ran-
dom with probability 1

2 (1 � �), and returns the quadru-
ple hx; f (x); y; f (y)i. This oracle is shown to be no more
powerful than the uniform random walk oracle, and an
algorithm based in part on the Sieve is presented that,

for any constant � 2 [0; 1], efficiently learns DNF using
NS � EX�(f). However, the question of whether or not
TOP is efficiently learnable in either of these models is left
open.

Atici and Servedio [1] have given a generalized version
of the Harmonic Sieve that can, among other things, learn
an interesting subset of the class of unions of rectangles
over f0; 1; : : : ; b � 1gn for non-constant b.

Open Problems

A key open problem involves relaxing the power of the
oracle used. For instance, given a function f : f0; 1gn !
f0; 1g, a uniform example oracle for f EX(f ;Un) is an or-
acle that, on every query, randomly selects an input x ac-
cording to Un and returns the value f (x). If the definition
of UDNFL is changed so that EX(f ;Un) is provided rather
than MEM(f), is UDNFL still solvable? There is at least
some reason to believe that the answer is no (see, e. g., [2]).
The apparently simpler question of whether or not the
class ofmonotone DNF expressions (DNF expressions with
no negated variables) is efficiently uniform learnable from
an example oracle is also still open, and there is less rea-
son to doubt that an algorithm solving this problem will
be discovered.

Cross References

� Learning Constant-Depth Circuits
� Learning Heavy Fourier Coefficients of Boolean

Functions
� PAC Learning

Recommended Reading
1. Atici, A., Servedio, R.A.: Learning unions of !(1)-dimensional

rectangles. In: Proceedings of 17th Algorithmic Learning The-
ory Conference, pp. 32–47. Springer, New York (2006)

2. Blum, A., Furst, M., Jackson, J., Kearns, M., Mansour, Y., Rudich,
S.: Weakly learning DNF and characterizing statistical query
learning using Fourier analysis. In: Proceedings of the 26th An-
nual ACM Symposium on Theory of Computing, pp. 253–262.
Association for computing Machinery, New York (1994)

3. Bshouty, N.H., Jackson, J.C.: Learning DNF over the uniformdis-
tribution using a quantum example oracle. SIAM J. Comput.
28, 1136–1153 (1999)

4. Bshouty, N.H., Jackson, J.C., Tamon, C.: More efficient PAC-
learning of DNF with membership queries under the uniform
distribution. J. Comput. Syst. Sci. 68, 205–234 (2004)

5. Bshouty, N.H., Mossel, E., O’Donnell, R., Servedio, R.A.: Learn-
ing DNF from random walks. J. Comput. Syst. Sci. 71, 250–265
(2005)

6. Feldman, V.: On attribute efficient and non-adaptive learning
of parities and DNF expressions. In: 18th Annual Conference
on Learning Theory, pp. 576–590. Springer-Verlag, Berlin Hei-
delberg (2005)

434 L Learning Heavy Fourier Coefficients of Boolean Functions

7. Jackson, J.: An efficientmembership-query algorithm for learn-
ing DNF with respect to the uniform distribution. J. Comput.
Syst. Sci. 55, 414–440 (1997)

8. Jackson, J., Shamir, E., Shwartzman, C.: Learning with queries
corrupted by classification noise. Discret. Appl. Math. 92, 157–
175 (1999)

9. Jackson, J.C.: An efficient membership-query algorithm for
learning DNF with respect to the uniform distribution. In:
35th Annual Symposium on Foundations of Computer Sci-
ence, pp. 42–53. IEEE Computer Society Press, Los Alamitos
(1994)

10. Jackson, J.C.: The Harmonic Sieve: A Novel Application of
Fourier Analysis to Machine Learning Theory and Practice.
Ph. D. thesis, Carnegie Mellon University (1995)

11. Klivans, A.R., Servedio, R.A.: Boosting and hard-core set con-
struction. Mach. Learn. 51, 217–238 (2003)

Learning Heavy Fourier Coefficients
of Boolean Functions
1989; Goldreich, Levin

LUCA TREVISAN
Department of Computer Science, University
of California at Berkeley, Berkeley, CA, USA

Keywords and Synonyms

Error-control codes, Reed–Muller code

ProblemDefinition

The Hamming distance dH(y, z) between two binary
strings y and z of the same length is the number of entries
in which y and z disagree. A binary error-correcting code
of minimumdistance d is a mapping C : f0; 1gk ! f0; 1gn

such that for every two distinct inputs x; x0 2 f0; 1gk , the
encodings C(x) and C(x0) have Hamming distance at least
d. Error-correcting codes are employed to transmit infor-
mation over noisy channels. If a sender transmits an en-
coding C(x) of a message x via a noisy channel, and the
recipient receives a corrupt bit string y ¤ C(x), then, pro-
vided that y differs from C(x) in at most (d � 1)/2 loca-
tions, the recipient can recover y from C(x). The recipi-
ent can do so by searching for the string x that minimizes
the Hamming distance between C(x) and y: there can be
no other string x0 such that C(x0) has Hamming distance
(d � 1)/2 or smaller from y, otherwise C(x) and C(x0)
would be within Hamming distance d � 1 or smaller, con-
tradicting the above definition. The problem of recovering
the message x from the corrupted encoding y is the unique
decoding problem for the error-correcting code C. For the
above-described scheme to be feasible, the decoding prob-

lem must be solvable via an efficient algorithm. These no-
tions are due to Hamming [4].

Suppose that C is a code of minimum distance d, and
such that there are pairs of encodings C(x), C(x0) whose
distance is exactly d. Furthermore, suppose that a com-
munication channel is used that could make a number
of errors larger than (d � 1)/2. Then, if the sender trans-
mits an encoded message using C, it is no longer pos-
sible for the recipient to uniquely reconstruct the mes-
sage. If the sender, for example, transmits C(x), and the
recipient receives a string y that is at distance d/2 from
C(x) and at distance d/2 from C(x0), then, from the per-
spective of the recipient, it is equally likely that the orig-
inal message was x or x0. If the recipient knows an upper
bound e on the number of entries that the channel has cor-
rupted, then, given the received string y, the recipient can
at least compute the list of all strings x such that C(x) and
y differ in at most e locations. An error-correcting code
C : f0; 1gk ! f0; 1gn is (e, L)-list decodable if, for every
string y 2 f0; 1gn , the set fx 2 f0; 1gk : dH(C(x); y) � eg
has cardinality at most L. The problem of reconstruct-
ing the list given y and e is the list-decoding problem for
the code C. Again, one is interested in efficient algorithms
for this problem. The notion of list-decoding is due to
Elias [1].

A code C : f0; 1gk ! f0; 1gn is aHadamard code if ev-
ery two encodings C(x), C(x0) differ in precisely n/2 lo-
cations. In the Computer Science literature, it is common
to use the term Hadamard code for a specific construc-
tion (the Reed–Muller code of order 2) that satisfies the
above property. For a string a 2 f0; 1gk , define the func-
tion `a : f0; 1gk ! f0; 1g as

`a(x) :=
X
i

ai xi mod 2 :

Observe that, for a ¤ b, the two functions `a and `b
differ on precisely (2k)/2 inputs. For n = 2k , the code
H : f0; 1gk ! f0; 1gn maps a message a 2 f0; 1gk into the
n-bit string which is the truth-table of the function `a. That
is, if b1; : : : ; bn is an enumeration of the n = 2k elements
of f0; 1gk , and a 2 f0; 1gk is a message, then the encoding
H(a) is the n-bit string that contains the value `a(bi) in the
i-th entry. Note that any two encodings H(x), H(x0) dif-
fer in precisely n/2 entries, and so what was just defined is
a Hadamard code. From now on, the termHadamard code
will refer exclusively to this construction.

It is known that the Hadamard code H : f0; 1gk !
f0; 1g2k is (12 � �;

1
4�2)-list decodable for every � > 0. The

Goldreich–Levin results provide efficient list-decoding al-
gorithm.

Learning Heavy Fourier Coefficients of Boolean Functions L 435

The following definition of the Fourier spectrum of
a boolean function will be needed later to state an ap-
plication of the Goldreich–Levin results to computa-
tional learning theory. For a string a 2 f0; 1gk , define the
function �a : f0; 1gk ! f�1;+1g as �a(x) := (�1)`a (x).
Equivalently, �a(x) = (�1)

P
i a i x i . For two functions

f ; g : f0; 1gk ! R, define their inner product as

h f ; gi :=
1
2k
X
x

f (x) � g(x) :

Then it is easy to see that, for every a ¤ b, h�a; �bi = 0,
and h�a; �ai = 1. This means that the functions
f�aga2f0;1gk form an orthonormal basis for the set of
all functions f : f0; 1gk ! R. In particular, every such
function f can be written as a linear combination

f (x) =
X
a

f̂ (a)�a(x)

where the coefficients f̂ (a) satisfy f̂ (a) = h f ; �ai. The co-
efficients f̂ (a) are called the Fourier coefficients of the func-
tion f .

Key Results

Theorem 1 There is a randomized algorithm GL that,
given in input an integer k and a parameter � > 0, and
given oracle access to a function f : f0; 1gk ! f0; 1g, runs
in time polynomial in 1/� and in k and outputs, with high
probability over its internal coin tosses, a set S
 f0; 1gk

that contains all the strings a 2 f0; 1gk such that `a and f
agree on at least a 1/2 + � fraction of inputs.

Theorem 1 is proved by Goldreich and Levin [3]. The re-
sult can be seen as a list-decoding for the Hadamard code
H : f0; 1gk ! f0; 1g2k ; remarkably, the algorithm runs in
time polynomial in k, which is poly-logarithmic in the
length of the given corrupted encoding.

Theorem 2 There is a randomized algorithm KM that
given in input an integer k and parameters �; ı > 0, and
given oracle access to a function f : f0; 1gk ! f0; 1g, runs
in time polynomial in 1/�, in 1/ı, and in k and outputs a set
S
 f0; 1gk and a value g(a) for each a 2 S.

With high probability over the internal coin tosses of the
algorithm,
1 S contains all the strings a 2 f0; 1gk such that
j f̂ (a)j � �, and

2 For every a 2 S, j f̂ (a)� g(a)j � ı.

Theorem 2 is proved by Kushilevitz and Mansour [5]; it is
an easy consequence of the Goldreich–Levin algorithm.

Applications

There are two key applications of the Goldreich–Levin al-
gorithm: one is to cryptography and the other is to com-
putational learning theory.

Application in Cryptography

In cryptography, a one-way permutation is a fam-
ily of functions fpngn�1 such that: (i) for every n,
pn : f0; 1gn ! f0; 1gn is bijective, (ii) there is a polyno-
mial time algorithm that, given x 2 f0; 1gn , computes
pn(x), and (iii) for every polynomial time algorithm A and
polynomial q, and for every sufficiently large n,

Px
f0;1gn [A(pn(x)) = x] �
1

q(n)
:

That is, even though computing pn(x) given x is doable
in polynomial time, the task of computing x given pn(x)
is intractable. A hard core predicate for a one-way per-
mutation fpng is a family of functions fBngn�1 such that:
(i) for every n, Bn : f0; 1gn ! f0; 1g, (ii) there is a poly-
nomial time algorithm that, given x 2 f0; 1gn , computes
Bn(x), and (iii) for every polynomial time algorithm A and
polynomial q, and for every sufficiently large n,

Px
f0;1gn [A(pn(x)) = Bn(x)] �
1
2
+

1
q(n)

:

That is, even though computing Bn(x) given x is doable in
polynomial time, the task of computing Bn(x) given pn(x)
is intractable.

Goldreich and Levin [3] use their algorithm to show
that every one-way permutation has a hard-core predicate,
as stated in the next theorem.

Theorem 3 Let fpng be a one-way permutation; define
fp0ng such that p02n(x; y) := pn(x); y and let B2n(x; y) :=P

i xi yi mod 2. (For odd indices, let p02n+1(z; b) := p02n(z)
and B2n+1(z; b) := B2n(z).)

Then fp0ng is a one-way permutation and fBng is
a hard-core predicate for fp0ng.

This result is used in efficient constructions of pseudoran-
dom generators, pseudorandom functions, and private-
key encryption schemes based on one-way permutations.
The interested reader is referred to Chapter 3 in Goldre-
ich’s monograph [2] for more details.

There are also related applications in computational
complexity theory, especially in the study of average-case
complexity. See [7] for an overview.

436 L Learning with Malicious Noise

Application in Computational Learning Theory

Loosely speaking, in computational learning theory one
is given an unknown function f : f0; 1gk ! f0; 1g and
one wants to compute, via an efficient randomized algo-
rithm, a representation of a function g : f0; 1gk ! f0; 1g
that agrees with f on most inputs. In the PAC learning
model, one has access to f only via randomly sampled pairs
(x; f (x)); in the model of learning with queries, instead,
one can evaluate f at points of one’s choice. Kushilevitz
and Mansour [5] suggest the following algorithm: using
the algorithm of Theorem 2, find a set S of large coeffi-
cients and approximations g(a) of the coefficients f̂ (a) for
a 2 S. Then define the function g(x) =

P
a2S g(a)�a(x).

If the error caused by the absence of the smaller coeffi-
cients and the imprecision in the larger coefficient is not
too large, g and f will agree on most inputs. (A tech-
nical point is that g as defined above is not necessarily
a boolean function, but it can be easily “rounded” to be
boolean.) Kushilevitz and Mansour show that such an ap-
proach works well for the class of functions f for whichP

a j f̂ (a)j is bounded, and they observe that functions of
small decision tree complexity fall into this class. In partic-
ular, they derive the following result.

Theorem 4 There is a randomized algorithm that, given
in input parameters k, m, " and ı, and given oracle ac-
cess to a function f : f0; 1gk ! f0; 1g of decision tree com-
plexity at most m, runs in time polynomial in k, m, 1/�
and log 1/ı and, with probability at least 1 � ı over its in-
ternal coin tosses, outputs a circuit computing a function
g : f0; 1gk ! f0; 1g that agrees with f on at least a 1 � �
fraction of inputs.

Another application of the Kushilevitz–Mansour tech-
nique is due to Linial, Mansour, and Nisan [6].

Cross-References

� Decoding Reed–Solomon Codes

Recommended Reading
1. Elias, P.: List decoding for noisy channels. Technical Report 335,

Research Laboratory of Electronics, MIT, Campridge, MA, USA
(1957)

2. Goldreich, O.: The Foundations of Cryptography – Volume 1.
Cambridge University Press, Campridge, UK (2001)

3. Goldreich, O., Levin, L.: A hard-core predicate for all one-way
functions. In: Proceedings of the 21st ACM Symposium on The-
ory of Computing, pp. 25–32 Seattle, 14–17 May 1989

4. Hamming, R.: Error detecting and error correcting codes. Bell
Syst. Tech. J. 29, 147–160 (1950)

5. Kushilevitz, E., Mansour, Y.: Learning decision trees using the
fourier spectrum. SIAM J. Comp. 22(6), 1331–1348 (1993)

6. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, fourier
transform and learnability. J. ACM 40(3), 607–620 (1993)

7. Trevisan, L.: Some applications of coding theory in computa-
tional complexity. Quaderni Matematica 13, 347–424 (2004)
arXiv:cs.CC/0409044

Learning withMalicious Noise
1993; Kearns, Li

PETER AUER
Institute for Computer Science, University of Leoben,
Leoben, Austria

ProblemDefinition

This problem is concerned with PAC learning of concept
classes when training examples are effected by malicious
errors. The PAC (probably approximately correct) model
of learning (also known as the distribution-free model
of learning) was introduced by Valiant [11]. This model
makes the idealized assumption that error-free training
examples are generated from the same distribution which
is then used to evaluate the learned hypothesis. In many
environments, however, there is some chance that an erro-
neous example is given to the learning algorithm. The ma-
licious noise model – again introduced by Valiant [12] –
extends the PAC model by allowing example errors of any
kind: it makes no assumptions on the nature of the er-
rors that occur. In this sense the malicious noise model
is a worst-case model of errors, in which errors may be
generated by an adversary whose goal is to foil the learn-
ing algorithm. Kearns and Li [7,8] study the maximal ma-
licious error rate such that learning is still possible. They
also provide a canonical method to transform any stan-
dard learning algorithm into an algorithm which is robust
against malicious noise.

Notations

Let X be a set of instances. The goal of a learning algo-
rithm is to infer an unknown subset C
 X of instances
which exhibit a certain property. Such subsets are called
concepts. It is known to the learning algorithm that the
correct concept C is from a concept class C
 2X , C 2 C.
Let C(x) = 1 if x 2 C and C(x) = 0 if x 62 C. As input the
learning algorithm receives an accuracy parameter " > 0,
a confidence parameter ı > 0, and themalicious noise rate
ˇ � 0. The learning algorithm may request a sample of
labeled instances S = h(x1; `1); : : : ; (xm ; `m)i, xi 2 X and
`i 2 f0; 1g, and produces a hypothesis H
 X. Let D be
the unknown distribution of instances in X. Learning is

Learning with Malicious Noise L 437

successful if H misclassifies an example with probability
less than ", errD(C;H) := D fx 2 X : C(x) ¤ H(x)g < ".
A learning algorithm is requested to be successful with
probability 1� ı. The error of a hypothesis H in re-
spect to a sample S of labeled instances is defined as
err(S;H) := jf(x; `) 2 S : H(x) ¤ `gj/jSj.

The VC-dimension VC(C) of a concept class C
is the maximal number of instances x1; : : : ; xd such
that f(C(x1); : : : ;C(xd)) : C 2 Cg = f0; 1gd . The VC-
dimension is a measure for the difficulty to learn concept
class C [3].

To investigate the computational complexity of learn-
ing algorithms, sequences of concept classes with increas-
ing complexity (Xn ;Cn)n = h(X1;C1); (X2;C2); : : : i are
considered. In this case the learning algorithm receives
also a complexity parameter n as input.

Generation of Examples

In the malicious noise model the labeled instances (xi ; `i)
are generated independently from each other by the fol-
lowing random process.

(a) Correct examples: with probability 1 � ˇ an instance
xi is drawn from distribution D and labeled by the
correct concept C, `i = C(xi).

(b) Noisy examples: with probability ˇ an arbitrary exam-
ple (xi ; `i) is generated, possibly by an adversary.

Problem 1 (Malicious Noise Learning of (X;C))
INPUT: Reals "; ı > 0, ˇ � 0.
OUTPUT: A hypothesis H
 X.
For any distribution D on X and any concept C 2 C,
the algorithm needs to produce with probability 1 � ı
a hypothesis H such that errD(C;H) < ". The proba-
bility 1 � ı is taken in respect to the random sample
(x1; `1); : : : ; (xm ; `m) requested by the algorithm. The ex-
amples (xi ; `i) are generated as defined above.

Problem 2 (Polynomial Malicious Noise Learning of
(Xn;Cn)n)
INPUT: Reals "; ı > 0, ˇ � 0, integer n � 1.
OUTPUT: A hypothesis H
 Xn.
For any distributionD on Xn and any concept C 2 Cn, the
algorithm needs to produce with probability 1 � ı a hypoth-
esis H such that errD(C;H) < ". The computational com-
plexity of the algorithm must be bounded by a polynomial
in 1/", 1/ı, and n.

Key Results

Theorem 1 ([8]) If there are concepts C1;C2 2 C
and instances x1; x2 2 X such that C1(x1) = C1(x2) and

C2(x1) ¤ C2(x2), then no algorithm learns C with mali-
cious noise rate ˇ � "/(1 + ").

Theorem 2 Let � > 0 and d = VC(C). For a suit-
able constant �, any algorithm which requests a sam-
ple S of m � �("d log 1/(�ı))/�2 labeled examples and
returns a hypothesis H 2 C which minimizes err(S;H),
learns the concept class C with malicious noise rate
ˇ � "/(1 + ")��.

Lower bounds on the number of examples necessary
for learning with malicious noise were derived by Cesa-
Bianchi et al. [5].

Theorem 3 ([5]) Let� > 0 and d = VC(C) � 3. There is
a constant �, such that any algorithm which learns C with
malicious noise rate ˇ = "/(1 + ")�� by requesting a sam-
ple and returning a hypothesis H 2 C which minimizes
err(S;H), needs a sample of size at least m � �"d/�2.

A general conversion of a learning algorithm for the noise-
freemodel into an algorithm for themalicious noise model
was given by Kearns and Li.

Theorem 4 ([8]) Let A be a (polynomial-time) learning
algorithm which learns concept classes Cn from m("; ı; n)
noise-free examples, i. e. ˇ = 0. Then A can be converted
into a (polynomial-time) learning algorithm for Cn for any
malicious noise rate ˇ � logm("/8; 1/2; n)/m("/8; 1/2; n).

The next theorem relates learning with malicious noise to
a type of combinatorial optimization problems.

Theorem 5 ([8]) Let r � 1 and ˛ > 1.
1. Let A be an algorithm which, for any sample S,

returns a hypothesis H 2 C with err(S;H) � r �
minC2C err(S;C). Then A learns concept class C for
any malicious noise rate ˇ � "/(˛(1 + ")r) from a suf-
ficiently large sample.

2. LetA be a polynomial-time learning algorithm for con-
cept classes Cn which tolerates a malicious noise rate
ˇ = "/r. Then A can be converted into a polynomial-
time algorithm which for any sample S, with high
probability returns a hypothesis H 2 Cn such that
err(S;H) � ˛r �minC2C err(S;C).

The computational hardness of several such related com-
binatorial optimization problems was shown by Ben-
David, Eiron, and Long [2].

Applications

Several extensions of the learning model with malicious
noise have been proposed, in particular the agnostic learn-
ing model [9] and the statistical query model [6]. Follow-

438 L Learning Significant Fourier Coefficients over Finite Abelian Groups

ing relations between thesemodels and themalicious noise
model have been established.

Theorem 6 ([9]) If concept class C is polynomial-time
learnable in the agnostic model, then C is polynomial-time
learnable with any malicious noise rate ˇ � "/2.

Theorem 7 ([6]) If C is learnable from (relative error)
statistical queries, then C is learnable with any malicious
noise rate ˇ � "/ logp(1/") for a suitable large p indepen-
dent of C.
Another learning model related to the malicious noise
model is learning with nasty noise [4]. In this model exam-
ples effected by malicious noise are not chosen at random
with probability ˇ, but an adversary might manipulate an
arbitrary fraction of ˇm examples out of a given sample of
size m. The malicious noise model was also considered in
the context of on-line learning [1] and boosting [10].

Cross References

� Boosting Textual Compression
� PAC Learning
� Perceptron Algorithm
� Statistical Query Learning

Recommended Reading
1. Auer, P., Cesa-Bianchi, N.: On-line learningwithmalicious noise

and the closure algorithm. Ann. Math. Artif. Intell. 23, 83–99
(1998)

2. Ben-David, S., Eiron, N., Long, P.: On the difficulty of approxi-
mately maximizing agreements. J. CSS 66, 496–514 (2003)

3. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Learn-
ability and the Vapnik-Chervonenkis dimension. J. ACM 36,
929–965 (1989)

4. Bshouty, N., Eiron, N., Kushilevitz, E.: PAC learning with nasty
noise. TCS 288, 255–275 (2002)

5. Cesa-Bianchi, N., Dichterman, E., Fischer, P., Shamir, E., Simon,
H.U.: Sample-efficient strategies for learning in the presence of
noise. J. ACM 46, 684–719 (1999)

6. Aslam, J.A., Decatur, S.E.: Specification and simulation of statis-
tical query algorithms for efficiency and noise tolerance. J. CSS
56, 191–208 (1998)

7. Kearns, M., Li, M.: Learning in the presence of malicious errors.
In: Proc. 20th ACM Symp. Theory of Computing, pp. 267–280,
Chicago, 2–4 May 1988

8. Kearns, M., Li, M.: Learning in the presence of malicious errors.
SIAM J. Comput. 22, 807–837 (1993)

9. Kearns, M., Schapire, R., Sellie, L.: Toward efficient agnostic
learning. Mach. Learn. 17, 115–141 (1994)

10. Servedio, R.A.: Smooth boosting and learning with malicious
noise. JMLR 4, 633–648 (2003)

11. Valiant, L.: A theory of the learnable. C. ACM 27, 1134–1142
(1984)

12. Valiant, L.: Learning disjunctions of conjunctions. In: Proc. 9th
Int. Joint Conference on Artificial Intelligence, pp. 560–566, Los
Angeles, August 1985

Learning Significant Fourier
Coefficients over Finite Abelian
Groups
2003; Akavia, Goldwasser, Safra

ADI AKAVIA
Department of Electrical Engineering and Computer
Science, MIT, Cambridge, MA, USA

Keywords and Synonyms
Learning heavy fourier coefficients; Finding heavy fourier
coefficients

ProblemDefinition
Fourier transform is among the most widely used tools
in computer science. Computing the Fourier transform
of a signal of length N may be done in time 	(N logN)
using the Fast Fourier Transform (FFT) algorithm. This
time bound clearly cannot be improved below 	(N), be-
cause the output itself is of length N. Nonetheless, it turns
out that in many applications it suffices to find only the
significant Fourier coefficients, i. e., Fourier coefficients oc-
cupying, say, at least 1% of the energy of the signal. This
motivates the problem discussed in this entry: the prob-
lem of efficiently finding and approximating the signifi-
cant Fourier coefficients of a given signal (SFT, in short).
A naive solution for SFT is to first compute the entire
Fourier transform of the given signal and then to output
only the significant Fourier coefficients; thus yielding no
complexity improvement over algorithms computing the
entire Fourier transform. In contrast, SFT can be solved
far more efficiently in running time e	(logN) and while
reading at most e	(log N) out of the N signal’s entries [2].
This fast algorithm for SFT opens the way to applications
taken from diverse areas including computational learn-
ing, error correcting codes, cryptography, and algorithms.

It is now possible to formally define the SFT
problem, restricting our attention to discrete signals.
Use functional notation where a signal is a function
f : G ! C over a finite Abelian group G, its energy is

k f k22
def= 1/jGj

P
x2G j f (x)j

2, and its maximal amplitude

is k f k1
def= maxfj f (x)j jx 2 Gg.1 For ease of presentation

1For readers more accustomed to vector notation, the au-
thors remark that there is a simple correspondence between vec-
tor and functional notation. For example, a one-dimensional sig-
nal (v1; : : : ; vN) 2 CN corresponds to the function f : ZN ! C
defined by f (i) = vi for all i = 1; : : : ;N . Likewise, a two-
dimensional signal M 2 CN1�N2 corresponds to the function
f : ZN1 �ZN2 ! C defined by f (i; j) = Mi j for all i = 1; : : : ;N1
and j = 1; : : : ;N2.

Learning Significant Fourier Coefficients over Finite Abelian Groups L 439

assume without loss of generality that G = ZN1 � ZN2 �

� � ��ZNk for N1; : : : ;Nk 2 Z+ (i. e., positive integers), and
for ZN is the additive group of integers modulo N.

The Fourier transform of f is the function bf : G ! C
defined for each ˛ = (˛1; : : : ; ˛k) 2 G by

bf (˛) def=
1
jGj

X
(x1;:::;xk)2G

2
4 f (x1; : : : ; xk)

kY
j=1

!
˛ jx j
N j

3
5 ;

where !N j = exp (i2
/Nj) is a primitive root of unity
of order Nj. For any ˛ 2 G, val˛ 2 C and �; " 2 [0; 1],
say that ˛ is a �-significant Fourier coefficient iff
bj f (˛)j2 � �k f k22, and say that val˛ is an "-approximation
forbf (˛) iff jval˛ �bf (˛)j < ".
Problem 1 (SFT)
INPUT: Integers N1; : : : ;Nk � 2 specifying the group
G = ZN1 � � � � � ZNk , a threshold � 2 (0; 1), an ap-
proximation parameter " 2 (0; 1), and oracle access2 to
f : G ! C.
OUTPUT: A list of all �-significant Fourier coefficients of f
along with "-approximations for them.

Key Results

The key result of this entry is an algorithm solving the SFT
problem which is much faster than algorithms for com-
puting the entire Fourier transform. For example, for f
a Boolean function over ZN , the running time of this al-
gorithm is logN � pol y(log logN; 1/�; 1/"), in contrast to
the 	(N logN) running time of the FFT algorithm. This
algorithm is named the SFT algorithm.

