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ProblemDefinition

This problem is concerned with the multicast routing and
cost sharing in a selfish network composed of relay termi-
nals and receivers. This problem is motivated by the recent
observation that the selfish behavior of the network could
largely degraded existing system performance, even dys-
function. Thework ofWang, Li andChu [7] first presented
some negative results of the strategyproof mechanism in
multicast routing and sharing, and then proposed a new
solution based on Nash Equilibrium that could greatly im-
prove the performance.

Wang, Li and Chu modeled a network by a link
weighted graph G = (V ; E; c), where V is the set of all
nodes and c is the cost vector of the set E of links. For
a multicast session, let Q denote the set of all receivers. In
game theoretical networking literatures, usually there are
two models for the multicast cost/payment sharing.

AxiomModel (AM)All receiversmust receive the ser-
vice, or equivalently, each receiver has an infinity valua-
tion [3]. In this model, a sharing method � computes how
much each receiver should pay when the receiver set is R
and cost vector is c.

ValuationModel (VM) There is a setQ = fq1; q2; � � � ;
qrg of r possible receivers. Each receiver qi 2 Q has a val-

uation ˜i for receiving the service. Let ˜ = (�1; �2; : : : ; �r )
be the valuation vector and ˜R be the valuation vector of
a set R 
 Q of receivers. In this model, they are inter-
ested in a sharing mechanism S consisting of a selection
scheme �(˜; c) and a sharing method �(˜; c). �i (˜; c) de-
notes whether receiver i receives the service or not, and
�i(˜; c) computes howmuch the receiver qi should pay for
the multicast service. Let P (˜; c) be the total payment for
providing the service to the receiver set.

In the valuation model, a receiver who is willing to re-
ceive the service is not guaranteed to receive the service.
For notational simplicity, �(˜; c) is used to denote the set
of actual receivers. Under the ValuationModel, a fair shar-
ing according to the following criteria is studied.
� Budget Balance: For the receiver set R = �(˜; c),

P (˜; c) =
P

qi2Q �i(˜; c). If ˛ � P (˜; c) �
P

i2R
�i(˜; c) � P (˜; c), for some given parameter

1: Compute path LCP(s; qj ;d) and set
� j =

!(Bmm (s;q j;d);d)
r for every qj 2 Q.

2: Set ODM
i (η;d) = 0 and PDM

i (η;d) = 0 for each link
ei 62 LCP(s; qj;d).

3: for each receiver qj do
4: if � j � � j then
5: Receiver qj is granted the service and charged

�DMj (η;d), set R = R [ qj .
6: else
7: Receiver qj is not granted the service and is

charged 0.
8: end if
9: end for
10: Set ODM

i (η;d) = 1 and PDM
i (η;d) = PLCPT

i (η=1
R ;d)

for each link ei 2 LCPT(R;d).

Nash Equilibria andDominant Strategies in Routing, Algorithm 1
The multicast system �DM = (MDM;SDM) based on multicast
tree LCPT
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0 < ˛ � 1, then S = (�; �) is called ˛-budget-balance.
If budget balance is not achievable, then a sharing
scheme S may need to be ˛-budget-balance instead of
budget balance.

� No Positive Transfer (NPT): Any receiver qi’s sharing
should not be negative.

� Free Leaving: (FR) The potential receivers who do not
receive the service should not pay anything.

� Consumer Sovereignty (CS): For any receiver qi, if ˜i
is sufficiently large, then qi is guaranteed to be an actual
receiver.

� Group-Strategyproof (GS): Assume that ˜ is the valu-
ation vector and ˜0 6= ˜. If �i(˜0; c) � �i(˜; c) for each
qi 2 ˜, then �i(˜0; c) = �i(˜; c).

Notations

The path with the lowest cost between two odes s and
t is denoted as LCP(s; t; c), and its cost is dented as
jLCP(s; t; c)j. Given a simple path P in the graph G with
cost vector c, the sum of the cost of links on path P is
denoted as jP(c)j. For a simple path P = vi  v j ,
if LCP(s; t; c)

T
P = fvi ; v jg, then P is called a bridge

over LCP(s; t; c). This bridge P covers link ek if ek 2
LCP(vi ; v j; c). Given a link ei 2 LCP(s; t; c), the path with
the minimum cost that covers ei is denoted as Bmin(ei ; c).
The bridge Bmm(s; t; c) = maxe i2LCP(s;t;c) Bmin(ei ; c) is the
max-min cover of the path LCP(s; t; c).

A bridge setB is a bridge cover for LCP(s; t; c), if for ev-
ery link ei 2 LCP(s; t; c), there exists a bridge B 2 B such
that ei 2 LCP(vs(B); vt(B); c). The weight of a bridge cover
B(s; t; c) is defined as jB(s; t; c)j =

P
B2B(s;t;c)

P
e i2B ci .

A bridge cover is a least bridge cover (LB), denoted by
LB(s; t; c), if it has the smallest weight among all bridge
covers that cover LCP(s; t; c).

Key Results

Theorem 1 If � = (M;S) is an ˛-stable multicast system,
then ˛ � 1/n.

Theorem 2 Multicast system �DM is 1/(r � n)-stable,
where r is the number of receivers.

