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Spatial search by quantum walk is database search with
the additional constraint that one must move through the
search space via a quantum walk that obeys some locality
structure (grid, hypercube, etc.). Quantum walks are ana-
logues of classical random walks on graphs. The complex-
ity of spatial search by quantum walk is essentially deter-
mined by the quantum hitting time [9] of the walk.

Let S with jSj = N be a finite set of states, and let
P = (px;y )x;y2S be the transition probability matrix of
a Markov chain on S, also denoted by P. Assume that
a subset M 
 S of states are marked. The goal is either to
find a marked state, given that M ¤ ; (search version), or
to determine whetherM is nonempty (decision version). If
the possible x ! ymoves (i. e., those with px;y ¤ 0) form
the edges of a (directed) graph G, it is said that the walk
has locality structure G.
INPUT: Markov chain P on set S, marked subset M 
 S.
OUTPUT: Amarked state with probability 0:1 iff one exists
(search version), or a Boolean return value with one-sided
error detecting M ¤ ; with probability 0:1 (decision ver-
sion).
If P is irreducible (i. e., if its underlying digraph is strongly
connected), a marked state can be found with high proba-
bility in finite time by simulating a classical random walk
using the coefficients of P. In the quantum case, this ran-
dom walk process may be replaced by a quantum walk us-
ing the coefficients of P (in particular, respecting locality).

The fundamental question is whether the quantum walk
process finds a marked state faster than the classical ran-
dom walk process.

The QuantumWalk Algorithm
Quantizing P is not so straightforward, since stochastic
matrices have no immediate unitary equivalents. It turns
out that one must either abandon the discrete-time nature
of the walk [7] or define the walk operator on a space other
than CS. Here the second route is taken, with notation as
in [18]. On CS�S, define the unitary WP := R1R2, where
R1 =

P
x2S(2jpxihpx j � I)˝ jxihxj, R2 =

P
x2S jxihxj ˝

(2jpx ihpx j � I), and jpxi :=
P

y2S
ppy;x jyi. WP is the

quantization of P, or the discrete-time quantum walk op-
erator arising from P. One can “check” whether or not the
current state is marked by applying the operator OM =P

x 62M jxihxj �
P

x2M jxihxj. Denote the cost of con-
structing WP (in the units of the resource of interest) by
U (update cost), the cost of constructing OM by C (check-
ing cost), and the cost of preparing the initial state, �0, by
S (setup cost). Every time an operator is used, its cost is in-
curred. This abstraction, implicit in [2] and made explicit
in [13], allowsWP andOM to be treated as black-box oper-
ators and provides a convenient way to capture time com-
plexity or, in the quantum query model, query complexity.
The spatial search algorithm by quantumwalk is described
by:

ALGORITHM: A quantum circuit X = XmXm�1 : : : X1,
with “wires” (typically two) that carry CS , and control bits.
Each Xi is either aWP gate or an OM gate, or a controlled
version of one of these. X is applied to the initial state �0.
The cost of the sequence is the sum of the costs of the indi-
vidual operators. The observation probability is the proba-
bility that after measuring the final state, �m , in the stan-
dard basis, one of the wires outputs an element of M. If
the observation probability is q, one must repeat the pro-
cedure 1/pq times using amplitude amplification (search
version). In the decision version one can distinguish be-
tween M and M0 if jX�0 � X 0�0j � 0:1, where X arises
from OM and X 0 from OM0 .
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Key Results

Earlier Results

Spatial search blends Grover’s search algorithm [8], which
finds a marked element in a database of size N in

p
N/jMj

steps, with quantum walks.
Quantum walks were first introduced by David Meyer

and John Watrous to study quantum cellular automata
and quantum log-space, respectively. Discrete-time quan-
tum walks were investigated for their own sake by Nayak
et al. [3,15] and Aharonov et al. [1] on the infinite line and
the N-cycle, respectively. The central issues in the early
development of quantum walks included definition of the
walk operator, notions of mixing and hitting times, and
speedups achievable compared to the classical setting. Ex-
ponential quantum speedup of the hitting time between
antipodes of the hypercube was shown by Kempe [9], and
Childs et al. [6] presented the first oracle problem solv-
able exponentially faster by a quantum walk based algo-
rithm than by any (not necessarily walk-based) classical
algorithm.

The first systematic studies of quantum hitting time
on the hypercube and the d-dimensional torus were con-
ducted by Shenvi et al. [17] and Ambainis et al. [4]. Im-
proving upon the Grover search based spatial search al-
gorithm of Aaronson and Ambainis, Ambainis et al. [4]
showed that the d-dimensional torus (with N = nd nodes)
can be searched by quantum walk with cost of order S +p
N(U + C) and observation probability ˝(1/ log N) for

d � 3, and with cost of order S +
p
N logN(U + C) and

observation probability˝(1) for d = 2. The key difference
between these results and those of [6,9] is that the walk
is required to start from the uniform state, not from one
which is somehow “related” to the state one wishes to hit.
Only in the latter case is it possible to achieve an exponen-
tial speedup.

The first result that used a quantumwalk to solve a nat-
ural algorithmic problem, the so-called element distinct-
ness problem, was due to Ambainis [2]. Ambainis’ algo-
rithm uses a walk W on the Johnson graph J(r;m) whose
vertices are the r-size subsets of a universe of size m, with
two subsets connected iff their symmetric difference has
size two. The relevance of this graph follows from a non-
trivial algorithmic idea whereby the three different costs
(S, U, and C) are balanced in a novel way. In contrast,
Grover’s algorithm – though it inspired Ambainis’ result –
has no such option: its setup and update costs are zero in
the query model.

Ambainis’ main mathematical observation about the
walkW on the Johnson graph is that W

p
rOM behaves in

much the same way as the Grover iteration DOM , whereD

is the Grover diffusion operator. Recall that Grover’s algo-
rithm applies DOM repeatedly, sending the uniform start-
ing state �0 to the state �good =

P
x2M

p
1/jMjjxi after

t = O(1/˛) iterations, where ˛ := 2 sin�1h�goodj�0i is the
effective “rotation angle”.

What do W
p
r and D have in common? Ambainis

showed that the nontrivial eigenvalues of the matrixW
p
r

in the (finite dimensional) subspace containing the orbit of
�0 are separated away from 1 by a constant ". Thus, W

p
r

serves as a very good approximate reflection about the axis
�0 – as good as Grover’s in this application. This allows
one to conclude the following: there exists a t = O(1/˛)
for which the overlap h�goodj(W

p
rOM)t j�0i = ˝(1), so

the output is likely inM.

Theorem 1 ([2]) Let P be the randomwalk on the Johnson
graph J(r;m) with r = o(m). Let M be either the empty
set or the set of all r-size subsets containing a fixed subset
x1; : : : ; xk for constant k � r. Then there is a quantum
algorithm that solves the hitting problem (search version)
with cost of order S + t(

p
r � U + C), where t = (mr )

k/2. If
the costs are S = r, U = O(1), and C = 0, then the total cost
has optimum O(mk/(k+1)) at r = O(mk/(k+1)).

General Markov Chains

In [18], Szegedy investigates the hitting time of quan-
tum walks arising from general Markov chains. His defini-
tions (walk operator, hitting time) are abstracted directly
from [2] and are consistent with prior literature, although
slightly different in presentation.

For a Markov chain P, the (classical) average hitting
time with respect to M can be expressed in terms of the
leaking walk matrix PM , which is obtained from P by
deleting all rows and columns indexed by states of M.
Let h(x;M) denote the expected time to reach M from
x and let v1; : : : ; vN�jMj, �1; : : : ; �N�jMj be the (normal-
ized) eigenvectors and associated eigenvalues of PM . Let
d : S ! R+ be a starting distribution and d0 its re-
striction to S n M. Then h :=

P
x2S d(x)h(x;M) =PN�jMj

k=1
j(vk ;d0)j2
1�
k

. Although the leaking walk matrix PM is
not stochastic, one can consider the absorbing walk ma-
trix P0 =

	 PM 0
P00 I



, where P00 is the matrix obtained from P

by deleting columns indexed by M and rows indexed by
S n M:P0 behaves similarly to P but is absorbed by the
first marked state it hits. Consider the quantization WP0

of P0 and define the quantum hitting time, H, of set M to
be the smallest m for which jWm

P0�0 � �0j � 0:1, where
�0 :=

P
x2S
p
1/Njxijpxi (which is stationary for WP).

Note that the construction cost of WP0 is proportional to
U + C.
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Why is this definition of quantum hitting time inter-
esting? The classical hitting time measures the number
of iterations of the absorbing walk P0 required to notice-
ably skew the uniform starting distribution. Similarly, the
quantum hitting time bounds the number of iterations of
the following quantum algorithm for detecting whetherM
is nonempty: At each step, apply operator WP0 . If M is
empty, then P0 = P and the starting state is left invariant. If
M is nonempty, then the angle betweenWt

P0�0 and Wt
P�0

gradually increases. Using an additional control register to
apply either WP0 or WP with quantum control, the diver-
gence of these two states (should M be nonempty) can be
detected. The required number of iterations is exactlyH.

It remains to compute H. When P is symmetric and
ergodic, the expression for the classical hitting time has
a quantum analogue [18] (jMj � N/2 for technical rea-
sons):

H �
N�jMjX
k=1

�2kp
1 � �k

; (1)

where �k is the sum of the coordinates of vk divided by
1/
p
N . From (1) and the expression for h one can derive

an amazing connection between the classical and quantum
hitting times:

Theorem 2 ([18]) Let P be symmetric and ergodic, and let
h be the classical hitting time for marked set M and uniform
starting distribution. Then the quantum hitting time of M
is at most

p
h.

One can further show:

Theorem 3 ([18]) If P is state-transitive and jMj = 1, then
the marked state is observed with probability at least N/h in
O(
p
h) steps.

Theorems 2 and 3 imply most quantum hitting time re-
sults of the previous section, without calculation, relying
only on estimates of the corresponding classical hitting
times. Expression (1) is based on a fundamental connec-
tion between the eigenvalues and eigenvectors of P and
WP. Notice that R1 and R2 are reflections on the subspaces
generated by fjpx i ˝ jxij x 2 Sg and fjxi ˝ jpx ij x 2 Sg,
respectively. Hence the eigenvalues of R1R2 can be ex-
pressed in terms of the eigenvalues of the mutual Gram
matrix of these systems. This matrix D, the discriminant
matrix of P, is:

D(P) =
p
P ı PT def= (

p
px;y py;x )x;y2S : (2)

If P is symmetric then D(P) = P, and the formula remains
fairly simple even when P is not symmetric. In particular,

the absorbing walk P0 has discriminant matrix
	 PM 0

0 I



. Fi-

nally, the relation between D(P) and the spectral decom-
position ofWP is given by:

Theorem 4 ([18]) Let P be an arbitrary Markov chain
on a finite state space S and let cos �1 � � � � � cos �l
be those singular values of D(P) lying in the open inter-
val (0; 1), with associated singular vector pairs v j;wj for
1 � j � l . Then the non-trivial eigenvalues of WP (ex-
cluding 1 and �1) and their corresponding eigenvectors are
e�2i� j , R1wj � e�i� j R2v j ; e2i� j and Rjwj � ei� j R2v j for
1 � j � l .

Latest Development

Recently, Magniez et al. [12] have used Szegedy’s quanti-
zation WP of an ergodic walk P (rather than its absorbing
version P0) to obtain an efficient and general implementa-
tion of the abstract search algorithm of Ambainis et al. [4].

Theorem 5 ([12]) Let P be reversible and ergodic with
spectral gap ı > 0. Let M have marked probability either
zero or "> 0. Then there is a quantum algorithm solv-
ing the hitting problem (search version) with cost S +
1p
"

�
1p
ı
U + C

�
.

Applications

Element Distinctness

Suppose one is given elements x1; : : : ; xm 2 f1; : : : ;mg
and is asked if there exist i, j such that xi = x j . The
classical query complexity of this problem is 	(m). Am-
bainis [2] gave an (optimal) O(m2/3) quantum query al-
gorithm using a quantum walk on the Johnson graph of
m2/3-subsets of f1; : : : ;mg with those subsets containing
i, j with xi = x j marked.

Triangle Finding

Suppose one is given the adjacency matrix A of a graph
on n vertices and is required to determine if the graph
contains a triangle (i. e., a clique of size 3) using as few
queries as possible to the entries of A. The classical query
complexity of this problem is	(n2). Magniez, Santha, and
Szegedy [13] gave an Õ(n1:3) algorithm by adapting [2].
This was improved to O(n1:3) by Magniez et al. [12].

Matrix Product Verification

Suppose one is given three n � n matrices A, B, C and is
required to determine if AB ¤ C (i. e., if their exist i, j such
that

P
k AikBk j ¤ Ci j) using as few queries as possible

to the entries of A, B, and C. This problem has classical



680 Q Quantum Algorithm for CheckingMatrix Identities

query complexity 	(n2). Buhrman and Spalek [5] gave an
O(n5/3) quantum query algorithm using [18].

Group Commutativity Testing

Suppose one is presented with a black-box group speci-
fied by its k generators and is required to determine if
the group commutes using as few queries as possible to
the group product operation (i. e., queries of the form
“What is the product of elements g and h?”). The classical
query complexity is 	(k) group operations. Magniez and
Nayak [11] gave an (essentially optimal) Õ(k2/3) quantum
query algorithm by walking on the product of two graphs
whose vertices are (ordered) l-tuples of distinct generators
and whose transition probabilities are nonzero only where
the l-tuples at two endpoints differ in at most one coordi-
nate.

Open Problems

Many issues regarding quantization of Markov chains re-
main unresolved, both for the hitting problem and the
closely related mixing problem.

Hitting

Can the quadratic quantum hitting time speedup be ex-
tended from all symmetric Markov chains to all reversible
ones? Can the lower bound of [18] on observation prob-
ability be extended beyond the class of state-transitive
Markov chains with a unique marked state? What other
algorithmic applications of quantum hitting time can be
found?

Mixing

Another wide use of Markov chains in classical algorithms
is in mixing. In particular, Markov chain Monte Carlo al-
gorithms work by running an ergodic Markov chain with
carefully chosen stationary distribution 
 until reaching
its mixing time, at which point the current state is guaran-
teed to be distributed "-close to uniform. Such algorithms
form the basis of most randomized algorithms for approx-
imating #P-complete problems. Hence, the problem is:

INPUT: Markov chain P on set S, tolerance ">0.
OUTPUT: A state "-close to 
 in total variation distance.

Notions of quantum mixing time were first proposed and
analyzed on the line, the cycle, and the hypercube by
Nayak et al. [3,15], Aharonov et al. [1], and Moore and
Russell [14]. Recent work of Kendon and Tregenna [10]
and Richter [16] has investigated the use of decoherence
in improving mixing of quantum walks. Two fundamental
questions about the quantum mixing time remain open:

What is the “most natural” definition? And, when is there
a quantum speedup over the classical mixing time?
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ProblemDefinition

Let A, B, C be three given matrices of dimension n � n
over a field, where C is claimed to be the matrix prod-
uct AB. The straightforward method of checking whether
C = AB is to multiply the matrices A, B, and compare the
entries of the result with those ofC. This takes timeO(n!),
where ! is the “exponent of matrix multiplication”. It is
evident from the definition of the matrix multiplication
operation that 2 � ! � 3. The best known bound on !
is 2.376 [4].

