
Oblivious Routing O 585

O

Oblivious Routing
2002; Räcke

NIKHIL BANSAL
IBM Research, IBM, Yorktown Heights, NY, USA

Keywords and Synonyms

Fixed path routing

ProblemDefinition

Consider a communication network, for example, the net-
work of cities across the country connected by commu-
nication links. There are several sender-receiver pairs on
this network that wish to communicate by sending traf-
fic across the network. The problem deals with routing all
the traffic across the network such that no link in the net-
work is overly congested. That is, no link in the network
should carry too much traffic relative to its capacity. The
obliviousness refers to the requirement that the routes in
the network must be designed without the knowledge of
the actual traffic demands that arise in the network, i. e. the
route for every sender-receiver pair stays fixed irrespective
of how much traffic any pair chooses to send. Designing
a good oblivious routing strategy is useful since it ensures
that the network is robust to changes in the traffic pattern.

Notations

Let G = (V ; E) be an undirected graph with non-negative
capacities c(e) on edges e 2 E. Suppose there are k source-
destination pairs (si ; ti) for i = 1; : : : ; k and let di denote
the amount of flow (or demand) that pair i wishes to send
from si to ti. Given a routing of these flows on G, the con-
gestion of an edge e is defined as u(e)/c(e), the ratio of the
total flow crossing edge e divided by its capacity. The con-
gestion of the overall routing is defined as the maximum
congestion over all edges. The congestion minimization
problem is to find the routing that minimizes the maxi-
mum congestion. Observe that specifying a flow from si

to ti is equivalent to finding a probability distribution (not
necessarily unique) on a collection of paths from si to ti.

The congestion minimization problem can be studied
in many settings. In the offline setting, the instance of the
flow problem is provided in advance and the goal is to
find the optimum routing. In the on line setting, the de-
mands arrive in an arbitrary adversarial order and a flow
must be specified for a demand immediately upon arrival;
this flow is fixed forever and cannot be rerouted later when
new demands arrive. Several distributed approaches have
also been studied where each pair routes its flow in a dis-
tributed manner based on some global information such
as the current congestion on the edges.

In this note, the oblivious setting is considered. Here
a routing scheme is specified for each pair of vertices in ad-
vance without any knowledge of which demandswill actu-
ally arrive. Note that an algorithm in the oblivious setting
is severely restricted. In particular, if di units of demand
arrive for pair (si ; ti), the algorithmmust necessarily route
this demand according to the pre-specified paths irrespec-
tive of the other demands or any other information such as
congestion of other edges. Thus given a network graph G,
the oblivious flows need to be computed just once. Af-
ter this is done, the job of the routing algorithm is triv-
ial; whenever a demand arrives, it simply routes it along
the pre-computed path. An oblivious routing scheme is
called c-competitive if for any collection of demandsD, the
maximum congestion of the oblivious routing is no more
than c times the congestion of the optimum offline solu-
tion for D. Given this stringent requirement on the quality
of oblivious routing, it is not a priori clear that any reason-
able oblivious routing scheme should exist at all.

Key Results

Oblivious routing was first studied in the context of per-
mutation routing where the demand pairs form a per-
mutation and have unit value each. It was shown that
any oblivious routing that specifies a single path (in-
stead of a flow) between every two vertices must neces-

586 O Oblivious Routing

sarily perform badly. This was first shown by Borodin and
Hopcroft [6] for hypercubes and the argument was later
extended to general graphs by Kaklamanis, Krizanc and
Tsantilas [12], who showed the following.

Theorem 1 ([6,12]) For every graph G of size n and max-
imum degree d and every oblivious routing strategy using
only a single path for every source-destination pair, there
is a permutation that causes an overlap of at least (n/d)1/2

paths at some node. Thus if each edge in G has unit capacity,
the edge congestion is at least (n/d)1/2/d.

Since there exists constant degree graphs such as the but-
terfly graphs that can route any permutation with loga-
rithmic congestion, this implies that such oblivious rout-
ing schemes must necessarily perform poorly on certain
graphs.

Fortunately, the situation is substantially better if the
single path requirement is relaxed and a probability dis-
tribution on paths (equivalently a flow) is allowed be-
tween each pair of vertices. In a seminal paper, Valiant and
Brebner [17] gave the first oblivious permutation routing
scheme with low congestion on the hypercube. It is in-
structive to consider their scheme. Consider an hypercube
with N = 2n vertices. Represent vertex i by the binary ex-
pansion of i. For any two vertices s and t, there is a canon-
ical path (of length at most n = logN) from s to t obtained
by starting from s and flipping the bits of s in left to right
order to match with that of t. Consider routing scheme
that for a pair s and t, it first chooses some node p uni-
formly at random, routes the flow from s to p along the
canonical path, and then routes it again from p to t along
the canonical path (or equivalently it sends 1/N units of
flow from s to each intermediate vertex p and then routes
it to t). An relatively simple analysis shows that

Theorem 2 ([17]) The above oblivious routing scheme
achieves a congestion of O(1) for hypercubes.

Subsequently, oblivious routing schemes were proposed
for few other special classes of networks. However, the
problem of designing oblivious routing schemes for gen-
eral graphs remained open until recently, when in a break-
through result Räcke showed the following.

Theorem 3 ([15]) For any undirected capacitated graph
G = (V ; E), there exist an oblivious routing scheme with
congestion O(log3 n)where n is the number of vertices in G.

The key to Räcke’s theorem is a hierarchical decompo-
sition procedure of the underlying graph (described in
further detail below). This hierarchical decomposition is
a fundamental combinatorial result about the cut struc-
ture of graphs and has found several other applications,

some of which are mentioned in Section “Applications”.
Räcke’s proof of Theorem 3 only showed the existence of
a good hierarchical decomposition and did not give an ef-
ficient polynomial time algorithm to find it. In subsequent
work, Harrelson, Hildrum and Rao [11] gave a polyno-
mial time procedure to find the decomposition and im-
proved the competitive ratio of the oblivious routing to
O(log2 n log log n).

Theorem 4 ([11]) There exists an O(log2 n log log n)-
competitive oblivious routing scheme for general graphs and
moreover it can be found in polynomial time.

Interestingly, Azar et al. [4] show that the problem of find-
ing the optimum oblivious routing for a graph can be for-
mulated as a linear program. They consider a formulation
with exponentially many constraints; one for each possi-
ble demand matrix that has optimum congestion 1, that
enforces that the oblivious routing should have low con-
gestion for this demand matrix. Azar et al. [4] give a sep-
aration oracle for this problem and hence it be solved
using the ellipsoid method. A more practical polynomial
size linear program was given later by Applegate and Co-
hen [2]. Bansal et al. [5] considered a more general vari-
ant referred to as the online oblivious routing that can
also be used to find an optimum oblivious routing. How-
ever, note that without Räcke’s result, it would not be clear
whether these optimum routings were any good. More-
over these techniques do not give a hierarchical decom-
position, and hence may be less desirable in certain con-
texts. On the other hand, they may be more useful some-
times since they produce an optimum routing (while [11]
implies an O(log2 n log log n)-competitive routing for any
graph, the best oblivious routing could have a much better
guarantee for a specific graph).

Oblivious routing has also been studied for directed
graphs, however the situation is much worse here. Azar
et al. [4] show that there exist directed graphs where any
oblivious routing is˝(

p
n) competitive. Some positive re-

sults are also known [10]. Hajiaghayi et al. [8] show a sub-
stantially improved guarantee of O(log2 n) for directed
graphs in the random demands model. Here each source-
sink pair has a distribution (that is known by the algo-
rithm) from which it chooses its demand independently.
A relaxation of oblivious routing known as semi-oblivious
routing has also been studied recently [9].

Techniques

This section describes the high level idea of Räcke’s result.
For a subset S � V , let cap(S) denote the total capacity
of the edges that cross the cut (S;V n S) and let dem(S)

Oblivious Routing O 587

denote the total demand that must be routed across the
cut (S;V n S). Observe that q = maxS�V dem(S)/cap(S) is
a lower bound on the congestion of any solution. On the
other hand, the key result [3,13] relatingmulti-commodity
flows and cuts implies that there is a routing such that the
maximum congestion is at most O(q log k) where k is the
number of distinct source sink pairs. However, note that
this by itself does not suffice to obtain good oblivious rout-
ings, since a pair (si ; ti) can have different routing for dif-
ferent demand sets. The main idea of Räcke was to impose
a tree like structure for routing on the graph to achieve
obliviousness. This is formalized by a hierarchical decom-
position described below.

Consider a hierarchical decomposition of the graph
G = (V ; E) as follows. Starting from the set S = V , the sets
are partitioned successively until each set becomes single-
ton vertex. This hierarchical decomposition can be viewed
naturally as a tree T, where the root corresponds to the
set V , and leaves corresponds to the singleton sets {v}.
Let Si denote the subset of V corresponding to node i in
T. For an edge (i; j) in the tree where i is the child of j,
assign it a capacity equal to cap(Si) (note that this is the
capacity from Si to the rest of G and not just capacity be-
tween Si and Sj in G). The tree T is used to simulate rout-
ing in G and vice versa. Given a demand from u to v in G,
consider the corresponding (unique) route among leaves
corresponding to {u} and {v} in T. For any set of demands,
it is easily seen that the congestion in T is nomore than the
congestion in G. Conversely, Räcke showed that there also
exists a tree T where the routes in T can be mapped back
to flows in G, such that for any set of demands the con-
gestion in G is at most O(log3 n) times that in T. In this
mapping a flow along the (i; j) in the tree T corresponds
to a suitably constructed flow between sets Si and Sj in G.
Since route between any two vertices in T is unique, this
gives an oblivious routing in G.

Räcke uses very clever ideas to show the existence of
such a hierarchical decomposition. Describing the con-
struction is beyond the scope of this note, but it is instruc-
tive to understand the properties that must be satisfied by
such a decomposition. First, the tree T should capture the
bottlenecks in G, i. e. if there is a set of demands that pro-
duces high congestion in G, then it should also produce
a high congestion in T. A natural approach to construct T
would be to start with V , split V along a bottleneck (for-
mally, along a cut with low sparsity), and recurse. How-
ever, this approach is too simple to work. As discussed
below, T must also satisfy two other natural conditions,
known as the bandwidth property and the weight property
which are motivated as follows. Consider a node i con-
nected to its parent j in T. Then, i needs to route dem(Si)

flow out of Si and it incurs congestion dem(Si)/cap(Si) in
T. However, when T is mapped back to G, all the flow go-
ing out of Si must pass via Sj. To ensure that the edges
from Si to Sj are not overloaded, it must be the case that
the capacity from Si to Sj is not too small compared to the
capacity from Si to the rest of the graph V n Si . This is
referred to as the bandwidth property. Räcke guarantees
that this is ratio is always ˝(1/ log n) for every Si and Sj
corresponding to edges (i; j) in the tree. The weight prop-
erty is motivated as follows. Consider a node j in T with
children i1; : : : ; ip, then the weight property essentially re-
quires that the sets Si1 ; : : : ; Sip should be well connected
among themselves even when restricted to the subgraph
Sj. To see why this is needed, consider any communication
between, say nodes i1 and i2 in T. It takes the route i1 to j
to i2, and hence in G; Si1 cannot use edges that lie outside
Sj to communicate with Si2 . Räcke shows that these con-
ditions suffice and that a decomposition can be obtained
that satisfies them.

The factor O(log3 n) in Räcke’s guarantee arises from
three sources. The first logarithmic factor is due to the
flow-cut gap [3,13]. The second is due to the logarithmic
height of the tree, and the third is due to the loss of a loga-
rithmic factor in the bandwidth and weight properties.

Applications

The problem has widespread applications to routing in
networks. In practice it is often required that the routes
must be a single path (instead of flows). This can often be
achieved by randomized rounding techniques (sometimes
under an assumption that the demands to capacity ratios
be not too large). The flow formulation provides a much
cleaner framework for studying the problems above.

Interestingly, the hierarchical decomposition also
found widespread uses in other seemingly unrelated ar-
eas such as obtaining good pre-conditioners for solving
systems of linear equations [14,16], for the all-or-nothing
multicommodity flow problem [7], online network opti-
mization [1] and so on.

Open Problems

It is possible that any graph has an O(log n) competitive
oblivious routing scheme. Settling this is a key open ques-
tion.

