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ProblemDefinition

This problem is concerned with efficiently designing
a serverless infrastructure for a federation of hosts to store,
index and locate information, and for efficient data dis-
semination among the hosts. The key services of peer-to-
peer (P2P) overlay networks are:
1. A keyed lookup protocol locates information at the

server(s) that hold it.
2. Data store, update and retrieve operations maintain

a distributed persistent data repository.
3. Broadcast and multicast support information dissemi-

nation to multiple recipients.
Because of their symmetric, serverless nature, these net-
works are termed P2P networks. Below, we often refer to
hosts participating in the network as peers.

The most influential mechanism in this area is consis-
tent hashing, pioneered in a paper by Karger et al. [21].
The idea is roughly the following. Frequently, a good way
of arranging a lookup directory is a hash table, giving a fast
O(1)-complexity data access. In order to scale and provide
highly available lookup services, we partition the hash ta-
ble and assign different chunks to different servers. So, for
example, if the hash table has entries 1 through n, and
there are k participating servers, we can have each server
select a virtual identifier from 1 to n at random. Server i

will then be responsible for key values that are closer to i
than to any other server identifier. With a good random-
ization of the hash keys, we can have a more or less bal-
anced distribution of information between our k servers.
In expectation, each server will be responsible for (n/k)
keys. Furthermore, the departure/arrival of a server per-
turbs only one or two other servers with adjacent virtual
identifiers.

A network of servers that implement consistent hash-
ing is called a distributed hash table (DHT). Many cur-
rent-generation resource sharing networks, and virtually
all academic research projects in the area, are built around
a DHT idea.

The challenge in maintaining DHTs is two-fold:

Overlay routing Given a hash key i, and starting from any
node r in the network, the problem is to find the server
s whose key range contains i. The key name i bears no
relation to any real network address, such as the IP ad-
dress of a node, and therefore we cannot use the un-
derlying IP infrastructure to locate s. An overlay rout-
ing network links the nodes, and provides them with
a routing protocol, such that r can route toward s us-
ing the routing target i.

Dynamic maintenance DHTs must work in a highly dy-
namic environment in which the size of the network
is not known a priori, and where there are no per-
manent servers for maintaining either the hash func-
tion or the overlay network (all servers are assumed to
be ephemeral). This is especially acute in P2P settings,
where the servers are transient users who may come
and go as they wish. Hence, there must be a decentral-
ized protocol, executed by joining and leaving peers,
that incrementally maintains the structure of the sys-
tem. Additionally, a joining peer should be able to cor-
rectly execute this protocol while initially only having
knowledge of a single, arbitrary participating network
node.

One of the first overlay network projects was Chord [35],
after which this encyclopedia entry is named (2001; Sto-
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ica, Morris, Karger, Kaashoek, Balakrishnan). More details
about Chord are given below.

Key Results

The P2P area is very dynamic and rapidly evolving. The
current entry provides a mere snapshot, covering domi-
nant and characteristic strategies, but not offering an ex-
haustive survey.

Unstructured Overlays

Many of the currently deployedwidespread resource-shar-
ing networks have little or no particular overlay structure.
More specifically, early systems such as Gnutella version
0.4 had no overlay structure at all, and allowed every node
to connect to other nodes arbitrarily. This resulted in se-
vere load and congestion problems.

Two-tier networks were introduced to reduce com-
munication overhead and solve the scalability issues that
early networks like Gnutella version 0.4 had. Two-tier net-
works consist of one tier of relatively stable and powerful
nodes, called servers (superpeers, ultrapeers), and a larger
tier of clients that search the network though servers.Most
current networks, including Edonkey/Emule, KaZaa, and
Gnutella, are built using two tiers. Servers provide direc-
tory store and search facilities. Searching is either lim-
ited to servers to which clients directly connect (eDon-
key/eMule) or done by limited-depth flooding among the
servers (Gnutella). The two-tier design considerably en-
hances the scalability and reliability of P2P networks. Nev-
ertheless, the connections among servers and between
clients/servers is done in a completely ad hoc manner.
Thus, these networks provide no guarantee for the success
of searches, nor a bound on their costs.

Structured Overlays Without Locality Awareness

Chord The Chord system was built at MIT and is cur-
rently being developed under FNSF’s IRIS project (http://
project-iris.net/). Several aspects of the Chord [35] design
have influenced subsequent systems. We briefly explain
the core structure of Chord here. Nodes have binary iden-
tifiers, assigned uniformly at random. Nodes are arranged
in a linked ring according to their virtual identifiers. In ad-
dition, each node has shortcut links to other nodes along
the ring, link i to a node 2i away in the virtual identifier
space. In this way, one can move gradually to the target by
decreasing the distance by half at every step. Routing takes
on average log n hops to reach any target, in a network
containing n nodes. Each node maintains approximately
log n links, providing the ability to route to geometrically
increasing distances.

Constant Per-Node State Several overlay network al-
gorithms were developed with the goal of pushing the
amount of network state kept by each node in the over-
lay to a minimum. We refer to the state kept by a node as
its degree, as it mostly reflects the number of connections
to other nodes. Viceroy [23] was the first to demonstrate
a dynamic network in which each node stores only five
links to other network nodes, and routes to any other node
in a logarithmic number of hops, log n for a network of n
nodes. Viceroy provided a dynamic emulation of a butter-
fly network (see [11] for a textbook exposition of intercon-
nect networks like butterfly). Later, several emulations of
De Bruijn networks emerged, including the generic one of
Abraham et al. (AAABMP) [1], the distance halving net-
work [26], D2B [13], and Koorde [20]. Constant-degree
overlay networks are too fragile for practical purposes, and
may easily degrade in performance or even partition in the
face of failures. A study of overlay networks under churn
demonstrated these points [18]. Indeed, to the best of our
knowledge, none of these constant-degree networks were
built. Their main contribution, and the main reason for
mentioning these works here, is to know that it is possi-
ble in principle to bring the per-node state to a bare, small
constant.

Content Addressable Network The Content Address-
able Network (CAN) [31] developed at ICSI builds the
network as virtual d-dimensional space, giving every node
a d-dimensional identifier. The routing topology resem-
bles a d-dimensional torus. Routing is done by follow-
ing the Euclidean coordinates in every dimension, yield-
ing a dn1/d hop routing strategy. The parameter d can
be tuned by the network administrator. Note that for
d = log n, CAN’s features are the same as in Chord,
namely, logarithmic degree and logarithmic routing hop
count.

Overlay Routing Inspired by “Small-World” Networks
The Symphony [24] algorithm emulates routing in a small
world. Nodes have k links to nodes whose virtual identi-
fiers are chosen at random according to a routable small-
world distribution [22]. With k links, Symphony is ex-
pected to find a target in log2 /k hops.

Overlay Networks Supporting Range Queries One of
the deficiencies of DHTs is that they support only exact
key lookup; hence, they do not address well the need to lo-
cate a range of keys, or to have a fuzzy search, e. g., search
for any key that matches some prefix. SkipGraphs [4] and
the SkipNet [19] scheme from Microsoft (project Herald)
independently developed a similar DHT based on a ran-

http://project-iris.net/
http://project-iris.net/
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P2P, Table 1
Comparison of various measures of lookup schemes with no lo-
cality awareness

Overlay lookup scheme Topology
resemblance

Hops Degree

Chord Hypercube log n log n
Viceroy Butterfly log n 5
AAABMP, Distance-halving,
Koorde, D2B

De Bruijn log n 4

Symphony Small world log2 n/k k
SkipGraphs/SkipNet Skip list log n log n
CAN Torus dn1/d d

domized skip list [28] that supports range queries over
a distributed network. The approach in both of these net-
works is to link objects into a double-linked list, sorted
by object names, over which “shortcut” pointers are built.
Pointers from each object skip to a geometric sequence
of distances in the sorted list, i. e., the first pointer jumps
two items away, the second four items, and so on, up to
pointer log n � 1, which jumps over half of the list. Loga-
rithmic, load-balanced lookup is achieved in this scheme
in the same manner as in Chord. Because the identifier
space is sorted by object names, rather than hash identi-
fiers, ranges of objects can be scanned efficiently simply
by routing to the lowest value in the range; the remaining
range nodes reside contiguously along the ring.

By prefixing organization names to object names,
SkipNet achieves contiguity of nodes belonging to a single
organization along the ring, and the ability to map objects
on nodes in their local organizations. In this way SkipNet
achieves resource proximity and isolation the only system
besides RP [33] to have this feature.

Whereas the SkipGraphs work focuses on randomized
load-balancing strategies and proofs, the SkipNet system
considers issues of dynamic maintenance, variable base
sizes, and adopts the locality-awareness strategy of Pas-
try [33], which is described below.

Summary of Non-Locality-Aware Networks Each of
the networksmentioned above is distinct in one ormore of
the following properties: The (intuitive) emulated topol-
ogy; the expected number of hops required to reach a tar-
get; and the per-node degree. Table 1 summarizes these
properties.

Locality Awareness

The problem with the approaches listed above is that they
ignore the proximity of nodes in the underlying networks,

and allow hopping back and forth across large physical
distances in search of content. Recent studies of scalable
content exchange networks [17] have indicated that up to
80% of Internet searches could be satisfied by local hosts
within one’s own organization. Therefore, even one far
hop might be too costly. The next systems we encounter
consider proximity relations among nodes in order to ob-
tain locality awareness, i. e., that lookup costs are propor-
tional to the actual distance of interacting parties.

Growth-Bounded Networks Several locality-aware
lookup networks were built around a bit-fixing protocol
that borrows from the seminal work of Plaxton et al. [27]
(PRR). The growth bounded network model for which this
scheme is aimed views the network as a metric space, and
assumes that the densities of nodes in different parts of the
network are not terribly different. The PRR [27] lookup
scheme uses prefix routing, similar to Chord. It differs
from Chord in that a link for flipping the ith identifier
bit connects with any node whose length-i prefix matches
the next hop. In this way, the scheme favors the closest
one in the network. This strategy builds geometric routing,
whose characteristic is that the routing steps toward a tar-
get increase geometrically in distance. This is achieved by
having large flexibility in the choice of links for each prefix
at the beginning of a route, and narrowing it down as the
route progresses. The result is an overlay routing scheme
that finds any target with a cost that is proportional to the
shortest-distance route.

The systems that adopt the PRR algorithm are Pas-
try [33], Tapestry [36], and Bamboo [32]. A very close
variant is Kademlia [25], in which links are symmetric.
It is worth mentioning that the LAND scheme [2] im-
proves PRR in providing a nearly optimal guaranteed lo-
cality guarantee; however, LAND has not been deployed.

Applications

Caching

The Coral network [14] from NYU, built on top of DSHT
[15], has been operational since around 2004. It provides
free content delivery services on top of the PlanetLab-dis-
tributed test bed [9], similar to the commercial services
offered by the Akamai network. People use it to provide
multiple, fast access points to content they wish to publish
on the Web.

Coral optimizes access locality and download rate
using locality-aware lookup provided by DSHT. Within
Coral, DSHT is utilized to support locality-aware object
location in two applications. First, Coral contains a col-
lection of HTTP proxies that serve as content providers;
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DSHT is used by clients for locating a close-by proxy. Sec-
ond, proxy servers themselves use DSHT to locate a near-
by copy of content requested by the client, thus making
use of copies of the content that are stored in the network,
rather than going to the source of the content.

Multicast

Several works deploy an event notification or publish–
subscribe service over an existing routing overlay by build-
ing reverse-routing multicast paths from a single “target”
to all “sources.” For example, multicast systems built in
this way include the Bayeux network [38], which is built
over Tapestry [36], and SCRIBE [5], which is built over
Pastry. In order to publish a file, the source advertises us-
ing flooding a tuple which contains the semantic name of
a multicast session and a unique ID. This tuple is hashed
to obtain a node identifier which becomes the session root
node. Each node can join this multicast session by sending
amessage to the root. Nodes along the waymaintainmem-
bership information, so that a multicast tree is formed in
the reverse direction. The file content (and any updates) is
flooded down the tree. Narada [8] is built with the same
general architecture, but differs in its choice of links, and
the maintenance of data.

Routing Infrastructure

ADHT can serve well to store routing and (potentially dy-
namic) location information of virtual host names. This
idea has been utilized in a number of projects. A nam-
ing system for the Internet called CoDoNS [30] was
built at Cornell University over the BeeHive overlay [29].
CoDoNS provides a safety net and is a possible replace-
ment for the Domain Name System, the current service
for looking up host names. Support for virtual IPv6 net-
work addresses is provided in [37] by mapping names to
their up-to-date, reachable IPv4 address. The Internet In-
direction Infrastructure [34] built at the University of Cal-
ifornia, Berkeley provides support for virtual Internet host
addresses that allows mobility.

Collaborative Content Delivery

Recent advances provide collaborative content delivery so-
lutions that address both load balance and resilience via
striping. The content is split into pieces (quite possibly
with some redundancy through error-correcting codes).
The source pushes the pieces of the file to an initial group
of nodes, each of which becomes a source of a distribution
tree for its piece, and pushes it to all other nodes. These

works demonstrate clearly the advantages of data strip-
ing, i. e., of simultaneously exchanging stripes of data, over
a tree-based dissemination of the full content.

SplitStream [6] employs the Pastry routing overlay in
order to construct multiple trees, such that each partici-
pating node is an inner node in only one tree. It then sup-
ports parallel download of stripes within all trees. Split-
Stream [6] strives to obtain load balancing between multi-
cast nodes. It achieves that by splitting the published con-
tent into several parts, called stripes, and publishing each
part separately. Each stripe is published using a tree-based
multicast. The workload is divided between the participat-
ing nodes by sending each stripe using a different multi-
cast tree. Load balance is achieved by carefully choosing
the multicast trees so that each node serves as an interior
node in at most one tree. This reduces the number of “free
riders” who only receive data.

A very popular file-distribution network is the BitTor-
rent system [10]. Nodes in BitTorrent are divided into seed
nodes and clients. Seed nodes contain the desired content
in full (either by being original providers, or by having
completed a recent download of the content). Client nodes
connect with a seed node or several seed nodes, as well
as a tracker node, whose goal is to keep track of currently
downloading clients. Each client selects a group (currently,
of size about 20) of other downloading clients, and ex-
changes chunks of data obtained from the seed(s) with
them. BitTorrent employs several intricate strategies for
selecting which chunks to request from what other clients,
in order to obtain fair load sharing of the content distribu-
tion and, at the same time, achieve fast download.

BitTorrent currently does not contain P2P-searching
facilities. It relies on central sites known as “trackers” to
locate content, and to coordinate the BitTorrent download
process. Recent announcements by Bram Cohen (the cre-
ator of BitTorrent) and creators of other BitTorrent clients
state that new protocols based on BitTorrent will be avail-
able soon, in which the role of trackers is eliminated, and
searching and coordination is done in a completely P2P
manner.

Experience with BitTorrent and similar systems indi-
cates that the main problem with this approach is that to-
wards the end of a download, many peers may be miss-
ing the same rare chunks, and the download slows down.
Fairly sophisticated approaches were published in an at-
tempt to overcome this issue.

Recently, a number of works at Microsoft Research
have demonstrated the benefits of network coding in ef-
ficient multicast, e. g., [7] and Avalanche [16]. We do not
cover these techniques in detail here, but only briefly state
the principal ideas that underlie them.
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The basic approach in network coding is to re-encode
all the chunks belonging to the file, so that each one that
is shared is actually a linear combination of all the pieces.
The blocks are then distributed with a description of the
content. Once a node obtains these re-encoded chunks, it
can generate new combinations from the ones it has, and
can send those out to other peers. The main benefit is that
peers can make use of any new piece, instead of having
to wait for specific chunks that are missing. This means
no one peer can become a bottleneck, since no piece is
more important than any other. Once a peer collects suffi-
ciently many such chunks, it may use them to reconstruct
the whole file.

It is worth noting that in unstructured settings, it
was recently shown that network coding offers no advan-
tage [12].
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ProblemDefinition

A collection of packets need to be routed from a set of
specified sources to a set of specified destinations in an ar-
bitrary network. Leighton, Maggs and Rao [5] looked at
a model where this task is divided into two separate tasks:
the first is the path selection task, where for each specified

packet i with source si and packet destination ti, a sim-
ple (meaning edges don’t repeat) path Pi through the net-
work from si to ti is pre-selected. Packets traverse the net-
work in a store and forward manner: each time a packet is
forwarded it travels along the next link in the pre-selected
path. It is assumed that only one packet can cross each in-
dividual link at each given global (synchronous) timestep.
Thus, when there is contention for a link, packets awaiting
traversal are stored in the local link’s queue (special source
and sink queues of unbounded size are also defined that
store packets at their origins and destinations). Thus, the
second task, and the focus of the Leighton, Maggs and Rao
result (henceforth called the LMR result) is the scheduling
task: a determination, when a link’s queue is not empty, of
which packet gets to traverse the link in the next timestep
(where it is assumed to immediately join the link queue for
its next hop). The goal is to schedule the packets so that the
maximum time that it takes any packet to reach its desti-
nation is minimized.

There are two parameters of the network together with
the pre-selected paths that are clearly relevant. One is the
congestion c, defined as the maximum number of paths
that all use the same link. The other is the dilation d, which
is simply the length of the longest path that any packet tra-
verses in the network. Clearly each of c and d is a lower-
bound on the length of any schedule that routes all the
packets to their destinations. It is easy to see that a sched-
ule of length at most cd always exists. In fact, any schedule
that never lets a link go idle if there is a packet that can use
that link at that timestep is guaranteed to terminate in cd
steps, because each packet traverses at most d links, and at
any link can be delayed by at most c � 1 other packets.

Key Results
The surprising and beautiful result of LMR is as follows:

Theorem ([5]) For any network G with a pre-specified
set of paths P with congestion c and dilation d, there ex-
ists a schedule of length O(c + d), where the queue sizes at
each edge are always bounded by a constant.

The original proof of the LMR paper is non-constructive.
That is, it uses the Local Lemma [3] to prove the existence
of such a schedule, but does not give a way to find it. In
his book [10], Scheideler showed that in fact, a O(c + d)
schedule exists with edge queue sizes bounded by 2 (and
gave a simpler proof of the original LMR result). A sub-
sequent paper of Leighton, Maggs and Richa in 1999 [6]
provides a constructive version of the original LMR paper
as follows:

Theorem ([6]) For any network G with a pre-specified
set of paths P with congestion c and dilation d, there exists
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a schedule of length O(c + d). Furthermore, such a schedule
can be found in O(p log1+� p log�(c+ d)) time for any �>0,
where p is the sum of the lengths of the paths taken by the
packets and " is incorporated into the constant hidden by
the big-O in the schedule length.

The algorithm in the paper is a randomized one, though
the authors claim that it can be derandomized using
the method of conditional probabilities. However, even
though the algorithm of Leighton, Maggs and Richa is
constructive, it is still an offline algorithm: namely, it re-
quires full knowledge of all packets in the network and the
precise paths that each will traverse in order to construct
the schedule. The original LMR paper also gave a simple
randomized online algorithm, that, by assigning delays to
packets independently and uniformly at random from an
appropriate interval, results in a schedule which is much
better than greedy schedules, though not as good as the
offline constructions.

Theorem ([5]) There is a simple randomized on-line al-
gorithm for producing, with high probability, a schedule of
length O(c + d log(Nd)) using queues of size O(log(Nd)),
where c is the congestion, d is the dilation, andN is the num-
ber of packets.

In the special case where it is assumed that all packets fol-
low shortest paths in the network, Meyer, auf der Heide
and Vöcking produced a simple randomized online algo-
rithm that produces, with high probability, a schedule of
length O(c + d + log Nd) steps, but queues can be as large
as O(c) [7]. For arbitrary paths, the LMR online result was
ultimately improved to O(c + d + log1+� N) steps, for any
�>0 with high probability, in a series of two papers by Ra-
bani and Tardos [9], and Rabani andOstrovsky [8]. Online
protocols have also been studied in a setting where addi-
tional packets are dynamically injected into the network in
adversarial settings, see [10] for a survey.

The discussion is briefly returned to the first task,
namely to pre-construct the set of paths. Clearly, the goal
is to find, for a particular set of packets with pre-specified
sources and destinations, a set of paths that minimizes
c + d. Srinivasan and Teo [12] designed an off-line algo-
rithm that produces a set of paths whose c + d is prov-
ably within a constant factor of optimal. Together with the
offline LMR result, that gives a constant-factor approxi-
mation problem for the offline store-and-forward packet
routing problem. Note that the approach of trying to min-
imize c + d rather than c alone seems crucial; producing
schedules within a constant factor of optimal congestion
c is hard, and in fact has been shown to be related to the
integrality gap for multicommodity flow [1,2].

Applications
Network Emulations
Typically, a guest network G is emulated by a host net-
workH by embeddingG intoH. Nodes ofG aremapped to
nodes of H, while edges of G are mapped to paths in H. If
P is the set of e paths (each corresponding to an edge in the
guest network G), the congestion and dilation can be de-
fined analogously as in the main result for the set of paths
P, namely c denotes the maximum number of paths that
use any one edge of H, and d is the length of the longest
path in P. In addition, the load l is defined to be the max-
imum number of nodes in G that are mapped to a single
node of H. Once G is embedded in H, H can emulate G
as follows: Each node of H emulates the local computa-
tions performed by the l (or fewer) nodes mapped to it in
O(l) time. Then for each packet sent along an edge of G,H
sends a packet along the corresponding path in the embed-
ding; using the offline LMR result this takes O(c+d) steps.
Thus, H can emulate each step of G in O(c + d + l) steps.

Job Shop Scheduling
Consider a scheduling problemwith jobs j1; : : : jr andma-
chines m1; : : : ;ms for which each job must be performed
on a specified sequence of machines (in a specified or-
der). Assume each job spends unit time on each machine,
and that no machine has to work on any job more than
once (In the language of job-shop scheduling, this is the
non-preemptive, acyclic, job-shop scheduling problem, with
unit jobs). There is a mapping of sequences of machines to
paths and jobs to packets so that this becomes an encod-
ing of the main packet routing problem, where if c is now
to be the maximum number of jobs that have to be run
on any one machine, and d to be the maximum number
of different machines that work on any single job, there
becomes O(c) congestion and O(d) dilation for the corre-
sponding packet-routing instance. Then the offline LMR
result shows that there is a schedule that completes all jobs
in O(c+ d) steps, where in addition, each job waits at most
a constant number of steps in between consecutive ma-
chines (and the queue of jobs waiting for any particular
machine will always be bounded by a constant). Similar
techniques to those developed in the LMR paper have sub-
sequently been applied to more general instances of Job-
Shop Scheduling; see [4,11].

Open Problems
The main open problem is whether there is a random-
ized online packet scheduling thatmatches the offline LMR
bound of O(c+d). The bound of [8] is close, but still grows
logarithmically with the total number of packets.
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For job shop scheduling, it is unknown whether the
constant-factor approximation algorithm for the non-
preemptive acyclic job-shop scheduling problem with unit
length jobs implied by LMR can be improved to a PTAS.
It is also unknown whether there is a constant-factor ap-
proximation in the case of arbitrary-length jobs.
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ProblemDefinition

A multi-queue network switch serves m incoming queues
by transmitting data packets arriving at m input ports
through one single output port. In each time step, an ar-
bitrary number of packets may arrive at the input ports,
but only one packet can be passed through the common
output port. Each packet is marked with a value indicat-
ing its priority in the Quality of Service (QoS) network.
Since each queue has bounded capacity B and the rate of
arriving packets can be much higher than the transmis-
sion rate, packets can be lost due to insufficient queue
space. The goal is to maximize the throughput which is de-
fined as the total value of transmitted packets. The prob-
lem comprises two dependent questions: buffer manage-
ment, namely which packets to admit into the queues, and
scheduling, i. e. which (FIFO) queue to use for transmis-
sion in each time step.

Two scenarios are distinguished: (a) unit packet value
(All packets have the same value.), (b) arbitrary packet
values.

The problem is considered as an online problem, i. e.
at time step t, only the packet arrivals until t are known,
but nothing about future packet arrivals. The online switch
performance in QoS based networks is studied by using
competitive analysis in which the throughput of the on-
line algorithm is compared to the throughput of an opti-
mal offline algorithm knowing the whole arrival sequence
in advance.

If not stated otherwise, the admission control is as-
sumed to allows preemption, i. e. packets once enqueued
need not necessarily be transmitted, but can be discarded.
Problem 1 (Unit value problem) All packets have
value 1. Since all packets are thus equally important, the ad-
mission control policies simplify: All arriving packets are to
be enqueued; in the case of buffer overflow, it does not mat-
ter which packets are stored in the queue and which packets
are discarded.

Problem 2 (General problem) Each packet has its indi-
vidual value where usually a range [1; ˛] is given for all
packets. A special case consists in the two value model where
the values are restricted to f1; ˛g.

Key Results
Unit value packets
Deterministic algorithms

Theorem 1 ([1]) For any buffer size B, the competi-
tive ratio of each deterministic online algorithm is not
smaller than (eB + 2

B )/(eB � 1 + 1
B ) �

e
e�1 	 1:58 where

eB = ((B + 1)/B)B.
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Theorem 2 ([4]) Every work-conserving online algorithm
is 2-competitive.

Theorem 3 ([1]) For any buffer size B, the competitive ra-
tio of any greedy algorithm, which always serves a longest
queue (LQF), is at least 2 � 1

B if m� B.

Algorithm: SGR (Semi-Greedy)
In each time step, the algorithm executes the first rule that
applies to the current buffer configuration.
1. If there is a queue buffering more than bB/2c packets,

serve the queue currently having the maximum load.
2. If there is a queue the hitherto maximum load of which

is less than B, serve among these queues the one cur-
rently having the maximum load.

3. Serve the queue currently having the maximum load.
Ties are broken by choosing the queue with the small-
est index. The hitherto maximum load is reset to 0 for
all queues whenever all queues are unpopulated in SGR’s
configuration.

Theorem 4 ([1]) If B is even, then SGR is 17
9 	 1:89-

competitive. If B is odd, then SGR is ( 179 + ıB
9 )-competitive

where ıB = 2
B+1 .

Theorem 5 ([3]) Algorithm EMÊP0 (not stated in de-
tail due to space limitation), which is based on a wa-
ter level algorithm and uses a fractional matching in an
online constructed graph, achieves a competitiveness of
e/(e � 1)(1 + (bHm + 1c)/B), where Hm denotes the mth

harmonic number. Thus, EMÊP0 is asymptotically e
e�1 -

competitive for B� logm.