Here, and in the sequel, “time” is taken to mean “num-
ber of arithmetic operations” over the field (or other alge-
braic structure to which the entries of the matrix belong).
Similarly, in stating space complexity, the multiplicative
factor corresponding to the space required to represent el-
ements of the algebraic structure is suppressed.

Surprisingly, matrix multiplication can be circum-
vented by using a randomized “fingerprinting” technique
due to Freivalds [5], and the matrix product can be
checked in time O(n2) with one-sided bounded probabil-
ity of error. This algorithm extends, in fact, to matrices
over any integral domain [3] and the number of random
bits used may be reduced to log n

�
+ O(1) for an algorithm

that makes one-sided probabilistic error at most � [8].
(All logarithms in this article are taken to base 2.) The
fingerprinting technique has found numerous other ap-
plications in theoretical computer science (see, for exam-
ple [10]).

Buhrman and Špalek consider the complexity of
checking matrix products on a quantum computer.

Problem 1 (Matrix product verification)
INPUT: Matrices A, B, C of dimension n � n over an inte-
gral domain.
OUTPUT: EQUAL if C = AB, and NOT EQUAL otherwise.

They also study the verification problem over the Boolean
algebra f0; 1g with operations f_;^g, where the finger-
printing technique does not apply.

As an application of their verification algorithms, they
consider multiplication of sparse matrices.

Problem 2 (Matrix multiplication)
INPUT: Matrices A, B of dimension n � n over an integral
domain or the Boolean algebra f0; 1g.
OUTPUT: The matrix product C = AB over the integral do-
main or the Boolean algebra.

Key Results

Ambainis, Buhrman, Høyer, Karpinski, and Kurur [2]
first studied matrix product verification in the quantum
mechanical setting. Using a recursive application of the
Grover search algorithm [6], they gave an O(n7/4) algo-
rithm for the problem. Buhrman and Špalek improve this
runtime by adapting search algorithms based on quantum
walk that were recently discovered by Ambainis [1] and
Szegedy [11].

Let W = f(i; j)j(AB � C)i; j 6= 0g be the set of coordi-
nates where C disagrees with the product AB, and let W0

be the largest independent subset of W. (A set of co-
ordinates is said to be independent if no row or col-
umn occurs more than once in the set.) Define q(W) =
maxfjW 0j;minfjWj;

p
ngg.

Theorem 1 Consider Problem 1. There is a quantum al-
gorithm that always returns EQUAL if C = AB, returns
NOT EQUAL with probability at least 2/3 if C 6= AB,
and has worst case run-time O(n5/3), expected run-time
O(n2/3/q(W)1/3), and space complexity O(n5/3).

Buhrman and Špalek state their results in terms of “black-
box” complexity or “query complexity”, where the entries
of the input matricesA, B,C are provided by an oracle. The
measure of complexity here is the number of oracle calls
(queries) made. The query complexity of their quantum
algorithm is the same as the run time in the above theorem.
They also derive a lower bound on the query complexity of
the problem.

Theorem 2 Any bounded-error quantum algorithm for
Problem 1 has query complexity˝(n3/2).

When the matrices A, B, C are Boolean, and the product is
defined over the operations f_;^g, an optimal algorithm
with run-time/query complexity O(n3/2) may be derived
from an algorithm for AND-OR trees [7]. This has space
complexity O((log n)3) .

All the quantum algorithms may be generalized to
handle rectangular matrix product verification, with ap-
propriate modification to the run-time and space com-
plexity.

Applications

Using binary search along with the algorithms in the pre-
vious section, the position of a wrong entry in a matrix C
(purported to be the product AB) can be located, and
then corrected. Buhrman and Špalek use this in an itera-
tive fashion to obtain a matrix multiplication algorithm,
starting from the guess C = 0. When the product AB is
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a sparse matrix, this leads to a quantum matrix multipli-
cation scheme that is, for some parameters, faster than
known classical schemes.

Theorem 3 For any n � n matrices AB over an integral
domain, the matrix product C = AB can be computed by
a quantum algorithm with polynomially small error proba-
bility in expected time

O(1) �

8
<̂
:̂

n log n � n2/3w2/3 when 1 � w �
p
n ;

n log n �
p
n w when

p
n � w � n ; and

n log n � n
p
w when n � w � n2 ;

where w is the number of non-zero entries in C.

A detailed comparison of this quantum algorithm with
classical ones may be found in [3].

A subsequent quantum walk based algorithm due to
Magniez, Nayak, Roland, and Santha [9] finds a wrong en-
try in the same run-time as in Theorem 1, without the need
for binary search. This improves the run-time of the quan-
tum algorithm for matrix multiplication described above
slightly.

Since Boolean matrix products can be verified faster,
boolean matrix products can be computed in expected
time O(n3/2w), where w is the number of ‘1’ entries in the
product.

All matrix product algorithms presented here may be
used for multiplication of rectangular matrices as well,
with appropriate modifications.
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ProblemDefinition

A function F is said to be r-to-one if every element in its
image has exactly r distinct preimages.
Input: an r-to-one function F.
Output: x1 and x2 such that F(x1) = F(x2).

Key Results

The algorithm presented here finds collisions in arbitrary
r-to-one functions F after only O( 3pN/r) expected evalua-
tions of F. The algorithm uses the function as a black box,
that is, the only thing the algorithm requires is the capac-
ity to evaluate the function. Again assuming the function
is given by a black box, the algorithm is optimal [1] and it
is more efficient than the best possible classical algorithm,
which has query complexity˝(

p
N/r). The result is stated

precisely in the following theorem and corollary.

Theorem 1 Given an r-to-one function F : X ! Y
with r � 2 and an integer 1 � k � N = jXj, algorithm
Collision(F; k) returns a collision after an expected num-
ber of O(k+

p
N/(rk)) evaluations of F and uses space	(k).

In particular, when k = 3pN/r then Collision(F; k) uses an
expected number of O( 3pN/r) evaluations of F and space
	( 3pN/r).



QuantumAlgorithm for the Discrete Logarithm Problem Q 683

Corollary 2 There exists a quantum algorithm that can
find a collision in an arbitrary r-to-one function F : X !
Y, for any r � 2, using space S and an expected number of
O(T) evaluations of F for every 1 � S � T subject to

ST2 � jF(X)j;

where F(X) denotes the image of F.

The algorithm uses as a procedure a version of Grover’s
search algorithm. Given a function H with domain size n
and a target y, Grover(H; y) returns an x such that
H(x) = y in expected O(

p
n) evaluations of H.

Collision(F,k)

1. Pick an arbitrary subset K 
 X of cardinality k. Con-
struct a table L of size k where each item in L holds
a distinct pair (x; F(x)) with x 2 K.

2. Sort L according to the second entry in each item of L.
3. Check if L contains a collision, that is, check if there

exist distinct elements (x0; F(x0)); (x1; F(x1)) 2 L for
which F(x0) = F(x1). If so, go to step 6.

4. Compute x1 = Grover(H; 1), where H : X ! f0; 1g
denotes the function defined by H(x) = 1 if and only
if there exists x0 2 K so that (x0; F(x)) 2 L but x 6= x0.
(Note that x0 is unique if it exists since we already
checked that there are no collisions in L.)

5. Find (x0; F(x1)) 2 L.
6. Output the collision fx0; x1g.

Applications

This problem is of particular interest for cryptology be-
cause some functions known as hash functions are used
in various cryptographic protocols. The security of these
protocols crucially depends on the presumed difficulty of
finding collisions in such functions.
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Logarithms in groups

ProblemDefinition

Given positive real numbers a ¤ 1; b, the logarithm of b
to base a is the unique real number s such that b = as . The
notion of the discrete logarithm is an extension of this con-
cept to general groups.

Problem 1 (Discrete logarithm)
Input:Group G; a; b 2 G such that b = as for some positive
integer s.
Output: The smallest positive integer s satisfying b = as,
also known as the discrete logarithm of b to the base a in G.

The usual logarithm corresponds to the discrete logarithm
problem over the group of positive reals under multipli-
cation. The most common case of the discrete logarithm
problem is when the group G = Z�p , the multiplicative
group of integers between 1 and p � 1 modulo p, where
p is a prime. Another important case is when the group G
is the group of points of an elliptic curve over a finite field.

Key Results

The discrete logarithm problem inZ�p , where p is a prime,
as well as in the group of points of an elliptic curve
over a finite field is believed to be intractable for ran-
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domized classical computers. That is any, possibly ran-
domized, algorithm for the problem running on a clas-
sical computer will take time that is superpolynomial in
the number of bits required to describe an input to the
problem. The best classical algorithm for finding discrete
logarithms in Z�p , where p is a prime, is Gordon’s [4]
adaptation of the number field sieve which runs in time
exp(O((log p)1/3(log log p)2/3)).

In a breakthrough result, Shor [9] gave an efficient
quantum algorithm for the discrete logarithm problem in
any group G; his algorithm runs in time that is polynomial
in the bit size of the input.

Result 1 ([9]) There is a quantum algorithm solving the
discrete logarithm problem in any group G on n-bit inputs
in time O(n3) with probability at least 3/4.

Description of the Discrete Logarithm Algorithm

Shor’s algorithm [9] for the discrete logarithm prob-
lem makes essential use of an efficient quantum proce-
dure for implementing a unitary transformation known
as the quantum Fourier transform. His original algorithm
gave an efficient procedure for performing the quan-
tum Fourier transform only over groups of the form Zr ,
where r is a “smooth” integer, but nevertheless, he showed
that this itself sufficed to solve the discrete logarithm in the
general case. In this article, however, a more modern de-
scription of Shor’s algorithm is given. In particular, a result
by Hales and Hallgren [5] is used which shows that the
quantum Fourier transform over any finite cyclic group
Zr can be efficiently approximated to inverse-exponential
precision.

A description of the algorithm is given below. A gen-
eral familiarity with quantum notation on the part of
the reader is assumed. A good introduction to quan-
tum computing can be found in the book by Nielsen
and Chuang [8]. Let (G; a; b; r̄) be an instance of the
discrete logarithm problem, where r̄ is a supplied up-
per bound on the order of a in G. That is, there exists
a positive integer r � r̄ such that ar = 1. By using an ef-
ficient quantum algorithm for order finding also discov-
ered by Shor [9], one can assume that the order of a in G
is known, that is, the smallest positive integer r satisfy-
ing ar = 1. Shor’s order-finding algorithm runs in time
O((log r̄)3). Let � > 0. The discrete logarithm algorithm
works on three registers, of which the first two are each t
qubits long, where t := O(log r + log(1/�)), and the third
register is big enough to store an element of G. Let U de-
note the unitary transformation

U : jxijyijzi 7! jxijyijz˚ (bx ay)i ;

where˚ denotes bitwise XOR. Given access to a reversible
oracle for group operations in G, U can be implemented
reversibly in time O(t3) by repeated squaring.

Let C[Zr] denote the Hilbert space of functions from
Zr to complex numbers. The computational basis of
C[Zr] consists of the delta functions fjlig0�l�r�1, where
ji is the function that sends the element l to 1 and the
other elements of Zr to 0. Let QFTZr denote the quantum
Fourier transform over the cyclic group Zr defined as the
following unitary operator on C[Zr]:

QFTZr : jxi 7! r�1/2
X
y2Zr

e�2� i x y/r jyi :

It can be implemented in quantum time O(t log(t/�) +
log2(1/�)) up to an error of � using one t-qubit regis-
ter [5]. Note that for any k 2 Zr ;QFTZr transforms the
state r�1/2

P
x2Zr

e2� i kx/r jxi to the state jki. For any in-
teger l ; 0 � l � r � 1, define

j l̂i := r�1/2
r�1X
k=0

e�2� i l k/rjaki : (1)

Observe that fj l̂ig0�l�r�1 forms an orthonormal basis of
C[hai], where hai is the subgroup generated by a in G and
is isomorphic to Zr , and C[hai] denotes the Hilbert space
of functions from hai to complex numbers.

Algorithm 1 (Discrete logarithm)
Input: Elements a; b 2 G, a quantum circuit for U, the or-
der r of a in G.
Output: With constant probability, the discrete loga-
rithm s of b to the base a in G.
Runtime: A total of O(t3) basic gate operations, including
four invocations of QFTZr and one of U.

PROCEDURE:
1. Repeat Steps (a)–(e) twice, obtaining (sl1 mod r; l1)

and (sl2 mod r; l2).

(a) j0ij0ij0i
Initialization;

(b) 7! r�1
X

x;y2Zr

jxijyij0i

ApplyQFTZr to the first two registers;

(c) 7! r�1
X

x;y2Zr

jxijyijbxayi

Apply U
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(d) 7! r�1/2
r�1X
l=0

jsl mod rijlij l̂i

Apply QFTZr to the first two registers;
(e) 7! (sl mod r; l)

Measure the first two registers;

2. If l1 is not coprime to l2, abort.
3. Let k1; k2 be integers such that k1 l1 + k2 l2 = 1. Then,

output s = k1(sl1) + k2(sl2) mod r.

The working of the algorithm is explained below. From
Eq. (1), it is easy to see that

jbx ayi = r�1/2
r�1X
l=0

e2� i l (sx+y)/r j l̂i :

Thus, the state in Step 1(c) of the above algorithm can be
written as

r�1
X

x;y2Zr

jxijyijbxayi

= r�3/2
r�1X
l=0

X
x;y2Zr

e2� i l (sx+y)/r jxijyij l̂i

= r�3/2
r�1X
l=0

2
4X
x2Zr

e2� i s l x/r jxi

3
5�
2
4X
y2Zr

e2� i l y/r jyi

3
5 j l̂i:

Now, applying QFTZr to the first two registers gives the
state in Step 1(d) of the above algorithm. Measuring the
first two registers gives (sl mod r; l) for a uniformly dis-
tributed l ; 0 � l � r � 1 in Step 1(e). By elementary num-
ber theory, it can be shown that if integers l1, l2 are uni-
formly and independently chosen between 0 and l � 1,
they will be coprime with constant probability. In that
case, there will be integers k1, k2 such that k1 l1 + k2 l2 = 1,
leading to the discovery of the discrete logarithm s in
Step 3 of the algorithm with constant probability. Since
actually only an �-approximate version of QFTZr can be
applied, � can be set to be a sufficiently small constant,
and this will still give the correct discrete logarithm s in
Step 3 of the algorithm with constant probability. The suc-
cess probability of Shor’s algorithm for the discrete loga-
rithm problem can be boosted to at least 3/4 by repeating
it a constant number of times.