Cross References

� Routing
� Separators in Graphs
� Sparsest Cut

588 O Obstacle Avoidance Algorithms in Wireless Sensor Networks

Recommended Reading

1. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: A gen-
eral approach to online network optimization problems. In:
Symposium on Discrete Algorithms, pp. 570–579 (2004)

2. Applegate, D., Cohen, E.: Making intra-domain routing ro-
bust to changing and uncertain traffic demands: under-
standing fundamental tradeoffs. In: SIGCOMM, pp. 313–324
(2003)

3. Aumann, Y., Rabani, Y.: An O(log k) approximate min-cut max-
flow theorem and approximation algorithm. SIAM J. Comput.
27(1), 291–301 (1998)

4. Azar, Y., Cohen, E., Fiat, A., Kaplan, H., Räcke, H.: Optimal obliv-
ious routing in polynomial time. In: Proceedings of the 35th
ACM Symposium on the Theory of Computing, pp. 383–388
(2003)

5. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Online oblivious
routing. In Symposium on Parallelism in Algorithms and Archi-
tectures, pp. 44–49 (2003)

6. Borodin, A., Hopcroft, J.: Routing, merging and sorting on par-
allel models of computation. J. Comput. Syst. Sci. 10(1), 130–
145 (1985)

7. Chekuri, C., Khanna, S., Shepherd, F.B.: The All-or-NothingMul-
ticommodity Flow Problem. In: Proceedings of 36th ACM Sym-
posium on Theory of Computing, pp. 156–165 (2004)

8. Hajiaghayi, M., Kim, J.H., Leighton, T., Räcke, H.: Oblivious rout-
ing in directed graphs with random demands. In: Symposium
on Theory of Computing, pp. 193–201 (2005)

9. Hajiaghayi, M., Kleinberg, R., Leighton, T.: Semi-oblivious rout-
ing: lower bounds. In: Proceedings of the 18th ACM-SIAMSym-
posium on Discrete Algorithms, pp. 929–938 (2007)

10. Hajiaghayi, M., Kleinberg, R., Leighton, T., Räcke, H.: Oblivi-
ous routing in node-capacitated and directed graphs. In: Pro-
ceedings of the 16th ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 782–790 (2005)

11. Harrelson, C., Hildrum, K., Rao, S.: A polynomial-time tree de-
composition to minimize congestion. In: Proceedings of the
15th annual ACM Symposium on Parallel Algorithms and Ar-
chitectures, pp. 34–43 (2003)

12. Kaklamanis, C., Krizanc, D., Tsantilas, T.: Tight bounds for obliv-
ious routing in the hypercube. In: Proceedings of the 3rd an-
nual ACM Symposium on Parallel Algorithms and Architec-
tures, pp. 31–36 (1991)

13. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs
and some of its algorithmic applications. In: IEEE Sympo-
sium on Foundations of Computer Science, pp. 577–591
(1994)

14. Maggs, B.M., Miller, G.L., Parekh, O., Ravi, R., Woo, S.L.M.:
Finding effective support-tree preconditioners. In: Sympo-
sium on Parallel Algorithms and Architectures, pp. 176–185
(2005)

15. Räcke, H.: Minimizing congestion in general networks. In: Pro-
ceedings of the 43rd Annual Symposium on the Foundations
of Computer Science, pp. 43–52 (2002)

16. Vaidya, P.: Solving linear equations with symmetric diagonally
dominant matrices by constructing good preconditioners. Un-
published manuscript (1991)

17. Valiant, L., Brebner, G.J.: Universal schemes for parallel commu-
nication. In: Proceedings of the 13th ACM Symposium on The-
ory of Computing, pp. 263–277 (1981)

Obstacle Avoidance Algorithms
inWireless Sensor Networks
2007; Powell, Nikoletseas

SOTIRIS NIKOLETSEAS1, OLIVIER POWELL2
1 Computer Engineering and Informatics Department,
Computer Technology Institute, Patras, Greece

2 Informatics Department, University of Geneva, Geneva,
Switzerland

Keywords and Synonyms

Greedy geographic routing; Routing holes

ProblemDefinition

Wireless sensor networks are composed of many small de-
vices called sensor nodes with sensing, computing and ra-
dio frequency communication capabilities. Sensor nodes
are typically deployed in an ad hoc manner and use their
sensors to collect environmental data. The emerging net-
work collectively processes, aggregates and propagates
data to regions of interest, e. g. from a region where an
event is being detected to a base station or a mobile user.
This entry is concerned with the data propagation duty of
the sensor network in the presence of obstacles.

For different reasons, including energy conservation
and limited transmission range of sensor nodes, informa-
tion propagation is achieved via multi-hop message trans-
mission, as opposed to single-hop long range transmis-
sion. As a consequence, message routing becomes neces-
sary. Routing algorithms are usually situated at the net-
work layer of the protocol stack where the most important
component is the (dynamic) communication graph.

Definition 1 (Communication graph) A wireless sensor
network is viewed as a graph G = (V ; E) where vertexes
correspond to sensor nodes and edges represent wireless
links between nodes.

Wireless sensor networks have stringent constraints that
make classical routing algorithms inefficient, unreliable
or even incorrect. Therefore, the specific requirements of
wireless sensor networks have to be addressed [2] and geo-
graphic routing offers the possibility to design particularly
well adapted algorithms.

Geographic Routing

A geographic routing algorithm takes advantage of the fact
that sensor nodes are location aware, i. e. they know their
position in a coordinate system following the use of a lo-
calization protocol [7]. Although likely to introduce a sig-

Obstacle Avoidance Algorithms in Wireless Sensor Networks O 589

nificant overhead, the use of a localization protocol is also
likely to be inevitable inmany applications where environ-
mental data collected by the sensors would be useless if not
related to some geographical information. For those ap-
plications, node location awareness can be assumed to be
available for routing purposes at no additional cost.

The Power of Simple Geographic Routing The early
“most forward within range” (MFR) or greedy geographic
routing algorithms [14] route messages by maximizing,
at each hop, the progress on a projected line towards
the destination or, alternatively, minimizing the remain-
ing distance to the message’s destination. Both of these
greedy heuristics are referred to as greedy forwarding (GF).
Greedy forwarding is a very appealing routing technique
for wireless sensor networks. Among explanations for the
attractiveness of GF are the following. (1) GF, as is al-
most imperatively required, is fully distributed. (2) It is
lightweight in the sense that it induces no topology con-
trol overhead. (3) It is all-to-all (as opposed to all-to-one).
(4) Making no assumptions on the structure of the com-
munication graph, which can be directed, undirected, sta-
ble or dynamic (e. g. nodes may be mobile or wireless links
may appear and disappear, for example following environ-
mental fluctuation or as a consequence of lower protocol
stack layers such as sleep/awake schemes for energy saving
purposes), it is robust. (5) It is on-demand: no routing table
or gradient has to be built prior to message propagation.
(6) Efficiency is featured as messages find short paths to
their destination in terms of hop count. (7) It is very sim-
ple and thus easy to implement. (8) It ismemory efficient in
the sense that (8a) the only information stored in the mes-
sage header is the message’s destination and that (8b) it is
“ecologically sound” because no “polluting” information is
stored on the sensor nodes visited by messages.

Problem Statement

Although very appealing, GF suffers from a major flaw:
when a message reaches a local minimum where no fur-
ther progress towards the destination is possible the rout-
ing algorithm fails. There are two major reasons for the
occurrence of local minimums: routing holes [1] and ob-
stacles.

Definition 2 The so called routing holes are low density
regions of the network where no sensor nodes are available
for next-hop forwarding.

Even in uniform-randomly deployed networks, routing
holes appear as the manifestation of statistical variance of
node density. Although increasing as network density di-

minishes, routing holes have a severe impact on the per-
formance of GF even for very high density networks [12].

Definition 3 A transmission blocking obstacle is a region
of the network where no sensors are deployed and through
which radio signals do not propagate.

Clearly, large obstacles lying between a message and its
destination tend to make GF fail.

The problem reported in this entry is to find a geo-
graphic routing algorithm that maintains the advantages
of greedy forwarding listed in Sect. “Geographic Rout-
ing” such as simplicity, light weight, robustness and effi-
ciency while overcoming its weaknesses: the inability to es-
cape local minimum nodes created by routing holes and
large transmission blocking obstacles such as those seen in
Fig. 1.

Problem 1 (Escaping routing holes) The first problem is
to route messages out of the many routing holes which are
statistically doomed to occur even in dense networks.

Problem 2 (Contouring obstacles) The second problem
is to design a protocol capable of routing messages around
large transmission blocking obstacles.

Problem 1 can be considered a simplified instance of prob-
lem 2. Lightweight solutions to problem 1 have been previ-
ously proposed, usually using limited backtracking [6] or
controlled flooding combined with a GF heuristic [4,13].
However, as shown in [5] where an integrated model for
obstacles is proposed and where different algorithms are
compared with respect to their obstacle avoidance capa-
bility, those solutions do not satisfactorily solve problem 2
in the sense that only small and simple obstacles are effi-
ciently bypassed.

Key Results

In [12] a new geographic routing around obstacles (GRIC)
algorithmwas proposed to address the problems described
in the previous section.

Basic Idea of the Algorithm

In GF, the strategy is to always propagate the message to
the neighbor that maximizes progress towards the destina-
tion. Similarly, GRIC also maximizes progress in a cho-
sen direction. However, this direction is not necessarily
the message’s destination but an ideal direction of progress
which has to be computed according to one of two pos-
sible strategies: the inertia mode or the rescue mode de-
scribed below. Finally, it was found that performance is
better in the presence of slightly unstable networks, c. f.

590 O Obstacle Avoidance Algorithms in Wireless Sensor Networks

Obstacle Avoidance Algorithms inWireless Sensor Networks, Figure 1
Typical path followed by GRIC to bypass certain obstacles

Result 4, and thus in the case where the communication
graph is very stable it is recommended to use a random-
ized version of GRIC where nodes about to take a routing
decision randomly mark as either passive or active each
outbound wireless link of the communication graph. Only
active wireless links can be used for message propagation,
and link status is re-evaluated each time a new routing de-
cision is taken. Marking links as active with a probability
of p = 0:95 was found to be a good choice for practical
purposes [12].

Inertia Mode The idea of the inertia mode is that a mes-
sage should have a strong incentive to go towards its des-
tination but this incentive should be moderated by one
to follow the straight ahead direction of current motion
“. . . like a celestial body in a planet system . . . ” [12]. The
inertia mode aims at making messages follow closely the

perimeter of routing holes and obstacles in order to even-
tually bypass them and ensure final routing to the destina-
tion. To implement the inertia mode, a single additional
assumption is made: sensor nodes should be aware of the
position of the node from which they receive a message.
As an example, this could be done by piggy-backing this
1-hop away routing path history in the message header.
Knowing its own position p, the message’s destination and
the 1-hop away previous position of the message a sen-
sor node can compute the vectors vcur and vdst starting at
position p and pointing in the direction of current motion
and the direction to the message’s destination respectively.
The inertia mode defines the ideal direction of progress,
vidl, as a vector starting at point p and lying “somewhere in
between” vcur and vdst. More precisely, let ˛ be the only
angle in [�
;
[such that vdst is obtained by applying
a rotation of angle ˛ to vcur, then vidl is the vector ob-

Obstacle Avoidance Algorithms in Wireless Sensor Networks O 591

tained by applying a rotation of angle ˛0 to vcur, where
˛0 = sign(˛) � min

˚
�
6 ; j˛j

�
. Finally, the message is greed-

ily forwarded to the neighbor node maximizing progress
in the computed ideal direction of progress vidl.

Rescue Mode In order to improve overall performance
and to bypass complex obstacles, the rescue mode imitates
the right-hand rule (RHR) which is a well known wall fol-
lower technique to find one’s way out of a maze. A high-
level description of the RHR component of GRIC is given
below while details will be found in [12]. In GRIC, the
RHR makes use of a virtual compass and a flag. The vir-
tual compass assigns to vcur a cardinal point value, treating
themessage’s destination as the north. Considering the an-
gle ˛ defined in the previous section, the compass returns
a string x-y with x equal to north or south if |˛| is smaller
or greater than �

2 respectively, while y is equal to west or
east if ˛ is negative or positive respectively. The first time
the compass returns a south value, the flag is raised and
taggedwith the (x; y) value of the compass. Raising the flag
means that the message is being routed around an obstacle
using the RHR rule if the compass indicates south-west. In
the case where the compass indicates south-east, a sym-
metric case not discussed here for brevity is applied using
the left-hand rule (LHR) instead of the RHR. Once the flag
is raised, it stays up with its tag unchanged until the com-
pass indicates north, meaning that the obstacle has been
bypassed. In fact, a small optimization can be made by
lowering the flag only if the compass points to the north-
west (in the case of the RHR) and not if it points north-
east, but c.f. [12] for details. According to the RHR the ob-
stacle’s perimeter should be followed closely and kept on
the right side of the message’s current direction. If ever the
compass and the flag’s tag disagree, i. e. if the flag is tagged
with south-west and the compass returns south-east, it is
assumed that the message is turning left too much, that
it risks going away from the obstacle and that the RHR is
at risk of being violated (a symmetric case applies for the
LHR). When this is so, GRIC responds by calling the res-
cuemodewhich changes the default way of computing vidl:
in rescuemode themessage is forced to turn right (or left if
the LHR is applied), by defining vidl as the vector obtained
by applying to vcur a rotation of angle ˛00 (instead of ˛0 in
inertia mode) where ˛00 = �sign(˛)(2
 � j˛j)/6.

Main Findings

The performance of GRIC was evaluated through simu-
lations. The main parameters were the presence (or ab-
sence) of different shapes of large communication block-
ing obstacles and the network density which ranged from

very low to very high and controls the average degree of
the communication graph and the occurrence of routing
holes. The main performance metrics were the success
rate, i. e. the percentage of messages routed to destination,
and the path length. The main findings are that GRIC ef-
ficiently, i. e. using short paths, bypasses routing holes and
obstacles but that in the presence of hard obstacles, the
performance decreases with network density. In Figure 1,
typical routing paths found by GRIC for different obstacle
shapes are illustrated, c. f. [12] for details on the simulation
environment.

Result 1 In the absence of obstacles, routing holes are by-
passed for every network density: The success rate is close
to 100% as long as the source and the destination are
connected. Also, routing is efficient in the sense that path
lengths are very short.

Result 2 Some convex obstacles such as the one in Fig. 1b
are bypassed with almost 100% success rate and using short
paths, even for low densities.When the density gets very low
performance diminishes: If the density gets below the criti-
cal level guaranteeing the communication graph to be con-
nected with high probability, then the success probability di-
minishes quickly and successful routings use longer routing
paths.