Theorem 1 (SFT algorithm [2]) There is an algo-
rithm solving the SFT problem with running time log jGj �
poly(log log jGj; k f k1/k f k2; 1/�; 1/") for jGj =

Qk
j=1 Nj

the cardinality of G.

Remarks
1. The above result extends to functions f over any finite

Abelian group G, as long as the algorithm is given a de-
scription of G by its generators and their orders [2].

2. The SFT algorithm reads at most log jGj �
poly(log log jGj; k f k1/k f k2; 1/�; 1/") out of the jGj
values of the signal.

3. The SFT algorithm is non adaptive, that is, ora-
cle queries to f are independent of the algorithm’s
progress.

2Say that an algorithm is given oracle access to a function f overG,
if it can request and receive the value f (x) for any x 2 G in unit time.

4. The SFT algorithm is a probabilistic algorithm hav-
ing a small error probability, where probability is taken
over the internal coin tosses of the algorithm. The error
probability can be made arbitrarily small by standard
amplification techniques.

The SFT algorithm follows a line of works solving
the SFT problem for restricted function classes. Goldre-
ich and Levin [9] gave an algorithm for Boolean func-
tions over the group Zk

2 = f0; 1gk . The running time of
their algorithm is polynomial in k; 1/� and 1/". Man-
sour [10] gave an algorithm for complex functions over
groups G = ZN1 � � � � � ZNk provided that N1; : : : ;Nk
are powers of two. The running time of his algo-
rithm is polynomial in log jGj; log(max˛2G jbf (˛)j); 1/�
and 1/". Gilbert et al. [6] gave an algorithm for com-
plex functions over the group ZN for any positive inte-
ger N. The running time of their algorithm is polyno-
mial in logN; log(maxx2ZN f (x)/minx2ZN f (x)); 1/� and
1/". Akavia et al. [2] gave an algorithm for complex func-
tions over any finite Abelian group. The latter [2] im-
proves on [6] evenwhen restricted to functions overZN in
achieving logN � pol y(log logN) rather than pol y(logN)
dependency on N. Subsequent works [7] improved the de-
pendency of [6] on � and ".

Applications

Next, the paper surveys applications of the SFT algo-
rithm [2] in the areas of computational learning theory,
coding theory, cryptography, and algorithms.

Applications in Computational Learning Theory

A common task in computational learning is to find
a hypothesis h approximating a function f , when given
only samples of the function f . Samples may be given
in a variety of forms, e. g., via oracle access to f . We
consider the following variant of this learning problem:
f and h are complex functions over a finite Abelian
group G = ZN1 � � � � � ZNk , the goal is to find h such that
k f � hk22 � �k f k

2
2 for � > 0 an approximation parame-

ter, and samples of f are given via oracle access.
A straightforward application of the SFT algorithm

gives an efficient solution to the above learning prob-
lem, provided that there is a small set

 G s.t.P
˛2�

bj f (˛)j2 > (1 � � /3)k f k22. The learning algorithm
operates as follows. It first runs the SFT algorithm to
find all ˛ = (˛1; : : : ; ˛k) 2 G that are � /j
 j-significant
Fourier coefficients of f along with their � /j
 jk f k1-

440 L Learning Significant Fourier Coefficients over Finite Abelian Groups

approximations val˛, and then returns the hypothesis

h(x1; : : : ; xk)
def=

X
˛ is� /j� j�significant

val˛ �
kY
j=1

!
˛ jx j
N j

:

This hypothesis h satisfies that k f � hk22 � �k f k
2
2. The

running time of this learning algorithm and the number
of oracle queries it makes is polynomially bounded by
log jGj, k f k1/k f k2, j
 jk f k1/� .

Theorem 2 Let f : G ! C be a function over G =
ZN1 � � � � � ZNk , and � > 0 an approximation
parameter. Denote t = minfj
 j j

G s.t.

P
˛2� j

bf (˛)j2
> (1 � � /3)k f k22g. There is an algorithm that given
N1; : : : ;Nk, � , and oracle access to f , outputs a
(short) description of h : G ! C s.t. k f � hk22 <

�k f k22. The running time of this algorithm is log jGj �
pol y(log log jGj; k f k1/k f k2; tk f k1/�).

More examples of function classes that can be efficiently
learned using our SFT algorithm are given in [3].

Applications in Coding Theory

Error correcting codes encode messages in a way that al-
lows decoding, that is, recovery of the original message,
even in the presence of noise. When the noise is very high,
unique decoding may be infeasible, nevertheless it may
still be possible to list decode, that is, to find a short list of
messages containing the original message. Codes equipped
with an efficient list decoding algorithm have found many
applications (see [11] for a survey).

Formally, a binary code is a subset C
 f0; 1g�
of codewords each encoding some message. Denote
by CN;x 2 f0; 1gN a codeword of length N encoding
a message x. The normalized Hamming distance be-
tween a codeword CN;x and a received word w 2 f0; 1gN

is �(CN;x ;w)
def= 1/Njfi 2 ZN jCN;x (i) ¤ w(i)gj where

CN;x (i) and w(i) are the ith bits of CN;x and w, respec-
tively. Givenw 2 f0; 1gN and a noise parameter � > 0, the
list decoding task is to find a list of all messages x such that
�(CN;x ;w) < �. The received word w may be given ex-
plicitly or implicitly; we focus on the latter where oracle
access to w is given. Goldreich and Levin [9] give a list de-
coding algorithm for Hadamard codes, using in a crucial
way their algorithm solving the SFT problem for functions
over the Boolean cube.

The SFT algorithm for functions over ZZN is a key
component in a list decoding algorithm given by Akavia
et al. [2]. This list decoding algorithm is applicable
to a large class of codes. For example, it is applica-
ble to the code Cmsb = fCN;x : ZN ! f0; 1ggx2Z�N ;N2Z+

whose codewords are CN;x (j) = msbN (j � x mod N) for
msbN (y) = 1 iff y � N/2 and msbN (y) = 0 otherwise.
More generally, this list decoding algorithm is applica-
ble to any Multiplication code CP for P a family of bal-
anced and well concentrated functions, as defined below.
The running time of this list decoding algorithm is poly-
nomial in logN and 1/(1 � 2�), as long as � < 1

2 .
Abstractly, the list decoding algorithm of [2] is ap-

plicable to any code that is “balanced,” “(well) con-
centrated,” and “recoverable,” as defined next (and
those Fourier coefficients have small greatest com-
mon divisor (GCD) with N). A code is balanced
if Pr j2ZN [CN;x (j) = 0] = Pr j2ZN [CN;x (j) = 1] for every
codeword CN;x . A code is (well) concentrated if its code-
words can be approximated by a small number of signifi-
cant coefficients in their Fourier representation (and those
Fourier coefficients have small greatest common divisor
(GCD) withN). A code is recoverable if there is an efficient
algorithm mapping each Fourier coefficient ˛ to a short
list of codewords for which ˛ is a significant Fourier coef-
ficient. The key property of concentrated codes is that re-
ceived words w share a significant Fourier coefficient with
all close codewords CN;x . The high level structure of the
list decoding algorithm of [2] is therefore as follows. First
it runs the SFT algorithm to find all significant Fourier co-
efficients ˛ of the receivedwordw. Second for each such ˛,
it runs the recovery algorithm to find all codewords CN;x
for which ˛ is significant. Finally, it outputs all those code-
words CN;x .

Definition 1 (Multiplication codes [2])
Let P = fPN : ZN ! f0; 1ggN2Z+ be a family of functions.
Say that CP = fCN;x : ZN ! f0; 1ggx2Z�N ;N2Z+ is amulti-
plication code for P if for every N 2 Z+ and x 2 Z�N , the
encoding CN;x : ZN ! f0; 1g of x is defined by

CN;x (j) = P(j � x mod N) :

Definition 2 (Well concentrated [2]) Let P =
fPN : ZN ! CgN2Z+ be a family of functions. Say that
P is well concentrated if 8N 2 Z+; � > 0, 9

 ZN
s.t. (i) j
 j � pol y(logN/�), (ii)

P
˛2�

bjPN (˛)j2 �
(1 � �)kPNk22, and (iii) for all ˛ 2
 , gcd(˛;N) �
pol y(logN/�) (where gcd(˛;N) is the greatest common
divisor of ˛ and N).

Theorem 3 (List decoding [2]) Let P = fPN : ZN !

f0; 1ggN2Z+ be a family of efficiently computable3,
well concentrated, and balanced functions. Let CP =

3P = fPN : ZN ! f0; 1ggN2Z+ is a family of efficiently com-
putable functions if there is an algorithm that given any N 2 Z+ and
x 2 ZN outputs PN (x) in time pol y(logN).

Learning Significant Fourier Coefficients over Finite Abelian Groups L 441

fCN;x : ZN ! f0; 1ggx2Z�N ;N2Z+ be the multiplication
code for P. Then there is an algorithm that, given N 2 Z+

N,
� < 1

2 and oracle access to w : ZN ! f0; 1g, outputs all
x 2 Z�N for which �(CN;x ;w) < �. The running time of
this algorithm is polynomial in logN and 1/(1 � 2�).

Remarks
1. The requirement that P is a family of efficiently com-

putable functions can be relaxed. It suffices to require
that the list decoding algorithm receives or computes
a set

 ZN with properties as specified in Defini-
tion 2.

2. The requirement that P is a family of balanced
functions can be relaxed. Denote bias(P) =
minb2f0;1g infN2Z+ Pr j2ZN [PN (j) = b]. Then the list
decoding algorithm of [2] is applicable to CP even
when bias(P) ¤ 1

2 , as long as � < bias(P).

Applications in Cryptography

Hard-core predicates for one-way functions are a funda-
mental cryptographic primitive, which is central for many
cryptographic applications such as pseudo-random num-
ber generators, semantic secure encryption, and crypto-
graphic protocols. Informally speaking, a Boolean pred-
icate P is a hard-core predicate for a function f if P(x)
is easy to compute when given x, but hard to guess with
a non-negligible advantage beyond 50% when given only
f (x). The notion of hardcore predicates was introduced
by Blum and Micali [2]. Goldreich and Levin [9] showed
a randomized hardcore predicate for any one-way func-
tion, using in a crucial way their algorithm solving the SFT
problem for functions over the Boolean cube.

Akavia et al. [2] introduce a unifying framework for
proving that a predicate P is hard-core for a one-way
function f . Applying their framework they prove for
a wide class of predicates—segment predicates—that they
are hard-core predicates for various well-known candidate
one-way functions. Thus showing new hard-core predi-
cates for well-known one-way function candidates as well
as reproving old results in an entirely different way.

Elaborating on the above, a segment predicate is any as-
signment of Boolean values to an arbitrary partition ofZN
into pol y(logN) segments, or dilations of such an assign-
ment. Akavia et al. [2] prove that any segment predicate
is hard-core for any one-way function f defined over ZN
for which, for a non-negligible fraction of the x’s in ZN ,
given f (x) and y, one can efficiently compute f (xy) (where
xy is multiplication in ZN). This includes the following
functions: the exponentiation function EXPp;g : Zp ! Z�p
defined by EXPp;g(x) = gx mod p for each prime p

and a generator g of the group Z�p ; the RSA func-
tion RSA : Z�N ! Z�N defined by RSA(x) = ex mod N for
each N = pq a product of two primes p, q, and e co-prime
to N; the Rabin function Rabin : Z�N ! Z�N defined by
Rabin(x) = x2 mod N for each N = pq a product of two
primes p, q; and the elliptic curve log function defined by
ECLa;b;p;Q = xQ for each elliptic curve Ea;b;p(Zp) and Q
a point of high order on the curve.

The SFT algorithm is a central tool in the frame-
work of [2]: Akavia et al. take a list decoding methodol-
ogy, where computing a hard-core predicate corresponds
to computing an entry in some error correcting code, pre-
dicting a predicate corresponds to access to an entry in
a corrupted codeword, and the task of inverting a one-way
function corresponds to the task of list decoding a cor-
rupted codeword. The codes emerging in [2] are multipli-
cation codes (see Definition 1 above), which are list de-
coded using the SFT algorithm.

Definition 3 (Segment predicates [2]) Let P =
fPN : ZN ! f0; 1ggN2Z+ be a family of predicates that are
non-negligibly far from constant4.
� It can be sayed that PN is a basic t-segment predicate if

PN (x + 1) ¤ PN (x) for at most t x’s in ZN.
� It can be sayed that PN is a t-segment predicate if there

exist a basic t-segment predicate P0 and a 2 ZN which
is co-prime to N s.t. 8x 2 ZN ; PN (x) = P0(x/a).

� It can be sayed that P is a family of segment predi-
cates if 8N 2 Z+, PN is a t(N)-segment predicate for
t(N) � pol y(log N).

Theorem 4 (Hardcore predicates [2]) Let P be a family
of segment predicates. Then, P is hard-core for RSA, Ra-
bin, EXP, ECL, under the assumption that these are one-
way functions.

Application in Algorithms

Our modern times are characterized by information ex-
plosion incurring a need for faster and faster algorithms.
Even algorithms classically regarded as efficient—such as
the FFT algorithm with its 	(N logN) complexity—are
often too slow for data-intensive applications, and linear
or even sub-linear algorithms are imperative. Despite the
vast variety of fields and applications where algorithmic
challenges arise, some basic algorithmic building blocks
emerge in many of the existing algorithmic solutions. Ac-
celerating such building blocks can therefore accelerate

4A family of functions P = fPN : ZN ! f0; 1ggN2Z+ is
non-negligibly far from constant if 8N 2 Z+ and b 2 f0; 1g,
Pr j2ZN [PN (j) = b] � 1� pol y(1/ logN).

442 L LEDA: a Library of Efficient Algorithms

many existing algorithms. One of these recurring build-
ing blocks is the Fast Fourier Transform (FFT) algorithm.
The SFT algorithm offers a great efficiency improvement
over the FFT algorithm for applications where it suffices
to deal only with the significant Fourier coefficients. In
such applications, replacing the FFT building block with
the SFT algorithm accelerates the 	(N logN) complexity
in each application of the FFT algorithm to pol y(logN)
complexity [1]. Lossy compression is an example of such
an application [1,5,8]. To elaborate, central component in
several transform compression methods (e. g., JPEG) is
to first apply Fourier (or Cosine) transform to the sig-
nal, and then discard many of its coefficients. To ac-
celerate such algorithms —instead of computing the en-
tire Fourier (or Cosine) transform—the SFT algorithm
can be used to directly approximate only the signifi-
cant Fourier coefficients. Such an accelerated algorithm
achieves compression guarantee as good as the original al-
gorithm (and possibly better), but with running time im-
proved to pol y(log N) in place of the former	(N logN).

Cross References

� Abelian Hidden Subgroup Problem
� Learning Constant-Depth Circuits
� Learning DNF Formulas
� Learning Heavy Fourier Coefficients of Boolean

Functions
� Learning with Malicious Noise
� List Decoding near Capacity: Folded RS Codes
� PAC Learning
� Statistical Query Learning

Recommended Reading

1. Akavia, A., Goldwasser, S.: Manuscript submitted as an NSF
grant, awarded (2005) CCF-0514167

2. Akavia, A., Goldwasser, S., Safra, S.: Proving hard-core predi-
cates using list decoding. In: Proceedings of the 44th Sympo-
sium on Foundations of Computer Science (FOCS’03), pp. 146–
157. IEEE Computer Society (2003)

3. Atici, A., Servedio, R.A.: Learning unions of !(1)-dimensional
rectangles. In: ALT, pp. 32–47 (2006)

4. Blum, M., Micali, S.: How to Generate Cryptographically Strong
Sequences of Pseudo-Random Bits. SIAM J. Comput. 4(13),
850–864 (1984)

5. Cormode, G., Muthukrishnan, S.: Combinatorial algorithms for
compressed sensing. In: Structural Information and Commu-
nication Complexity, 13th International Colloquium, SIROCCO
(2006), Chester, UK, July 2–5, 2006 pp. 280–294

6. Gilbert, A.C., Guha, S., Indyk, P., Muthukrishnan, S., Strauss, M.:
Near-optimal sparse fourier representations via sampling. In:
Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, pp. 152–161. ACM Press (2002)

7. Gilbert, A.C., Muthukrishnan, S., Strauss, M.J.: Improved time
bounds for near-optimal sparse fourier representation via sam-
pling. In: Proceedings of SPIE Wavelets XI, San Diego, CA 2005
(2005)

8. Gilbert, A.C., Strauss, M.J., Tropp, J.A., Vershynin, R.: One sketch
for all: Fast algorithms for compressed sensing. In: 39th ACM
Symposium on Theory of Computing (STOC’07)

9. Goldreich, O., Levin, L.: A hard-core predicate for all one-way
functions. In: 27th ACM Symposium on Theory of Computing
(STOC’89) (1989)

10. Mansour, Y.: Randomized interpolation and approximation of
sparse polynomials. SIAM J. Comput. 24, 357–368 (1995)

11. Sudan, M.: List decoding: algorithms and applications. SIGACT
News 31, 16–27 (2000)

LEDA: a Library
of Efficient Algorithms
1995; Mehlhorn, Näher

CHRISTOS ZAROLIAGIS
Department of Computer Engineering and Informatics,
University of Patras, Patras, Greece

Keywords and Synonyms

LEDA platform for combinatorial and geometric comput-
ing

ProblemDefinition

In the last forty years, there has been a tremendous
progress in the field of computer algorithms, espe-
cially within the core area known as combinatorial algo-
rithms. Combinatorial algorithms deal with objects such as
lists, stacks, queues, sequences, dictionaries, trees, graphs,
paths, points, segments, lines, convex hulls, etc, and con-
stitute the basis for several application areas including
network optimization, scheduling, transport optimization,
CAD, VLSI design, and graphics. For over thirty years,
asymptotic analysis has been themainmodel for designing
and assessing the efficiency of combinatorial algorithms,
leading to major algorithmic advances.

Despite so many breakthroughs, however, very little
had been done (at least until 15 years ago) about the prac-
tical utility and assessment of this wealth of theoretical
work. The main reason for this lack was the absence of
a standard algorithm library, that is, of a software library
that contains a systematic collection of robust and efficient
implementations of algorithms and data structures, upon
which other algorithms and data structures can be easily
built.

The lack of an algorithm library limits severely the
great impact which combinatorial algorithms can have.

LEDA: a Library of Efficient Algorithms L 443

The continuous re-implementation of basic algorithms
and data structures slows down progress and typically dis-
courages people to make the (additional) effort to use an
efficient solution, especially if such a solution cannot be
re-used. This makes the migration of scientific discoveries
into practice a very slow process.

The major difficulty in building a library of combina-
torial algorithms stems from the fact that such algorithms
are based on complex data types, which are typically not
encountered in programming languages (i. e., they are not
built-in types). This is in sharp contrast with other com-
puting areas such as statistics, numerical analysis, and lin-
ear programming.

Key Results

The currently most successful algorithm library is LEDA
(Library for Efficient Data types and Algorithms) [4,5]. It
contains a very large collection of advanced data structures
and algorithms for combinatorial and geometric comput-
ing. The development of LEDA started in the early 1990s,
it reached a very mature state in the late 1990s, and it con-
tinues to grow. LEDA has been written in C++ and has
benefited considerably from the object-oriented paradigm.

Four major goals have been set in the design of LEDA.
1. Ease of use: LEDA provides a sizable collection of data

types and algorithms in a form that they can be read-
ily used by non-experts. It gives a precise and readable
specification for each data type and algorithm, which is
short, general and abstract (to hide the details of im-
plementation). Most data types in LEDA are parame-
terized (e. g., the dictionary data type works for arbi-
trary key and information type). To access the objects
of a data structure by position, LEDA has invented the
item concept that casts positions into an abstract form.

2. Extensibility: LEDA is easily extensible by means of
parametric polymorphism and can be used as a plat-
form for further software development. Advanced data
types are built on top of basic ones, which in turn rest
on a uniform conceptual framework and solid imple-
mentation principles. The main mechanism to extend
LEDA is through the so-called LEDA extension pack-
ages (LEPs). A LEP extends LEDA into a particular ap-
plication domain and/or area of algorithms that is not
covered by the core system. Currently, there are 15 such
LEPs; for details see [1].

3. Correctness: In LEDA, programs should give sufficient
justification (proof) for their answers to allow the user
of a program to easily assess its correctness. Many algo-
rithms in LEDA are accompanied by program checkers.
A program checker C for a program P is a (typically

very simple) program that takes as input the input of
P, the output of P, and perhaps additional information
provided by P, and verifies that the answer of P in in-
deed the correct one.

4. Efficiency: The implementations in LEDA are usually
based on the asymptotically most efficient algorithms
and data structures that are known for a problem. Quite
often, these implementations have been fine-tuned and
enhanced with heuristics that considerably improve
running times. This makes LEDA not only the most
comprehensive platform for combinatorial and geo-
metric computing, but also a library that contains the
currently fastest implementations.
Since 1995, LEDA is maintained by the Algorithmic

Solutions Software GmbH [1] which is responsible for its
distribution in academia and industry.

Other efforts for algorithm libraries include the Stan-
dard Template Library (STL) [7], the Boost Graph Li-
brary [2,6], and the Computational Geometry Algorithms
Library (CGAL) [3].

STL [7] (introduced in 1994) is a library of inter-
changeable components for solving many fundamental
problems on sequences of elements, which has been
adopted into the C++ standard. It contributed the itera-
tor concept which provides an interface between containers
(an object that stores other objects) and algorithms. Each
algorithm in STL is a function template parameterized by
the types of iterators upon which it operates. Any itera-
tor that satisfies a minimum set of requirements can be
used regardless of the data structure accessed by the itera-
tor. The systematic approach used in STL to build abstrac-
tions and interchangeable components is called generic
programming.

The Boost Graph Library [2,6] is a C++ graph library
that applies the notions of generic programming to the
construction of graph algorithms. Each graph algorithm
is written not in terms of a specific data structure, but in-
stead in terms of a graph abstraction that can be easily im-
plemented by many different data structures. This offers
the programmer the flexibility to use graph algorithms in
a wide variety of applications. The first release of the li-
brary became available in September 2000.

The Computational Geometry Algorithms Library [3]
is another C++ library that focuses on geometric comput-
ing only. Its main goal is to provide easy access to efficient
and reliable geometric algorithms to users in industry and
academia. The CGAL library started in 1996 and the first
release was in April 1998.

Among all libraries mentioned above LEDA is by far
the best (both in quality and efficiency of implemen-
tations) regarding combinatorial computing. It is worth

444 L Leontief Economy Equilibrium

mentioning that the late versions of LEDA have also in-
corporated the iterator concept of STL.

Finally, a notable effort concerns the Stony Brook Al-
gorithm Repository [8]. This is not an algorithm library,
but a comprehensive collection of algorithm implementa-
tions for over seventy problems in combinatorial comput-
ing, started in 2001. The repository features implementa-
tions coded in different programming languages, includ-
ing C, C++, Java, Fortran, ADA, Lisp, Mathematic, and
Pascal.

Applications

An algorithm library for combinatorial and geometric
computing has a wealth of applications in a wide variety of
areas, including: network optimization, scheduling, trans-
port optimization and control, VLSI design, computer
graphics, scientific visualization, computer aided design
and modeling, geographic information systems, text and
string processing, text compression, cryptography, molec-
ular biology, medical imaging, robotics and motion plan-
ning, and mesh partition and generation.

Open Problems

Algorithm libraries usually do not provide an interactive
environment for developing and experimenting with algo-
rithms. An important research direction is to add an in-
teractive environment into algorithm libraries that would
facilitate the development, debugging, visualization, and
testing of algorithms.

Experimental Results

The are numerous experimental studies based on LEDA,
STL, Boost, and CGAL, most of which can be found in the
world-wide web. Also, the web sites of some of the libraries
contain pointers to experimental work.

URL to Code

The afore mentioned algorithm libraries can be down-
loaded from their corresponding web sites, the details of
which are given in the bibliography (Recommended Read-
ing).

Cross References

� Engineering Algorithms for Large Network
Applications

� Experimental Methods for Algorithm Analysis
� Implementation Challenge for Shortest Paths
� Shortest Paths Approaches for Timetable Information
� TSP-Based Curve Reconstruction

Recommended Reading
1. Algorithmic Solutions Software GmbH, http://www.

algorithmic-solutions.com/. Accessed February 2008
2. Boost C++ Libraries, http://www.boost.org/. Accessed February

2008
3. CGAL: Computational Geometry Algorithms Library, http://

www.cgal.org/. Accessed February 2008
4. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and

Geometric Computing. Commun. ACM. 38(1), 96–102 (1995)
5. Mehlhorn, K., Näher, S.. LEDA: A Platform for Combinatorial

and Geometric Computing. Cambridge University Press, Boston
(1999)

6. Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library.
Addison-Wesley, Cambridge (2002)

7. Stepanov, A., Lee, M.: The Standard Template Library. In: Tech-
nical Report X3J16/94–0095, WG21/N0482, ISO Programming
Language C++ Project. Hewlett-Packard, Palo Alto CA (1994)

8. The Stony Brook Algorithm Repository, http://www.cs.sunysb.
edu/~algorith/. Accessed February 2008

Leontief Economy Equilibrium
2005; Codenotti, Saberi, Varadarajan, Ye
2005; Ye

YIN-YU YE
Department of Management Science and Engineering,
Stanford University, Stanford, CA, USA

Keywords and Synonyms

Exchange market equilibrium with the leontief utility

ProblemDefinition

The Arrow–Debreu exchange market equilibrium prob-
lem was first formulated by Léon Walras in 1874 [7]. In
this problem everyone in a population of m traders has an
initial endowment of a divisible goods and a utility func-
tion for consuming all goods – their own and others’. Ev-
ery trader sells the entire initial endowment and then uses
the revenue to buy a bundle of goods such that his or her
utility function is maximized.Walras asked whether prices
could be set for everyone’s goods such that this is possible.
An answer was given by Arrow and Debreu in 1954 [1]
who showed that, undermild conditions, such equilibrium
would exist if the utility functions were concave. In gen-
eral, it is unknown whether or not an equilibrium can be
computed efficiently, see, e. g.,� General Equilibrium.

Consider a special class of Arrow–Debreu’s problems,
where each of the n traders has exactly one unit of a di-
visible and distinctive good for trade, and let trader i,
i = 1; : : : ; n, bring good i, which class of problems is called
the pairing class. For given prices pj on good j, consumer

http://www.algorithmic-solutions.com/
http://www.algorithmic-solutions.com/
http://www.boost.org/
http://www.cgal.org/
http://www.cgal.org/
http://www.cs.sunysb.edu/~algorith/
http://www.cs.sunysb.edu/~algorith/

Leontief Economy Equilibrium L 445

i’s maximization problem is

maximize ui (xi1; : : : ; xin)
subject to

P
j p jxi j � pi ;

xi j � 0; 8 j :
(1)

Let x�i denote a maximal solution vector of (1). Then, vec-
tor p is called the Arrow–Debreu price equilibrium if there
exists an x�i for consumer i, i = 1; : : : ; n, such that

X
i

x�i = e

where e is the vector of all ones representing available
goods on the exchange market.

The Leontief Economy Equilibrium problem is the Ar-
row–Debreu Equilibrium problem when the utility func-
tions are in the Leontief form:

ui (xi) = min
j : hi j>0

�
xi j
hi j

�
;

where the Leontief coefficient matrix is given by

H =

0
BB@

h11 h12 : : : h1n
h21 h22 : : : h2n
: : : : : : : : : : : :

hn1 hn2 : : : hnn

1
CCA : (2)

Here, one may assume that

Assumption 1 H has no all-zero row, that is, every trader
likes at least one good.

Key Results

Let ui be the equilibrium utility value of consumer i and pi
be the equilibrium price for good i, i = 1; : : : ; n. Also, let
U and P are diagonal matrices whose diagonal entries are
ui’s and pi’s, respectively. Then, the Leontief Economy
Equilibrium p 2 Rn , together with u 2 Rn , must satisfy

UHp = p;
P(e � HTu) = 0;

HTu � e;
u; p � 0;

p ¤ 0:

(3)

One can prove:

Theorem 1 (Ye [8]) Equation (3) always has a solution
(u, p) under Assumption 1 (i. e., H has no all-zero row).
However, a solution to Eq. (3)may not be a Leontief equilib-
rium, although every Leontief equilibrium satisfies Eq. (3).