Generalizations of the Discrete Logarithm Algorithm

The discrete logarithm problem is a special case of a more
general problem called the hidden subgroup problem [8].

The ideas behind Shor’s algorithm for the discrete loga-
rithm problem can be generalized in order to yield an effi-
cient quantum algorithm for hidden subgroups in Abelian
groups (see [1] for a brief sketch). It turns out that find-
ing the discrete logarithm of b to the base a in G reduces
to the hidden subgroup problem in the group Zr � Zr
where r is the order of a in G. Besides the discrete log-
arithm problem, other cryptographically important func-
tions like integer factoring, finding the order of permuta-
tions, as well as finding self-shift-equivalent polynomials
over finite fields can be reduced to instances of a hidden
subgroup in Abelian groups.

Applications

The assumed intractability of the discrete logarithm prob-
lem lies at the heart of several cryptographic algorithms
and protocols. The first example of public-key cryptogra-
phy, namely, the Diffie–Hellman key exchange [2], uses
discrete logarithms, usually in the group Z�p for a prime p.
The security of the US national standard Digital Signature
Algorithm (see [7] for details and more references) de-
pends on the assumed intractability of discrete logarithms
in Z�p , where p is a prime. The ElGamal public-key cryp-
tosystem [3] and its derivatives use discrete logarithms in
appropriately chosen subgroups ofZ�p , where p is a prime.
More recent applications include those in elliptic curve
cryptography [6], where the group consists of the group
of points of an elliptic curve over a finite field.
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ProblemDefinition

In the element distinctness problem, one is given a list of
N elements x1; : : : ; xN 2 f1; : : : ;mg and one must deter-
mine if the list contains two equal elements. Access to the
list is granted by submitting queries to a black box, and
there are two possible types of query.

Value queries. In this type of query, the input to the
black box is an index i. The black box outputs xi as the
answer. In the quantum version of this model, the in-
put is a quantum state that may be entangled with the
workspace of the algorithm. The joint state of the query,
the answer register, and the workspace may be repre-
sented as

P
i;y;z ai;y;zji; y; zi, with y being an extra regis-

ter which will contain the answer to the query and z being
the workspace of the algorithm. The black box transforms
this state into

P
i;y;z ai;y;zji; (y + xi) mod m; zi. The sim-

plest particular case is if the input to the black box is of the
form

P
i ai ji; 0i. Then, the black box outputs

P
i ai ji; xii.

That is, a quantum state consisting of the index i is trans-
formed into a quantum state, each component of which
contains xi together with the corresponding index i.

Comparison queries. In this type of query, the input
to the black box consists of two indices i, j. The black box
gives one of three possible answers: “xi > x j”, “xi < x j” or
“xi = x j”. In the quantum version, the input is a quantum
state consisting of basis states ji; j; zi, with i, j being two
indices and z being algorithm’s workspace.

There are several reasons why the element distinctness
problem is interesting to study. First of all, it is related to
sorting. Being able to sort x1,. . . ,xN enables one to solve the
element distinctness by first sorting x1,. . . ,xN in increas-
ing order. If there are two equal elements xi = x j , then
they will be next one to another in the sorted list. There-
fore, after one has sorted x1,. . . ,xN , one must only check

the sorted list to see if each element is different from the
next one. Because of this relation, the element distinct-
ness problem might capture some of the same difficulty
as sorting. This has lead to a long line of research on clas-
sical lower bounds for the element distinctness problem
(cf [6,8,15]. and many other papers).

Second, the central concept of the algorithms for the
element distinctness problem is the notion of a collision.
This notion can be generalized in different ways, and
its generalizations are useful for building quantum algo-
rithms for various graph-theoretic problems (e. g. triangle
finding [12]) and matrix problems (e. g. checking matrix
identities [7]).

A generalization of element distinctness is element
k-distinctness [2], in which one must determine if there
exist k different indices i1; : : : ; ik 2 f1; : : : ;Ng such that
xi1 = xi2 = � � � = xik . A further generalization is the k-sub-
set finding problem [9], in which one is given a function
f (y1; : : : ; yk), and must determine whether there exist
i1; : : : ; ik 2 f1; : : : ;Ng such that f (xi1 ; xi2 ; : : : ; xik ) = 1.

Key Results

Element Distinctness: Summary of Results

In the classical (non-quantum) context, the natural solu-
tion to the element distinctness problem is done by sort-
ing, as described in the previous section. This uses O(N)
value queries (or O(N logN) comparison queries) and
O(N logN) time. Any classical algorithm requires ˝(N)
value or˝(N log N) comparison queries. If the algorithm
is restricted to o(N) space, stronger lower bounds are
known [15].

In the quantum context, Buhrman et al. [5] gave
the first non-trivial quantum algorithm, using O(N3/4)
queries. Ambainis [2] then designed a new algorithm,
based on a novel idea using quantum walks. Ambainis’
algorithm uses O(N2/3) queries and is known to be opti-
mal: Aaronson and Shi [1,3,10] have shown that any quan-
tum algorithm for element distinctness must use˝(N2/3)
queries.

For quantum algorithms that are restricted to stor-
ing r values xi (where r < N2/3), the best algorithm runs
in O(N/

p
r) time.

All of these results are for value queries. They can be
adapted to the comparison query model, with an logN
factor increase in the complexity. The time complexity is
within a polylogarithmic O(logc N) factor of the query
complexity, as long as the computational model is suffi-
ciently general [2]. (Random access quantum memory is
necessary for implementing any of the two known quan-
tum algorithms.)
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Element k-distinctness (and k-subset finding)
can be solved with O(Nk/(k+1)) value queries, using
O(Nk/(k+1)) memory. For the case when the memory is
restricted to r < Nk/(k+1) values of xi, it suffices to use
O(r + (Nk/2)/(r(k�1)/2)) value queries. The results gener-
alize to comparison queries and time complexity, with
a polylogarithmic factor increase in the time complexity
(similarly to the element distinctness problem).

Element Distinctness: The Methods

Ambainis’ algorithm has the following structure. Its state
space is spanned by basic states jTi, for all sets of in-
dices T 
 f1; : : : ;Ng with jTj = r. The algorithm starts in
a uniform superposition of all jTi and repeatedly applies
a sequence of two transformations:
1. Conditional phase flip: jTi ! �jTi for all T such that

T contains i, j with xi = x j and jTi ! jTi for all
other T;

2. Quantumwalk: perform O(
p
r) steps of quantumwalk,

as defined in [2]. Each step is a transformation that
maps each jTi to a combination of basis states jT 0i for
T 0 that differ from T in one element.
The algorithm maintains another quantum register,

which stores all the values of xi ; i 2 T . This register is up-
dated with every step of the quantum walk.

If there are two elements i, j such that xi = x j , repeat-
ing these two transformations O(N/r) times increases the
amplitudes of jTi containing i, j. Measuring the state of
the algorithm at that point with high probability produces
a set T containing i, j. Then, from the set T, we can find i
and j.

The basic structure of [2] is similar to Grover’s
quantum search, but with one substantial difference. In
Grover’s algorithm, instead of using a quantum walk, one
would use Grover’s diffusion transformation. Implement-
ing Grover’s diffusion requires˝(r) updates to the register
that stores xi ; i 2 T . In contrast to Grover’s diffusion, each
step of quantum walk changes T by one element, requir-
ing just one update to the list of xi ; i 2 T . Thus, O(

p
r)

steps of quantum walk can be performed with O(
p
r) up-

dates, quadratically better than Grover’s diffusion. And,
as shown in [2], the quantum walk provides a sufficiently
good approximation of diffusion for the algorithm to work
correctly.

This was one of first uses of quantum walks to con-
struct quantum algorithms. Ambainis, Kempe, Rivosh [4]
then generalized it to handle searching on grids (described
in another entry of this encyclopedia). Their algorithm is
based on the same mathematical ideas, but has a slightly
different structure. Instead of alternating quantum walk

. Initialize x to a state sampled from some initial dis-
tribution over the states of P.

. t times repeat:
(a) If the current state y is marked, output y and

stop;
(b) Simulate t steps of random walk, starting with

the current state y.
. If the algorithm has not terminated, output “no

marked state".

Quantum Algorithm for Element Distinctness, Algorithm 1
Search by a classical randomwalk

steps with phase flips, it performs a quantum walk with
two different walk rules – the normal walk rule and the
“perturbed” one. (The normal rule corresponds to a walk
without a phase flip and the “perturbed” rule corresponds
to a combination of the walk with a phase flip).

Generalization to Arbitrary Markov Chains

Szegedy [14] and Magniez et al. [13] have generalized
the algorithms of [4] and [2], respectively, to speed up
the search of an arbitrary Markov chain. The main result
of [13] is as follows.

Let P be an irreducible Markov chain with state space
X. Assume that some states in the state space of P are
marked. Our goal is to find a marked state. This can be
done by a classical algorithm that runs the Markov chain
P until it reaches a marked state (Algorithm 1).

There are 3 costs that contribute to the complexity of
Algorithm 1:
1. Setup cost S: the cost to sample the initial state x from

the initial distribution.
2. Update cost U: the cost to simulate one step of a ran-

dom walk.
3. Checking cost C: the cost to check if the current state x

is marked.
The overall complexity of the classical algorithm is then
S + t2(t1U + C). The required t1 and t2 can be calculated
from the characteristics of the Markov chain P. Namely,

Proposition 1 ([13]) Let P be an ergodic, yet symmetric
Markov chain. Let ı > 0 be the eigenvalue gap of P and,
assume that, whenever the set of marked states M is non-
empty, we have jMj/jXj � �. Then there are t1 = O(1/ı)
and t2 = O(1/�) such that Algorithm 1 finds a marked ele-
ment with high probability.

Thus, the cost of finding a marked element classically
is O(S + 1/�(1/ıU + C)). Magniez et al. [13] construct
a quantum algorithm that finds a marked element in
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O(S0 + 1/�(1/
p
ıU 0 + C0)) steps, with S0, U 0, C0 being

quantum versions of the setup, update and checking costs
(in most of applications, these are of the same order as S,
U and C). This achieves a quadratic improvement in the
dependence on both " and ı.

The element distinctness problem is solved by a partic-
ular case of this algorithm: a search on the Johnson graph.
The Johnson graph is the graph whose vertices vT corre-
spond to subsets T 
 f1; : : : ;Ng of size jTj = r. A vertex
vT is connected to a vertex vT 0 , if the subsets T and T 0 dif-
fer in exactly one element. A vertex vT ismarked if T con-
tains indices i, j with xi = x j .

Consider the following Markov chain on the Johnson
graph. The starting probability distribution s is the uni-
form distribution over the vertices of the Johnson graph.
In each step, the Markov chain chooses the next vertex vT 0
from all vertices that are adjacent to the current vertex vT ,
uniformly at random. While running the Markov chain,
one maintains a list of all xi ; i 2 T. This means that the
costs of the classical Markov chain are as follows:
� Setup cost of S = r queries (to query all xi ; i 2 T where

vT is the starting state).
� Update cost of U = 1 query (to query the value xi ;

i 2 T 0 � T , where vT is the vertex before the step and
vT 0 is the new vertex).

� Checking cost of C = 0 queries (the values xi ; i 2 T are
already known to the algorithm, no further queries are
needed).

The quantum costs S0, U 0, C0 are of the same order as S,
U, C.

For this Markov chain, it can be shown that the eigen-
value gap is ı = O(1/r) and the fraction of marked states
is � = O((r2)/(N2)). Thus, the quantum algorithm runs in
time

O
�
S0 +

1
p
�

�
1
p
ı
U 0 + C0

��

= O
�
S0 +
p
r
�
N
r
U 0 + C0

��
= O

�
r +

N
p
r

�
:

Applications

Magniez et al. [12] showed how to use the ideas from the
element distinctness algorithm as a subroutine to solve
the triangle problem. In the triangle problem, one is given
a graph G on n vertices, accessible by queries to an oracle,
and theymust determine whether the graph contains a tri-
angle (three vertices v1, v2, v3 with v1 v2, v1 v3 and v2 v3 all
being edges). This problem requires ˝(n2) queries classi-
cally. Magniez et al. [12] showed that it can be solved using
O(n1:3 logc n) quantum queries, with a modification of the

element distinctness algorithm as a subroutine. This was
then improved to O(n1.3) by [13].

The methods of Szegedy [14] and Magniez et al. [13]
can be used as subroutines for quantum algorithms for
checking matrix identities [7,11].

Open Problems

1. How many queries are necessary to solve the element
distinctness problem if the memory accessible to the al-
gorithm is limited to r items, r < N2/3? The algorithm
of [2] gives O(N/

p
r) queries, and the best lower bound

is˝(N2/3) queries.
2. Consider the following problem:

Graph collision [12]. The problem is specified by
a graph G (which is arbitrary but known in advance)
and variables x1; : : : ; xN 2 f0; 1g, accessible by queries
to an oracle. The task is to determine if G contains an
edge uv such that xu = xv = 1. How many queries are
necessary to solve this problem?
The element distinctness algorithm can be adapted to
solve this problem with O(N2/3) queries [12], but there
is no matching lower bound. Is there a better algo-
rithm? A better algorithm for the graph collision prob-
lemwould immediately imply a better algorithm for the
triangle problem.
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ProblemDefinition

Every positive integer n has a unique decomposition as
a product of primes n = pe11 � � � p

ek
k , for primes numbers pi

and positive integer exponents ei. Computing the decom-
position p1; e1; : : : ; pk ; ek from n is the factoring prob-
lem.

Factoring has been studied for many hundreds of years
and exponential time algorithms for it were found that in-
clude trial division, Lehman’smethod, Pollard’s �method,
and Shank’s class group method [1]. With the invention
of the RSA public-key cryptosystem in the late 1970s, the
problem became practically important and started receiv-
ing much more attention. The security of RSA is closely
related to the complexity of factoring, and in particular,
it is only secure if factoring does not have an efficient al-
gorithm. The first subexponential-time algorithm is due
to Morrison and Brillhard [4] using a continued frac-
tion algorithm. This was succeeded by the quadratic sieve
method of Pomerance and the elliptic curve method of
Lenstra [5]. The Number Field Sieve [2,3], found in 1989,
is the best known classical algorithm for factoring and runs
in time exp(c(log n)1/3(log log n)2/3) for some constant c.
Shor’s result is a polynomial-time quantum algorithm for
factoring.

Key Results

Theorem 1 ([2,3]) There is a subexponential-time
classical algorithm that factors the integer n in time
exp(c(log n)1/3(log log n)2/3).

Theorem 2 ([6]) There is a polynomial-time quantum al-
gorithm that factors integers. The algorithm factors n in
time O((log n)2(log n log n)(log log log n)) plus polynomial
in log n post-processing which can be done classically.

Applications
Computationally hard number theoretic problems are use-
ful for public key cryptosystems. The RSA public-key cryp-
tosystem, as well as others, require that factoring not have
an efficient algorithm. The best known classical algorithms
for factoring can help determine how secure the cryptosys-
tem is and what key sizes to choose. Shor’s quantum algo-
rithm for factoring can break these systems in polynomial-
time using a quantum computer.