Theorem 1 gives an upper bound for ˛ for any ˛-stable
unicast system � . It is not difficult to observe that even
the receivers are cooperative, Theorem 1 still holds. The-
orem 2 showed that there exists a multicast system is
1/(r � n)-stable. When r = 1, the problem become tradi-
tional unicast system and the bound is tight. When relax-
ing the dominant strategy to the Nash Equilibria require-
ment, a First Price Auction (FPA) mechanism is proposed

1: Each terminal bids a price bi .
2: Every link sends a unit size dummypacket with prop-

erty � = � � (n � bu �
P
e i2G

bi ) and receives payment

fi(s; q1; b) = � �
h
bu � (n � bu �

P
e j2G�e i b j) �

h2i
2

i
.

Here, bu is the maximum cost any link can declare.
3: Compute the unique path LCP(s; q1; b0) by applying

certain fixed tie-breaking rule consistently.
4: Each terminal bids again for a price b0i .
5: for each link ei do
6: It is select to relay the packet and receives pay-

ment b0i if and only if ei is on path LCP(s; q1; b0).
7: end for

Nash Equilibria andDominant Strategies in Routing, Algorithm 2
FPAMechanismMAUC

1: Execute Line 1 � 3 in Algorithm 2.
2: Compute LB(s; q1; b), and set � = jLB(s;q1;b)j

2 .
3: If � � �1 then set �AU1 (�1;eb) = 1 and �AU1 (�1;eb) = � .

Every relay link on LCP is selected and receives an
extra payment b0i .

4: For each link ei 62 LCP(s; q1; b0), it receives a pay-
ment PAU

i (�1;eb) � � � (b0i � bi )2.

Nash Equilibria andDominant Strategies in Routing, Algorithm 3
FPA based unicast system

byWang et al. under the AxiomModel that has many nice
properties.

Theorem 3 There exists NE for FPA mechanism MAUC

and for any NE, (a) each link bids his true cost as the first
bid bi, (b) the actual shortest path is always selected, (c) the
total cost for different NE differs at most 2 times.

Based on the FPA Mechanism �AUC, Wang, Li and Chu
design a unicast system as follows.

Theorem 4 The FPA based unicast system not only has
Nash Equilibria, but also is 1

2 -NE-stable with � additive, for
any given �.

By treating each receiver as a separate receiver and apply-
ing the similar process as in the unicast system, Wang, Li
and Chu extended the unicast system to a multicast sys-
tem.

Theorem 5 The FPA based multicast system not only has
Nash Equilibria, but also is 1/(2 � r)-NE-stable with � addi-
tive, for any given �.
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Applications

More and more research effort has been done to study
the non-cooperative games recently. Among these various
forms of games, the unicast/multicast routing game [2,5,6]
and multicast cost sharing game [1,3,4] have received
a considerable amount of attentions over the past few year
due to its application in the Internet. However, both uni-
cast/multicast routing game and multicast cost sharing
game are one folded: the unicast/multicast routing game
does not take the receivers into account while the mul-
ticast cost sharing game does not treat the links as non-
cooperative. In this paper, they study the scenario, which
was called multicast system, in which both the links and
the receivers could be non-cooperative. Solving this prob-
lem paving a way for the real world commercial multicast
and unicast application. A few examples are, but not lim-
ited to, the multicast of the video content in wireless mesh
network and commercial WiFi system; the multicast rout-
ing in the core Internet.

Open Problems

Anumber of problems related to the work ofWang, Li and
Chu [7] remain open. The first and foremost, the upper
bound and lower bound on ˛ still have a gap of r if the
multicast system is ˛-stable; and a gap of 2r if themulticast
system is ˛-Nash stable.

The second, Wang, Li and Chu only showed the exis-
tence of the Nash Equilibrium under their systems. They
have not characterized the convergence of the Nash Equi-
librium and the strategies of the user, which are not only
interesting but also important problems.

Cross References

�Non-approximability of Bimatrix Nash Equilibria
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ProblemDefinition

In this chapter, the authors state results on some transfor-
mation based distances for evolutionary trees. Several dis-
tance models for evolutionary trees have been proposed
in the literature. Among them, the best known is per-
haps the nearest neighbor interchange (nni) distance in-
troduced independently in [10] and [9]. The authors will
focus on the nni distance and a closely related distance
called the subtree-transfer distance originally introduced
in [5,6]. Several papers that involved DasGupta, He, Jiang,



574 N Nearest Neighbor Interchange and Related Distances

Li, Tromp and Zhang essentially showed the following re-
sults:
� A correspondence between the nni distance and the

linear-cost subtree-transfer distance on unweighted
trees;

� Computing the nni distance is NP-hard, but admits
a fixed-parameter tractability and a logarithmic ratio
approximation algorithms;

� A 2-approximation algorithm for the linear-cost sub-
tree-transfer distance on weighted evolutionary trees.

The authors first define the nni and linear-cost subtree-
transfer distances for unweighted trees. Then the authors
extend the nni and linear-cost subtree-transfer distances
to weighted trees. For the purpose of this chapter, an evo-
lutionary tree (also called phylogeny) is an unordered tree,
has uniquely labeled leaves and unlabeled interior nodes,
can be unrooted or rooted, can be unweighted or weighted,
and has all internal nodes of degree 3.

Unweighted Trees

An nni operation swaps two subtrees that are separated by
an internal edge (u, v), as shown in Fig. 1.

The nni operation is said to operate on this internal
edge. The nni distance, Dnni(T1; T2), between two trees T1
and T2 is defined as the minimum number of nni opera-
tions required to transform one tree into the other.