Theorem 2 (Ye [8]) Let B � f1; 2; : : : ; ng, N =
f1; 2; : : : ; ng n B, HBB be irreducible, and uB satisfy the lin-
ear system

HT
BBuB = e; HT

BNuB � e; and uB > 0 :

Then the (right) Perron–Frobenius eigen-vector pB of
UBHBB together with pN = 0 will be a solution to Eq. (3).
And the converse is also true. Moreover, there is always a ra-
tional solution for every such B, that is, the entries of price
vector are rational numbers, if the entries of H are rational.
Furthermore, the size (bit-length) of the solution is bounded
by the size (bit-length) of H.

The theorem implies that the traders in block B can trade
among themselves and keep others goods “free”. In par-
ticular, if one trader likes his or her own good more than
any other good, that is, hi i � hi j for all j, then ui = 1/hi i ,
pi = 1, and uj = p j = 0 for all j ¤ i, that is, B = fig, makes
a Leontief economy equilibrium. The theorem thus es-
tablishes, for the first time, a combinatorial algorithm
to compute a Leontief economy equilibrium by finding
a right block B ¤ ;, which is actually a non-trivial solu-
tion (u ¤ 0) to an LCP problem

HTu + v = e; uTv = 0; 0 ¤ u; v � 0: (4)

If H > 0, then any complementary solution u ¤ 0, to-
gether with its support B = f j : uj > 0g, of Eq. (4) induce
a Leontief economy equilibrium that is the (right) Per-
ron–Frobenius eigen-vector ofUBHBB , and it can be com-
puted in polynomial time by solving a linear equation.
Even if H 6> 0, any complementary solution u ¤ 0 and
B = f j : uj > 0g, as long as HBB is irreducible, induces an
equilibrium for Eq. (3). The equivalence between the pair-
ing Leontief economy model and the LCP also implies

Corollary 1 LCP (4) always has a non-trivial solution,
where HBB is irreducible with B = f j : uj > 0g, under As-
sumption 1 (i. e., H has no all-zero row).

If Assumption 1 does not hold, the corollary may not be
true; see example below:

HT =
�

0 2
0 1

�
:

Applications

Given an arbitrary bimatrix game, specified by a pair of
n � m matrices A and B, with positive entries, one can
construct a Leontief exchange economywith n + m traders
and n + m goods as follows. In words, trader i comes to
the market with one unit of good i, for i = 1; : : : ; n + m.

446 L Linearity Testing/Testing Hadamard Codes

Traders indexed by any j 2 f1; : : : ; ng receive some util-
ity only from goods j 2 fn + 1; : : : ; n + mg, and this util-
ity is specified by parameters corresponding to the en-
tries of the matrix B. More precisely the proportions in
which the j-th trader wants the goods are specified by the
entries on the jth row of B. Vice versa, traders indexed
by any j 2 fn + 1; : : : ; n + mg receive some utility only
from goods j 2 f1; : : : ; ng. In this case, the proportions in
which the j-th trader wants the goods are specified by the
entries on the j-th column of A.

In the economy above, one can partition the traders
in two groups, which bring to the market disjoint sets of
goods, and are only interested in the goods brought by the
group they do not belong to.

Theorem 3 (Codenotti et al. [4]) Let (A,B) denote an ar-
bitrary bimatrix game, where assume, w.l.o.g., that the en-
tries of the matrices A and B are all positive. Let

HT =
�

0 A
BT 0

�

describe the Leontief utility coefficient matrix of the traders
in a Leontief economy. There is a one-to-one correspon-
dence between the Nash equilibria of the game (A,B) and
the market equilibria H of the Leontief economy. Further-
more, the correspondence has the property that a strategy
is played with positive probability at a Nash equilibrium if
and only if the good held by the corresponding trader has
a positive price at the corresponding market equilibrium.

Gilboa and Zemel [6] proved a number of hardness re-
sults related to the computation of Nash equilibria (NE)
for finite games in normal form. Since the NE for games
with more than two players can be irrational, these results
have been formulated in terms of NP-hardness for multi-
player games, while they can be expressed in terms of NP-
completeness for two-player games. Using a reduction to
the NE game, Codenotti et al. proved:

Theorem 4 (Codenotti et al. [4]) It is NP-hard to decide
whether a Leontief economy H has an equilibrium.

Cross References

� Complexity of Bimatrix Nash Equilibria
� General Equilibrium
� Non-approximability of Bimatrix Nash Equilibria

Recommended Reading

The reader may want to read Brainard and Scarf [2] on
how to compute equilibrium prices in 1891; Chen and
Deng [3] on the most recent hardness result of computing

the bimatrix game; Cottle et al. [5] for literature on linear
complementarity problems; and all references listed in [4]
and [8] for the recent literature on computational equilib-
rium.

1. Arrow, K.J., Debreu, G.: Existence of an equilibrium for competi-
tive economy. Econometrica 22, 265–290 (1954)

2. Brainard, W.C., Scarf, H.E.: How to compute equilibrium
prices in 1891. Cowles Foundation Discussion Paper 1270,
August 2000

3. Chen, X., Deng, X.: Settling the complexity of 2-player Nash-
Equilibrium, ECCC TR05-140 (2005)

4. Codenotti, B., Saberi, A., Varadarajan, K., Ye, Y.: Leontief
economies encode nonzero sum two-player games. SODA
(2006)

5. Cottle, R., Pang, J.S., Stone, R.E.: The linear complementarity
problem. Academic Press, Boston (1992)

6. Gilboa, I., Zemel, E.: Nash and correlated equilibria: some com-
plexity considerations. Games Econ. Behav. 1, 80–93 (1989)

7. Walras, L.: Elements of pure economics, or the theory of social
wealth (1899, 4th ed; 1926, rev ed, 1954, Engl. Transl.) (1874)

8. Ye, Y.: Exchangemarket equilibriawith leontief’s utility: freedom
of pricing leads to rationality. WINE (2005)

Linearity Testing/
Testing Hadamard Codes
1990; Blum, Luby, Rubinfeld

RONITT RUBINFELD
Department of Electrical Engineering and Computer
Science, MIT, Cambridge, MA, USA

Keywords and Synonyms

Linearity testing; Testing Hadamard codes; Homomor-
phism testing

ProblemDefinition

This problem is concerned with distinguishing functions
that are homomorphisms, i. e. satisfying 8x; y; f (x) +
f (y) = f (x + y), from those functions that must be
changed on at least � fraction of the domain in order to
be turned into a homomorphism, given query access to
the function. This problem was initially motivated by ap-
plications to testing programs which compute linear func-
tions [8]. Since Hadamard codes are such that the code-
words are exactly the evaluations of linear functions over
boolean variables, a solution to this problem gives a way
of distinguishing codewords of the Hadamard code from
those strings that are far in relative Hamming distance
from codewords. These algorithms were in turn used in
the constructions of Probabilistically Checkable Proof Sys-

Linearity Testing/Testing Hadamard Codes L 447

tems (cf. [3]). Further work has extended these techniques
to testing other properties of low degree polynomials and
solutions to other addition theorems [3,9,24,25].

Notations

For two finite groups G,H (not necessarily Abelian), an
arbitrary map f : G ! H is a homomorphism if

8x; y; f (x) � f (y) = f (x � y) :

f is �-close to a homomorphism if there is some homomor-
phism g such that g and f differ on at most �jGj elements
of G, and f is �-far otherwise.

Given a parameter 0 � � � 1, and query access to
a function f : G ! H, a homomorphism tester (also ref-
ereed to as a linearity tester in the literature) is an algo-
rithm T which outputs “Pass” if f is a homomorphism,
and “Fail” if f is �-far from a homomorphism. The homo-
morphism tester should err with probability at most 1/3
for any f .1

For two finite groups G,H (not necessarily Abelian),
an arbitrary map f : G ! H, and a parameter 0 < � < 1,
define ı f (the subscript is dropped and this is referred to
as ı, when f is obvious from the context) then the proba-
bility of group law failure, by

1 � ı = Pr
x;y

	
f (x) � f (y) = f (x � y)

:

Define � such that � is the minimum � for which f is �-
close to a homomorphism.

Problem 1 For f ; ı as above, is it possible to upper bound
� in terms of a function that depends on the probability of
group law failure ı, but not on the size of the domain jGj?

Key Results

Blum, Luby and Rubinfeld [8], considered this question
and showed that over cyclic groups, there is a constant
ı0, such that if ı � ı0, then the one can upper bound �
in terms of a function of ı that is independent of jGj.
This yields a homomorphism tester with query complex-
ity that depends (polynomially) on 1/�, but is indepen-
dent of jGj. The final version of [8] contains an improved
argument due to Coppersmith [10], which applies to all
Abelian groups, shows that ı0 < 2/9 suffices, and that � is

1The choice of 1/3 is arbitrary. Using standard techniques, any
homomorphism tester satisfying 1/3 error probability can be turned
into a homomorphism tester with 0 < ˇ < 1/3 error probability by
repeating the original tester O(log 1

ˇ
) times and taking the majority

answer.

upper bounded by the smaller root of x(1 � x) = ı (yield-
ing a homomorphism tester with query complexity linear
in 1/�). Furthermore, the bound on ı0 was shown to be
tight for general groups [10].

In [6], a relationship between the probability of group
law failure and the closeness to being a homomorphism
was established that applies to general (non-Abelian)
groups. For a given ı, let � = (3 �

p
9 � 24ı)/12 � ı/2 be

the smaller root of 3x � 6x2 = ı. In [6] it is shown that for
ı0 < 2/9, then f is �-close to a homomorphism. The con-
dition on ı, and the bound on � as a function of ı, are
shown to be tight. The latter improves on the relationship
given in [8,10].

There has been interest in improving various parame-
ters of homomorphism testing results, due to their use in
the construction of Probabilistically Checkable Proof Sys-
tems (cf. [3]). In particular, both the constant ı0 and the
number of random bits required by the homomorphism
test affect the efficiency of the proof system and in turn the
hardness of approximation results that one can achieve us-
ing the proof system.

The homomorphism testing results can be improved
in some cases: It has been previously mentioned that
ı0 < 2/9 is optimal over general Abelian groups [10].
However, using Fourier techniques, Bellare et al. [5] have
shown that for groups of the form (Z/2)n , ı0 � 45/128 suf-
fices. For such ı0, � < ı. Kiwi later provided a similar re-
sult based on the discrete Fourier transform and weight
distributions to improve the bound on the dependence of
� on ı [17].

Several works have shown methods of reducing the
number of random bits required by the homomorphism
tests. That is, in the natural implementation of the ho-
momorphism test, 2 log jGj random bits per trial are used
to pick x,y. The results of [7,14,26,28,29] have shown
that fewer random bits are sufficient for implementing
the homomorphism tests. In particular, Trevisan [29] and
Samorodnitsky and Trevisan [26] have considered the
“amortized query complexity” of testing homomorphisms,
which is a measure that quantifies the trade-off between
the query complexity of the testing algorithm and the
probability of accepting the function. Homomorphism
tests with low amortized query complexity are useful in
constructing PCP systems with low amortized query com-
plexity. A simpler analysis which improves the depen-
dence of the acceptance probability in terms of the dis-
tance of the tested function to the closest linear func-
tion is given in [14]. The work of [28] gives a homomor-
phism test for general (non-Abelian) groups that uses only
(1 + o(1)) log2 jGj random bits. Given a Cayley graph that
is an expander with normalized second eigenvalue � , and

448 L Linearity Testing/Testing Hadamard Codes

for the analogous definitions of ı; � , they show that for
ı < (1 � �)/12, � is upper bounded by 4ı/(1 � �). Very
recently, Samordnitsky and Trevisan [27] have considered
a relaxed version of a homomorphism test which accepts
linear functions and rejects functions with low influences.

The case when G is a subset of an infinite group, f is
a real-valued function and the oracle query to f returns
a finite precision approximation to f (x) has been consid-
ered in [2,11,12,20,21], and testers with query complexity
that are independent of the domain size have been given
(see [19] for a survey).

A Related Problem on Convolutions of Distributions

In the following, a seemingly unrelated question about dis-
tributions that are close to their self-convolutions is men-
tioned: Let A = fagjg 2 Gg be a distribution on group G.
The convolution of distributions A, B is

C = A � B; cx =
X

y;z2G ; yz=x

aybz :

Let A0 be the self-convolution of A, A � A, i. e. a0x =P
y;z2G ;yz=x ay az . It is known that A = A0 exactly when

A is the uniform distribution over a subgroup of G. Sup-
pose it is known that A is close to A0, can one say anything
about A in this case? Suppose dist(A;A0) = 1

2
P

x2G jax �
a0x j � � for small enough �. Then [6] show that A must
be close to the uniform distribution over a subgroup of G.
More precisely, in [6] it is shown that for a distribution
A over a group G, if dist(A;A0) = 1

2
P

x2G jax � a0x j �
� � 0:0273, then there is a subgroup H of G such that
dist(A;UH) � 5�, where UH is the uniform distribution
over H [6]. On the other hand, in [6] there is an exam-
ple of a distribution A such that dist(A;A � A) 	 :1504,
but A is not close to uniform on any subgroup of the do-
main.

A weaker version of this result, was used to prove
a preliminary version of the homomorphism testing re-
sult in [8]. To give a hint of why one might consider the
question on convolutions of distributions when investigat-
ing homomorphism testing, consider the distribution Af
achieved by picking x uniformly from G and outputting
f (x). It is easy to see that the error probability ı in the ho-
momorphism test is at least dist(A f ;A f � A f). The other,
more useful, direction is less obvious. In [6] it is shown
that this question on distributions is “equivalent” in diffi-
culty to homomorphism testing:

Theorem 1 Let G,H be finite groups. Assume that there
is a parameter ˇ0 and function � such that the following

holds:

For all distributions A over group G, if dist(A �
A;A) � ˇ � ˇ0 then A is �(ˇ)-close to uniform over
a subgroup of G.

Then, for any f : G ! H and ı < ˇ0 such that 1 � ı =
Pr[f (x) � f (y) = f (x � y)], and �(ı) � 1/2, it is the case
that f is �(ı)-close to a homomorphism.

Applications

Self-Testing/Correcting Programs

When a program has not been verified and therefore is not
known to be correct on all inputs (or possibly even known
to be incorrect on some inputs), [8] have suggested the
following approach: take programs that are known to be
correct on most inputs and apply a simple transformation
to produce a program that is correct on every input. This
transformation is referred to as producing a self-corrector.
Moreover, for many functions, one can actually test that
the program for f is correct on most inputs, without the
aid of another program for f that has already been verified.
Such testers for programs are referred to as self-testers.

The homomorphism testing problem was initially mo-
tivated by applications to constructing self-testers for pro-
grams which purport to compute various linear func-
tions [8]. Such functions include integer, polynomial, ma-
trix and modular multiplication and division. Once it is
verified that a program agrees on most inputs with a spe-
cific linear function, the task of determining whether it
agrees with the correct linear function on most inputs be-
comes much easier.

Furthermore, for programs purporting to compute lin-
ear functions, it is very simple to construct self-correctors:
Assume one is given a program which on input x outputs
f (x), such that f agrees on most inputs with linear func-
tion g. Consider the algorithm that picks c log 1/ˇ values
y, computes f (x + y) � f (y) and outputs the value that
is seen most often. If f is 1

8 -close to g, then since both
y and x + y are uniformly distributed, it is the case that
for at least 3/4 of the choices of y, g(x + y) = f (x + y) and
g(y) = f (y), in which case f (x + y) � f (y) = g(x). Thus it
is easy to show that there is a constant c such that if f is
1
8 -close to a homomorphism g, then for all x, the above
algorithm will output g(x) with probability at least 1 � ˇ.

Probabilistically Checkable Proofs

An equivalent formulation of the homomorphism testing
problem is in terms of the query complexity of testing
a codeword of a Hadamard code. The results mentioned

Linearity Testing/Testing Hadamard Codes L 449

about have been used to construct Probabilistically Check-
able Proof systems which can be verified with very few
queries (cf. [3,13]).

Open Problems

It is natural to wonder what other classes of functions have
testers whose efficiency is sublinear in the domain size?
There are some partial answers to this question: The field
of functional equations is concerned with the prototypical
problem of characterizing the set of functions that satisfy
a given set of properties (or functional equations). For ex-
ample, the class of functions of the form f (x) = tanAx are
characterized by the functional equation

8x; y; f (x + y) =
f (x) + f (y)
1 � f (x) f (y)

:

D’Alembert’s equation

8x; y; f (x + y) + f (x � y) = 2 f (x) f (y)

characterizes the functions 0; cos Ax; cosh Ax. Multivari-
ate polynomials of total degree d over Zp for p > md can
be characterized by the equation

8x̂; ĥ 2 Zm
p ;

d+1X
i=0

˛i f (x̂ + i ĥ) = 0 ;

where ˛i = (�1)i+1
�d+1

i
�
. All of the above characteriza-

tions are known to yield testers for the corresponding
function families whose query complexity is independent
of the domain size (though for the case of polynomi-
als, there is a polynomial dependence on the total degree
d) [9,24,25]. A long series of works have given increasingly
efficient to test characterizations of functions that are low
total degree polynomials (cf. [1,3,4,15,18,22,23]).

A second line of questions that remain to be under-
stood regard which codes are such that strings can be
quickly tested to determine whether they are close to
a codeword? Some initial work on this questions is given
in [1,15,16,18].

Cross References

� Learning Heavy Fourier Coefficients of Boolean
Functions

Recommended Reading
1. Alon, N., Kaufman, T., Krivilevich, M., Litsyn, S., Ron, D.: Test-

ing low-degree polynomials over gf(2). In: Proceedings of RAN-
DOM ’03. Lecture Notes in Computer Science, vol. 2764, pp.
188–199. Springer, Berlin Heidelberg (2003)

2. Ar, S., Blum, M., Codenotti, B., Gemmell, P.: Checking approx-
imate computations over the reals. In: Proceedings of the
Twenty-Fifth Annual ACM Symposium on the Theory of Com-
puting, pp. 786–795. ACM, New York (2003)

3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof
verification and the hardness of approximation problems.
J. ACM 45(3), 501–555 (1998)

4. Arora, S., Sudan, M.: Improved low degree testing and its ap-
plications. In: Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, pp. 485–495. ACM,
New York (1997)

5. Bellare, M., Coppersmith, D., Håstad, J., Kiwi, M., Sudan, M.: Lin-
earity testing over characteristic two. IEEE Trans. Inf. Theory
42(6), 1781–1795 (1996)

6. Ben-Or, M., Coppersmith, D., Luby, M., Rubinfeld, R.: Non-
abelian homomorphism testing, and distributions close to
their self-convolutions. In: Proceedings of APPROX-RANDOM.
Lecture Notes in Computer Science, vol. 3122, pp. 273–285.
Springer, Berlin Heidelberg (2004)

7. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.:
Randomness-efficient low degree tests and short pcps
via epsilon-biased sets. In: Proceedings of the Thirty-Fifth
Annual ACM Symposium on the Theory of Computing, pp.
612–621. ACM, New York (2003)

8. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with
applications to numerical problems. J. CSS 47, 549–595 (1993)

9. Cleve, R., Luby, M.: A note on self-testing/correcting methods
for trigonometric functions. In: International Computer Sci-
ence Institute Technical Report TR-90-032, July 1990

10. Coppersmith, D.: Manuscript, private communications (1989)
11. Ergun, F., Kumar, R., Rubinfeld, R.: Checking approximate com-

putations of polynomials and functional equations. SIAM J.
Comput. 31(2), 550–576 (2001)

12. Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson,
A.: Self-testing/correcting for polynomials and for approximate
functions. In: Proceedings of the Twenty-Third Annual ACM
Symposium on Theory of Computing, pp. 32–42. ACM, New
York (1991)

13. Hastad, J.: Some optimal inapproximability results. J. ACM
48(4), 798–859 (2001)

14. Hastad, J., Wigderson, A.: Simple analysis of graph tests for
linearity and pcp. Random Struct. Algorithms 22(2), 139–160
(2003)

15. Jutla, C., Patthak, A., Rudra, A., Zuckerman, D.: Testing low-
degree polynomials over prime fields. In: Proceedings of the
Forty-Fifth Annual Symposium on Foundations of Computer
Science, pp. 423–432. IEEE, New York (2004)

16. Kaufman, T., Litsyn, S.: Almost orthogonal linear codes are lo-
cally testable. In: Proceedings of the Forty-Sixth Annual Sym-
posium on Foundations of Computer Science, pp. 317–326.
IEEE, New York (2005)

17. Kaufman, T., Litsyn, S., Xie, N.: Breaking the �-soundness bound
of the linearity test over gf(2). Electronic Colloquium on Com-
putational Complexity, Report TR07–098, October 2007

18. Kaufman, T., Ron, D.: Testing polynomials over general fields.
In: Proceedings of the Forty-Fifth Annual Symposium on Foun-
dations of Computer Science, pp. 413–422. IEEE, New York
(2004)

19. Kiwi, M., Magniez, F., Santha, M.: Exact and approximate test-
ing/correcting of algebraic functions: A survey. Theoretical As-
pects Compututer Science, LNCS 2292, 30–83 (2001)

450 L Linearizability

20. Kiwi, M., Magniez, F., Santha, M.: Approximate testing with er-
ror relative to input size. J. CSS 66(2), 371–392 (2003)

21. Magniez, F.: Multi-linearity self-testing with relative error. The-
ory Comput. Syst. 38(5), 573–591 (2005)

22. Polischuk, A., Spielman, D.: Nearly linear-size holographic
proofs. In: Proceedings of the Twenty-Sixth Annual ACM Sym-
posium on the Theory of Computing, pp. 194–203. ACM, New
York (1994)

23. Raz, R., Safra, S.: A sub-constant error-probability low-degree
test, and a sub-constant error-probability pcp characterization
of np. In: Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on the Theory of Computing, pp. 475–484. ACM, New
York (1997)

24. Rubinfeld, R.: On the robustness of functional equations. SIAM
J. Comput. 28(6), 1972–1997 (1999)

25. Rubinfeld, R., Sudan, M.: Robust characterization of polyno-
mials with applications to program testing. SIAM J. Comput.
25(2), 252–271 (1996)

26. Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP
with optimal amortized query complexity. In: Proceedings of
the Thirty-Second Annual ACM Symposium on the Theory of
Computing, pp. 191–199. ACM, New York (2000)

27. Samorodnitsky, A., Trevisan, L.: Gowers uniformity, influence of
variables, and pcps. In: Thirty-Eighth ACM Symposium on The-
ory of Computing, pp. 11–20. ACM, New York (2006)

28. Shpilka, A., Wigderson, A.: Derandomizing homomorphism
testing in general groups. In: Proceedings of the Thirty-Sixth
Annual ACM Symposium on the Theory of Computing, pp.
427–435. ACM, NY, USA (2004)

29. Trevisan, L.: Recycling queries in pcps and in linearity tests. In:
Proceedings of the Thirtieth Annual ACM Symposium on the
Theory of Computing, pp. 299–308. ACM, New York (1998)

Linearizability
1990; Herlihy, Wing

MAURICE HERLIHY
Department of Computer Science, Brown University,
Providence, RI, USA

Keywords and Synonyms

Atomicity

ProblemDefinition

An object in languages such as Java and C++ is a container
for data. Each object provides a set ofmethods that are the
only way to to manipulate that object’s internal state. Each
object has a class which defines the methods it provides
and what they do.

In the absence of concurrency, methods can be de-
scribed by a pair consisting of a precondition (describing
the object’s state before invoking the method) and a post-
condition, describing, once the method returns, the ob-
ject’s state and the method’s return value. If, however, an
object is shared by concurrent threads in a multiproces-

sor system, then method calls may overlap in time, and it
no longer makes sense to characterize methods in terms of
pre- and post-conditions.

Linearizability is a correctness condition for concur-
rent objects that characterizes an object’s concurrent be-
havior in terms of an “equivalent” sequential behavior.
Informally, the object behaves “as if” each method call
takes effect instantaneously at some point between its in-
vocation and its response. This notion of correctness has
some useful formal properties. First, it is non-blocking,
whichmeans that linearizability as such never requires one
thread to wait for another to complete an ongoing method
call. Second, it is local, which means that an object com-
posed of linearizable objects is itself linearizable. Other
proposed correctness conditions in the literature lack at
least one of these properties.

Notation

An execution of a concurrent system is modeled by a his-
tory, a finite sequence of method invocation and response
events. A subhistory of a history H is a subsequence
of the events of H. A method invocation is written as
hx:m(a�)Ai, where x is an object, m a method name, a*

a sequence of arguments, and A a thread. A method re-
sponse is written as hx : t(r�)Ai where t is a termination
condition and r* is a sequence of result values.

A response matches an invocation if their objects and
thread names agree. A method call is a pair consisting of
an invocation and the next matching response. An invo-
cation is pending in a history if no matching response fol-
lows the invocation. If H is a history, complete(H) is the
subsequence of H consisting of all matching invocations
and responses. A history H is sequential if the first event
ofH is an invocation, and each invocation, except possibly
the last, is immediately followed by a matching response.

Let H be a a history. The thread subhistory H|P is the
subsequence of events in H with thread name P. The ob-
ject subhistory H|x is similarly defined for an object x.
Two histories H and H0 are equivalent if for every thread
A;HjA = H0jA. A history H is well-formed if each thread
subhistory H|A of H is sequential. Notice that thread sub-
histories of a well-formed history are always sequential,
but object subhistories need not be.

A sequential specification for an object is a prefix-
closed set of sequential object histories that defines that
object’s legal histories. A sequential history H is legal if
each object subhistory is legal. A method is total if it is
defined for every object state, otherwise it is partial. (For
example, a deq()method that blocks on an empty queue is
partial, while one that throws an exception is total.)

Linearizability L 451

A history H defines an (irreflexive) partial order!H
on its method calls: m0 !H m1 if the result event of m0
occurs before the invocation event ofm1. If H is a sequen-
tial history, then!H is a total order.

Let H be a history and x an object such that Hjx con-
tains method calls m0 and m1. A call m0 !x m1 if m0
precedesm1 in H|x. Note that!x is a total order.

Informally, linearizability requires that each method
call appear to “take effect” instantaneously at some mo-
ment between its invocation and response. An important
implication of this definition is that method calls that do
not overlap cannot be reordered: linearizability preserves
the “real-time” order of method calls. Formally,

Definition 1 A history H is linearizable if it can be ex-
tended (by appending zero or more response events) to
a history H0 such that:
� L1 complete(H0) is equivalent to a legal sequential his-

tory S, and
� L2 If method call m0 precedes method call m1 in H,

then the same is true in S.

S is called a linearization of H. (H may have multiple lin-
earizations.) Informally, extending H to H0 captures the
idea that some pending invocations may have taken effect
even though their responses have not yet been returned to
the caller.

Key Results

The Locality Property

A property is local if all objects collectively satisfy that
property provided that each individual object satisfies it.

Linearizability is local:

Theorem 1 H is linearizable if and only if H|x is lineariz-
able for ever object x.

Proof The “only if” part is obvious.
For each object x, pick a linearization ofH|x. Let Rx be

the set of responses appended to H|x to construct that lin-
earization, and let!x be the corresponding linearization
order. Let H0 be the history constructed by appending to
H each response in Rx .

The !H and !x orders can be “rolled up” into
a single partial order. Define the relation ! on method
calls of complete(H0): For method calls m and m̄;m !
m̄ if there exist method calls m0; : : : ;mn , such that
m = m0; m̄ = mn , and for each i between 0 and n � 1,
either mi !x mi+1 for some object x, or mi !H mi+1.

It turns out that! is a partial order. Clearly,! is tran-
sitive. It remains to be shown that! is anti-reflexive: for
all x, it is false that x ! x.

The proof proceeds by contradiction. If not, then there
exist method calls m0; : : : ;mn , such that m0 ! m1 !

� � � ! mn ;mn ! m0, and each pair is directly related by
some!x or by!H .