Randomized algorithms

Theorem 6 ([1]) The competitive ratio of each random-
ized online algorithm is at least % = 1:4659 for any buffer
size B (% = 1 + 1

˛+1 where ˛ is the unique positive root of
e˛ = ˛ + 2).

Theorem 7 (Generalizing technique [9]) If there is
a randomized c-competitive algorithm A for B = 1, then
there is a randomized c-competitive algorithm Ã for all B.

Algorithm: RS (Random Schedule)
1. The algorithm uses m auxiliary queues Q1; : : : ;Qm of

sizes B1; : : : ; Bm (different buffer sizes at the distinct
ports are allowed), respectively. These queues contain
real numbers from the range (0,1), where each number
is labeled as either marked or unmarked. Initially, these
queues are empty.

2. Packet arrival: If a new packet arrives at queue qi, then
the algorithm chooses uniformly at random a real num-

ber from the range (0,1) that is inserted into queue Qi
and labeled as unmarked. If queueQi was full when the
packet arrived, the number at the head of the queue is
deleted prior to the insertion of the new number.

3. Packet transmission: Check whether queues Q1;

: : : ;Qm contain any unmarked number. If there are
unmarked numbers, let Qi be the queue containing
the largest unmarked number. Change the label of
the largest number to “marked” and select queue qi
for transmission. Otherwise (no unmarked number),
transmit a packet from any non-empty queue if such
exists.

Theorem 8 ([4]) Randomized algorithm RS is
e

e�1 	 1:58-competitive.

Algorithm: RP (Random Permutation)
Let P be the set of permutations of f1; : : : ;mg, denoted as
m-tuples. Choose 
 2 P according to the uniform distri-
bution and fix it. In each transmission step, choose among
the populated queues that one whose index is most to the
front in them-tuple 
 .

Theorem 9 ([9]) Randomized algorithm RP is 3
2 -com-

petitive for B = 1. By Theorem 7, there is a randomized al-
gorithm R̃P that is 3

2 -competitive for arbitrary B.

Arbitrary value packets

Definition 1 A switching algorithm ALG is called com-
parison-based if it bases its decisions on the relative order
between packet values (by performing only comparisons),
with no regard to the actual values.

Theorem 10 (Zero-one principle [5]) Let ALG be
a comparison-based switching algorithm (deterministic or
randomized). ALG is c-competitive if and only if ALG
achieves a c-competitiveness for all packet sequences whose
values are restricted to f0; 1g for every possible way of break-
ing ties between equal values.

Algorithm: GR (Greedy)
Enqueue a new packet if
� the queue is not full
� or a packet with the smallest value in the queue has

a lower value then the new packet. In this case, a small-
est value packet is discarded and the new packet in
enqueued.

Algorithm: TLH (Transmit Largest Head)
1. Buffer management: Use algorithm GR independently

in allm incoming queues.
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2. Scheduling: At each time step, transmit the packet with
the largest value among all packets at the head of the
queues.

Theorem 11 ([5]) Algorithm TLH is 3-competitive.

Algorithm: TL (Transmit Largest)
1. Buffer management: Use algorithm GR independently

in allm incoming queues.
2. Scheduling: At each time step, transmit the packet with

the largest value among all packets stored in the queues.
Algorithm: GSA (Generic Switch)
1. Buffer management: Apply buffer management policy

A to allm incoming queues.
2. Scheduling: Run a simulation of algorithm TL (in the

preemptive relaxed model) with the online input se-
quence � . Adopt all scheduling decisions of TL, i. e. at
each time step, transmit the packet at the head of the
queue used by TL simulation.

Theorem 12 (General reduction [4]) Let GSA denote
the algorithm obtained by running algorithm GS with
the event-driven single-queue buffer management policy A
(preemptive or non-preemptive) and let cA be the com-
petitive ratio of A. The competitive ratio of GSA satisfies
cGSA � 2 � cA.

Applications

The unit value scenario models most current networks,
e. g. IP networks which only support a “best effort” service
in which all packet streams are treated equally, whereas the
scenario with arbitrary packet values integrates full QoS
capabilities.

The general reduction technique allows to restrict one-
self to investigate single-queue buffer problems. It can
be applied to a 1.75-competitive algorithm named PG by
Bansal et al. [7], which achieves the best ratio known to-
day, and yields an algorithm GSPG that is 3.5-competitive
for multi-queue buffers (3.5 is still higher than 3 which
is the competitive ratio of TLH). In the 2-value pre-
emptive model, Lotker and Patt-Shamir [8] presented
a mark&flush algorithm mf that is 1.30-competitive for
single queue buffers and that the general reduction tech-
nique transforms into a 2.60-competitive algorithm GSmf

for multi-queue buffers.
For the general non-preemptive model, Andelman et

al. [2] presented a policy for a single queue called Expo-
nential-Interval Round-Robin (EIRR), which is (edln˛e)-
competitive, and showed also a lower bound of 	(log˛).
In the multi-queue buffer case, the general reduction tech-
nique provides a non-preemptive (edln ˛e)-competitive
algorithm.

Open Problems

It is known from Theorem 3 that the competitive ratio of
any greedy algorithm in the unit value model is at least
2 if m� B. Which is the tight upper bound for greedy
algorithms in the opposite case B� m?

The proof of the lower bound e/(e � 1) in Theorem 1
uses m� B whereas Theorem 5 achieves e/(e � 1) as an
upper bound for B� logm. In [4], a lower bound of 1.366
is shown, independent of B and m. Which is the optimal
competitive ratio for arbitrary B andm?

Due to the general reduction technique in Theo-
rem 7, the competitive ratio for multi-queue buffer al-
gorithms can be improved if better competitiveness re-
sults for single queue buffer algorithms are achieved. Cur-
rently,

p
13+5
6 	 1:43 [2] and 1.75 [7] are the best known

lower and upper bounds, respectively. How to reduce this
gap?
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In this entry, consider a Quality of Service (QoS) buffering
system that is able to hold B packets. Time is slotted. At the
beginning of a time step a set of packets (possibly empty)
arrives and at the end of the time step a single packet
may leave the buffer to be transmitted. Since the buffer
has a bounded size, at some point packets may need to be
dropped. The buffer management algorithm has to decide
at each step which of the packets to drop and which pack-
ets to transmit, subject to the buffer capacity constraint.
The value of a packet p is denoted by v(p). The system ob-
tains the value of the packets it sends, and gains no value
otherwise. The aim of the buffer management algorithm is
to maximize the total value of transmitted packets.

In the FIFO model, the packet transmitted at time t is
always the first (oldest) packet in the buffer.

In the nonpreemptive model, packets accepted to
the queue will be transmitted eventually and cannot be
dropped. In this model, the best competitive ratio achiev-
able is	(log˛) where ˛ is the ratio of the maximum value
of a packet to the minimum [1,2].

In the preemptive model, packets can also be dropped
at some later time before they are served. The rest of
this entry focuses on this model. Mansour, Patt-Shamir,
and Lapid [9] were the first to study preemptive queuing
policies for a single FIFO buffer, proving that the natu-
ral greedy algorithm (see definition in Fig. 1) maintains
a competitive ratio of at most 4. This bound was improved
to the tight value of 2 by Kesselman, Lotker, Mansour,
Patt-Shamir, Schieber, and Sviridenko [6].

The greedy algorithm is not optimal since it never pre-
empts a packet until the buffer is full and this might be too
late. The first algorithm with a competitive ratio strictly
below 2 was presented by Kesselman, Mansour, and van
Stee [7]. This algorithm uses a parameter ˇ and introduces
an extra rule for processing arrivals, that is executed before
rules 1 and 2 of the greedy algorithm. This rule is formu-
lated in Fig. 2.

The Greedy Algorithm.
When a packet of value v(p) arrives:
1. Accept p if there is free space in the buffer.
2. Otherwise, reject (drop or preempt) the packet p0

that has minimal value among p and the packets in
the buffer. If p0 6= p, accept p.

Packet Switching in Single Buffer, Figure 1
The natural greedy algorithm

0. Preempt (drop) the first packet p0 in the FIFO order
such that v(p0) � v(p)/ˇ, if any (p preempts p0).

Packet Switching in Single Buffer, Figure 2
Extra rule for the preemptive greedy algorithm

0’. Find the first (i. e., closest to the front of the buffer)
packet p0 such that p0 has value less than v(p)/ˇ and
not more than the value of the packet after p0 in the
buffer (if any). If such a packet exists, drop it (p pre-
empts p0).

Packet Switching in Single Buffer, Figure 3
Modified preemptive greedy

It is shown in [7] that by taking ˇ = 15, the algorithm
preemptive greedy (PG) has a competitive ratio of 1.983.
The analysis is rather complicated and is done by assign-
ing the value of packets served by the offline algorithm to
packets served by PG.

A lower bound of 5/4 for this problem was shown
in [9]. This was improved to

p
2 in [2] and then to 1.419

in [7].

Key Results

A modification of PG was presented by Bansal, Fleis-
cher, Kimbrel, Mahdian, Schieber, and Sviridenko [3]. It
changes rule 0 to rule 00.

Thus, the modification compared to PG is that this al-
gorithm finds a “locally optimal” packet to evict. We will
denote modified preemptive greedy by MPG.

Theorem 1 ([3]) For ˇ = 4, MPG has a competitive ratio
of 1.75.

The proof begins by showing that in order to analyze the
performance of MPG, it is sufficient to consider only input
instances in which the value of each packet is either 0 or ˇi

for some i � 0, but ties are allowed to be broken by the
adversary.
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The authors then define an interval structure for input
instances. An interval I is said to be of type i if at every
step t 2 I MPG outputs a packet of value at least ˇi, and I
is a maximal interval with this property.

Ii is the collection of maximal intervals of type i, and I
is the union of all Ii ’s. This is a multiset, since an interval
of type i can also be contained in an interval of one ormore
types j < i.

This induces an interval structure which is a sequence
of ordered rooted trees in a natural way: the root of each
tree is an interval in I0, and the children of each inter-
val I 2 Ii are all the maximal intervals of type i + 1 which
are contained in I. These children are ordered from left to
right based on time, as are the trees themselves. The in-
tervals of type i (and the vertices that represent them) are
distinguished by whether or not an eviction of a packet of
value at least ˇi occurred during the interval.

To complete the proof, the authors show that for ev-
ery interval structure T , the competitive ratio of MPG on
instances with interval structure T can be bounded by the
solution of a linear program indexed by T . Finally, it is
shown that for every T and every ˇ � 4, the solution of
this program is at most 2 � 1/ˇ.

Applications

In recent years, there has been a lot of interest in Qual-
ity of Service networks. In regular IP networks, packets
are indistinguishable and in case of overload any packet
may be dropped. In a commercial environment, it is much
more preferable to allow better service to higher-paying
customers or customers with critical requirements. The
idea of Quality of Service guarantees is that packets are
marked with values which indicate their importance.

This naturally leads to decision problems at network
switches when many packets arrive and overload occurs.
The algorithm presented in this entry can be used to max-
imize network performance in a network which supports
Quality of Service.

Open Problems

Despite substantial advances in improving the upper
bound for this problem, a fairly large gap remains. Sgall [5]
showed that the performance of PG is as good as that of
MPG. Recently, Englert and Westermann [4] showed that
PG has a competitive ratio of at most

p
3 	 1:732 and at

least 1 + 1/2
p
2 	 1:707. Thus, to improve further, a dif-

ferent algorithm will be needed.
The authors also note that Lotker and Patt-Shamir [8]

studied the special case of two packet values and de-
rived a 1.3-competitive algorithm, which closely matches

the corresponding lower bound of 1.28 from Mansour et
al. [9]. An open problem is to close the remaining small
gap.
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ProblemDefinition

Valiant’s work defines amodel for representing the general
problem of learning a Boolean concept from examples.
The motivation comes from classical fields of artificial in-
telligence [2], pattern classification [5] andmachine learn-
ing [10]. Classically, these fields have employed numerous
heuristics for representing knowledge and defining criteria
by which computer algorithms can learn. The pioneering
work of [12,13] provided the leap from heuristic-based ap-
proaches to a rigorous statistical theory of pattern recog-
nition (see also [1,4,11]). Their main contribution was the
introduction of probabilistic upper bounds on the gener-
alization error which hold uniformly over a whole class
of concepts. Valiant’s main contribution is in formalizing
this probabilistic theory into a general model for compu-
tational inference. This model which is known as the Prob-
ably Approximately Correct (PAC) model of learnability is
concerned with computational complexity of learning. In
his formulation, learning is depicted as an interaction be-
tween a teacher and a learner with two main procedures,
one which provides randomly drawn examples x of the
concept c that is being learned and the second acts as an
oracle which provides the correct classification label c(x).
Based on a finite number of such examples drawn identi-
cally and independently according to any fixed probability
distribution, the aim of the learner is to infer an approxi-
mation of c which is correct with high confidence. Using
the terminology of [9] suppose X denotes the space of in-
stances, i. e., objects which a learner can obtain as training
examples. A concept over X is a Boolean mapping from X
to f0; 1g. Let P be any fixed probability distribution overX
and c a fixed target concept to be learned. For any hypoth-
esis concept h over X define by L(h) = P (c(x) ¤ h(x)) the
error of h, i. e., the probability that h disagrees with c on
a test instance x which is drawn according to P . Then ac-
cording to Valiant, an algorithm A for learning c is one
which runs in time t and with a sample of size m where
both t and m are polynomials with respect to some pa-
rameters (to be specified below) and produces a hypothesis
concept h such that with high confidence L(h) is small.

Key Results

The main result of Valiant’s work is a formal definition
of what constitutes a learnable problem. Formally, this is
stated as follows: Let H be a class of concepts over X.
Then H is learnable if there exists an algorithm A with
the following property: for every possible target concept
c 2H , for every probability distribution P on X (this is
sometimes referred to as the ‘distribution-independence’
assumption), for all values of a confidence parameter

0 < ı < 1/2 and an approximation accuracy parameter
0 < � < 1/2, if A receives as input the value of ı; � and
a sample S = f(xi ; c(xi))gmi=1 of cardinality m (which may
depend on " and ı) which consists of examples xi that are
randomly drawn according to P and labeled by an oracle
as c(xi) thenwith probability 1� ı,A outputs a hypothesis
concept h 2H such that the error L(h) � �. That � can be
arbitrarily close to zero follows from what is known as the
‘noise-free’ assumption, i. e., that the labels comprise the
true value of the target concept. IfA runs in time t and if t
and m are polynomial in 1/� and 1/ı thenH is efficiently
PAC learnable.

Valiant has shown that the following classes are all
PAC learnable: class of conjunctive normal form expres-
sions with a bounded number of literals in each clause, the
class of monotone disjunctive normal form expressions
(here the learner requires in addition to S also an oracle
that can answer membership queries, i. e., provide the true
label c(x) for an x in question), and the class of arbitrary
expressions in which each variable occurs just once (us-
ing more powerful oracles). Work following Valiant’s pa-
per (see [8] for references) has shown that the classes of
k-DNF, k-CNF and k-decision lists are PAC learnable for
each fixed k. The class of concepts in the form of a disjunc-
tion of two conjunctions is not PAC learnable and neither
is the class of existential conjunctive concepts on structural
instance spaces with two objects. Linear threshold con-
cepts (perceptrons) are PAC learnable on both Boolean
and real-valued instance spaces but the class of concepts
in the form of a conjunction of two linear threshold con-
cepts is not PAC learnable. The same holds for disjunc-
tions and linear thresholds of linear thresholds (i. e., multi-
layer perceptrons with two hidden units). If the weights are
restricted to 1 and 0 (but the threshold is arbitrary) then
linear threshold concepts on Boolean instances spaces are
not PAC learnable.

It should be noted that the notion of PAC learnability
discussed throughout this entry is sometimes referred to as
“proper” PAC learnability because of the requirement that,
when learning a concept classH , the learning algorithm
must output a hypothesis that also belongs toH : Several
of the negative results mentioned above can be circum-
vented in a model of “improper” PAC learning, where the
learning algorithm is allowed to output hypotheses from
a broader class of functions thanH . See [9] and the pro-
ceedings of the COLT conferences for many results of this
type.

Applications
Valiant’s paper is a milestone in the history of the area
known as Computational Learning Theory (see proceed-
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ings of COLT conferences). The PACmodel has been crit-
icized in that the distribution independence assumption
and the notion of target concepts with noise free training
data are unrealistic in practice, e. g., in machine learning
and AI. There has thus been much work on learning mod-
els that relax several of the assumptions in Valiant’s PAC
model. For instance, models which allow noisy labels or
remove the assumptions on the independence of training
examples, relax the assumption on the probability distri-
bution to be fixed, allow the bounds to be distribution de-
pendent, permit the training sample to be picked by the
learner and labeled by the oracle instead of the random
sample, or chosen by a helpful teacher. For references, see
Sect. 2.6 of [1]. An important followup of Valiant’s model
was the work of [3] who unified his model with the uni-
form convergence results of [13]. They showed the im-
portant dependence between the notion of learnability and
certain combinatorial properties of concept classes, one of
which is known as the Vapnik-Chervonenkis (VC) dimen-
sion (see Sect. 3.4 of [1] for history on the VC-dimension).

Cross References
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� Learning with Malicious Noise

Recommended Readings

For a recommended collection of works on the PACmodel
and its extensions see [6,7,8].

1. Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoreti-
cal Foundations. Cambridge University Press, Cambridge, Eng-
land (1999)

2. Barr, A., Feigenbaum, E.A.: The Handbook of Artificial Intelli-
gence. Addison-Wesley Pub (Sd) (1994)

3. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Learn-
ability and the Vapnik–Chervonenkis dimension. J. ACM 36(4),
929–965 (1989)

4. Devroye, L., Gyorfi, L., Lugosi, G.: A Probabilistic Theory of Pat-
tern Recognition. Springer, New York, USA (1996)

5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-
Interscience Publication (2000)

6. Haussler, D.: Applying valiants learning framework to ai con-
cept learning problems. In: Michalski, R., Kodratoff, Y. (eds.)
Machine Learning: An Artificial Intelligence Approach. Morgan
Kaufmann

7. Haussler, D.: Decision theoretic generalizations of the PAC
model for neural net and other learning applications. Inf. Com-
put. 100(1), 78–150 (1992)

8. Haussler, D.: Probably approximately correct learning and
decision-theoretic generalizations. In: Smolensky, P., Mozer,
M., Rumelhart, D. (eds.) Mathematical Perspectives on Neural
Networks, pp. 651–718. L. Erlbaum Associates, Mahwah, New
Jersey (1996)

9. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational
Learning Theory. M.I.T. Press, London, England (1997)

10. Mitchell, T.: Machine Learning. McGraw Hill (1997)
11. Pearl, J.: Capacity and error-estimates for boolean classifiers

with limited complexity. IEEE Trans. on Pattern Recognition
and Machine Intelligence, PAMI-1(4), 350–356 (1979)

12. Vapnik, V.N.: Estimations of dependences based on statistical
data. Springer (1982)

13. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence
of relative frequencies of events to their probabilities. Theory
Probab. Apl. 16, 264–280 (1971)

PageRank Algorithm
1998; Brin, Page

MONIKA HENZINGER
Google Switzerland & Ecole Polytechnique Federale
de Lausanne (EPFL), Lausanne, Switzerland

ProblemDefinition

Given a user query current web search services retrieve all
web pages that contain the query terms, resulting in a huge
number of web pages for the majority of searches. Thus it
is crucial to reorder or rank the resulting documents with
the goal of placing the most relevant documents first. Fre-
quently, ranking uses two types of information: (1) query-
specific information and (2) query-independent informa-
tion. The query-specific part tries to measure how relevant
the document is to the query. Since it depends to a large
part on the content of the page, it is mostly under the con-
trol of the page’s author. The query-independent informa-
tion tries to estimate the quality of the page in general. To
achieve an objective measure of page quality it is impor-
tant that the query-independent information incorporates
a measure that is not controlled by the author. Thus the
problem is to find a measure of page quality that (a) can-
not be easily manipulated by the web page’s author and
(b) works well for allweb pages. This is challenging as web
pages are extremely heterogeneous.

Key Results

The hyperlink structure of the web is a good source for
basing such a measure as it is hard for one author or
a small set of authors to influence the whole structure, even
though they can manipulate a subset of the web pages.
Brin and Page showed that a relatively simple analysis of
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the hyperlink structure of the web can be used to produce
a quality measure for web documents that leads to large
improvements in search quality. The measure is called the
PageRankmeasure.

Linear Algebra-based Definition

Let n be the total number of web pages. The PageRank
vector is an n-dimensional vector with one dimension for
each web page. Let d be a small constant, like 1/8, let
deg(p) denote the number of hyperlinks in the body text
of page p and let PR(p) denote the PageRank value of page
p. Assume first that every page contains at least one hy-
perlink. In such a collection of web pages the PageRank
vector is computed by solving a system of linear equations
that contains for each page p the equation

PR(p) = d/n + (1� d) �
X

q has hyperlink to p

PR(q)/deg(q) :

In matrix notation the PageRank vector is the Eigenvector
with 1-Norm one of the matrixAwith d/n+(1�d)/deg(q)
for entryAqp if q has a hyperlink to p and d/n otherwise.

If web pages without hyperlinks are allowed in this lin-
ear system then they might become “PageRank sinks”, i. e.,
they would “receive” PageRank from the pages pointing
to them, but would not “give out” their PageRank, poten-
tially resulting in an “unusually high” PageRank value for
themselves. Brin and Page proposed two ways to deal with
web pages without out-links, namely either to recursively
delete them until no such web pages exist anymore in the
collection or to add a hyperlink from each such page to
every other page.

Random Surfer Model

Let theweb graph G = (V ; E) be a directed graph such that
each node corresponds to a web page and every hyperlink
corresponds to a directed edge from the referencing node
to the referenced node. The PageRank can also be inter-
preted as the following random walk in the web graph.
The random walk starts at a random node in the graph.
Assume in step k it visits page q. Then it flips a biased coin
and with probability d or if q has no out-edges, it selects
a random node out of V and visits it in step k + 1. Other-
wise it selects a random out-edge of the current node and
visits it in step k +1. (Note that this corresponds to adding
a directed edge from every page without hyperlink to ev-
ery node in the graph.) Under certain conditions (which
do not necessarily hold on the web) the stationary distri-
bution of this random walk corresponds to the PageRank
vector. See [1,4] for details.

Brin and Page also suggested to compute the PageRank
vector approximately using the power method, i. e., by set-
ting all initial values to 1/n and then repeatedly using the
PageRank vector of the previous iteration to compute the
PageRank vector of the current iteration using the above
linear equations. After a hundred iterations barely any val-
ues change and the computation is stopped.

Applications

The PageRank measure is used as one of the factors by
Google in its ranking of search results. The PageRank
computation can be applied to other domains as well.
Two examples are reputation management in P2P net-
works and learning word dependencies in natural lan-
guage processing. In relational databases PageRank was
used to weigh database tuples in order to improve keyword
searching when a user does not know the schema. Finally,
in rank aggregation PageRank can be used to find a per-
mutation that minimally violates a set of given orderings.
See [1] for more details.

Variations of PageRank were studied as well. Person-
alizing the PageRank computation such that the values re-
flect the interest of a user has received a lot of attention.
See [3] for a survey on this topic. It can also be modified to
be used for detecting web search spam, i. e., web pages that
try to manipulate web search results [1].
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Caching

ProblemDefinition

Computers generally have a small amount of fast memory
to keep important data readily available. This is known as
the cache. The question which is considered in this chapter
is which pages should be kept in the cache when a new
page is requested.

Formally, a two-level store of memory is considered.
The cache can contain k pages, and the slow memory can
contain n pages, where typically n is much larger than k.
The input is a sequence of requests to pages. Whenever
a requested page is not in the cache, the algorithm incurs
a fault. The goal is to minimize the total number of page
faults.

It is easy to give an optimal algorithm if the whole re-
quest sequence is known: on each fault, evict that page
from the cache which is next requested the furthest in the
future [2]. However, in practice, paging decisions need to
be made without knowledge of the future. Thus an online
algorithm is needed, which makes its decisions for each re-
quest based only on that request and previous requests.

Key Results

Amajor contribution of the paper of Sleator and Tarjan [6]
was the idea of competitive analysis. In this type of analy-
sis, the performance of an online algorithm is compared to
that of an optimal offline algorithm OPT. Thus the offline
algorithm knows the entire input and moreover it can use
unbounded computational resources to find the best pos-
sible solution for this input.

Denote the cost of an algorithm ALG on an input se-
quence � by ALG(�). An online algorithm A is called
c-competitive if there exists a constant b such that on every
request sequence � ,

A(�) � c � OPT(�) + b : (1)

The competitive ratio ofA is the smallest value of c such
that A is c-competitive. This definition is very similar to
that of the approximation ratio of approximation algo-
rithms. However, it should be noted that there are no com-
putational restrictions on the online algorithm. In partic-
ular, it is allowed to use exponential time to make its deci-
sions. Thus the competitive ratio purely measures the per-
formance loss that results from not knowing the future.

Using this definition, Sleator and Tarjan give tight
bounds on the best competitive ratio which can be
achieved by a deterministic algorithm. They show that

two well-known algorithms both have a competitive ratio
of k:
� FIFO (First In First Out), which on a fault evicts the

page that was loaded into the cache the earliest
� LRU (Least Recently Used), which on a fault evicts the

page that was requested least recently.
Additionally, they show that any deterministic algorithm
has a competitive ratio of at least k, implying that k is the
best value that can be achieved.

Fiat et al. [3] considered randomized paging algo-
rithms. A randomized online algorithm is allowed to use
random bits in its decision making. To measure its perfor-
mance, consider the expectation of the cost for a particu-
lar input sequence and compare that to the optimal cost
for that sequence. Thus a randomized online algorithm is
c-competitive if there exists a constant b such that on every
request sequence � ,

E(A(�)) � c � OPT(�) + b : (2)

Fiat et al. presented themarking algorithm. This algorithm
marks pages that are requested. On a fault, an unmarked
page is selected uniformly at random and evicted from the
cache. When all pages are marked and a fault occurs, it un-
marks all pages and then evicts one uniformly at random.