An nni operation can also be viewed as moving a sub-
tree past a neighboring internal node. A more general op-
eration is to transfer a subtree from one place to another
arbitrary place. Figure 2 shows such a subtree-transfer op-
eration.

The subtree-transfer distance between two trees T1
and T2 is the minimum number of subtrees one need
to move to transform T1 into T2 [5,6,7]. It is sometimes

Nearest Neighbor Interchange and Related Distances, Figure 1
The two possible nni operations on an internal edge (u, v): ex-
change B $ C or B $ D

Nearest Neighbor Interchange and Related Distances, Figure 2
An example of subtree-transfer

appropriate in practice to discriminate among subtree-
transfer operations as they occur with different frequen-
cies. In this case, one can charge each subtree-transfer op-
eration a cost equal to the distance (the number of nodes
passed) that the subtree has moved in the current tree.
The linear-cost subtree-transfer distance, Dlcst(T1; T2), be-
tween two trees T1 and T2 is then the minimum total cost
required to transform T1 into T2 by subtree-transfer oper-
ations [1,2].

Weighted Trees

Both the linear-cost subtree-transfer and nni models can
be naturally extended to weighted trees. The extension for
nni is straightforward: an nni operation is simply charged
a cost equal to the weight of the edge it operates on. For
feasibility of weighted nni transformation between two
given weighted trees T1 and T2, one also requires that the
following conditions are satisfied: (1) for each leaf label
a, the weight of the edge in T1 incident on a is the same
as the weight of the edge in T2 incident on a and (2) the
multisets of weights of internal edges of T1 and T2 are the
same.

In the case of linear-cost subtree-transfer, although the
idea is immediate, i. e., amoving subtree should be charged
for the weighted distance it travels, the formal definition
needs some care and is given below. Consider (unrooted)
trees in which each edge e has a weight w(e) � 0. To en-
sure feasibility of transforming a tree into another, One re-
quires the total weight of all edges to equal one. A subtree-
transfer is now defined as follows. Select a subtree S of
T at a given node u and select an edge e 62 S. Split the
edge e into two edges e1 and e2 with weights w(e1) and
w(e2) (w(e1);w(e2) � 0,w(e1) + w(e2) = w(e)), andmove
S to the common end-point of e1 and e2. Finally, merge
the two remaining edges e0 and e00 adjacent to u into one
edge with weight w(e0) + w(e00). The cost of this subtree-
transfer is the total weight of all the edges over which S
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Nearest Neighbor Interchange and Related Distances, Figure 3
Subtree-transfer on weighted phylogenies. Tree b is obtained from tree awith one subtree-transfer

is moved. Figure 1 gives an example. The edge-weights of
the given tree are normalized so that their total sum is 1.
The subtree S is transferred to split the edge e4 to e6 and
e7 such that w(e6);w(e7) � 0 and w(e6) + w(e7) = w(e4);
finally, the two edges e1 and e2 are merged to e5 such
that w(e5) = w(e1) + w(e2). The cost of transferring S is
w(e2) + w(e3) + w(e6).

Note that for weighted trees, the linear-cost subtree-
transfer model is more general than the nni model in
the sense that one can slide a subtree along an edge with
subtree-transfers. Such an operation is not realizable with
nni moves.

Key Results

Let T1 and T2 be the two trees, each with n nodes, that are
being used in the distance computation.

Theorem 1 ([2,3,4]) Assume that T1 and T2 are un-
weighted. Then, the following results hold:
� Dnni(T1; T2) = Dlcst(T1; T2).
� Computing Dnni(T1; T2) is NP-complete.
� Suppose that Dnni(T1; T2) � d. Then, an optimal se-

quence of nni operations transforming T1 into T2 can
be computed in O(n2 log n + n � 223d/2) time.

� Dnni(T1; T2) can be approximated to within a factor of
log n + O(1) in polynomial time.

Theorem 2 ([1,2,3,4]) Assume that T1 and T2 are
weighted. Then, the following results hold:
� Dnni(T1; T2) can be approximated to within a factor of

6 + 6 log n in O(n2 log n) time.
� Assume that T1 and T2 are allowed to have leaves that

are not necessarily uniquely labeled. Then, computing
Dlcst(T1; T2) is NP-hard.

� Dlcst(T1; T2) can be approximated to within a factor of 2
in O(n2 log n) time.

Applications

The results reported here are on transformation based dis-
tances for evolutionary trees. Such a tree is can be rooted
if the evolutionary origin is known and can be weighted

if the evolutionary length on each edge is known. Recon-
structing the correct evolutionary tree for a set of species
is one of the fundamental yet difficult problems in evo-
lutionary genetics. Over the past few decades, many ap-
proaches for reconstructing evolutionary trees have been
developed, including (not exhaustively) parsimony, com-
patibility, distance and maximum likelihood approaches.
The outcomes of these methods usually depend on the
data and the amount of computational resources applied.
As a result, in practice they often lead to different trees on
the same set of species [8]. It is thus of interest to com-
pare evolutionary trees produced by different methods, or
by the same method on different data.