Result 3 Some large concave obstacles such as those in
Fig. 1c and d are efficiently bypassed. However, when fac-
ing such obstacles performance becomes more sensitive to
network density. The success rate drops and routing paths
become longer when the density gets below a certain level
depending on the exact obstacle shape.

Result 4 (Robustness) Similarly to GF, GRIC is robust to
link instability. Furthermore, it was observed that limited
link instability has a significantly positive impact on per-
formances. This can be understood as the fact that messages
are less likely to enter endless routing loops in a “hot” system
than in a “cold” system.

Applications

Replacement for Greedy Forwarding

Because it makes no compromise with the advantages of
GF except the fact that it may be somehow more compli-
cated to implement and because it overcomes GF’s main
limitations, GRIC can probably replace GF for most rout-
ing scenarios including but not exclusively wireless sen-
sor networks. As an example opportunistic-routing strate-
gies [11] could be applied to GRIC rather than to GF.

592 O O(log log n)-competitive Binary Search Tree

Wireless Sensor Networks with Large Obstacles

GRIC successfully bypasses large communication blocking
obstacles. However, it does so efficiently only if the net-
work density is high enough. This suggests that the ob-
stacle avoidance feature of GRIC may be more useful for
dense wireless networks than for sparse networks. Wire-
less sensor networks are an example of networks which are
usually considered to be dense.

Dynamic Networks

There exist some powerful alternatives to GRIC such as
the celebrated guaranteed delivery protocols GFG [3],
GPSR [8] or GOAFR [10]. Those protocols rely on a pla-
narization phase such as the lazy cross-link detection pro-
tocol (CLDP) [9]. LCR implies significant topology main-
tenance overhead which would be amortized over time
if the network is stable enough. On the contrary, if the
network is highly dynamic the necessity for frequent up-
dates could make this topology maintenance overhead
prohibitive. GRIC may thus be a preferable choice for dy-
namic networks where the communication graph is not
a stable structure.

Open Problems

(1) Hard concave obstacles such as the one in Figure 1d
are still a challenge for lightweight protocol since in this
configuration GRIC’s performance is strongly dependent
on network density. (2) Low to very low densities are chal-
lenging when combined with large obstacles, even when
they are “simple” convex obstacles like the one in Fig-
ure 1b. (3) The problem reported in this entry in the case
of 3-dimensional networks is open. Inertia may be of some
help, however the virtual compass and the right-hand
rule seem quite strongly depend-ant on the 2-dimensional
plane. (4) GRIC is not loop free. A mechanism to detect
loops or excessively long routing paths would be quite im-
portant for practical purposes. (5) The understanding of
GRIC could be improved. Analytical results are lacking
and new metrics could be considered such as network life-
time, energy consumption or traffic congestion.

Cross References

� Probabilistic Data Forwarding in Wireless Sensor
Networks

Recommended Reading
1. Ahmed, N., Kanhere, S.S., Jha, S.: The holes problem in wire-

less sensor networks: a survey. SIGMOBILEMob. Comput. Com-
mun. Rev. 9, 4–18 (2005)

2. Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sen-
sor networks: a survey. Wirel. Commun. IEEE 11, 6–28 (2004)

3. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routingwithguar-
anteed delivery in ad hoc wireless networks. In: Discrete Algo-
rithms and Methods for Mobile Computing and Communica-
tions (1999)

4. Chatzigiannakis, I., Dimitriou, T., Nikoletseas, S., Spirakis, P.:
A probabilistic forwarding protocol for efficient data propaga-
tion in sensor networks. In: European Wireless Conference on
Mobility andWireless Systems beyond 3G (EW 2004), pp. 344–
350. Barcelona, Spain, 27 February 2004

5. Chatzigiannakis, I., Mylonas, G., Nikoletseas, S.: Modeling and
evaluation of the effect of obstacles on the performance of
wireless sensor networks. In: 39th ACM/IEEE Simulation Sym-
posium (ANSS), Los Alamitos, CA, USA, IEEE Computer Society,
pp. 50–60 (2006)

6. Chatzigiannakis, I., Nikoletseas S., Spirakis, P.: Smart dust pro-
tocols for local detection and propagation. J. Mob. Netw.
(MONET) 10, 621–635 (2005)

7. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sen-
sor Networks. Wiley, West Sussex (2005)

8. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing
for wireless networks. In: Mobile Computing and Networking.
ACM, New York (2000)

9. Kim, Y.J., Govindan, R., Karp, B., Shenker, S.: Lazy cross-link re-
moval for geographic routing. In: Embedded Networked Sen-
sor Systems. ACM, New York (2006)

10. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric
ad-hoc routing: of theory and practice. In: Principles of Dis-
tributed Computing. ACM, New York (2003)

11. Lee, S., Bhattacharjee, B., Banerjee, S.: Efficient geographic
routing in multihop wireless networks. In MobiHoc ’05: Pro-
ceedings of the 6th ACM international symposium on Mobile
ad hoc networking and computing, pp. 230–241. ACM, New
York (2005)

12. Powell, O., Nikolesteas, S.: Simple and efficient geographic
routing around obstacles for wireless sensor networks. In:
WEA 6th Workshop on Experimental Algorithms, Rome, Italy.
Springer, Berlin (2007)

13. Stojmenovic, I., Lin, X.: Loop-free hybrid single-path/flooding
routing algorithms with guaranteed delivery for wireless net-
works. IEEE Trans. Paral. Distrib. Syst. 12, 1023–1032 (2001)

14. Takagi, H., Kleinrock, L.: Optimal transmission ranges for ran-
domly distributed packet radio terminals. Communications,
IEEE Trans. [legacy, pre - 1988]. 32, 246–257 (1984)

O(log logn)-competitive Binary
Search Tree
2004; Demaine, Harmon, Iacono, Patrascu

CHENGWEN CHRIS WANG
Department of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, USA

Keywords and Synonyms

Tango

O(log log n)-competitive Binary Search Tree O 593

ProblemDefinition

Here is a precise definition of BST algorithms and their
costs. This model is implied by most BST papers, and de-
veloped in detail by Wilber [22]. A static set of n keys is
stored in the nodes of a binary tree. The keys are from
a totally ordered universe, and they are stored in symmet-
ric order. Each node has a pointer to its left child, to its
right child, and to its parent. Also, each node may keep
o(log n) bits of additional information but no additional
pointers.

A BST algorithm is required to process a sequence
of m accesses (without insertions or deletions), S = s1; s2;
s3; s4 : : : sm . The ith access starts from the root and follows
pointers until si is reached. The algorithm can update the
fields in any node or rotate any edges that it touches along
the way. The cost of the algorithm to execute an access se-
quence is defined to be the number of nodes touched plus
the number of rotations.

Let A be any BST algorithm, define A(S) as the cost
of performing sequence S and OPT(S; T0) as the mini-
mum cost to perform the sequence S. An algorithm A
is T-competitive if for all possible sequences S, A(S) �
T � OPT(S; T0) + O(m + n).

Since the number of rotation needed to change any bi-
nary tree of n keys into another one (with the same n keys)
is at most 2n � 6 [4,5,12,13,15]. It follows that OPT(S; T0)
differs from OPT(S; T 00) by atmost 2n � 6. Thus, ifm > n,
then the initial tree can only affect the constant factor.

Key Results

The interleave bound is a lower bound on OPT(S; T0) that
depends only on S. Consider any binary search tree P of all
the elements in T0. For each node y in P, define the left side
of y includes all nodes in y’s left subtree and y. And define
the right side of y includes all nodes in y’s right subtree. For
each node y, label each access si in S by whether it is in the
left or right side of y, ignoring all accesses not in y’s sub-
tree. Denote the number of times the label changes for y as
IB(S; y). The interleave bound IB(S) is

P
y IB(S; y).

Theorem 1 (Interleave Lower Bound [6,22]) IB(S)/2�n
is a lower bound on OPT(S; T0).

Demaine et al observes that it is impossible to use this
lower bound to improve the competitive ratio beyond
	(log log n).

Theorem 2 (Tango is O(log log n)-competitive BST [6])
The running time of Tango BST on a sequence S of m ac-
cesses is O((OPT(S; T0)) + n) � (1 + log log n)).

Applications

Binary search tree (BST) is one of the oldest data structures
in the history of computer science. It is frequently used to
maintain an ordered set of data. In the last 40 years, many
specialized binary search trees have been designed for spe-
cific applications. Almost every one of them supports ac-
cess, insertion and deletion in worst-case O(log n) time on
average for random sequences of access. This matches the
best theoretically possible worst-case bound. For most of
these data structures, a random sequence ofm accesses will
use	(m log n) time.

While it is impossible to have better asymptotic per-
formance for a random sequence of m accesses, many of
the real world access sequences are not random. For in-
stance, if the set of accesses are randomly drawn from
a small subset of k element, it’s possible to answer all the
accesses in O(m log k) time. A notable binary search tree
is Splay Tree. It is proved to perform well for many ac-
cess patterns [2,3,8,14,16,17,18]. As a result, Sleator and
Tarjan [14] conjectured that splay tree isO(1)-competitive
to the optimal off-line BST. After more than 20 years, the
conjecture remains an open problem.

Over the years, several restricted types of optimality
have been proved. Many of these restrictions and usage
patterns are based on real world applications. If each ac-
cess is drawn independently at random from a fixed distri-
bution, D, Knuth [11] constructed a BST based on D that
is expected to run in optimal time up to a constant factor.
Sleator and Tarjan [14] achieve the same bound without
knowing D ahead of time. Other types includes key-inde-
pendent optimality [10] and BST with free rotations [1].

In 2004, Demaine et al suggested searching for alter-
native BST algorithms that have small but non-constant
competitive factors [6]. They proposed Tango, the first
data structure proved to achieve a non-trivial competitive
factor of O(log log n). This is a major step toward develop-
ing aO(1)-competitive BST, and this line of research could
potentially replace a large number of specialized BSTs.

Open Problems

Following this paper, several newO(log log n)-competitive
BST have emerged [9,21]. A notable example is Multi–
Splay Trees [21]. It generalizes the interleave bound to
include insertions and deletions. Multi–Splay Trees also
have many theorems analogous to Splay Trees [20,21],
such as the access lemma and the working set theorem.
Wang [21] conjectured that Multi-Splay Trees is O(1)-
competitive, but it remains an open problem.

Returning to the original motivation for this research,
the problem of finding an o(log log n)-competitive on-line

594 O Online Interval Coloring

BST remains open. Several attempts have been made to
improve the lower bound [6,7,22], but none of them have
led to a lower competitive ratio. Even in the off-line model,
the problem of finding an O(1)-competitive BST is diffi-
cult. The best known off-line constant competitive algo-
rithm uses dynamic programming and requires exponen-
tial time.

Cross References

� B-trees
� Degree-Bounded Trees
� Dynamic Trees

Recommended Reading

Based on Wilber [22]’s lower bound, Tango [6] is the first
O(log log n)-competitive binary search tree. Using many
of the ideas in Tango and Link-cut Trees [14,19], Multi-
Splay Trees [21] generalize the competitive framework to
include insertion and deletion. The recommended read-
ings are Self-adjusting binary search trees by Sleator and
Tarjan, Lower bounds for accessing binary search trees with
rotations by Wilber, Dynamic Optimality - Almost by De-
maine, et al, and O(log log n) dynamic competitive binary
search tree by Wang, et al.

1. Blum, A., Chawla, S., Kalai, A.: Static optimality and dynamic
search-optimality in lists and trees. Algorithmica 36, 249–260
(2003)

2. Cole, R.: On the dynamic finger conjecture for splay trees II: The
proof. SIAM J. Comput. 30(1), 44–85 (2000)

3. Cole, R., Mishra, B., Schmidt, J., Siegel, A.: On the dynamic fin-
ger conjecture for splay trees I: Splay sorting log n-block se-
quences. SIAM J. Comput. 30(1), 1–43 (2000)

4. Crane, C.A.: Linear lists and priority queues as balanced bi-
nary trees. Technical Report STAN-CS-72-259, Computer Sci-
ence Dept., Stanford University (1972)

5. Culik II, K., Wood, D.: A note on some tree similarity measures.
Inf. Process. Lett. 15(1), 39–42 (1982)

6. Demaine, E.D., Harmon, D., Iacono, J., Patrascu, M.: Dynamic
optimality—almost. SIAM J. Comput. 37(1), 240–251 (2007)

7. Derryberry, J., Sleator, D.D., Wang, C.C.: A lower bound frame-
work for binary search trees with rotations. Technical Report
CMU-CS-05-187, Carnegie Mellon University (2005)

8. Elmasry, A.: On the sequential access theorem and deque con-
jecture for splay trees. Theor. Comput. Sci. 314(3), 459–466
(2004)

9. Georgakopoulos, G.F.: How to splay for log log n-competitive-
ness. In: Proc. 4th Int’l Workshop on Experimental and Efficient
Algorithms (WEA), pp. 570–579 (2005)

10. Iacono, J.: Key-independent optimality. Algorithmica 42(1), 3–
10 (2005)

11. Knuth, D.E.: Optimum binary search trees. Acta Informatica 1,
14–25 (1971)

12. Luccio, F., Pagli, L.: On the upper bound on the rotation dis-
tance of binary trees. Inf. Process. Lett. 31(2), 57–60 (1989)

13. Mäkinen, E.: On the rotation distance of binary trees. Inf. Pro-
cess. Lett. 26(5), 271–272 (1988)

14. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees.
J. ACM 32(3), 652–686 (1985)

15. Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Rotation distance, tri-
angulations, and hyperbolic geometry. In: Proceedings 18th
ACM Symposium on Theory of Computing (STOC), Berkeley,
1986, pp. 122–135

16. Sundar, R.: Twists, turns, cascades, deque conjecture, and scan-
ning theorem. In: Proceedings 30th IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 555–559 (1989)

17. Sundar, R.: On the deque conjecture for the splay algorithm.
Combinatorica 12(1), 95–124 (1992)

18. Tarjan, R.: Sequential access in play trees takes linear time.
Combinatorica 5(4), 367–378 (1985)

19. Tarjan, R.E.: Data structures and network algorithms, CBMS-NSF
Reg. Conf. Ser. Appl.Math., vol. 44. SIAM, Philadelphia, PA (1983)

20. Wang, C.C.: Multi-splay trees. Ph.D. Thesis, Carnegie Mellon
University (2006)

21. Wang, C.C., Derryberry, J., Sleator, D.D.: O(log log n)-competi-
tive dynamic binary search trees. In: Proc. 17th Annual ACM-
SIAMSymposiumon Discrete Algorithms (SODA),Miami, 2006,
pp. 374–383

22. Wilber, R.: Lower bounds for accessing binary search trees with
rotations. SIAM J. Comput. 18(1), 56–67 (1989)

Online Interval Coloring
1981; Kierstead, Trotter

LEAH EPSTEIN
Department of Math, University of Haifa, Haifa, Israel

Keywords and Synonyms

An extremal problem in recursive combinatorics

ProblemDefinition

Online interval coloring is a graph coloring problem. In
such problems the vertices of a graph are presented one by
one. Each vertex is presented in turn, along with a list of its
edges in the graph, which are incident to previously pre-
sented vertices. The goal is to assign colors (which without
loss of generality are assumed to be non-negative integers)
to the vertices, so that two vertices which share an edge re-
ceive different colors, and the total number of colors used
(or alternatively, the largest index of any color that is used)
is minimized. The smallest number of colors, for which the
graph still admits a valid coloring, is called the chromatic
number of the graph.

The interval coloring problem is defined as follows. In-
tervals on the real line are presented one by one, and the
online algorithm must assign each interval a color before

Online Interval Coloring O 595

the next interval arrives, so that no two intersecting inter-
vals receive the same color. The goal is again to minimize
the number of colored used to color any interval. The last
problem is equivalent to coloring of interval graphs. These
are graphs which have a representation (or realization)
where each interval represents a vertex, and two vertices
share an edge if and only if they intersect. It is assumed
that the interval graph arrives online together with its re-
alization.

Given an interval graph, denote the size of the largest
cardinality clique (complete subgraph) in it by !. Interval
graphs have the special property that in a realization, the
set of vertices in a clique have a common point in which
they all intersect.

Before discussing the online problem, some properties
of interval graphs need to be stated. There exists a simple
offline algorithm which produces an optimal coloring of
interval graphs. An algorithm applies First Fit, if each time
it needs to assign a color to an interval, it assigns a smallest
index color which still produces a valid coloring. The op-
timal algorithm simply considers intervals sorted from left
to right by their left endpoints, and applies First Fit. Note
that the resulting coloring never uses more than ! colors.
Indeed, interval graphs are perfect1.

However, once intervals arrive online in an arbitrary
order, it is impossible to design an optimal coloring. Con-
sider a simple example where the two intervals [1,3] and
[6,8] are introduced. If they are colored using two dis-
tinct colors, this is already sub-optimal, since using the
same color for both of them is possible. However, if the se-
quence of intervals is augmentedwith [2,5] and [4,7], these
two new intervals cannot receive the color of the previous
intervals, or the same color for both new intervals. Thus
three colors are used, even though a valid coloring using
two colors can be designed. Note that even if it is known
in advance that the input can be colored using exactly two
colors, not knowing whether the additional intervals are
as defined above, or alternatively, a single interval [2,7] ar-
rives instead, leads to the usage of three colors instead of
only two.

Online coloring is typically hard, which already ap-
plies to some simple graph classes such as trees. This is
due to the lower bound of ˝(log n), given by Gyárfás
and Lehel [9] on the competitive ratio of online color-
ing of trees. There are very few classes for which constant
bounds are known. One such class is line graphs, for which
Bar-Noy, Motwani and Naor [3] showed that First-Fit is

1A graph G is perfect if any induced subgraph of G, G0 (includ-
ing G), can be colored using !(G0) colors, where !(G0) is the size of
the largest cardinality clique in G0. (For any graph, ! is a clear lower
bound on its chromatic number).

2-competitive (specifically it uses at most 2 � opt�1 colors,
where OPT is the number of colors in an optimal coloring),
and this is best possible. This result was later generalized
to k � opt � k + 1 for (k + 1)-claw free graphs by [6] (note
that line graphs are 3-claw free).

Key Results

The paper of Kierstead and Trotter [11] provides a solu-
tion to the online interval coloring problem. They show
that the best possible competitive ratio is 3 which is
achieved by an algorithm they design.More accurately, the
following theorem is proved in the paper.

Theorem 1 Given an interval graph which is introduced
online, and presented via its realization, any online algo-
rithm uses at least 3! � 2 colors to color the graph, and
there exists an algorithm which achieves this bound.

In the sequel the algorithm and the lower bound construc-
tion are described. Note that the algorithm does not need
to know ! in advance. Moreover, even though the algo-
rithm is deterministic, it was shown in [12] that the lower
bound of 3 on the competitive ratio of online algorithms
for interval coloring holds for randomized algorithms as
well. Thus [11], gives a complete solution for the problem!

The main idea of the algorithm is creation of “levels”.
At the time of arrival of an interval, it is classified into
a level as follows. Denote by Ak the union of sets of inter-
vals which currently belong to all levels 1; : : : ; k. Intervals
are classified so that the largest cardinality clique in Ak is
of size k. Thus, A1 is simply a set of non-intersecting in-
tervals. On arrival of an interval, the algorithm finds the
smallest k such that the new interval can join level k, with-
out violating the rule above. It can be shown that each level
can be colored using two colors by an offline algorithm.
Since the algorithm defined here is online, such a coloring
cannot be found in general (see example above). However
it is shown in [11] that at most three colors are required
for each such level, and a coloring using three colors can
be found by applying First Fit on each level (with disjoint
sets of colors). Moreover, the first level can always colored
using a single color, and ! is equal exactly to the number
of levels. Thus a total number of colors, which is at most
3! � 2, is used.

Next, the deterministic lower bound is sketched. The
idea is to create levels as in the algorithm. The levels are
called phases. Each phase increases the largest clique size
by 1, until the value ! is reached. Moreover, every phase
(except for the first one) increases the number of colors
used by the algorithm by 3.

596 O Online Interval Coloring

After each phase was created, some parts of the line are
shrunk into single points. Given a point p, that is a result
of shrinking an interval [a; b]. Every interval presented in
the past which is contained in [a; b] is also shrunk into p
and therefore such a point inherits a list of colors which
no interval that contains it can receive. This is done for
simplicity of the proof and means that for a given point p
that is the result of shrinking, either contains all intervals
that were shrunk into this point, or it has no overlap with
any of them.

The sequence construction stops once 3! � 2 colors
have been used. Therefore it can be assumed that an initial
palette of 3!�3 colors is given, where these colored can all
be used by the algorithm. The ith color ever used is called
color number i. As soon as color 3! � 2 is used (even if it
is before the construction is completed), the construction
stops. The constructed input has a maximum clique is of
size (at most) !.

The sequence starts with introducing a large enough
number of intervals N, this is phase 0. Since the algorithm
is using at most 3! � 3 colors, this means that there exists
a set of N/(3!�3) intervals that share the exact same color.
All intervals are shrunk into single points. Later phases re-
sult in additional points.

Next, phase i < ! is defined. The phases are con-
structed in a way that in the beginning of phase i there is
a large enough number of points that contain a given set
of 3i � 2 colors (points of interest). Without loss of gener-
ality, assume that these are colors 1 : : : ; 3i � 2 where the
size of the largest clique is i. There exist some other points
containing other sets of i colors, or sets of at most i � 1
colors. All these points are called void points. At this time,
the points of interest are partitioned into consecutive sets
of four.

Next, some additional intervals are defined, increasing
the size of largest clique by exactly one. Given a set of four
points a1; a2; a3; a4, let b be the leftmost void point on the
right hand side of a1, between a1 and a2. If no such point
exists, then let b = (a1 + a2)/2. Similarly, let c be the right-
most void point between a3 and a4, and if no such point
exists then c = (a3 + a4)/2. Let d be a point between a2 and
a3 that is not a void point. The intervals I1 = [a1; (a1+b)/2]
and I2 = [(c + a4)/2; a4] are introduced. Clearly none of
them may receive one of the currently used 3i � 2 col-
ors. If they both receive the same new color, the inter-
vals I3 = [(a1 + b)/2; d] and I4 = [d; (c + a4)/2] are in-
troduced. The interval I3 intersects with a2, and with I1.
Therefore it receives an additional color. The second inter-
val I4 intersects I3, a3 and I2. Therefore a third new color is
given to it. If I1, I2 receive distinct new colors, the interval
I5 = [(a1+b)/2; (c+a4)/2] is introduced. Since I5 intersects

with I1, I2, a2, a3, it must get a third new color. Every such
interval [a1; a4] is shrunk into a single point containing
3i + 1 colors. Since there are less than 3! colors, and each
point uses exactly 3i + 1 < 3! of them, there are less than
(3!)! such choices, and a large enough number of points,
having the same set of colors, can be picked. The points
containing this exact set of colors become the points of in-
terest of the next phase, and the others become void points
of the next phase. Points that are void points of previous
phases and are not contained in shrunk intervals remain
void points. The only points where the new intervals in-
tersect are points with no previous intervals, and therefore
the clique size increases by 1 exactly.

At this time phase i + 1 can be performed. After phase
!�1, there are at least 3!�2 colors in use and the claim is
proved. Note that prior to that phase, a minimum number
of four points of interest is required.

Applications

In this section, both real-world applications of the prob-
lem, and applications of the methods of Kierstead and
Trotter [11] to related problems, are discussed.

Many applications arise in various communication
networks. The need for connectivity all over the world is
rapidly increasing. On the other hand, networks are still
composed of very expensive parts. Thus application of op-
timization algorithms is required in order to save costs.

Consider a network with a line topology that consists
of links. Each connection request is for a path between
two nodes in the network. The set of requests assigned
to a channel must consist of disjoint paths. The goal is to
minimize the number of channels (colors) used. A connec-
tion request from a to b corresponds to an interval [a; b]
and the goal is to minimize the number of required chan-
nels to serve all requests.

Another network related application is that if the re-
quests have constant duration c, and all requests have to be
served as fast as possible. In this case the colors correspond
to time slots, and the total number of colors corresponds
to the schedule length.

These are just sample applications, the problem can be
described as a scheduling problem as well, and it is clearly
of theoretical interest being a natural online graph color-
ing problem.

Two later studies are of possible interest here, both due
to their relevance to the original problem and for the usage
of related methods.

The applications in networks stated above raise a gen-
eralized problem studied in the recent years. In these ap-
plications, it is assumed that once a connection request be-

Online Interval Coloring O 597

tween two points is satisfied, the channel is blocked at least
for the duration of this request. An interesting question,
that was raised by Adamy and Erlebach [1], is the follow-
ing. Assume that a request consists not only of a requested
interval, but also from a bandwidth requirement. That is,
a customer of a communication channel specifies exactly
how much of the channel is needed. Thus, in some cases it
is possible to have overlapping requests sharing the same
channel. It is required that at every point, the sum of all
bandwidth requirements of requests sharing a color can-
not exceed the value 1, which is the capacity of the chan-
nel. This problem is called online interval coloring with
bandwidth. In the paper [1], a (large) constant competi-
tive algorithm was designed for the problem. The original
interval coloring problem is a special case of this problem
where all bandwidth requests are 1. Note that this problem
is a generalization of bin packing as well, since bin packing
is the special case of the problem where all requests have
a common point. Azar et al. [2] designed an algorithm of
competitive ratio of at most 10 for this problem. This was
done by partitioning the requests into four classes based
on their bandwidth requirements, and coloring each such
class separately. The class of requests with bandwidth in� 1
2 ; 1

was colored using the basic algorithm of [11], since

no two such requests colored with one color can overlap.
The two other classes, which are

�
0; 14

and (14 ;

1
2] were col-

ored using adaptations of the algorithm of [11]. Epstein
and Levy [7,8] designed improved lower bounds on the
competitive ratio, showing that online interval coloring
with bandwidth is harder than online interval coloring.

Another problem related to coloring is the max color-
ing problem. In this problem each interval is given a non-
negative weight. Given a coloring, the weight of a color
is the maximum weight of any vertex of this color. The
goal is to minimize the sum of weights of the used col-
ors. Note that if all weights are 1, max coloring reduces
to the graph coloring problem. Pemmaraju, Raman and
Varadarajan [13] studied the offline max coloring prob-
lem for interval graphs. They apply an algorithm which
is based on the algorithm of [11]. Thus, they sort the in-
tervals according to their weights, in a monotone non-
increasing order. However, since their algorithm is not on-
line, they exploit the property stated above, that every level
is actually 2-colorable, and thus this results in an offline
2-approximation tomax coloring on interval graphs.