Fiat et al. showed that this algorithm is 2Hk-competi-
tive. Here Hk is the k th harmonic number: Hk = 1 + 1

2 +
1
3 + � � � + 1

k . It is known that ln(k + 1) � Hk � ln(k) + 1.
They also showed that no randomized paging algorithm
can have a competitive ratio less than Hk. Thus the mark-
ing algorithm is at most twice as bad as the best possible
online algorithm (with regard to the competitive ratio).
A randomized algorithmwith competitive ratio exactlyHk
was given by McGeoch and Sleator [4]. This algorithm is
much more complicated than the marking algorithm.

Applications

Memory management has long been and continues to be
a fundamentally important problem in computing sys-
tems. In particular, the question of how to manage a two-
level or multilevel store of memory remains crucial to the
performance of computers, from the simplest personal or
game computer to the largest servers.

The study of the paging problem also was very im-
portant for the development of the whole area of online
algorithms. The paper by Sleator and Tarjan formally in-
troduced the concept of the competitive ratio as a perfor-
mance measure for online algorithms. This ratio is in wide
use today.
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Open Problems
The problem as presented in this chapter is closed, since an
upper and a lower bound of k for deterministic algorithms
and an upper and a lower bound of Hk for randomized
algorithms are obtained.

Variations of this problem continue to inspire new re-
search. The basic problem has also been further studied,
because the upper bound of k for LRU is disappointingly
high and it is known from practice that LRU is “really”
constant competitive. Recently, Panagiotou and Souza [5]
managed to give a theoretical justification for this obser-
vation by formally restricting the input sequences to be
closer to the ones that occur in practice. Additional justifi-
cation for using LRU was given by Angelopoulos et al. [1],
using a direct comparison of LRU to all other online algo-
rithms.

Cross References
� Analyzing Cache Misses
� Deterministic Searching on the Line
�Online Paging and Caching
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Optimal scheduling for two processors

ProblemDefinition
In the general form of multiprocessor precedence schedul-
ing problems a set of n tasks to be executed on m proces-
sors is given. Each task requires exactly one unit of execu-
tion time and can run on any processor. A directed acyclic
graph specifies the precedence constraints where an edge
from task x to task y means task x must be completed be-
fore task y begins. A solution to the problem is a schedule
of shortest length indicating when each task is started. The
work of Jung, Serna, and Spirakis provides a parallel algo-
rithm (on a PRAM machine) that solves the above prob-
lem for the particular case that m = 2, that is where there
are two parallel processors.

The two processor precedence constraint scheduling
problem is defined by a directed acyclic graph (dag)
G = (V ; E). The vertices of the graph represent unit time
tasks, and the edges specify precedence constraints among
the tasks. If there is an edge from node x to node y then x is
an immediate predecessor of y. Predecessor is the transitive
closure of the relation immediate predecessor, and succes-
sor is its symmetric counterpart. A two processor schedule
is an assignment of the tasks to time units 1; : : : ; t so that
each task is assigned exactly one time unit, at most two
tasks are assigned to the same time unit, and if x is a pre-
decessor of y then x is assigned to a lower time unit than
y. The length of the schedule is t. A schedule having min-
imum length is an optimal schedule. Thus the problem is
the following:

Name Two processor precedence constraint scheduling
Input A directed acyclic graph
Output A minimum length schedule preserving the pre-

cedence constraints.

Preliminaries

The algorithm assume that tasks are partitioned into levels
as follows:

(i) Every task will be assigned to only one level
(ii) Tasks having no successors will be assigned to level 1

and
(iii) For each level i, all tasks which are immediate pre-

decessors of tasks in level i will be assigned to level
i + 1.

Clearly topological sort will accomplish the above parti-
tion, and this can be done by an NC algorithm that uses
O(n3) processors and O(log n) time, see [3]. Thus, from
now on, it is assumed that a level partition is given as part
of the input. For sake of convenience two special tasks, t0
and t� are added, in such a way that the original graph
could be taught as the graph formed by all tasks that are
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successors of t0 and predecessors of t�. Thus t0 is a pre-
decessor of all tasks in the system (actually an immediate
predecessor of tasks in level the highest level L(G)) and t�

is a successor of all tasks in the system (an immediate suc-
cessor of level 1 tasks).

Notice that if two tasks are at the same level they can
be paired. But when x and y are at different levels, they
can be paired only when neither of them is a predeces-
sor of the other. Let L(G) denote the number of levels
in a given precedence graph G. A level schedule sched-
ules tasks level by level. More precisely, suppose levels
L(G); : : : ; i + 1 have already been scheduled and there are
k unscheduled tasks remaining on level i. When k is even,
those tasks with are paired with each other. When k is odd,
k � 1 of the tasks are paired with each other, while the
remaining task may (but not necessarily) be paired with
a task from a lower level.

Given a level schedule level i jumps to level i0 (i0 < i) if
the last time step containing a task from level i also con-
tains a task from level i0. If the last task from level i is
scheduled with an empty slot, it is said that level i jumps
to level 0. The jump sequence of a level schedule is the list
of levels jumped to. A lexicographically first jump schedule
is a level schedule whose jump sequence is lexicographi-
cally greater than any other jump sequence resulting from
a level schedule.

Given a graph G a level partition of G is a partition
of the nodes in G into two sets in such a way that levels
0; : : : ; k are contained in one set (the upper part) denoted
by U, and levels k + 1; : : : ; L in the other (the lower part)
denoted by L. Given a graph G and a level i, the i-partition
of G (or the partition at level i) is formed by the graphs
Ui and Li defined as Ui contains all nodes x such that
level(x) < i and Li contains all nodes x with level(x) > i.
Note that each i-partition determines two different level
partitions depending on whether level i nodes are assigned
to the upper or the lower part. A task x 2 Ui is called free
with respect to a partition at level i if x has no predecessors
in Li.

Auxiliary Problems

The algorithm for the two processors precedence con-
straint scheduling problem uses as a building block an al-
gorithm for solving a matching problem in a particular
graph class.

A full convex bipartite graph G is a triple (V ;W; E),
where V = fv1; : : : ; vkg and W = fw1; : : : ;wk0g are dis-
joint sets of vertices. Furthermore the edge set E satisfies
the following property: If (vi ;wj) 2 E then (vq ;wj) 2 E
for all q � i. Thus, from now on it is assumed that the
graph is connected.

A set F 
 E is a matching in the graph G = (V ;W; E)
iff no two edges in F have a common endpoint. A max-
imal matching is a matching that cannot be extended by
the addition of any edge inG. A lexicographically first max-
imal matching is a maximal matching whose sorted list of
edges is lexicographically first among all maximal match-
ings in G.

Key Results

When the number of processors m is arbitrary the prob-
lem is known to be NP-complete [8]. For any m � 3,
the complexity is open [6]. Here the case of interest
has been m = 2. For two processors a number of effi-
cient algorithms has been given. For sequential algorithms
see [2,4,5] among others. The first deterministic parallel
algorithm was given by Helmbold and Mayr [7], thus es-
tablishingmembership in the class NC. Previously [9] gave
a randomized NC algorithm for the problem. Jung, Serna
and Spirakis present a new parallel algorithm for the two
processors scheduling problem that takes time O(log2 n)
and uses O(n3) processors on a CREW PRAM. The algo-
rithm improves the number of processors of the algorithm
given in [7] from O(n7L(G)2), where L(G) is the num-
ber of levels in the precedence graph, to O(n3). Both al-
gorithms compute a level schedule that has a lexicograph-
ically first jump sequence.

To match jumps with tasks it is used a solution to the
problem of computing the lexicographically first matching
for a special type of convex bipartite graphs, here called
full convex bipartite graphs. A geometric interpretation of
this problem leads to the discovery of an efficient parallel
algorithm to solve it.

Theorem 1 The lexicographically first maximal match-
ing of full convex bipartite graphs can be computed in time
O(log n) on a CREW PRAM with O(n3/ log n) processors,
where n is the number of nodes.

The previous algorithm is used to solve efficiently in par-
allel two related problems.

Theorem 2 Given a precedence graph G, there is a PRAM
parallel algorithm that computes all levels that jump to level
0 in the graph Li and all tasks in level i � 1 that can be
scheduled together with a task in level i, for i = 1; : : : ; L(G),
using O(n3) processors and O(log2 n) time.

Theorem 3 Given a level partition of a graph G together
with the levels in the lower part in which one task remains
to be matched with some other task in the upper part of the
graph. There is a PRAM parallel algorithm that computes
the corresponding tasks in time O(log n) using n3/ log n
processors.
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With those building blocks the algorithm for two proces-
sor precedence constraint scheduling starts by doing some
preprocessing and after that an adequate decomposition
that insure that at each recursive call a number of problems
of half size are solved in parallel. This recursive schema is
the following:

Algorithm Schedule
0. Preprocessing
1. Find a level i such that jUi j � n/2 and jLi j � n/2.
2. Match levels that jump to free tasks in level i.
3. Match levels that jump to free tasks in Ui.
4. If level i (or i + 1) remain unmatched try to match it

with a non free task.
5. Delete all tasks used to match jumps.
6. Apply (1)–(5) in parallel to Li and the modified Ui.

Algorithm Schedule stops whenever the corresponding
graph has only one level.

The correction an complexity bounds for algorithm
Schedule follows from the previous results, leading to:

Theorem 4 There is an NC algorithm which finds an op-
timal two processors schedule for any precedence graph in
time O(log2 n) using O(n3) processors.

Applications

A fundamental problem in many applications is to devise
a proper schedule to satisfy a set of constrains. Assigning
people to jobs, meetings to rooms, or courses to final exam
periods are all different examples of scheduling problems.
A key and critical algorithm in parallel processing is the
one mapping tasks to processors. In the performance of
such an algorithm relies many properties of the system,
like load balancing, total execution time, etc. Scheduling
problems differ widely in the nature of the constraints that
must be satisfied, the type of processors, and the type of
schedule desired.

The focus on precedence-constrained scheduling
problems for directed acyclic graphs has a most direct
practical application in problems arising in parallel pro-
cessing. In particular in systems where computations are
decomposed, prior to scheduling into approximately equal
sized tasks and the corresponding partial ordering among
them is computed. These constraints must define a di-
rected acyclic graph, acyclic because a cycle in the prece-
dence constraints represents a Catch situation that can
never be resolved.

Open Problems

The parallel deterministic algorithm for the two processors
scheduling problem presented here improves the number

of processors of the Helmbold and Mayr algorithm for the
problem [7]. However, the complexity bounds are far from
optimal: recall that the sequential algorithm given in [5]
uses time O(e + n˛(n)), where e is the number of edges in
the precedence graph and ˛(n) is an inverse Ackermann’s
function. Such an optimal algorithm might have a quite
different approach, in which the levelling algorithm is not
used.

Interestingly enough computing the lexicographically
first matching for full convex bipartite graphs is in NC, in
contraposition with the results given in [1] which show
that many problems defined through a lexicographically
first procedure in the plane are P-complete. It is an inter-
esting problem to show whether all these problems fall in
NC when they are convex.
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Keywords and Synonyms

EREW PRAM algorithms for finding connected compo-
nents and minimum spanning trees

ProblemDefinition

Given a weighted undirected graph G with n vertices and
m edges, compute a minimum spanning tree (or spanning
forest) of G on a parallel random access machine (PRAM)
without concurrent write capability.

A minimum spanning tree of a graph is a spanning
tree with the smallest possible sum of edge weights. Paral-
lel random access machine (PRAM) is an abstract model
for designing parallel algorithms and understanding the
power of parallelism. In this model, processors (each being
a random access machine) work in a synchronous man-
ner and communicate through a shared memory. PARM
can be further classified according to whether it is al-
lowed for more than one processor to read and write into
the same shared memory location simultaneously. The
strongest model is CRCW (concurrent-read, concurrent-
write) PRAM, and the weakest is EREW (exclusive-read,
exclusive-write) PRAM. For an introduction to PRAM al-
gorithms, one can refer to Karp and Ramachandran [8]
and JáJá [5].

The input graph G is assumed to be given in the form
of adjacency lists. Furthermore, isolated (degree-0) ver-
tices are removed and hence it is assumed that m � n.

Key Results

The MST problem is related to the connected component
(CC) problem, which is to find the connected components
of an undirected graph. Sequential algorithms for solving
the CC problem and the MST problem in O(m) time and
O(m log n) time, respectively, were known a few decades
ago. A number of more efficient MST algorithms have
since been published, the most recent of which is Pettie
and Ramachandran’s algorithm [9], which is provably op-
timal.

In the parallel context, both problems are often solved
in a similar way. With respect to CRCW PRAM, the
two problems can be solved using O(log n) time and
n + m processors (see, e. g., Cole and Vishkin [3]). Using
randomization, (n + m)/ log n processors are sufficient to
solve these problems in O(log n) expected time [2,10].

For EREW PRAM, O(log2 n) time algorithms for the
CC and MST problems were developed in the early 80’s.
For a while, it was believed that the exclusive write models
(including both concurrent read and exclusive read) could
not overcome the O(log2 n) time bound [8]. The first

breakthrough was due to Johnson and Metaxas [6]; they
devised O(log1:5 n) time algorithms for the CC problem
and the MST problem. These results were soon improved
to O(log n log log n) time by Chong and Lam. If random-
ization is allowed, the time complexity can be improved
to O(log n) expected time and optimal work [7,10,11]. Fi-
nally, Chong, Han, and Lam [1] obtained an algorithm
for MST (and CC) using O(log n) time and n + m proces-
sors. This algorithm does not need randomization. Notice
that 	(log n) is optimal since these graphs problems are
at least as hard as computing the OR of n bits, and Cook
et al. [4] have proven that the latter requires˝(log n) time
on exclusive-write PRAM no matter howmany processors
are used.

Below is a sketch of some ideas for computing a min-
imum spanning tree in parallel without using concurrent
write.

Without loss of generality, assume that the edge
weights are all distinct. Thus, G has a unique minimum
spanning tree, which is denoted by T�G . Let B be a subset of
edges in G which contains no cycle. B induces a set of trees
F = fT1; T2; � � � ; Tl g in a natural sense—two vertices in G
are in the same tree if they are connected by an edge of B. B
is said to be a �-forest if each tree T 2 F has at least � ver-
tices. For example, if B is the empty set then B is a 1-forest;
a spanning tree is an n-forest.

Suppose that B is a �-forest and its edges are all found
in T�G . Then B can be augmented to give a 2�-forest us-
ing a greedy approach: Let F 0 be an arbitrary subset of F
including all trees T 2 F with fewer than 2� vertices. For
every tree in F 0, pick its minimum external edge (i. e., the
smallest-weight edge connecting to a vertex outside the
tree). Denote B0 as this set of edges. It can be proven that
B0 consists of edges in T�G only, and B [ B0 is a 2�-forest.
The above idea allows us to find T�G in blog nc stages as
follows.
1. B �

2. For i = 1 to blog nc do /* Stage i */
(a) Let F be the set of trees induced by B on G. Let F 0

be an arbitrary subset of F such that F 0 includes all
trees T 2 F with fewer than 2i vertices.

(b) Bi  fe j e is the minimum external edge of
T 2 F 0g; B B [ Bi

3. return B
Different strategies for choosing the set F 0 in Step

1(a) may lead to different Bi’s. Nevertheless, B[1; i] is al-
ways a subset of T�G and induces a 2i-forest. In particular,
B[1; blog nc] induces exactly one tree, which is exactly T�G .
Using standard parallel algorithmic techniques, each stage
can be implemented in O(log n) time on EREWPRAMus-
ing a linear number of processors (see e. g. [5],). Therefore,
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T�G can be found inO(log2 n) time. In fact, most parallel al-
gorithms for findingMST are based on a similar approach.
These parallel algorithms are “sequential” in the sense that
the computation of Bi starts only after Bi� 1 is available.

The O(log n)-time EREW algorithm in [1], is based on
some structural properties related to MST and can com-
pute the Bi’s in a more parallel fashion. In this algorithm,
there are blog nc concurrent threads (a thread is sim-
ply a group of processors). For 1 � i � blog nc, Thread i
aims at computing Bi, and it actually starts long before
Thread i � 1 has computed Bi� 1 and it receives the output
of Threads 1 to i � 1 (i. e., B1; � � � ; Bi�1) incrementally.
More specifically, the algorithm runs in blog nc supersteps,
where each superstep lasts O(1) time. Thread i delivers
Bi at the end of the ith superstep. The computation of
Thread i is divided into blog ic phases. Let us first consider
a simple case when i is a power of two. Phase 1 of Thread i
starts at the (i/2 + 1)th superstep, i. e., when B1; � � � ; Bi/2
are available. Phase 1 takes no more than i/4 supersteps,
ending at the (i/2 + i/4)th superstep. Phase 2 starts at the
(i/2 + i/4 + 1)th superstep (i. e., when Bi/2+1; � � � ; Bi/2+i/4
are available) and uses i/8 supersteps. Each subsequent
phase uses half as many supersteps as the preceding phase.
The last phase (Phase log i) starts and ends within the ith
superstep; note that Bi� is available after (i � 1)th super-
step.

Applications

Finding connected components or MST is a key step
in several parallel algorithms for other graph problems.
For example, the Chong-Han-Lam algorithm implies an
O(log n)-time algorithm for finding ear decomposition
and biconnectivity without using concurrent write.
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ProblemDefinition

ONE-SIDED CROSSING MINIMIZATION (OSCM) can be
viewed as a specific form of drawing a bipartite graph
G = (V1;V2; E), where all vertices from partition Vi are as-
signed to the same line (also called layer) Li in the plane,
with L1 and L2 being parallel. The vertex assignment to L1
is fixed, while that to L2 is free and should be chosen in
a way to minimize the number of crossings between etdes
drawn as straight-line segments.

Notations

A graph G is described by its vertex set V and its edge set
E, i. e., G=(V ,E), with E 
 V � V . The (open) neighbor-
hood of a vertex v, denoted N(v), collects all vertices that
are adjacent to v. N[v] = N(v) [ fvg denotes the closed
neighborhood of v. deg(v) = jN(v)j is the degree of v. For
a vertex set S, N(S) =

S
v2S N(v), and N[S] = N(S) [ S.

G[S] denotes the graph induced by vertex set S, i. e.,
G[S] = (S; E \ (S � S)). A graphG = (V , E) with vertex set
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V and edge set E 
 V � V is bipartite if there is a parti-
tion of V into two sets V1 and V2 such that V = V1 [ V2,
V1 \ V2 = ;, and E 
 V1 � V2. For clarity,G = (V1;V2; E)
is written in this case.

A two-layer drawing of a bipartite graph G =
(V1;V2; E) can be described by two linear orders<1 on V1
and<2 on V2. This drawing can be realized as follows: the
vertices of V1 are placed on a line L1 (also called layer) in
the order induced by <1 and the vertices of V2 are placed
on a second layer L2 (parallel to the first one) in the or-
der induced by <2; then, draw a straight-line segment for
each edge e = (u1; u2) in E connecting the points that rep-
resent u1 and u2, respectively. A crossing is a pair of edges
e = (u1; u2) and f = (v1; v2) that cross in the realization of
a two-layer drawing (G; <1; <2). It is well-known that two
edges cross if and only if u1 <1 v1 and v2 <2 u2; in other
word, this notion is a purely combinatorical object, inde-
pendent of the concrete realization of the two-layer draw-
ing. cr(G; <1; <2) denotes the number of crossings in the
described two-layer drawing. In the graph drawing con-
text, it is of course desirable to draw graphs with few cross-
ings. In its simplest (yet probably most important) form,
the vertex order in one layer is fixed, and the aim is tomin-
imize crossings by choosing an order of the second layer.
Formally, this means:

Problem 1 (k–OSCM)
INPUT: A simple n-vertex bipartite graph G = (V1;V2; E)
and a linear order <1 on V1, a nonnegative integer k (the
parameter).
OUTPUT: If possible, a linear order <2 on V2 such that
cr(G; <1; <2) � k. If no such order exists, the algorithm
should tell so.

Given an instance G = (V1;V2; E) and <1 of OSCM and
two vertices u; v 2 V2,

cuv = cr(G[N[fu; vg]]; <1 \(N(fu; vg)
� N(fu; vg)); f(u; v)g) :

Hence, the closed neighborhoods of u and v are considered
when assuming the ordering u <2 v.

Consider the following as a running example:

Example 1 In Fig. 1, a concrete drawing of a bipartite
graph is shown. Is this drawing optimal with respect to the
number of crossings, assuming the ordering of the upper
layer being fixed? At some points, more than two edges
cross; in that case, a number is shown to count the cross-
ings. All crossings are emphasized by a surrounding box.

Let us now compute the crossing number matrix (cuv )
for this graph.

cuv a b c d e
a � 4 5 0 1
b 1 � 1 0 0
c 3 3 � 0 1
d 3 2 3 � 1
e 2 3 2 0 �

The number of crossings in the given drawing can be
hence computed as

cab + cac + cad + cae + cbc + cbd + cbe + ccd + cce + cde = 13 :

Key Results

Exact exponential-time algorithms are mostly interesting
when dealing with problems for which no polynomial-
time algorithm is expected to exist.

Theorem 1 ([6]) The decision problem corresponding to
k-OSCM isNP-complete.

In the following, to state the results, let G = (V1;V2; E) be
an instance of OSCM, where the ordering<1 ofV1 is fixed.

It can be checked in polynomial time if an order of V2
exists that avoids any crossings. This observation can be
based on either of the following graph-theoretic charac-
terizations:

Theorem 2 ([3]) cr(G; <1; <2) = 0 if and only if G is
acyclic and, for every path (x; a; y) of G with x; y 2 V1, it
holds: for all u 2 V1 with x <1 u <1 y, the only edge inci-
dent to u (if any) is (u, a).

The previously introduced notion is crucial due to the fol-
lowing facts:

Parameterized Algorithms for Drawing Graphs, Figure 1
The running example for OSCM
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Lemma 3
P

u;v2V2;u<2v cuv = cr(G; <1; <2):

Theorem 4 ([9]) If k is the minimum number of edge
crossings in an OSCM instance (G = (V1;V2; E); <1), then

X
u;v2V2;u¤v

minfcuv ; cvug � k < 1:4664

X
u;v2V2;u¤v

minfcuv ; cvug :

In fact, Nagamochi also presented an approximation algo-
rithm with a factor smaller than 1.4664.

Furthermore, for any u 2 V2 with deg(u) > 0, let lu
be the leftmost neighbor of u on L1, and ru be the right-
most neighbor of u. Two vertices u; v 2 V2 are called un-
suited if there exists some x 2 N(u) with lv <1 x <1 rv ,
or there exists some x 2 N(v) with lu <1 x <1 ru . Other-
wise, they are called suited. Observe that, for fu; vg suited,
cuv � cvu = 0. Dujmović and Whitesides have shown:

Lemma 5 ([5]) In any optimal ordering <2 of the vertices
of V2, u <2 v is found if ru �1 lv .

This means that all suited pairs appear in their natural or-
dering.

This already allows us to formulate a first parameter-
ized algorithm for OSCM, which is a simple search tree
algorithm. In the course of this algorithm, a suitable or-
dering <2 on V2 is gradually constructed; when settling
the ordering between u and v on V2, u <2 v or v <2 u is
committed. A generalized instance of OSCM therefore con-
tains, besides the bipartite graph G = (V1;V2; E), a partial
ordering <2 on V2. A vertex v 2 V2 is fully committed if,
for all u 2 V2 n fu; vg, fu; vg is committed.

Lemma 5 allows us to state the following rule:

RR1: For every pair of vertices fu; vg fromV2 with cuv = 0,
commit u <2 v. In the example, d would be fully commit-
ted by applying RR1, since the d-column in the crossing
numbermatrix is all zeros; hence, ignore d in what follows.

Algorithm 1 is a simple search tree algorithm for
OSCM that repeatedly uses Rule RR1.

Lemma 6 OSCM can be solved in time O�(2k).
Proof Before any branching can take place, the graph in-
stance is reduced, so that every pair of vertices fu; vg from
V2 which is not committed satisfies minfcuv ; cvug � 1.
Therefore, each recursive branch reduces the parameter by
at least one. �
It is possible to improve on this very simple search tree
algorithm. A first observation is that it is not necessary
to branch at fx; yg � V2 with cx y = cyx . This means two
modifications to Algorithm 1:

� Line 5 should exclude cx y = cyx .
� Line 12 should arbitrary commit some fx; yg � V2

that are not yet committed and recurse; only if all
fx; yg � V2 are committed, YES is to be returned.

These modifications immediately yield anO�(1:6182k) al-
gorithm for OSCM. This is also the core of the algorithm
proposed by Dujmović and Whitesides [5]. There, more
details are discussed, as, for example:
� How to efficiently calculate all the crossing numbers cxy

in a preprocessing phase.
� How to integrate branch and cut elements in the algo-

rithm that are surely helpful from a practical perspec-
tive.

� How to generalize the algorithm for instances that al-
low integer weights on the edges (multiple edges).
Further improvements are possible if one gives

a deeper analysis of local patterns fx; yg 2 V2 such that
cx y cyx � 2. This way, it has been shown:

Theorem 7 ([4]) OSCM can be solved in time
O�(1:4656k).

A possible run of the improved search tree algorithm is
displayed in Fig. 2, with the (optimal) outcome shown in
Fig. 3.

Variants and Related Problems have been discussed in
the literature.
1. Change the goal of the optimization: minimize the

number of edges involved in crossings (ONE-LAYER
PLANARIZATION (OLP)). As observed in [7,10], The-
orem 2 almost immediately leads to an O�(3k) algo-
rithm for OLP that was subsequently improved down
to O�(2k) in [10].

2. One could allow more degrees of freedom by consider-
ing two (or more) layer assignments at the same time.
For both the crossing minimization and the planariza-
tion variants, parameterized algorithms are reported in
[3,7,10].

3. One can consider other additional constraints on the
drawings or the admissible orderings; in [8], parame-
terized algorithms for two-layer assignment problems
are discussed where the admissible orderings are re-
stricted by binary trees.