Another motivation for investigating the linear-cost
subtree transfer distance comes from the following mo-
tivation. When recombination of DNA sequences occurs
in an evolution, two sequences meet and generate a new
sequence, consisting of genetic material taken left of the
recombination point from the first sequence and right of
the point from the second sequence [5,6]. From a phylo-
genetic viewpoint, before the recombination, the ances-
tral material on the present sequence was located on two
sequences, one having all the material to the left of the
recombination point and another having all the material
to the right of the breaking point. As a result, the evo-
lutionary history can no longer be described by a single
tree. The recombination event partitions the sequences
into two neighboring regions. The history for the left and
the right regions could be described by separate evolution-
ary trees. The recombination makes the two evolutionary
trees describing neighboring regions differ. However, two
neighbor trees cannot be arbitrarily different, one must
be obtainable from the other by a subtree-transfer oper-
ation. When more than one recombination occurs, one
can describe an evolutionary history using a list of evo-
lutionary trees, each corresponds to some region of the
sequences and each can be obtained by several subtree-
transfer operations from its predecessor [6]. The com-
putation of a linear-cost subtree-transfer distance is use-
ful in reconstructing such a list of trees based on parsi-
mony [5,6].
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Open Problems

1. Is there a constant ratio approximation algorithm for
the nni distance on unweighted evolutionary trees or is
the O(log n)-approximation the best possible?

2. Is the linear-cost subtree-transfer distance NP-hard to
compute on weighted evolutionary trees if leaf labels
are not allowed to be non-unique?

3. Can one improve the approximation ratio for linear-
cost subtree-transfer distance on weighted evolutionary
trees?

Cross References
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ProblemDefinition

Let G = (V ; E) be an n-vertex,m-edge directed graph (di-
graph), whose edges are associated with a real-valued cost
function wt : E ! R. The cost, wt(P), of a path P in G is
the sum of the costs of the edges of P. A simple path C
whose starting and ending vertices coincide is called a cy-
cle. Ifwt(C) < 0, then C is called a negative cycle. The goal
of the negative cycle problem is to detect whether there
is such a cycle in a given digraph G with real-valued edge
costs, and if indeed exists to output the cycle.

The negative cycle problem is closely related to the
shortest path problem. In the latter, a minimum cost path
between two vertices s and t is sought. It is easy to see that
an s-t shortest path exists if and only if no s-t path in G
contains a negative cycle [1,13]. It is also well-known that
shortest paths from a given vertex s to all other vertices
form a tree called shortest path tree [1,13].

Key Results

For the case of general digraphs, the best algorithm to
solve the negative cycle problem (or to compute the short-
est path tree, if such a cycle does not exist) is the classi-
cal Bellman�Ford algorithm that takes O(nm) time (see
e. g., [1]). Alternative methods with the same time com-
plexity are given in [4,7,12,13]. Moreover, in [11, Chap. 7]
an extension of the Bellman�Ford algorithm is described
which, in addition to detecting and reporting the existing
negative cycles (if any), builds a shortest path tree rooted
a some vertex s reaching those vertices u whose shortest s-
u path does not contain a negative cycle. If edge costs are
integers larger than �L (L � 2), then a better algorithm
was given in [6] that runs in O(m

p
n log L) time, and it is

based on bit scaling.
A simple deterministic algorithm that runs in

O(n2 log n) expected time with high probability is given
in [10] for a large class of input distributions, where
the edge costs are chosen randomly according to the
endpoint-independent model (this model includes the
common case where all edge costs are chosen indepen-
dently from the same distribution).
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Better results are known for several important classes
of sparse digraphs (i. e., digraphs with m = O(n) edges)
such as planar digraphs, outerplanar digraphs, digraphs of
small genus, and digraphs of small treewidth.

For general sparse digraphs, an algorithm is given
in [8] that solves the negative cycle problem in
O(n + �̃ 1:5 log �̃ ) time, where �̃ is a topological measure of
the input sparse digraph G, and whose value varies from 1
up to 	(n). Informally, �̃ represents the minimum num-
ber of outerplanar subgraphs, satisfying certain separation
properties, into which G can be decomposed. In partic-
ular, �̃ is proportional to � (G) + q, where G is supposed
to be embedded into an orientable surface of genus � (G)
so as to minimize the number q of faces that collectively
cover all vertices. For instance, if G is outerplanar, then
�̃ = 1, which implies an optimal O(n) time algorithm for
this case. The algorithm in [8] does not require such an
embedding to be provided by the input. In the same pa-
per, it is shown that random Gn;p graphs with threshold
function 1/n are planar with probability one and have an
expected value for �̃ equal to O(1). Furthermore, an effi-
cient parallelization of the algorithm on the CREW PRAM
model of computation is provided in [8].

Better bounds for planar digraphs are as follows. If
edge costs are integers, then an algorithm running in
O(n4/3 log(nL)) time is given in [9]. For real edge costs,
an O(n log3 n)-time algorithm was given in [5].

An optimal O(n)-time algorithm is given in [3] for
the case of digraphs with small treewidth (and real edge
costs). Informally, the treewidth t of a graph G is a pa-
rameter which measures how close is the structure of
G to a tree. For instance, the class of graphs of small
treewidth includes series-parallel graphs (t = 2) and out-
erplanar graphs (t = 2). An optimal parallel algorithm for
the same problem, on the EREW PRAMmodel of compu-
tation, is provided in [2].