Epstein and Levin [5] studied online max coloring on
interval graphs. They design a general reduction which al-
lows to convert algorithms for graph coloring into algo-
rithms for max coloring. The loss in the competitive ra-
tio is a multiplicative factor of 4 for deterministic algo-
rithms, and a factor of e 	 2:718 for randomized algo-

rithms. Thus, using the algorithm of [11] as a black box,
they obtained a 12-competitive deterministic algorithm
and a 3 � e 	 8:155-competitive randomized algorithm.
Another result of [5] is lower bound of 4 on the competi-
tive ratio of any randomized algorithm.

Open Problems

Since the paper [11] provided a nice and clean solution to
the online interval coloring problem, it does not directly
raise open problems. Yet, one related problem is of inter-
est to researchers over the last thirty years, which is the
performance of First Fit on this problem. It was shown
by Kierstead [10] that First Fit uses at most 40! colors,
thus implying that First Fit has a constant competitive ra-
tio. The quest after the exact competitive ratio was never
completed. The best current published results are an up-
per bound of 10k by [13] and a lower bound of 4.4k by
Chrobak and Slusarek [4]. See [14] for recent develop-
ments. It is interesting to note that for online interval col-
oring with bandwidth, First Fit has an unbounded com-
petitive ratio [1].

Another open problem is to find the best possible com-
petitive ratios for online interval coloring with bandwidth
and for max coloring of interval graphs. As stated above,
the gap for coloring with bandwidth is currently between
24/7 	 3:4286 by [7,8] and 10 [2], and the gap for max
coloring is between 4 and 12 [5].

Recommended Reading
1. Adamy, U., Erlebach, T.: Online coloring of intervals with band-

width. In: Proc. of the First International Workshop on Approx-
imation and Online Algorithms (WAOA2003), pp. 1–12 (2003)

2. Azar, Y., Fiat, A., Levy, M., Narayanaswamy, N.S.: An improved
algorithm for online coloring of intervals with bandwidth.
Theor. Comput. Sci. 363(1), 18–27 (2006)

3. Bar-Noy, A., Motwani, R., Naor, J.: The greedy algorithm is op-
timal for on-line edge coloring. Inf. Proc. Lett. 44(5), 251–253
(1992)

4. Chrobak, M., Ślusarek, M.: On some packing problems relating
to dynamical storage allocation. RAIRO J. Inf. Theor. Appl. 22,
487–499 (1988)

5. Epstein, L., Levin, A.: On the max coloring problem. In: Proc. of
the Fifth International Workshop on Approximation and On-
line Algorithms (WAOA2007) (2007), pp. 142–155

6. Epstein, L., Levin, A., Woeginger, G.J.: Graph coloring with re-
jection. In: Proc. of 14th European Symposium on Algorithms
(ESA2006), pp. 364–375. (2006)

7. Epstein, L., Levy, M.: Online interval coloring and variants. In:
Proc. of The 32nd International Colloquium on Automata, Lan-
guages and Programming (ICALP2005), pp. 602–613. (2005)

8. Epstein, L., Levy, M.: Online interval coloring with packing
constraints. In: Proc. of the 30th International Symposium on
Mathematical Foundations of Computer Science (MFCS2005),
pp. 295–307. (2005)

598 O Online Learning

9. Gyárfás, A., Lehel, J.: Effective on-line coloring of P5-free
graphs. Combinatorica 11(2), 181–184 (1991)

10. Kierstead, H.A.: The linearity of first-fit coloring of interval
graphs. SIAM J. Discret. Math. 1(4), 526–530 (1988)

11. Kierstead, H.A., Trotter, W.T.: An extremal problem in recursive
combinatorics. Congr. Numerantium 33, 143–153 (1981)

12. Leonardi, S., Vitaletti, A.: Randomized lower bounds for online
path coloring. In: Proc. of the second International Workshop
on Randomization and Approximation Techniques in Com-
puter Science (RANDOM’98), pp. 232–247. (1998)

13. Pemmaraju, S., Raman, R., Varadarajan, K.: Buffer minimiza-
tion using max-coloring. In: Proc. of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2004),
pp. 562–571. (2004)

14. Trotter, W.T.: Current research problems: First Fit colorings of
interval graphs. http://www.math.gatech.edu/~trotter/rprob.
htm Access date: December 24, 2007.

Online Learning
� Perceptron Algorithm

Online List Update
1985; Sleator, Tarjan

SUSANNE ALBERS
Institute for Computer Science, University of Freiburg,
Freiburg, Germany

Keywords and Synonyms

Self organizing lists

ProblemDefinition

The list update problem represents a classical online prob-
lem and, beside paging, is the first problem that was stud-
ied with respect to competitiveness. The list update prob-
lem is to maintain a dictionary as an unsorted linear list.
Consider a set of items that is represented as a linear linked
list. The system is presented with a request sequence � ,
where each request is one of the following operations.
(1) It can be an access to an item in the list, (2) it can be an
insertion of a new item into the list, or (3) it can be a dele-
tion of an item. To access an item, a list update algorithm
starts at the front of the list and searches linearly through
the items until the desired item is found. To insert a new
item, the algorithm first scans the entire list to verify that
the item is not already present and then inserts the item at
the end of the list. To delete an item, the algorithm scans
the list to search for the item and then deletes it.

In serving requests a list update algorithm incurs cost.
If a request is an access or a delete operation, then the in-
curred cost is i, where i is the position of the requested
item in the list. If the request is an insertion, then the cost
is n + 1, where n is the number of items in the list be-
fore the insertion. While processing a request sequence,
a list update algorithm may rearrange the list. Immedi-
ately after an access or insertion, the requested item may
be moved at no extra cost to any position closer to the
front of the list. These exchanges are called free exchanges.
Using free exchanges, the algorithm can lower the cost
on subsequent requests. At any time two adjacent items
in the list may be exchanged at a cost of 1. These ex-
changes are called paid exchanges. The goal is to serve the
request sequence so that the total cost is as small as possi-
ble.

Of particular interest are list update algorithms that
work online, i. e. each request is served without knowl-
edge of any future requests. The performance of online
algorithms is usually evaluated using competitive analysis.
Here an online strategy is compared to an optimal offline
algorithm that knows the entire request sequence in ad-
vance and can serve it withminimum cost. Given a request
sequence � , let A(�) denote the cost incurred by an on-
line algorithm A in serving � , and let OPT(�) denote the
cost incurred by an optimal offline algorithm OPT. On-
line algorithm A is called c-competitive if there is a con-
stant ˛ such that for all size lists and all request sequences
�;A(�) � c�OPT(�)+˛. The factor c is also called the com-
petitive ratio. The competitiveness must hold for all size
lists.

Key Results

There are three well-known deterministic online algo-
rithms for the list update problem.

Algorithm Move-To-Front: Move the requested item
to the front of the list.

Algorithm Transpose: Exchange the requested item
with the immediately preceding item in the list.

Algorithm Frequency-Count: Maintain a frequency
count for each item in the list. Whenever an item is re-
quested, increase its count by 1. Maintain the list so that
the items always occur in nonincreasing order of fre-
quency count.

The formulations of list update algorithms generally
assume that a request sequence consists of accesses only.
It is obvious how to extend the algorithms so that they
can also handle insertions and deletions. On an insertion,
the algorithm first appends the new item at the end of the
list and then executes the same steps as if the item was re-

http://www.math.gatech.edu/~trotter/rprob.htm
http://www.math.gatech.edu/~trotter/rprob.htm

Online List Update O 599

quested for the first time. On a deletion, the algorithm first
searches for the item and then just removes it.

First consider the algorithms Move-To-Front, Trans-
pose and Frequency-Count. Note thatMove-To-Front and
Transpose are memoryless strategies, i. e. they do not need
any extramemory to decide where a requested item should
be moved. Thus, from a practical point of view, they are
more attractive than Frequency-Count. Sleator and Tar-
jan [16] analyzed the competitive ratios of the three algo-
rithms.

Theorem 1 ([16]) The Move-To-Front algorithm is
2-competitive.

The algorithms Transpose and Frequency-Count are not
c-competitive, for any constant c.

Karp and Raghavan [13] developed a lower bound on
the competitiveness that can be achieved by deterministic
online algorithms. This lower bound implies that Move-
To-Front has an optimal competitive ratio.

Theorem 2 ([13]) Let A be a deterministic online algo-
rithm for the list update problem. If A is c-competitive, then
c � 2.

An interesting issue is randomization in the list up-
date problem. Against adaptive adversaries, no random-
ized online algorithm for list update can be better than
2-competitive, see [6,14]. Thus one concentrates on algo-
rithms against oblivious adversaries.Many randomized al-
gorithms for list update have been proposed [1,2,12,14].
The following paragraphs describe the two most impor-
tant algorithms. Reingold et al. [14] gave a very simple al-
gorithm, called Bit.

Algorithm Bit: Each item in the list maintains a bit
that is complemented whenever the item is accessed. If an
access causes a bit to change to 1, then the requested item
is moved to the front of the list. Otherwise the list remains
unchanged. The bits of the items are initialized indepen-
dently and uniformly at random.

Theorem 3 ([14]) The Bit algorithm is 1.75-competitive
against any oblivious adversary.

Reingold et al. [14] generalized the Bit algorithm and
proved an upper bound of

p
3 	 1:73 against oblivi-

ous adversaries. The best randomized algorithm currently
known is a combination of the Bit algorithm and a deter-
ministic 2-competitive online algorithm called Timestamp
proposed in [1].

Algorithm Timestamp (TS): Insert the requested
item, say x, in front of the first item in the list that pre-
cedes x and that has been requested at most once since the
last request to x. If there is no such item or if x has not been
requested so far, then leave the position of x unchanged.

As an example, consider a list of six items being in the
order L : x1 ! x2 ! x3 ! x4 ! x5 ! x6. Suppose that
algorithm TS has to serve the second request to x5 in the
request sequence � = : : : x5; x2; x2; x3; x1; x1; x5. Items x3
and x4 were requested atmost once since the last request to
x5, whereas x1 and x2 were both requested twice. Thus, TS
will insert x5 immediately in front of x3 in the list. A com-
bination of Bit and TS was proposed by [3].

Algorithm Combination: With probability 4
5 the al-

gorithm serves a request sequence using Bit, and with
probability 1

5 it serves a request sequence using TS.
Combination achieves the best competitive ratio cur-

rently known.

Theorem 4 ([2]) The algorithm Combination is 1.6-com-
petitive against any oblivious adversary.

Ambühl et al. [4] presented a lower bound for randomized
list update algorithms.

Theorem 5 ([4]) Let A be a randomized online algorithm
for the list update problem. If A is c-competitive against any
oblivious adversary, then c � 1:50084.

Using techniques from learning theory, Blum et al. [9] re-
cently gave a randomized online algorithm that, for any
� > 0, is (1:6+�)-competitive and at the same time (1+�)-
competitive against an offline algorithm that is restricted
to serving a request sequence with a static list.

So far this entry has considered online algorithms.
In the offline variant of the list update problem, the en-
tire request sequence � is known in advance. Ambühl [3]
showed that the offline variant is NP-hard.

Reingold et al. [14] studied an extended cost model,
called the Pd model, for the list update problem. In the
Pd model there are no free exchanges and each paid ex-
change costs d. Reingold et al. analyzed deterministic and
randomized strategies in this model.

Many of the concepts shown for self-organizing linear
lists can be extended to binary search trees. The most pop-
ular version of self-organizing binary search trees are the
splay trees presented by Sleator and Tarjan and the reader
is refered to [17].

Regarding the history of the list update problem, prior
to competitive analysis, list update algorithms were stud-
ied in scenarios where request sequences are generated ac-
cording to probability distributions. The asymptotic ex-
pected cost incurred by an online algorithm in serving
a single request was compared to corresponding cost in-
curred by the optimal static ordering. There exists a large
body of literature. Chung et al. [11] showed that, for
any distribution, the asymptotic service cost of Move-To-
Front is at most
/2 times that of the optimal ordering.

600 O Online List Update

This bound is tight. Rivest [15] identified distributions on
which Transpose performs better than Move-To-Front.

Applications

Linear lists are one possibility for representing a set of
items. Certainly, there are other data structures such as
balanced search trees or hash tables that, depending on
the given application, can maintain a set in a more effi-
cient way. In general, linear lists are useful when the set
is small and consists of only a few dozen items. The most
important application of list update algorithms are locally
adaptive data compression schemes. In fact, Burrows and
Wheeler [10] developed a data compression scheme using
linear lists that achieves a better compression than Ziv-
Lempel based algorithms. Before the description of that al-
gorithm, the next paragraph first presents a data compres-
sion scheme given by Bentley et al. [8] that is very simple
and easy to implement.

In data compression one is given a string S that shall
be compressed, i. e. that shall be represented using fewer
bits. The string S consists of symbols, where each symbol
is an element of the alphabet ˙ = fx1; : : : ; xng. The idea
of data compression schemes using linear lists it to con-
vert the string S of symbols into a string I of integers. An
encoder maintains a linear list of symbols contained in ˙
and reads the symbols in the string S. Whenever the sym-
bol xi has to be compressed, the encoder looks up the cur-
rent position of xi in the linear list, outputs this position
and updates the list using a list update rule. If symbols to
be compressed are moved closer to the front of the list,
then frequently occurring symbols can be encoded with
small integers. A decoder that receives I and has to recover
the original string S also maintains a linear list of symbols.
For each integer j it reads from I, it looks up the symbol
that is currently stored at position j. Then the decoder up-
dates the list using the same list update rule as the encoder.
As list update rule one may use any (deterministic) online
algorithm. Clearly, when the string I is actually stored or
transmitted, each integer in the string should be coded us-
ing a variable length prefix code.