Applications

Besides seeing the question of drawing bipartite graphs as
an interesting problem in itself, e. g., for nice drawings of
relational diagrams, this question quite naturally shows
up in the so-called Sugiyama approach to hierarchical
graph drawing, see [12]. This very popular approach tack-
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Require: a bipartite graph G = (V1;V2; E), an integer k, a linear ordering <1 on V1, a partial ordering <2 on V2
Ensure: YES iff the given OSCM instance has a solution

repeat
Exhaustively apply the reduction rules, adjusting<2 and k accordingly.
Determine the vertices whose order is settled by transitivity and adjust <2 and k accordingly.

until there are no more changes to<2 and to k
5: if k < 0 or <2 contains both (x; y) and (y; x) then

return NO.
else if 9fx; yg 
 V2 : neither x <2 y nor y <2 x is settled then

if OSCM-ST-simple(G; k � 1; <1; <2 [ f(x; y)g) then
return YES

10: else
return OSCM-ST-simple(G; k � 1; <1; <2 [ f(y; x)g)

end if
else

return YES
15: end if

Parameterized Algorithms for Drawing Graphs, Algorithm 1
A search tree algorithm solving OSCM, called OSCM-ST-simple

les the problem of laying out a hierarchical graph in three
phases: (1) cycle removal (2) assignment of vertices to lay-
ers, (3) assignment of vertices to layers. The last phase is
usually performed in a sweep-line fashion, intermediately
solving many instances of OSCM. The third variant in the

Parameterized Algorithms for Drawing Graphs, Figure 2
A search tree example for OSCM

discussion above has important applications in computa-
tional biology.

Open Problems

As with all exponential-time algorithms, it is always a chal-
lenge to further improve on the running times of the algo-
rithms or to prove lower bounds on those running times
under reasonable complexity theoretic assumptions. Let us
notice that the tacit assumptions underlying the approach
by parameterized algorithmics are well met in this appli-
cation scenario: e. g., one would not accept drawings with

Parameterized Algorithms for Drawing Graphs, Figure 3
An optimal solution to the example instance
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many crossings anyways (if such a situation is encountered
in practice, one would switch to another way of represent-
ing the information); so, one can safely assume that the
parameter is indeed small.

This is also true for otherNP-hard subproblems that
relate to the Sugiyama approach. However, no easy so-
lutions should be expected. For example, the DIRECTED
FEEDBACK ARC SET PROBLEM [1] that is equivalent to the
first phase is not known to admit a nice parameterized al-
gorithm, see [2].

Experimental Results

Suderman [10] reports on experiments with nearly all
problem variants discussed above, also see [11] for a bet-
ter accessible presentation of some of the experimental re-
sults.

URL to Code

Suderman presents several JAVA applets related to the
problems discussed in this article, see http://cgm.cs.mcgill.
ca/~msuder/.

Cross References

Other parameterized search tree algorithms are explained
in the contribution�Vertex Cover Search Trees by Chen,
Kanj, and Jia.
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ProblemDefinition

Parameterized strings, or p-strings, are strings that con-
tain both ordinary symbols from an alphabet ˙ and pa-
rameter symbols from an alphabet ˘ . Two equal-length
p-strings s and s0 are a parameterized match, or p-match,
if one p-string can be transformed into the other by ap-
plying a one-to-one function that renames the parameter
symbols. The following example of a p-match is one with
both ordinary and parameter symbols. The ordinary sym-
bols are in lowercase and the parameter symbols are in up-
percase.

s = A b A b C A d b A C d d
s0 = D b D b E D d b D E d d

In some of the problems to be considered it will be suf-
ficient to solve for p-strings in which all symbols are pa-
rameter symbols, as this is the more difficult part of the
problem. In other words, the case in which ˙ = ;. In this
case the definition can be reformulated so that s and s0 are
a p-match if there exists a bijection 
 : ˘s ! ˘s0 , such
that 
(s) = s0, where 
(s) is the renaming of each charac-
ter of s via 
 .

The following problems will be considered. Param-
eterized matching – given a parameterized pattern p of
length m and parameterized text t, find all locations i of
a parameterized text t for which p p-matches ti � � � ti+m�1,
where m = jpj. The same problem is also considered in

http://cgm.cs.mcgill.ca/~msuder/
http://cgm.cs.mcgill.ca/~msuder/


636 P Parameterized Matching

two dimensions. Approximate parameterized matching–
find all substrings of a parameterized text t that are ap-
proximate parameterized matches of a parameterized pat-
tern p (to be fully defined later).

Key Results

Baker [4] introduced parameterized matching in the
framework of her seminal work on discovering duplicate
code within large programs for the sake of code mini-
mization. An example of two code fragments that p-match
taken from the X Windows system can be found in [4].

Parameterized Suffix Trees

In [4] and in the follow-up journal versions [6,7] a novel
method was presented for parameterized matching by
constructing parameterized suffix trees. The advantage of
the parameterized suffix tree is that it supports indexing,
i. e., one can preprocess a text and subsequently answer pa-
rameterized queries p in O(jpj) time. In order to achieve
parameterized suffix trees it is necessary to introduce the
concept of a predecessor string. A predecessor string of
a string s has at each location i the distance between i
and the location containing the previous appearance of the
symbol. The first appearance of each symbol is replaced
with a 0. For example, the predecessor string of aabbaba is
0; 1; 0; 1; 3; 2; 2. A simple and well-known fact is that:

Observation [7] s and s0 p-match if and only if they have
the same predecessor string.

Notice that this implies transitivity of parameterized
matching, since if s and s0 p-match and s0 and s00 p-match
then, by the observation, s and s0 have the same predeces-
sor string and, likewise, s0 and s00 have the same predeces-
sor string. This implies that s and s00 have the same prede-
cessor string and hence, by the observation, p-match.

Moreover, one may also observe that if r is a prefix of s
then the predecessor string of r, by definition, is exactly the
jrj-length prefix of the predecessor string of s. Hence, sim-
ilar to regular pattern matching, a parameterized pattern p
p-matches at location i of t if and only if the jpj-length pre-
decessor string of p is equal to the jpj-length prefix of the
predecessor string of the suffix ti � � � tn . Combining these
observations it is natural to do as follows; create a (parame-
terized suffix) tree with a leaf for each suffix where the path
from the root to the leaf corresponding to a given suffix
will have its predecessor string labeling the path. Branch-
ing in the parameterized suffix tree, as with suffix trees,
occurs according to the labels of the predecessor strings.
See [4,6,7] for an example.

Baker’s method essentially mimics the McCreight suf-
fix tree construction [18]. However, while the suffix tree
and the parameterized suffix tree are very similar, there is
a slight hitch. A strong component of the suffix tree con-
struction is the suffix link. This is used for the construc-
tion and, sometimes, for later pattern searches. The suffix
link is based on the distinct right context property, which
does not hold for the parameterized suffix tree. In fact, the
node that is pointed to by the suffix link may not even ex-
ist. The main parts of [6,7] are dedicated to circumventing
this problem.

In [7] Baker added the notion of “bad” suffix links,
which point to the vertex just above, i. e., closer to the root
than the desired place, and of updating them with a lazy
evaluation when they are used. The algorithm runs in time
O(nj˘ j log j˙ j). In [6] (which is chronologically later
than [7] despite being the first to appear) Baker changed
the definition of “bad” suffix links to point to just below
the desired place. This turns out to have nice properties
and one can use more sophisticated data structures to im-
prove the construction time to O(n(j˘ j + log j˙ j)).

Kosaraju [16] made a careful analysis of Baker’s prop-
erties utilized in the algorithm of [6] which suffer from the
j˘ j factor. He pointed out two sources for this large fac-
tor. He handled these two issues by using a concatenable
queue and maintaining it in a lazy manner. This is suffi-
cient to reduce the j˘ j factor to a log j˘ j factor, yielding
an algorithm of time O(n(log j˘ j + log j˙ j)).

Obviously if the alphabet or symbol set is large the
construction time may be O(n log n). Cole and Hariha-
ran [9] showed how to construct the parameterized suf-
fix trees in randomized O(n) time for alphabets and pa-
rameters taken from a polynomially sized range, e. g.,
[1; � � � ; nc ]. They did this by adding additional nodes to
the tree in a back-propagation manner which is reminis-
cent of fractional cascading. They showed that this adds
only O(n) nodes and allows the updating of the missing
suffix links. However, this causes other problems and one
may find the details of how this is handled in their pa-
per.

More Methods for Parameterized Matching

Obviously the parameterized suffix tree efficiently solves
the parameterizedmatching problem. Nevertheless, a cou-
ple of other results on parameterized matching are worth
mentioning.

First, in [6] it was shown how to construct the param-
eterized suffix tree for the pattern and then to run the pa-
rameterized text through it, giving an algorithmwithO(m)
space instead of O(n).
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Amir et al. [2] presented a simple method to solve the
parameterized matching problem by mimicking the algo-
rithm of Knuth, Morris and Pratt. Their algorithm works
in O(n �min(log j˘ j;m)) time independent of the alpha-
bet size (j˙ j). Moreover, they proved that the log factor
cannot be avoided for large symbol sets.

In [5] parameterized matching was solved with a Bo-
yer–Moore type algorithm. In [10] the problem was solved
with a Shift–Or type algorithm. Both handle the average
case efficiently. In [10] emphasis was also put on the case
of multiple parameterizedmatching, which was previously
solved in [14] with an Aho–Corasick automaton-style al-
gorithm.

Two-Dimensional Parameterized Matching

Two-dimensional parameterized matching arises in ap-
plications of image searching; see [13] for more details.
Two-dimensional parameterized matching is the natu-
ral extension of parameterized matching where one seeks
p-matches of a two-dimensional parameterized pattern p
within a two-dimensional parameterized text t. It must be
pointed out that classical methods for two-dimensional
pattern matching, such as the L-suffix tree method, fail
for parameterized matching. This is because known meth-
ods tend to cut the text and pattern into pieces to avoid
going out of boundaries of the pattern. This is fine be-
cause each pattern piece can be individually evaluated
(checked for equality) to a text piece. However, in parame-
terizedmatching there is a strong dependency between the
pieces.

In [1] an innovative solution for the problem was given
based on a collection of linearizations of the pattern and
text with the property to be currently described. Consider
a linearization. Two elements with the same character, say
‘a,’ in the pattern are defined to be neighbors if there is
no other ‘a’ between them in this linearization. Now take
all the ‘a’s of the pattern and create a graph Ga with ‘a’s
as the nodes and edges between two if they are neighbors
in some linearization. We say that two ‘a’s are chained if
there is a path from one to the other in Ga. Applying one-
dimensional parameterized matching on these lineariza-
tions ensures that any two elements that are chained will
be evaluated to map to the same text value (the parameter-
ized property). A collection of linearizations has the fully
chained property if every two locations in p with the same
character are chained. It was shown in [1] that one can ob-
tain a collection of logm linearizations that is fully chained
and that does not exceed pattern boundary limits. Each
such linearization is solved with a convolution-based pat-
tern matching algorithm. This takes O(n2 logm) time for

each linearization, where the text size is n2. Hence, overall
the time is O(n2 log2 m).

A different solution was proposed in [13], where it
was shown that it is possible to solve the problem in
O(n2 + m2:5polylog m), where the text size is O(n2) and
the pattern size is O(m2). Clearly, this is more efficient for
large texts.

Approximate Parameterized Matching

Our last topic relates to parameterized matching in the
presence of errors. Errors occur in the various applications
and it is natural to consider parameterized matching with
the Hamming distance metric or the edit distance metric.

In [8] the parameterized matching problem was con-
sidered in conjunction with the edit distance. Here the
definition of edit distance was slightly modified so that
the edit operations are defined to be insertion, deletion
and parameterized replacements, i. e., the replacement of
a substring with a string that p-matches it. An algorithm
for finding the “parameterized edit distance” of two strings
was devisedwhose efficiency is close to the efficiency of the
algorithms for computing the classical edit distance.

However, it turns out that the operation of parameter-
ized replacement relaxes the problem to an easier problem.
The reason that the problem becomes easier is that two
substrings that participate in two parameterized replace-
ments are independent of each other (in the parameterized
sense).

A more rigid, but more realistic, definition for the
Hamming distance variant was given in [3]. For a pair of
equal-length strings s and s0 and a bijection 
 defined on
the alphabet of s, the 
-mismatch is the Hamming dis-
tance between the image under 
 of s and s0. The mini-
mal 
-mismatch over all bijections 
 is the approximate
parameterized match. The problem considered in [3] is to
find for each location i of a text t the approximate param-
eterized match of a pattern p with the substring beginning
at location i. In [3] the problem was defined and linear-
time algorithms were given for the case where the pattern
is binary or the text is binary. However, this solution does
not carry over to larger alphabets.

Unfortunately, under this definition the methods for
classical string matching with errors for the Hamming
distance, also known as pattern matching with mis-
matches, seem to fail. Following is an outline of a classical
method [17] for pattern matching with mismatches that
uses suffix trees.

The pattern is compared separately with each suffix of
the text, beginning at locations 1 � i � n � m + 1. Using
a suffix tree of the text and precomputed longest common
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ancestor information (which can be computed once in lin-
ear time [11]), one can find the longest common prefix
of the pattern and the corresponding suffix (in constant
time). There must be a mismatch immediately afterwards.
The algorithm jumps over the mismatch and repeats the
process, taking into consideration the offsets of the pattern
and suffix.

When attempting to apply this technique to a param-
eterized suffix tree, it fails. To illustrate this, consider the
first matching substring (up until the first error) and the
next matching substring (after the error). Both of these
substrings p-match the substring of the text that they are
aligned with. However, it is possible that combined they
do not form a p-match. See the example below. In the ex-
ample abab p-matches cdcd followed by a mismatch and
subsequently followed by abaa p-matching efee. However,
different 
 ’s are required for the local p-matches. This ex-
ample also emphasizes why the definition of [8] is a sim-
plification. Specifically, each local p-matching substring is
one replacement, i. e., abab with cdcd is one replacement
and abaa with efee is one more replacement. However, the
definition of [3] captures the globality of the parameter-
ized matching, not allowing, in this case, abab to p-match
to two different substrings.

p = a b a b a a b a a � � �
t = � � � c d c d d e f e e � � �

In [12] the problem of parameterized matching with
k mismatches was considered. The parameterized match-
ing problem with k mismatches seeks all locations i
in text t where the minimal 
-mismatch between p to
ti � � � ti+m�1 has at most k mismatches. An O(nk1:5 +
mk logm) time algorithm was presented in [12]. At the
base of the algorithm, i. e., for the case where jpj = jtj = m,
an O(m + k1:5) algorithm is used based on maximum
matching algorithms. Then the algorithm uses a doubling
scheme to handle the growing distance between potential
parameterized matches (with at most kmismatches). Also
shown in [12] is a strong relationship between maximum
matching algorithms in sparse graphs and parameterized
matching with k errors.

The rigid, but more realistic, definition for the Ham-
ming distance version given in [3] can be naturally ex-
tended to the edit distance. Lately, it was shown that
this problem is nondeterministic polynomial-time com-
plete [15].

Applications

Parameterized matching has applications in code duplica-
tion detection in programming languages, in homework

plagiarism detection, and in image processing, among oth-
ers [1,4].
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ProblemDefinition

Much research has been devoted to finding classes of
propositional formulas in conjunctive normal form (CNF)
for which the recognition problem as well as the proposi-
tional satisfiability problem (SAT) can be decided in poly-
nomial time. Some of these classes form infinite chains
C1 � C2 � � � � such that every CNF formula is contained
in some Ck for k sufficiently large. Such classes are typ-
ically of the form Ck = fF 2 CNF: 
(F) � kg, where 

is a computable mapping that assigns to CNF formulas
F a non-negative integer 
(F); we call such a mapping
a satisfiability parameter. Since SAT is an NP-complete
problem (actually, the first problem shown to be NP-
complete [1]), we must expect that, the larger k, the longer
the worst-case running times of the polynomial-time al-
gorithms that recognize and decide satisfiability of for-
mulas in Ck. Whence there is a certain tradeoff between
the generality of classes and the performance guarantee
for the corresponding algorithms. Szeider [12] initiates
a broad investigation of this tradeoff in the conceptional
framework of parameterized complexity [2,3,6]. This in-
vestigation draws attention to satisfiability parameters 

for which the following holds: recognition and satisfiabil-
ity decision of formulas F with 
(F) � k can be carried
out in uniform polynomial time, that is, by algorithms with
running time bounded by a polynomial whose order is in-
dependent of k (albeit, possibly involving a constant factor
that is exponential in k). If a satisfiability parameter 
 al-
lows satisfiability decision in uniform polynomial time, we
say that SAT is fixed-parameter tractable with respect to 
 .

Satisfiability Parameters Based on Graph Invariants

One can define satisfiability parameters by means of cer-
tain graphs associated with CNF formulas. The primal
graph of a CNF formula is the graph whose vertices are
the variables of the formula; two variables are joined by an
edge if the variables occur together in a clause. The inci-
dence graph of a CNF formula is the bipartite graph whose

vertices are the variables and clauses of the formula; a vari-
able and a clause are joined by an edge if the variable oc-
curs in the clause.

Satisfiability Parameters Based on Backdoor Sets

The concept of backdoor sets [13] gives rise to several
interesting satisfiability parameters. Let C be a class of
CNF formulas. A set B of variables of a CNF formula F
is a strong C-backdoor set if for every partial truth assign-
ment � : B! ftrue; falseg, the restriction of F to � belongs
to C. Here, the restriction of F to � is the CNF formula ob-
tained from F by removing all clauses that contain a literal
that is true under � and by removing from the remaining
clauses all literals that are false under � .

Key Results

Theorem 1 (Gottlob, Scarcello, and Sideri [4]) SAT is
fixed-parameter tractable with respect to the treewidth of
primal graphs.

Several satisfiability parameters that generalize the
treewidth of primal graphs, such as the treewidth
and clique-width of incidence graphs, have been stud-
ied [5,10,12].

The maximum deficiency of a CNF formula F is the
number of clauses remaining exposed by a maximum
matching of the incidence graph of F.

Theorem 2 (Szeider [11]) SAT is fixed-parameter
tractable with respect to maximum deficiency.

A CNF formula is minimal unsatisfiable if it is unsat-
isfiable but removing any of its clauses makes it satisfi-
able. Recognition of minimal unsatisfiable formulas is DP-
complete [9].

Corollary 1 (Szeider [11]) Recognition of minimal unsat-
isfiable CNF formulas is fixed-parameter tractable with re-
spect to the difference between the number of clauses and
the number of variables.

Theorem 3 (Nishimura, Ragde, and Szeider [7]) SAT is
fixed-parameter tractable with respect to the size of strong
HORN-backdoor sets and with respect to the size of strong
2CNF-backdoor sets.

Applications

Satisfiability provides a powerful and general formalism
for solving various important problems including hard-
ware and software verification and planning. Instances
stemming from applications usually contain a “hidden
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structure” (see, e. g. [13]). The satisfiability parameters
considered above are designed to make this hidden struc-
ture explicit in the form of small values for the parameter.
Thus, satisfiability parameters are a way to make the hid-
den structure accessible to an algorithm.

Open Problems

A new line of research is concerned with the identification
of further satisfiability parameters that allow a fixed-pa-
rameter tractable SAT decision are more general than the
known parameters and apply well to real-world problem
instances.

Cross References

�MaximumMatching
� Treewidth of Graphs

Recommended Reading

1. Cook, S.A.: The complexity of theorem-proving procedures.
In: Proc. 3rd Annual Symp. on Theory of Computing, Shaker
Heights, OH 1971, pp. 151–158

2. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Mono-
graphs in Computer Science. Springer, Berlin (1999)

3. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts
in Theoretical Computer Science, vol. XIV. An EATCS Series.
Springer, Berlin (2006)

4. Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complex-
ity in AI and nonmonotonic reasoning. Artif. Intell. 138, 55–86
(2002)

5. Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artifi-
cial intelligence, constraint satisfaction, and database prob-
lems. Comput. J., Special Issue on Parameterized Complexity,
Advanced Access (2007)

6. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms, Ox-
ford Lecture Series inMathematics and Its Applications.Oxford
University Press, Oxford, UK (2006)

7. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets
with respect to Horn and binary clauses. In: Informal proceed-
ings of SAT 2004, 7th International Conference on Theory and
Applications of Satisfiability Testing, Vancouver, BC, Canada,
10–13 May 2004, pp. 96–103

8. Nishimura, N., Ragde, P., Szeider, S.: Solving SAT using vertex
covers. Acta Inf. 44(7–8), 509–523 (2007)

9. Papadimitriou, C.H., Wolfe, D.: The complexity of facets re-
solved. J. Comput. Syst. Sci. 37, 2–13 (1988)

10. Samer, M., Szeider, S.: Algorithms for propositional model
counting. In: Proceedings of LPAR 2007, 14th International
Conference on Logic for Programming, Artificial Intelligence
and Reasoning, Yerevan, Armenia, 15–19 October 2007. Lec-
ture Notes in Computer Science, vol. 4790, pp. 484–498.
Springer, Berlin (2007)

11. Szeider, S.: Minimal unsatisfiable formulas with bounded
clause-variable difference are fixed-parameter tractable.
J. Comput. Syst. Sci. 69, 656–674 (2004)

12. Szeider, S.: On fixed-parameter tractable parameterizations of
SAT. In: Giunchiglia, E., Tacchella, A. (eds.) Theory and Applica-

tions of Satisfiability, 6th International Conference, SAT 2003,
Selected and Revised Papers. Lecture Notes in Computer Sci-
ence, vol. 2919, pp. 188–202. Springer, Berlin (2004)

13. Williams, R., Gomes, C., Selman, B.: On the connections be-
tween backdoors, restarts, and heavy-tailedness in combinato-
rial search, In: informal proceedings of SAT 2003 (Sixth Interna-
tional Conference on Theory and Applications of Satisfiability
Testing, 5–8 May 2003, S. Margherita Ligure – Portofino, Italy),
2003, pp. 222–230

PatternMatching
�Multidimensional Compressed Pattern Matching
� Two Dimensional Scaled Pattern Matching

Peer to Peer
� P2P

Peptide De Novo Sequencing
withMS/MS
2005; Ma, Zhang, Liang

BIN MA
Department of Computer Science, University of Western
Ontario, London, ON, Canada

Keywords and Synonyms

De novo sequencing; Peptide sequencing

ProblemDefinition

De novo sequencing arises from the identification of
peptides by using tandem mass spectrometry (MS/MS).
A peptide is a sequence of amino acids in biochemistry
and can be regarded as a string over a finite alphabet from
a computer scientist’s point of view. Each letter in the al-
phabet represents a different kind of amino acid, and is as-
sociate with a mass value. In the biochemical experiment,
a tandem mass spectrometer is utilized to fragment many
copies of the peptide into pieces, and to measure the mass
values (in fact, the mass to charge ratios) of the fragments
simultaneously. This gives a tandemmass spectrum. Since
different peptides normally produce different spectra, it
is possible, and now a common practice, to deduce the
amino acid sequence of the peptide from its spectrum. Of-
ten this deduction involves the searching in a database for
a peptide that can possibly produce the spectrum. But in
many cases such a database does not exist or is not com-
plete, and the calculation has to be done without looking
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for a database. The latter approach is called de novo se-
quencing.

A general form of de novo sequencing problems is de-
scribed in [2]. First, a score function f (P; S) is defined to
evaluate the pairing of a peptide P and a spectrum S. Then
the de novo sequencing problem seeks for a peptide P such
that f (P; S) is maximized for a given spectrum S.

When the peptide is fragmented in the tandem mass
spectrometer, many types of fragments can be generated.
The most common fragments are the so called b-ions and
y-ions. B-ions correspond to the prefixes of the peptide se-
quence, and y-ions the suffixes. Readers are referred to [8]
for the biochemical details of the MS/MS experiments and
the possible types of fragment ions. For clarity, in what
follows only b-ions and y-ions are considered, and the
de novo sequencing problem will be formulated as a pure
computational problem.

A spectrum S = f(xi ; hi )g is a set of peaks, each has
a mass value xi and an intensity value hi. A peptide
P = a1a2 : : : an is a string over a finite alphabet ˙ .
Each a 2 ˙ is associated with a positive mass valuem(a).
For any string t = t1 t2 : : : tk , denote m(t) =

Pk
i=1 m(ti ).

The mass of a length-i prefix (b-ion) of P is defined as
bi = cb + m(a1a2 : : : ai). The mass of a length-i suffix (y-
ion) of P is defined as yi = cy + m(ak�i+1 : : : ak�1ak).
Here cb and cy are two constants related to the nature of
the MS/MS experiments. If the mass unit used for measur-
ing each amino acid is dalton, then cb = 1 and cy = 19.

Let ı be a mass error tolerance that is associated
with the mass spectrometer. For mass value m, the peaks
matched by m is defined as D(m) = f(xi ; hi ) 2 S j jxi �
mj � ıg. The general idea of de novo sequencing is to
maximize the number and intensities of the peaksmatched
by all b and y ions. Normally, ı is far less than the min-
imum mass of an amino acid. Therefore, for different i
and j, D(bi ) \ D(bj) = ; and D(yi )\ D(y j) = ;. How-
ever, D(bi ) and D(y j) may share common peaks. So, if not
defined carefully, a peak may be counted twice in the score
function. There are two different definitions of de novo se-
quencing problem, corresponding to two different ways of
handling this situation.

Definition 1 (Anti-symmetric de novo sequencing)
Instance: A spectrum S, a mass valueM, and an error tol-
erance ı.
Solution: A peptide P such that m(P) = M, and
D(bi ) \ D(y j) = ; for any i, j.
Objective: Maximize

Pn
k=1

P
(xi ;hi )2D(bk )[D(yk ) hi :

This definition discards the peptides that gives a pair of
bi and yj with similar mass values, because this happens
rather infrequently in practice. Another definition allows

the peptides to have pairs of bi and yj with similar mass
values. However, when a peak is matched by multiple ions,
it is counted only once. More precisely, define the matched
peaks by P as

D(P) =
n[
i=1

(D(bi ) [ D(yi)) :

Definition 2 (De novo sequencing)
Instance: A spectrum S, a mass valueM, and an error tol-
erance ı.
Solution: A peptide P such that m(P) = M.
Objective: Maximize f (P; S) =

P
(xi ;hi )2D(P) hi :

Key Results

Anti-symmetric de novo sequencing was studied in [1,2].
These studies convert the spectrum into a spectrum graph.
Each peak in the spectrum generates a few of nodes in the
spectrum graph, corresponding to the different types of
ions that may produce the peak. Each edge in the graph in-
dicates that the mass difference of the two adjacent nodes
is approximately the mass of an amino acid, and the edge
is labeled with the amino acid. When at least one of each
pair of bi and yn�i matches a peak in the spectrum, the
de novo sequencing problem is reduced to the finding of
the “anti-symmetric” longest path in the graph. A dynamic
programming algorithm for such purpose was published
in [1].