Open Problems
Whether there is a polynomial-time classical algorithm for
factoring is open. There are problems which are harder
than factoring such as finding the unit group of an arbi-
trary degree number field for which no efficient quantum
algorithm has been found yet.
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Keywords and Synonyms

Triangle finding

ProblemDefinition

A triangle is a clique of size three in an undirected graph.
Triangle finding is a fundamental computational problem
whose time complexity is closely related to that of ma-
trix multiplication. It has been the subject of considerable
study recently as a basic search problem whose quantum
query complexity is still unclear, in contrast to the unstruc-
tured search problem [4,10] and the element distinctness
problem [1,3]. This survey concerns quantum query algo-
rithms for triangle finding.

Notation and Constraints

A quantum query algorithm Qf : j 0i 7! j f i computes
a property P of a function f by mapping the initial state
j 0i = j0ij0ij0i (in which its query, answer, andworkspace
registers are cleared) to a final state j f i = Qf j 0i by ap-
plying a sequence Qf = UkO f Uk�1Of � � �U1Of U0 of uni-
tary operators on the complex vector space spanned by all
possible basis states jxijaijzi. The unitary operators are of
two types: oracle queries O f : jxijaijzi 7! jxija˚ f (x)ijzi,
which yield information about f , and non-query steps Uk,
which are independent of f . The quantum query complex-
ity of P is the minimum number of oracle queries required
by a quantum query algorithm computing P with proba-
bility at least 2/3.

Consider the triangle finding problem for an unknown
(simple, undirected) graph G 
 f(a; b) : a; b 2 [n]; a ¤
bg on vertices [n] = f1; : : : ; ng and m = jGj undirected
edges, where (a; b) = (b; a) by convention. The function f
to query is the adjacency matrix ofG and the property P to
be computed is whether or not G contains a triangle.

Problem 1 (Triangle finding)
INPUT: The adjacency matrix f of a graph G on n vertices.
OUTPUT: A triangle with probability � 2/3 if one exists
(search version), or a boolean value indicating whether or
not one exists with probability� 2/3 (decision version).

A lower bound of˝(n) on the quantum query complexity
of the triangle finding problem was shown by Buhrman et
al. [6]. The trivial upper bound of O(n2) is attainable by
querying every entry of f classically.

Classical Results

The classical randomized query complexity of a problem
is defined similarly to the quantum query complexity, only
the operators Uk are stochastic rather than unitary; in par-
ticular, this means oracle queries can bemade according to
classical distributions but not quantum superpositions. It
is easy to see that the randomized query complexity of the
triangle finding problem (search and decision versions) is
	(n2).

Key Results

Improvement of the upper bound on the quantum query
complexity of the triangle finding problem has stemmed
from two lines of approach: increasingly clever utiliza-
tion of structure in the search space (combined with stan-
dard quantum amplitude amplification) and application of
quantum walk search procedures.

An O(n +
p
nm) Algorithm Using Amplitude

Amplification

Since there are
�n
3
�
potential triangles (a; b; c) in G, a triv-

ial application of Grover’s quantum search algorithm [10]
solves the triangle finding problem with O(n3/2) quantum
queries. Buhrman et al. [6] improved this upper bound in
the special case where G is sparse (i. e., m = o(n2)) by the
following argument.

Suppose Grover’s algorithm is used to find (a) an edge
(a; b) 2 G among all

�n
2
�
potential edges, followed by (b)

a vertex c 2 [n] such that (a; b; c) is a triangle in G. The
costs of steps (a) and (b) are O(

p
n2/m) and O(

p
n)

quantum queries, respectively. If G contains a triangle �,
then step (a) will find an edge (a, b) from � with prob-
ability ˝(1/m), and step (b) will find the third vertex
c in the triangle � = (a; b; c) with constant probability.
Therefore, steps (a) and (b) together find a triangle with
probability ˝(1/m). By repeating the steps O(

p
m) times

using amplitude amplification (Brassard et al. [5]), one
can find a triangle with probability 2/3. The total cost is
O(
p
m(
p
n2/m +

p
n)) = O(n +

p
nm) quantum queries.

Summarizing:

Theorem 1 (Buhrman et al. [6]) Using quantum am-
plitude amplification, the triangle finding problem can be
solved in O(n +

p
nm) quantum queries.
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An Õ(n10/7) Algorithm Using Amplitude Amplification

Let �2 be the complete graph on vertices � 
 [n], �G (v)
be the set of vertices adjacent to a vertex v, and degG(v)
be the degree of v. Note that for any vertex v 2 [n], one
can either find a triangle in G containing v or verify that
G 
 [n]2 n �G (v)2 with Õ(n) quantum queries and suc-
cess probability 1 � 1/n3, by first computing �G (v) classi-
cally and then using Grover’s search logarithmically many
times to find an edge of G in �G (v)2 with high probability
if one exists. Szegedy et al [13,14]. use this observation to
design an algorithm for the triangle finding problem that
utilizes no quantum procedure other than amplitude am-
plification (just like the algorithm of Buhrman et al [6].)
yet requires only Õ(n10/7) quantum queries.

The algorithm of Szegedy et al. [13,14]. is as fol-
lows. First, select k = Õ(n�) vertices v1; : : : ; vk uni-
formly at random from [n] without replacement and
compute each �G(vi ). At a cost of Õ(n1+�) quantum
queries, one can either find a triangle in G contain-
ing one of the vi or conclude with high probability that
G 
 G0 := [n]2 n [i�G (vi )2. Suppose the latter. Then it
can be shown that with high probability, one can construct
a partition (T, E) of G0 such that T contains O(n3��0 )
triangles and E \ G has size O(n2�ı + n2��+ı+�0 ) in
Õ(n1+ı+�0 ) queries (or one will find a triangle in G in
the process). Since G 
 G0, every triangle in G either lies
within T or intersects E. In the first case, one will find a tri-
angle in G \ T in O(

p
n3��0 ) quantum queries by search-

ing G with Grover’s algorithm for a triangle in T, which
is known from the partitioning procedure. In the second
case, one will find a triangle in G with an edge in E in
Õ(n +

p
n3�minfı;��ı��0g) quantum queries using the al-

gorithm of Buhrman et al.[6] with m = jG \ Ej. Thus:

Theorem 2 (Szegedy et al. [13,14]) Using quantum am-
plitude amplification, the triangle finding problem can be
solved in Õ(n1+� + n1+ı+�0 +

p
n3��0 +

p
n3�minfı;��ı��0g)

quantum queries.

Letting � = 3/7 and �0 = ı = 1/7 yields an algorithm using
Õ(n10/7) quantum queries.

An Õ(n13/10) Algorithm Using QuantumWalks

Amore efficient algorithm for the triangle finding problem
was obtained by Magniez et al. [13], using the quantum
walk search procedure introduced by Ambainis [3] to ob-
tain an optimal quantum query algorithm for the element
distinctness problem.

Given oracle access to a function f defining a re-
lation C 
 [n]k Ambainis’ search procedure solves the
k-collision problem: find a pair (a1; : : : ; ak) 2 C if one

exists. The search procedure operates on three quan-
tum registers jAijD(A)ijyi: the set register jAi holds
a set A 
 [n] of size jAj = r, the data register jD(A)i
holds a data structure D(A), and the coin register jyi
holds an element i … A. By checking the data struc-
ture D(A) using a quantum query procedure ˚ with
checking cost c(r), one can determine whether or not
Ak \ C ¤ ;. Suppose D(A) can be constructed from
scratch at a setup cost s(r) and modified from D(A) to
D(A0) where jA\ A0j = r � 1 at an update cost u(r). Then
Ambainis’ quantum walk search procedure solves the k-
collision problem in Õ(s(r) + ( nr )

k/2 � (c(r) +
p
r � u(r)))

quantum queries. (For details, see the encyclopedia entry
on element distinctness.)

Consider the graph collision problem on a graph
G 
 [n]2, where f defines the binary relationC 
 [n]2 sat-
isfying C(u; u0) if f (u) = f (u0) = 1 and (u; u0) 2 G. Am-
bainis’ search procedure solves the graph collision prob-
lem in Õ(n2/3) quantum queries, by the following argu-
ment. Fix k = 2 and r = n2/3 in the k-collision algorithm,
and for every U 
 [n] define D(U) = f(v; f (v)) : v 2 Ug
and ˚(D(U)) = 1 if some u; u0 2 U satisfies C. Then
s(r) = r initial queries f (v) are needed to set up D(U),
u(r) = 1 new query f (v) is needed to update D(U), and
c(r) = 0 additional queries f (v) are needed to check
˚(D(U)). Therefore, Õ(r + n

r (
p
r)) = Õ(n2/3) queries are

needed altogether.
Magniez et al. [13] solve the triangle finding prob-

lem by reduction to the graph collision problem. Again fix
k = 2 and r = n2/3. Let C be the set of edges contained in at
least one triangle. Define D(U) = GjU and ˚(D(U)) = 1
if some edge in GjU satisfies C. Then s(r) = O(r2) initial
queries are needed to set upD(U) and u(r) = r new queries
are needed to updateD(U). It remains to bound the check-
ing cost c(r). For any vertex v 2 [n], consider the graph
collision oracle f v onGjU satisfying fv(u) = 1 if (u; v) 2 G.
An edge of GjU is a triangle in G if and only if the edge
is a solution to the graph collision problem on GjU for
some v 2 [n]. This problem can be solved for a partic-
ular v in Õ(r2/3) queries. Using Õ(

p
n) steps of ampli-

tude amplification, one can find out if any v 2 [n] gen-
erates an accepting solution to the graph collision prob-
lem with high probability. Hence, the checking cost is
c(r) = Õ(

p
n � r2/3) queries, from which it follows that:

Theorem 3 (Magniez et al. [13]) Using a quantum walk
search procedure, the triangle finding problem can be solved
in Õ(r2 + n

r (
p
n � r2/3 +

p
r � r)) quantum queries.

Letting r = n3/5 yields an algorithm using Õ(n13/10) quan-
tum queries.
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In recent work Magniez et al. [12], using the quan-
tum walk defined by Szegedy [15], have introduced a new
quantum walk search procedure generalizing that of Am-
bainis [3]. Among the consequences is a quantum walk al-
gorithm for triangle finding in O(n13/10) quantum queries.

Applications

Extensions of the quantum walk algorithm for triangle
finding have been used to find cliques and other fixed sub-
graphs in a graph and to decide monotone graph prop-
erties with small certificates using fewer quantum queries
than previous algorithms.

Finding Cliques, Subgraphs, and Subsets

Ambainis’ k-collision algorithm [3] can find a copy of
any graph H with k > 3 vertices in Õ(n2�2/(k+1)) quan-
tum queries. In the case where H is a k-clique, Childs
and Eisenberg [9] gave an Õ(n2:5�6/(k+2)) query algorithm.
A simple generalization of the triangle finding quantum
walk algorithm of Magniez et al. [13] improves this to
Õ(n2�2/k ).

Monotone Graph Properties

Recall that a monotone graph property is a boolean prop-
erty of a graph whose value is invariant under permutation
of the vertex labels and monotone under any sequence of
edge deletions. Examples of monotone graph properties
are connectedness, planarity, and triangle-freeness. A 1-
certificate is a minimal subset of edge queries proving that
a property holds (e. g., three edges suffice to prove that
a graph contains a triangle). Magniez et al. [13] show
that their quantum walk algorithm for the triangle find-
ing problem can be generalized to an Õ(n2�2/k ) quantum
query algorithm deciding any monotone graph property
with 1-certificates of size at most k > 3 vertices. The best
known lower bound is˝(n).

Open Problems

The most obvious remaining open problem is to resolve
the quantum query complexity of the triangle finding
problem; again, the best upper and lower bounds currently
known are O(n13/10) and˝(n). Beyond this, there are the
following open problems:

QuantumQuery Complexity
of Monotone Graph Properties

The best known lower bound for the quantum query
complexity of (nontrivial) monotone graph properties is

˝(n2/3 log1/6 n), observed by Andrew Yao to follow from
the classical randomized lower bound ˝(n4/3 log1/3 n) of
Chakrabarti and Khot [8] and the quantum adversary
technique of Ambainis [2]. Is an improvement to ˝(n)
possible? If so, this would be tight, since one can deter-
mine whether the edge set of a graph is nonempty in O(n)
quantum queries using Grover’s algorithm.

New QuantumWalk Algorithms

Quantum walks have been successfully applied in design-
ing more efficient quantum search algorithms for sev-
eral problems, including element distinctness [3], trian-
gle finding [13], matrix product verification [7], and group
commutativity testing [11]. It would be nice to see how far
the quantumwalk approach can be extended to obtain new
and better quantum algorithms for various computational
problems.
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ProblemDefinition

The parity of n bits x0, x1, � � � , xn�1 2 f0; 1g is

x0 ˚ x1 ˚ � � � ˚ xn�1 =
n�1X
i=0

xi mod 2 :

As an elementary Boolean function, Parity is important
not only as a building block of digital logic, but also
for its instrumental roles in several areas such as error-
correction, hashing, discrete Fourier analysis, pseudoran-
domness, communication complexity, and circuit com-
plexity. The feature of Parity that underlies its many ap-
plications is its maximum sensitivity to the input: flipping
any bit in the input changes the output. The computa-
tion of Parity from its input bits is quite straightforward in
most computation models. However, two settings deserve
attention.

The first is the circuit complexity of Parity when the
gates are restricted to AND, OR, and NOT gates. It is
known that Parity cannot be computed by such a circuit of
a polynomial size and a constant depth, a groundbreaking
result proved independently by Furst, Saxe, and Sipser [7],
and Ajtai [1], and improved by several subsequent works.

The second, and the focus of this article, is in the deci-
sion tree model (also called the query model or the black-
box model), where the input bits x = x0x1 � � � xn�1 2
f0; 1gn are known to an oracle only, and the algorithm

needs to ask questions of the type “xi =?” to access the in-
put. The complexity is measured by the number of queries.
Specifically, a quantum query is the application of the fol-
lowing query gate

Ox : ji; bi 7! ji; b˚xii; i 2 f0; � � � ; n�1g; b 2 f0; 1g :

Key Results

Proposition 1 There is a quantum query algorithm com-
puting the parity of 2 bits with probability 1 using 1 query.

Proof Denote by j˙i = 1p
2
(j0i˙ j1i). The initial state of

the algorithm is

1
p
2
(j0i + j1i)˝ j�i :

Apply a query gate, using the first register for the index slot
and the second register for the answer slot. The resulting
state is

1
p
2
((�1)x0 j0i + (�1)x1 j1i)˝ j�i :

Applying a Hadamard gateH = j+ih0j+ j�ih1j on the first
register brings the state to

(�1)x0 jx0 + x1i ˝ j�i :

Thus measuring the first register gives x0 + x1 with cer-
tainty. �

Corollary 2 There is a quantum query algorithm com-
puting the parity of n bits with probability 1 using dn/2e
queries.