Burrows and Wheeler [10] developed a very effective
data compression algorithm using self-organizing lists.
The algorithm first applies a reversible transformation to
the string S. The purpose of this transformation is to group
together instances of a symbol xi occurring in S. The re-
sulting string S0 is then encoded using the Move-To-Front
algorithm. More precisely, the transformed string S0 is
computed as follows. Let m be the length of S. The algo-
rithm first computes the m rotations (cyclic shifts) of S
and sorts them lexicographically. Then it extracts the last

character of these rotations. The kth symbol of S0 is the
last symbol of the kth sorted rotation. The algorithm also
computes the index J of the original string S in the sorted
list of rotations. Burrows andWheeler gave an efficient al-
gorithm to recover the original string S given only S0 and
J. The corresponding paper [10] gives a very detailed de-
scription of the algorithm and reports of experimental re-
sults. On the Calgary Compression Corpus [18], the algo-
rithm outperforms the UNIX utilities compress and gzip
and the improvement is 13% and 6%, respectively.

Open Problems

The most important open problem is to determine tight
upper and lower bounds on the competitive ratio that can
be achieved by randomized online list update algorithms
against oblivious adversaries. It is not clear what the true
competitiveness is. It is conjectured that the bound is be-
low 1.6. However, as implied by Theorem 5 the perfor-
mance ratio must be above 1.5.

Experimental Results

Early experimental analyses of the algorithms Move-To-
Front, Transpose and Frequency Count were performed
by Rivest [15] as well as Bentley and McGeoach [7].
A more recent and extensive experimental study was pre-
sented by Bachrach et al. [5]. They implemented and tested
a large number of online list update algorithms on re-
quest sequences generated by probability distributions and
Markov chains as well as on sequences extracted from the
Calgary Corpus. It shows that the locality of reference con-
siderably influences the absolute and relative performance
of the algorithms. Bachrach et al. also analyzed the various
algorithms as data compression strategies.

Recommended Reading
1. Albers, S.: Improved randomized on-line algorithms for the list

update problem. SIAM J. Comput. 27, 670–681 (1998)
2. Albers, S., von Stengel, B., Werchner, R.: A combined BIT and

TIMESTAMP algorithm for the list update problem. Inf. Proc.
Lett. 56, 135–139 (1995)

3. Ambühl, C.: Offline list update is NP-hard. In: Proc. 8th An-
nual European Symposium on Algorithms, pp. 42–51. LNCS,
vol. 1879. Springer (2001)

4. Ambühl, C., Gärtner, B., von Stengel, B.: Towards new lower
bounds for the list update problem. Theor. Comput. Sci 68, 3–
16 (2001)

5. Bachrach, B., El-Yaniv, R., Reinstädtler, M.: On the competitive
theory and practice of online list accessing algorithms. Algo-
rithmica 32, 201–245 (2002)

6. Ben-David, S., Borodin, A., Karp, R.M., Tardos, G., Wigderson, A.:
On the power of randomization in on-line algorithms. Algorith-
mica 11, 2–14 (1994)

Online Paging and Caching O 601

7. Benteley, J.L., McGeoch, C.C.: Amortized analyses of self-
organizing sequential search heuristics. Commun. ACM 28,
404–411 (1985)

8. Bentley, J.L., Sleator, D.S., Tarjan, R.E., Wei, V.K.: A locally adap-
tive data compression scheme. Commun. ACM 29, 320–330
(1986)

9. Blum, A., Chawla, S., Kalai, A.: Static optimality and dynamic
search-optimality in lists and trees. In: Proc. 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 1–8 (2002)

10. Burrows, M., Wheeler, D.J.: A block-sorting lossless data com-
pression algorithm. DEC SRC Research Report 124, (1994)

11. Chung, F.R.K., Hajela, D.J., Seymour, P.D.: Self-organizing se-
quential search and Hilbert’s inequality. In: Proc. 17th Annual
Symposium on the Theory of Computing pp 217–223 (1985)

12. Irani, S.: Two results on the list update problem. Inf. Proc. Lett.
38, 301–306 (1991)

13. Karp, R. Raghavan, P.: From a personal communication cited
in [14]

14. Reingold, N., Westbrook, J., Sleator, D.D.: Randomized com-
petitive algorithms for the list update problem. Algorithmica
11, 15–32 (1994)

15. Rivest, R.: On self-organizing sequential search heuristics. Com-
mun. ACM 19, 63–67 (1976)

16. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update
and paging rules. Commun. ACM 28, 202–208 (1985)

17. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees.
J. ACM 32, 652–686 (1985)

18. Witten, I.H., Bell, T.: The Calgary/Canterbury text compression
corpus. Anonymous ftp from ftp://ftp.cpsc.ucalgary.ca:/pub/
text.compression/corpus/text.compression.corpus.tar.Z

Online Paging and Caching
1985–2002; multiple authors

NEAL E. YOUNG
Department of Computer Science,
University of California at Riverside, Riverside, CA, USA

Keywords and Synonyms

Paging; Caching;Weighted caching;Weighted paging; File
caching

ProblemDefinition

A file-caching problem instance specifies a cache size k
(a positive integer) and a sequence of requests to files, each
with a size (a positive integer) and a retrieval cost (a non-
negative number). The goal is to maintain the cache to
satisfy the requests while minimizing the retrieval cost.
Specifically, for each request, if the file is not in the cache,
one must retrieve it into the cache (paying the retrieval
cost) and remove other files to bring the total size of files in
the cache to k or less. Weighted caching, or weighted pag-
ing is the special case when each file size is 1. Paging is the

special case when each file size and each retrieval cost is 1.
Then the goal is to minimize cache misses, or equivalently
the fault rate.

An algorithm is online if its response to each request is
independent of later requests. In practice this is generally
necessary. Standard worst-case analysis is not meaningful
for online algorithms – any algorithm will have some in-
put sequence that forces a retrieval for every request. Yet
worst-case analysis can be done meaningfully as follows.
An algorithm is c(h,k)-competitive if on any sequence � the
total (expected) retrieval cost incurred by the algorithm
using a cache of size k is at most c(h,k) times the mini-
mum cost to handle � with a cache of size h (plus a con-
stant independent of �). Then the algorithm has compet-
itive ratio c(h,k). The study of competitive ratios is called
competitive analysis. (In the larger context of approxima-
tion algorithms for combinatorial optimization, this ratio
is commonly called the approximation ratio.)

Algorithms

Here are definitions of a number of caching algorithms;
first is LANDLORD. LANDLORD gives each file “credit”
(equal to its cost) when the file is requested and not in
cache. When necessary, LANDLORD reduces all cached
file’s credits proportionally to file size, then evicts files as
they run out of credit.

File-caching algorithm LANDLORD Maintain real value
credit[f] with each file f (credit[f] = 0 if f is not in the
cache).

When a file g is requested:
1. if g is not in the cache:
2. until the cache has room for g:
3. for each cached file f : decrease credit[f] by

� � size[f],
4. where� = min f2cache credit[f]/size[f].
5. Evict from the cache any subset of the zero-credit

files f .
6. Retrieve g into the cache; set credit[g] cost(g).
7. else Reset credit[g] anywhere between its current value
and cost(g).

For weighted caching, file sizes equal 1. GREEDY DUAL is
LANDLORD for this special case. BALANCE is the further
special case obtained by leaving credit unchanged in line 7.

For paging, files sizes and costs equal 1. FLUSH-WHEN-
FULL is obtained by evicting all zero-credit files in line 5;
FIRST-IN-FIRST-OUT is obtained by leaving credits un-
changed in line 7 and evicting the file that entered the
cache earliest in line 5; LEAST-RECENTLY-USED is ob-
tained by raising credits to 1 in line 7 and evicting the least-

ftp://ftp.cpsc.ucalgary.ca:/pub/text.compression/corpus/text.compression.corpus.tar.Z
ftp://ftp.cpsc.ucalgary.ca:/pub/text.compression/corpus/text.compression.corpus.tar.Z

602 O Online Paging and Caching

recently requested file in line 5. The MARKING algorithm
is obtained by raising credits to 1 in line 7 and evicting
a random zero-credit file in line 5.

Key Results

This entry focuses on competitive analysis of paging and
caching strategies as defined above. Competitive analy-
sis has been applied to many problems other than paging
and caching, and much is known about other methods of
analysis (mainly empirical or average-case) of paging and
caching strategies, but these are outside scope of this entry.

Paging

In a seminal paper, Sleator and Tarjan showed that LEAST-
RECENTLY-USED, FIRST-IN-FIRST-OUT, and FLUSH-
WHEN-FULL are k

ı
(k � h + 1)-competitive [13]. Sleator

and Tarjan also showed that this competitive ratio is the
best possible for any deterministic online algorithm.

Fiat et al. showed that the Marking algorithm is
2Hk-competitive and that no randomized online algo-
rithm is better than Hk-competitive [7]. Here Hk = 1 +
1/2 + � � � + 1/k 	 :58 + ln k. McGeoch and Sleator gave
an optimal Hk-competitive randomized online paging al-
gorithm [12].

Weighted caching

For weighted caching, Chrobak et al. showed that the de-
terministic online BALANCE algorithm is k-competitive
[5]. Young showed that GREEDY DUAL is k

ı
(k � h +

1)-competitive, and that GREEDY DUAL is a primal-dual
algorithm – it generates a solution to the linear-program-
ming dual which proves the near-optimality of the primal
solution [15]. Recently Bansal et al. used the primal-dual
framework to give an O(log k)-competitive randomized
algorithm for weighted caching [1].

File caching

When each cost equals 1 (the goal is to minimize the num-
ber of retrievals), or when each file’s cost equals the file’s
size (the goal is to minimize the total number of bytes re-
trieved), Irani gaveO(log2 k)-competitive randomized on-
line algorithms [8].

For general file caching, Irani and Cao showed that
a restriction of LANDLORD is k-competitive [4]. Indepen-
dently, Young showed that LANDLORD is k

ı
(k � h +

1)-competitive [15].

Other theoretical models

Practical performance can be better than the worst case
studied in competitive analysis. Refinements of the model

have been proposed to increase realism. Borodin et al. [3],
to model locality of reference, proposed the access-graph
model (see also [9,10]). Koutsoupias and Papadimitriou
proposed the comparative ratio (for comparing classes
of online algorithms directly) and the diffuse-adversary
model (where the adversary chooses requests probabilis-
tically subject to restrictions) [11]. Young showed that
any k

ı
(k � h + 1)-competitive algorithm is also loosely

O(1)-competitive: for any fixed "; ı > 0, on any sequence,
for all but a ı-fraction of cache sizes k, the algorithm either
is O(1)-competitive or pays at most " times the sum of the
retrieval costs [15].

Analyses of deterministic algorithms

Here is a competitive analysis of GREEDY DUAL for
weighted caching.

Theorem 1 GREEDY DUAL is k
ı
(k � h + 1)-competitive

for weighted caching.

Proof Here is an amortized analysis (in the spirit of Sleator
and Tarjan, Chrobak et al., and Young; see [14] for a dif-
ferent primal-dual analysis). Define potential

˚ = (h � 1) �
X
f2GD

credit[f]

+ k �
X
f2OPT

�
cost(f) � credit[f]

�
;

where GD and OPT denote the current caches of GREEDY
DUAL and OPT (the optimal off-line algorithm that man-
ages the cache to minimize the total retrieval cost), respec-
tively. After each request, GREEDY DUAL and OPT take
(some subset of) the following steps in order.

OPT evicts a file f : Since credit[f] � cost(f), ˚ can-
not increase.

OPT retrieves requested file g: OPT pays cost(g) ; ˚
increases by at most k cost(g).

GREEDY DUAL decreases credit[f] for all f 2 GD: The
cache is full and the requested file is in OPT but not yet in
GD. So jGDj = k and jOPT \ GDj � h � 1. Thus, the
total decrease in ˚ is �[(h � 1)jGDj � k jOPT \ GDj] �
�[(h � 1)k � k(h � 1)] = 0.

GREEDY DUAL evicts a file f : Since credit[f] = 0,˚ is
unchanged.

GREEDY DUAL retrieves requested file g and sets
credit[g] to cost(g): GREEDY DUAL pays c = cost(g). Since
g was not in GD but is in OPT, credit[g] = 0 and ˚ de-
creases by �(h � 1)c + k c = (k � h + 1)c.

GREEDY DUAL resets credit[g] between its current
value and cost(g): Since g 2 OPT and credit[g] only in-
creases,˚ decreases.

Online Paging and Caching O 603

So, with each request: (1) when OPT retrieves a file of
cost c, ˚ increases by at most kc; (2) at no other time does
˚ increase; and (3) when GREEDY DUAL retrieves a file of
cost c, ˚ decreases by at least (k � h + 1)c. Since initially
˚ = 0 and finally ˚ � 0, it follows that GREEDY DUAL’s
total cost times k � h + 1 is at most OPT’s cost times k.

Extension to file caching

Although the proof above easily extends to LANDLORD, it
is more informative to analyze LANDLORD via a general
reduction from file caching to weighted caching:

Corollary 1 LANDLORD is k
ı
(k � h + 1)-competitive for

file caching.