Theorem 1 ([1]) The longest anti-symmetric path in
a spectrum graph G = hV ; Ei can be found in O(jV jjEj)
time.

Under definition 2, de novo sequencing was studied in [5]
and a polynomial time algorithm was provided. The algo-
rithm is again a dynamic programming algorithm. For two
mass values (m;m0), the dynamic programming calculates
an optimal pair of prefix Aa and suffix a0A0, such that
1. m(Aa) = m and m(a0A0) = m0.
2. Either cb + m(A) < cy + m(a0A0) � cb + m(Aa) or

cy + m(A0) � cb + m(A) < cy + m(a0A0).
The calculation for (m;m0) is based on the optimal so-

lutions of smallermass values. Because of the second above
requirement, it is proved in [5] that not all pairs of (m;m0)
are needed. This is used to speed up the algorithm. A care-
fully designed strategy can eventually output a prefix and
a suffix so that their concatenation form the optimal solu-
tion of the de novo sequencing problem. More specifically,
the following theorem holds.

Theorem 2 ([6]) The de novo sequencing problem has an
algorithm that gives the optimal peptide in O(j˙ j � ı �
maxa2˙ m(a) �M).



642 P Perceptron Algorithm

Because j˙ j, ı, maxa2˙ m(a) are all constants, the algo-
rithm in fact runs in linear time with a large coefficient.

Although the above algorithms are designed to max-
imize the total intensities of the matched peaks, they can
be adapted to work on more sophisticated score func-
tions. Some studies of other score functions can be found
in [2,3,4,6]. Some of these score functions require new al-
gorithms.

Applications

The algorithms have been implemented into software
programs to assist the analyses of tandem mass spec-
trometry data. Software using the spectrum graph ap-
proach includes Sherenga [2]. The de novo sequencing
algorithm under the second definition was implemented
in PEAKS [6]. More complete lists of the de novo se-
quencing software and their comparisons can be found
in [7,9].

URL to Code

PEAKS free trial version is available at http://www.
bioinfor.com/.

Recommended Reading
1. Chen, T., Kao, M.-Y., Tepel, M., Rush J., Church, G.: A dynamic

programming approach to de novo peptide sequencing via
tandem mass spectrometry. J. Comput. Biol. 8(3), 325–337
(2001)
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ProblemDefinition

The Perceptron algorithm [1,13] is an iterative algorithm
for learning classification functions. The Perceptron was
mainly studied in the online learning model. As an on-
line learning algorithm, the Perceptron observes instances
in a sequence of trials. The observation at trial t is de-
noted by xt . After each observation, the Perceptron pre-
dicts a yes/no (+/�) outcome, denoted ŷt , which is calcu-
lated as follows

ŷt = sign(hwt; xti) ;

where wt is a weight vector which is learned by the Per-
ceptron and h�; �i is the inner product operation. Once the
Perceptron has made a prediction, it receives the correct
outcome, denoted yt , where yt 2 f+1;�1g. If the predic-
tion of the Perceptron was incorrect it updates its weight
vector, presumably improving the chance of making an ac-
curate prediction on subsequent trials. The update rule of
the Perceptron is

wt+1 =
�

wt + ytxt if ŷt ¤ yt
wt otherwise : (1)

The quality of an online learning algorithm is measured by
the number of prediction mistakes it makes along its run.
Novikoff [12] and Block [2] have shown that whenever the
Perceptron is presented with a sequence of linearly sepa-
rable examples, it makes a bounded number of prediction
mistakes which does not depend on the length of the se-
quence of examples. Formally, let (x1; y1); : : : ; (xT ; yT ) be
a sequence of instance-label pairs. Assume that there ex-
ists a unit vector u (kuk2 = 1) and a positive scalar � > 0
such that for all t, yt(u � xt) � � . In words, u separates
the instance space into two half-spaces such that positively
labeled instances reside in one half-space while the neg-
atively labeled instances belong to the second half-space.
Moreover, the distance of each instance to the separating
hyperplane fx : u � x = 0g, is at least � . The scalar � is often
referred to as the margin attained by u on the sequence of

http://www.bioinfor.com/
http://www.bioinfor.com/
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examples. Novikoff and Block proved that the number of
prediction mistakes the Perceptron makes on a sequence
of linearly separable examples is at most (R/� )2, where
R = maxt kxtk2 is the minimal radius of a ball enclosing
all the instances. In 1969, Minsky and Papert [11] under-
scored serious limitations of the Perceptron by showing
that it is impossible to learn many classes of patterns us-
ing the Perceptron (for example, XOR functions). This fact
caused a significant decrease of interest in the Perceptron.
The Perceptron has gained back its popularity after Fre-
und and Schapire [9] proposed to use it in conjunction
with kernels. The kernel-based Perceptron not only can
handle non-separable datasets but can also be utilized for
efficiently classifying non-vectorial instances such as trees
and strings (see for example [5]).

To implement the Perceptron in conjunction with ker-
nels one can utilize the fact that at each trial of the algo-
rithm, the weight vectorwt can be written as a linear com-
bination of the instances

wt =
X
i2It

yi xi ;

where It = fi < t : ŷ i ¤ yig is the indices of trials in
which the Perceptron made a prediction mistake. There-
fore, the prediction of the algorithm can be rewritten as

ŷt = sign

0
@X

i2It

yi hxi ; xti

1
A ;

and the update rule of the weight vector can be replaced
with an update rule for the set of erroneous trials

It+1 =
�

It [ ftg if ŷt ¤ yt
It otherwise : (2)

In the kernel-based Perceptron, the inner product hxi ; xti
is replaced with a Mercer kernel function, K(xi ; xt), with-
out any further changes to the algorithm (for a discus-
sion on Mercer kernels see for example [15]). Intuitively,
the kernel function K(xi ; xt) implements an inner prod-
uct h�(xi); �(xt)i where � is a non-linear mapping from
the original instance space into another (possibly high di-
mensional) Hilbert space. Even if the original instances
are not linearly separable, the images of the instances due
to the non-linear mapping � can be linearly separable
and thus the kernel-based Perceptron can handle non-
separable datasets. Since the analysis of the Perceptron
does not depend on the dimensionality of the instances, all
of the formal results still hold when the algorithm is used
in conjunction with kernel functions.

Key Results

In the following a mistake bound for the Perceptron in the
non-separable case (see for example [10,14]) is provided.

Theorem Assume that the Perceptron is presented with
the sequence of examples (x1; y1); : : : ; (xT ; yT ) and de-
note R = maxt kxtk2. Let u be a unit length weight vector
(kuk2 = 1), let � > 0 be a scalar, and denote

L =
TX
t=1

maxf0; 1 � yt hu/�; xtig :

Then, the number of prediction mistakes the Perceptron
makes on the sequence of example is at most

L +
�
R
�

�2
+
R
p
L

�
:

Note that if there exists u and � such that yt hu; xti � � for
all t then L = 0 and the above bound reduces to Novikoff’s
bound,
�
R
�

�2
:

Note also that the bound does not depend on the di-
mensionality of the instances. Therefore, it holds for the
kernel-based Perceptron as well with R = maxt K(xt ; xt).

Applications

So far the Perceptron has been viewed in the prism of on-
line learning. Freund and Schapire [9] proposed a simple
conversion of the Perceptron algorithm to the batch learn-
ing setting. A batch learning algorithm receives as input
a training set of examples f(x1; y1); : : : ; (xT ; yT )g sampled
independently from an underlying joint distribution over
the instance and label space. The algorithm is required to
output a single classification function which performs well
on unseen examples as long as the unseen examples are
sampled from the same distribution as the training set. The
conversion of the Perceptron to the batch setting proposed
by Freund and Schapire is called the voted Perceptron al-
gorithm. The idea is to simply run the online Perceptron
on the training set of examples, thus producing a sequence
of weight vectors w1; : : : ;wT . Then, the single classifica-
tion function to be used for unseen examples is a majority
vote over the predictions of the weight vectors. That is,

f (x) =
�

+1 if jft : hwt ; xi > 0 gj > jft : hwt; xi < 0 gj
�1 otherwise

It was shown (see again [9]) that if the number of predic-
tion mistakes the Perceptron makes on the training set is
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Perceptron Algorithm, Table 1

Online Perceptron Kernel-based Online Perceptron
INITIALIZATION:w1 = 0 INITIALIZATION: I1 = f�g

For t = 1; 2; : : : For t = 1; 2; : : :
Receive an instance xt Receive an instance xt
Predict an outcome ŷt = sign(hwt; xti) Predict an outcome ŷt = sign

�P
i2It K(xi; xt )

�

Receive correct outcome yt 2 f+1;�1g Receive correct outcome yt 2 f+1;�1g

Update:wt+1 =

8
<
:
wt + ytxt if ŷt ¤ yt

wt otherwise
Update: It+1 =

8
<
:
It [ ftg if ŷt ¤ yt

It otherwise

small, then f (x) is likely to perform well on unseen exam-
ples as well.

Finally, it should be noted that the Perceptron algo-
rithm was used for other purposes such as solving lin-
ear programming [3] and training support vector ma-
chines [14]. In addition, variants of the Perceptron was
used for numerous additional problems such as online
learning on a budget [8,4], multiclass categorization and
ranking problems [6,7], and discriminative training for
hidden Markov models [5].

Cross References

� Support Vector Machines
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ProblemDefinition

Let S = fs1; s2; : : : ; sng be a set of elements called objects
and species, and let C = fc1; c2; : : : ; cmg be a set of func-
tions called characters such that each c j 2 C is a function
from S to the set f0; 1; : : : ; r j � 1g for some integer rj. For
every c j 2 C, the set f0; 1; : : : ; r j � 1g is called the set of al-
lowed states of character cj, and for any si 2 S and c j 2 C,
it is said that the state of si on cj is ˛, or that the state of cj
for si is ˛, where˛ = c j(si ). The character statematrix for S
and C is the (n � m)-matrix in which entry (i, j) for any
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i 2 f1; 2; : : : ; ng and j 2 f1; 2; : : : ;mg equals the state of si
on cj.

In this chapter, a phylogeny for S is an unrooted
tree whose leaves are bijectively labeled by S. For every
c j 2 C and ˛ 2 f0; 1; : : : ; r j � 1g, define the set Sc j;˛ by
Sc j;˛ = fsi 2 S : the state of si on c j is ˛g. A perfect phy-
logeny for (S,C) (if one exists) is a phylogeny T for S such
that the following holds: for each c j 2 C and pair of al-
lowed states ˛,ˇ of cj with ˛ ¤ ˇ, the minimal subtree
of T that connects Sc j;˛ and the minimal subtree of T that
connects Sc j;ˇ are vertex-disjoint. See Fig. 1 for an exam-
ple. The Perfect Phylogeny Problem is the following:

Problem 1 (The Perfect Phylogeny Problem)
INPUT: A character state matrix M for some S and C.
OUTPUT: A perfect phylogeny for (S, C), if one exists; other-
wise, null.

Below, define r = max j2f1;2;:::;mg r j .

Key Results

The following negative result was proved by Bodlaen-
der, Fellows, and Warnow [2] and, independently, by
Steel [13]:

Theorem 1 ([2,13]) The Perfect Phylogeny Problem is NP-
hard.

On the other hand, certain restrictions of The Perfect
Phylogeny Problem can be solved efficiently. One impor-
tant special case occurs if the number of allowed states
of each character is limited1. For this case, Agarwala and
Fernández-Baca [1] designed a dynamic programming-
based algorithm that builds perfect phylogenies on cer-
tain subsets of S called c-clusters (also referred to as
proper clusters in [5,10] and character subfamilies in [6])
in a bottom-up fashion. Each c-cluster G has the property
that: (1) G and S n G share at most one state of each char-
acter; and (2) for at least one character, G and S n G share
no states. The number of c-clusters is at most 2rm, and
the algorithm’s total running time is O(23r (nm3 + m4)),
i. e., exponential in r. (Hence, The Perfect Phylogeny
Problem is polynomial-time solvable if the number of
allowed states of every character is upper-bounded by
O(log(m + n)).) Subsequently, Kannan and Warnow [10]
presented a modified algorithm with improved running
time. They restructured the algorithm of [1] to eliminate
one of the three nested loops that steps through all possible

1For other variants of The Perfect Phylogeny Problem which can
be solved efficiently, see, for example, entries�Directed Perfect Phy-
logeny (Binary Characters) of this Encyclopedia or the survey by
Fernández-Baca [5] .

Perfect Phylogeny (Bounded Number of States), Table 1
The running times of the fastest known algorithms for The Per-
fect Phylogeny Problemwith a bounded number of states

r Running time Reference
2 O(nm) [11] together with [7]
3 minfO(nm2); O(n2m)g [3,10] together with [9]
4 minfO(nm2); O(n2m)g [10] together with [9]
� 5 O(22rnm2) [10]

c-clusters and added a pre-processing step which speeds
up the innermost loop. The resulting time complexity is
given by:

Theorem 2 ([10]) The algorithm of Kannan andWarnow
in [10] solves The Perfect Phylogeny Problem in O(22r nm2)
time.

A perfect phylogeny T for (S,C) is called minimal if no
tree which results by contracting an edge of T is a per-
fect phylogeny for (S,C). In [10], Kannan and Warnow
also showed how to extend their algorithm to enumerate
all minimal perfect phylogenies for (S,C) by constructing
a directed acyclic graph that implicitly stores the set of all
perfect phylogenies for (S,C).

Theorem 3 ([10]) The extended algorithm of Kannan and
Warnow in [10] enumerates the set of all minimal perfect
phylogenies for (S, C) so that the maximum computation
time between two consecutive outputs is O(22r nm2).

For very small values of r, even faster algorithms are
known. Refer to the table in Table 1 for a summary. If
r = 2 then the problem can be solved in O(nm) time by
reducing it to TheDirected Perfect Phylogeny Problem for
Binary Characters (see, e. g., Encyclopedia�Directed Per-
fect Phylogeny (Binary Characters) for a definition of this
variant of the problem) using O(nm) time [7,11] and then
applying Gusfield’s O(nm)-time algorithm [7]. If r = 3 or
r = 4, the problem is solvable in O(n2m) time by another
algorithm by Kannan and Warnow [9], which is faster
than the algorithm from Theorem 2 when n < m. Also
note that for the case r = 3, there exists an older algorithm
by Dress and Steel [3] whose running time coincides with
that of the algorithm in Theorem 2.

Applications

A central goal in computational evolutionary biology and
phylogenetic reconstruction is to develop efficient meth-
ods for constructing, from some given data, a phyloge-
netic tree that accurately describes the evolutionary rela-
tionships among a set of objects (e. g., biological species or
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M c1 c2 c3

s1 0 0 1
s2 1 1 0
s3 2 2 0
s4 1 0 0
s5 0 3 1
s6 1 0 1

(a) (b)

Perfect Phylogeny (Bounded Number of States), Figure 1
a An example of a character state matrix M for S = fs1; s2; : : : ; s6g and C = fc1; c2; c3g with r1 = 3, r2 = 4, and r3 = 2, i. e., r = 4.
b A perfect phylogeny for (S,C). For convenience, the states of all three characters for each object are shown

other taxa, populations, proteins, genes, natural languages,
etc.) believed to have been produced by an evolutionary
process. One of the most widely used techniques for re-
constructing a phylogenetic tree is to represent the objects
as vectors of character states and look for a tree that clus-
ters objects which have a lot in common. The Perfect Phy-
logeny Problem can be regarded as the ideal special case of
this approach in which the given data contains no errors,
evolution is tree-like, and each character state can emerge
only once in the evolutionary history.

However, data obtained experimentally seldom admits
a perfect phylogeny, so various optimization versions of
the problem such as maximum parsimony and maximum
compatibility are often considered in practice; as might be
expected, these strategies generally lead to NP-complete
problems, but there exist many heuristics that work well
for most inputs. See, e. g. [4,5,12], for a further discussion
and references. Nevertheless, algorithms for The Perfect
Phylogeny Problemmay be useful evenwhen the data does
not admit a perfect phylogeny, for example if there exists
a perfect phylogeny form � O(1) of the characters in C. In
fact, in one crucial step of their proposed character-based
methodology for determining the evolutionary history of
a set of related natural languages, Warnow, Ringe, and
Taylor [14] consider all subsets of C in decreasing order of
cardinality, repeatedly applying the algorithm of [10] un-
til a largest subset of C which admits a perfect phylogeny
is found. The ideas behind the algorithms of [1] and [10]
have also been utilized and extended by Fernández-Baca
and Lagergren [6] in their algorithm for computing near-
perfect phylogenies in which the constraints on the output
have been relaxed in order to permit non-perfect phyloge-

nies whose so-called penalty score is less than or equal to
a prespecified parameter q (see [6] for details).

The motivation for considering a bounded number of
states is that characters based on directly observable traits
are, by the way they are defined, naturally bounded by
some small number (often 2). When biomolecular data is
used to define characters, the number of allowed states is
typically bounded by a constant; e. g., r = 2 for SNP mark-
ers, r = 4 for DNAor RNA sequences, or r = 20 for amino-
acid sequences (see also Encyclopedia � Directed Per-
fect Phylogeny (Binary Characters)). Moreover, characters
with r = 2 can be useful in comparative linguistics [8].

Open Problems

An important open problem is to determine whether
the running time of the algorithm of Kannan and
Warnow [10] can be improved. As pointed out in [5], it
would be especially interesting to find out if The Perfect
Phylogeny Problem is solvable in O(22r nm) time for any r,
or more generally, in O( f (r)�nm) time, where f is a func-
tion of r which does not depend on n or m, since this
would match the fastest known algorithm for the special
case r = 2 (see Table 1). Another open problem is to es-
tablish lower bounds on the computational complexity of
The Perfect Phylogeny Problem with a bounded number
of states.

Cross References

� Directed Perfect Phylogeny (Binary Characters)
� Perfect Phylogeny Haplotyping
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ProblemDefinition

In the context of the perfect phylogeny haplotyping (PPH)
problem, each vector h 2 f0; 1gm is called a haplotype,
while each vector g 2 f0; 1; 2gm is called a genotype. Hap-
lotypes are binary encodings of DNA sequences, while
genotypes are ternary encodings of pairs of DNA se-
quences (one sequence for each of the two homologous
copies of a certain chromosome).

Two haplotypes h0 and h00 are said to resolve a geno-
type g if, at each position j: (i) if g j 2 f0; 1g then both
h0j = g j and h00j = g j ; (ii) if g j = 2 then either h0j = 0 and
h00j = 1 or h0j = 1 and h00j = 0. If h0 and h00 resolve g, we
write g = h0 + h00. An instance of the PPH problem con-
sists of a set G = fg1; g2; : : : ; gng of genotypes. A set H of
haplotypes such that, for each g 2 G, there are h0; h00 2 H
with g = h0 + h00, is called a resolving set for G.

A perfect phylogeny for a setH of haplotypes is a rooted
tree T for which
� the set of leaves is H and the root is labeled by some

binary vector r;
� each index j 2 f1; : : : ;mg labels exactly one edge of T;
� if an edge e is labeled by an index k, then, for each leaf h

that can be reached from the root via a path through e,
it is hk ¤ rk .
Without loss of generality, it can be assumed that the

vector labeling the root is r = 0. Within the PPH problem,
T is meant to represent the evolution of the sequences at
the leaves from a common ancestral sequence (the root).
Each edge labeled with an index represents a point in time
when a mutation happened at a specific site. This model
of evolution is also known as coalescent [11]. It can be
shown that a perfect phylogeny for H exists if and only if
for all choices of four haplotypes h1; : : : ; h4 2 H and two
indices i; j,

fhai h
a
j ; 1 � a � 4g 6= f00; 01; 10; 11g :

Given the above definitions, the problem surveyed in
this entry is the following:

Perfect Phylogeny Haplotyping Problem (PPH):
Given a set G of genotypes, find a resolving set H of hap-
lotypes and a perfect phylogeny T forH, or determine that
such a resolving set does not exist.

In a slightly different version of the above problem, one
may require to find all perfect phylogenies forH instead of
just one (in fact, all known algorithms for PPH do find all
perfect phylogenies).

The perfect phylogeny problem was introduced by
Gusfield [7], who also proposed a nearly linear-time
O(nm ˛(nm))-algorithm for its solution (where ˛() is the
extremely slowly growing inverse Ackerman function).
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The algorithm resorted to a reduction to a complex pro-
cedure for the graph realization problem (Bixby andWag-
ner [2]), of very difficult understanding and implementa-
tion. Later approaches for PPH proposed much simpler,
albeit slower, O(nm2)-algorithms (Bafna et al. [1]; Eskin
et al. [6]). However, a major question was left open: does
there exist a linear-time algorithm for PPH? In [7], Gus-
field conjectured that this should be the case. The 2005 al-
gorithm by Ding, Filkov, and Gusfield [5] surveyed in this
entry settles the above conjecture in the affirmative.

Key Results
The main idea of the algorithm is to find the maximal sub-
graphs that are common to all PPH solutions. Let us call
P-class a maximal sub-graph of all PPH trees for G. The
authors show that each P-class consists of two sub-trees
which, in each PPH solution, can appear in either one of
two possible ways (called flips of the P-class) with respect
to any fixed P-class taken as a reference. Hence, if there are
k P-classes, there are 2k�1 distinct PPH solutions.

The algorithm resorts to an original and effective data
structure, called the shadow tree, which gives an implicit
representation of all P-classes. The data structure is built
incrementally, by processing one genotype at a time. The
total cost for building and updating the shadow tree is lin-
ear in the input size (i. e., in nm). A detailed description
of the shadow tree requires a rather large number of def-
initions, possibly accompanied by figures and examples.
Here, we will introduce only its basic features, those that
allow us to state the main theorems of [5].

The shadow tree is a particular type of directed rooted
tree, which contains both edges and links (strictly speaking,
the latter are just arcs, but they are called links to underline
their specific use in the algorithm). The edges are of two
types: tree-edges and shadow-edges, and are associated to
the indices f1; : : : ;mg. For each index i, there is a tree-edge
labeled ti and a shadow-edge labeled si. Both edges and
links are oriented, with their head closer to the root than
their tail. Other than the root, each node of the shadow tree
is the endpoint of exactly one tree-edge or one shadow-
edge (while the root is the head of two “dummy” links).
The links are used to connect certain tree- and shadow-
edges. A link can be either free or fixed. The head of a free
link can still be changed during the execution of the algo-
rithm, but once a link is fixed, it cannot be changed any
more.

Tree-edges, shadow-edges and fixed links are orga-
nized into classes, which are sub-graphs of the shadow tree.
Each fixed link is contained in exactly one class, while each
free link connects one class to another, called its parent.
For each index i, if the tree-edge ti is in a class X, then

the shadow-edge si is in X as well, so that a class can be
seen as a pair of “twin” sub-trees of the shadow tree. The
free links point out from the root of the sub-trees (the
class roots). Classes change during the running of the algo-
rithm. Specifically, classes are created (containing a single
tree- and shadow-edge)when a new genotype is processed;
a class can bemergedwith its parent, by fixing a pair of free
edges; finally, a class can be flipped, by switching the heads
of the two free links that connect the class roots to the par-
ent class.

A tree T is said to be “contained in” a shadow tree if
T can be obtained by flipping some classes in the shadow
tree, followed by contracting all links and shadow-edges.
Let us call contraction of a class the sub-graph (consisting
of a pair of sub-trees, made of tree-edges only) that is ob-
tained from a class X of the shadow tree by contracting all
fixed links and shadow-edges of X. The following are the
main results obtained in [5]:

Proposition 1 Every P-class can be obtained by contrac-
tion of a class of the final shadow tree produced by the al-
gorithm. Conversely, every contraction of a class of the final
shadow tree is a P-class.

Theorem 1 Every PPH solution is contained in the final
shadow tree produced by the algorithm. Conversely, every
tree contained in the final shadow tree is a distinct PPH so-
lution.

Theorem 2 The total time required for building and up-
dating the shadow tree is O(nm).

Applications
The PPH problem arises in the context of Single Nucleotide
Polymorphisms (SNP’s) analysis in human genomes.
A SNP is the site of a single nucleotide which varies in
a statistically significant way in a population. The deter-
mination of SNP locations and of common SNP patterns
(haplotypes) are of uttermost importance. In fact, SNP
analysis is used to understand the nature of several genetic
diseases, and the international Haplotype Map Project is
devoted to SNP study (Helmuth [9]).

The values that a SNP can take are called its alleles. Al-
most all SNPs are bi-allelic, i. e., out of the four nucleotides
A, C, T, G, only two are observed at any SNP. Humans are
diploid organisms, with DNA organized in pairs of chro-
mosomes (of paternal and of maternal origin). The se-
quence of alleles on a chromosome copy is called a haplo-
type. Since SNPs are bi-allelic, haplotypes can be encoded
as binary strings. For a given SNP, an individual can be
either homozygous, if both parents contributed the same
allele, or heterozygous, if the paternal and maternal alleles
are different.
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Haplotyping an individual consists of determining his
two haplotypes. Haplotyping a population consists of hap-
lotyping each individual of the population. While it is to-
day economically infeasible to determine the haplotypes
directly, there is a cheap experiment which can determine
the (less informative and often ambiguous) genotypes.

A genotype of an individual contains the conflated in-
formation about the two haplotypes. For each SNP, the
genotype specifies which are the two (possibly identical)
alleles, but does not specify their origin (paternal or ma-
ternal). The ternary encoding that is used to represent
a genotype g has the following meaning: at each SNP j, it
is g j = 0 (respectively, 1) if the individual is homozygous
for the allele 0 (respectively, 1), and g j = 2 if the individual
is heterozygous. There may be many possible pairs of hap-
lotypes that justify a particular genotype (there are 2k�1

pairs of haplotypes that can resolve a genotype with k het-
erozygous SNPs). Given a set of genotypes, in order to de-
termine the correct resolving set out of the exponentially
many possibilities, one imposes some “biologically mean-
ingful” constraints that the solutionmust possess. The per-
fect phylogeny model (coalescent) requires that the resolv-
ing set must fit a particular type of evolutionary tree. That
is, all haplotypes should descend from some ancestral hap-
lotype, via mutations that happened (only once) at spe-
cific sites over time. The coalescent model is accurate es-
pecially for short haplotypes (for longer haplotypes there
is also another type of evolutionary event, recombination,
that should be taken into account).