The above quantum upper bound for Parity is tight, even if
the algorithm is allowed to err with a probability bounded
away from 1/2 [6]. In contrast, any classical random-
ized algorithm with bounded error probability requires
n queries. This follows from the fact that on a random in-
put, any classical algorithm not knowing all the input bits
is correct with precisely 1/2 probability.

Applications

The quantum speedup for computing Parity was first ob-
served by Deutsch [4]. His algorithm uses j0i in the an-
swer slot, instead of j�i. After one query, the algorithm
has 3/4 chance of computing the parity, better than any
classical algorithm (1/2 chance). The presented algorithm
is actually a special case of the Deutsch–Jozsa Algorithm,
which solves the following problem now referred to as the
Deutsch–Jozsa Problem.
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Problem 1 (Deutsch–Jozsa Problem) Let n � 1 be an
integer. Given an oracle function f : f0; 1gn ! f0; 1g that
satisfies either (a) f (x) is constant on all x 2 f0; 1gn, or (b)
jfx : f (x) = 1gj = jfx : f (x) = 0gj = 2n�1, determine which
case it is.

When n = 1, the above problem is precisely Parity of 2 bits.
For a general n, the Deutsch–Jozsa Algorithm solves the
problem using only once the following query gate

Of : jx; bi 7! jx; f (x)˚ bi ; x 2 f0; 1gn ; b 2 f0; 1g :

The algorithm starts with

j0ni ˝ j�i :

It applies H˝n on the index register (the first n qubits),
changing the state to

1
2n/2

X
x2f0;1gn

jxi ˝ j�i :

The oracle gate is then applied, resulting in

1
2n/2

X
x2f0;1gn

(�1) f (x)jxi ˝ j�i :

For the second time, H˝n is applied on the index register,
bringing the state to

X
y2f0;1gn

0
@ 1
2n

X
x2f0;1gn

(�1) f (x)+x �y

1
A jyi ˝ j�i : (1)

Finally, the index register is measured in the computa-
tional basis. The Algorithm returns “Case (a)” if 0n is ob-
served, otherwise returns “Case (b)”.

By direct inspection, the amplitude of j0ni is 1 in
Case (a), and 0 in Case (b). Thus the Algorithm is correct
with probability 1. It is easy to see that any deterministic
algorithm requires n/2 + 1 queries in the worst case, thus
the Algorithm provides the first exponential quantum ver-
sus deterministic speedup.

Note that O(1) expected number of queries are suf-
ficient for randomized algorithms to solve the Deutsch–
Jozsa Problem with a constant success probability arbitrar-
ily close to 1. Thus the Deutsch–Jozsa Algorithm does not
have much advantage compared with error-bounded ran-
domized algorithms. One might also feel that the saving of
one query for computing the parity of 2 bits by Deutsch–
Jozsa Algorithm is due to the artificial definition of one
quantum query. Thus the significance of the Deutsch–
Jozsa Algorithm is not in solving a practical problem,

but in its pioneering use of Quantum Fourier Transform
(QFT), of which H˝n is one, in the pattern

QFT ! Query ! QFT :

The same pattern appears in many subsequent quantum
algorithms, including those found by Bernstein and Vazi-
rani [2], Simon [8], Shor.

The Deutsch–Jozsa Algorithm is also referred to as
Deutsch Algorithm. The Algorithm as presented above is
actually the result of the improvement by Cleve, Ekert,
Macchiavello, and Mosca [3] and independently by Tapp
(unpublished) on the algorithm in [5].
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ProblemDefinition
Associated with each number field is a finite abelian group
called the class group. The order of the class group is called
the class number. Computing the class number and the
structure of the class group of a number field are among
the main tasks in computational algebraic number the-
ory [3].

A number field F can be defined as a subfield of the
complex numbers C which is generated over the rational
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numbersQ by an algebraic number, i. e. F = Q(�) where �
is the root of a polynomial with rational coefficients. The
ring of integers O of F is the subset consisting of all el-
ements that are roots of monic polynomials with integer
coefficients. The ring O 
 F can be thought of as a gener-
alization of Z, the ring of integers in Q. In particular, one
can ask whetherO is a principal ideal domain and whether
elements in O have unique factorization. Another inter-
esting problem is computing the unit group O�, which is
the set of invertible algebraic integers inside F, that is, ele-
ments ˛ 2 O such that ˛�1 is also in O.

Ever since the class group was discovered by Gauss in
1798 it has been an interesting object of study. The class
group of F is the set of equivalence classes of fractional ide-
als of F, where two ideals I and J are equivalent if there ex-
ists ˛ 2 F� such that J = ˛I. Multiplication of two ideals I
and J is defined as the ideal generated by all products ab,
where a 2 I and b 2 J. Much is still unknown about num-
ber fields, such as whether there exist infinitelymany num-
ber fields with trivial class group. The question of the class
group being trivial is equivalent to asking whether the el-
ements in the ring of integers O of the number field have
unique factorization.

In addition to computing the class number and the
structure of the class group, computing the unit group and
determining whether given ideals are principal, called the
principal ideal problem, are also central problems in com-
putational algebraic number theory.

Key Results

The best known classical algorithms for the class group
take subexponential time [1,3]. Assuming the GRH, com-
puting the class group, the unit group, and solving the
principal ideal problem are in NP\CoNP [7].

The following theorems state that the three problems
defined above have efficient quantum algorithms [4,6].

Theorem 1 There is a polynomial-time quantum algo-
rithm that computes the unit group of a constant degree
number field.

Theorem 2 There is a polynomial-time quantum algo-
rithm that solves the principal ideal problem in constant de-
gree number fields.

Theorem 3 The class group and class number of a con-
stant degree number field can be computed in quantum
polynomial-time assuming the GRH.

Computing the class group means computing the struc-
ture of a finite abelian group given a set of generators
for it. When it is possible to efficiently multiply group

elements and efficiently compute unique representations
of each group element, then this problem reduces to the
standard hidden subgroup problem over the integers, and
therefore has an efficient quantum algorithm. Ideal multi-
plication is efficient in number fields. For imaginary num-
ber fields, there are efficient classical algorithms for com-
puting group elements with a unique representation, and
therefore there is an efficient quantum algorithm for com-
puting the class group.

For real number fields, there is no known way to effi-
ciently compute unique representations of class group el-
ements. As a result, the classical algorithms typically com-
pute the unit group and class group at the same time.
A quantum algorithm [4] is able to efficiently compute the
unit group of a number field, and then use the principal
ideal algorithm to compute a unique quantum representa-
tion of each class group element. Then the standard quan-
tum algorithm can be applied to compute the class group
structure and class number.

Applications
There are factoring algorithms based on computing the
class group of an imaginary number fields. One is expo-
nential time and the other is subexponential-time [3].

Computationally hard number theoretic problems are
useful for public key cryptosystems. Pell’s equation re-
duces to the principal ideal problem, which forms the
basis of the Buchmann-Williams key-exchange proto-
col [2]. Identification schemes have also been based on
this problem by Hamdy and Maurer [5]. The classical
exponential-time algorithms help determine which pa-
rameters to choose for the cryptosystem. Factoring re-
duces to Pell’s equation and the best known algorithm for
it is exponentially slower than the best factoring algorithm.
Systems based on these harder problems were proposed as
alternatives in case factoring turns out to be polynomial-
time solvable. The efficient quantum algorithms can break
these cryptosystems.

Open Problems
It remains open whether these problems can be solved in
arbitrary degree number fields. The solution for the unit
group can be thought of in terms of the hidden subgroup
problem. That is, there exists a function on Rc which is
constant on values that differ by an element of the unit
lattice, and is one-to-one within the fundamental paral-
lelepiped. However, this function cannot be evaluated ef-
ficiently since it has an uncountable domain, and instead
an efficiently computable approximation must be used. To
evaluate this discrete version of the function, a classical al-
gorithm is used to compute reduced ideals near a given
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point in Rc. This algorithm is only polynomial-time for
constant degree number fields as it computes the shortest
vector in a lattice. Such an algorithm can be used to set
up a superposition over points approximating the points
in the a coset of the unit lattice. After setting up the su-
perposition, it must be shown that Fourier sampling, i. e.
computing the Fourier transform and measuring, suffices
to compute the lattice.
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ProblemDefinition

Consider an
p
N �
p
N grid, with each location storing

a bit that is 0 or 1. The locations on the grid are indexed

by (i, j), where i; j 2 f0; 1; : : : ;
p
N � 1g:ai; j denotes the

value stored at the location (i, j).
The task is to find a location storing ai; j = 1. This

problem is as an abstract model for search in a two-di-
mensional database, with each location storing a variable
xi; j with more than two values. The goal is to find xi; j that
satisfies certain constraints. One can then define new vari-
ables ai; j with ai; j = 1 if xi; j satisfies the constraints and
search for i; j satisfying ai; j = 1.

The grid is searched by a “robot”, which, at any mo-
ment of time is at one location i; j. In one time unit, the
robot can either examine the current location or move one
step in one of four directions (left, right, up or down).

In a probabilistic version of this model, the robot is
probabilistic. It makes its decisions (querying the current
location or moving) randomly according to pre-specified
probability distributions. At any moment of time, such
robot a is at a probability distribution over the locations
of the grid. In the quantum case, one has a “quantum
robot” [4] which can be in a quantum superposition of
locations (i, j) and is allowed to perform transformations
that move it at most one step at a time.

There are several ways to make this model of a “quan-
tum robot” precise [1] and they all lead to similar results.

The simplest to define is the Z-local model of [1]. In
this model, the robot’s state space is spanned by states
ji; j; ai with i; j representing the current location and
a being the internal memory of the robot. The robot’s
state j i can be any quantum superposition of those:
j i =

P
i; j;a ˛i; j;aji; j; ai, where ˛i; j;a are complex num-

bers such that
P

i; j;a j˛i; j;aj
2 = 1. In one step, the robot

can either perform a query of the value at the current loca-
tion or a Z-local transformation.

A query is a transformation that leaves i; j parts of
a state ji; j; ai unchanged and modifies the a part in a way
that depends only on the value ai; j . A Z-local transfor-
mation is a transformation that maps any state ji; j; ai to
a superposition that involves only states with robot be-
ing either at the same location or at one of 4 adjacent
locations (ji; j; bi, ji � 1; j; bi, ji + 1; j; bi, ji; j� 1; bi or
ji; j + 1; bi where the content of the robot’s memory b is
arbitrary).

The problem generalizes naturally to d-dimensional
grid of size N1/d � N1/d � � � � � N1/d , with robot being al-
lowed to query or move one step in one of d directions in
one unit of time.

Key Results

This problem was first studied by Benioff [4] who con-
sidered the use of the usual quantum search algorithm,

http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/
http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/
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by Grover [8] in this setting. Grover’s algorithm allows to
search a collection of N items ai; j with O(

p
N) queries.

However, it does not respect the structure of a grid. Be-
tween any two queries it performs a transformation that
may require the robot to move from any location (i, j) to
any other location (i0; j0). In the robot model, where the
robot in only allowed to move one step in one time unit,
such transformation requires O(

p
N) steps to perform.

Implementing Grover’s algorithm, which requires O(
p
N)

such transformations, therefore, takesO(
p
N)�O(

p
N) =

O(N) time, providing no advantage over the naive classi-
cal algorithm.

The first algorithm improving over the naive use of
Grover’s search was proposed by Aaronson and Ambai-
nis [1] who achieved the following results:
� Search on

p
N �
p
N grid, if it is known that the grid

contains exactly one ai; j = 1 in O(
p
N log3/2 N) steps.

� Search on
p
N �
p
N grid, if the grid may contain an

arbitrary number of ai; j = 1 in O(
p
N log5/2 N) steps.

� Search on N1/d � N1/d � � � � � N1/d grid, for d � 3, in
O(
p
N) steps.

They also considered a generalization of the problem,
search on a graph G, in which the robot moves on the ver-
tices v of the graph G and searches for a variable av = 1.
In one step, the robot can examine the variable av cor-
responding to the current vertex v or move to another
vertex w adjacent to v. Aaronson and Ambainis [1] gave
an algorithm for searching an arbitrary graph with grid-
like expansion properties in O(N1/2+o(1)) steps. The main
technique in those algorithms was the use of Grover’s
search and its generalization, amplitude amplification [5],
in combination with “divide-and-conquer” methods re-
cursively breaking up a grid into smaller parts.

The next algorithms were based on quantum
walks [3,6,7]. Ambainis, Kempe and Rivosh [3] pre-
sented an algorithm, based on a discrete time quantum
walk, which searches the two-dimensional

p
N �
p
N in

O(
p
N logN) steps, if the grid is known to contain exactly

one ai; j = 1 and in O(
p
N log2 N) steps in the general

case. Childs and Goldstone [7] achieved a similar perfor-
mance, using continuous time quantum walk. Curiously,
it turned out that the performance of the walk crucially
depended on the particular choice of the quantum walk,
both in the discrete and continuous time and some very
natural choices of quantum walk (e. g. one in [6]) failed.

Besides providing an almost optimal quantum
speedup, the quantum walk algorithms also have an addi-
tional advantage: their simplicity. The discrete quantum
walk algorithm of [3] uses just two bits of quantum mem-
ory. It’s basis states are ji; j; di, where (i, j) is a location on
the grid and d is one of 4 directions: ,!, " and #. The

basic algorithm consists of the following simple steps:
1. Generate the state

P
i; j;d

1
2
p

N
ji; j; di.

2. O(
p
N logN) times repeat

(a) Perform the transformation

C0 =

0
BBBB@

� 1
2

1
2

1
2

1
2

1
2 � 1

2
1
2

1
2

1
2

1
2 � 1

2
1
2

1
2

1
2

1
2 � 1

2

1
CCCCA

on the states ji; j; i, ji; j;!i, ji; j;"i, ji; j;#i,
if ai; j = 0 and the transformation C1 = �I on the
same four states if ai; j = 1.

(b) Move one step according to the direction register
and reverse the direction:

ji; j;!i ! ji + 1; j; i ;
ji; j; i ! ji � 1; j;!i ;
ji; j;"i ! ji; j � 1;#i ;
ji; j;#i ! ji; j + 1;"i :

In case, if ai; j = 1 for one location (i, j), a signifi-
cant part of the algorithm’s final state will consist of the
four states ji; j; di for the location (i, j) with ai; j = 1. This
can be used to detect the presence of such location.
A quantum algorithm for search on a grid can be also de-
rived by designing a classical algorithm that finds ai; j = 1
by performing a random walk on the grid and then apply-
ing Szegedy’s general translation of classical randomwalks
to quantum random chains, with a quadratic speedup over
the classical randomwalk algorithm [12]. The resulting al-
gorithm is similar to the algorithm of [3] described above
and has the same running time.

For an overview on related quantum algorithms using
similar methods, see [2,9].