Proof LetW be any deterministic c-competitive weighted-
caching algorithm. Define file-caching algorithm FW as
follows. Given request sequence � , FW simulates W on
weighted-caching sequence � 0 as follows. For each file f ,
break f into size(f) “pieces” {f i} each of size 1 and
cost cost(f)/size(f). When f is requested, give a batch
(f1; f2; : : : ; fs)N+1 of requests for pieces to W. Take N
large enough so W has all pieces {f i} cached after the first
sN requests of the batch.

Assume that W respects equivalence: after each batch,
for every file f , all or none of f ’s pieces are in W’s cache.
After each batch, make FW update its cache correspond-
ingly to f f : fi 2 cache(W)g. FW ’s retrieval cost for � is at
mostW’s retrieval cost for � 0, which is at most cOPT(� 0),
which is at most cOPT(� 0). Thus, FW is c-competitive for
file caching.

Now, observe that GREEDY DUAL can be made to re-
spect equivalence.When GREEDY DUAL processes a batch
of requests (f1; f2; : : : ; fs)N+1 resulting in retrievals, for
the last s requests, make GREEDY DUAL set credit[fi] =
cost(fi) = cost(f)/s in line 7. In general, restrict GREEDY
DUAL to raise credits of equivalent pieces f i equally in
line 7. After each batch the credits on equivalent pieces
f i will be the same. When GREEDY DUAL evicts a piece
f i, make GREEDY DUAL evict all other equivalent pieces f j
(all will have zero credit).

With these restrictions, GREEDY DUAL respects equiv-
alence. Finally, taking W to be GREEDY DUAL above, FW
is LANDLORD.

Analysis of the randomized MARKING algorithm

Here is a competitive analysis of the MARKING algorithm.

Theorem 2 The MARKING algorithm is 2Hk-competitive
for paging.

Proof Given a paging request sequence � , partition � into
contiguous phases as follows. Each phase starts with the
request after the end of the previous phase and continues
as long as possible subject to the constraint that it should
contain requests to at most k distinct pages. (Each phase
starts when the algorithm runs out of zero-credit files and
reduces all credits to zero.)

Say a request in the phase is new if the item requested
was not requested in the previous phase. Letmi denote the
number of new requests in the ith phase. During phases i�
1 and i, k +mi distinct files are requested. OPT has at most
k of these in cache at the start of the i� 1st phase, so it will
retrieve at leastmi of them before the end of the ith phase.
So OPT’s total cost is at least max

˚P
i m2i ;

P
i m2i+1

�
�P

i mi /2.
Say a non-new request is redundant if it is to a file

with credit 1 and non-redundant otherwise. Each new re-
quest costs the MARKING algorithm 1. The jth non-re-
dundant request costs the MARKING algorithm at most
mi /(k � j + 1) in expectation because, of the k � j + 1
files that if requested would be non-redundant, at most
mi are not in the cache (and each is equally likely to be
in the cache). Thus, in expectation MARKING pays at most
mi +

Pk�mi
j=1 mi /(k � j + 1) � miHk for the phase, and at

most Hk
P

i mi total.

Applications

Variants of GREEDY DUAL and LANDLORD have been in-
corporated into file-caching software such as Squid [6].

Experimental Results

For a study of competitive ratios on practical inputs, see
for example [4,6,14].

Cross References

� Algorithm DC-Tree for k Servers on Trees
� Alternative Performance Measures in Online

Algorithms
� Online List Update
� Price of Anarchy
�Work-Function Algorithm for k Servers

Recommended Reading
1. Bansal, N., Buchbinder, N., Naor, J.: A primal-dual random-

ized algorithm for weighted paging. Proceedings of 48th An-
nual IEEE Symposium on Foundations of Computer Science,
pp. 507–517 (2007)

2. Borodin, A., El-Yaniv, R.: Online computation and competitive
analysis. Cambridge University Press, New York (1998)

604 O Online Scheduling

3. Borodin, A., Irani, S., Raghavan, P., Schieber B.: Competitive
paging with locality of reference. J. Comput. Syst. Sci. 50(2),
244–258 (1995)

4. Cao, P., Irani, S.: Cost-aware WWW proxy caching algorithms.
In: USENIX Symposium on Internet Technologies and Systems,
Monterey, December 1997

5. Chrobak, M., Karloff, H., Payne, T.H., Vishwanathan, S.: New re-
sults on server problems. SIAM J. Discret. Math. 4(2), 172–181
(1991)

6. Dilley, J., Arlitt, M., Perret, S.: Enhancement and validation of
Squid’s cache replacement policy. Hewlett-Packard Laborato-
ries Technical Report HPL-1999–69 (1999)

7. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D.,
Young, N.E.: Competitive paging algorithms. J. Algorithms
12(4), 685–699 (1991)

8. Irani, S.: Page replacement with multi-size pages and applica-
tions to Web caching. Algorithmica 33(3), 384–409 (2002)

9. Irani, S., Karlin, A.R., Phillips, S.: Strongly competitive algorithms
for paging with locality of reference. SIAM J. Comput. 25(3),
477–497 (1996)

10. Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM J.
Comput. 30(3), 906–922 (2000)

11. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive anal-
ysis. SIAM J. Comput. 30(1), 300–317 (2000)

12. McGeoch, L.A., Sleator, D.D.: A strongly competitive random-
ized paging algorithm. Algorithmica 6, 816–825 (1991)

13. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update
and paging rules. Commun. ACM 28(2), 202–208 (1985)

14. Young, N.E.: The k-server dual and loose competitiveness for
paging. Algorithmica 11(6), 525–541 (1994)

15. Young, N.E.: On-line file caching. Algorithmica 33(3), 371–383
(2002)

Online Scheduling
� List Scheduling
� Load Balancing

Optimal Probabilistic Synchronous
Byzantine Agreement
1988; Feldman, Micali

JUAN GARAY
Bell Labs, Murray Hill, NJ, USA

Keywords and Synonyms
Distributed consensus; Byzantine generals problem

ProblemDefinition
The Byzantine agreement problem (BA) is concerned with
multiple processors (parties, “players”) all starting with
some initial value, agreeing on a common value, despite
the possible disruptive or evenmalicious behavior of some
them. BA is a fundamental problem in fault-tolerant dis-
tributed computing and secure multi-party computation.

The problem was introduced by Pease, Shostak and
Lamport in [18], who showed that the number of faulty
processors must be less than a third of the total number
of processors for the problem to have a solution. They
also presented a protocol matching this bound, which re-
quires a number of communication rounds proportional
to the number of faulty processors—exactly t + 1, where t
is the number of faulty processors. Fischer and Lynch [10]
later showed that this number of rounds is necessary in the
worst-case run of any deterministic BA protocol. Further-
more, the above assumes that communication takes place
in synchronous rounds. Fischer, Lynch and Patterson [11]
proved that no completely asynchronous BA protocol can
tolerate even a single processor with the simplest form of
misbehavior—namely, ceasing to function at an arbitrary
point during the execution of the protocol (“crashing”).

To circumvent the above-mentioned lower bound on
the number of communication rounds and impossibility
result, respectively, researchers beginning with Ben-Or [1]
and Rabin [19], and followed by many others (e. g., [3,5])
explored the use of randomization. In particular, Rabin
showed that linearly resilient BA protocols in expected
constant rounds were possible, provided that all the parties
have access to a “common coin” (i. e., a common source
of randomness)—essentially, the value of the coin can be
adopted by the non-faulty processors in case disagreement
at any given round is detected, a process that is repeated
multiple times. This line of research culminated in the
unconditional (or information-theoretic) setting with the
work of Feldman and Micali [9], who showed an efficient
(i. e., polynomial-time) probabilistic BA protocol tolerat-
ing the maximal number of faulty processors1 that runs in
expected constant number of rounds. The main achieve-
ment of the Feldman–Micali work is to show how to ob-
tain a shared random coin with constant success proba-
bility in the presence of the maximum allowed number of
misbehaving parties “from scratch”.

Randomization has also been applied to BA protocols
in the computational (or cryptographic) setting and for
weaker failure models. See [6] for an early survey on the
subject.

Notations

Consider a set P = fP1; P2; � � � ; Png of processors (prob-
abilistic polynomial-time Turing machines) out of which
t, t < n may not follow the protocol, and even collude
and behave in arbitrary ways. These processors are called

1Karlin and Yao [14] showed that the maximum number of faulty
processors for probabilistic BA is also t < n

3 , where n is the total
number of processors.

Optimal Probabilistic Synchronous Byzantine Agreement O 605

faulty; it is useful to model the faulty processors as be-
ing coordinated by an adversary, sometimes called a t-
adversary.

For 1 � i � n, let bi, bi 2 f0; 1g denote party Pi’s ini-
tial value. The work of Feldman and Micali considers the
problem of designing a probabilistic BA protocol in the
model defined below.

SystemModel

The processors are assumed to be connected by point-to-
point private channels. Such a network is assumed to be
synchronous, i. e., the processors have access to a global
clock, and thus the computation of all processors can pro-
ceed in a lock-step fashion. It is customary to divide the
computation of a synchronous network into rounds. In
each round, processors send messages, receive messages,
and perform some local computation.

The t-adversary is computationally unbounded, adap-
tive (i. e., it chooses which processors to corrupt on the fly),
and decides on the messages the faulty processors send in
a round depending on the messages sent by the non-faulty
processors in all previous rounds, including the current
round (this is called a rushing adversary).

Given the model above, the goal is to solve the problem
stated in the � Byzantine Agreement; that is, for every set
of inputs and any behavior of the faulty processors, to have
the non-faulty processors output a common value, subject
to the additional condition that if they all start the compu-
tation with the same initial value, then that should be the
output value. The difference with respect to the other entry
is that, thanks to randomization, BA protocols here run in
expected constant rounds.

Problem 1 (BA)
Input: Each processor Pi, 1 � i � n, has bit bi.
Output: Eventually, each processor Pi, 1 � i � n, outputs
bit di satisfying the following two conditions:
� Agreement: For any two non-faulty processors Pi and Pj,

di = dj .
� Validity: If bi = bj = b for all non-faulty processors Pi

and Pj, then di = b for all non-faulty processors Pi.

In the above definition input and output values are from
f0; 1g. This is without loss of generality, since there is
a simple two-round transformation that reduces a multi-
valued agreement problem to the binary problem [20].

Key Results

Theorem 1 Let t < n
3 . Then there exists a polynomial-

time BA protocol running in expected constant number of
rounds.

The number of rounds of the Feldman–Micali BA proto-
col is expected constant, but there is no bound in the worst
case; that is, for every r, the probability that the protocol
proceeds for more than r rounds is very small, yet greater
than 0—in fact, equal to 2�O(r). Further, the non-faulty
processors may not terminate in the same round.2

The Feldman–Micali BA protocol assumes syn-
chronous rounds. As mentioned above, one of the mo-
tivations for the use of randomization was to overcome
the impossibility result due to Fischer, Lynch and Pater-
son [11] of BA in asynchronous networks, where there
is no global clock, and the adversary is also allowed to
schedule the arrival time of a message sent to a non-faulty
processor (of course, faulty processors may not send any
message(s)). In [8], Feldman mentions that the Feldman–
Micali BA protocol can be modified to work on asyn-
chronous networks, at the expense of tolerating t < n

4
faults. In [4], Canetti and Rabin present a probabilistic
asynchronous BA protocol for t < n

3 that differs from the
Feldman–Micali approach in that it is a Las Vegas proto-
col—i. e., it has non-terminating runs, but when it termi-
nates, it does so in constant expected rounds.

Applications

There exists a one-to-one correspondence, possibility- and
impossibility-wise between BA in the unconditional set-
ting as defined above and a formulation of the problem
called the “Byzantine generals” by Lamport, Shostak and
Pease [16], where there is a distinguished source among
the parties sending a value, call it bs, and the rest of the
parties having to agree on it. The Agreement condition re-
mains unchanged; the Validity condition becomes

� Validity: If the source is non-faulty, then di = bs for all
non-faulty processors Pi.

A protocol for this version of the problem realizes a func-
tionality called a “broadcast channel” on a network with
only point-to-point connectivity. Such a tool is very use-
ful in the context of cryptographic protocols and secure
multi-party computation [12]. Probabilistic BA is particu-
larly relevant here, since it provides a constant-round im-
plementation of the functionality. In this respect, without
any optimizations, the reported actual number of expected
rounds of the Feldman–Micali BA protocol is at most 57.

2Indeed, it was shown by Dwork and Moses [7] that at least t + 1
rounds are necessary for simultaneous termination. In [13], Goldre-
ich and Petrank combine “the best of both worlds” by showing a BA
protocol running in expected constant number of rounds which al-
ways terminates within t + O(log t) rounds.

606 O Optimal Radius

Recently, Katz and Koo [15] presented a probabilistic BA
protocol with an expected number of rounds at most 23.

BA has many other applications. Refer to the� Byzan-
tine Agreement, as well as to, e. g., [17] for further discus-
sion of other application areas.