The linear-time PPH algorithm is of significant prac-
tical value in two respects. First, there are instances of the
problem where the number of SNPs considered is fairly
large (genotypes can extend over several kilo-bases). For
these long instances, the advantage of anO(nm) algorithm
with respect to the previous O(nm2) approach is evident.
On the other hand, when genotypes are relatively short,
the benefit of using the linear-time algorithm is not imme-
diately evident (both algorithms run extremely quickly).
Nevertheless, there are situations in which one has to solve
a large set of haplotyping problems, where each single
problem is defined over short genotypes. For instance, this
is the case in which one examines all “small” subsets of
SNPs in order to determine the subsets for which there is
a PPH solution. In this type of application, the gain of ef-
ficiency with the use of the linear-time PPH algorithm is
significant (Chung and Gusfield [4]; Wiuf [14]).

Open Problems

A linear-time algorithm is the best possible for PPH, and
no open problems are listed in [5].

Experimental Results

The algorithm has been implemented in C and its perfor-
mance has been compared with the previous fastest PPH
algorithm, i. e. DPPH (Bafna et al. [1]). In the case of
m = 2000 and n = 1000, the algorithm is about 250-times
faster than DPPH, and is capable of solving an instance
in an average time of 2 seconds, versus almost 8 minutes
needed by DPPH (on a “standard” 2005 Personal Com-
puter). The smaller instances (e. g., withm = 50 SNPs) are
such that the superior performance of the algorithm is not
as evident, with an average running time of 0.07 seconds
versus 0.2 seconds. However, as already remarked, when
the small instances are executed within a loop, the speed-
up turns out to be again of two or more orders of magni-
tude.

Data Sets

The data sets used in [5] have been generated by the pro-
gramms (Hudson [12]), which is the widely used standard
for instance generation reflecting the coalescent model of
SNP sequence evolution. Real-life instances can be found
at the HapMap web site http://www.hapmap.org.

URL to Code

http://wwwcsif.cs.ucdavis.edu/~gusfield/lpph/
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ProblemDefinition

Circuit partitioning consists of dividing the circuit into
parts each of which can be implemented as a separate com-
ponent (e. g., a chip), that satisfies the design constraints.

The work of Rajaraman andWong [5] considers the prob-
lem of dividing a circuit into components, subject to area
constraints, such that the maximum delay at the outputs is
minimized.

A combinational circuit can be represented as a di-
rected acyclic graph G = (V ; E), where V is the set of
nodes, and E is the set of directed edges. Each node rep-
resents a gate in the network and each edge (u, v) in E rep-
resents an interconnection between gates u and v in the
network. The fanin of a node is the number of edges in-
cident into it, and the fanout of of a node is the number
of edges incident out of it. A primary input (PI) is a node
with fanin 0, while a primary output (PO) is a node with
fanout 0. Each node has a weight and a delay associated
with it.

Definition 1 A clustering of a network G = (V ; E) is
a triple (H; �;˙), where
1. H = (V 0; E0) is a directed acyclic graph.
2. ' is a function mapping V 0 to V such that
� For every edge (u0; v0) 2 E0, (�(u0); �(v0)) 2 E.
� For every node v0 2 V 0 and edge (u; �(v0)) 2 E,

there exists a unique u0 2 V 0 such that �(u0) = u
and (u0; v0) 2 E0.

� For every PO node v 2 V , there exists a unique
v0 2 V 0 such that �(v0) = v.

3. ˙ is a partition of V 0.

Let 
 = (H = (V 0; E0); �;˙) be a clustering of G. For
v 2 V , v0 2 V 0, if �(v0) = v, we call v0 a copy of v. The set
V 0 consists of all the copies of the nodes in V that appear
in the clustering. A node v0 is a PI (respectively, PO) in 

if �(v0) is a PI (respectively, PO) in G. It follows from the
definition of ' that H is logically equivalent to G.

The weights and delays on the individual nodes in G
yield weights and delays of nodes in H0 and a delay for the
clustering 
 . The weight (respectively, delay) of an node v0

inV 0 is the weight (respectively, delay) of �(v). The weight
of any cluster C 2 ˙ , denoted by W(C), is the sum of the
weights of the nodes in C. The delay of a clustering is given
by the general delay model of Murgai et al. [3], which is as
follows. The delay of an edge (u0; v0) 2 E0 is D (which is
a given parameter) if u0 and v0 belong to different elements
of ˙ and zero otherwise. The delay along a path in H0 is
simply the sum of the delays of the edges of the path. Fi-
nally, the delay of 
 is the delay of a maximum-delay path
in H0, among all the paths from a PI node to a PO node
in H0.

Definition 2 Given a combinational network G = (V ; E)
with weight function w : V ! R+, weight capacity M and
a delay function ı : V ! R+, we say that a clustering

 = (H; �;˙) is feasible if for every cluster C 2 ˙ ,W(C)



Phylogenetic Tree Construction from a Distance Matrix P 651

is at most M. The circuit clustering problem is to compute
a feasible clustering 
 ofG such that the delay of 
 is min-
imum among all feasible clusterings of G.

An early work of Lawler et al. [2] presented a polynomial-
time optimal algorithm for the circuit clustering problem
in the special case where all the gate delays are zero (i. e.,
ı(v) = 0 for all v).

Key Results

Rajaraman and Wong [5] presented an optimal polyno-
mial-time algorithm for the circuit clustering problem un-
der the general delay model.

Theorem 1 There exists an algorithm that computes an
optimal clustering for the circuit clustering problem in
O(n2 log n + nm) time, where n and m are the vertices and
edges, respectively, of the given combinational network.

This result can be extended to compute optimal cluster-
ings under any monotone clustering constraint. A clus-
tering constraint is monotone if any connected subset of
nodes in a feasible cluster is also monotone [2].

Theorem 2 The circuit clustering problem can be solved
optimally under any monotone clustering constraint in time
polynomial in the size of the circuit.

Applications

Circuit partitioning/clustering is an important component
of very large scale integration design. One application of
the circuit clustering problem formulated above is to im-
plement a circuit on multiple field programmable gate ar-
ray chips. The work of Rajaraman and Wong focused on
clustering combinational circuits to minimize delay under
area constraints. Related studies have considered other im-
portant constraints, such as pin constraints [1] and a com-
bination of area and pin constraints [6]. Further work has
also included clustering sequential circuits (as opposed to
combinational circuits) with the objective of minimizing
the clock period [4].

Experimental Results

Rajaraman and Wong reported experimental results on
five ISCAS (International Symposium on Circuits and
Systems) circuits. The number of nodes in these circuits
ranged from 196 to 913. They reported the maximum de-
lay of the clusterings and running times of their algorithm
on a Sun Sparc workstation.
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Phylogenetic tree construction from a dissimilarity ma-
trix

ProblemDefinition

Let n be a positive integer. A distance matrix of or-
der n (also called a dissimilarity matrix of order n) is
a matrix D of size (n � n) which satisfies: (1) Di; j > 0
for all i; j 2 f1; 2; : : : ; ng with i ¤ j; (2) Di; j = 0 for all
i; j 2 f1; 2; : : : ; ng with i = j; and (3) Di; j = Dj;i for all
i; j 2 f1; 2; : : : ; ng.

Below, all trees are assumed to be unrooted and
edge-weighted. For any tree T , the distance between two
nodes u and v in T is defined as the sum of the weights
of all edges on the unique path in T between u and v,
and is denoted by dTu;v . A tree T is said to realize a given
distance matrix D of order n if and only if it holds that
f1; 2; : : : ; ng is a subset of the nodes of T and dTi; j = Di; j
for all i; j 2 f1; 2; : : : ; ng. Finally, a distance matrix D is
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called additive or tree-realizable if and only if there exists
a tree which realizes D.

Problem 1 (The Phylogenetic Tree from Distance Ma-
trix Problem)
INPUT: An distance matrix D of order n.
OUTPUT: A tree which realizes D and has the smallest pos-
sible number of nodes, if D is additive; otherwise, null.

See Fig. 1 for an example.
In the time complexities listed below, the time needed

to input all ofD is not included. Instead,O(1) is charged to
the running time whenever an algorithm requests to know
the value of any specified entry of D.

Key Results

Several authors have independently shown how to solve
The Phylogenetic Tree from Distance Matrix Problem.
The fastest of these algorithms run in O(n2) time1:

Theorem 1 ([2,4,5,7,15]) There exists an algorithmwhich
solves The Phylogenetic Tree from DistanceMatrix Problem
in O(n2) time.

Although the algorithms are different, it can be proved
that:

Theorem 2 ([8,15]) For any given distance matrix, the so-
lution to The Phylogenetic Tree fromDistanceMatrix Prob-
lem is unique.

Furthermore, the algorithms referred to in Theorem 1
have optimal running time since any algorithm for The
Phylogenetic Tree from Distance Matrix Problem must in
the worst case query all ˝(n2) entries of D to make sure
that D is additive. However, if it is known in advance that
the input distance matrix is additive then the time com-
plexity improves, as shown by Hein [9]:

Theorem 3 ([9,12]) There exists an algorithm which
solves The Phylogenetic Tree from Distance Matrix Prob-
lem restricted to additive distance matrices in O(kn logk n)
time, where k is the maximum degree of the tree that real-
izes the input distance matrix2.

The algorithm of Hein [9] starts with a tree containing just
two nodes and then successively inserts each node i into
the tree by repeatedly choosing a pair of existing nodes and
computing where on the path between them that i should

1See [5] for a short survey of older algorithms which do not run
in O(n2) time.

2For this case, the Culberson-Rudnicki algorithm [5] runs in
O(n3/2

p
k) time for trees in which all edge weights are equal to 1,

and not in O(kn logk n) time as claimed in [5]. See [12] for a coun-
terexample to [5] and a correct analysis.

be attached, until i’s position has been determined. (The
same basic technique is used in the O(n2)-time algorithm
of Waterman et al. [15] referenced to by Theorem 1 above,
but the algorithm of Hein selects paths which are more
efficient at discriminating between the possible positions
for i.)

The lower bound corresponding to Theorem 3 is given
by:

Theorem 4 ([10]) The Phylogenetic Tree from Distance
Matrix Problem restricted to additive distance matrices re-
quires˝(kn logk n) queries to the distancematrix D, where
k is the maximum degree of the tree that realizes D, even if
restricted to trees in which all edge weights are equal to 1.

Finally, note that the following special case is easily solv-
able in linear time:

Theorem 5 ([5]) There exists an O(n)-time algorithm
which solves The Phylogenetic Tree from Distance Matrix
Problem restricted to additive distance matrices for which
the realizing tree contains two leaves only and has all edge
weights equal to 1.

Applications

The main application of The Phylogenetic Tree from Dis-
tance Matrix Problem is in the construction of a tree (a so-
called phylogenetic tree) that represents evolutionary re-
lationships among a set of studied objects (e. g., species
or other taxa, populations, proteins, genes, etc.). Here, it
is assumed that the objects are indeed related according
to a tree-like branching pattern caused by an evolution-
ary process and that their true pairwise evolutionary dis-
tances are proportional to the measured pairwise dissimi-
larities. See, e. g., [1,6,7,14,15] for examples and many ref-
erences as well as discussions on how to estimate pair-
wise dissimilarities based on biological data. Other appli-
cations of The Phylogenetic Tree from Distance Matrix
Problem can be found in psychology, for example to de-
scribe semantic memory organization [1], in comparative
linguistics to infer the evolutionary history of a set of lan-
guages [11], or in the study of the filiation of manuscripts
to trace how manuscript copies of a text (whose original
version may have been lost) have evolved in order to iden-
tify discrepancies among them or to reconstruct the origi-
nal text [1,3,13].

In general, real data seldom forms additive distance
matrices [15]. Therefore, in practice, researchers consider
optimization versions of The Phylogenetic Tree from Dis-
tance Matrix Problem which look for a tree that “almost”
realizes D. Many alternative definitions of “almost” have
been proposed, and numerous heuristics and approxima-
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Phylogenetic Tree Construction from a Distance Matrix, Figure 1
a An additive distancematrixD of order 5. b A treeT which realizes D. Here, f1;2; : : : ;5g forms a subset of the nodes ofT

tion algorithms have been developed. A comprehensive
description of some of the most popular distance-based
methods for phylogenetic reconstruction as well as more
background information can be found in, e. g., Chapt. 11
of [6] or Chapt. 4 of [14]. See also [1] and [16] and the
references therein.

Cross References

� Distance-Based Phylogeny Reconstruction
(Fast-Converging)

� Distance-Based Phylogeny Reconstruction (Optimal
Radius)
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ProblemDefinition

Let S be a set of n points in the plane and let G be an
undirected graph with vertex set S, in which each edge
(u; v) has a weight, which is equal to the Euclidean dis-
tance |uv| between the points u and v. For any two points
p and q in S, their shortest-path distance in G is denoted
by ıG (p; q). If t � 1 is a real number, then G is a t-spanner
for S if ıG (p; q) � tjpqj for any two points p and q in S.
Thus, if t is close to 1, then the graph G contains close ap-
proximations to the

�n
2
�
Euclidean distances determined by

the pairs of points in S. If, additionally, G consists of O(n)
edges, then this graph can be considered a sparse approx-
imation to the complete graph on S. The smallest value of
t for which G is a t-spanner is called the stretch factor (or
dilation) of G. For a comprehensive overview of geometric
spanners, see the book by Narasimhan and Smid [16].

Assume that each edge (u; v) of G is embedded as
the straight-line segment between the points u and v. The
graphG is said to be plane if its edges intersect only at their
common vertices.

In this entry, the following two problems are con-
sidered:

Problem 1 Determine the smallest real number t > 1 for
which the following is true: For every set S of n points in the
plane, there exists a plane graph with vertex set S, which is
a t-spanner for S. Moreover, design an efficient algorithm
that constructs such a plane t-spanner.

Problem 2 Determine the smallest positive integer D for
which the following is true: There exists a constant t, such
that for every set S of n points in the plane, there exists
a plane graph with vertex set S and maximum degree at
most D, which is a t-spanner for S. Moreover, design an ef-
ficient algorithm that constructs such a plane t-spanner.

Key Results

Let S be a finite set of points in the plane that is in gen-
eral position, i. e., no three points of S are on a line and
no four points of S are on a circle. The Delaunay trian-
gulation of S is the plane graph with vertex set S, in which
(u; v) is an edge if and only if there exists a circle through u
and v that does not contain any point of S in its interior.
(Since S is in general position, this graph is a triangula-
tion.) The Delaunay triangulation of a set of n points in
the plane can be constructed in O(n log n) time. Dobkin,
Friedman and Supowit [10] were the first to show that the

stretch factor of the Delaunay triangulation is bounded
by a constant: They proved that the Delaunay triangula-
tion is a t-spanner for t = 
(1 +

p
5)/2. The currently best

known upper bound on the stretch factor of this graph is
due to Keil and Gutwin [12]:

Theorem 1 Let S be a finite set of points in the plane.
The Delaunay triangulation of S is a t-spanner for S, for
t = 4


p
3/9.

A slightly stronger result was proved by Bose et al. [3].
They proved that for any two points p and q in S, the
Delaunay triangulation contains a path between p and q,
whose length is at most (4


p
3/9)jpqj and all edges on this

path have length at most |pq|.
Levcopoulos and Lingas [14] generalized the result of

Theorem 1: Assume that the Delaunay triangulation of the
set S is given. Then, for any real number r > 0, a plane
graph G with vertex set S can be constructed in O(n) time,
such thatG is a t-spanner for S, where t = (1+1/r)4


p
3/9,

and the total length of all edges in G is at most 2r + 1 times
the weight of a minimum spanning tree of S.

The Delaunay triangulation can alternatively be de-
fined to be the dual of the Voronoi diagram of the set S. By
considering the Voronoi diagram for a metric other than
the Euclidean metric, a corresponding Delaunay triangu-
lation is obtained. Chew [7] has shown that the Delaunay
triangulation based on the Manhattan-metric is a

p
10-

spanner (in this spanner, path-lengths are measured in the
Euclidean metric). The currently best result for Problem 1
is due to Chew [8]:

Theorem 2 Let S be a finite set of points in the plane, and
consider the Delaunay triangulation of S that is based on the
convex distance function defined by an equilateral triangle.
This plane graph is a 2-spanner for S (where path-lengths
are measured in the Euclidean metric).

Das and Joseph [9] have generalized the result of Theo-
rem 1 in the following way (refer to Fig. 1). LetG be a plane
graph with vertex set S and let ˛ be a real number with
0 < ˛ < 
/2. For any edge e of G, let �1 and �2 be the
two isosceles triangles with base e and base angle ˛. The
edge e is said to satisfy the ˛-diamond property, if at least
one of the triangles�1 and�2 does not contain any point
of S in its interior. The plane graph G is said to satisfy the
˛-diamond property, if every edge e ofG satisfies this prop-
erty. For a real number d � 1, G satisfies the d-good poly-
gon property, if for every face f of G, and for every two
vertices p and q on the boundary of f , such that the line
segment joining them is completely inside f , the shortest
path between p and q along the boundary of f has length
at most d|pq|. Das and Joseph [9] proved that any plane
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Planar Geometric Spanners, Figure 1
On the left, the ˛-diamond property is illustrated. At least one of the triangles �1 and �2 does not contain any point of S in its
interior. On the right, the d-good polygon property is illustrated. p and q are two vertices on the same face f which can see each
other. At least one of the two paths between p and q along the boundary of f has length at most d|pq|

graph satisfying both the ˛-diamond property and the d-
good polygon property is a t-spanner, for some real num-
ber t that depends only on ˛ and d. A slight improvement
on the value of t was obtained by Lee [13]:

Theorem 3 Let ˛ 2 (0; 
/2) and d � 1 be real numbers,
and let G be a plane graph that satisfies the ˛-diamond
property and the d-good polygon property. Then, G is a t-
spanner for the vertex set of G, where

t =
8(
 � ˛)2d
˛2 sin2(˛/4)

:

To give some examples, it is not difficult to show that the
Delaunay triangulation satisfies the ˛-diamond property
with ˛ = 
/4. Drysdale et al. [11] have shown that the
minimum weight triangulation satisfies the ˛-diamond
property with ˛ = 
/4:6. Finally, Lee [13] has shown that
the greedy triangulation satisfies the ˛-diamond property
with ˛ = 
/6. Of course, any triangulation satisfies the d-
good polygon property with d = 1.

Now consider Problem 2, that is, the problem of con-
structing plane spanners whose maximum degree is small.
The first result for this problem is due to Bose et al. [2].
They proved that the Delaunay triangulation of any fi-
nite point set contains a subgraph of maximum degree at
most 27, which is a t-spanner (for some constant t). Li
and Wang [15] improved this result, by showing that the
Delaunay triangulation contains a t-spanner of maximum
degree at most 23. Given the Delaunay triangulation, the
subgraphs in [2,15] can be constructed in O(n) time. The
currently best result for Problem 2 is by Bose et al. [6]:

Theorem 4 Let S be a set of n points in the plane. The
Delaunay triangulation of S contains a subgraph of maxi-
mum degree at most 17, which is a t-spanner for S, for some

constant t. Given the Delaunay triangulation of S, this sub-
graph can be constructed in O(n) time.

In fact, the result in [6] is more general:

Theorem 5 Let S be a set of n points in the plane, let
˛ 2 (0; 
/2) be a real number, and let G be a triangulation
of S that satisfies the ˛-diamond property. Then, G contains
a subgraph ofmaximumdegree at most 14 + d2
/˛e, which
is a t-spanner for S, where t depends only on ˛. Given the
triangulation G, this subgraph can be constructed in O(n)
time.

Applications

Plane spanners have applications in on-line path-finding
and routing problems that arise in, for example, geo-
graphic information systems and communication net-
works. In these application areas, the complete environ-
ment is not known, and routing has to be done based only
on the source, the destination, and the neighborhood of
the current position. Bose and Morin [4,5] have shown
that, in this model, good routing strategies exist for plane
graphs, such as the Delaunay triangulation and graphs
that satisfy both the ˛-diamond property and the d-good
polygon property. These strategies are competitive, in the
sense that the paths computed have lengths that are within
a constant factor of the Euclidean distance between the
source and destination. Moreover, these routing strategies
use only a limited amount of memory.

Open Problems

None of the results for Problems 1 and 2 that are men-
tioned in Sect. “Key Results” seem to be optimal. The fol-
lowing problems are open:
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1. Determine the smallest real number t, such that the De-
launay triangulation of any finite set of points in the
plane is a t-spanner. It is widely believed that t = 
/2.
By Theorem 1, t � 4


p
3/9.

2. Determine the smallest real number t, such that a plane
t-spanner exists for any finite set of points in the plane.
By Theorem 2, t � 2. By taking S to be the set of four
vertices of a square, it follows that tmust be at least

p
2.

3. Determine the smallest integer D, such that the Delau-
nay triangulation of any finite set of points in the plane
contains a t-spanner (for some constant t) of maximum
degree at most D. By Theorem 4, D � 17. It follows
from results in Aronov et al. [1] that the value ofDmust
be at least 3.

4. Determine the smallest integer D, such that a plane t-
spanner (for some constant t) of maximum degree at
mostD exists for any finite set of points in the plane. By
Theorem 4 and results in [1], 3 � D � 17.

Cross References

� Applications of Geometric Spanner Networks
� Dilation of Geometric Networks
� Geometric Spanners
� Sparse Graph Spanners
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Keywords and Synonyms
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ProblemDefinition

The problem is to determine whether or not the input
graph G is planar. The definition pertinent to planarity-
testing algorithms is: G is planar if there is an embedding
of G into the plane (vertices of G are mapped to distinct
points and edges of G are mapped to curves between their
respective endpoints) such that edges do not cross. Algo-
rithms that test the planarity of a graph can be modified to
obtain such an embedding of the graph.

Key Results

Theorem 1 There is an algorithm that given a graph G
with n vertices, determines whether or not G is planar in
O(n) time.

The first linear-time algorithm was obtained by Hopcroft
and Tarjan [5] by analyzing an iterative version of a recur-
sive algorithm suggested by Auslander and Parter [1] and
corrected by Goldstein [4]. The algorithm is based on the
observation that a connected graph is planar if and only
if all its biconnected components are planar. The recur-
sive algorithm works with each biconnected component
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in turn: find a separating cycle C and partition the edges
of G not in C; define a component of the partition as con-
sisting of edges connected by a path in G that does not use
an edge of C; and, recursively consider each cyclic compo-
nent of the partition. If each component of the partition
is planar and the components can be combined with C to
give a planar graph, then G is planar.

Another method for determining planarity was sug-
gested by Lempel, Even, and Cederbaum [6]. The algo-
rithm starts with embedding a single vertex and the edges
adjacent to this vertex. It then considers a vertex adjacent
to one of these edges. For correctness, the vertices must be
considered in a particular order. This algorithm was first
implemented in O(n) time by Booth and Lueker [2] us-
ing an efficient implementation of the PQ-trees data struc-
ture. Simpler implementations of this algorithm have been
given by Boyer and Myrvold [3] and Shih and Hsu [8].

Tutte gave an algebraic method for giving a straight-
line embedding of a graph that, if the input graph is 3-
connected and planar, is guaranteed to generate a planar
embedding. The key idea is to fix the vertices of one face of
the graph to be the corners of a convex polygon and then
embed every other vertex as the geometric average of its
neighbors.

Applications

Planarity testing has applications to computer-aided cir-
cuit design and VLSI layout by determining whether
a given network can be realized in the plane.

URL to Code

LEDA has an efficient implementation of the Hopcroft
and Tarjan planarity testing algorithm [7]: http://www.
algorithmic-solutions.info/leda_guide/graph_algorithms/
planar_kuratowski.html
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Keywords and Synonyms

Point set matching; Geometric matching; Geometric
alignment; Largest common point set

ProblemDefinition

LetR denote the set of reals andRd the d-dimensional real
space. A finite subset of Rd is called a point set. The set of
all point sets (subsets of Rd ) is denoted P(Rd ).

Point pattern matching problems ask for finding sim-
ilarities between point sets under some transformations.
In the basic set–up a target point set T � Rd and a pat-
tern point set (point pattern) P � Rd are given, and the
problem is to locate a subset I of T (if it exists) such that P
matches I. Matching here means that P becomes exactly
or approximately equal to I when a transformation from
a given setF of transformations is applied on P.

Set F can be, for example, the set of all translations
(a constant vector added to each point in P), or all com-
positions of translations and rotations (after a translation,
each point is rotated with respect to a common origin;
this preserves the distances and is also called a rigid move-
ment), or all compositions of translations, rotations, and
scales (after translating and rotating, distances to the com-
mon origin are multiplied by a constant).

The problem variant with exact matching, called the
Exact Point Pattern Matching (EPPM) problem, requires
that f (P) = I for some f 2 F . In other words, the EPPM
problem is to decide whether or not there is an allowed
transformation f such that f (P) � T . For example, if F

http://www.algorithmic-solutions.info/leda_guide/graph_algorithms/planar_kuratowski.html
http://www.algorithmic-solutions.info/leda_guide/graph_algorithms/planar_kuratowski.html
http://www.algorithmic-solutions.info/leda_guide/graph_algorithms/planar_kuratowski.html
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is the set of translations, the problem is simply to decide
whether P + t � T for some t 2 Rd .

Approximate matching is a better model of many
situations that arise in practice. Then the quality of
the matching between f (P) and I is controlled using
a threshold parameter " � 0 and a distance function
ı : (P(Rd );P(Rd ))! R for measuring distances between
point sets. Given " � 0, the Approximate Point Pattern
Matching (APPM) problem is to determine whether there
is a subset I � T and a transformation f 2 F such that
ı( f (P); I) � ".

The choice of the distance function ı is another source
of diversity in the problem statement. A variant requires
that there is a one-to-onemapping between f (P) and I, and
each point p of f (P) is "-close to its one-to-one counterpart
p* in I, that is, jp � p�j � ". A commonly studied relaxed
version uses matching under a many-to-one mapping: it
is only required that each point of f (P) has some point
of I that is "-close; this distance is also known as the di-
rected Hausdorff distance. Still more variants come from
the choice of the norm j � j to measure the distance between
points.

Another form of approximation is obtained by al-
lowing a minimum amount of unmatched points in P:
The Largest Common Point Set (LCP) problem asks for
the largest I � T such that I � f (P) for some f 2 F .
In the Largest Approximately Common Point Set (LACP)
problem each point p� 2 I must occur "-close to a point
p 2 f (P).