Choose a cycle whose length is minimal. Suppose all
method calls are associated with the same object x. Since
!x is a total order, theremust exist twomethod callsmi�1
andmi such that mi�1 !H mi and mi !x mi�1, contra-
dicting the linearizability of x.

The cycle must therefore include method calls of at
least two objects. By reindexing if necessary, let m1 and
m2 be method calls of distinct objects. Let x be the object
associated with m1. None of m2; : : : ;mn can be a method
call of x. The claim holds for m2 by construction. Let mi
be the first method call in m3; : : : ;mn associated with x.
Since mi�1 and mi are unrelated by!x , they must be re-
lated by!H , so the response ofmi�1 precedes the invoca-
tion of mi. The invocation of m2 precedes the response of
mi�1, since otherwise mi�1 !H m2, yielding the shorter
cycle m2; : : : ;mi�1. Finally, the response of m1 precedes
the invocation of m2, since m1 !H m2 by construction.
It follows that the response to m1 precedes the invoca-
tion of mi, hence m1 !H mi , yielding the shorter cycle
m1;mi ; : : : ;mn .

Since mn is not a method call of x, but mn ! m1, it
follows thatmn !H m1. Butm1 !H m2 by construction,
and because !H is transitive, mn !H m2, yielding the
shorter cycle m2; : : : ;mn , the final contradiction. �

Locality is important because it allows concurrent sys-
tems to be designed and constructed in a modular fash-
ion; linearizable objects can be implemented, verified, and
executed independently. A concurrent system based on
a non-local correctness property must either rely on a cen-
tralized scheduler for all objects, or else satisfy additional
constraints placed on objects to ensure that they follow
compatible scheduling protocols. Locality should not be
taken for granted; as discussed below, the literature in-
cludes proposals for alternative correctness properties that
are not local.

The Non-Blocking Property

Linearizability is a non-blocking property: a pending invo-
cation of a total method is never required to wait for an-
other pending invocation to complete.

Theorem 2 Let inv(m) be an invocation of a total method.
If hx invPi is a pending invocation in a linearizable history
H, then there exists a response hxresPi such that H�hxresPi
is linearizable.

452 L Linearizability

Proof Let S be any linearization of H. If S includes a re-
sponse hx resPi to hx invPi, the proof is complete, since S
is also a linearization of H � hx resPi. Otherwise, hx invPi
does not appear in S either, since linearizations, by defini-
tion, include no pending invocations. Because the method
is total, there exists a response hx resPi such that

S0 = S � hx invPi � hx res Pi

is legal. S0, however, is a linearization of H � hx resPi, and
hence is also a linearization of H. �

This theorem implies that linearizability by itself never
forces a threadwith a pending invocation of a total method
to block. Of course, blocking (or even deadlock)may occur
as artifacts of particular implementations of linearizabil-
ity, but it is not inherent to the correctness property itself.
This theorem suggests that linearizability is an appropri-
ate correctness condition for systems where concurrency
and real-time response are important. Alternative correct-
ness conditions, such as serializability [1] do not share this
non-blocking property.

The non-blocking property does not rule out block-
ing in situations where it is explicitly intended. For ex-
ample, it may be sensible for a thread attempting to de-
queue from an empty queue to block, waiting until another
thread enqueues an item. The queue specification captures
this intention by making the deq() method’s specifica-
tion partial, leaving it’s effect undefined when applied to
an empty queue. The most natural concurrent interpreta-
tion of a partial sequential specification is simply to wait
until the object reaches a state in which the method is de-
fined.

Other Correctness Properties

Sequential Consistency [4] is a weaker correctness condi-
tion that requires Property L1 but not L2: method calls
must appear to happen in some one-at-a-time, sequential
order, but calls that do not overlap can be reordered. Every
linearizable history is sequentially consistent, but not vice
versa. Sequential consistency permits more concurrency,
but it is not a local property: a system composed of multi-
ple sequentially-consistent objects is not itself necessarily
sequentially consistent.

Much work on databases and distributed systems
uses serializability as the basic correctness condition for
concurrent computations. In this model, a transaction
is a “thread of control” that applies a finite sequence of
methods to a set of objects shared with other transac-
tions. A history is serializable if it is equivalent to one in
which transactions appear to execute sequentially, that is,

without interleaving. A history is strictly serializable if the
transactions’ order in the sequential history is compatible
with their precedence order: if every method call of one
transaction precedes every method call of another, the
former is serialized first. (Linearizability can be viewed as
a special case of strict serializability where transactions are
restricted to consist of a single method applied to a single
object.)

Neither serializability nor strict serializability is a lo-
cal property. If different objects serialize transactions in
different orders, then there may be no serialization or-
der common to all objects. Serializability and strict seri-
alizability are blocking properties: Under certain circum-
stances, a transaction may be unable to complete a pend-
ing method without violating serializability. A deadlock
results if multiple transactions block one another. Such
transactions must be rolled back and restarted, implying
that additionalmechanismsmust be provided for that pur-
pose.

Applications

Linearizability is widely used as the basic correctness con-
dition for many concurrent data structure algorithms [5],
particularly for lock-free and wait-free data structures [2].
Sequential consistency is widely used for describing low-
level systems such as hardware memory interfaces. Se-
rializability and strict serializability are widely used for
database systems in which it must be easy for application
programmers to preserve complex application-specific in-
variants spanning multiple objects.

Open Problems

Modern multiprocessors often support very weak models
of memory consistency. There are many open problems
concerning how to model such behavior, and how to en-
sure linearizable object implementations on top of such ar-
chitectures.

Cross References

� Concurrent Programming, Mutual Exclusion
� Registers

Recommended Reading

The notion of Linearizability is due to Herlihy and
Wing [3], while Sequential Consistency is due to Lam-
port [4], and serializability to Eswaran et al. [1].

1. Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The notions of
consistency and predicate locks in a database system. Commun.
ACM 19(11), 624–633 (1976). doi: http://doi.acm.org/10.1145/
360363.360369

http://doi.acm.org/10.1145/360363.360369
http://doi.acm.org/10.1145/360363.360369

List Decoding near Capacity: Folded RS Codes L 453

2. Herlihy, M.: Wait-free synchronization. ACM Trans. Program.
Lang. Syst. (TOPLAS) 13(1), 124–149 (1991)

3. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condi-
tion for concurrent objects. ACM Trans. Program. Lang. Syst.
(TOPLAS) 12(3), 463–492 (1990)

4. Lamport, L.: How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Trans. Comput. C-
28(9), 690 (1979)

5. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving cor-
rectness of highly-concurrent linearisable objects. In: PPoPP
’06: Proceedings of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, pp. 129–136
(2006). doi: http://doi.acm.org/10.1145/1122971.1122992

List Decoding near Capacity:
Folded RS Codes
2006; Guruswami, Rudra

ATRI RUDRA
Department of Computer Science and Engineering,
University at Buffalo, State University of New York,
Buffalo, NY, USA

Keywords and Synonyms

Decoding; Error correction

ProblemDefinition

One of the central trade-offs in the theory of error-
correcting codes is the one between the amount of redun-
dancy needed and the fraction of errors that can be cor-
rected.1 The redundancy is measured by the rate of the
code, which is the ratio of the the number of information
symbols in the message to that in the codeword – thus,
for a code with encoding function E : ˙ k ! ˙ n , the rate
equals k / n. The block length of the code equals n, and ˙
is its alphabet.

The goal in decoding is to find, given a noisy received
word, the actual codeword that it could have possibly re-
sulted from. If the target is to correct a fraction � of er-
rors (� will be called the error-correction radius), then this
amounts to finding codewords within (normalized Ham-
ming) distance � from the received word. We are guar-
anteed that there will be a unique such codeword pro-
vided the distance between every two distinct codewords
is at least 2�, or in other words the relative distance of
the code is at least 2�. However, since the relative dis-
tance ı of a code must satisfy ı � 1 � R where R is the

1This entry deals with the adversarial or worst-case model of
errors�no assumption is made on how the errors and error locations
are distributed beyond an upper bound on the total number of errors
that may be caused.

rate of the code (by the Singleton bound), if one insists
on an unique answer, the best trade-off between � and R is
� = �U (R) = (1 � R)/2. But this is an overly pessimistic es-
timate of the error-correction radius, since the way Ham-
ming spheres pack in space, for most choices of the re-
ceived word there will be at most one codeword within
distance � from it even for �much greater than ı/2. There-
fore, always insisting on a unique answer will preclude de-
coding most such received words owing to a few patho-
logical received words that have more than one codeword
within distance roughly ı/2 from them.

A notion called list decoding, that dates back to the
late 1950’s [1,9], provides a clean way to get around this
predicament, and yet deal with worst-case error patterns.
Under list decoding, the decoder is required to output
a list of all codewords within distance � from the re-
ceived word. Let us call a code C (�; L)-list decodable if the
number of codewords within distance � of any received
word is at most L. To obtain better trade-offs via list de-
coding, (�; L)-list decodable codes are needed where L is
bounded by a polynomial function of the block length,
since this an a priori requirement for polynomial time
list decoding. How large can � be as a function of R for
which such (�; L)-list decodable codes exist? A standard
random coding argument shows that � � 1 � R � o(1)
can be achieved over large enough alphabets, cf. [2,10],
and a simple counting argument shows that � must be at
most 1 � R. Therefore the list decoding capacity, i. e., the
information-theoretic limit of list decodability, is given by
the trade-off �cap(R) = 1 � R = 2�U (R). Thus list decod-
ing holds the promise of correcting twice as many errors as
unique decoding, for every rate. The above-mentioned list
decodable codes are non-constructive. In order to realize
the potential of list decoding, one needs explicit construc-
tions of such codes, and on top of that, polynomial time
algorithms to perform list decoding.

Building on works of Sudan [8], Guruswami and Su-
dan [6] and Parvaresh and Vardy [7], Guruswami and
Rudra [5] present codes that get arbitrarily close to the list
decoding capacity �cap(R) for every rate. In particular, for
every 1 > R > 0 and every � > 0, they give explicit codes
of rate R together with polynomial time list decoding algo-
rithm that can correct up to a fraction 1� R � � of errors.
These are the first explicit codes (with efficient list decod-
ing algorithms) that get arbitrarily close to the list decod-
ing capacity for any rate.

Description of the Code

Consider a Reed�Solomon (RS) code C = RSF ;F� [n; k]
consisting of evaluations of degree k polynomials over

http://doi.acm.org/10.1145/1122971.1122992

454 L List Decoding near Capacity: Folded RS Codes

some finite field F at the set F� of nonzero elements of F .
Let q = jF j = n + 1. Let � be a generator of the multiplica-
tive group F�, and let the evaluation points be ordered
as 1; �; � 2; : : : ; � n�1. Using all nonzero field elements as
evaluation points is one of the most commonly used in-
stantiations of Reed�Solomon codes.

Let m � 1 be an integer parameter called the folding
parameter. For ease of presentation, it will assumed that
m divides n = q � 1.

Definition 1 (Folded Reed�Solomon Code) The m-
folded version of the RS code C, denoted FRSF ;�;m;k , is
a code of block length N = n/m over Fm . The encoding
of a message f (X), a polynomial over F of degree at most
k, has as its j’th symbol, for 0 � j < n/m, the m-tuple
(f (� jm); f (� jm+1); � � � ; f (� jm+m�1)). In other words, the
codewords of C0 = FRSF ;�;m;k are in one-one correspon-
dence with those of the RS code C and are obtained
by bundling together consecutive m-tuple of symbols in
codewords of C.

Key Results

The following is the main result of Guruswami and Rudra.

Theorem 1 ([5]) For every � > 0 and 0 < R < 1, there
is a family of folded Reed�Solomon codes that have rate
at least R and which can be list decoded up to a fraction
1 � R � � of errors in time (and outputs a list of size at
most) (N/�2)O(��1 log(1/R)) where N is the block length of the
code. The alphabet size of the code as a function of the block
length N is (N/�2)O(1/�2).

The result of Guruswami and Rudra also works in a more
general setting called list recovering, which is defined next.

Definition 2 (List Recovering) A code C
 ˙ n is said
to be (�; l ; L)-list recoverable if for every sequence of sets
S1,� � � ,Sn where each Si
 ˙ has at most l elements, the
number of codewords c 2 C for which ci 2 Si for at least
�n positions i 2 f1; 2; : : : ; ng is at most L.

A code C
 ˙ n is said to (�; l)-list recoverable in poly-
nomial time if it is (�; l ; L(n))-list recoverable for some
polynomially bounded function L(�), and moreover there
is a polynomial time algorithm to find the at most L(n)
codewords that are solutions to any (�; l ; L(n))-list recov-
ering instance.

Note that when l = 1, (�; 1; �)-list recovering is the same as
list decoding up to a (1 � �) fraction of errors. Guruswami
and Rudra have the following result for list recovering.

Theorem 2 ([5]) For every integer l � 1, for all R,
0 < R < 1 and � > 0, and for every prime p, there is an

explicit family of folded Reed�Solomon codes over fields
of characteristic p that have rate at least R and which
can be (R + �; l)-list recovered in polynomial time. The al-
phabet size of a code of block length N in the family is
(N/�2)O(��2 log l /(1�R)).

Applications

To get within � of capacity, the codes in Theorem 1 have
alphabet size N˝(1/�2) where N is the block length. By
concatenating folded RS codes of rate close to 1 (that are
list recoverable) with suitable inner codes followed by re-
distribution of symbols using an expander graph (similar
to a construction for linear-time unique decodable codes
in [3]), one can get within � of capacity with codes over
an alphabet of size 2O(��4 log(1/�)). A counting argument
shows that codes that can be list decoded efficiently to
within � of the capacity need to have an alphabet size of
2˝(1/�).

For binary codes, the list decoding capacity is known
to be �bin(R) = H�1(1 � R) where H(�) denotes the bi-
nary entropy function. No explicit constructions of binary
codes that approach this capacity are known. However, us-
ing the Folded RS codes of Guruswami Rudra in a natu-
ral concatenation scheme, one can obtain polynomial time
constructable binary codes of rate R that can be list de-
coded up to a fraction �Zyab(R) of errors, where �Zyab(R) is
the “Zyablov bound”.

See [5] for more details.

Open Problems

The work of Guruswami and Rudra could be improved
with respect to some parameters. The size of the list needed
to perform list decoding to a radius that is within � of
capacity grows as NO(��1 log(1/R)) where N and R are the
block length and the rate of the code respectively. It re-
mains an open question to bring this list size down to
a constant independent of n (the existential random cod-
ing arguments work with a list size of O(1/�)). The al-
phabet size needed to approach capacity was shown to
be a constant independent of N. However, this involved
a brute-force search for a rather large (inner) code, which
translates to a construction time of about NO(��2 log(1/�))

(instead of the ideal construction time where the exponent
of N does not depend on �). Obtaining a “direct” alge-
braic construction over a constant-sized alphabet, such as
the generalization of the Parvaresh-Vardy framework to
algebraic-geometric codes in [4], might help in addressing
these two issues.

Finally, constructing binary codes that approach list
decoding capacity remains open.

List Scheduling L 455

Cross References

� Decoding Reed–Solomon Codes
� Learning Heavy Fourier Coefficients of Boolean

Functions
� LP Decoding

Recommended Reading
1. Elias, P.: List decoding for noisy channels. Technical Report 335,

Research Laboratory of Electronics MIT (1957)
2. Elias, P.: Error-correcting codes for list decoding. IEEE Trans. Inf.

Theory 37, 5–12 (1991)
3. Guruswami, V., Indyk, P.: Linear-time encodable/decodable

codes with near-optimal rate. IEEE Trans. Inf. Theory 51(10),
3393–3400 (2005)

4. Guruswami, V., Patthak, A.: Correlated Algebraic-Geometric
codes: Improved list decoding over bounded alphabets. In:
Proceedings of the 47th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pp. 227–236, Berkley, Octo-
ber 2006

5. Guruswami, V., Rudra, A.: Explicit capacity-achieving list-
decodable codes. In: Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, pp. 1–10. Seattle, May
2006

6. Guruswami, V., Sudan, M.: Improved decoding of Reed–Solo-
mon and algebraic-geometric codes. IEEE Trans. Inf. Theory 45,
1757–1767 (1999)

7. Parvaresh, F., Vardy, A.: Correcting errors beyond the
Guruswami�Sudan radius in polynomial time. In: Pro-
ceedings of the 46th Annual IEEE Symposium on Foundations
of Computer Science, pp. 285–294. Pittsburgh, 2005

8. Sudan, M.: Decoding of Reed�Solomon codes beyond the
error-correction bound. J Complex. 13(1), 180–193 (1997)

9. Wozencraft, J.M.: List Decoding. Quarterly Progress Report, Re-
search Laboratory of Electronics. MIT 48, 90–95 (1958)

10. Zyablov, V.V., Pinsker, M.S.: List cascade decoding. Probl. Inf.
Trans. 17(4), 29–34 (1981) (in Russian); pp. 236–240 (in English)
(1982)

List Scheduling
1966; Graham

LEAH EPSTEIN
Department of Mathematics, University of Haifa,
Haifa, Israel

Keywords and Synonyms

Online scheduling on identical machines

ProblemDefinition

The paper of Graham [8] was published in the 1960s. Over
the years it served as a common example of online al-
gorithms (though the original algorithm was designed as
a simple approximation heuristic). The following basic set-
ting is considered.

A sequence of n jobs is to be assigned to m identi-
cal machines. Each job should be assigned to one of the
machines. Each job has a size associated with it, which
can be seen as its processing time or its load. The load of
a machine is the sum of sizes of jobs assigned to it. The
goal is to minimize the maximum load of any machine,
also called the makespan. We refer to this problem as JOB
SCHEDULING.

If jobs are presented one by one, and each job needs to
be assigned to a machine in turn, without any knowledge
of future jobs, the problem is called online. Online algo-
rithms are typically evaluated using the (absolute) compet-
itive ratio, which is similar to the approximation ratio of
approximation algorithms. For an algorithmA, we denote
its cost byA as well. The cost of an optimal offline algo-
rithm that knows the complete sequence of jobs is denoted
by OPT. The competitive ratio of an algorithmA is the in-
fimumR � 1 such that for any input,A � R �OPT.

Key Results

In paper [8], Graham defines an algorithm called LIST
SCHEDULING (LS). The algorithm receives jobs one by
one. Each job is assigned in turn to a machine which has
a minimal current load. Ties are broken arbitrarily.

The main result is the following.

Theorem 1 LS has a competitive ratio of 2 � 1
m .

Proof. Consider a schedule created for a given sequence.
Let ` denote a job that determines the makespan (that is,
the last job assigned to a machine i that has a maximum
load), let L denote its size, and let X denote the total size
of all other jobs assigned to i. At the time when L was as-
signed to i, this was a machine of minimum load. There-
fore, the load of each machine is at least X. The makespan
of an optimal schedule (i. e., a schedule that minimizes the
makespan) is the cost of an optimal offline algorithm and
thus is denoted by OPT. Let P be the sum of all job sizes in
the sequence.

The two following simple lower bounds on OPT can
be obtained.

OPT � L : (1)

OPT �
P
m
�

m � X + L
m

= X +
L
m
: (2)

Inequality (1) follows from the fact that {OPT} needs to
run job ` and thus at least one machine has a load of at
least L. The first inequality in (2) is due to the fact that at
least one machine receives at least a fraction of 1

m of the
total size of jobs. The second inequality in (2) follows from
the comments above on the load of each machine.

456 L List Scheduling

This proves that the makespan of the algorithm, X + L
can be bounded as follows.

1X + L � OPT +
m � 1
m

L � OPT +
m � 1
m

OPT

= (2 � 1/m) OPT : (3)

The first inequality in (3) follows from (2) and the second
one from (1).

To show that the analysis is tight, consider m(m � 1)
jobs of size 1 followed by a single job of size m. After
the smaller jobs arrive, LS obtains a balanced schedule in
which every machine has a load of m � 1. The additional
job increases the makespan to 2m � 1. However, an opti-
mal offline solution would be to assign the smaller jobs to
m � 1 machines, and the remaining job to the remaining
machine, getting a load ofm.

A natural question was whether this bound is best pos-
sible. In a later paper, Graham [9] showed that applying
LS with a sorted sequence of jobs (by non-increasing order
of sizes) actually gives a better upper bound of 4

3 �
1
3m on

the approximation ratio. A polynomial time approxima-
tion scheme was given by Hochbaum and Shmoys in [10].
This is the best offline result one could hope for as the
problem is known to be NP-hard in the strong sense.

As for the online problem, it was shown in [5] that no
(deterministic) algorithm has a smaller competitive ratio
than 2 � 1

m , for the cases m = 2 and m = 3. On the other
hand, it was shown in a sequence of papers that an algo-
rithm with a smaller competitive ratio can be found for
any m � 4, and even algorithms with a competitive ratio
that does not approach 2 for largem were designed.

The best such result is by Fleischer and Wahl [6], who
designed a 1.9201-competitive algorithm. Lower bounds
of 1.852 and 1.85358 on the competitive ratio of any online
algorithmwere shown in [1,7]. Rudin [13] claimed a better
lower bound of 1.88.

Applications
As the study of approximation algorithms and specifi-
cally online algorithms continued, the analysis of many
scheduling algorithms used similar methods to the proof
above. Below, several variants of the problemwhere almost
the same proof as above gives the exact same bound are
mentioned.

Load Balancing of Temporary Tasks

In this problem the sizes of jobs are seen as loads. Time is
a separate axis. The input is a sequence of events, where
every event is an arrival or a departure of a job. The set
of active jobs at time t is the set of jobs that have already

arrived at this time and have not departed yet. The cost
of an algorithm at a time t is its makespan at this time.
The cost of an algorithm is its maximum cost over time. It
turns out that the analysis above can be easily adapted for
this model as well. It is interesting to note that in this case
the bound 2 � 1

m is actually best possible, as shown in [2].

Scheduling with Release Times
and Precedence Constraints
In this problem, the sizes represent processing times of
jobs. Various versions have been studied. Jobs may have
designated release times, which are the times when these
jobs become available for execution. In the online sce-
nario, each job arrives and becomes known to the algo-
rithm only at its release time. Some precedence constraints
may also be specified, defined by a partial order on the set
of jobs. Thus, a job can be run only after its predecessors
complete their execution. In the online variant, a job be-
comes known to the algorithm only after its predecessors
have been completed. In these cases, LS acts as follows.
Once a machine becomes available, a waiting job that ar-
rived earliest is assigned to it. (If there is no waiting job,
the machine is idle until a new job arrives.)

The upper bound of 2 � 1
m on the competitive ratio

can be proved using a relation between the cost of an op-
timal schedule, and the amount of time when at least one
machine is idle. (See [14] for details).

This bound is tight for several cases. For the case
where there are release times, no precedence constraints,
and processing times (sizes) are not known upon arrival,
Shmoys,Wein, andWilliamson [15] proved a lower bound
of 2 � 1

m . For the case where there are only precedence
constraints (no release times, and sizes of jobs are known
upon arrival), a lower bound of the same value appeared
in [4]. Note that the case with clairvoyant scheduling (i. e.,
sizes of jobs are known upon arrival), release times, and
no precedence constraints is not settled. For m = 2 it was
shown by Noga and Seiden [11] that the tight bound is
(5 �
p
5)/2 	 1:38198, and the upper bound is achieved

using an algorithm that applies waiting with idle machines
rather than scheduling a job as soon as possible, as done
by LS.

Open Problems

The most challenging open problem is to find the best
possible competitive ratio for this basic online problem of
job scheduling. The gap between the upper bound and the
lower bound is not large, yet it seems very difficult to find
the exact bound. A possibly easier question would be to
find the best possible competitive ratio for m = 4. A lower

Load Balancing L 457

bound of
p
3 	 1:732 has been shown by [12] and the cur-

rently known upper bound is 1:733 by [3]. Thus, it may be
the case that this bound would turn out to be

p
3.

Recommended Reading
1. Albers, S.: Better bounds for online scheduling. SIAM J. Com-

put. 29(2), 459–473 (1999)
2. Azar, Y., Epstein, L.: On-line load balancing of temporary tasks

on identical machines. SIAM J. Discret. Math. 18(2), 347–352
(2004)

3. Chen, B., van Vliet, A., Woeginger, G.J.: New lower and upper
bounds for on-line scheduling. Oper. Res. Lett. 16, 221–230
(1994)

4. Epstein, L.: A note on on-line schedulingwith precedence con-
straints on identical machines. Inf. Process. Lett. 76, 149–153
(2000)

5. Faigle, U., Kern, W., Turán, G.: On the performane of online
algorithms for partition problems. Acta Cybern. 9, 107–119
(1989)

6. Fleischer, R., Wahl, M.: On-line scheduling revisited. J. Sched. 3,
343–353 (2000)

7. Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating
adversaries for request-answer games. In: Proc. of the 11th
Symposium on Discrete Algorithms. (SODA2000), pp. 564–565
(2000)

8. Graham, R.L.: Bounds for certain multiprocessing anomalies.
Bell Syst. Techn. J. 45, 1563–1581 (1966)

9. Graham, R.L.: Bounds on multiprocessing timing anomalies.
SIAM J. Appl. Math. 17, 263–269 (1969)

10. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algo-
rithms for scheduling problems: theoretical and practical re-
sults. J. ACM 34(1), 144–162 (1987)

11. Noga, J., Seiden, S.S.: An optimal online algorithm for schedul-
ing two machines with release times. Theor. Comput. Sci.
268(1), 133–143 (2001)

12. Rudin III, J.F., Chandrasekaran, R.: Improved bounds for the on-
line scheduling problem. SIAM J. Comput. 32, 717–735 (2003)

13. Rudin III, J.F.: Improved bounds for the online scheduling prob-
lem. Ph. D. thesis, The University of Texas at Dallas (2001)

14. Sgall, J.: On-line scheduling. In: Fiat, A., Woeginger, G.J. (eds.)
Online Algorithms: The State of the Art, pp. 196–231. Springer
(1998)

15. Shmoys, D.B., Wein, J., Williamson, D.P.: Scheduling parallel
machines on-line. SIAM J. Comput. 24, 1313–1331 (1995)

Load Balancing
1994; Azar, Broder, Karlin
1997; Azar, Kalyanasundaram, Plotkin, Pruhs,
Waarts

LEAH EPSTEIN
Department of Mathematics, University of Haifa,
Haifa, Israel

Keywords and Synonyms

Online scheduling of temporary tasks

ProblemDefinition

Load balancing of temporary tasks is a online problem. In
this problem, arriving tasks (or jobs) are to be assigned
to processors, which are also called machines. In this en-
try, deterministic online load balancing of temporary tasks
with unknown duration is discussed. The input sequence
consists of departures and arrivals of tasks. If the sequence
consists of arrivals only, the tasks are called permanent.
Events happen one by one, so that the next event appears
after the algorithm completed dealing with the previous
event.

Clearly, the problem with temporary tasks is different
from the problem with permanent tasks. One such differ-
ence is that for permanent tasks, the maximum load is al-
ways achieved in the end of the sequence. For temporary
tasks this is not always the case. Moreover, the maximum
load may be achieved at different times for different algo-
rithms.

In the most general model, there are m machines
1; : : : ;m. The information of an arriving job j is a vector
pj of length m, where pij is the load or size of job j, if it
is assigned to machine i. As stated above, each job is to
be assigned to a machine before the next arrival or depar-
ture. The load of a machine i at time t is denoted by Lti and
is the sum of the loads (on machine i) of jobs which are
assigned to machine i, that arrived by time t and did not
depart by this time. The goal is to minimize the maximum
load of any machine over all times t. This machine model
is known as unrelated machines (see [3] for a study of the
load balancing problem of permanent tasks on unrelated
machines). Many more specific models were defined. In
the sequel a few such models are described.

For an algorithmA, denote its cost byA as well. The
cost of an optimal offline algorithm that knows the com-
plete sequence of events in advance is denoted by OPT.
Load balancing is studied in terms of the (absolute) com-
petitive ratio. The competitive ratio of A is the infimum
R such that for any input, A � R � OPT. If the competi-
tive ratio of an online algorithm is atmostC it is also called
C-competitive.

Uniformly related machines [3,12] are machines with
speeds associated with them, thus machine i has speed si
and the information that a job j needs to provide upon
its arrival is just its size, or the load that it incurs on
a unit speed machine, which is denoted by pj. Then let
pij = p j/si . If all speeds are equal, this results in identical
machines [15].