Applications

Quantum algorithms for spatial search are useful for de-
signing quantum communication protocols for the set dis-
jointness problem. In the set disjointness problem, one
has two parties holding inputs x 2 f0; 1gN and y 2 f0; 1gN

and they have to determine if there is i 2 f1; : : : ;Ng for
which xi = yi = 1. (One can think of x and y as repre-
senting subsets X;Y 
 f1; : : : ;Ng with xi = 1(yi = 1) if
i 2 X(i 2 Y). Then, determining if xi = yi = 1 for some
i is equivalent to determining if X \ Y ¤ ;.)

The goal is to solve the problem, communicating as
few bits between the two parties as possible. Classically,
˝(N) bits of communication are required [10]. The op-
timal quantum protocol [1] uses O(

p
N) quantum bits of
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communication and its main idea is to reduce the problem
to spatial search. As shown by the ˝(

p
N) lower bound

of [11], this algorithm is optimal.
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ProblemDefinition
Pell’s equation is one of the oldest studied problem in
number theory. For a positive square-free integer d, Pell’s
equation is x2 � dy2 = 1, and the problem is to com-
pute integer solutions x, y of the equation [7,9]. The earli-

est algorithm for it uses the continued fraction expansion
of
p
d and dates back to 1000 a.d. by Indian mathemati-

cians. Lagrange showed that there are an infinite number
of solutions of Pell’s equation. All solutions are of the form
xn + yn

p
d = (x1 + y1

p
d)n , where the smallest solution,

(x1; y1), is called the fundamental solution. The solution
(x1; y1) may have exponentially many bits in general in
terms of the input size, which is log d, and so cannot be
written down in polynomial time. To resolve this difficulty,
the computational problem is recast as computing the in-
teger closest to the regulator R = ln(x1 + y1

p
d). In this

representation solutions of Pell’s equation are positive in-
teger multiples of R.

Solving Pell’s equation is a special case of comput-
ing the unit group of number field. For a positive non-
square integer � congruent to 0 or 1 mod 4;K =
Q(
p
�) is a real quadratic number field. Its subring O =

Z[�+
p
�

2 ] 
 Q(
p
�) is called the quadratic order of dis-

criminant �. The unit group is the set of invertible el-
ements of O. Units have the form ˙"k , where k 2 Z,
for some " > 1 called the fundamental unit. The fun-
damental unit " can have exponentially many bits, so an
approximation of the regulator R = ln " is computed. In
this representation the unit group consists of integer mul-
tiples of R. Given the integer closest to R there are classical
polynomial-time algorithms to compute R to any preci-
sion. There are also efficient algorithms to test if a given
number is a good approximation to an integer multi-
ple of a unit, or to compute the least significant digits
of " = eR [1,3].

Two related and potentially more difficult problems
are the principal ideal problem and computing the class
group of a number field. In the principal ideal problem,
a number field and an ideal I ofO are given, and the prob-
lem is to decide if the ideal is principal, i. e. whether there
exists ˛ such that I = ˛O. If it is principal, then one can
ask for an approximation of ln˛. There are efficient classi-
cal algorithms to verify that a number is close to ln˛ [1,3].
The class group of a number field is the finite abelian group
defined by taking the set of fractional ideals modulo the
principal fractional ideals. The class number is the size
of the class group. Computing the unit group, comput-
ing the class group, and solving the principal ideal prob-
lems are three of the main problems of computational al-
gebraic number theory [3]. Assuming the GRH, they are
in NP\CoNP [8].

Key Results
The best known classical algorithms for the problems de-
fined in the last section take subexponential time, but there
are polynomial-time quantum algorithms for them [4,6].
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Theorem 1 Given a quadratic discriminant �, there is
a classical algorithm that computes an integer multiple of
the regulator to within one. Assuming the GRH, this algo-
rithm computes the regulator to within one and runs in ex-
pected time exp(

p
(log�) log log�)O(1).

Theorem 2 There is a polynomial-time quantum algo-
rithm that, given a quadratic discriminant�, approximates
the regulator to within ı of the associated order O in time
polynomial in log� and log ı with probability exponen-
tially close to one.

Corollary 1 There is a polynomial-time quantum algo-
rithm that solves Pell’s equation.

The quantum algorithm for Pell’s equation uses the ex-
istence of a periodic function on the reals which has pe-
riod R and is one-to-one within each period [4,6]. There
is a discrete version of this function that can be computed
efficiently. This function does not have the same periodic
property since it cannot be evaluated at arbitrary real num-
bers such as R, but it does approximate the situation well
enough for the quantum algorithm. In particular, comput-
ing the approximate period of this function gives R to the
closest integer, or in other words, computes a generator for
the unit group.

Theorem 3 There is a polynomial-time quantum al-
gorithm that solves the principal ideal problem in real
quadratic number fields.

Corollary 2 There is a polynomial-time quantum al-
gorithm that can break the Buchmann–Williams key-
exchange protocol in real quadratic number fields.

Theorem 4 The class group and class number of a real
quadratic number field can be computed in quantum poly-
nomial-time assuming the GRH.

Applications

Computationally hard number theoretic problems are use-
ful for public key cryptosystems. There are reductions
from factoring to Pell’s equation and Pell’s equation to
the principal ideal problem, but no reductions are known
in the opposite direction. The principal ideal problem
forms the basis of the Buchmann–Williams key-exchange
protocol [2]. Identification schemes based on this prob-
lem have been proposed by Hamdy and Maurer [5].
The classical exponential-time algorithms help determine
which parameters to choose for the cryptosystem. The
best known algorithm for Pell’s equation is exponentially
slower than the best factoring algorithm. Systems based
on these harder problems were proposed as alternatives in

case factoring turns out to be polynomial-time solvable.
The efficient quantum algorithms can break these cryp-
tosystems.

Open Problems

It remains open whether these problems can be solved
in arbitrary degree number fields. The solution for Pell’s
equation can be thought of in terms of the hidden sub-
group problem. That is, there exists a periodic function on
the reals which has period R 2 R and is one-to-one within
each period. However, this function cannot be evaluated
efficiently since it has an uncountable domain, and instead
an efficiently computable approximation must be used. To
evaluate this discrete version of the function, a classical al-
gorithm is used to compute reduced ideals near a given
point in R. This algorithm is only polynomial-time for
constant degree number fields as it computes the short-
est vector in a lattice. Such an algorithm can be used to set
up a superposition over points approximating the points
in the a coset of the unit lattice. After setting up the super-
position, it must shown Fourier sampling, i. e. computing
the Fourier transform and measuring, suffices to compute
the lattice.
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ProblemDefinition

A knot invariant is a function on knots (or links –i. e. cir-
cles embedded in R3) which is invariant under isotopy of
the knot, i. e., it does not change under stretching, moving,
tangling, etc., (cutting the knot is not allowed). In low di-
mensional topology, the discovery and use of knot invari-
ants is of central importance. In 1984, Jones [12] discov-
ered a new knot invariant, now called the Jones polyno-
mial VL(t), which is a Laurent polynomial in

p
t with in-

teger coefficients, and which is an invariant of the link L. In
addition to the important role it has played in low dimen-
sional topology, the Jones polynomial has found applica-
tions in numerous fields, from DNA recombination [16],
to statistical physics [20].

From the moment of the discovery of the Jones poly-
nomial, the question of how hard it is to compute became
important. There is a very simple inductive algorithm (es-
sentially due to Conway [5]) to compute it by chang-
ing crossings in a link diagram, but, naively applied, this
takes exponential time in the number of crossings. It was
shown [11] that the computation of VL(t) is #P-hard for
all but a few values of t where VL(t) has an elementary in-
terpretation. Thus a polynomial time algorithm for com-
puting VL(t) for any value of t other than those elementary
ones is unlikely. Of course, the #P-hardness of the problem
does not rule out the possibility of good approximations.
Still, the best classical algorithms to approximate the Jones
polynomial at all but trivial values are exponential. Simply
stated, the problem becomes:

Problem 1 For what values of t and for what level of ap-
proximation can the Jones polynomial VL(t) be approxi-
mated in time polynomial in the number of crossings and
links of the link L?

Quantum Approximation of the Jones Polynomial, Figure 1
The trace closure (left) and plat closure (right) of the same 4-
strand braid

Key Results

As mentioned above, exact computation of the Jones poly-
nomial for most t is #P-hard and the best known classical
algorithms to approximate the Jones polynomial are expo-
nential. The key results described here consider the above
problem in the context of quantum rather than classical
computation.

The results concern the approximation of links that
are given as closures of braids. (All links can be described
this way.) Briefly, a braid of n strands and m crossings
is described pictorially by n strands hanging alongside
each other, withm crossings, each of two adjacent strands.
A braid B may be “closed” to form a link by tying its
ends together in a variety of ways, two of which are the
trace closure (denoted by Btr) which joins the ith strand
from the top right to the ith strand from the bottom right
(for each i), and the plat closure (denoted by Bpl) which
is defined only for braids with an even number of strands
by connecting pairs of adjacent strands (beginning at the
rightmost strand) on both the top and bottom. Examples
of the trace and plat closure of the same 4-strand braid are
given in Fig. 1.

For such braids, the following results have been shown
by Aharonov, Jones, and Landau:

Theorem 2.1 [3] For a given braid B in Bn with m
crossings, and a given integer k, there is a quantum al-
gorithm which is polynomial in n,m,k which with all
but exponentially (in n,m,k) small probability, outputs
a complex number r with jr � VBtr ( e2� i/k)j < �dn�1 where
d = 2 cos(
/k), and � is inverse polynomial in n,k,m.

Theorem 2.2 [3] For a given braid B in Bn with m cross-
ings, and a given integer k, there is a quantum algorithm
which is polynomial in n,m,k which with all but expo-
nentially (in n,m,k) small probability, outputs a complex
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number r with jr � VBpl ( e2� i/k)j < �dn/2�1 where d =
2 cos(
/k) and � is inverse polynomial in n,k,m.

The original connection between quantum computation
and the Jones polynomial was made earlier in the se-
ries of papers [6,7,8,9]. A model of quantum computa-
tion based on Topological Quantum Field Theory (TQFT)
and Chern–Simons theory was defined in [6,7], and Ki-
taev, Larsen, Freedman andWang showed that this model
is polynomially equivalent in computational power to the
standard quantum computation model in [8,9]. These re-
sults, combined with a deep connection between TQFT
and the value of the Jones polynomial at particular roots of
unity discovered byWitten 13 years earlier [18], implicitly
implied (without explicitly formulating) an efficient quan-
tum algorithm for the approximation of the Jones polyno-
mial at the value e2� i/5.

The approximation given by the above algorithms are
additive, namely the result lies in a given window, whose
size is independent of the actual value being approximated.
The formulation of this kind of additive approximation
was given in [4]; this is much weaker than a multiplicative
approximation, which is what one might desire (again, see
discussion in [4]). One might wonder if under such weak
requirements, the problem remains meaningful at all. It
turns out that, in fact, this additive approximation prob-
lem is hard for quantum computation, a result originally
shown by Freedman, Kitaev, and Wang:

Theorem 2.3 Adapted from [9] The problem of approx-
imating the Jones polynomial of the plat closure of a braid
at e2� i/k for constant k, to within the accuracy given in The-
orem 2.2, is BQP-hard.

A different proof of this result was given in [19], and the
result was strengthened by Aharonov and Arad [1] to any
k which is polynomial in the size of the input, namely, for
all the plat closure cases for which the algorithm is poly-
nomial in the size of the braid.

Understanding the Algorithm

The structure of the solution described by Theorems 2.1
and 2.2 consists of four steps:
1. Mapping the Jones polynomial computation to a compu-

tation in the Temperley–Lieb algebra. There exists a ho-
momorphism of the braid group inside the so called
Temperley–Lieb algebra (this homomorphism was the
connection that led to the original discovery of the
Jones polynomial in [12]). Using this homomorphism,
the computation of the Jones polynomial of either the
plat or trace closure of a braid can be mapped to the
computation of a particular linear functional (called the

Markov trace) of the image of the braid in the Tem-
perley–Lieb algebra (for an essential understanding of
a geometrical picture of the Temperley–Lieb algebra,
see [14]).

2. Mapping the Temperley–Lieb algebra calculation into
a linear algebra calculation. Using a representation of
the Temperley–Lieb algebra, called the path model rep-
resentation, the computation in step 1 is shown to be
equal to a particular weighted trace of the matrix corre-
sponding to the Temperley–Lieb algebra element com-
ing from the original braid.

3. Choosing the parameter t corresponding to unitary ma-
trices. The matrix in step 2 is a product of basic matri-
ces corresponding to individual crossings in the braid
group; an important characteristic of these basic matri-
ces is that they have a local structure. In addition, by
choosing the values of t as in Theorems 2.1 and 2.2,
the matrices corresponding to individual crossings be-
come unitary. The result is that the original problem
has been turned into a weighted trace calculation of
a matrix formed from a product of local unitary ma-
trices–a problem well suited to a quantum computer.

4. Implementing the quantum algorithm. Finally the
weighted trace calculation of a matrix described in step
3 is formally encoded into a calculation involving local
unitary matrices and qubits.
A nice exposition of the algorithm is given in [15].

Applications
Since the publication [3], a number of interesting results
have ensued investigating the possibility of quantum al-
gorithms for other combinatorial/topological questions.
Quantum algorithms have been developed for the case of
the HOMFLYPT two-variable polynomial of the trace clo-
sure of a braid at certain pairs of values [19]. (This paper
also extends the results of [3] to a class of more general-
ized braid closures; it is recommended reading as a com-
plement to [3] or [15] as it gives the representation the-
ory of the Jones-Wentzl representations thus putting the
path model representation of the Temperley–Lieb algebra
in a more general context). A quantum algorithm for the
colored Jones polynomial is given in [10].

Recently, significant progress was made on the ques-
tion of approximating the partition function of the Tutte
polynomial of a graph [2]. This polynomial, at various
parameters, captures important combinatorial features of
the graph. Intimately associated to the Tutte polynomial is
the Potts model, a model originating in statistical physics
as a generalization of the Ising model to more than 2
states [17,20]; approximating the partition function of the
Tutte polynomial of a graph is a very important question
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in statistical physics. The work of [2] develops a quantum
algorithm for additive approximation of the Tutte polyno-
mial for all planar graphs at all points in the Tutte plane
and shows that for a significant set of these points (though
not those corresponding to the Potts model) the problem
of approximating is a complete problem for a quantum
computer. Unlike previous results, these results use non-
unitary representations.

Open Problems
There remain many unanswered questions related to the
computation of the Jones polynomial from both a classical
and quantum computational point of view.

From a classical computation point of view, the origi-
nally stated Problem 1 remains wide open for all but triv-
ial choices of t. A result as strong as Theorem 2.2 for
a classical computer seems unlikely since it would imply
(via Theorem 2.3) that classical computation is as strong
as quantum computation. A recent result by Jordan and
Shor [13] shows that the approximation given in Theo-
rem 2.1 solves a complete problem for a presumed (but
not proven) weaker quantum model called the one clean
qubit model. Since this model seems weaker than the full
quantum computation model, a classical result as strong
as Theorem 2.1 for the trace closure of a braid is perhaps
in the realm of possibility.