Finally, a problem closely related to point pattern
matching is to evaluate for point sets A and B their small-
est distance min f2F ı( f (A); B) under transformations F
or to test if this distance is � ". This problem is called the
distance evaluation problem.

Key Results

A folk theorem is a voting algorithm to solve EPPM un-
der translations in O(jPjjTj log(jTjjPj)) time: Collect all
translations mapping each point of P to each point of T,
sort the set, and report the translation getting most votes.
If some translation gets |P| votes, then a subset I such
f (P) = I is found. With some care in organizing the sort-
ing, one can achieve O(jPjjTj log jPj) time [13].

The voting algorithm also solves the LCP problem un-
der translations. A faster algorithm specific to EPPM is as
follows: Let p1; p2; � � � pm and t1; t2; � � � tn be the lists of
pattern and target points, respectively, lexicographicly or-
dered according to their d-dimensional coordinate values.
Consider the translation fi1 = ti1 � p1, for any 1 � i1 � n.
One can scan the target points in the lexicographic order

to find a point ti2 such that p2 + fi1 = ti2 . If such is found,
one can continue scanning from ti2+1 on to find ti3 such
that p3 + fi1 = ti3 . This process is continued until a trans-
lated point of P does not occur in T or until a translated
occurrence of the entire P is found. Careful implementa-
tion of this idea leads to the following result showing that
the time bound of the naive string matching algorithm is
possible also for the exact point pattern matching under
translations.

Theorem 1 (Ukkonen et al. 2003 [13]) The EPPM
problem under translations for point pattern P and tar-
get T can be solved in O(mn) time and O(n) space where
m = jPj � jTj = n.

Quadratic running times are probably the best one can
achieve for PPM algorithms:

Theorem 2 (Clifford et al. 2006 [10]) The LCP problem
under translations is 3SUM-hard.

This means that an o(jPjjTj) time algorithm for LCP
would yield an o(n2) algorithm for the 3SUM problem,
where jTj = n and jPj = 	(n). The 3SUM problem asks,
given n numbers, whether there are three numbers a, b,
and c among them such that a + b + c = 0; finding a sub-
quadratic algorithm for 3SUM would be a surprise [5]. For
a more in-depth combinatorial characterization of the ge-
ometric properties of the EPPM problem, see [7].

For the distance evaluation problems there are
plethora of results. An excellent survey of the key re-
sults until 1999 is by Alt and Guibas [2]. As an exam-
ple, consider in the 2-dimensional case how one can de-
cide in O(n log n) time whether there is a transformation
f composed of translation, rotation and scale, such that
f (A) = B, where A; B � R2 and n = jAj = jBj: The idea
is to convert A and B into an invariant form such that
one can easily check their congruence under the trans-
formations. First, scale is taken into account by scaling A
to have the same diameter as B (in O(n log n) time). If A
and B are congruent, then they must have the same cen-
troids (which can be computed O(n) time). Consider ro-
tating a line from the centroid and listing the angles and
distances to other points in the order they are met during
the rotation. Having done this (inO(n log n) time) on both
A and B, the lists of angles and distances should be cyclic
shifts of each other; the list LA of A occurs as a substring in
LBLB , where LB is the list of B. This latter step can be done
in O(n) time using any linear time exact string matching
algorithm. One obtains the following result.

Theorem 3 (Atkinson 1987 [4]) It is possible to decide in
O(n log n) time whether there is a transformation f com-
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posed of translation, rotation and scale, such that f (A) = B,
where A; B � R2 and jAj = jBj = n.

Approximate variant of the above problem is much
harder. Denote by f (A) =" B the directed approximate
congruence of point sets A and B, meaning that there is
a one-to-one mapping from f (A) to B such that for each
point in f (A) its image in B is "-close. The following result
demonstrates the added difficulty.

Theorem 4 (Alt et al. 1988 [3]) It is possible to decide
in O(n6) time whether there is a translation f such that
f (A) =" B, where A; B � R2 and jAj = jBj = n. The same
algorithm solves the corresponding LACP problem for point
pattern P and target T under the one-to-one matching con-
dition in O((mn)3) time, where m = jPj � jTj = n.

To get an idea of the techniques to achieve the O((mn)3)
time algorithm for LACP, consider first the one-dimen-
sional version, i. e. let P; T � R. Observe, that if there
is a translation f ’ such that f 0(P) =" T , then there is
a translation f such that f (P) =" T and a point p 2 P
that is mapped exactly at "-distance of a point t 2 T .
This lets one concentrate on these 2mn representative
translations. Consider these translations sorted from left
to right. Denote the left-most translation by f . Cre-
ate a bipartite graph, whose nodes are the points in
P and in T on the different parties. There is an edge be-
tween p 2 P and t 2 T if and only if f (p) is "-close to t.
Finding amaximummatching in this graph tells the size of
the largest approximately common point set after applying
the translation f . One can repeat this on each representa-
tive translation to find the overall largest common point
set. When the representative translations are considered
from left to right, the bipartite graph instances are such
that one can compute the maximummatchings greedily at
each translation in time O(|P|) [6]. Hence, the algorithm
solves the one-dimensional LACP problem under transla-
tions and one-to-one matching condition in time O(m2n),
where m = jPj � jTj = n.

In the two-dimensional case, the set of representa-
tive translations is more implicitly defined: In short, the
mapping of each point p 2 P "-close to each point t 2 T ,
gives mn circles. The boundary of each such circle is par-
titioned into intervals such that the end points of these in-
tervals can be chosen as representative translations. There
are O((mn)2) such representative translations. As in the
one-dimensional case, each representative translation de-
fines a bipartite graph. Once the representative transla-
tions along a circle are processed e. g. counterclockwise,
the bipartite graph changes only by one edge at a time. This
allows an O(mn) time update for the maximum match-

ing at each representative translation yielding an overall
O((mn)3) time algorithm [3].

More efficient algorithms for variants of this problem
have been developed by Efrat, Itai, and Katz [11], as by-
products of more efficient bipartite matching algorithms
for points on a plane. Their main result is the following:

Theorem 5 (Efrat et al. 2001 [11]) It is possible to decide
in O(n5 log n) time whether there is a translation f such
that f (A) =" B, where A; B � R2 and jAj = jBj = n.

The problem becomes somewhat easier when the one-to-
one matching condition is relaxed; one-to-one condition
seems to necessitate the use of bipartite matching in one
form or another. Without the condition, one can match
the points independently of each other. This gives many
tools to preprocess and manipulate the point sets during
the algorithm using dynamic geometric data structures.
Such techniques are exploited e. g. in the following result.

Theorem 6 (Chew and Kedem 1992 [8]) The LACP
problem under translations and using directed Hausdorff
distance and the L1 norm, can be solved in O(mn log n)
time, where P; T � R2 and m = jPj � jTj = n. The dis-
tance evaluation problem for directed Hausdorff distance
can be solved in O(n2 log2 n) time.

Most algorithms revisited here have relatively high run-
ning times. To obtain faster algorithms, it seems that ran-
domization and approximation techniques are necessary.
See [9] for a comprehensive summary of themain achieve-
ments in that line of development.

Finally, note that the linear transformations consid-
ered here are not always enough to model a real-world
problem – even when approximate congruence is al-
lowed. Sometimes the proper transformation between two
point sets (or between their subsets) is non-linear, without
an easily parametrizable representation. Unfortunately,
the formulations trying to capture such non-uniformness
have been proven NP-hard [1] or even NP-hard to approx-
imate within any constant factor [12].

Applications

Point patternmatching is a fundamental problem that nat-
urally arises in many application domains such as com-
puter vision, pattern recognition, image retrieval, music
information retrieval, bioinformatics, dendrochronology,
and many others.

Cross References
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� Sequential Exact String Matching
� Stable Matching
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ProblemDefinition

This problem is concerned with the Nash equilibria of
a game based on the ad auction used by Google and Ya-
hoo. This research work [5] is motivated by the huge rev-
enue that the adword auction derives every year. It de-
fines two types of Nash equilibrium in the position auc-
tion game, applies economic analysis to the equilibria, and
provides some empirical evidence that the Nash equilib-
ria of the position auction describes the basic properties of
the prices observed in Google’s adword auction reasonably
accurately. The problem being studied is closely related to
the assignment game studied by [4,1,3]. And [2] has in-
dependently examined the problem and developed related
results.

The Model and its Notations

Consider the problem of assigning agents a = 1; 2; : : : ;A
to slots s = 1; 2; : : : ; S where agent a’s valuation for slot s
is given by uas = vaxs . The slots are numbered such that
x1 > x2 > : : : > xS . It is assumed that xS = 0 for all s > S
and the number of agents is greater than the number of
slots. A higher position receives more clicks, so xs can be
interpreted as the click-through rate for slot s. The value
va > 0 can be interpreted as the expected profit per click
so uas = vaxs indicates the expected profit to advertiser a
from appearing in slot s.

The slots are sold via an auction. Each agent bids
an amount ba , with the slot with the best click through
rate being assigned to the agent with the highest bid, the
second-best slot to the agent with the second highest bid,
and so on. Renumbering the agents if necessary, let vs be
the value per click of the agent assigned to slot s. The price
agent s faces is the bid of the agent immediately below him,
so pt = bt+1. Hence the net profit that agent a can expect to
make if he acquires slot s is

�
va � ps

�
xs = (va � bs+1) xs .

Definitions

Definition 1 A Nash equilibrium set of prices (NE) satis-
fies

�
vs � ps

�
xs �

�
vs � pt

�
xt; for t > s�

vs � ps
�
xs �

�
vs � pt�1

�
xt; for t < s

where pt = bt+1.
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Definition 2 A symmetric Nash equilibrium set of prices
(SNE) satisfies
�
vs � ps

�
xs �

�
vs � pt

�
xt for all t and s:

Equivalently,

vs (xs � xt) � ps xs � ptxt for all t and s:

Key Results

Facts of NE and SNE

Fact 1 (Non-negative surplus) In an SNE, vs � ps .
Fact 2 (Monotone values) In an SNE, vs�1 � vs , for all s.
Fact 3 (Monotone prices) In an SNE, ps�1xs�1 > ps xs

and ps�1 � ps for all s. If vs > ps then ps�1 > ps .
Fact 4 (NE � SNE) If a set of prices is an SNE then it is

an NE.
Fact 5 (One-step solution) If a set of bids satisfies the

symmetric Nash equilibria inequalities for s + 1 and
s � 1, then it satisfies these inequalities for all s.

Fact 6 The maximum revenue NE yields the same rev-
enue as the upper recursive solution to the SNE.

A Sufficient and Necessary Condition
of the Existence of a Pure Strategy Nash Equilibrium
in the Position Auction Game

Theorem 1 In the position auction described before, a pure
strategy Nash equilibrium exists if and only if all the inter-
vals
�
ps xs � ps+1xs+1

xs � xs+1
;
ps�1xs�1 � psxs

xs�1 � xs

�
; for s = 2; 3; : : : ; S

are non-empty.

Applications

The model studied in this paper is a simple and elegant
abstraction of the real adword auctions used by search en-
gines such as Google and Yahoo. Different search engines
have slightly different rules. For example, Yahoo ranks the
advertisers according to their bids, while Google ranks the
advertisers not only according to their bids but also ac-
cording to the likelihood of their links being clicked.

However, similar analysis can be applied to real world
situations, as the author has demonstrated above for the
Google adword auction case.
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Predecessor problem Successor problem IP lookup

ProblemDefinition

Consider an ordered universe U, and a set T � U with
jTj = n. The goal is to preprocess T, such that the fol-
lowing query can be answered efficiently: given x 2 U , re-
port the predecessor of x, i. e. maxfy 2 T j y < xg. One
can also consider the dynamic problem, where elements
are inserted and deleted into T. Let tq be the query time,
and tu the update time.

This is a fundamental search problem, with an impres-
sive number of applications. Later, this entry discusses IP
lookup (forwarding packets on the Internet), orthogonal
range queries and persistent data structures as examples.

The problem was considered in many computational
models. In fact, most models below were initially defined
to study the predecessor problem.

Comparison model: The problem can be solved through
binary search in 	(lg n) comparisons. There is a lot of
work on adaptive bounds, which may be sublogarith-
mic. Such bounds may depend on the finger distance,
the working set, entropy etc.

Binary search trees: Predecessor search is one of the fun-
damental motivations for binary search trees. In this
restrictive model, one can hope for an instance opti-
mal (competitive) algorithm. Attempts to achieve this
are described in a separate entry.1

1O(log log n)-competitive Binary Search Trees (2004; Demaine,
Harmon, Iacono, Pătraşcu)
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Word RAM: Memory is organized as words of b bits, and
can be accessed through indirection. Constant-time
operations include the standard operations in a lan-
guage such as C (addition, multiplication, shifts and
bitwise operations).
It is standard to assume the universe is U = f1; : : : ;
2`g, i. e. one deals with `-bit integers. The floating
point representation was designed so that order is pre-
served when values are interpreted as integers, so any
algorithm will also work for `-bit floating point num-
bers.
The standard transdichotomous assumption is that
b = `, so that an input integer is represented in a word.
This implies b � lg n.

Cell-probe model: This is a nonuniform model stronger
than the word RAM, in which the operations are ar-
bitrary functions on the memory words (cells) which
have already been probed. Thus, tq only counts the
number of cell probes. This is an ideal model for lower
bounds, since it does not depend on the operations im-
plemented by a particular computer.

Communication games: Let Alice have the query x, and
Bob have the set T. They are trying to find the prede-
cessor of x through � rounds of communication, where
in each roundAlice sendsmA bits, and Bob replies with
mB bits.
This can simulate the cell-probe model when mB = b
and mA is the logarithm of the memory size. Then
� � tq and one can use communication complexity to
obtain cell-probe lower bounds.

External memory: The unit of access is a page, contain-
ing B words of ` bits each. B-trees solve the problem
with query and update time O(logB n), and one can
also achieve this oblivious to the value of B.2 The cell-
probe model with b = B � ` is stronger than this model.

AC0 RAM: This is a variant of the word RAM in which
allowable operations are functions that have constant
depth, unbounded fan-in circuits. This excludes mul-
tiplication from the standard set of operations.

RAMBO: this is a variant of the RAMwith a nonstandard
memory, where words of memory can overlap in their
bits. In the static case this is essentially equivalent to
a normal RAM. However, in the dynamic case updates
can be faster due to the word overlap [5].

The worst-case logarithmic bound for comparison
search is not particularly informative when efficiency re-
ally matters. In practice, B-trees and variants are standard
when dealing with huge data sets. Solutions based on RAM

2See Cache-oblivious B-tree (2005; Bender, Demaine, Farach-
Colton).

tricks are essential when the data set is not too large, but
a fast query time is crucial, such as in software solutions to
IP lookup [7].

Key Results

Building on a long line of research, Pătraşcu and Tho-
rup [15,16] finally obtained matching upper and lower
bounds for the static problem in the word RAM, cell-
probe, external memory and communication game mod-
els.

Let S be the number of words of space available. (In
external memory, this is equivalent to S/B pages.) De-
fine a = lg S � `/n. Also define lg x = dlog2(x + 2)e, so that
lg x � 1 even if x 2 [0; 1]. Then the optimal search time is,
up to constant factors:

min

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

logb n = 	(minflogB n; log` ng)

lg `�lg na

lg `a
lg
�

a
lg n �lg

`
a

�

lg `a

lg

 
lg `a
lg lg n

a

!

(1)

The bound is achieved by a deterministic query al-
gorithm. For any space S, the data structure can be con-
structed in time O(S) by a randomized algorithm, starting
with the setT given in sorted order. Updates are supported
in expected time tq + O(S/n). Thus, besides locating the
element through one predecessor query, updates change
a minimal fraction of the data structure.

Lower bounds hold in the powerful cell-probe model,
and hold even for randomized algorithms. When S �
n1+", the optimal trade-off for communication games co-
incides to (1). Note that the case S = n1+o(1) essentially
disappears in the reduction to communication complex-
ity, because Alice’s messages only depends on lg S. Thus,
there is no asymptotic difference between S = O(n) and,
say, S = O(n2).

Upper Bounds

The following algorithmic techniques give the optimal re-
sult:
� B-trees give O(logB n) query time with linear space.
� Fusion trees, by Fredman and Willard [10], achieve

a query time of O(logb n). The basis of this is a fu-
sion node, a structure which can search among b" val-
ues in constant time. This is done by recognizing that
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only a few bits of each value are essential, and pack-
ing the relevant information about all values in a single
word.

� Van Emde Boas search [18] can solve the problem in
O(lg `) time by binary searching for the length of the
longest common prefix between the query and a value
in T. Beginning the search with a table lookup based
on the first lg n bits, and ending when there is enough
space to store all answers, the query time is reduced to
O(lg((` � lg n)/a)).

� A technique by Beame and Fich [4] can perform a mul-
tiway search for the longest common prefix, by main-
taining a careful balance between ` and n. This is rele-
vant when the space is at least n1+", and gives the third
branch of (1). Pătraşcu and Thorup [15] show how
related ideas can be implemented with smaller space,
yielding the last branch of (1).
Observe that external memory only features in the op-

timal trade-off through the O(logB n) term coming from
B-trees. Thus, it is optimal to either use the standard,
comparison-based B-trees, or use the best word RAM
strategy which completely ignores external memory.

Lower Bounds

All lower bounds before [15] where shown in the commu-
nication game model. Ajtai [1] was the first to prove a su-
perconstant lower bound. His results, with a correction by
Miltersen [12], show that for polynomial space, there ex-
ists n as a function of ` making the query time ˝(

p
lg `),

and likewise there exists ` a function of nmaking the query
complexity˝( 3

p
lg n).

Miltersen et al [13] revisited Ajtai’s proof, extending
it to randomized algorithms. More importantly, they cap-
tured the essence of the proof in an independent round
elimination lemma, which is an important tool for proving
lower bounds in asymmetric communication.

Beame and Fich [4] improved Ajtai’s lower bounds to
˝(lg `/lg lg `) and ˝(

p
lg n/lg lg n) respectively. Sen and

Venkatesh [17] later gave an improved round elimination
lemma, which can reprove these lower bounds, but also for
randomized algorithms.

Finally, using the message compression lemma of [6]
(an alternative to round elimination), Pătraşcu and Tho-
rup [15] showed an optimal trade-off for communication
games. This is also an optimal lower bound in the other
models when S � n1+", but not for smaller space.

More importantly, [15] developed the first tools for
proving lower bounds exceeding communication com-
plexity, when S = n1+o(1). This showed the first separa-
tion ever between a data structure or polynomial size, and

one of near linear size. This is fundamentally impossible
through a direct communication lower bound, since the
reduction to communication games only depends on lg S.

The full result of Pătraşcu and Thorup [15] it the trade-
off (1). Initially, this was shown only for deterministic
query algorithms, but eventually it was extended to a ran-
domized lower bound as well [16]. Among the surprising
consequences of this result was that the classic van Emde
Boas search is optimal for near-linear space (and thus for
dynamic data structures), whereas with quadratic space it
can be beaten by the technique of Beame and Fich.

A key technical idea of [15] is to analyze many queries
simultaneously. Then, one considers a communication
game involving all queries, and proves a direct-sum ver-
sion of the round elimination lemma. Arguably, the proof
is even simpler than for the regular round elimination
lemma. This is achieved by considering a stronger model
for the inductive analysis, in which the algorithm is al-
lowed to reject a large fraction of the queries before start-
ing to make probes.

Bucketing

The rich recursive structure of the problem can not only
be used for fast queries, but also to optimize the space and
update time – of course, within the limits of (1). The idea
is to place ranges of consecutive values in buckets, and in-
clude a single representative of each bucket in the prede-
cessor structure. After performing a query on the prede-
cessor structure (now with fewer elements), one need only
search within the relevant bucket.

Because buckets of size wO(1) can be handled in con-
stant time by fusion trees, it follows that factors of w in
space are irrelevant. A more extreme application of the
idea is given by exponential trees [3]. Here buckets have
size 	(n1�� ), where � is a sufficiently small constant.
Buckets are handled recursively in the same way, lead-
ing to O(lg lg n) levels. If the initial query time is at least
tq � lg" n, the query times at each level decrease geometri-
cally, so overall time only grows by a constant factor. How-
ever, any polynomial space is reduced to linear, for an ap-
propriate choice of � . Also, the exponential tree can be up-
dated in O(tq) time, even if the original data structure was
static.

Applications

Perhaps the most important application of predecessor
search is IP lookup. This is the problem solved by routers
for each packet on the Internet, when deciding which sub-
network to forward the packet to. Thus, it is probably the
most run algorithmic problem in the world. Formally, this
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is an interval stabbing query, which is equivalent to pre-
decessor search in the static case [9]. As this is a prob-
lem where efficiency really matters, it is important to note
that the fastest deployed software solutions [7] use inte-
ger search strategies (not comparison-based), as theoreti-
cal results would predict.

In addition, predecessor search is used pervasively in
data structures, when reducing problems to rank space.
Given a set T, one often wants to relabel it to the simpler
f1; : : : ; ng (“rank space”), while maintaining order rela-
tions. If one is presented with new values dynamically, the
need for a predecessor query arises. Here are a couple of
illustrative examples:
� In orthogonal range queries, one maintains a set of

points in Ud, and queries for points in some rectan-
gle [a1; b1] � � � � � [ad ; bd ]. Though bounds typically
grow exponentially with the dimension, the depen-
dence on the universe can be factored out. At query
time, one first runs 2d predecessor queries transform-
ing the universe to f1; : : : ; ngd .

� To make pointer data structures persistent [8], an out-
going link is replaced by a vector of pointers, each valid
for some period of time. Deciding which link to follow
(given the time being queried) is a predecessor prob-
lem.
Finally, it is interesting to note that the lower bounds

for predecessor hold, by reductions, for all applications
described above. To make these reductions possible, the
lower bounds are in fact shown for the weaker colored pre-
decessor problem. In this problem, the values in T are col-
ored red or blue, and the query only needs to find the color
of the predecessor.

Open Problems

It is known [2] how to implement fusion trees withAC0 in-
structions, but not the other query strategies. What is the
best query trade-off achievable on the AC0 RAM? In par-
ticular, can van Emde Boas search be implemented with
AC0 instructions?

For the dynamic problem, can the update times be
made deterministic? In particular, can van Emde Boas
search be implemented with fast deterministic updates?
This is a very appealing problem, with applications to de-
terministic dictionaries [14]. Also, can fusion nodes be up-
dated deterministically in constant time? Atomic heaps
[11] achieve this when searching only among (lg n)" ele-
ments, not b".

Finally, does an update to the predecessor structure re-
quire a query? In other words, can tu = o(tq) be obtained,
while still maintaining efficient query times?
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ProblemDefinition

The Price of Anarchy, captures the lack of coordination in
systems where users are selfish andmay have conflicted in-
terests. It was first proposed by Koutsoupias and Papadim-
itriou in [9], where the term coordination ratio was used
instead, but later Papadimitriou in [12] coined the term
Price of Anarchy, that finally prevailed in the literature.

Roughly, the Price of Anarchy is the system cost
(e. g. makespan, average latency) of the worst-case Nash
Equilibrium over the optimal system cost, that would be
achieved if the players were forced to coordinate. Although
it was originally defined in order to analyze a simple load-
balancing game, it was soon applied to numerous variants
and to more general games. The family of (weighted) con-
gestion games [11,13] is a nice abstract form to describe
most of the alternative settings.

The Price of Anarchy may vary, depending on the
� equilibirium solution concept (e. g. pure, mixed, corre-

lated equilibria)
� characteristics of the congestion game
� Players Set (e. g. atomic – non atomic)
� Strategy Set (e. g. symmetric-asymmetric, parallel

machines-network-general)
� Utility (e. g. linear, polynomial)

� social cost (e. g. maximum, sum, total latency).

Notations

Let G be a (finite) game, that is determined by the triple
(N; (Si )i2N ; (ci )i2N). N = f1; : : : ; ng is the set of the play-
ers, that participate in the game. Si is a pure strategy set for
player i. An element Ai 2 Si is a pure strategy for player
i 2 N. A pure strategy profile A = (A1; : : : ;An) is a vector
of pure strategies, one for each player. The set of all possi-
ble pure strategy profiles is denoted by S = S1 � : : : � Sn .
The cost of a player i 2 N , for a pure strategy, is deter-
mined by a cost function ci : S 7! R.

A pure strategy profile A is a pure Nash equilibrium, if
none of the players i 2 N can benefit, by unilaterally devi-

ating to another pure strategy si 2 Si :

ci (A) � ci (A�i ; si ) 8i 2 N; 8si 2 Si ;

where (A�i,si) is the simple strategy profile that results
when just the player i deviates from strategy Ai 2 Si to
strategy si 2 Si .

A mixed strategy pi for a player i 2 N , is a probability
distribution over her pure strategy set Si . A mixed strat-
egy profile p is the tuple p = (p1; : : : pn), where player i
chooses mixed strategy pi. The expected cost of a player
i 2 N with respect to the p, is

ci (p) =
X
A2S

p(A)ci (A) ;

where p(A) =
Q

i2N pi (Ai ) is the probability that pure
strategy A occurs, with respect to (pi )i2N . A mixed strat-
egy profile p is a Nash Equilibrium, if and only if

ci (p) � ci (p�i ; si ) 8i 2 N; 8si 2 Si :

The social cost of a pure strategy profile A, denoted
by SC(A), is the maximum cost of a player MAX(A)
= maxi2N ci (A) or the average cost of a player. For sim-
plicity, the sum of the players cost is considered (that is n
times the average cost) SUM(A) =

P
i2N ci (A). The same

definitions extend naturally for the case of mixed strate-
gies, but with expected costs in this case.

The (mixed) Price of Anarchy [9] for a game, is the
worst-case ratio, among all the (mixed) Nash Equilibria, of
the social cost over the optimal cost, OPT = minP2S SC(P).

PA = max
p is N.E.

SC(p)
OPT

:

The Price of Anarchy for a class of games, is the maximum
(supremum) price of anarchy among all the games of this
class.

Congestion Games Here, a general class of games is
described, that contains most of the games for which
Price of Anarchy is studied in the literature. A conges-
tion game [11,13], is defined by the tuple (N; E; (Si )i2N ;
( fe)e2E ), where N = f1; : : : ; ng is a set of players, E is a set
of facilities, Si 
 2E is the pure strategy set for player i;
a pure strategy Ai 2 Si is a subset of the facility set, and
f e is a cost (or latency) function1 with respect to the facility
e 2 E.