Restricted assignment [8] is a model where each job
may be run only on a subset of the machines. A job j is
associated with running time which is the time to run it

458 L Load Balancing

on any of its permitted machinesMj. Thus if i 2 Mj then
pij = p j and otherwise pij =1.

Key Results

The known results in all four models are surveyed below.

Identical Machines

Interestingly, the well known algorithm of Graham [15],
LIST SCHEDULING, which is defined for identical ma-
chines, is valid for temporary tasks as well as permanent
tasks. This algorithm greedily assigns a new job to the least
loaded machine. The competitive ratio of this algorithm
is 2 � 1/m, which is best possible (see [5]). Note that the
competitive ratio is the same as for permanent tasks, but
for permanent tasks, it is possible to achieve a competitive
ratio which does not tend to 2 for largem, see e. g. [11].

Uniformly Related Machines

The situation for uniformly related machines is not very
different. In this case, the algorithms of Aspnes et al. [3]
and of Berman et al. [12] cannot applied as they are, and
some modifications are required. The algorithm of Azar et
al. [7] has competitive ratio of at most 20 and it is based
on the general method introduced in [3]. The algorithm
of [3] keeps a guess value �, which is an estimation of
the cost of an optimal offline algorithm OPT. An invari-
ant that must be kept is � � 2OPT. At each step, a proce-
dure is applied for some value of � (which can be initial-
ized as the load of the first job on the fastest machine). The
procedure for a given value of � is applied until it fails,
and some job cannot be assigned while satisfying all con-
ditions. The procedure is designed so that if it fails, then
it must be the case that OPT > �, the value of � is dou-
bled, and the procedure is re-invoked for the new value,
ignoring all assignments that were done for small values of
�. This method is called doubling, and results in an algo-
rithm with a competitive ratio which is at most four times
the competitive ratio achieved by the procedure. The pro-
cedure for a given � acts as follows. Let c be a target com-
petitive ratio for the procedure. The machines are sorted
according to speed. Each job is assigned to the first ma-
chine in the sorted order such that the job is assignable
to it. A job j arriving at time t is assignable to machine
i if p j/si � � and Lt�1i + p j/si � c�. It is shown in [7]
that c = 5 allows the algorithm to succeed in the assign-
ment of all jobs (i. e., to have at least one assignable ma-
chine for each job), as long as OPT � �. Note that the
constant c for permanent tasks used in [3] is 2. As for
lower bounds, it is shown in [7] that the competitive ra-
tio R of any algorithm satisfies R � 3 � o(1). The upper

bound has been improved to 6 + 2
p
5 	 10:47 by Bar-Noy

et al. [9].

Restricted Assignment
As for restricted assignment, temporary tasks make this
model much more difficult than permanent tasks. The
competitive ratio O(logm) which is achieved by a sim-
ple greedy algorithm (see [8]) does not hold in this case.
In fact, the competitive ratio of this algorithm becomes
˝(m

2
3) [4]. Moreover, in the same paper, a lower bound

of ˝
p
m on the competitive ratio of any algorithm was

shown. The construction was quite involved, however,
Ma and Plotkin [16] gave a simplified construction which
yields the same result.

The construction of [16] selects a value p which
is the largest integer that satisfies p + p2 � m. Clearly
p = 	(

p
m). The lower bound uses two sets of machines,

pmachines which are called “the small group”, and p2 ma-
chines which are called “the large group”. The construc-
tion consists of p2 phases, each of which consists of p jobs
and is dedicated to one machine in the large group. In
phase i, job k of this phase can run either on the k-th
machine of the small group, or the i-th machine of the
large group. After this arrival, only one of these p jobs does
not depart. An optimal offline algorithm assigns all jobs in
each phase to the small group, except for the one job that
will not depart. Thus when the construction is completed,
it has one job on each machine of the large group. The
maximum load ever achieved by OPT is 1. However, the
algorithm does not know at each phase which job will not
depart. If no job is assigned to the small group in phase i,
then the load of machine i becomes p. Otherwise, a job that
the algorithm assigns to the small group is chosen as the
one that will not depart. In this way, after p phases, a total
load of p2 is accumulated on the small group, which means
that at least one machine there has load p. This completed
the construction.

An alternative algorithm called ROBIN HOOD was de-
signed in [7]. This algorithm keeps a lower bound on OPT,
which is the maximum between the following two func-
tions. The first one is the maximum average machine load
over time. The second is the maximum job size that has
ever arrived. Denote this lower bound at time t (after t
events have happened) by Bt . A machine i is called rich
at time t if Lti �

p
mBt . Otherwise it is called poor. The

windfall time of a rich machine i at time t is the time t0

such that i is poor at time t0 � 1 and rich at times t0; : : : ; t,
i. e., the last time that machine i became rich. Clearly, ma-
chines can become poor due to an update of Bt or depar-
ture of jobs. A machine can become rich due to arrival of
jobs that are assigned to it.

Local Alignment (with Affine Gap Weights) L 459

The algorithm assigns a job j to a poor machine in
M(j), if such a machine exists. Otherwise, j is assigned to
the machine in M(j) with the most recent windfall time.
The analysis makes use of the fact that at most

p
m ma-

chines can be rich simultaneously.
Note that for small values of m (m � 5), the compet-

itive ratio of the greedy algorithm is still best possible, as
shown in [1]. In this paper it was shown that these bounds
are (m + 3)/2 for m = 3; 4; 5. It is not difficult to see that
for m = 2, the best bound is 2.

Unrelated Machines

The most extreme difference occurs for unrelated ma-
chines. Unlike the case of permanent tasks, where an upper
bound of O(logm) can be achieved [3], it was shown in [2]
that any algorithm has a competitive ratio of˝(m/logm).
Note that a trivial algorithm, which assigns each job to the
machine where it has a minimum load, has competitive
ratio of at mostm [3].

Applications

A similar model is known for the bin packing problem as
well. In this problem, the sequence consists of arrivals and
departures items of sizes in (0; 1]. The goal is to keep a par-
tition of the currently existing items into subsets (bins),
where the sum of items in each subset is at most 1. The
cost is the maximum number of bins ever used simultane-
ously. This problem was studied in [13,14].

In [10], an hierarchical model was studied. This is
a special case of restricted assignment where for each job
j, M(j) is a prefix of the machines. They showed that even
for temporary tasks an algorithm of constant competitive
ratio exists for this model.

In [6], which studied resource augmentation in load
balancing, temporary tasks were considered as well. Re-
source augmentation is a type of analysis where the on-
line algorithm is compared to an optimal offline algorithm
which has less machines.

Open Problems

Small gaps still remain for both uniformly related ma-
chines, and for unrelated machines. For unrelated ma-
chines is could be interesting to find if there exists an al-
gorithm of competitive ratio o(m), or whether the simple
algorithm stated above has optimal competitive ratio (up
to a multiplicative factor).

Cross References

See� List Scheduling for more information on identical
machines and [15].

Recommended Reading

1. Armon, A., Azar, Y., Epstein, L., Regev, O.: On-line restricted as-
signment of temporary tasks with unknowndurations. Inf. Pro-
cess. Lett. 85(2), 67–72 (2003)

2. Armon, A., Azar, Y., Epstein, L., Regev, O.: Temporary tasks as-
signment resolved. Algorithmica 36(3), 295–314 (2003)

3. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line load
balancingwith applications tomachine scheduling and virtual
circuit routing. J. ACM 44, 486–504 (1997)

4. Azar, Y., Broder, A.Z., Karlin, A.R.: On-line load balancing. Theor.
Comput. Sci. 130, 73–84 (1994)

5. Azar, Y., Epstein, L.: On-line load balancing of temporary tasks
on identical machines. SIAM J. Discret. Math. 18(2), 347–352
(2004)

6. Azar, Y., Epstein, L., van Stee, R.: Resource augmentation in load
balancing. J. Sched. 3(5), 249–258 (2000)

7. Azar, Y., Kalyanasundaram, B., Plotkin, S., Pruhs, K., Waarts, O.:
On-line load balancing of temporary tasks. J. Algorithms 22(1),
93–110 (1997)

8. Azar, Y., Naor, J., Rom, R.: The competitiveness of on-line as-
signments. J. Algorithms 18, 221–237 (1995)

9. Bar-Noy, A., Freund, A., Naor, J.: New algorithms for relatedma-
chines with temporary jobs. J. Sched. 3(5), 259–272 (2000)

10. Bar-Noy, A., Freund, A., Naor, J.: On-line load balancing in
a hierarchical server topology. SIAM J. Comput. 31, 527–549
(2001)

11. Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an
ancient scheduling problem. J. Comput. Syst. Sci. 51(3), 359–
366 (1995)

12. Berman, P., Charikar, M., Karpinski, M.: On-line load balancing
for related machines. J. Algorithms 35, 108–121 (2000)

13. Chan, W.-T., Wong, P.W.H., Yung, F.C.C.: On dynamic bin pack-
ing: an improved lower bound and resource augmentation
analysis. In: Proc. of the 12th Annual International Confer-
ence on Computing and Combinatorics (COCOON2006), 2006,
pp. 309–319

14. Coffman, E.G., Garey, M.R., Johnson, D.S.: Dynamic bin packing.
SIAM J. Comput. 12(2), 227–258 (1983)

15. Graham, R.L.: Bounds for certain multiprocessing anomalies.
Bell Syst. Tech. J. 45, 1563–1581 (1966)

16. Ma, Y., Plotkin, S.: Improved lower bounds for load balancing
of tasks with unknown duration. Inf. Process. Lett. 62, 31–34
(1997)

Local Alignment
(with Affine GapWeights)
1986; Altschul, Erickson

STEPHEN F. ALTSCHUL1,2, BRUCE W. ERICKSON1,
HENRY LEUNG2

1 The Rockefeller University,
New York, NY, USA

2 Department of Applied Mathematics,
MIT, Cambridge, MA, USA

460 L Local Alignment (with Affine Gap Weights)

Keywords and Synonyms

Pairwise local alignment with affine gap weight

ProblemDefinition

The pairwise local alignment problem is concerned with
identification of a pair of similar substrings from two
molecular sequences. This problem has been studied in
computer science for four decades. However, most prob-
lemmodels were generally not biologically satisfying or in-
terpretable before 1974. In 1974, Sellers developed a met-
ric measure of the similarity betweenmolecular sequences.
Waterman et al. (1976) generalized this metric to include
deletions and insertions of arbitrary length which repre-
sent the minimum number of mutational events required
to convert one sequence into another.

Given two sequences S and T, a pairwise alignment is
a way of inserting space characters ‘_’ in S and T to form
sequences S’ and T’ respectively with the same length.
There can be different alignments of two sequences. The
score of an alignment is measured by a scoring metric
ı(x, y). At each position i where both x and y are not
spaces, the similarity between S’[i] and T’[i] is measured
by ı(S’[i], T’[j]). Usually, ı(x, y) is positive when x and y
are the same and negative when x and y are different. For
positions with consecutive space characters, the alignment
scores of the space characters are not considered indepen-
dently; this is because inserting or deleting a long region
in molecular sequences is more likely to occur than in-
serting or deleting several short regions. Smith and Wa-
terman use an affine gap penalty to model the similarity at
positions with space characters. They define a consecutive
substring with spaces in S’ or T’ be a gap. For each length l
gap, they give a linear penaltyWk = Ws + l �Wp for some
predefined positive constantsWs andWp. The score of an
alignment is the sum of the score at each position i minus
the penalties of each gap. For example, the alignment score
of the following alignment is ı(G;G) + ı(C;C) + ı(C;C) +
ı(U;C) + ı(G;G) � (Ws + 2 �Wp).

S : GCCAUUG
T : GCC__CG

The optimal global alignment of sequences S and T is the
alignment of S and T with the maximum alignment score.

Sometimes we want to know whether sequences S
and T contain similar substrings instead of whether S
and T are similar. In this case, they solve the pairwise local
alignment problem, which wants to find a substringU in S
and another substring V in T such that the global align-
ment score of U and V is maximized.

Pairwise Local Alignment Problem

Input: Two sequences S[1::n] and T[1::m].
Output: A substring U in S and a substring V in T such
that the optimal global alignment of U and V is maxi-
mized.

Key Results

The pairwise local alignment problem can be solved in
O(mn) time and O(mn) space by dynamic programming.
The algorithm needs to fill in the 4 m � n tables H, HN ,
HS and HT , where each entry takes constant time. The in-
dividual meanings of these 4 tables are as follows.

H(i, j): maximum score of the global alignment ofU and
V over all suffixes U in S[1::i] and all suffixes V
in T[1:: j].

HN (i, j): maximumscore of the global alignment ofU and
V over all suffixes U in S[1::i] and all suffixes V
in T[1:: j], with the restriction that S[i] and T[j]
must be aligned.

HS(i, j): maximum score of the global alignment ofU and
V over all suffixes U in S[1::i] and all suffixes V
in T[1:: j], with S[j] aligned with a space charac-
ter.

HT(i, j): maximum score of the global alignment ofU and
V over all suffixes U in S[1::i] and all suffixes V
in T[1:: j], with T[j] aligned with a space charac-
ter.

The optimal local alignment score of S and T will be
maxfH(i; j)g and the local alignment of S and T can be
found by tracking back tableH.

In the tables, each entry can be filled in by the following
recursion in constant time.

Basic Step:

H(i; 0) = H(0; j) = 0 ; 0 6 i 6 n ; 0 6 i 6 m
HN (i; 0) = HN(0; j) = �1 ; 0 6 i 6 n ; 0 6 i 6 m
Hs(i; 0) = HT(0; j) = Ws +Wp ; 0 6 i 6 n ; 0 6 i 6 m
Hs(0; j) = HT(i; 0) = �1 ; 0 6 i 6 n ; 0 6 i 6 m

Recursion Step:

H(i; j) = maxfHN(i; j);Hs (i; j);HT (i; j); 0g ;
1 6 i 6 n ; 1 6 i 6 m

HN (i; j) = H(i � 1; j � 1) + ı(S[i]; T[j]) ;
1 6 i 6 n ; 1 6 i 6 m

Local Alignment (with Concave Gap Weights) L 461

Hs(i; j) = maxfH(i � 1; j) � (Ws +Wp);
HS(i � 1; j) �Wpg ;

1 6 i 6 n ; 1 6 i 6 m
HT(i; j) = maxfH(i; j � 1) � (Ws +Wp);

HT(i; j � 1) �Wpg ;

1 6 i 6 n ; 1 6 i 6 m

Applications

Local alignment with affine gap penalty can be used for
protein classification, phylogenetic footprinting and iden-
tification of functional sequence elements.

URL to Code

http://bioweb.pasteur.fr/seqanal/interfaces/water.html

Cross References

� Efficient Methods for Multiple Sequence Alignment
with Guaranteed Error Bounds

� Local Alignment (with Concave Gap Weights)

Recommended Reading
1. Allgower, E.L., Schmidt, P.H.: An Algorithm for Piecewise-Linear

Approximation of an Implicitly Defined Manifold. SIAM J. Num.
Anal. 22, 322–346 (1985)

2. Altschul, S.F., Gish,W., Miller,W., Myers, E.W., Lipman, D.J.: Basic
Local Alignment Search Tool. J. Mol. Biol. 215, 403–410 (1990)

3. Chao, K.M., Miller, W.: Linear-space algorithms that build local
alignments from fragments. Algorithmica 13, 106–134 (1995)

4. Myers, E.W., Miller, W.: Optimal Alignments in Linear Space.
Bioinformatics 4, 11–17 (1988)

5. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cam-
bridge University Press, Cambridge (1999). ISBN 052158519

6. Ma, B., Tromp, J., Li, M.: PatternHunter: Faster and More Sensi-
tive Homology Search. Bioinformatics 18, 440–445 (2002)

7. Needleman, S.B., Wunsch, C.D.: A General Method Applicable
to the Search for Similarities in the Amino Acid Sequence of
Two Proteins. J. Mol. Biol. 48, 443–453 (1970)

8. Pearson, W.R., Lipman, D.J.: Improved Tools for Biological Se-
quence Comparison. Proc. Natl. Acad. Sci. USA 85, 2444–2448
(1988)

9. Sellers, P.H.: On the Theory and Computation of Evolutionary
Distances. SIAM J. Appl. Math. 26, 787–793 (1974)

10. Smith, T.F., Waterman, M.S.: Identification of Common Molec-
ular Subsequences. J. Mol. Biol. 147, 195–197 (1981)

Local Alignment
(with Concave GapWeights)
1988; Miller, Myers

S. M. YIU
Department of Computer Science, The University
of Hong Kong, Hong Kong, China

Keywords and Synonyms

Sequence alignment; Pairwise local alignment

ProblemDefinition

This work of Miller and Myers [9] deals with the prob-
lem of pairwise sequence alignment in which the distance
measure is based on the gap penalty model. They proposed
an efficient algorithm to solve the problem when the gap
penalty is a concave function of the gap length.

Let X and Y be two strings (sequences) of alphabet˙ .
The pairwise alignment A of X and Y maps X, Y into
strings X0, Y 0 that may contain spaces (not in˙) such that
(1) jX 0j = jY 0j = `; (2) removing spaces from X0 and Y 0

returns X and Y , respectively; and (3) for any 1 � i � `,
X 0[i] and Y 0[i] cannot be both spaces where X 0[i] denotes
the ith character in X0.

To evaluate the quality of an alignment, there aremany
different measures proposed (e. g. edit distance, scoring
matrix [11]). In this work, they consider the gap penalty
model.

A gap in an alignment A of X and Y is a maximal
substring of contiguous spaces in either X0 or Y 0. There
are gaps and aligned characters (both X 0[i] and Y 0[i] are
not space) in an alignment. The score for a pair of aligned
characters is based on a distance function ı(a; b) where
a; b 2 ˙ . Usually ı is a metric, but this assumption is not
required in this work. The penalty of a gap of length k is
based on a non-negative function W(k). The score of an
alignment is the sum of the scores of all aligned characters
and gaps. An alignment is optimal if its score is the mini-
mum possible.

The penalty function W(k) is concave if
�
W(k) �

�
W(k + 1) for all k � 1, where

�
W(k) = W(k + 1) �

W(k).
The penalty function W(k) is affine if W(k) = a + bk

where a, b are constants. Affine function is a special case of
concave function. The problem for affine gap penalty has
been considered in [1,6].

The penalty function W(k) is a P-piece affine curve if
the domain ofW can be partitioned into P intervals, (�1 =
1; �1); (�2; �2); : : : ; (�p; �p =1), where �i = �i�1 + 1 for
all 1 < i � p, such that for each interval, the values of
W follow an affine function. More precisely, for any k 2
(�i ; �i),W(k) = ai + bi k for some constants ai, bi.

Problem

INPUT: Two strings X and Y , the scoring function ı, and
the gap penalty functionW(k).
OUTPUT: An optimal alignment of X and Y .

http://bioweb.pasteur.fr/seqanal/interfaces/water.html

462 L Local Alignment (with Concave Gap Weights)

Key Results

Theorem 1 If W(k) is concave, they provide an algo-
rithm for computing an optimal alignment that runs in
O(n2 log n) time where n is the length of each string and
uses O(n) expected space.

Corollary 1 If W(k) is an affine function, the same algo-
rithm runs in O(n2) time.

Theorem 2 For some special types of gap penalty func-
tions, the algorithm can be modified to run faster.
� If W(k) is a P-piece affine curve, the algorithm can be

modified to run in O(n2 log P) time.
� For logarithmic gap penalty function, W(k) = a +

b log k, the algorithm can be modified to run in O(n2)
time.

� IfW(k) is a concave function when k > K, the algorithm
can be modified to run in O(K + n2 log n) time.

Applications

Pairwise sequence alignment is a fundamental problem
in computational biology. Sequence similarity usually im-
plies functional and structural similarity. So, pairwise
alignment can be used to check whether two given se-
quences have similar functions or structures and to pre-
dict functions of newly identified DNA sequence. One can
refer to Gusfield’s book for some examples on the impor-
tance of sequence alignment (pp. 212–214 of [7]).

The alignment problem can be further divided into the
global alignment problem and the local alignment prob-
lem. The problem defined here is the global alignment
problem in which the whole input strings are required to
align with each other. On the other hand, for local align-
ment, the main interest lies in identifying a substring from
each of the input strings such that the alignment score
of the two substrings is the minimum among all possible
substrings. Local alignment is useful in aligning sequences
that are not similar, but contain a region that are highly
conserved (similar). Usually this region is a functional part
(domain) of the sequences. Local alignment is particularly
useful in comparing proteins. Proteins in the same fam-
ily from different species usually have some functional do-
mains that are highly conserved while the other parts are
not similar at all. Examples are the homeobox genes [10]
for which the protein sequences are quite different in each
species except the functional domain homeodomain.

Conceptually, the alignment score is used to cap-
ture the evolutionary distance between the two given se-
quences. Since a gap of more than one space can be cre-
ated by a single mutational event, so considering a gap

of length k as a unit instead of k different point mutation
may be more appropriate in some cases. However, which
gap penalty function should be used is a difficult question
to answer and sometimes depend on the actual applica-
tions. Most applications, such as BLAST, uses the affine
gap penalty which is still the dominate model in practice.
On the other hand, Benner et al. [2] and Gu and Li [13]
suggested to use the logarithmic gap penalty in some cases.
Whether using a concave gap penalty function in general
is meaningful is still an open issue.

Open Problem

Note that the results of this paper have been independently
obtained by Galil and Giancarlo [5] and for affine gap
penalty, Gotoh [6] also gave an O(n2) algorithm for solv-
ing the alignment problem. In [4], Eppstein gave a faster
algorithm that runs in O(n2) time for solving the same se-
quence alignment problemwith concave gap penalty func-
tion. Whether a subquadratic algorithm exists for solv-
ing this problem remains open. As a remark, subquadratic
algorithms do exist for solving the sequence alignment
problem if the measure is not based on the gap penalty
model, but is computed as

P`
i=1 ı(X1

0[i];Y 0[i]) based
only on a scoring function ı(a; b) where a; b 2 ˙ [f_g
where ‘_’ represents the space [3,8].

Experimental Results

They have performed some experiments to compare their
algorithm with Waterman’s O(n3) algorithm [12] on
a number of different concave gap penalty functions. Arti-
ficial sequences are generated for the experiments. Results
from their experiments lead to their conjectures that Wa-
terman’s method runs in O(n3) time when the two given
strings are very similar or the score for mismatch charac-
ters is small and their algorithm runs in O(n2) time if the
range of the function W(k) is not functionally dependent
on n.

Cross References

� Local Alignment (with Affine GapWeights)

Recommended Reading
1. Altschul, S.F., Erickson, B.W.: Optimal sequence alignment us-

ing affine gap costs. Bull. Math. Biol. 48, 603–616 (1986)
2. Benner, S.A., Cohen, M.A., Gonnet, G.H.: Empirical and struc-

tural models for insertions and deletions in the divergent evo-
lution of proteins. J. Mol. Biol. 229, 1065–1082 (1993)

3. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic
sequence alignment algorithm for unrestricted scoring matri-
ces. SIAM J. Comput. 32(6), 1654–1673 (2003)

Local Approximation of Covering and Packing Problems L 463

4. Eppstein, D.: Sequence comparison with mixed convex and
concave costs. J. Algorithms 11(1), 85–101 (1990)

5. Galil, Z., Giancarlo, R.: Speeding up dynamic programming
with applications tomolecular biology. Theor. Comput. Sci. 64,
107–118 (1989)

6. Gotoh, O.: An improved algorithm for matching biological se-
quences. J. Mol. Biol. 162, 705–708 (1982)

7. Gusfield, D.: Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, Cambridge (1997)

8. Masek, W.J., Paterson, M.S.: A fater algorithm for computing
string edit distances. J. Comput. Syst. Sci. 20, 18–31 (1980)

9. Miller, W., Myers, E.W.: Sequence comparison with concave
weighting functions. Bull. Math. Biol. 50(2), 97–120 (1988)

10. De Roberts, E., Oliver, G., Wright, C.: Homeobox genes and the
vertibrate body plan, pp. 46–52. Scientific American (1990)

11. Sankoff, D., Kruskal, J.B.: Time Warps, Strings Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison.
Addison-Wesley (1983)

12. Waterman, M.S.: Efficient sequence alignment algorithms.
J. Theor. Biol. 108, 333–337 (1984)

13. Li, W.-H., Gu, X.: The size distribution of insertions anddeletions
in human and rodent pseudogenes suggests the logarithmic
gap penalty for sequence alignment. J. Mol. Evol. 40, 464–473
(1995)

Local Approximation of Covering
and Packing Problems
2003–2006; Kuhn, Moscibroda, Nieberg,
Wattenhofer

FABIAN KUHN
Department of Computer Science, ETH Zurich,
Zurich, Switzerland

Synomyms

Distributed approximation of covering and packing prob-
lems

ProblemDefinition

A local algorithm is a distributed algorithm on a network
with a running time which is independent or almost inde-
pendent of the network’s size or diameter. Usually, a dis-
tributed algorithm is called local if its time complexity is
at most polylogarithmic in the size n of the network. Be-
cause the time needed to send information from one node
of a network to another is at least proportional to the dis-
tance between the two nodes, in such an algorithm, each
node’s computation is based on information from nodes in
a close vicinity only. Although all computations are based
on local information, the network as a whole typically still
has to achieve a global goal. Having local algorithms is in-
evitable to obtain time-efficient distributed protocols for

large-scale and dynamic networks such as peer-to-peer
networks or wireless ad hoc and sensor networks.

In [2,6,7], Kuhn, Moscibroda, and Wattenhofer de-
scribe upper and lower bounds on the possible trade-off
between locality (time complexity) of distributed algo-
rithms and the quality (approximation ratio) of the achiev-
able solution for an important class of problems called
covering and packing problems. Interesting covering and
packing problems in the context of networks include min-
imum dominating set, minimum vertex cover, maximum
matching, as well as certain flow maximization problems.
All the results given in [2,6,7] hold for general network
topologies. Interestingly, it is shown by Kuhn, Mosci-
broda, Nieberg, and Wattenhofer in [3,4,5] that cover-
ing and packing problems can be solved much more effi-
ciently when assuming that the network topology has spe-
cial properties which seem realistic for wireless networks.

Distributed Computation Model

In [2,3,4,5,6,7], the network is modeled as an undirected
and except for [5] unweighted graph G = (V ; E). Two
nodes u; v 2 V of the network are connected by an edge
(u; v) 2 E whenever there is a direct bidirectional commu-
nication channel connecting u and v. In the following, the
number of nodes and the maximal degree ofG are denoted
by n = jV j and by�.

For simplicity, communication is assumed to be syn-
chronous. That is, all nodes start an algorithm simultane-
ously and time is divided into rounds. In each round, every
node can send an arbitrary message to each of its neigh-
bors and perform some local computation based on the
information collected in previous rounds. The time com-
plexity of a synchronous distributed algorithm is the num-
ber of rounds until all nodes terminate.

Local distributed algorithms in the described syn-
chronous model have first been considered in [8] and [9].
As an introduction to the above and similar distributed
computation models, it is also recommended to read [11].

Distributed Covering and Packing Problems

A fractional covering problem (P) and its dual fractional
packing problem (D), are linear programs (LPs) of the
canonical forms

min cTx max bTy

s.t. A � x � b (P) s.t. AT � y � c (D)
x � 0 y � 0

where all aij, bi, and ci are non-negative. In a distributed
context, finding a small (weighted) dominating set or

464 L Local Approximation of Covering and Packing Problems

a small (weighted) vertex cover of the network graph are
the most important covering problems. A dominating set
of a graph G is a subset S of its nodes such that all nodes
of G either are in S or have a neighbor in S. The domi-
nating set problem can be formulated as covering integer
LP by setting A to be the adjacency matrix with 1s in the
diagonal, by setting b to be a vector with all 1s and if c is
the weight vector. A vertex cover is a subset of the nodes
such that all edges are covered. Packing problems occur in
a broad range of resource allocation problems. As an ex-
ample, in [1] and [10], the problem of assigning flows to
a given fixed set of paths is described. Another common
packing problem is (weighted) maximum matching, the
problem of finding a largest possible set of pairwise non-
adjacent edges.