From a quantum computational point of view, vari-
ous open directions seem worthy of pursuit. Most of the
quantum algorithms known as of the writing of this entry
are based on the quantum Fourier transform, and solve
problems which are algebraic and number theoretical in
nature. Arguably, the greatest challenge in the field of
quantum computation, (together with the physical realiza-
tion of large scale quantum computers), is the design of
new quantum algorithms based on substantially different
techniques. The quantum algorithm to approximate the
Jones polynomial is significantly different from the known
quantum algorithms in that it solves a problem which is
combinatorial in nature, and it does so without using the
Fourier transform. These observations suggest investigat-
ing the possibility of quantum algorithms for other com-
binatorial/topological questions. Indeed, the results de-
scribed in the applications section above address questions
of this type. Of particular interest would be progress be-
yond [2] in the direction of the Potts model; specifically
either showing that the approximation given in [2] is non-
trivial or providing a different non-trivial algorithm.
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� Quantum Error Correction
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ProblemDefinition

Quantum information theory distinguishes classical bits
from quantum bits or qubits. The quantum state of
n qubits is represented by a complex vector in (C2)˝n ,
where (C2)˝n is the tensor product of n 2-dimensional
complex vector spaces. Classical n-bit strings form a ba-
sis for the vector space (C2)˝n . Column vectors in
(C2)˝n are denoted as j i and row vectors are denoted
as j i� = j i�T � h j. The complex inner-product be-
tween vectors j i and j�i is conveniently written as
h j�i.

Entangled quantum states j i 2 (C2)˝n are those
quantum states that cannot be written as a product of some
vectors j ii 2 C2, that is j i ¤

N
i j ii. The Bell states

are four orthogonal (maximally) entangled states defined
as

j�00i =
1
p
2
(j00i + j11i) ; j�10i =

1
p
2
(j00i � j11i) ;

j�01i =
1
p
2
(j01i + j10i) ; j�11i =

1
p
2
(j01i � j10i) :

The Pauli-matrices X;Y and Z are three unitary, Hermi-
tian 2 � 2matrices. They are defined as X = j0ih1j+ j1ih0j;
Z = j0ih0j � j1ih1j and Y = iXZ.

Quantum states can evolve dynamically under inner-
product preserving unitary operations U (U�1 = U�).
Quantum information can be mapped onto observable
classical information through the formalism of quantum
measurements. In a quantum measurement on a state j i
in (C2)˝n a basis fjxig in (C2)˝n is chosen. This basis
is made observable through an interaction of the qubits
with a macroscopic measurement system. A basis vector x
is thus observed with probability P (x) = jhxj ij2.

Quantum information theory or more narrowly quan-
tum Shannon theory is concerned with protocols which
enable distant parties to efficiently transmit quantum or
classical information, possibly aided by the sharing of
quantum entanglement between the parties. For a detailed
introduction to quantum information theory, see the book
by Nielsen & Chuang [10].

Key Results

Super Dense Coding [3] is the protocol in which two clas-
sical bits of information are sent from sender Alice to re-
ceiver Bob. This is accomplished by sharing a Bell state
j�00iAB between Alice and Bob and the transmission of
one qubit. The protocol is illustrated in Fig. 1. Given two
bits b1, b2 Alice performs the following unitary transfor-
mation on her half of the Bell state:

Pb1b2 ˝ IBj�00i = j�b1b2 i ; (1)

i. e. one of the four Bell states. Here P00 = I; P01 = X;
P10 = Z and P11 = XZ = �iY . Alice then sends her qubit
to Bob. This allows Bob to do a measurement in the Bell
basis. He distinguishes the four states j�b1b2i and learns
the value of the two bits b1, b2.

The protocol demonstrates the interplay between clas-
sical information and quantum information. No informa-
tion can be communicated by merely sharing an entan-
gled state such as j�00i without the actual transmission
of physical information carriers. On the other hand it is
a consequence of Holevo’s theorem [8] that one qubit can
encode at most one classical bit of information. The pro-
tocol of dense coding shows that the two resources of en-
tanglement and qubit transmission combined give rise to
a super-dense coding of classical information. Dense Cod-
ing is thus captured by the following resource inequality

1 ebit + 1 qubit � 2 cbits : (2)

In words, one bit of quantum entanglement (one ebit) in
combination with the transmission of one qubit is suffi-
cient for the transmission of two classical bits or cbits.

Quantum Teleportation [1] is a protocol that is dual
to Dense Coding. In quantum teleportation, 1 ebit (a Bell
state) is used in conjunction with the transmission of two
classical bits to send one qubit from Alice to Bob. Thus the
resource relation for Quantum Teleportation is

1 ebit + 2 cbits � 1 qubit : (3)

The relation with quantum teleportation allows one to ar-
gue that dense coding is optimal. It is not possible to en-
code 2k classical bits in less than m < k quantum bits
even in the presence of shared quantum entanglement. Let
us assume the opposite and obtain a contradiction. One
uses quantum teleportation to convert the transmission of
k quantum bits into the transmission of 2k classical bits.
Then one can use the assumed super-dense coding scheme
to encode these 2k bits into m < k qubits. As a result one
can send k quantum bits by effectively transmittingm < k
quantum bits (and sharing quantum entanglement) which
is known to be impossible.
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Quantum Dense Coding, Figure 1
Dense Coding. Alice and Bob use a shared Bell state to transmit
two classical bits b = (b1;b2) by sending one qubit. Double lines
are classical bits and single lines represent quantum bits

Applications

Harrow [7] has introduced the notion of a coherent bit,
or cobit. The notion of a cobit is useful in understand-
ing resource relations and trade-offs between quantum
and classical information. The noiseless transmission of
a qubit from Alice to Bob can be viewed as the linear
map Sq : jxiA ! jxiB for a set of basis states fjxig. The
transmission of a classical bit can be viewed as the linear
map Sc : jxiA ! jxiBjxiE where E stands for the environ-
ment Eve. Eve’s copy of every basis state jxi can be viewed
as the output of a quantum measurement and thus Bob’s
state is classical. The transmission of a cobit corresponds
to the linear map Sco : jxiA ! jxiAjxiB. Since Alice keeps
a copy of the transmitted data, Bob’s state is classical. On
the other hand, the cobit can also be used to generate a Bell
state between Alice and Bob. Since no qubit can be trans-
mitted via a cobit, a cobit is weaker than a qubit. A cobit
is stronger than a classical bit since entanglement can be
generated using a cobit.

One can define a coherent version of super-dense cod-
ing and quantum teleportation in which measurements
are replaced by unitary operations. In this version of dense
coding Bob replaces his Bell measurement by a rotation of
the states j�b1b2 i to the states jb1b2iB. Since Alice keeps
her input bits, the coherent protocol implements the map
jx1x2iA ! jx1x2iAjx1x2iB. Thus one can strengthen the
dense coding resource relation to

1 ebit + 1 qubit � 2 cobits : (4)

Similarly, the coherent execution of quantum teleporta-
tion gives rise to the modified relation 2 cobits + 1 ebit �
1 qubit + 2 ebits. One can omit 1 ebit on both sides of the
inequality by using ebits catalytically, i. e. they can be bor-
rowed and returned at the end of the protocol. One can
then combine both coherent resource inequalities and ob-

tain a resource equality

2 cobits = 1 qubit + 1 ebit : (5)

A different extension of dense coding is the notion of
super-dense coding of quantum states proposed in [6].
Instead of dense coding classical bits, the authors in [6]
propose to code quantum bits whose quantum states are
known to the sender Alice. This last restriction is usually
referred to as the remote preparation of qubits, in contrast
to the transmission of qubits whose states are unknown to
the sender. In remote preparation of qubits the sender Al-
ice can use the additional knowledge about her states in the
choice of encoding. In [6] it is shown that one can obtain
the asymptotic resource relation

1 ebit + 1 qubit � 2 remotely prepared qubit(s) : (6)

Such relation would be impossible if the r.h.s. were re-
placed by 2 qubits. In that case the inequality could be used
repeatedly to obtain that 1 qubit suffices for the transmis-
sion of an arbitrary number of qubits which is impossible.

The “non-oblivious” super-dense coding of quantum
states should be compared with the non-oblivious and
asymptotic variant of quantum teleportation which was
introduced in [2]. In this protocol, referred to as remote
state preparation (using classical bits), the quantum tele-
portation inequality, Eq. (3) is tightened to

1 ebit + 1 cbit � 1 remotely prepared qubit(s) : (7)

These various resource (in)equalities and their underly-
ing protocols can be viewed as the first in a comprehen-
sive theory of resources inequalities. The goal of such the-
ory [4] is to provide a unified and simplified approach to
quantum Shannon theory.

Experimental Results

In [9] a partial realization of dense coding was given us-
ing polarization states of photons as qubits. The Bell state
j�01i can be produced by parametric down-conversion;
this state was used in the experiment as the shared en-
tanglement between Alice and Bob. With current exper-
imental techniques it is not possible to carry out a low-
noise measurement in the Bell basis which uniquely distin-
guishes the four Bell states. Thus in [9] one of three mes-
sages, a trit, is encoded into the four Bell states. Using two-
particle interferometry Bob learns the value of the trit by
distinguishing two of the four Bell states uniquely and ob-
taining a third measurement signal for the two other Bell
states.
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In perfect dense coding the channel capacity is 2 bits.
For the trit-scheme of [9] the ideal channel capacity is
log 3 	 1:58. Due to the noise in the operations and mea-
surements the authors of [9] estimate the experimentally
achieved capacity as 1.13 bits.

In [11] the complete protocol of dense coding was
carried out using two 9Be+ ions confined to an electro-
magnetic trap. A qubit is formed by two internal hyper-
fine levels of the 9Be+ ion. Single qubit and two-qubit op-
erations are carried out using two polarized laser beams.
A single qubit measurement is performed by observing
a weak/strong fluorescence of j0i and j1i. The authors es-
timate that the noise in the unitary transformations and
measurements leads to an overall error rate on the trans-
mission of the bits b of 15%. This results in an effective
channel capacity of 1.16 bits.

In [5] dense coding was carried out using NMR spec-
troscopy. The two qubits were formed by the nuclear spins
of 1H and 13C of chloroform molecules 13CHCL3 in liq-
uid solution at room temperature. The full dense coding
protocol was implemented using the technique of tempo-
ral averaging and the application of coherent RF pulses,
see [10] for details. The authors estimate an overall error-
rate on the transmission of the bits b of less than 10%.
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ProblemDefinition

Quantum systems can never be considered isolated from
an environment which permanently causes disturbances
of the state of the system. This noise problem threatens
quantum computers and their great promise, namely to
provide a computational advantage over classical comput-
ers for certain problems (see also the cross references in
the Sect.“Cross References”). Quantum noise is usually
modeled by the notion of a quantum channelwhich gener-
alizes the classical case, and, in particular, includes scenar-
ios for communication (space) and storage (time) of quan-
tum information. For more information about quantum
channels and quantum information in general, see [12].
A basic channel is the quantum mechanical analog of
the classical binary symmetric channel [11]. This quan-
tum channel is called the depolarizing channel and de-
pends on a parameter p. Its effect is to randomly apply
one of the Pauli spin matrices X, Y , and Z to the state
of the system, mapping a quantum state � of one qubit
to (1 � p)� + p/3(X�X + Y�Y + Z�Z). It should be noted
that it is always possible to map any quantum channel to
a depolarizing channel by twirling operations. The basic
problem of quantum error correction is to devise a mech-
anism which allows to perfectly recover quantum infor-
mation which has been sent through a quantum channel,
in particular the depolarizing channel.



706 Q Quantum Error Correction

Key Results

For a long time, it was not known whether it would be
possible to protect quantum information against noise.
Even some indication in the form of the no-cloning the-
orem was put forward to support the view that it might be
impossible. The no-cloning theorem essentially says that
an unknown quantum state cannot be copied perfectly,
thereby dashing the hopes that a simple triple-replication
and majority voting mechanism (which works well clas-
sically) could be used for the quantum case. Therefore
it came as a surprise when Shor [13] found a quantum
code which encodes one qubit into nine qubits in such
a way that the resulting state has the ability to be protected
against arbitrary single-qubit errors on each of these nine
qubits. The idea is to use a concatenation of two three-
fold repetition codes. One of them protects against bit-flip
errors while the other protects against phase-flip errors.
The quantum code is a two-dimensional subspace of the
29 dimensional Hibert space (C2)˝9. Two orthogonal ba-
sis vectors of this space are identified with the logical 0 and
1 states, respectively, usually called j0i and j1i. Explicitly,
the code is given by

j0i =
1

2
p
2
(j000i + j111i) ˝ (j000i + j111i)

˝ (j000i + j111i) ;

j1i =
1

2
p
2
(j000i � j111i) ˝ (j000i � j111i)

˝ (j000i � j111i) :

The state ˛j0i + ˇj1i of one qubit is encoded to the state
˛j0i + ˇj1i of the nine qubit system. The reason why this
code can correct one arbitrary quantum error is as follows.

First, suppose that a bit-flip error has happened, which
in quantum mechanical notation is given by the opera-
tor X. Then a majority vote of each block of three qubits
1 � 3; 4 � 6, and 7� 9 can be computed and the bit-
flip can be corrected. To correct against phase-flip er-
rors, which are given by the operator Z, the fact is used
that the code can be written as j0i = j + ++i + j � ��i,
j1i = j + ++i � j � ��i, where j˙i = 1p

2
(j000i ˙ j111i).

By measuring each block of three in the basis fj+i; j�ig,
the majority of the phase-flips can be detected and one
phase-flip error can be corrected. Similarly, it can be
shown that Y , which is a combination of a bit-flip and
a phase-flip, can be corrected.

Discretization of Noise

Even though the above procedure seemingly only takes
care of bit-flips and phase-flip errors, it actually is true that

an arbitrary error affecting a single qubit out of the nine
qubits can be corrected. In particular, and perhaps surpris-
ingly, this is also the case if one of the nine qubits is com-
pletely destroyed. The linearity of quantum mechanics al-
lows this method to work. Linearity implies that when-
ever operators A and B can be corrected, so can their sum
A + B [6,13,15]. Since the (finite) set f12; X;Y ; Zg forms
a vector space basis for the (continuous) set of all one-
qubit errors, the nine-qubit code can correct an arbitrary
single qubit error.