1Unless otherwise stated, linear cost functions are considered
throughout this article. For additional results on more general cost
functions see entries� Best Response Algorithms for Selfish Routing,
� Computing Pure Equilibria in the Game of Parallel Links, � Price
of Anarchy for Routing on Parallel Links
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A pure strategy profile A = (A1; : : : ;An) is a vector of
pure strategies, one for each player. The cost ci(A) of player
i for the pure strategy profile A is given by

ci (A) =
X
e2Ai

fe(ne (A)) ;

where ne(A) is the number of the players that use facility
e in A.

In general games, a pure Nash equilibrium may not
exist. Rosenthal [13] showed that every congestion game
possess at least a pure Nash equilibrium. In particular he
defined a potential function over the strategy space

˚(A) =
X
e2E

ne (A)X
i=1

fe(i) :

He proved that every local optimum of this potential func-
tion is a pure Nash Equilibrium.

˚(A) � ˚(A�i ; si ); 8i 2 N; si 2 Si :

A congestion game is called symmetric or single-
commodity, if all the players have the same strategy set:
Si = C. The term asymmetric or multi-commodity is used,
to refer to all the games including the symmetric ones.

A special class of congestion games is the class of net-
work congestion games. In this games, the facilities are
edges of a (multi)graph G(V ,E). The pure strategy set for
a player i 2 N is the simple paths set from a source si 2 V
to a destination ti 2 V . In network symmetric congestion
games, all the players have the same source and destina-
tion.

A natural generalization of congestion games are the
weighted congestion games, where every player controls an
amount of traffic wi. The cost of each facility e 2 E de-
pends on the total load � e(A) of the facility. In this case,
an additional social cost function makes sense, i. e. total
latency. For a pure strategy profile A 2 S, the total latency
is defined as a weighted sum

C(A) =
X
e2E

�e(A) � fe(�e (A)) :

Notice that the sum and the total latency coincide for the
case of unweighted congestion games.

In a congestion game with splittable weights (divisi-
ble demands), every player i 2 N, instead of fixing a sin-
gle pure strategy, she is allowed to distribute her demand
among her pure strategy set.

In a non-atomic congestion game, there are k different
player types 1 : : : k. Players are infinitesimal and for each

player type i the continuum of the players is denoted by the
interval [0; ni ]. In general, each player type contributes in
a different way to the congestion on the facility e 2 E, and
this contribution is determined by a positive rate of con-
sumption rs, e for a strategy s 2 Si and a facility e 2 s. Each
player chooses a strategy that results in a strategy distribu-
tion x = (xs )s2S, with

P
s2Si xs = ni .

Key Results

Maximum Social Cost

Here, it is considered the price of anarchy in the case where
the social cost is the maximum cost among the players.
Formally, for a pure strategy profile A, the social cost is

SC(A) = MAX(A) = max
i2N

ci (A) :

The definition naturally extends to mixed strategies.

Theorem 1 ([7,8,9,10]) The price of anarchy for m iden-
tical machines is	(logm/log logm).

Theorem2 ([7]) The price of anarchy for mmachineswith
speeds s1 � s2 � : : : � sm is

	

0
@min

8
<
:

logm
log log logm

;
logm

log
�

logm
log(s1/sm )

�
9
=
;

1
A :

Theorem 3 ([3]) The price of anarchy for m identical ma-
chines, in the asymmetric case is 	(logm/log logm) for
pure equilibria and	(logm/log log logm) for mixed equi-
libria.

Theorem 4 ([5]) The price of anarchy for pure equilib-
ria is	(

p
n) for asymmetric but at most 5/2 for symmetric

congestion games.

Theorem 5 ([5]) The price of anarchy for pure equilibria is
at least˝(np/(p+1)) and atmost O(n) for asymmetric, but at
most 5/2 for symmetric congestion games with polynomial
latencies.

Average Social Cost – Total Latency

Here, it is considered as social cost the sum of the players
cost (divided by the number of the players)

SC(A) = SUM(A) =
X
i2N

ci(A)

or the weighted sum of the players costs (total latency) for
weighted games

SC(A) = C(A) =
X
i2N

wi ci (A) :
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The definition naturally extends for mixed strategies.

Theorem 6 ([2,4,5]) The price of anarchy is 5/2 for
asymmetric and (5n � 2)/(2n + 1) for symmetric conges-
tion games.

Theorem 7 ([2,4]) The Price of Anarchy for weighted con-
gestion games is 1 + � 	 2:618.

Theorem 8 ([6]) The Price of Anarchy is at most 3/2 for
congestion games with splittable weights.

Theorem 9 ([14,15]) The Price of Anarchy for non-atomic
congestion games is 4/3.

Theorem 10 ([1,2,4]) The Price of Anarchy for (weighted)
congestion games is d�(p) for polynomial latencies.

Applications

The efficiency of large scale networks, in which selfish
users interact, is highly affected due to the users’ selfish
behavior. The Price of Anarchy is a quantitative measure
of the lack of coordination in such systems. It is a useful
theoretical tool for the analysis and design of telecommu-
nication and traffic networks, where selfish users compete
on system’s resources motivated by their atomic interests
and are indifferent to the social welfare.
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ProblemDefinition

Notations

This entry considers a selfish routing model formally
introduced by Koutsoupias and Papadimitriou [11], in
which the goal is to route the traffic on parallel links with
linear latency functions. One can describe this model as
a scheduling problem with m independent machines with
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speeds s1; : : : ; sm and n independent tasks with weights
w1; : : : ;wn . The goal is to allocate the tasks to the ma-
chines to minimize the maximum load of the links in the
system.

It is assumed that all tasks are assigned by non-co-
operative agents. The set of pure strategies for task i is the
set f1; : : : ;mg and amixed strategy is a distribution on this
set.

Given a combination ( j1; : : : ; jn) 2 f1; : : : ;mgn of
pure strategies, one for each task, the cost for task i
is
P

jk= j i
wk
s j i

, which is the time needed for machine ji
chosen by task i to complete all tasks allocated to that
machine. Similarly, for a combination of pure strategies
( j1; : : : ; jn) 2 f1; : : : ;mgn , the load of machine j is defined
as
P

jk= j
wk
s j .

Given n tasks of length w1; : : : ;wn and m machines
with the speeds s1; : : : ; sm , let opt denote the social opti-
mum, that is, the minimum cost over all combinations of
pure strategies:

opt = min
( j1;:::; jn)2f1;:::;mgn

max
1� j�m

X
i : j i= j

wi

s j
:

For example, if all machines have the same unit speed
(s j = 1 for every j, 1 � j � m) and all tasks have the same
unit weight (wi = 1 for every i, 1 � i � n), then the social
optimum is d nm e.

It is also easy to see that in any system

opt �
maxi wi

max j s j
:

It is known that computing the social optimum is NP-
hard even for identical speeds (see [11]).

For mixed strategies, let pij denote the probability that
an agent i sends the entire traffic wi to a machine j. Let ` j
denote the expected load on a machine j, that is,

` j =
1
s j
�

nX
i=1

wi p
j
i :

For a task i, the expected cost of task i on machine j is
equal to

c ji =
wi

s j
+
X
t¤i

wt p
j
t

s j
= ` j + (1 � pji )

wi

s j
:

The expected cost c ji corresponds to the expected finish
time of task i on machine j under the processor sharing
scheduling policy. This is an appropriate cost model with
respect to the underlying traffic routing application.

Definition 1 (Nash equilibrium) The probabilities
(pji )1�i�n;1� j�m define a Nash equilibrium if and only if
any task i will assign non-zero probabilities only to ma-
chines that minimize c ji , that is, p

j
i > 0 implies c ji � cqi ,

for every q, 1 � q � m.

As an example, in the system considered above in which all
machines have the same unit speed and all weights are the
same, the uniform probabilities pji =

1
m for all 1 � j � m

and 1 � i � n define a system in a Nash equilibrium.
The existence of a Nash equilibrium over mixed strate-

gies for non-cooperative games was shown by Nash [13].
In fact, the routing game considered here admits an equi-
librium even if all players are restricted to pure strategies,
what has been shown by Fotakis et al. [7].

Fix an arbitrary Nash equilibrium, that is, fix the prob-
abilities (pji )1�i�n;1� j�m that define a Nash equilibrium.
Consider the randomized allocation strategies in which
each task i is allocated to a single machine chosen indepen-
dently at random according to the probabilities pij, that is,
task i is allocated to machine j with probability pij. Let Cj,
1 � j � m, be the random variable indicating the load of
machine j in our random experiment. Observe that Cj is
the weighted sum of independent 0–1 random variables
J ji , Pr[J

j
i = 1] = pji , such that

Cj =
1
s j

nX
i=1

wi � J
j
i :

Let c denote the maximum expected load over all ma-
chines, that is,

c = max
1� j�m

` j :

Notice that E[Cj] = ` j , and therefore c = max1� j�m
E[Cj].

Finally, let the social cost C be defined as the expected
maximum load (instead of maximum expected load),
that is,

C = E[ max
1� j�m

Cj] :

Observe that c � C and possibly c� C. The goal is
to estimate the price of anarchy (also called the worst-case
coordination ratio) which is the worst-case ratio

R = max
C

opt
;

where the maximum is over all Nash equilibria.
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Key Results

EarlyWork

The study of the price of anarchy has been initiated by
Koutsoupias and Papadimitriou [11], who showed also
some very basic results for this model. For example, they
proved that for two identical machines the price of an-
archy is exactly 3

2 , and for two machines (with pos-
sibly different speeds) the price of anarchy is at least
� = (1 +

p
5)/2. Koutsoupias and Papadimitriou showed

also that for m identical machines the price of anarchy
is ˝(logm/(log logm)) and it is at most O(

p
m lnm),

and for m arbitrary machines the price of anarchy is
O(
q
s1/sm

Pm
j=1 s j/sm

p
logm), where s1 � s2 � � � � �

sm [11].
Koutsoupias and Papadimitriou [11] conjectured also

that the price of anarchy for m identical machines is
	(logm/(log logm)). In the quest to resolve this conjec-
ture, Mavronicolas and Spirakis [12] considered the prob-
lem in the so-called fully-mixed model, which is a special
class of Nash equilibria in which all pij are strictly positive.
In this model, Mavronicolas and Spirakis [12] showed that
for m identical machines in the fully-mixed Nash equi-
librium the price of anarchy is 	(logm(log logm)). Sim-
ilarly, they proved also that for m (not necessarily identi-
cal) machines and n identical weights in the fully-mixed
Nash equilibrium, if m � n, then the price of anarchy is
	(log n/(log log n)).

Themotivation behind studying fully-mixed equilibria
is the so-called fully-mixed Nash equilibrium conjecture
stating that these equilibria maximize the price of anar-
chy because they maximize the randomization. The con-
jecture seems to be quite appealing as a fully-mixed equi-
librium can be computed in polynomial time, which led
to numerous studies of this kind of equilibria with the
hope to obtain efficient algorithms for computing or ap-
proximating the price of anarchy with respect to mixed
equilibria. However, Fischer and Vöcking [6] disproved
the fully-mixed Nash equilibrium conjecture and showed
that there is a mixed Nash equilibrium whose expected
cost is larger than the expected cost of the fully-mixed
Nash equilibrium by a factor of ˝(logm/(log logm)).
Furthermore, they presented polynomial time algo-
rithms for approximating the price of anarchy for
mixed equilibria on identical machines up to a constant
factor.

Tight Bounds for the Price of Anarchy

Czumaj and Vöcking [4] entirely resolved the conjecture
of Koutsoupias and Papadimitriou [11] and gave an ex-

act description of the price of anarchy as a function of
the number of machines and the ratio of the speed of the
fastest machine over the speed of the slowest machine.1

Theorem 1 [4] (Upper Bound) The price of anarchy for
m machines is bounded from above by

O

0
@min

8
<
:

logm
log log logm

;
logm

log
�

logm
log(s1/sm )

�
9
=
;

1
A ;

where it is assumed that the speeds satisfy s1 � � � � � sm.
In particular, the price of anarchy for m machines is

O( logm
log log logm ).

The theorem follows directly from the following two re-
sults [4]: that the maximum expected load c satisfies

c = opt � 
 (�1)(m)

= opt � O
�
min

�
logm

log logm
; log

�
s1
sm

���

and that the social cost C satisfies

C = opt �O

0
@ logm

log
�

opt�logm
c

� + 1

1
A :

If one applied these results to systems in which all
agents follow only pure strategies, then since then ` j = Cj
for every j, it holds that C = c. This leads to the following
result.

Corollary 2 [4] For pure strategies the price of anarchy for
m machines is upper bounded by

O
�
min

�
logm

log logm
; log

�
s1
sm

���
;

where it is assumed that the speeds satisfy s1 � � � � � sm.

Theorem 4 below proves that this corollary gives an
asymptotically tight bound for the price of anarchy for
pure
strategies.

By Theorem 1, in the special case when all machines
are identical, the price of anarchy is O(logm/(log logm));

1To simplify the notation, for any real x � 0, let log x
denote log x = maxflog2 x; 1g. Also, following standard conven-
tion, � (N) is used to denote the Gamma (factorial) function,
which for any natural N is defined by � (N + 1) = N! and for
an arbitrary real x > 0 is � (x) =

R
1

0 tx�1 e�t dt. For the in-
verse of the Gamma function, � (�1)(N), it is known that
� (�1)(N) = x such that bxc! � N � 1 � dxe!. It is well known that
� (�1)(N) = (logN)/(log logN)(1 + o(1)).
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this result has been also obtained independently by Kout-
soupias et al. [10]. However, in this special case one can get
a stronger bound that is tight up to an additive constant.

Theorem 3 [4] For m identical machines the price of an-
archy is at most


 (�1)(m) +	(1) =
logm

log logm
� (1 + o(1)) :

One can obtain a lower bound for the price of anarchy for
m identical machines by considering the system in which
pji =

1
m for every i; j. The Result of Gonnet [9] implies that

then the price of anarchy is 
 (�1)(m) � 3
2 + o(1), which

implies that Theorem 3 is tight up to an additive constant.
The next theorem shows that the upper bound in The-

orem 1 is asymptotically tight.

Theorem 4 [4] (Lower bound) The price of anarchy for
m machines is lower bounded by

˝

0
@min

8
<
:

logm
log log logm

;
logm

log
�

logm
log(s1/sm )

�
9
=
;

1
A :

In particular, the price of anarchy for m machines is
˝(logm/(log log logm)).

In fact, it can be shown [4] (analogously to the upper
bound) that for every positive integer m, positive real r,
and S � 1, there exists a set of m machines with s1

sm = S
being in a Nash equilibrium and satisfying opt = r,

c = opt �˝

�
min

�
logm

log logm
; log

�
s1
sm

���
;

and

C = opt �˝

0
@ logm

log
�

opt�logm
c

�
1
A :

Applications

The model discussed here has been extended in the liter-
ature in numerous ways, in particular in [1,5,8]; see also
survey presentations in [3,14].

Open Problems

An interesting attempt that adds an algorithmic or con-
structive element to the analysis of the price of anarchy is
made in [2]. The idea behind “coordination mechanisms”
is not to study the price of anarchy for a fixed system, but
to design the system in such a way that the increase in

cost or the loss in performance due to selfish behavior is
as small as possible. This is a promising direction of re-
search that might result in practical guidelines of how to
build a distributed system that does not suffer from self-
ish behavior but might even exploit the selfishness of the
agents.

Cross References
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ProblemDefinition
An important problem in wireless sensor networks is that
of local detection and propagation, i. e. the local sensing of
a crucial event and the energy and time efficient propaga-
tion of data reporting its realization to a control center (for
a graphical presentation, see Fig. 1). This center (called
the “sink”) could be some human authorities responsible
of taking action upon the realization of the crucial event.
More formally:

Definition 1 Assume that a single sensor, E, senses the re-
alization of a local event E. Then the propagation problem
is the following: “How can sensor P, via cooperation with
the rest of the sensors in the network, efficiently propagate
information reporting the realization of the event to the
sink S?”

Note that this problem is in fact closely related to the more
general problem of data propagation in sensor networks.

Wireless Sensor Networks
Recent dramatic developments in micro-electro-mechani-
cal systems (MEMS), wireless communications and digital
electronics have led to the development of small in size,
low-power, low-cost sensor devices. Such extremely small

Probabilistic Data Forwarding in Wireless Sensor Networks, Fig-
ure 1
A sensor network

(soon in the cubic millimetre scale) devices integrate sens-
ing, data processing and wireless communication capabil-
ities. Examining each such device individually might ap-
pear to have small utility, however the effective distributed
self-organization of large numbers of such devices into an
ad-hoc network may lead to the efficient accomplishment
of large sensing tasks. Their wide range of applications
is based on the use of various sensor types (i. e. thermal,
visual, seismic, acoustic, radar, magnetic, etc.) to moni-
tor a wide variety of conditions (e. g. temperature, object
presence and movement, humidity, pressure, noise levels
etc.). For a survey on wireless sensor networks see [1] and
also [6,9].

A Simple Model
Sensor networks are comprised of a vast number of
ultra-small homogeneous sensors, which are called “grain”
particles. Each grain particle is a fully-autonomous com-
puting and communication device, characterized mainly
by its available power supply (battery) and the energy cost
of computation and transmission of data. Such particles
(in the model here) do not move. Each particle is equipped
with a set of monitors (sensors) for light, pressure, hu-
midity, temperature etc. and has a broadcast (digital radio)
beacon mode.

It is assumed that grain particles are randomly de-
ployed in a given area of interest. Such a placement may
occur e. g. when throwing sensors from an airplane over
an area. A special case is considered, when the network
being a lattice (or grid) deployment of sensors. This grid
placement of grain particles is motivated by certain appli-
cations, where it is possible to have a pre-deployed sensor
network, where sensors are put (possibly by a human or
a robot) in a way that they form a 2-dimensional lattice.

It is assumed that each particle has the following
abilities: (i) It can estimate the direction of a received
transmission (e. g. via the technology of direction-sensing
antennae). (ii) It can estimate the distance from a nearby
particle that did the transmission (e. g. via estimation of
the attenuation of the received signal). (iii) It knows the di-
rection towards the sink S. This can be implemented dur-
ing a set-up phase, where the (powerful) sink broadcasts
the information about itself to all particles. (iv) All parti-
cles have a common co-ordinates system. Notice that GPS
information is not assumed. Also, there is no need to know
the global structure of the network.

Key Results
The Basic Idea
For the above problem [3] proposes a protocol which tries
to minimize energy consumption by probabilistically fa-
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Probabilistic Data Forwarding in Wireless Sensor Networks, Fig-
ure 2
Angle ' and proximity to the optimal line

voring certain paths of local data transmissions towards the
sink. Thus this protocol is called PFR (Probabilistic For-
warding Protocol). Its basic idea is to avoid flooding by fa-
voring (in a probabilistic manner) data propagation along
sensors which lie “close” to the (optimal) transmission
line, ES, that connects the sensor node detecting the event,
E, and the sink, S. This is implemented by locally calculat-
ing the angle � = (bEPS), whose corner point P is the sen-
sor currently running the local protocol, having received
a transmission from a nearby sensor, previously possessing
the event information (see Fig. 2). If ' is equal or greater to
a predetermined threshold, then p will transmit (and thus
propagate the information further). Else, it decides
whether to transmit with probability equal to 


�
. Because

of the probabilistic nature of data propagation decisions
and to prevent the propagation process from early failing,
the protocol initially uses (for a short time period which
is evaluated) a flooding mechanism that leads to a suffi-
ciently large “front” of sensors possessing the data under
propagation. When such a “front” is created, probabilistic
Forwarding is performed.

The PFR Protocol

The protocol evolves in two phases:

Phase 1: The “Front” Creation Phase Initially the pro-
tocol builds (by using a limited, in terms of rounds, flood-
ing) a sufficiently large “front” of particles, to guarantee

Probabilistic Data Forwarding in Wireless Sensor Networks, Fig-
ure 3
Thin zone of particles

the survivability of the data propagation process. During
this phase, each particle having received the data to be
propagated, deterministically forwards them towards the
sink.

Phase 2: TheProbabilistic Forwarding Phase Each par-
ticle P possessing the information under propagation
(called in f o(E) hereafter), calculates an angle ' by calling
the subprotocol “'-calculation” (see description below)
and broadcasts in f o(E) to all its neighbors with proba-
bility P f wd (or it does not propagate any data with proba-
bility 1� P f wd ) as follows:

P f wd =

(
1 if � � �threshold


�

otherwise

where ' is the (bEPS) angle and �threshold = 134ı (the se-
lection reasons of this value are discussed in [3]).

If the density of particles is appropriately large, then
for a line ES there is (with high probability) a sequence of
points “closely surrounding ES” whose angles ' are larger
than �threshold and so that successive points are within
transmission range. All such points broadcast and thus es-
sentially they follow the line ES (see Fig. 3).

The '-calculation Subprotocol (see Fig. 4)

Let Pprev the particle that transmitted in f o(E) to P.
1. When Pprev broadcasts in f o(E), it also attaches the info
jEPprevj and the direction

����!
PprevE.

2. P estimates the direction and length of line segment
PprevP, as described in the model.

3. P now computes angle (2EPprevP), and computes jEPj
and the direction of

�!
PE (this will be used in further

transmission from P).
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Probabilistic Data Forwarding in Wireless Sensor Networks, Fig-
ure 4
Angle ' calculation example

4. P also computes angle (2PprevPE) and by subtracting it
from (2PprevPS) it finds '.

Performance Properties of PFR

Any protocol ˘ solving the data propagation problem
must satisfy the following three properties: a) Correctness.
˘ must guarantee that data arrives to the position S, given
that the whole network exists and is operational. b) Ro-
bustness. ˘ must guarantee that data arrives at enough
points in a small interval around S, in cases where part
of the network has become inoperative. c) Efficiency. If
˘ activates k particles during its operation then˘ should
have a small ratio of the number of activated over the total
number of particles r = k

N . Thus r is an energy efficiency
measure of ˘ . It is shown that this is indeed the case for
PFR.

Consider a partition of the network area into small
squares of a fictitious grid G (see Fig. 5). When particle
density is high enough, occupancy arguments guarantee
that with very high probability (tending to 1) all squares
get particles. All the analysis is conditioned on this event,
call it F, of at least one particle in each square. Below only
sketches of proofs are provided (full proofs can be found
in [3]).

The Correctness of PFR

Consider any square˙ intersecting the ES line. By the oc-
cupancy argument above, there is w.h.p. a particle in this
square. Clearly, the worst case is when the particle is lo-
cated in one of the corners of ˙ (since the two corners
located most far away from the ES line have the small-
est '-angle among all positions in ˙). By geometric cal-
culations, [3] proves that the angle ' of this particle is
� > 134ı. But the initial square (i. e. that containing E) al-
ways broadcasts and any intermediate intersecting square
will be notified (by induction) and thus broadcast because

Probabilistic Data Forwarding in Wireless Sensor Networks, Fig-
ure 5
A lattice dissection G

of the argument above. Thus the sink will be reached if the
whole network is operational:

Lemma 1 ([3]) PFR succeeds with probability 1 given the
event F.

The Energy Efficiency of PFR

Consider a “lattice-shaped” network like the one in Fig. 5
(all results will hold for any random deployment “in the
limit”). The analysis of the energy efficiency considers par-
ticles that are active but are as far as possible from ES.
[3] estimates an upper bound on the number of particles in
an n � n (i. e. N = n � n) lattice. If k is this number then
r = k

n2 (0 < r � 1) is the “energy efficiency ratio” of PFR.
More specifically, in [3] the authors prove the (very sat-
isfactory) result below. They consider the area around the
ES line, whose particles participate in the propagation pro-
cess. The number of active particles is thus, roughly speak-
ing, captured by the size of this area, which in turn is equal
to jESj times the maximum distance from jESj. This max-
imum distance is clearly a random variable. To calculate
the expectation and variance of this variable, the authors
in [3] basically “upper bound” the stochastic process of the
distance from ES by a random walk on the line, and subse-
quently “upper bound” this random walk by a well-known
stochastic process (i. e. the “discouraged arrivals” birth and
death Markovian process. Thus they prove:

Theorem 2 ([3]) The energy efficiency of the PFR protocol
is	

�� n0
n
�2� where n0 = jESj and n =

p
N, where N is the

number of particles in the network. For n0 = jESj = o(n),
this is o(1).
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The Robustness of PFR

Consider particles “very near” to the ES line. Clearly, such
particles have large '-angles (i. e. � > 134ı). Thus, even in
the case that some of these particles are not operating, the
probability that none of those operating transmits (during
phase 2) is very small. Thus:

Lemma 3 ([3]) PFRmanages to propagate the crucial data
across lines parallel to ES, and of constant distance, with
fixed nonzero probability (not depending on n, jESj).

Applications

Sensor networks can be used for continuous sensing,
event detection, location sensing as well as micro-sensing.
Hence, sensor networks have several important applica-
tions, including (a) security (like biological and chemical
attack detection), (b) environmental applications (such as
fire detection, flood detection, precision agriculture), (c)
health applications (like telemonitoring of human physio-
logical data) and (d) home applications (e. g. smart envi-
ronments and home automation). Also, sensor networks
can be combined with other wireless networks (like mo-
bile) or fixed topology infrastructures (like the Internet) to
provide transparent wireless extensions in global comput-
ing scenaria.

Open Problems

It would be interesting to come up with formal models
for sensor networks, especially with respect to energy as-
pects; in this respect, [10] models energy dissipation us-
ing stochastic methods. Also, it is important to investigate
fundamental trade-offs, such as those between energy and
time. Furthermore, the presence of mobility and/or mul-
tiple sinks (highly motivated by applications) creates new
challenges (see e. g. [2,11]). Finally, heterogeneity aspects
(e. g. having sensors of various types and/or combinations
of sensor networks with other types of networks like p2p,
mobile and the Internet) are very important; in this respect
see e. g. [5,13].

Experimental Results

An implementation of the PFR protocol along with a de-
tailed comparative evaluation (using simulation) with
greedy forwarding protocols can be found in [4]; with
clustering protocols (like LEACH, [7]) in [12]; with tree
maintenance approaches (like Directed Diffusion, [8])
in [5]. Several performance measures are evaluated, like
the success rate, the latency and the energy dissipation.

The simulations mainly suggest that PFR behaves best in
sparse networks of high dynamics.
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