While computing a dominating set, vertex cover, or
matching of the network graph are inherently distributed
tasks, general covering and packing LPs have no immedi-
ate distributed meaning. To obtain a distributed version
of these LPs, two dual LPs (P) and (D) are mapped to a bi-
partite network as follows. For each primal variable xi and
for each dual variable yj, there are nodes vip and vjd , re-
spectively. There is an edge between two nodes vip and vjd

whenever a ji 6= 0, i. e., there is an edge if the ith variable of
an LP occurs in its jth inequality.

In most real-world examples of distributed covering
and packing problems, the network graph is of course not
equal to the described bipartite graph. However, it is usu-
ally straightforward to simulate an algorithm which is de-
signed for the above bipartite network on the actual net-
work graph without affecting time and message complexi-
ties.

Bounded Independence Graphs

In [3,4,5], local approximation algorithms for covering
and packing problems for graphs occuring in the context
of wireless ad hoc and sensor networks are studied. Be-
cause of scale, dynamism and the scarcity of resources,
these networks are a particular interesting area to apply
local distributed algorithms.

Wireless networks are often modeled as unit disk
graphs (UDGs): Nodes are assumed to be in a two-
dimensional Euclidean plane and two nodes are connected
by an edge iff their distance is at most 1. This certainly cap-
tures the inherent geometric nature of wireless networks.
However, unit disk graphs seemmuch too restrictive to ac-
curately model real wireless networks. In [3,4,5], Kuhn et.
al. therefore consider two generalizations of the unit disk
graphmodel, bounded independent graphs (BIGs) and unit
ball graphs (UBGs). A BIG is a graph where all local in-

dependent sets are of bounded size. In particular, it is as-
sumed that there is a function I(r) which upper bounds the
size of the largest independent set of every r-neighborhood
in the graph. Note that the value of I(r) is independent
of n, the size of the network. If I(r) is a polynomial in
r, a BIG is said to be polynomially bounded. UDGs are
BIGs with I(r) 2 O(r2). UBGs are a natural generalization
of UDGs. Given some underlying metric space (V , d) two
nodes u; v 2 V are connected by an edge iff d(u; v) � 1. If
the metric space (V , d) has constant doubling dimension1,
a UBG is a polynomially bounded BIG.

Key Results

The first algorithms to solve general distributed covering
and packing LPs appear in [1,10]. In [1], it is shown that
it is possible to find a solution which is within a factor of
1 + " of the optimum in O(log3(�n)/"3) rounds where �
is the ratio between the largest and the smallest non-zero
coefficient of the LPs. The result of [1] is improved and
generalized in [6,7] where the following result is proven:

Theorem 1 In k rounds, (P) and (D) can be approxi-
mated by a factor of (��)O(1/

p
k) using messages of size at

most O(log(��)). An (1 + ")-approximation can be found
in time O(log2(��)/"4).

The algorithm underlying Theorem 1 needs only small
messages of size O(log(��)) and extremely simple and ef-
ficient local computations. If larger messages and more
complicated (but still polynomial) local computations are
allowed, it is possible to improve the result of Theorem 1:

Theorem 2 In k rounds, LPs of the form (P) or (D) can be
approximated by a factor of O(nO(1/k)). This implies that
a constant approximation can be found in time O(log n).

Theorems 1 and 2 only give bounds on the quality of dis-
tributed solutions of covering and packing LPs. However,
many of the practically relevant problems are integer ver-
sions of covering and packing LPs. Combined with sim-
ple randomized rounding schemes, the following upper
bounds for dominating set, vertex cover, andmatching are
proven in [6,7]:

Theorem 3 Let � be the maximal degree of the given
network graph. In k rounds, minimum dominating set can
be approximated by a factor of O(�O(1/

p
k) � log�) in ex-

pectation by using messages of size O(�). Without bound
on the message size, an expected approximation ratio of

1The doubling dimension of a metric space is the logarithm of the
maximal number of balls needed to cover a ball Br(x) in the metric
space with balls Br/2(y) of half the radius.

Local Approximation of Covering and Packing Problems L 465

O(nO(1/k) � log�) can be achieved. Minimum vertex cover
and maximum matching can both be approximated by
a factor of O(�1/k) in k rounds.

In [2,7], it is shown that the upper bounds on the trade-offs
between time complexity and approximation ratio given
by Theorems 1–3 are almost optimal:

Theorem 4 In k rounds, it is not possible to approximate
minimum vertex cover better than by factors of ˝(�1/k /k)
and ˝(n˝(1/k2)/k). This implies time lower bounds of
˝(log�/ log log�) and˝(

p
log n/ log log n) for constant

or even poly-logarithmic approximation ratios. The same
bounds hold for minimum dominating set, for maximum
matching, as well as for the underlying LPs.

While Theorem 4 shows that the results given by The-
orems 1–3 are close to optimal for worst-case network
topologies, the problems might be much simpler if re-
stricted to networks which actually occur in reality. In fact,
it is shown in [3,4,5] that the above results can indeed be
improved if the network graph is assumed to be a BIG or
a UBG with constant doubling dimension. In [5], the fol-
lowing result for UBGs is proven:

Theorem 5 Assume that the network graph G = (V ; E) is
a UBG with underlying metric (V, d). If (V, d) has constant
doubling dimension and if all nodes know the distances to
their neighbors in G up to a constant factor, it is possible to
find constant approximations for minimumdominating set,
minimum vertex cover, maximum matching, as well as for
general LPs of the forms (P) and (D) in O(log� n) rounds2.

While the algorithms underlying the results of Theo-
rems 1 and 2 for solving covering and packing LPs are
deterministic or straight-forward to be derandomized, all
known efficient algorithms to solve minimum dominating
set and more complicated integer covering and packing
problems are randomized. Whether there are good deter-
ministic local algorithms for dominating set and related
problems is a long-standing open question . In [3], it is
shown that if the network is a BIG, efficient deterministic
distributed algorithms exist:

Theorem 6 On a BIG it is possible to find constant approx-
imations for minimum dominating set, minimum vertex
cover, maximum matching, as well as for LPs of the forms
(P) and (D) deterministically in O(log� � log� n) rounds.

In [4], it is shown that on polynomially bounded BIGs, one
can even go one step further and efficiently find an arbi-
trarily good approximation by a distributed algorithm:

2The log-star function log� n is an extremely slowly increasing
function which gives the number of times the logarithm has to be
taken to obtain a number smaller than 1.

Theorem 7 On a polynomially bounded BIG, there is
a local approximation scheme which computes a (1 + ")-
approximation for minimum dominating set in time
O(log� log�(n)/"+1/"O(1)). If the network graph is a UBG
with constant doubling dimension and nodes know the dis-
tances to their neighbors, a (1 + ")-approximation can be
computed in O(log�(n)/" + 1/"O(1)) rounds.

Applications

The most important application environments for local
algorithms are large-scale decentralized systems such as
wireless ad hoc and sensor networks or peer-to-peer net-
works. On such networks, only local algorithms lead to
scalable systems. Local algorithms are particularly well-
suited if the network is dynamic and computations have
to be repeated frequently.

A particular application of the minimum dominating
set problem is the task of clustering the nodes of wireless
ad hoc or sensor networks. Assigning each node to an ad-
jacent node in a dominating set induces a simple cluster-
ing of the nodes. If the nodes of the dominating set (i. e.,
the cluster centers) are connected with each other by us-
ing additional nodes, the resulting structure can be used as
a backbone for routing.

Open Problems

There are a number of open problems related to the dis-
tributed approximation of covering and packing problems
in particular and to distributed approximation algorithms
in general. The most obvious open problem certainly is to
close the gaps between the upper bounds of Theorems 1, 2,
and 3 and the lower bounds of Theorem 4. It would also
be interesting to see how well other optimization prob-
lems can be approximated in a distributed manner. In par-
ticular, the distributed complexity of more general classes
of linear programs remains completely open. A very in-
triguing unsolved problem is to determine to what ex-
tent randomization is needed to obtain time-efficient dis-
tributed algorithms. Currently, the best determinic algo-
rithms for finding a dominating set of reasonable size and
for many other problems take time 2O(

p
log n) whereas the

time complexity of the best randomized algorithms usually
is at most polylogarithmic in the number of nodes.

Cross References

� Fractional Packing and Covering Problems
�MaximumMatching
� Randomized Rounding

466 L Local Computation in Unstructured Radio Networks

Recommended Reading
1. Bartal, Y., Byers, J.W., Raz, D.: Global optimization using local

information with applications to flow control. In: Proc. of the
38th IEEE Symposium on the Foundations of Computer Sci-
ence (FOCS), pp. 303–312 (1997)

2. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be com-
puted locally! In: Proc. of the 23rd ACM Symp. on Principles of
Distributed Computing (PODC), pp. 300–309 (2004)

3. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast de-
terministic distributedmaximal independent set computation
on growth-boundedgraphs. In: Proc. of th 19th Int. Conference
on Distributed Computing (DISC), pp. 273–287 (2005)

4. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Local ap-
proximation schemes for ad hoc and sensor networks. In: Proc.
of the 3rd Joint Workshop on Foundations of Mobile Comput-
ing (DIALM-POMC), pp. 97–103 (2005)

5. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of
bounded growth. In: Proc. of the 24th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 60–68 (2005)

6. Kuhn, F., Wattenhofer, R.: Constant-time distributed dominat-
ing set approximation. Distrib. Comput. 17(4), 303–310 (2005)

7. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being
near-sighted. In: Proc. of the 17th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 980–989 (2006)

8. Linial, N.: Locality in distributedgraph algorithms. SIAM J. Com-
put. 21(1), 193–201 (1992)

9. Naor, M., Stockmeyer, L.: What can be computed locally? In:
Proc. of the 25th Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 184–193 (1993)

10. Papadimitriou, C., Yannakakis, M.: Linear programming with-
out thematrix. In: Proc. of the 25th ACMSymposiumon Theory
of Computing (STOC), pp. 121–129 (1993)

11. Peleg, D.: Distributed Computing: A Locality-Sensitive Ap-
proach. SIAM (2000)

Local Computation
in Unstructured Radio Networks
2005; Moscibroda, Wattenhofer

THOMAS MOSCIBRODA
Systems & Networking Research Group, Microsoft
Research, Redmond, WA, USA

Keywords and Synonyms

Maximal independent sets in radio networks; Coloring
unstructured radio networks

ProblemDefinition

In many ways, familiar distributed computing communi-
cation models such as the message passing model do not
describe the harsh conditions faced in wireless ad hoc and
sensor networks closely enough. Ad hoc and sensor net-
works are multi-hop radio networks and hence, messages

being transmittedmay interfere with concurrent transmis-
sions leading to collisions and packet losses. Furthermore,
the fact that all nodes share the same wireless communi-
cation medium leads to an inherent broadcast nature of
communication. A message sent by a node can be received
by all nodes in its transmission range. These aspects of
communication are modeled by the radio network model,
e. g. [2].

Definition 1 (Radio Network Model) In the radio net-
work model, the wireless network is modeled as a graph
G = (V ; E). In every time-slot, a node u 2 V can either
send or not send a message. A node v, (u; v) 2 E, receives
the message if and only exactly one of its neighbors has
sent a message in this time-slot.

While communication primitives such as broadcast, wake-
up, or gossiping, have been widely studied in the litera-
ture on radio networks (e. g., [1,2,8]), less is known about
the computation of local network coordination structures
such as clusterings or colorings. The most basic notion of
a clustering in wireless networks boils down to the graph-
theoretic notion of a dominating set.

Definition 2 (MinimumDominating Set (MDS)) Given
a graph G = (V ; E). A dominating set is a subset S
 V
such that every node is either in S or has at least one neigh-
bor in S. The minimum dominating set problem asks for
a dominating set S of minimum cardinality.

A dominating set S
 V in which no two neighboring
nodes are in S is a maximal independent set (MIS). The
distributed complexity of computing a MIS in the mes-
sage passing model has been of fundamental interest to the
distributed computing community for over two decades
(e. g., [11,12,13]), but much less is known about the prob-
lem’s complexity in radio network models.

Definition 3 (Maximal Independent Set (MIS)) Given
a graphG = (V ; E). An independent set is a subset of pair-
wise non-adjacent nodes in G. A maximal independent set
in G is an independent set S
 V such that for every node
u … S, there is a node v 2
 (u) in S.

Another important primitive in wireless networks is the
vertex coloring problem, because associating different col-
ors with different time slots in a time-division multiple ac-
cess (TDMA) scheme; a correct coloring corresponds to
a medium access control (MAC) layer without direct in-
terference, that is, no two neighboring nodes send at the
same time.

Definition 4 (Minimum Vertex Coloring) Given
a graph G = (V ; E). A correct vertex coloring for G is an
assignment of a color c(v) to each node v 2 V , such that

Local Computation in Unstructured Radio Networks L 467

c(u) ¤ c(v) any two adjacent nodes (u; v) 2 E. A mini-
mum vertex coloring is a correct coloring that minimizes
the number of used colors.

In order to capture the especially harsh characteristics of
wireless multi-hop networks immediately after their de-
ployment, the unstructured radio network model makes
additional assumptions. In particular, a new notion of
asynchronous wake-up is considered, because, in a wire-
less, multi-hop environment, it is realistic to assume that
some nodes join the network (e. g. become deployed, or
switched on) later than others. Notice that this is differ-
ent from the notion of asynchronous wake-up defined and
studied in [8] and subsequent work, in which nodes are
assumed to be “woken up” by incoming messages.

Definition 5 (Unstructured Radio Network Model) In
the unstructured radio network model, the wireless net-
work is modeled as a unit disk graph (UDG) G = (V ; E).
In every time-slot, a node u 2 V can either send or not
send a message. A node v, (u; v) 2 E, receives the message
if and only exactly one of its neighbors has sent a message
in this time-slot. Additionally, the following assumptions
are made:
� Asynchronous wake-up:Newnodes can wake up/join in

asynchronously at any time. Before waking-up, nodes
do neither receive nor send any messages.

� No global clock: Nodes only have access to a local clock
that starts increasing after wake-up.

� No collision detection: Nodes cannot distinguish be-
tween the event of a collision and no message being
sent. Moreover, a sending node does not know how
many (if any at all!) neighbors have received its trans-
mission correctly.

� Minimal global knowledge: At the time of their wake-
up, nodes have no information about their neighbors in
the network and they do not whether some neighbors
are already awake, executing the algorithm. However,
nodes know an upper bound for the maximumnumber
of nodes n = jVj.

The measure that captures the efficiency of an algorithm
defined in the unstructured radio network model is its
time-complexity. Since every node can wake up at a differ-
ent time, the time-complexity of an algorithm is defined
as the maximum number of time-slots between a node’s
wake-up and its final, irrevocable decision.

Definition 6 (Time Complexity) The running time Tv
of a node v 2 V is defined as the number of time slots
between v’s waking up and the time v makes an irrevo-
cable final decision on the outcome of its protocol (e. g.
whether or not it joins the dominating set in a clustering

algorithm, or which color to take in a coloring algorithm,
etc.). The time complexity T(Q) of algorithm Q is defined
as the maximum running time over all nodes in the net-
work, i. e., T(Q) := maxv2V Tv .

Key Results

Naturally, algorithms for such uninitialized, chaotic net-
works have a different flavor compared to “traditional” al-
gorithms that operate on a given network graph that is
static and well-known to all nodes. Hence, the algorithmic
difficulty of the following algorithms partly stems from the
fact that since nodes wake up asynchronously and do not
have access to a global clock, the different phases of the al-
gorithm may be arbitrarily intertwined or shifted in time.
Hence, while some nodes may already be in an advanced
stage of the algorithm, there may be nodes that have ei-
ther just woken up, or that are still in early stage. It was
proven in [9] that even in single-hop networks (G is the
complete graph), no efficient algorithms exist if nodes have
no knowledge on n.

Theorem 1 If nodes have no knowledge of n, every (possi-
bly randomized) algorithm requires up to˝(n/ log n) time
slots before at least one node can send a message in single-
hop networks.

In single-hop networks, and if n is globally known, [8]
presented a randomized algorithm that selects a unique
leader in timeO(n log n), with high probability. This result
has subsequently been improved toO(log2n) by Jurdziński
and Stachowiak [9]. The generalized wake-up problem in
multi-hop radio network was first studied in [4].

The complexity of local network structures such as
clusterings or colorings in unstructured multi-hop radio
networks was first studied in [10]: A good approximation
to theminimumdominating set problem can be computed
in polylogarithmic time.

Theorem 2 In the unstructured radio network model, an
expected O(1)-approximation to the dominating set prob-
lem can be computed in expected time O(log2n). That is, ev-
ery node decides whether to join the dominating set within
O(log2n) time slots after its wake-up.

In a subsequent paper [18], it has been shown that the run-
ning time of O(log2n) is sufficient even for computing the
more sophisticated MIS structure. This result is asymptot-
ically optimal because—improving on a previously known
bound of˝(log2n/ log log n) [9]—, a corresponding lower
bound of˝(log2n) has been proven in [6].

Theorem 3 With high probability, a maximal indepen-
dent set (MIS) can be computed in expected time O(log2n)

468 L Local Search Algorithms for kSAT

in the unstructured radio network model. This is asymptot-
ically optimal.

It is interesting to compare this achievable upper bound
on the harsh unstructured radio network model with
the best known time lower bounds in message pass-
ing models: ˝(log�n) in unit disk graphs [12] and
˝(
p
log n/ log log n) in general graphs [11]. Also, a time

bound of O(log2n) was also proven in [7] in a radio net-
work model without asynchronous wake-up and in which
nodes have a-priori knowledge about their neighborhood.

Finally, it is also possible to efficiently color the nodes
of a network as shown in [17], and subsequently improved
and generalized in Chap. 12 of [15].

Theorem 4 In the unstructured radio network model,
a correct coloring with at most O(�) colors can be com-
puted in time O(� log n) with high probability.

Similar bounds for a model with collision detection mech-
anisms are proven in [3].

Applications

In wireless ad hoc and sensor networks, local network co-
ordination structures find important applications. In par-
ticular, clusterings and colorings can help in facilitating
the communication between adjacent nodes (MAC layer
protocols) and between distant nodes (routing protocols),
or to improve the energy efficiency of the network.

The following mentions two specific examples of ap-
plications: Based on the MIS algorithms of Theorem 3,
a protocol is presented in [5], which efficiently constructs
a spanner, i. e., a more sophisticated initial infrastruc-
ture that helps in structuring wireless multi-hop network.
In [16], the same MIS algorithm is used as an ingredi-
ent for a protocol that minimizes the energy consump-
tion of wireless sensor nodes during the deployment phase,
a problem that has been first studied in [14].

Recommended Reading
1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A Lower Bound for

Radio Broadcast. J. Comput. Syst. Sci. 43, 290–298 (1991)
2. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity

of broadcast in radio networks: an exponential gap be-
tween determinism randomization. In: Proc. 6th Symposium
on Principles of Distributed Computing (PODC), pp. 98–108
(1987)

3. Busch, R., Magdon-Ismail, M., Sivrikaya, F., Yener, B.: Con-
tention-Free MAC Protocols for Wireless Sensor Networks.
In: Proc. 18th Annual Conference on Distributed Computing
(DISC) (2004)

4. Chrobak, M., Ga̧sieniec, L., Kowalski, D.: The Wake-Up Prob-
lem in Multi-Hop Radio Networks. In: Proc. of the 15th

ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 992–1000 (2004)

5. Farach-Colton, M., Fernandes, R.J., Mosteiro, M.A.: Bootstrap-
ping a Hop-Optimal Network in the Weak Sensor Model. In:
Proc. of the 13th European Symposium on Algorithms (ESA),
pp. 827–838 (2005)

6. Farach-Colton, M., Fernandes, R.J., Mosteiro, M.A.: Lower
Bounds for Clear Transmissions in Radio Networks. In: Proc. of
the 7th Latin American Symposium on Theoretical Informatics
(LATIN), pp. 447–454 (2006)

7. Gandhi, R., Parthasarathy, S.: Distributed Algorithms for Color-
ing and Connected Domination in Wireless Ad Hoc Networks.
In: Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS), pp. 447–459 (2004)

8. Ga̧sieniec, L., Pelc, A., Peleg, D.: The Wakeup Problem in Syn-
chronous Broadcast Systems (Extended Abstract). In: Proc. of
the 19th ACM Symposium on Principles of Distributed Com-
puting (PODC), pp. 113–121 (2000)

9. Jurdziński, T., Stachowiak, G.: Probabilistic Algorithms for the
Wakeup Problem in Single-Hop Radio Networks. In: Proc. of
the 13th Annual International Symposium on Algorithms and
Computation (ISAAC), pp. 535–549 (2002)

10. Kuhn, F., Moscibroda, T., Wattenhofer, R.: InitializingNewly De-
ployed Ad Hoc and Sensor Networks. In: Proc. of the 10th An-
nual International Conference on Mobile Computing and Net-
working (MOBICOM), pp. 260–274 (2004)

11. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What Cannot Be
Computed Locally! In: Proceedings of 23rd Annual Symposium
on Principles of Distributed Computing (PODC), pp. 300–309
(2004)

12. Linial, N.: Locality in Distributed Graph Algorithms. SIAM J.
Comput. 21(1), 193–201 (1992)

13. Luby, M.: A Simple Parallel Algorithm for theMaximal Indepen-
dent Set Problem. SIAM J. Comput. 15, 1036–1053 (1986)

14. McGlynn,M.J., Borbash, S.A.: Birthday Protocols for Low Energy
Deployment and Flexible Neighborhood Discovery in Ad Hoc
Wireless Networks. In: Proc. of the 2nd ACM Int. Symposium on
Mobile Ad Hoc Networking & Computing (MOBIHOC), (2001)

15. Moscibroda, T.: Locality, Scheduling, and Selfishness: Algorith-
mic Foundations of Highly Decentralized Networks. Doctoral
Thesis Nr. 16740, ETH Zurich (2006)

16. Moscibroda, T., von Rickenbach, P., Wattenhofer, R.: Analyzing
the Energy-Latency Trade-off during the Deployment of Sen-
sor Networks. In: Proc. of the 25th Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), (2006)

17. Moscibroda, T., Wattenhofer, R.: Coloring Unstructured Radio
Networks. In: Proc. of the 17th ACM Symposium on Parallel Al-
gorithms and Architectures (SPAA), pp. 39–48 (2005)

18. Moscibroda, T., Wattenhofer, R.: Maximal Independent Sets in
Radio Networks. In: Proc. of the 23rd ACM Symposium on Prin-
ciples of Distributed Computing (PODC), pp. 148–157 (2005)

Local Search Algorithms for kSAT
1999; Schöning

KAZUO IWAMA
School of Informatics, Kyoto University, Kyoto, Japan

Local Search Algorithms for kSAT L 469

ProblemDefinition

The CNF Satisfiability problem is to determine, given
a CNF formula F with n variables, whether or not there
exists a satisfying assignment for F. If each clause of F
contains at most k literals, then F is called a k-CNF for-
mula and the problem is called k-SAT, which is one of
the most fundamental NP-complete problems. The trivial
algorithm is to search 2n 0/1-assignments for the n vari-
ables. But since [6], several algorithms which run signifi-
cantly faster than this O(2n) bound have been developed.
As a simple exercise, consider the following straightfor-
ward algorithm for 3-SAT, which gives us an upper bound
of 1.913n: Choose an arbitrary clause in F, say (x1_x2_x3).
Then generate seven new formulas by substituting to these
x1, x2 and x3 all the possible values excepting (x1; x2; x3) =
(0; 1; 0) which obviously unsatisfies F. Now one can check
the satisfiability of these seven formulas and conclude that
F is satisfiable iff at least one of them is satisfiable. (Let
T(n) denote the time complexity of this algorithm. Then
one can get the recurrence T(n) � 7 � T(n � 3) and the
above bound follows.)

Key Results

In the long history of k-SAT algorithms, the one by Schön-
ing [11] is an important breakthrough. It is a standard lo-
cal search and the algorithm itself is not new (see e. g. [7]).
Suppose that y is the current assignment (its initial value
is selected uniformly at random). If y is a satisfying assign-
ment, then the algorithm answers yes and terminates. Oth-
erwise, there is at least one clause whose three literals are
all false under y. Pick an arbitrary such clause and select
one of the three literals in it at random. Then flip (true to
false and vice versa) the value of that variable, replace y
with that new assignment and then repeat the same proce-
dure. More formally:

SCH(CNF-formula F, integer I)
repeat I times

y = uniformly random vector 2 f0; 1gn

z = RandomWalk(F; y);
if z satisfies F

then output(z); exit;
end
output(‘Unsatisfiable’);

RandomWalk(CNF formula G(x1; x2; : : : ; xn),
assignment y);

y0 = y;
for 3n times

if y0 satisfies G
then return y0; exit;

C an arbitrary clause of G that is not satisfied
by y0;

Modify y0 as follows:
select one literal of C uniformly at random and
flip the assignment to this literal;

end
return y0

Schöning’s analysis of this algorithm is very elegant.
Let d(a; b) denote the Hamming distance between two bi-
nary vectors (assignments) a and b. For simplicity, sup-
pose that the formula F has only one satisfying assign-
ment y� and the current assignment y is far from y* by
Hamming distance d. Suppose also that the currently false
clause C includes three variables, xi, xj and xk. Then y and
y* must differ in at least one of these three variables. This
means that if the value of xi, xj or xk is flipped, then the
new assignment gets closer to y* byHamming distance one
with probability at least 1/3. Also, the new assignment gets
farther by Hamming distance one with probability at most
2/3. The argument can be generalized to the case that F has
multiple satisfying assignments. Now here comes the key
lemma:

Lemma 1 Let F be a satisfiable formula and y* be a sat-
isfying assignment for F. For each assignment y, the prob-
ability that a satisfying assignment (that may be differ-
ent from y*) is found by RandomWalk(F; y) is at least
(1/(k � 1))d(y;y�)/p(n), where p(n) is a polynomial in n.

By taking the average over random initial assignments, the
following theorem follows:

Theorem 2 For any satisfiable formula F on n variables,
the success probability of RandomWalk(F; y) is at least
(k/2(k � 1))n /p(n) for some polynomial p. Thus, by setting
I = (2(k � 1)/k)n � p(n), SCH finds a satisfying assign-
ment with high probability. When k = 3, this value of I is
O(1.334n).

Applications

The Schöning’s result has been improved by a series of
papers [1,3,9] based on the idea of [3]. Namely, Random
Walk is combined with the (polynomial time) 2SAT al-
gorithm, which makes it possible to choose better ini-
tial assignments. For derandomization of SCH, see [2].
[4] developed a nontrivial combination of SCH with an-
other famous, backtrack-type algorithm by [8], result-
ing in the then fastest algorithm with O(1:324n) running
time. The current fastest algorithm is due to [10], which

470 L Local Search for K-medians and Facility Location

is based on the same approach as [4] and runs in time
O(1:32216n).

Open Problems

k-SAT is probably the most popular NP-complete prob-
lem for which numerous researchers are competing for its
fastest algorithm. Thus improving its time bound is always
a good research target.

Experimental Results

AI researchers have also been very active in SAT algo-
rithms including local search, see e. g. [5].