Applications

Finding negative cycles in a digraph is a fundamental com-
binatorial and network optimization problem that spans
a wide range of applications including: shortest path com-
putation, two dimensional package element, minimum
cost flows, minimal cost-to-time ratio, model verification,
compiler construction, software engineering, VLSI design,
scheduling, circuit production, constraint programming
and image processing. For instance, the isolation of neg-
ative feedback loops is imperative in the design of VLSI
circuits. It turns out that such loops correspond to nega-
tive cost cycles in the so-called amplifier-gain graph of the
circuit. In constraint programming, it is required to check

the feasibility of sets of constraints. Systems of difference
constraints can be represented by constraint graphs, and
one can show that such a system is feasible if and only if
there are no negative cost cycles in its corresponding con-
straint graph. In zero-clairvoyant scheduling, the prob-
lem of checking whether there is a valid schedule in such
a scheduling system can be reduced to detecting negative
cycles in an appropriately defined graph. For further dis-
cussion on these and other applications see [1,12,14].

Open Problems

The negative cycle problem is closely related to the shortest
path problem. The existence of negative edge costs makes
the solution of the negative cycle problem or the com-
putation of a shortest path tree more difficult and thus
more time consuming compared to the time required to
solve the shortest path tree problem in digraphs with non-
negative edge costs. For instance, for digraphs with real
edge costs, compare the O(nm)-time algorithm in the for-
mer case with the O(m + n log n)-time algorithm for the
latter case (Dijkstra’s algorithm implemented with an effi-
cient priority queue; see e. g., [1]).

It would therefore be interesting to try to reduce the
gap between the above two time complexities, even for
special classes of graphs or the case of integer costs.

The only case where these two complexities coincide
concerns the digraphs of small treewidth [3], making it the
currently most general such class of graphs. For planar di-
graphs, the result in [5] is only a polylogarithmic factor
away from the O(n)-time algorithm in [9] that computes
a shortest path tree when the edge costs are non-negative.

Experimental Results

An experimental study for the negative cycle problem
is conducted in [4]. In that paper, several methods
that combine a shortest path algorithm (based on the
Bellman�Ford approach) with a cycle detection strategy
are investigated, along with some new variations of them.
It turned out that the performance of algorithms for the
negative cycle problem depends on the number and the
size of the negative cycles. This gives rise to a collection of
problem families for testing negative cycle algorithms.

A follow-up of the above study is presented in [14],
where two new heuristics are introduced and are incor-
porated on three of the algorithms considered in [4] (the
original Bellman�Ford and the variations in [13] and [7]),
achieving dramatic improvements. The data sets consid-
ered in [14] are those in [4].
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Data Sets

Data set generators and problem families are described
in [4], and are available from http://www.avglab.com/
andrew/soft.html.

URL to Code

The code used in [4] is available from http://www.avglab.
com/andrew/soft.html.
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In this entry, the following two problems are considered:
1) the problem of finding an approximate Nash equilib-
rium in a positively normalized bimatrix (or two-player)
game; and 2) the smoothed complexity of finding an ex-
act Nash equilibrium in a bimatrix game. It turns out that
these two problems are strongly correlated [3].

Let G = (A;B) be a bimatrix game, where A = (ai; j)
and B = (bi; j) are both n � n matrices. Game G is said
to be positively normalized, if 0 � ai; j; bi; j � 1 for all
1 � i; j � n.

Let P n denote the set of all probability vectors in Rn ,
i. e., non-negative vectors whose entries sum to 1. A Nash
equilibrium [8] of G = (A;B) is a pair of mixed strategies
(x� 2 P n ; y� 2 P n) such that for all x; y 2 P n ,

(x�)TAy� � xTAy� and (x�)TBy� � (x�)TBy ;

while an �-approximate Nash equilibrium is a pair
(x� 2 P n ; y� 2 P n) that satisfies

(x�)TAy� � xTAy� � � and

(x�)TBy� � (x�)TBy � � ; for all x; y 2 P n :

In the smoothed analysis [11] of bimatrix games, a per-
turbation of magnitude � > 0 is first applied to the input
game: For a positively normalized n � n game G = (A;B),
let A and B be two matrices with

ai; j = ai; j+rAi; j and bi; j = bi; j+rBi; j; 81 � i; j � n;

while rAi; j and rBi; j are chosen independently and uni-
formly from interval [��; �] or from Gaussian distribu-
tion with variance �2. These two kinds of perturbations
are referred to as �-uniform and �-Gaussian perturba-
tions, respectively. An algorithm for bimatrix games has
polynomial smoothed complexity (under �-uniform or �-
Gaussian perturbations) [11], if it finds a Nash equilibrium
of game (A;B) in expected time poly(n; 1/�), for all (A;B).

http://www.avglab.com/andrew/soft.html
http://www.avglab.com/andrew/soft.html
http://www.avglab.com/andrew/soft.html
http://www.avglab.com/andrew/soft.html
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Key Results

The complexity class PPAD [9] is defined in entry � Bi-
matrix Nash. The following theorems are proved in [3].

Theorem 1 For any constant c > 0, the problem of com-
puting a 1/nc -approximate Nash equilibrium of a positively
normalized n � n bimatrix game is PPAD-complete.

Theorem 2 The problem of computing a Nash equilibrium
in a bimatrix game is not in smoothed polynomial time,
under uniform or Gaussian perturbations, unless PPAD 

RP.

Corollary 1 The smoothed complexity of the Lemke-
Howson algorithm is not polynomial, under uniform or
Gaussian perturbations, unless PPAD
 RP.