Cross References

� Asynchronous Consensus Impossibility
� Atomic Broadcast
� Byzantine Agreement
� Randomized Energy Balance Algorithms in Sensor

Networks

Recommended Reading
1. Ben-Or, M.: Another advantage of free choice: Completely

asynchronous agreement protocols. In: Proc. 22nd Annual
ACM Symposium on the Principles of Distributed Computing,
1983, pp. 27–30

2. Ben-Or, M., El-Yaniv, R.: Optimally-resilient interactive consis-
tency in constant time. Distrib. Comput. 16(4), 249–262 (2003)

3. Bracha, G.: An O(log n) expected rounds randomized Byzan-
tine generals protocol. J. Assoc. Comput. Mach. 34(4), 910–920
(1987)

4. Canetti, R., Rabin, T.: Fast asynchronous Byzantine agreement
with optimal resilience. In: Proceedings of the 25th Annual
ACM Symposium on the Theory of Computing, San Diego, Cal-
ifornia, 16–18 May 1993, pp. 42–51

5. Chor, B., Coan, B.: A simple and efficient randomized Byzan-
tine agreement algorithm. IEEE Trans. Softw. Eng. SE-11(6),
531–539 (1985)

6. Chor, B., Dwork, C.: Randomization in Byzantine Agreement.
Adv. Comput. Res. 5, 443–497 (1989)

7. Dwork, C., Moses, Y.: Knowledge and Common Knowledge in
a Byzantine Environment: Crash Failures. Inf. Comput. 88(2),
156–186 (1990). Preliminary version in TARK’86

8. Feldman, P.: Optimal Algorithms for Byzantine Agreement.
Ph. D. thesis, MIT (1988)

9. Feldman, P., Micali, S.: An optimal probabilistic protocol for
synchronous Byzantine agreement. SIAM J. Comput. 26(4),
873–933 (1997). Preliminary version in STOC’88

10. Fischer, M.J., Lynch, N.A.: A Lower Bound for the Time to As-
sure Interactive Consistency. Inf. Process. Lett. 14(4), 183–186
(1982)

11. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty processor. J. ACM 32(2),
374–382 (1985)

12. Goldreich, O.: Foundations of Cryptography, Volumes 1 and 2.
Cambridge University Press, Cambridge (2001), (2004)

13. Goldreich, O., Petrank, E.: The Best of Both Worlds: Guarantee-
ing Termination in Fast Randomized Agreement Protocols. Inf.
Process. Lett. 36(1), 45–49 (1990)

14. Karlin, A., Yao, A.C.: Probabilistic lower bounds for the byzan-
tine generals problem. Unpublished manuscript

15. Katz, J., Koo, C.: On Expected Constant-Round Protocols for
Byzantine Agreement. In: Proceedings of Advances in Cryp-
tology–CRYPTO 2006, Santa Barbara, California, August 2006,
pp. 445–462. Springer, Berlin Heidelberg New York (2006)

16. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals
problem. ACMTrans. Program. Lang. Syst. 4(3), 382–401 (1982)

17. Lynch, N.: Distributed Algorithms, Morgan Kaufmann, San
Francisco (1996)

18. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the
presence of faults. J. ACM 27(2), 228–234 (1980)

19. Rabin,M.: Randomized Byzantine Generals. In: Proc. 24th Anual
IEEE Symposium on Foundations of Computer Science, 1983,
pp. 403–409

20. Turpin, R., Coan, B.A.: Extending binary Byzantine Agreement
to multivalued Byzantine Agreement. Inf. Process. Lett. 18(2),
73–76 (1984)

Optimal Radius
� Distance-Based Phylogeny Reconstruction (Optimal

Radius)

Optimal StableMarriage
1987; Irving, Leather, Gusfield

ROBERT W. IRVING
Department of Computing Science,
University of Glasgow, Glasgow, UK

Keywords and Synonyms

Optimal stable matching

ProblemDefinition

The classical Stable Marriage problem (SM), first stud-
ied by Gale and Shapley [5], is introduced in � Sta-
ble Marriage. An instance of SM comprises a set M =
fm1; : : : ;mng of n men and a set W = fw1; : : : ;wng

of n women, and for each person a preference list, which
is a total order over the members of the opposite sex.
A man’s (respectively woman’s) preference list indicates
his (respectively her) strict order of preference over the
women (respectively men). A matching M is a set of n
man–woman pairs in which each person appears exactly
once. If the pair (m,w) is in the matchingM thenm and w
are partners in M, denoted by w = M(m) and m = M(w).
Matching M is stable if there is no man m and woman w
such thatm prefers w toM(m) and w prefersm toM(w).

The key result established in [5] is that at least one sta-
ble matching exists for every instance of SM. In general
there may be many stable matchings, so the question arises
as to what is an appropriate definition for the ‘best’ stable
matching, and how such a matching may be found.

Gale and Shapley described an algorithm to find a sta-
ble matching for a given instance of SM. This algorithm

Optimal Stable Marriage O 607

may be applied either from the men’s side or from the
women’s side. In the former case, it finds the so-called
man-optimal stable matching, in which each man has the
best partner, and each woman the worst partner, that is
possible in any stable matching. In the latter case, the
woman-optimal stable matching is found, in which these
properties are interchanged. For some instances of SM, the
man-optimal and woman-optimal stable matchings coin-
cide, in which case this is the unique stable matching. In
general however, there may be many other stable match-
ings between these two extremes. Knuth [13] was first to
show that the number of stable matchings can grow expo-
nentially with n.

Because of the imbalance inherent, in general, in the
man-optimal and woman-optimal solutions, several other
notions of optimality in SM have been proposed.

A stable matchingM is egalitarian if the sum
X
i

r(mi ;M(mi)) +
X
j

r(wj ;M(wj))

is minimized over all stable matchings, where r(m,w) rep-
resents the rank, or position, of w in m’s preference list,
and similarly for r(w,m). An egalitarian stable matching
incorporates an optimality criterion that does not overtly
favor the members of one sex – though it is easy to con-
struct instances having many stable matchings in which
the unique egalitarian stable matching is in fact the man
(or woman) optimal.

A stable matching M is minimum regret if the value
max(r(p;M(p)) is minimized over all stable matchings,
where the maximum is taken over all persons p. A mini-
mum regret stable matching involves an optimality crite-
rion based on the least happy member of the society, but
again, minimum regret can coincide with man-optimal or
woman-optimal in some cases, even when there are many
stable matchings.

A stable matching is rank-maximal (or lexicographi-
cally maximal) if, among all stable matchings, the largest
number of people have their first choice partner, and sub-
ject to that, the largest number have their second choice
partner, and so on.

A stable matchingM is sex-equal if the difference
ˇ̌
ˇ
X
i

r(mi ;M(mi)) �
X
j

r(wj;M(wj))
ˇ̌
ˇ

is minimized over all stable matchings. This definition is
an explicit attempt to ensure that one sex is treated no
more favorably than the other, subject to the overriding
criterion of stability.

In the weighted stable marriage problem (WSM), each
person has, as before, a strictly ordered preference list, but

the entries in this list have associated costs or weights –
wt(m,w) represents the weight associated with woman w
in the preference list of man m, and likewise for wt(w,m).
It is assumed that the weights are strictly increasing along
each preference list.

A stable matchingM in an instance of WSM is optimal
if
X
i

wt(mi ;M(mi)) +
X
j

wt(wj;M(wj))

is minimized over all stable matchings.
A stable matching M in an instance of WSM is bal-

anced if

max

0
@X

i

wt(mi ;M(mi));
X
j

wt(wj;M(wj))

1
A

is minimized over all stable matchings.
These same forms of optimality may be defined in the

more general context of the Stable Marriage problem with
Incomplete Preference Lists (SMI) –see � Stable Mar-
riagefor a formal definition of this problem.

Again as described in � Stable Marriage, the Stable
Roommates problem (SR) is a non-bipartite generalization
of SM, also introduced by Gale and Shapley [5]. In contrast
to SM, an instance of SR may or may not admit a stable
matching. Irving [9] gave the first polynomial-time algo-
rithm to determine whether an SR instance admits a stable
matching, and if so to find one such matching.

There is no concept of man or woman optimal in the
SR context, and nor is there any analogue of sex-equal or
balanced matching. However, the other forms of optimal-
ity introduced above can be defined also for instances of
SR and WSR (Weighted Stable Roommates).

A comprehensive treatment ofmany aspects of the Sta-
ble Marriage problem, as of 1989, appears in the mono-
graph of Gusfield and Irving [6].

Key Results

The key to providing efficient algorithms for the vari-
ous kinds of optimal stable matching is an understand-
ing of the algebraic structure underlying an SM instance,
and the discovery of methods to exploit this structure.
Knuth [13] attributes to Conway the observation that the
set of stable matchings for an SM instance forms a dis-
tributive lattice under a natural dominance relation. Irving
and Leather [11] characterized this lattice in terms of so-
called rotations – essentially minimal differences between
lattice elements – which can be efficiently computed di-
rectly from the preference lists. The rotations form a nat-

608 O Optimal Stable Marriage

ural partial order, the rotation poset, and there is a one-to-
one correspondence between the stable matchings and the
closed subsets of the rotation poset.

Building on these structural results, Gusfield [8] gave
a O(n2) algorithm to find aminimum-regret stable match-
ing, improving an earlier O(n4) algorithm described by
Knuth [13] and attributed to Selkow. Irving et al. [10]
showed how application of network flow methods to the
rotation poset yield efficient algorithms for egalitarian and
rank-maximal stable matchings, as well as for an optimal
stable matching in WSM. These algorithms have com-
plexities O(n4), O(n5 log n log n) and O(n4 log n) respec-
tively. Subsequently, by using an interpretation of a sta-
ble marriage instance as an instance of 2-SAT, and with
the aid of a faster network flow algorithm exploiting the
special structure of networks representing SM instances,
Feder [3,4] reduced these complexities to O(n3), O(n3:5)
and O(min(n;

p
K)n2 log(K/nn + 2)) respectively, where

K is the weight of an optimal solution.
By way of contrast, and perhaps surprisingly, the prob-

lems of finding a sex-equal stable matching for an instance
of SM and of finding a balanced stable matching for an in-
stance of WSM have been shown to be NP-hard [2,12].

The following theorem summarizes the current state of
knowledge regarding the various flavors of optimal stable
matching in SM andWSM.

Theorem 1 For an instance of SM:
(i) A minimum regret stable matching can be found in

O(n2) time.
(ii) An egalitarian stable matching can be found in O(n3)

time.
(iii) A rank-maximal stable matching can be found in

O(n3:5) time.
(iv) The problem of finding a sex-equal stable matching is

NP-hard.
For an instance of WSM:

(v) An optimal stable matching can be found in
O(min(n;

p
K)n2 log(K/n2 + 2)) time, where K is the

weight of an optimal solution.
(vi) The problem of finding a balanced stable matching is

NP-hard, but can be approximated within a factor of 2
in O(n2) time.

Among related problems that can also be solved efficiently
by exploitation of the rotation structure of an instance of
SM are the following [8]:
� all stable pairs, i. e., pairs that belong to at least one sta-

ble matching, can be found in O(n2) time;
� all stable matchings can be enumerated in O(n2 + kn)

time, where k is the number of such matchings.

Results analogous to those of Theorem 1 are known for
the more general SMI problem. In the case of the Stable
Roommates problem (SR), some of these problems appear
to be harder, as summarized in the following theorem.

Theorem 2 For an instance of SR:
(i) A minimum regret stable matching can be found in

O(n2) time [7].
(ii) The problem of finding an egalitarian stable match-

ing is NP-hard. It can be approximated in polynomial
time within a factor of ˛ if and only if minimum vertex
cover can be approximated within ˛ [1,2].
For an instance of WSR (weighted stable roommates):

(iii) The problem of finding an optimal stable matching is
NP-hard, but can be approximated within a factor of 2
in O(n2) time [3].

Applications

The best known and most important applications of
stable matching algorithms are in centralized matching
schemes in the medical and educational domains. � Hos-
pitals / Residents Problem includes a summary of some of
these applications.

Open Problems

There remains the possibility of improving the complexity
bounds for some of the optimization problems discussed,
and for finding better polynomial-time approximation al-
gorithms for the various NP-hard problems.

Cross References

� Hospitals/Residents Problem
� Ranked Matching
� Stable Marriage and Discrete Convex Analysis
� Stable Marriage with Ties and Incomplete Lists
� Stable Partition Problem

Recommended Reading
1. Feder, T.: A new fixed point approach for stable networks

and stable marriages. In: Proceedings of 21st ACM Symposium
on Theory of Computing, pp. 513–522, Theory of Computing,
Seattle WA, May 1989, pp. 513–522, ACM, New York (1989)

2. Feder, T.: Stable networks and product graphs. Ph. D. thesis,
Stanford University (1991)

3. Feder, T.: A new fixed point approach for stable networks and
stable marriages. J. Comput. Syst. Sci. 45, 233–284 (1992)

4. Feder, T.: Network flow and 2-satisfiability. Algorithmica 11,
291–319 (1994)

5. Gale, D., Shapley, L.S.: College admissions and the stability of
marriage. Am. Math. Mon. 69, 9–15 (1962)

Optimal Stable Marriage O 609

6. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Struc-
ture and Algorithms. MIT Press, Cambrigde MA (1989)

7. Gusfield, D.: The structure of the stable roommate problem:
efficient representation and enumeration of all stable assign-
ments. SIAM J. Comput. 17(4), 742–769 (1988)

8. Gusfield, D.: Three fast algorithms for four problems in stable
marriage. SIAM J. Comput. 16(1), 111–128 (1987)

9. Irving, R.W.: An efficient algorithm for the stable roommates
problem. J. Algorithms 6, 577–595 (1985)

10. Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm
for the “optimal stable” marriage. J. ACM 34(3), 532–543
(1987)

11. Irving, R.W., Leather, P.: The complexity of counting stablemar-
riages. SIAM J. Comput. 15(3), 655–667 (1986)

12. Kato, A.: Complexity of the sex-equal stable marriage problem.
Jpn. J. Ind. Appl. Math. 10, 1–19 (1993)

13. Knuth, D.E.: Mariages Stables. Les Presses de L’Université de
Montréal (1976)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