Cross References

� Exact Algorithms for General CNF SAT
� Random Planted 3-SAT

Recommended Reading
1. Baumer, S., Schuler, R.: Improving a probabilistic 3-SAT algo-

rithm by dynamic search and independent clause pairs. ECCC
TR03-010, (2003) Also presented at SAT (2003)

2. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Pa-
padimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2 -
2/(k + 1))n algorithm for k-SAT based on local search. Theor.
Comput. Sci. 289(1), 69–83 (2002)

3. Hofmeister, T., Schöning, U., Schuler, R., Watanabe, O.: Prob-
abilistic 3-SAT algorithm further improved. Proceedings 19th
Symposiumon Theoretical Aspects of Computer Science. LNCS
2285, 193–202 (2002)

4. Iwama, K., Tamaki, S.: Improved upper bounds for 3-SA T. In:
Proceedings 15th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 321–322. New Orleans, USA (2004)

5. Kautz, H., Selman, B.: Ten Challenges Redux: Recent Progress
in Propositional Reasoning and Search. Proceedings 9th Inter-
national Conference on Principles and Practice of Constraint
Programming, pp. 1–18. Kinsale, Ireland (2003)

6. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than
2n steps. Discret. Appl. Math. 10, 287–295 (1985)

7. Papadimitriou, C.H.: On selecting a satisfying truth assign-
ment. Proceedings 32nd Annual Symposium on Foundations
of Computer Science, pp. 163–169. San Juan, Puerto Rico
(1991)

8. Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved
exponential-time algorithm for k-SAT. Proceedings 39th An-
nual Symposium on Foundations of Computer Science,
pp. 628–637. Palo Alto, USA (1998) Also, J. ACM 52(3), 337–364
(2006)

9. Rolf, D.: 3-SAT 2 RTIME(O(1.32793n)). ECCC TR03–054. (2003)
10. Rolf, D.: Improved Bound for the PPSZ/Schöning-Algorithm for

3-SAT. J. Satisf. Boolean Model. Comput. 1, 111–122 (2006)
11. Schöning, U.: A probabilistic algorithm for k-SAT and con-

straint satisfaction problems. Proceedings 40th Annual Sym-
posium on Foundations of Computer Science, pp. 410–414.
New York, USA (1999)

Local Search for K-medians
and Facility Location
2001; Arya, Garg, Khandekar, Meyerson,
Munagala, Pandit

KAMESH MUNAGALA
Levine Science Research Center, Duke University,
Durham, NC, USA

Keywords and Synonyms
k-Medians; k-Means; k-Medioids; Facility location; Point
location; Warehouse location; Clustering

ProblemDefinition
Clustering is a form of unsupervised learning, where the
goal is to “learn” useful patterns in a data setD of size n. It
can also be thought of as a data compression scheme where
a large data set is represented using a smaller collection of
“representatives”. Such a scheme is characterized by spec-
ifying the following:
1. A distance metric d between items in the data

set. This metric should satisfy the triangle inequal-
ity: d(i; j) � d(j; k) + d(k; i) for any three items
i; j; k 2 D. In addition, d(i; j) = d(j; i) for all i; j 2 S
and d(i; i) = 0. Intuitively, if the distance between two
items is smaller, they are more similar. The items are
usually points in some high dimensional Euclidean
space Rd . The commonly used distance metrics in-
clude the Euclidean and Hamming metrics, and the co-
sine metric measuring the angle between the vectors
representing the items.

2. The output of the clustering process is a partitioning of
the data. This chapter deals with center-based cluster-
ing. Here, the output is a smaller set C � Rd of cen-
ters which best represents the input data set S � Rd .
It is typically the case that jCj � jDj. Each item j 2 D
is mapped to or approximated by the the closest cen-
ter i 2 C, implying d(i; j) � d(i0; j) for all i0 2 C. Let
� : D! C denote this mapping. This is intuitive since
closer-by (similar) items will be mapped to the same
center.

3. A measure of the quality of the clustering, which de-
pends on the desired output. There are several com-
monly used measures for the quality of clustering. In
each of the clustering measures described below, the
goal is to choose C such that jCj = k and the objective
function f (C) is minimized.

k-center: f (C) = max j2D d(j; �(j)).
k-median: f (C) =P j2D d(j; �(j)).
k-means: f (C) =P j2D d(j; �(j))2 .

Local Search for K-medians and Facility Location L 471

All the objectives described above are NP-HARD to
optimize in general metric spaces d, leading to the study
of heuristic and approximation algorithms. In the rest of
this chapter, the focus is on the k-median objective. The
approximation algorithms for k-median clustering are de-
signed for d being a general possibly non-Euclidean met-
ric space. In addition, a collection F of possible center lo-
cations is given as input, and the set of centers C is re-
stricted toC
 F . From the perspective of approximation,
the restriction of the centers to a finite set F is not too re-
strictive – for instance, the optimal solution which is re-
stricted to F = D has objective value at most a factor 2 of
the optimal solution which is allowed arbitrary F . Denote
jDj = n, and jF j = m. The running times of the heuristics
designedwill be polynomial inmn, and a parameter " > 0.
The metric space d is now defined overD [F .

A related problem to k-medians is its Lagrangean re-
laxation, called FACILITY LOCATION. In this problem,
there is a again collection F of possible center locations.
Each location i 2 F has a location cost ri. The goal is to
choose a collection C
 F of centers and construct the
mapping � : S! C from the items to the centers such
that the following function is minimized:

f (C) =
X
j2D

d(j; �(j)) +
X
i2C

ri :

The facility location problem effectively gets rid of the
hard bound k on the number of centers in k-medians, and
replaces it with the center cost term

P
i2C ri in the objec-

tive function, therebymaking it a Lagrangean relaxation of
the k-median problem. Note that the costs of centers can
now be non-uniform.

The approximation results for both the k-median and
facility location problems carry over as is to the weighted
case: Each item j 2 D is allowed to have a non-negative
weight wj. In the objective function f (C), the termP

j2D d(j; �(j)) is replaced with
P

j2D wj � d(j; �(j)).
The weighted case is especially relevant to the FACILITY
LOCATION problem where the item weights signify user
demands for a resource, and the centers denote locations
of the resource. In the remaining discussion, “items” and
“users” are used inter-changably to denotemembers of the
setD.

Key Results

The method of choice for solving both the k-median and
FACILITY LOCATION problems are the class of local search
heuristics, which run in “local improvement” steps. At
each step t, the heuristic maintains a set Ct of centers. For
the k-median problem, this collection satisfies jCtj = k.

A local improvement step first generates a collection of
new solutions Et+1 from Ct . This is done such that jEt+1j

is polynomial in the input size. For the k-median prob-
lem, in addition, each C 2 Et+1 satisfies jCj = k. The im-
provement step sets Ct+1 = argminC2Et+1

f (C). For a pre-
specified parameter " > 0, the improvement iterations
stop at the first step T where f (CT) � (1 � ") f (CT�1).

The key design issue is the specification of the start
setC0, and the construction ofEt+1 from Ct . The key anal-
ysis issues are bounding the number of steps T till termi-
nation, and the quality of the final solution f (CT) against
the optimal solution f (C�). The ratio (f (CT))/(f (C�)) is
termed the “locality gap” of the heuristic.

Since each improvement step reduces the value of the
solution by at least a factor of (1 � "), the running time
in terms of number of improvement steps is given by the
following expression (here D is the ratio of the largest to
smallest distance in the metric space overD [F).

T � log1/(1�")

�
f (C0)
f (CT)

�
�

log
�

f (C0)
f (CT)

�

"
�

log(nD)
"

which is polynomial in the input size. Each improvement
step needs computation of f (C) for C 2 Et . This is poly-
nomial in the input size since jEt j is assumed to be poly-
nomial.

k-Medians

The first local search heuristic with provable performance
guarantees is presented in the work of Arya et al. [1]. The
is the natural p-swap heuristic: Given the current center
set Ct of size k, the set Et+1 is defined by:

Et+1 =f(Ct nA) [B ;
whereA
 Ct ;B
 F n Ct ; jAj = jBj � pg :

The above simply means swap at most p centers from Ct
with the same number of centers from F n Ct . Recall that
jDj = n and jF j = m. Clearly, jEt+1j � (k(m � k))p �
(km)p . The start set C0 is chosen arbitrarily. The value p
is a parameter which affects the running time and the ap-
proximation ratio. It is chosen to be a constant, so that jEtj

is polynomial in m.

Theorem 1 ([1]) The p-swap heuristic achieves locality
gap (3 + 2/p) + " in running time O(nk(log(nD))/"(mk)p).
Furthermore, for every p there is a k-median instance where
the p-swap heuristic has locality gap exactly (3 + 2/p).

Setting p = 1/", the above heuristic achieves a 3 + " ap-
proximation in running time Õ(n(mk)O(1/")).

472 L Local Search for K-medians and Facility Location

Facility Location

For this problem, since there is no longer a constraint on
the number of centers, the local improvement step needs
to be suitably modified. There are two local search heuris-
tics both of which yield a locality gap of 3 + " in polyno-
mial time.

The “add/delete/swap” heuristic proposed by Kuehn
and Hamburger [10] either adds a center to Ct , drops
a center from Ct , or swaps a center in Ct with one in
F n Ct . The start set C0 is again arbitrary.

Et+1 = f(Ct nA)[B; whereA
 Ct ;B
 F n Ct ;

jAj = 0; jBj = 1 or jAj = 1; jBj = 0; or jAj = 1; jBj = 1g

Clearly, jEt+1j = O(m2), making the running time polyno-
mial in the input size and 1/". Korupolu, Plaxton, and Ra-
jaraman [9] show that this heuristic achieves a locality gap
of at most 5 + ". Arya et al. [1] strengthen this analysis to
show that this heuristic achieves a locality gap of 3 + ", and
that bound this is tight in the sense that there are instances
where the locality gap is exactly 3.

The “add one/delete many” heuristic proposed by
Charikar and Guha [2] is slightly more involved. This
heuristic adds one facility and drops all facilities which be-
come irrelevant in the new solution.

Et+1 = f(Ct [fig) n I(i); where i 2 F n Ct ; I(i)
 Ctg

The set I(i) is computed as follows: LetW denote the set of
items closer to i than to their assigned centers in Ct . These
items are ignored from the computation of I(i). For every
center s 2 Ct , let Us denote all items which are assigned
to s. If fs +

P
j2UsnW djd(j; s) >

P
j2UsnW djd(j; i), then

it is cheaper to remove location s and reassign the items in
Us nW to i. In this case, s is placed in I(i). Let N denote
m + n. Computing I(i) is therefore a O(N) time greedy
procedure, making the overall running time polynomial.
Charikar and Guha [2] show the following theorem:

Theorem 2 ([2]) The local search heuristic which at-
tempts to add a random center i … Ct and remove set
I(i), computes a 3 + " approximation with high probability
within T = O(N logN(logN + 1/")) improvement steps,
each with running time O(N).

Capacitated Variants

Local search heuristics are also known for capacitated vari-
ants of the k-median and facility location problems. In this
variant, each possible location i 2 F can serve at most ui
number of users. In the soft capacitated variant of facil-
ity location, some ri � 0 copies can be opened at i 2 F so

that the facility cost is fi ri and the number of users served
is at most riui . The optimization goal is now to decide the
value of ri for each i 2 F so that the assignment of users to
the centers satisfies the capacity constraints at each center,
and the cost of opening the centers and assigning the users
is minimized. For this variant, Arya et al. [1] show a local
search heuristic with a locality gap of 4 + ".

In the version of facility location with hard capaci-
ties, location i 2 F has a hard bound ui on the num-
ber of users that can be assigned here. If all the capaci-
ties ui are equal (uniform case), Korupolu, Plaxton, and
Rajaraman [9] present an elegant local search heuristic
based on solving a transshipment problem which achieves
a 8 + " locality gap. The analysis is improved by Chudak
andWilliamson [4] to show a locality gap 6 + ". The case of
non-uniform capacities requires significantly new ideas –
Pál, Tardos, andWexler [14] present a network flow based
local search heuristic that achieves a locality gap of 9 + ".
This bound is improved to 8 + " by Mahdian and Pál [12],
who generalize several of the local search techniques de-
scribed above in order to obtain a constant factor approx-
imation for the variant of facility location where the fa-
cility costs are arbitrary non-decreasing functions of the
demands they serve.

Related Algorithmic Techniques

Both the k-median and facility location problems have
a rich history of approximation results. Since the study
of uncapacitated facility location was initiated by Cornue-
jols, Nemhauser, and Wolsey [5], who presented a nat-
ural linear programming (LP) relaxation for this prob-
lem, several constant-factor approximations have been de-
signed via several techniques, ranging from rounding of
the LP solution [11,15], local search [2,9], the primal-dual
schema [7], and dual fitting [6]. For the k-median prob-
lem, the first constant factor approximation [3] of 6 2

3 was
obtained by rounding the natural LP relaxation via a gen-
eralization of the filtering technique in [11]. This result
was subsequently improved to a 4 approximation by La-
grangean relaxation and the primal-dual schema [2,7], and
finally to a (3 + ") approximation via local search [1].

Applications

The facility location problem has been widely studied
in operations research [5,10], and forms a fundamental
primitive for several resource location problems. The k-
medians and k-means metrics are widely used in cluster-
ing, or unsupervised learning. For clustering applications,
several heuristic improvements to the basic local search
framework have been proposed: k-Medioids [8] selects

Lower Bounds for Dynamic Connectivity L 473

a random input point and replaces it with one of the ex-
isting centers if there is an improvement; the CLARA [8]
implementation of k-Medioids chooses the centers from
a random sample of the input points to speed up the com-
putation; the CLARANS [13] heuristic draws a fresh ran-
dom sample of feasible centers before each improvement
step to further improve the efficiency.

Cross References

� Facility Location

Recommended Reading
1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K.,

Pandit, V.: Local search heuristics for k-median and facility lo-
cation problems. SIAM J. Comput. 33(3), 544–562 (2004)

2. Charikar, M., Guha, S.: Improved combinatorial algorithms for
facility location problems. SIAM J. Comput. 34(4), 803–824
(2005)

3. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-
factor approximation algorithm for the k-median problem (ex-
tended abstract). In: STOC ’99: Proceedings of the thirty-first
annual ACMsymposiumon Theory of computing, pp. 1–10. At-
lanta, May 1-4 1999

4. Chudak, F.A., Williamson, D.P.: Improved approximation algo-
rithms for capacitated facility location problems. Math. Pro-
gram. 102(2), 207–222 (2005)

5. Cornuejols, G., Nemhauser, G.L., Wolsey, L.A.: The uncapaci-
tated facility location problem. In: Discrete Location Theory,
pp. 119–171. Wiley, New York (1990)

6. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.:
Greedy facility location algorithms analyzed using dual fitting
with factor-revealing LP. J. ACM 50(6), 795–824 (2003)

7. Jain, K., Vazirani, V.V.: Approximation algorithms for metric
facility location and k-median problems using the primal-
dual schema and lagrangian relaxation. J. ACM 48(2), 274–296
(2001)

8. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Intro-
duction to Cluster Analysis. Wiley, New York (1990)

9. Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Analysis of a lo-
cal search heuristic for facility location problems. In: SODA ’98:
Proceedings of the ninth annual ACM-SIAM symposium on
Discrete algorithms, pp. 1–10. San Francisco, USA; 25–26 Jan-
uary 1998

10. Kuehn, A.A., Hamburger, M.J.: A heuristic program for locating
warehouses. Management Sci. 9(4), 643–666 (1963)

11. Lin, J.-H., Vitter, J.S.: "-approximations with minimum packing
constraint violation (extended abstract). In: STOC ’92: Proceed-
ings of the twenty-fourth annual ACM symposium on Theory
of computing, pp. 771–782. Victoria (1992)

12. Mahdian, M., Pál, M.: Universal facility location. In: European
Symposium on Algorithms, pp. 409–421. Budapest, Hungary,
September 16–19 2003

13. Ng, R.T., Han, J.: Efficient and effective clustering methods for
spatial data mining. In: Proc. Symp. on Very Large Data Bases
(VLDB), pp. 144–155. SantiagodeChile, 12–15 September 1994

14. Pál, M., Tardos, É., Wexler, T.: Facility location with nonuniform
hard capacities. In: Proceedings of the 42nd Annual Sympo-

sium on Foundations of Computer Science, pp. 329–338. Las
Vegas, 14–17 October 2001

15. Shmoys, D.B., Tardos, É., and Aardal, K.: Approximation algo-
rithms for facility location problems. In: Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Comput-
ing, pp. 265–274. El Paso, 4–6 May 1997

Location-Based Routing
� Geographic Routing
� Routing in Geometric Networks

Lower Bounds for Dynamic
Connectivity
2004; Pătraşcu, Demaine

MIHAI PĂTRAŞCU
CSAIL, MIT, Cambridge, MA, USA

Keywords and Synonyms

Dynamic trees

ProblemDefinition

The dynamic connectivity problem requests maintenance
of a graph G subject to the following operations:

insert(u; v): insert an undirected edge (u, v) into the
graph.
delete(u; v): delete the edge (u, v) from the graph.
connected(u; v): test whether u and v lie in the same
connected component.

Let m be an upper bound on the number of edges in the
graph. This entry discusses cell-probe lower bounds for
this problem. Let tu be the complexity of insert and
delete and tq the complexity of query.

The Partial-Sums Problem

Lower bounds for dynamic connectivity are intimately re-
lated to lower bounds for another classic problem: main-
taining partial sums. Formally, the problem asks one to
maintain an array A[1::n] subject to the following oper-
ations:

update(k; �): let A[k] �.
sum(k): returns the partial sum

Pk
i=1 A[i].

testsum(k; �): returns a boolean value indicating
whether sum(k) = � .

474 L Lower Bounds for Dynamic Connectivity

To specify the problem completely, let elements A[i] come
from an arbitrary group G containing at least 2ı elements.
In the cell-probe model with b-bit cells, let t˙u be the com-
plexity of update and t˙q the complexity of testsum
(which is also a lower bound on sum).

The tradeoffs between t˙u and t˙q are well under-
stood for all values of b and ı. However, this entry only
considers lower bounds under the standard assumptions
that b = ˝(lg n) and tu � tq . It is standard to assume
b = ˝(lg n) for upper bounds in the RAM model; this as-
sumption also means that the lower bound applies to the
pointer machine. Then, Pătraşcu and Demaine [6] prove:

Theorem 1 The complexity of the partial-sums problems
satisfies: t˙q � lg(t˙u /t˙q) = ˝(ı/b � lg n).

Observe that this matches the textbook upper bound us-
ing augmented trees. One can build a balanced binary
tree over A[1]; : : : ;A[n] and store in every internal node
the sum of its subtree. Then, updates and queries touch
O(lg n) nodes (and spend O(dı/be) time in each one due
to the size of the group). To decrease the query time, one
can use a B-tree.

Relation to Dynamic Connectivity

We now clarify how lower bounds for maintaining par-
tial sums imply lower bounds for dynamic connectivity.
Consider the partial-sums problem over the groupG = Sn ,
i. e., the permutation group on n elements. Note that ı =
lg(n!) = ˝(n lg n). It is standard to set b = 	(lg n), as this
is the natural word size used by dynamic connectivity up-
per bounds. This implies t˙q lg(t˙u /t˙q) = ˝(n lg n).

The lower bound follows from implementing the
partial-sums operations using dynamic connectivity op-
erations. Refer to Fig. 1. The vertices of the graph form
an integer grid of size n � n. Each vertex is incident to at
most two edges, one edge connecting to a vertex in the
previous column and one edge connecting to a vertex in
the next column. Point (x; y1) in the grid is connected
to point (x + 1;A[x](y1)), i. e.,the edges between two ad-
jacent columns describe the corresponding permutation
from the partial-sums vector.

To implement update(x;
), all the edges between
column x and x + 1 are first deleted and then new edges
are inserted according to
 . This gives t˙u = O(2n � tu). To
implement testsum(x;
), one can use n connected
queries between the pairs of points (1; y)Ý (x + 1;
(y)).
Then, t˙q = O(n � tq). Observe that the sum query can-
not be implemented as easily. Dynamic connectivity is the
main motivation to study the testsum query.

Lower Bounds for Dynamic Connectivity, Figure 1
Constructing an instance of dynamic connectivity that mimics
the partial-sums problem

The lower bound of Theorem 1 translates into ntq �
lg(2ntu /ntq) = ˝(n lg n); hence tq lg(tu /tq) = ˝(lg n).
Note that this lower bound implies maxftu ; tqg = ˝(lg n).
The best known upper bound (using amortization and
randomization) is O(lg n(lg lg n)3) [9]. For any tu =
˝(lg n(lg lg n)3), the lower bound tradeoff is known to
be tight. Note that the graph in the lower bound is al-
ways a disjoint union of paths. This implies optimal lower
bounds for two important special cases: dynamic trees [8]
and dynamic connectivity in plane graphs [2].

Key Results

Understanding Hierarchies

Epochs To describe the techniques involved in the lower
bounds, first consider the sum query and assume ı = b.
In 1989, Fredman and Saks [3] initiated the study of
dynamic cell-probe lower bounds, essentially showing
a lower bound of t˙q lg t˙u = ˝(lg n). Note that this implies
maxft˙q ; t˙u g = ˝(lg n/ lg lg n).

At an intuitive level, their argument proceeded as fol-
lows. The hard instance will have n random updates, fol-
lowed by one random query. Leave r � 2 to be deter-
mined. Looking back in time from the query, one groups
the updates into exponentially growing epochs: the latest r
updates are epoch 1, the earlier r2 updates are epoch 2, etc.
Note that epoch numbers increase going back in time, and
there are O(logr n) epochs in total.

For some epoch i, consider revealing to the query all
updates performed in all epochs different from i. Then, the
query reduces to a partial-sums query among the updates
in epoch i. Unless the query is to an index below the mini-
mum index updated in epoch i, the answer to the query is
still uniformly random, i. e., has ı bits of entropy. Further-
more, even if one is given, say, riı/100 bits of information
about epoch i, the answer still has˝(ı) bits of entropy on

Lower Bounds for Dynamic Connectivity L 475

average. This is because the query and updates in epoch i
are uniformly random, so the query can ask for any par-
tial sum of these updates, uniformly at random. Each of
the ri partial sums is an independent random variable of
entropy ı.

Now one can ask how much information is available
to the query. At the time of the query, let each cell be as-
sociated with the epoch during which it was last written.
Choosing an epoch i uniformly at random, one can make
the following intuitive argument:
1. No cells written by epochs i + 1; i + 2; : : : can contain

information about epoch i, as they were written in the
past.

2. In epochs 1; : : : ; i � 1, a number of bt˙u �
Pi�1

j=1 r j �
bt˙u � 2ri�1 bits were written. This is less than riı/100
bits of information for r > 200t˙u (recall the assump-
tion ı = b). By the above, this implies the query answer
still has˝(ı) bits of entropy.

3. Since i is uniformly random among 	(logr n) epochs,
the query makes an expected O(t˙q / logr n) probes to
cells from epoch i. All queries that make no cell probes
to epoch i have a fixed answer (entropy 0), and all
other queries have answers of entropy � ı. Since an
average query has entropy ˝(ı), a query must probe
a cell from epoch i with constant probability. That
means t˙q / logr n = ˝(1), and

P
= ˝(logr n) =

˝(lg n/ lg t˙u).
One should appreciate the duality between the proof tech-
nique and the natural upper bounds based on a hierarchy.
Consider an upper bound based on a tree of degree r. The
last r random updates (epoch 1) are likely to be uniformly
spread in the array. Thismeans the updates touch different
children of the root. Similarly, the r2 updates in epoch 2
are likely to touch every node on level 2 of the tree, and so
on. Now, the lower bound argues that the query needs to
traverse a root-to-leaf path, probing a node on every level
of the tree (this is equivalent to one cell from every epoch).

Time Hierarchies Despite considerable refinement to
the lower bound techniques, the lower bound of
˝(lg n/ lg lg n) was not improved until 2004. Then, Pă-
traşcu and Demaine [6] showed an optimal bound of
t˙q lg(t˙u /t˙q) = ˝(lg n), implying maxft˙u ; t˙q g = ˝(lg n).
For simplicity, the discussion below disregards the trade-
off and just sketches the˝(lg n) lower bound.

Pătraşcu and Demaine’s [6] counting technique is
rather different from the epoch technique; refer to Fig. 2.
The hard instance is a sequence of n operations alternating
between updates and queries. They consider a balanced bi-
nary tree over the time axis, with every leaf being an op-
eration. Now for every node of the tree, they propose to

Lower Bounds for Dynamic Connectivity, Figure 2
Analysis of cell probes in the a epoch-based andb time-hierarchy
techniques

count the number of cell probes made in the right subtree
to a cell written in the left subtree. Every probe is counted
exactly once, for the lowest common ancestor of the read
and write times.

Now focus on two sibling subtrees, each containing k
operations. The k/2 updates in the left subtree, and the k/2
queries in the right subtree, are expected to interleave in
index space. Thus, the queries in the right subtree ask for
˝(k) different partial sums of the updates in the left sub-
tree. Thus, the right subtree “needs” ˝(kı) bits of infor-
mation about the left subtree, and this information can
only come from cells written in the left subtree and read in
the right one. This implies a lower bound of ˝(k) probes,
associated with the parent of the sibling subtrees. This
bound is linear in the number of leaves, so summing up
over the tree, one obtains a total ˝(n lg n) lower bound,
or˝(lg n) cost per operation.

An Optimal Epoch Construction Rather surprisingly,
Pătraşcu and Tarni̧tă [7] managed to reprove the optimal
tradeoff of Theorem 1 with minimal modifications to the
epoch argument. In the old epoch argument, the infor-
mation revealed by epochs 1; : : : ; i � 1 about epoch i was
bounded by the number of cells written in these epochs.
The key idea is that an equally good bound is the number
of cells read during epochs 1; : : : ; i � 1 and written during
epoch i.

In principle, all cell reads from epoch i � 1 could
read data from epoch i, making these two bounds iden-
tical. However, one can randomize the epoch construc-
tion by inserting the query after an unpredictable number
of updates. This randomization “smooths” out the distri-
bution of epochs from which cells are read, i. e., a query

476 L Lower Bounds for Dynamic Connectivity

reads O(t˙q / logr n) cells from every epoch, in expec-
tation over the randomness in the epoch construction.
Then, theO(ri�1) updates in epochs 1; : : : ; i � 1 only read
O(ri�1 � t˙u / logr n) cells from epoch i. This is not enough
information if r� t˙u / logr n = 	(t˙u /t˙q), which implies
t˙q = ˝(logr n) = ˝(lg n/ lg(t˙u /t˙q)).

Technical Difficulties

Nondeterminism The lower bounds sketched above are
based on the fact that the sum query needs to output˝(ı)
bits of information about every query. If dealing with the
decision testsum query, an argument based on output
entropy can no longer work.

The most successful idea for decision queries has been
to convert them to queries with nonboolean output, in an
extended cell-probe model that allows nondeterminism.
In this model, the query algorithm is allowed to spawn
an arbitrary number of computation threads. Each thread
can make tq cell probes, after with it must either terminate
with a ‘reject’ answer, or return an answer to the query.
All nonrejecting threads must return the same output. In
this model, a query with arbitrary output is equivalent to
a decision query, because one can just nondeterministi-
cally guess the answer, and then verify it.

By the above, the challenge is to prove good lower
bounds for sum even in the nondeterminstic model. Non-
determinism shakes our view that when analyzing epoch i,
only cell probes to epoch i matter. The trouble is that the
query may not know which of its probes are actually to
epoch i. A probe that reads a cell from a previous epoch
provides at least some information about epoch i: no up-
date in the epoch decided to overwrite the cell. Earlier
this was not a problem because the goal was only to rule
out the case that there are zero probes to epoch i. Now,
however, different threads can probe any cell in mem-
ory, and one cannot determine which threads actually
avoid probing anything in epoch i. In other words, there
is a covert communication channel between epoch i and
the query in which the epoch can use the choice of which
cells to write in order to communicate information to the
query.

There are two main strategies for handling nondeter-
ministic query algorithms. Husfeldt and Rauhe [4] give
a proof based on some interesting observations about the
combinatorics of nondeterministic queries. Pătraşcu and
Demaine [6] use the power of nondeterminism itself to
output a small certificate that rules out useless cell probes.
The latter result implies the optimal lower bound of The-
orem 1 for testsum and, thus, the logarithmic lower
bound for dynamic connectivity.

Alternative Histories The framework described above
relies on fixing all updates in epochs different from i to an
average value and arguing that the query answer still has
a lot of variability, depending on updates in epoch i. This
is true for aggregation problems but not for search prob-
lems. If a searched item is found with equal probability in
any epoch, then fixing all other epochs renders epoch i ir-
relevant with probability 1 � 1/(logr n).

Alstrup et al. [1] propose a very interesting refinement
to the technique, proving˝(lg n/ lg lg n) lower bounds for
an impressive collection of search problems. Intuitively,
their idea is to consider O(logr n) alternative histories of
updates, chosen independently at random. Epoch i is rel-
evant in at least one of the histories with constant proba-
bility. On the other hand, even if one knows what epochs
1 through i � 1 learned about epoch i in all histories, an-
swering a random query is still hard.