Applications

See entry� Bimatrix Nash.

Open Problems

There remains a complexity gap on the approximation
of Nash equilibria in bimatrix games: The result of [7]
shows that, an �-approximate Nash equilibrium can be
computed in nO(log n/�2)-time, while [3] show that no al-
gorithm can find an �-approximate Nash equilibrium in
poly(n; 1/�)-time for � of order 1/poly(n), unless PPAD is
in P. However, the hardness result of [3] does not cover
the case when � is a constant between 0 and 1. Naturally,
it is unlikely that the problem of finding an �-approximate
Nash equilibrium is PPAD-complete when � is an absolute
constant, for otherwise, all the search problems in PPAD
would be solvable in nO(log n)-time, due to the result of [7].
An interesting open problem is that, for every constant
� > 0, is there a polynomial-time algorithm for finding an
�-approximate Nash equilibrium? The following conjec-
tures are proposed in [3]:

Conjecture 1 There is an O(nk+��c )-time algorithm for
finding an �-approximate Nash equilibrium in a bimatrix
game, for some constants c and k.

Conjecture 2 There is an algorithm to find a Nash
equilibrium in a bimatrix game with smoothed complex-
ity O(nk+��c ) under perturbations with magnitude � , for
some constants c and k.

It is also conjectured in [3] that Corollary 1 remains
true without any complexity assumption on class PPAD.
A positive answer would extend the result of [10] to the
smoothed analysis framework.
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ProblemDefinition

Phylogenies are binary trees whose leaves are labeled
with distinct leaf labels. This problem in this article is
concerned with a well-known measurement, called non-
shared edge distance, for comparing the dissimilarity be-
tween two phylogenies. Roughly speaking, the non-shared
edge distance counts the number of edges that differentiate
one phylogeny from the other.

Let e be an edge in a phylogeny T. Removing e from
T splits T into two subtrees. The leaf labels are partitioned
into two subsets according to the subtrees. The edge e is
said to induce a partition of the set of leaf labels. Given two
phylogenies T and T 0 having the same number of leaves
with the same set of leaf labels, an edge e in T is shared if
there exists some edge e0 in T 0 such that the edges e and
e0 induce the same partition of the set of leaf labels in their
corresponding tree. Otherwise, e is non-shared. Notice that
T and T 0 has the same number of edges, so that the num-
ber of non-shared edges in T (with respect to T 0) is the
same as the number of non-shared edges in T 0 (with re-
spect to T). Such a number is called the non-shared edge
distance between T and T 0. Two problems are defined as
follows:

Non-shared Edge Distance Problem
INPUT: Two phylogenies on the same set of leaf labels
OUTPUT: The non-shared edge distance between the two
input phylogenies

All-Pairs Non-shared Edge Distance Problem
INPUT: A collection of phylogenies on the same set of leaf
labels
OUTPUT: The non-shared edge distance between each pair
of the input phylogenies

Extension

Phylogenies that are commonly used in practice have
weights associated to the edges. The notion of non-shared
edge can be easily extended for edge-weighted phyloge-
nies. In this case, an edge e will induce a partition of the
set of leaf labels as well as the multi-set of edge weights
(here, edge weights are allowed to be non-distinct). Given
two edge-weighted phylogenies R and R0 having the same
set of leaf labels and the samemulti-set of edge weights, an
edge e in R is shared if there exists some edge e0 in R0 such
that the edges e and e0 induce the same partition of the
set of leaf labels and the multi-set of edge weights. Oth-
erwise, e is non-shared. The non-shared edge distance be-
tween R and R0 are similarly defined, giving the following
problem:

General Non-shared Edge Distance Problem
INPUT: Two edge-weighted phylogenies on the same set of
leaf labels and same multi-set of edge weights
OUTPUT: The non-shared edge distance between the two
input phylogenies

Key Results

Day [3] proposed the first linear-time algorithm for the
Non-shared Edge Distance Problem.

Theorem 1 Let T and T 0 be two input phylogenies with the
same set of leaf labels, and n be the number of leaves in each
phylogeny. The non-shared edge distance between T and T 0

can be computed in O(n) time.

Let � be a collection of k phylogenies on the same set of
leaf labels, and n be the number of leaves in each phy-
logeny. The All-Pairs Non-shared Edge Distance Problem
can be solved by applying Theorem 1 on each pair of phy-
logenies, thus solving the problem in a total of O(k2n)
time. Pattengale and Moret [9] proposed a randomized
result based on [7] to solve the problem approximately,
whose running time is faster when n � k � 2n .

Theorem 2 Let " be a parameter with ">0. Then, there
exists a randomized algorithm such that with probability at
least 1 � k�2, the non-shared edge distance between each
pair of phylogenies in� can be approximated within a fac-
tor of (1 + ") from the actual distance; the running time of
the algorithm is O(k(n2 + k log k)/"2).

For general phylogenies, let R and R0 be two input phylo-
genies with the same set of leaf labels and the same multi-
set of edge weights, and n be the number of leaves in
each phylogeny. The General Non-shared Distance Prob-
lem can be solved easily in O(n2) time by applying The-
orem 1 in a straightforward manner. The running time is
improved by Hon et al. in [5].

Theorem 3 The non-shared edge distance between R and
R0 can be computed in O(n log n) time.