Bit-Probe Complexity Intuitively, if the word size is
b = 1, the lower bound for connectivity should be roughly
˝(lg2 n), because a query needs ˝(lg n) bits from every
epoch. However, ruling out anything except zero probes
to an epoch turns out to be difficult, for the same rea-
son that the nondeterministic case is difficult. Without
giving a very satisfactory understanding of this issue, Pă-
traşcu and Tarni̧tă [7] use a large bag of tricks to show an
˝((lg n/lg lg n)2) lower bound for dynamic connectivity.
Furthermore, they consider the partial-sums problem in
Z2 and show an ˝(lg n/lg lg lg n) lower bound, which is
a triply-logarithmic factor away from the upper bound!

Applications

The lower bound discussed here extends by easy reduc-
tions to virtually all natural fully dynamic graph prob-
lems [6].

Open Problems

By far, the most important challenge for future research is
to obtain a lower bound of !(lg n) per operation for some
dynamic data structure in the cell-probe model with word
size 	(lg n). Miltersen [5] specifies a set of technical con-
ditions for what qualifies as a solution to such a challenge.
In particular, the problem should be a dynamic language
membership problem.

For the partial-sums problem, though sum is perfectly
understood, testsum still lacks tight bounds for cer-
tain ranges of parameters [6]. In addition, obtaining tight
bounds in the bit-probe model for partial sums in Z2 ap-
pears to be rather challenging.

Low Stretch Spanning Trees L 477

Recommended Reading
1. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In:

Proc. 39th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), 1998, pp. 534–543

2. Eppstein, D., Italiano, G.F., Tamassia, R., Tarjan, R.E., Westbrook,
J.R., Yung, M.: Maintenance of a minimum spanning forest in
a dynamic planar graph. J. Algorithms 13, 33–54 (1992). See also
SODA’90

3. Fredman, M.L., Saks, M.E.: The cell probe complexity of dynamic
data structures. In: Proc. 21st ACM Symposium on Theory of
Computing (STOC), 1989, pp. 345–354

4. Husfeldt, T., Rauhe, T.: New lower bound techniques for dynamic
partial sums and relatedproblems. SIAM J. Comput.32, 736–753
(2003). See also ICALP’98

5. Miltersen, P.B.: Cell probe complexity - a survey. In: 19th Confer-
ence on the Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS), 1999 (Advances in Data Struc-
tures Workshop)

6. Pătraşcu, M. and Demaine, E.D.: Logarithmic lower bounds in
the cell-probe model. SIAM J. Comput. 35, 932–963 (2006). See
also SODA’04 and STOC’04

7. Pătraşcu, M., Tarniţă, C.: On dynamic bit-probe complexity.
Theor. Comput. Sci. 380, 127–142 (2007). See also ICALP’05

8. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees.
J. Comput. Syst. Sci. 26, 362–391 (1983). See also STOC’81

9. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In:
Proc. 32nd ACM Symposium on Theory of Computing (STOC),
2000, pp. 343–350

Low Stretch Spanning Trees
2005; Elkin, Emek, Spielman, Teng

MICHAEL ELKIN
Department of Computer Science, Ben-Gurion
University, Beer-Sheva, Israel

Keywords and Synonyms

Spanning trees with low average stretch

ProblemDefinition

Consider a weighted connected multigraphG = (V ; E; !),
where ! is a function from the edge set E of G into the
set of positive reals. For a path P in G, the weight of P is
the sum of weights of edges that belong to the path P. For
a pair of vertices u; v 2 V , the distance between them in G
is the minimum weight of a path connecting u and v in G.
For a spanning treeT ofG, the stretch of an edge (u; v) 2 E
is defined by

stretchT (u; v) =
distT (u; v)
distG (u; v)

;

and the average stretch over all edges of E is

avestr(G; T) =
1
jEj

X
(u;v)2E

stretchT (u; v) :

The average stretch of a multigraph G = (V ; E; !) is de-
fined as the smallest average stretch of a spanning tree T of
G, avestr(G; T). The average stretch of a positive integer n,
avestr(n), is the maximum average stretch of an n-vertex
multigraph G. The problem is to analyze the asymptotic
behavior of the function avestr(n).

A closely related (dual) problem is to construct a prob-
ability distributionD of spanning trees for G, so that

expstr(G;D) = max
e=(u;v)2E

ET2D(stretchT (u; v))

is small as possible. Analogously, expstr(G) =
minDfexpstr(G;D)g, where the minimum is over all dis-
tributions D of spanning trees of G, and expstr(n) =
maxGfexpstr(G)g, where the maximum is over all n-vertex
multigraphs.

By viewing the problem as a 2-player zero-sum game
between a tree player that aims tominimize the payoff, and
an edge player that aims tomaximize it, it is easy to see that
for every positive integer n, avestr(n) = expstr(n) [2]. The
probabilistic version of the problem is, however, particu-
larly convenient for many applications.

Key Results

The problem was studied since sixties [8,13,15,16]. A ma-
jor progress in its study was achieved by Alon et al. [2],
who showed that

˝(log n) = avestr(n) = expstr(n)

= exp(O(
p
log n � log log n)) :

Elkin et al. [9] improved the upper bound and showed that

avestr(n) = expstr(n) = O(log2 n � log log n) :

Applications

One application of low stretch spanning trees is for solv-
ing symmetric diagonally dominant linear systems of
equations. Boman and Hendrickson [5] were the first to
discover the surprising relationship between these two
seemingly unrelated problems. They applied the span-
ning trees of [2] to design solvers that run in time
m3/22O(

p
log n log log n) log(1/�). Spielman and Teng [14]

improved their results by showing how to use the spanning
trees of [2] to solve diagonally-dominant linear systems in
time

m2O(
p

log n log log n) log(1/�):

By applying the low-stretch spanning trees developed
in [9], the time for solving these linear systems reduces to

m logO(1) n log(1/�);

478 L LP Decoding

and to O(n(log n log log n)2 log(1/�)) when the systems
are planar. Applying a recent reduction of Boman,
Hendrickson and Vavasis [6], one obtains a O(n(log n
log log n)2 log(1/�)) time algorithm for solving the lin-
ear systems that arise when applying the finite element
method to solve two-dimensional elliptic partial differen-
tial equations.

Recently Chekuri et al. [7] used low stretch span-
ning trees to devise an approximation algorithm for non-
uniform buy-at-bulk network design problem. Their al-
gorithm provides a first polylogarithmic approximation
guarantee for this problem.

In another recent work Abraham et al. [1] use a te-
chinique of star-decomposition introduced by Elkin et
al. [9] to construct embeddings with a constant average
stretch, where the average is over all pairs of vertices, rather
than over all edges. The result of Abraham et al. [1] was, in
turn, already used in a yet more recent work of Elkin et
al. [10] on fundamental circuits.

Open Problems
The most evident open problem is to close the gap be-
tween the upper bound of O(log2 n log log n) and the
lower bound of˝(log n) on avestr(n). Another intriguing
subject is the study of low stretch spanning trees for vari-
ous restricted families of graphs. Progress in this direction
was recently achieved by Emek and Peleg [11] that con-
structed low stretch spanning trees with average stretch
O(log n) for unweighted series-parallel graphs. Discover-
ing other applications of low stretch spanning trees is an-
other promising venue of study.

Finally, there is a closely related relaxed notion of low
stretch Steiner or Bartal trees. Unlike a spanning tree,
a Steiner tree does not have to be a subgraph of the origi-
nal graph, but rather is allowed to use edges and vertices
that were not present in the original graph. It is, how-
ever, required that the distances in the Steiner tree will
be no smaller than the distances in the original graph.
Low stretch Steiner trees were extensively studied [3,4,12].
Fakcharoenphol et al. [12] devised a construction of low
stretch Steiner trees with an average stretch of O(log n). It
is currently unknown whether the techniques used in the
study of low stretch Steiner trees can help improving the
bounds for the low stretch spanning trees.

Cross References
� Approximating Metric Spaces by Tree Metrics

Recommended Reading
1. Abraham, I., Bartal, Y., Neiman, O.: Embedding Metrics into Ul-

trametrics and Graphs into Spanning Trees with Constant Av-

erage Distortion. In: Proceedings of the 18th ACM-SIAM Sym-
posium on Discrete Algorithms, New Orleans, January 2007

2. Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic
gane and its application to the k-server problem. SIAM J.
Comput. 24(1), 78–100 (1995). Also available Technical Report
TR-91-066, ICSI, Berkeley (1991)

3. Bartal, Y.: Probabilistic approximation of metric spaces and its
algorithmic applications. In: Proceedings of the 37th Annual
Symposium on Foundations of Computer Science, Berlington,
Oct. 1996 pp. 184–193

4. Bartal, Y.: On approximating arbitrary metrices by tree metrics.
In: Proceedings of the 30th annual ACM symposium on Theory
of computing, Dallas, 23–26 May 1998, pp. 161–168

5. Boman, E., Hendrickson, B.: On spanning tree preconditioners.
Manuscript, Sandia National Lab. (2001)

6. Boman, E., Hendrickson, B., Vavasis, S.: Solving elliptic finite el-
ement systems in near-linear time with suppost precondition-
ers. Manuscript, Sandia National Lab. and Cornell, http://arXiv.
org/abs/cs/0407022 Accessed 9 July 2004

7. Chekuri, C., Hagiahayi, M.T., Kortsarz, G., Salavatipour, M.: Ap-
proximation Algorithms for Non-Uniform Buy-at-Bulk Network
Design. In: Proceedings of the 47th Annual Symp. on Founda-
tions of Computer Science, Berkeley, Oct. 2006, pp. 677–686

8. Deo, N., Prabhu, G.M., Krishnamoorthy, M.S.: Algorithms for
generating fundamental cycles in a graph. ACM Trans. Math.
Softw. 8, 26–42 (1982)

9. Elkin, M., Emek, Y., Spielman, D., Teng, S.-H.: Lower-Stretch
Spanning Trees. In: Proc. of the 37th Annual ACM Symp. on
Theory of Computing, STOC’05, Baltimore, May 2005, pp. 494–
503

10. Elkin, M., Liebchen, C., Rizzi, R.: New Length Bounds for Cycle
Bases. Inf. Proc. Lett. 104(5), 186–193 (2007)

11. Emek, Y., Peleg, D.: A tight upper bound on the probabilis-
tic embedding of series-parallel graphs. In: Proc. of Symp. on
Discr. Algorithms, SODA’06, Miami, Jan. 2006, pp. 1045–1053

12. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on ap-
proximating arbitrary metrics by tree metrics. In: Proceedings
of the 35th annual ACM symposium on Theory of Computing,
San Diego, June 2003, pp. 448–455

13. Horton, J.D.: A Polynomial-time algorithm to find the short-
est cycle basis of a graph. SIAM J. Comput. 16(2), 358–366
(1987)

14. Spielman, D., Teng, S.-H.: Nearly-linear time algorithm for
graph partitioning, graph sparsification, and solving linear sys-
tems. In: Proc. of the 36th Annual ACM Symp. on Theory of
Computing, STOC’04, Chicago. USA, June 2004, pp. 81–90

15. Stepanec, G.F.: Basis systems of vector cycles with extremal
properties in graphs. Uspekhi Mat. Nauk 19, 171–175 (1964).
(In Russian)

16. Zykov, A.A.: Theory of Finite Graphs. Nauka, Novosibirsk (1969).
(In Russian)

LP Decoding
2002 and later; Feldman, Karger,Wainwright

JONATHAN FELDMAN
Google, Inc., New York, NY, USA

http://arXiv.org/abs/cs/0407022
http://arXiv.org/abs/cs/0407022

LP Decoding L 479

Keywords and Synonyms

LP decoding; Error-correcting codes; Low-density parity-
check codes; LDPC codes; Pseudocodewords; Belief prop-
agation

ProblemDefinition

Error-correcting codes are fundamental tools used to
transmit digital information over unreliable channels.
Their study goes back to the work of Hamming and Shan-
non, who used them as the basis for the field of infor-
mation theory. The problem of decoding the original in-
formation up to the full error-correcting potential of the
system is often very complex, especially for modern codes
that approach the theoretical limits of the communication
channel.

LP decoding [4,5,8] refers to the application of linear
programming (LP) relaxation to the problem of decod-
ing an error-correcting code. Linear programming relax-
ation is a standard technique in approximation algorithms
and operations research, and is central to the study of ef-
ficient algorithms to find good (albeit suboptimal) solu-
tions to very difficult optimization problems [13]. LP de-
coders have tight combinatorial characterizations of de-
coding success that can be used to analyze error-correcting
performance.

The codes for which LP decoding has received
the most attention are low-density parity-check (LDPC)
codes [9], due to their excellent error-correcting perfor-
mance. The LP decoder is particularly attractive for anal-
ysis of these codes because the standard message-passing
algorithms such as belief propagation (see [15]) used for
decoding are often difficult to analyze, and indeed the per-
formance of LP decoding is closely tied to these methods.

Error-Correcting Codes
and Maximum-Likelihood Decoding

This section begins with a very brief overview of error-
correcting codes, sufficient for formulating the LP de-
coder. Some terms are not defined for space reasons; for
a full treatment of error-correcting codes in context, the
reader is referred to textbooks on the subject (e. g., [11]).

A binary error-correcting code is a subset C
 f0; 1gn .
The rate of the code C is r = log(jCj)/n. A linear binary
code is a linear subspace of f0; 1gn . A codeword is a vec-
tor y 2 C. Note that 0n is always a codeword of a linear
code, a fact that will be useful later. When the code is
used for communication, a codeword ẏ 2 C is transmit-
ted over a noisy channel, resulting in some received word
ŷ 2 ˙ n , where ˙ is some alphabet that depends on the

channel model. Generally in LP decoding a memoryless,
symmetric channel is assumed. One common such chan-
nel is the binary symmetric channel (BSC) with parameter
p, which will be referred to as BSCp , where 0 < p < 1/2.
In the BSCp , the alphabet is ˙ = f0; 1g, and for each i,
the received symbol ŷ i is equal to ẏ i with probability p,
and ŷ i = 1 � ẏ i otherwise. Although LP decoding works
with more general channels, this chapter will focus on the
BSCp .

The maximum-likelihood (ML) decoding problem is
the following: given a received word ŷ 2 f0; 1gn , find the
codeword y� 2 C that is most likely to have been sent
over the channel. Defining the vector � 2 f�1;+1gn where
�i = 1 � 2ŷ i , it is easy to show:

y� = argmin
y2C

X
i

�i yi : (1)

The complexity of the ML decoding problem depends
heavily on the code being used. For simple codes such as
a repetition code C = f0n; 1ng, the task is easy. For more
complex (and higher-rate) codes such as LDPC codes, ML
decoding is NP-hard [1].

LP Decoding

Since ML decoding can be very hard in general, one turns
to sub-optimal solutions that can be found efficiently. LP
decoding, instead of trying to solve (1), relaxes the con-
straint y 2 C, and instead requires that y 2 P for some
succinctly describable linear polytope P
 [0; 1]n , result-
ing in the following linear program:

yLP = argmin
y2P

nX
i=1

�i yi : (2)

It should be the case that the polytope includes all
the codewords, and does not include any integral non-
codewords. As such, a polytope P is called proper for code
C if P \ f0; 1gn = C:

The LP decoder works as follows. Solve the LP in (2) to
obtain yLP 2 [0; 1]n . If yLP is integral (i. e., all elements are
0 or 1), then output yLP. Otherwise, output “error”. By the
definition of a proper polytope, if the LP decoder outputs
a codeword, it is guaranteed to be equal to the ML code-
word y�. This fact is known as theML certificate property.

Comparing with ML Decoding

A successful decoder is one that outputs the original code-
word transmitted over the channel, and so the quality of an
algorithm is measured by the likelihood that this happens.

480 L LP Decoding

(Another common non-probabilistic measure is theworst-
case performance guarantee, which measures how many
bit-flips an algorithm can tolerate and still be guaranteed
to succeed.) Note that y� is the one most likely to be the
transmitted codeword ẏ, but it is not always the case that
y� = ẏ. However, no decoder can perform better than an
ML decoder, and so it is useful to useML decoding as a ba-
sis for comparison.

Figure 1 provides a geometric perspective of LP decod-
ing, and its relation to exact ML decoding. Both decoders
use the same LP objective function, but over different con-
straint sets. In exact ML decoding, the constraint set is the
convex hull C of codewords (i. e., the set of points that are
convex combinations of codewords from C), whereas re-
laxed LP decoding uses the larger polytope P. In Fig. 1, the
four arrows labeled (a)–(d) correspond to different “noisy”
versions of the LP objective function. (a) If there is very
little noise, then the objective function points to the trans-
mitted codeword ẏ, and thus both ML decoding and LP
decoding succeed, since both have the transmitted code-
word ẏ as the optimal point. (b) If more noise is intro-
duced, then ML decoding succeeds, but LP decoding fails,
since the fractional vertex y0 is optimal for the relaxation.
(c) With still more noise, ML decoding fails, since y3 is
now optimal; LP decoding still has a fractional optimum
y0, so this error is in some sense “detected”. (d) Finally,
with a lot of noise, both ML decoding and LP decoding
have y3 as the optimum, and so both methods fail and the
error is “undetected”. Note that in the last two cases (c, d),
when ML decoding fails, the failure of the LP decoder is
in some sense the fault of the code itself, as opposed to the
decoder.

Normal Cones and C-Symmetry

The (negative) normal cones at ẏ (also called the funda-
mental cone [10]) is defined as follows:

Nẏ(P) =
˚
� 2 Rn :

X
i

�i(yi � ẏ i) � 0 for all y 2 P
�
;

Nẏ(C) =
˚
� 2 Rn :

X
i

�i(yi � ẏ i) � 0 for all y 2 C
�
:

Note that Nẏ(P) corresponds to the set of cost vectors �
such that ẏ is an optimal solution to (2). The set Nẏ(C)
has a similar interpretation as the set of cost vectors � for
which ẏ is the ML codeword. Since P � C, it is immedi-
ate from the definition that Ny(C) � Ny(P) for all y 2 C.
Fig. 1 shows these two cones and their relationship.

The success probability of an LP decoder is equal to the
total probability mass of Nẏ(P), under the distribution on
cost vectors defined by the channel. The success probabil-
ity of ML decoding is similarly related to the probability

LP Decoding, Figure 1
A decoding polytope P (dotted line) and the convex hull C (solid
line) of the codewords ẏ, y1, y2, and y3. Also shown are the four
possible cases (a–d) for the objective function, and the normal
cones to bothP andC

mass in the normal cone Ny(C). Thus, the discrepancy be-
tween the normal cones of P and C is a measure of the gap
between exact ML and relaxed LP decoding.

This analysis is specific to a particular transmitted
codeword ẏ, but one would like to apply it in general.
When dealing with linear codes, for most decoders one
can usually assume that an arbitrary codeword is transmit-
ted, since the decision region for decoding success is sym-
metric. The same holds true for LP decoding (see [4] for
proof), as long as the polytope P is C-symmetric, defined
as follows:

Definition 1 A proper polytope P for the binary code C
is C-symmetric if, for all y 2 P and ẏ 2 C, it holds that
y0 2 P, where y0i = jyi � ẏ i j.

Using a DualWitness to Prove Error Bounds

In order to prove that LP decoding succeeds, one must
show that ẏ is the optimal solution to the LP in (2). If
the code C is linear, and the relaxation is proper and C-
symmetric, one can assume that ẏ = 0n , and then show
that 0n is optimal. Consider the dual of the decoding LP
in (2). If there is a feasible point of the dual LP that has the
same cost (i. e., zero) as the point 0n has in the primal, then
0n must be an optimal point of the decoding LP. Therefore,
to prove that the LP decoder succeeds, it suffices to exhibit
a zero-cost point in the dual.1

1Actually, since the existence of the zero-cost dual point only
proves that 0n is one of possibly many primal optima, one needs to
be a bit more careful, a minor issue deferred to more complete treat-
ments of this material.

LP Decoding L 481

Key Results

LP decoders have mainly been studied in the context of
Low-Density Parity-Check codes [9], and their general-
ization to expander codes [12]. LP decoders for Turbo
codes [2] have also been defined, but the results are not
as strong. This summary of key results gives bounds on
the word error rate (WER), which is the probability, over
the noise in the channel, that the decoder does not output
the transmitted word. These bounds are relative to specific
families of codes, which are defined as infinite set of codes
of increasing length whose rate is bounded from below by
some constant. Here the bounds are given in asymptotic
form (without constants instantiated), and only for the bi-
nary symmetric channel.

Many other important results that are not listed here
are known for LP decoding and related notions. Some of
these general areas are surveyed in the next section, but
there is insufficient space to reference most of them indi-
vidually; the reader is referred to [3] for a thorough bibli-
ography.

Low-Density Parity-Check Codes

The polytope P for LDPC codes, first defined in [4,8,10], is
based on the underlying Tanner graph of the code, and has
a linear number of variables and constraints. If the Tanner
graph expands sufficiently, it is known that LP decoding
can correct a constant fraction of errors in the channel,
and thus has an inverse exponential error rate. This was
proved using a dual witness:

Theorem 1 ([6]) For any rate r > 0, there is a constant
� > 0 such that there exists a rate r family of low-density
parity-check codes with length n where the LP decoder suc-
ceeds as long as at most �n bits are flipped by the channel.
This implies that there exists a constant �0 > 0 such that
the word error rate under the BSCp with p < �0 is at most
2�˝(n).

Expander Codes

The capacity of a communication channel bounds from
above the rate one can obtain from a family of codes and
still get a word error rate that goes to zero as the code
length increases. The notation Cp is used to denote the ca-
pacity of the BSCp . Using a family of codes based on ex-
panders [12], LP decoding can achieve rates that approach
capacity. Compared to LDPC codes, however, this comes
at the cost of increased decoding complexity, as the size
of the LP is exponential in the gap between the rate and
capacity.

Theorem 2 ([7]) For any p > 0, and any rate r < Cp,
there exists a rate r family of expander codes with length
n such that the word error rate of LP decoding under the
BSCp is at most 2�˝(n).

Turbo Codes

Turbo codes [2] have the advantage that they can be en-
coded in linear time, even in a streaming fashion. Repeat-
accumulate codes are a simple form of Turbo code. The
LP decoder for Turbo codes and their variants was first
defined in [4,5], and is based on the trellis structure of the
component convolutional codes. Due to certain properties
of turbo codes it is impossible to prove bounds for turbo
codes as strong as the ones for LDPC codes, but the fol-
lowing is known:

Theorem 3 ([5]) There exists a rate 1/2 � o(1) family
of repeat-accumulate codes with length n, and a constant
� > 0, such that under the BSCp with p < �, the LP decoder
has a word error rate of at most n�˝(1).

Applications

The application of LP decoding that has received the most
attention so far is for LDPC codes. The LP for this fam-
ily of codes not only serves as an interesting alternative to
more conventional iterative methods [15], but also gives
a useful tool for analyzing those methods, an idea first ex-
plored in [8,10,14]. Iterative methods such as belief propa-
gation use local computations on the Tanner graph to up-
date approximations of the marginal probabilities of each
code bit. In this type of analysis, the vertices of the poly-
tope P are referred to as pseudocodewords, and tend to co-
incide with the fixed points of this iterative process. Other
notions of pseudocodeword-like structures such as stop-
ping sets are also known to coincide with these polytope
vertices. Understanding these structures has also inspired
the design of new codes for use with iterative and LP de-
coding. (See [3] for a more complete bibliography of this
work).

The decoding method itself can be extended in many
ways. By adding redundant information to the description
of the code, one can derive tighter constraint sets to im-
prove the error-correcting performance of the decoder, al-
beit at an increase in complexity. Adaptive algorithms that
try to add constraints “on the fly” have also been explored,
using branch-and-bound or other techniques. Also, LP
decoding has inspired the use of other methods from
optimization theory in decoding error-correcting codes.
(Again, see [3] for references.)

482 L LP Decoding

Open Problems

The LP decoding method gives a simple, efficient and an-
alytically tractable approach to decoding error-correcting
codes. The results known to this point serve as a proof
of concept that strong bounds are possible, but there are
still important questions to answer. Although LP decoders
can achieve capacity with decoding time polynomial in the
length of the code, the complexity of the decoder still de-
pends exponentially on the gap between the rate and ca-
pacity (as is the case for all other known provably efficient
capacity-achieving decoders). Decreasing this dependence
would be a major accomplishment, and perhaps LP de-
coding could help. Improving the fraction of errors cor-
rectable by LP decoding is also an important direction for
further research.

Another interesting question is whether there exist
constant-rate linear-distance code families for which one
can formulate a polynomial-sized exact decoding LP. Put
another way, is there a constant-rate linear-distance family
of codes whose convex hulls have a polynomial number of
facets? If so, then LP decoding would be equivalent to ML
decoding for this family. If not, this is strong evidence that
suboptimal decoding is inevitable when using good codes,
which is a common belief.

An advantage to LP decoding is the ML certificate
property mentioned earlier, which is not enjoyed by most
other standard suboptimal decoders. This property opens
up the possibility for a wide range of heuristics for improv-
ing decoding performance, some of which have been ana-
lyzed, but largely remain wide open.

LP decoding has (for themost part) only been explored
for LDPC codes under memoryless symmetric channels.
The LP for turbo codes has been defined, but the error
bounds proved so far are not a satisfying explanation of the
excellent performance observed in practice. Other codes
and channels have gotten little, if any, attention.

Cross References

� Decoding Reed–Solomon Codes
� Learning Heavy Fourier Coefficients of Boolean

Functions

� Linearity Testing/Testing Hadamard Codes
� List Decoding near Capacity: Folded RS Codes

Recommended Reading
1. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent in-

tractability of certain coding problems. IEEE Trans. Inf. Theory
24, 384–386 (1978)

2. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit
error-correcting coding and decoding: turbo-codes. In: Proc.
IEEE Int. Conf. Comm. (ICC), pp. 1064–1070. Geneva, 23–26May
1993

3. Boston, N., Ganesan, A., Koetter, R., Pazos, S., Vontobel, P.: Pa-
pers on pseudocodewords. HP Labs, Palo Alto. http://www.
pseudocodewords.info.

4. Feldman, J.: Decoding Error-Correcting Codes via Linear Pro-
gramming. Ph. D. thesis, Massachusetts Institute of Technol-
ogy (2003)

5. Feldman, J., Karger, D.R.: Decoding turbo-like codes via lin-
ear programming. In: Proc. 43rd annual IEEE Symposium on
Foundations of Computer Science (FOCS), Vancouver, 16–19
November 2002

6. Feldman, J., Malkin, T., Servedio, R.A., Stein, C., Wainwright,
M.J.: LP decoding corrects a constant fraction of errors. In:
Proc. IEEE International Symposium on Information Theory,
Chicago, 27 June – 2 July 2004

7. Feldman, J., Stein, C.: LP decoding achieves capacity. In: Sym-
posium on Discrete Algorithms (SODA ’05), Vancouver, Jan-
uary (2005)

8. Feldman, J., Wainwright, M.J., Karger, D.R.: Using linear pro-
gramming to decode linear codes. In: 37th annual Conf. on
Information Sciences and Systems (CISS ’03), Baltimore, 12–
14 March 2003

9. Gallager, R.: Low-density parity-check codes. IRE Trans. Inform.
Theory, IT-8 , pp. 21–28 (1962)

10. Koetter, R., Vontobel, P.: Graph covers and iterative decoding
of finite-length codes. In: Proc. 3rd International Symposium
on Turbo Codes and Related Topics, pp. 75–82, September
2003. Brest, France (2003)

11. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting
Codes. North-Holland, Amsterdam (1981)

12. Sipser, M., Spielman, D.: Expander codes. IEEE Trans. Inf. Theory
42, 1710–1722 (1996)

13. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin
(2003)

14. Wainwright, M., Jordan, M.: Variational inference in graphical
models: the view from the marginal polytope. In: Proc. 41st
Allerton Conf. on Communications, Control, and Computing,
Monticello, October (2003)

15. Wiberg, N.: Codes andDecoding on General Graphs, Ph. D. the-
sis, Linkoping University, Sweden (1996)

http://www.pseudocodewords.info.
http://www.pseudocodewords.info.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