Applications

Phylogenies are commonly used by biologists to model
the evolutionary relationship among species. Many recon-
struction methods (such as maximum parsimony, maxi-
mum likelihood, compatibility, distance matrix) produce
different phylogenies based on the same set of species,
and it is interesting to compute the dissimilarities between
them. Also, through the comparison, information about
rare genetic events such as recombinations or gene con-
versions may be uncovered. The most common dissimi-
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larity measure is the Robinson–Foulds metric [11], which
is exactly the same as the non-shared edge distance.

Other dissimilarity measures, such as the nearest-
neighbor interchange (NNI) distance and the subtree-
transfer (STT) distance (see [2] for details), are also pro-
posed in the literature. Thesemeasures are sometimes pre-
ferred by the biologists since they can be used to deduce
the biological events that create the dissimilarity. Never-
theless, these measures are usually difficult to compute. In
particular, computing the NNI distance and the STT dis-
tance are shown to be NP-hard by DasGupta et al. [1,2].
Approximation algorithms are devised for these problems
(NNI: [4,8], STT: [1,6]). Interestingly, all these algorithms
make use of the non-shared edge distance to bound their
approximation ratios.
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ProblemDefinition

Cooperative game theory considers how to distribute the
total income generated by a set of participants in a joint
project to individuals. The Nucleolus, trying to capture the
intuition of minimizing dissatisfaction of players, is one
of the most well-known solution concepts among various
attempts to obtain a unique solution. In Deng, Fang and
Sun’s work [2], they study the Nucleolus of flow games
from the algorithmic point of view. It is shown that, for
a flow game defined on a simple network (arc capacity be-
ing all equal), computing the Nucleolus can be done in
polynomial time, and for flow games in general cases, both
the computation and the recognition of the Nucleolus are
NP-hard.

A cooperative (profit) game (N, v) consists of a player
set N = f1; 2; � � � ; ng and a characteristic function
v : 2N ! R with v(;) = 0, where the value v(S) (S 
 N) is
interpreted as the profit achieved by the collective action
of players in S. Any vector x 2 Rn with

P
i2N xi = v(N)

is an allocation. An allocation x is called an imputation if
xi � v(fig) for all i 2 N. Denote by I(v) the set of impu-
tations of the game.

Given an allocation x, the excess of a coalition
S(S 
 N) at x is defined as

e(S; x) = x(S) � v(S) ;

where x(S) =
P

i2S xi for S 
 N. The value e(S, x) can
be interpreted as a measure of satisfaction of coalition S
with the allocation x. The core of the game (N, v), denoted
by C(v), is the set of allocations whose excesses are all
non-negative. For an allocation x of the game (N, v), let
�(x) denote the (2n � 2)-dimensional vector whose com-
ponents are the non-trivial excesses e(S, x), ; 6= S 6= N , ar-
ranged in a non-decreasing order. That is, �i(x) � � j(x),
for 1 � i < j � 2n � 2. Denote by �l the “lexicograph-
ically greater than” relationship between vectors of the
same dimension.

Definition 1 The Nucleolus �(v) of game (N, v) is the set
of imputations that lexicographically maximize �(x) over



582 N Nucleolus

the set of all imputations x 2 I(v). That is,

�(v) = fx 2 I(v) : �(x) �l �(y) for all y 2 I(v)g :

Even though, the Nucleolus may contain multiple points
by the definition, it was proved by Schmeidler [12] that
the Nucleolus of a game with non-empty imputation set
contains exactly one element. Kopelowitz [10] proposed
that the Nucleolus can be obtained by recursively solving
a sequential linear programs (SLP):

LPk :

max "
x(S) = v(S) + "r 8S 2 Jr r = 0; 1; � � � ; k � 1

x(S) � v(S) + " 8S 2 2N n
k�1[
r=0

Jr

x 2 I(v):

Here, J0 = f;;Ng and "0 = 0 initially; the number "r
is the optimum value of the r-th program (LPr), and
Jr = fS 2 2N : x(S) = v(S) + "r for every x 2 Xrg, where
Xr = fx 2 I(v) : (x; "r) is an optimal solution to LPrg. It
can be shown that after at most n � 1 iterations, one ar-
rives at a unique optimal solution (x�; "k), where x� is just
the Nucleolus of the game. In addition, the set of optimal
solutionsX1 to the first program LP1 is called the least core
of the game.

The definition of the Nucleolus entails comparisons
between vectors of exponential length, and with linear
programming approach, each linear programs in (SLP)
may possess exponential size in the number of players.
Clearly, both do not provide an efficient solution in gen-
eral.

Flow games, first studied in Kailai and Zemel [8,9],
arise from the profit distribution problem related to the
maximum flow in a network. Let D = (V ; E;!; s; t) be
a directed flow network, where V is the vertex set, E is the
arc set, ! : E ! R+ is the arc capacity function, s and t are
the source and the sink of the network, respectively. The
network D is simple if !(e) = 1 for each e 2 E, which is
denoted briefly by D = (V ; E; s; t).

Definition 2 The flow game 
 f = (E; �) associated with
network D = (V ; E;!; s; t) is defined by

(i) The player set is E;
(ii) 8S 
 E, �(S) is the value of a maximum flow from

s to t in the subnetwork of D consisting only of arcs
belonging to S.

Problem 1 (Computing the Nucleolus)
INSTANCE: A flow network D = (V ; E;!; s; t).

QUESTION: Is there a polynomial time algorithm to com-
pute the Nucleolus of the flow game associated with D?

Problem 2 (Recognizing the Nucleolus)
INSTANCE: A flow network D = (V ; E;!; s; t) and
y : E ! R+.
QUESTION: Is it true that y is the Nucleolus of the flow
game associated with D?

Key Results

Theorem 1 Let D = (V ; E; s; t) be a simple network and

 f = (E; �) be the associated flow game. Then the Nucleolus
�(�) can be computed in polynomial time.

By making use of duality technique in linear program-
ming, Kalai and Zemel [9] gave an characterization on the
core of a flow game. They further conjectured that their
approach may serve as a practical basis for computing the
Nucleolus. In fact, the proof of Theorem 1 in the work of
Deng Fang and Sun [2] is just an elegant application of
Kalai and Zemel’s approach (especially the duality tech-
nique), and hence settling their conjecture.

Theorem 2 Given a flow game 
 f = (E; �) defined on net-
work D = (V ; E;!; s; t), computing the Nucleolus �(�) is
NP-hard.

Theorem 3 Given a flow game 
 f = (E; �) defined on
network D = (V ; E;!; s; t), and an imputation y 2 I(�),
checking whether y is the Nucleolus of 
 f isNP-hard.

Although a flow game can be formulated as a linear pro-
duction game [1], the size of reduction may in general be
exponential in space, and consequently, their complexity
results on the Nucleolus are independent. However, in the
NP-hardness proof of Theorem 2 and 3, the flow game
constructed possesses a polynomial size formulation of
linear production game [2]. Therefore, as a direct corol-
lary, the same NP-hardness conclusions for linear pro-
duction games are obtained. That is, both computing and
recognizing the Nucleolus of a linear production game are
NP-hard.

Applications

As an important solution concept in economics and game
theory, the Nucleolus and related solution concepts have
been applied to study insurance policies, real estate and
bankruptcy, etc. However, it is a challenging problem in
mathematical programming to decide what classes of co-
operative games permit polynomial time computation of
the Nucleolus.



Nucleolus N 583

The first polynomial time algorithm for Nucleolus in
a special tree game was proposed by Megiddo [11], in ad-
vocation of efficient algorithms for cooperative game so-
lutions. Subsequently, some efficient algorithms have been
developed for computing the Nucleolus, such as, for as-
signment games [13] andmatching games [7]. On the neg-
ative side, NP-hardness result was obtained for mini-
mum cost spanning tree games [3].

Granot, Granot and Zhu [6] observed that most of the
efficient algorithms for computing the Nucleolus are based
on the fact that the information needed to completely
characterize the Nucleolus is much less than that dictated
by its definition. Therefore, they introduced the concept
of a characterization set for the Nucleolus to embody the
notion of “minimum” relevant information needed for de-
termining the Nucleolus. Furthermore, based on the se-
quential linear programs (SLP), they established a general
relationship between the size of a characterization set and
the complexity of computing the Nucleolus. Following this
line of development, some known efficient algorithms for
computing the Nucleolus are derived directly.

Another approach to computing the Nucleolus is
taken by Faigle, Kern and Kuipers [4], which is motivated
by Schmeidler’s observation that the Nucleolus of a game
lies in the kernel [12]. In the case where the kernel of the
game contains exactly one core vector and the minimum
excess for any given allocation can be compute efficiently,
their approach derives a polynomial time algorithm for
the Nucleolus. This also generalizes some known results
on the computation of the Nucleolus. However, their algo-
rithm uses the ellipsoid method as a subroutine, it implies
that the efficiency of the algorithm is of a more theoretical
kind.

Open Problems

The field of combinatorial optimization has much to of-
fer for the study of cooperative games. It is usually the
case that the value of subgroup of players can be obtained
via a combinatorial optimization problem, where the game
is called a combinatorial optimization game. This class of
games leads to the applications of a variety of combinato-
rial optimization techniques in design and analysis of al-
gorithms, as well as establishing complexity results. One
of the most interesting result is the LP duality characteri-
zation of the core [1]. However, little work dealt with the
Nucleolus by using the duality technique so far. Hence, the
work of Deng, Fang and Sun [2] on computing the Nucle-
olus may be of independent interest.

There are still many unsolved complexity questions
concerning the Nucleolus. For the computation of the Nu-

cleolus of matching games, Kern and Paulusma [7] pro-
posed an efficient algorithm in unweighted case, and con-
jectured that it is in generalNP-hard. Since both simple
flow game and matching game fall into the class of pack-
ing/covering games, it is interesting to know the complex-
ity of computing the Nucleolus for other game models in
this class, such as, vertex covering games and minimum
coloring games.

For cooperative games arising from NP-hard com-
binatorial optimization problems, the computation of the
Nucleolus may in general be a hard task. For example, in
a traveling salesman game, nodes of the graph are the play-
ers and an extra node 0, and the value of a subgroup S of
players is the length of a minimum Hamiltonian tour in
the subgraph induced by S [ f0g [1]. It would not be sur-
prising if one shows that both the computation and the
recognition of the Nucleolus for this gamemodel areNP-
hard. However, this is not known yet. The same questions
are proposed for facility location games [5], though there
have been efficient algorithms for some special cases.

Moreover, when the computation of the Nucleolus is
difficult, it is also interesting to seek for meaningful ap-
proximation concepts of theNucleolus, especially from the
political and economic background.
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