Syndrome Decoding and the Need for Fresh Ancillas

A way to do the majority vote quantum-mechanically is
to introduce two new qubits (also called ancillas) that are
initialized in j0i. Then, the results of the two parity checks
for the repetition code of length three can be computed
into these two ancillas. This syndrome computation for
the repetition code can be done using the so-called con-
trolled not (CNOT) gates [12] and Hadamard gates. Af-
ter this, the qubits holding the syndrome will factor out
(i. e., they have no influence on future superpositions or
interferences of the computational qubits), and can be dis-
carded. Quantum error correction demands a large supply
of fresh qubits for the syndrome computations which have
to be initialized in a state j0i. The preparation of many
such states is required to fuel active quantum error cor-
recting cycles, in which syndrome measurements have to
be applied repeatedly. This poses great challenges to any
concrete physical realization of quantum error-correcting
codes.

Conditions for General QuantumCodes

Soon after the discovery of the first quantum code, gen-
eral conditions required for the existence of codes, which
protect quantum systems against noise, were sought after.
Here the noise is modeled by a general quantum channel,
given by a set of error operators Ei. The Knill–Laflamme
conditions [8] yield such a characterization. Let C be the
code subspace and let PC be an orthogonal projector onto
C. Then the existence of a recovery operation for the chan-
nel with error operators Ei is equivalent to the equation

PCE
�
i E jPC = �i; jPC ;

for all i and j, where �i; j are some complex constants. This
recently has been extended to the more general framework
of subsystem codes (also called operator quantum error
correcting codes) [10].
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Constructing QuantumCodes

The problem of deriving general constructions of quan-
tum codes was addressed in a series of ground-breaking
papers by several research groups in the mid 90s. Tech-
niques were developed which allow classical coding theory
to be imported to an extent that is enough to providemany
families of quantum codes with excellent error correction
properties.

The IBM group [2] investigated quantum channels,
placed bounds on the quantum channels’ capacities, and
showed that for some channels it is possible to compute
the capacity (such as for the quantum erasure channel).
Furthermore, they showed the existence of a five qubit
quantum code that can correct an arbitrary error, thereby
being much more efficient than Shor’s code. Around the
same time, Calderbank and Shor [4] and Steane [14] found
a construction of quantum codes from any pair C1, C2
of classical linear codes satisfying C?2 
 C1. Named after
their inventors, these codes are known as CSS codes.

The AT&T group [3] found a general way of defin-
ing a quantum code. Whenever a classical code over the
finite field F4 exists that is additively closed and self-or-
thogonal with respect to the Hermitian inner product,
they were able to find even more examples of codes. In-
dependently, D. Gottesman [6,7] developed the theory of
stabilizer codes. These are defined as the simultaneous
eigenspaces of an abelian subgroup of the group of ten-
sor products of Pauli matrices on several qubits. Soon after
this, it was realized that the two constructions are equiva-
lent.

A stabilizer code which encodes k qubits into n qubits
and has distance d is denoted by [[n; k; d]]. It can cor-
rect up to b(d � 1)/2c errors of the n qubits. The rate of
the code is defined as r = k/n. Similar to classical codes,
bounds on quantum error-correcting codes are known;
i. e., the Hamming, Singleton, and linear programming
bounds.

Asymptotically Good Codes

Matching the developments in classical algebraic coding
theory, an interesting question deals with the existence of
asymptotically good codes; i. e., families of quantum codes
with parameters [[ni ; ki ; di ]], where i � 0, which have
asymptotically non-vanishing rate limi!1 ki /ni > 0 and
non-vanishing relative distance limi!1 di /ni > 0. In [4],
the existence of asymptotically good codes was established
using random codes. Using algebraic geometry (Goppa)
codes, it was later shown by Ashikhmin, Litsyn, and Ts-
fasman that there are also explicit families of asymptoti-
cally good quantum codes. Currently, most constructions

of quantum codes are from the above mentioned stabi-
lizer/additive code construction, with notable exception of
a few non-additive codes and some codes which do not fit
into the framework of Pauli error bases.

Applications

Besides their canonical application to protect quan-
tum information against noise, quantum error correct-
ing codes have been used for other purposes as well. The
Preskill/Shor proof of the security of the quantum key dis-
tribution scheme BB84 relies on an entanglement purifi-
cation protocol, which in turn uses CSS codes. Further-
more, quantum codes have been used for quantum se-
cret sharing, quantum message authentication, and secure
multiparty quantum computations. Properties of stabilizer
codes are also germane for the theory of fault-tolerant
quantum computation.

Open Problems

The literature of quantum error correction is fast growing,
and the list of open problems is certainly too vast to be
surveyed here in detail. The following short list is highly
influenced by the preference of the author.

It is desirable to find quantum codes for which all
stabilizer generators have low weight. This would be the
quantum equivalent of low-density parity check (LDPC)
codes. Since the weights directly translate into the com-
plexity of the syndrome computation circuitry, it would
be highly desirable to find examples of such codes. So far,
only few sporadic constructions are known.

It is an open problem to find new families of quantum
codes which improve on the currently known estimates on
the threshold for fault-tolerant quantum computing. An
advantage might be to use subsystem codes, since they al-
low for simple error correction circuits. It would be useful
to find more families of subsystem codes, thereby general-
izing the Bacon/Shor construction.

Most quantum codes are designed for the depolarizing
channel, where – roughly speaking – the error probability
is improved from p to pd/2 for a distance d code. The in-
dependence assumption underlying this model might not
always be justified and therefore it seems imperative to
consider other, e. g., non-Markovian, error models. Un-
der some assumptions on the decay of the interaction
strengths, threshold results for such channels have been
shown. However, good constructions of codes for such
types of noise are still out of reach.

Approximate quantum error-correcting codes have
found applications in quantum authentication and re-
cently for secure multiparty quantum computations [1].
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Here the Knill–Laflamme conditions do not have to be sat-
isfied exactly, but some error is allowed. This gives much
more freedom in defining subspaces and if some error can
be tolerated, quantum codes with much better error cor-
rection capabilities become feasible. However, not many
constructions of such codes are known.

Experimental Results

Active quantum error-correcting codes, such as those
codes which require syndrome measurements and correc-
tion operations, as well as passive codes (i. e., codes in
which the system stays in an simultaneous invariant sub-
space of all error operators for certain types of noise),
have been demonstrated for some physical systems. The
most advanced physical demonstration in this respect are
the nuclear magnetic resonance (NMR) experiments [9].
The three-qubit repetition code, which protects one qubit
against phase-flip error Z, was demonstrated in an ion-
trap for beryllium ion qubits [5].

Data Sets

M.Grassl maintains http://www.codetables.de, which con-
tains tables of the best known quantum codes, some en-
tries of which extend [3, Table III]. It also contains bounds
on the minimum distance of quantum codes for given
lengths and dimensions, and contains information about
the construction of the codes. In principle, this can be used
to get explicit generator matrices (see also the following
section, “URL to Code”).

URL to Code

The computer algebra system Magma (http://magma.
maths.usyd.edu.au/magma/) has functions and data struc-
tures for defining and analyzing quantum codes. Several
quantum codes are already defined in a database of quan-
tum codes. For instance, the command QECC(F,n,k)
returns the best known quantum code (i. e., the one of
highest distance) over the field F, of length n, and dimen-
sion k. It allows the user to define new quantum codes, to
study their properties (such as the weight distribution, au-
tomorphism), and several predefined methods for obtain-
ing new codes from old ones.
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Quantum Key Distribution, Figure 1
A QKD protocol � consists of algorithms �A and�B for Alice and
Bob, respectively. The algorithms communicate over a quantum
channelQ that might be coupled to a system E controlled by an
adversary. The goal is to generate identical keys SA and SB which
are independent of E

Keywords and Synonyms

Quantum key exchange, Quantum key growing

ProblemDefinition

Secret keys, i. e., random bitstrings not known to an ad-
versary, are a vital resource in cryptography (they can be
used, e. g., for message encryption or authentication). The
distribution of secret keys among distant parties, possi-
bly only connected by insecure communication channels,
is thus a fundamental cryptographic problem. Quantum
key distribution (QKD) is a method to solve this problem
using quantum communication. It relies on the fact that
any attempt of an adversary to wiretap the communica-
tion would, by the laws of quantum mechanics, inevitably
introduce disturbances which can be detected.

For the technical definition, consider a setting consist-
ing of two honest parties, called Alice and Bob, as well as
an adversary, Eve. Alice and Bob are connected by a quan-
tum channel Q which might be coupled to a (quantum)
system E controlled by Eve (see Fig. 1). In addition, it is
assumed that Alice and Bob have some means to exchange
classical messages authentically, that is, they canmake sure
that Eve is unable to (undetectably) alter classical mes-
sages during transmission. If only insecure communica-
tion channels are available, Alice and Bob can achieve this
using an authentication scheme [15] which, however, re-
quires a short initial key. This is why QKD is sometimes
called Quantum Key Growing.

A QKD protocol 
 = (
A; 
B) is a pair of algorithms
for Alice and Bob, producing classical outputs SA and SB,
respectively. SA and SB take values in S [ f?g where S is
called key space and? is a symbol (not contained in S) in-
dicating that no key can be generated. A QKD protocol 

with key space S is said to be perfectly secure on a chan-

nel Q if, after its execution using communication over Q,
the following holds:
� SA = SB ;
� if SA ¤? then SA and SB are uniformly distributed on
S and independent of the state of E.

More generally, 
 is said to be "-secure on Q if it satisfies
the above conditions except with probability (at most) ".
Furthermore, 
 is said to be "-robust onQ if the probabil-
ity that SA =? is at most ".

In the standard literature on QKD, protocols are typ-
ically parametrized by some positive number k quantify-
ing certain resources needed for its execution (e. g., the
amount of communication). A protocol 
 = (
k)k2N is
said to be secure (robust) on a channelQ if there exists a se-
quence ("k)k2N which approaches zero exponentially fast
such that 
k is "k-secure ("k-robust) onQ for any k 2 N .
Moreover, if the key space of 
k is denoted by Sk , the key
rate of 
 = (
k)k2N is defined by r = limk!1

`k
k where

`k := log2 jSkj is the key length.
The ultimate goal is to construct QKD protocols 


which are secure against general attacks, i. e., on all pos-
sible channels Q. This ensures that an adversary cannot
get any information on the generated key even if she fully
controls the communication between Alice and Bob. At
the same time, a protocol 
 should be robust on certain
realistic (possibly noisy) channels Q in the absence of an
adversary. That is, the protocol must always produce a key,
unless the disturbances in the channel exceed a certain
threshold. Note that, in contrast to security, robustness
cannot be guaranteed in general (i. e., on all Q), as an ad-
versary could, for instance, interrupt the entire communi-
cation between Alice and Bob (in which case key genera-
tion is obviously impossible).

Key Results

Protocols

On the basis of the pioneering work of Wiesner [16], Ben-
nett and Brassard, in 1984, invented QKD and proposed
a first protocol, known today as the BB84 protocol [2]. The
idea was then further developed by Ekert, who established
a connection to quantum entanglement [7]. Later, in an at-
tempt to increase the efficiency and practicability of QKD,
various extensions to the BB84 protocol as well as alterna-
tive types of protocols have been proposed.

QKD protocols can generally be subdivided into (at
least) two subprotocols. The purpose of the first, called dis-
tribution protocol, is to generate a raw key pair, i. e., a pair
of correlated classical values X and Y known to Alice and
Bob, respectively. In most protocols (including BB84), Al-
ice chooses X = (X1; : : : ; Xk) at random, encodes each of
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the Xi into the state of a quantum particle, and then sends
the k particles over the quantum channel to Bob. Upon re-
ceiving the particles, Bob applies ameasurement to each of
them, resulting in Y = (Y1; : : : ;Yk ). The crucial idea now
is that, by virtue of the laws of quantum mechanics, the
secrecy of the raw key is a function of the strength of the
correlation between X and Y ; in other words, the more in-
formation (on the raw) key an adversary tries to acquire,
the more disturbances she introduces.

This is exploited in the second subprotocol, called dis-
tillation protocol. Roughly speaking, Alice and Bob esti-
mate the statistics of the raw key pair (X,Y). If the corre-
lation between their respective parts is sufficiently strong,
they use classical techniques such as information reconcil-
iation (error correction) and privacy amplification (see [3]
for the case of a classical adversarywhich is relevant for the
analysis of security against individual attacks and [12,13]
for the quantum-mechanical case which is relevant in the
context of collective and general attacks) to turn (X,Y)
into a pair (SA; SB) of identical and secure keys.

Key Rate as a Function of Robustness and Security

The performance (in terms of the key rate) of a QKD pro-
tocol strongly depends on the desired level of security and
robustness it is supposed to provide, as illustrated in Fig. 2.
(The robustness is typically measured in terms of themax-
imum tolerated channel noise, i. e., the maximum noise of
a channel Q such that the protocol is still robust on Q
according to the above definition.) The results summa-
rized below apply to protocols of the form described above
where, for the analysis of robustness, it is assumed that the
quantum channel Q connecting Alice and Bob is memo-
ryless and time-invariant, i. e., each transmission is subject
to the same type of disturbances. Formally, such channels
are denoted by Q = Q̄˝k where Q̄ describes the action of
the channel in a single transmission.

Security Against IndividualAttacks AQKDprotocol 

is said to be secure against individual attacks if it is secure
on any channel Q of the form Q̄˝k where the coupling
to E is purely classical. Note that this notion of security is
relatively weak. Essentially, it only captures attacks where
the adversary applies identical and independent measure-
ments to each of the particles sent over the channel.

The following general statement can be derived from
a classical argument due to Csiszár and Körner [5]. Let �
be a distribution protocol as described above, i. e., � gener-
ates a raw key pair (X,Y). Moreover, let S be a set of quan-
tum channels Q̄ suitable for � . Then there exists a QKD
protocol 
 (parametrized by k), consisting of k executions

Quantum Key Distribution, Figure 2
Key rate of an extended version of the BB84 QKD protocol de-
pending on the maximum tolerated channel noise (measured in
terms of the bit-flip probability e) [12]

of the subprotocol � followed by an appropriate distilla-
tion protocol such that the following holds: 
 is robust on
Q = Q̄˝k for any Q̄ 2 S, secure against individual attacks,
and has key rate at least

r � min
Q̄2S

H(XjZ)� H(XjY) ; (1)

where the Shannon entropies on the r.h.s. are evaluated for
the joint distribution PQ̄XYZ of the raw key (X,Y) and the
(classical) value Z held by Eve’s system E after one execu-
tion of � on the channel Q̄. Evaluating the right hand side
for the BB84 protocol on a channel with bit-flip probabil-
ity e shows that the rate is non-negative if e � 14:6% [8].

Security Against Collective Attacks A QKD protocol 

is said to be secure against collective attacks if it is secure
on any channel Q of the form Q̄˝k with arbitrary cou-
pling to E. This notion of security is strictly stronger than
security against individual attacks, but it still relies on the
assumption that an adversary does not apply joint opera-
tions to the particles sent over the channel.

As shown by Devetak and Winter [6], the above state-
ment for individual attacks extends to collective attacks
when replacing inequality (1) by

r � min
Q̄2S

S(XjE) � H(XjY) (2)

where S(XjE) is the conditional von Neumann entropy
evaluated for the classical value X and the quantum state
of E after one execution of � on Q̄. For the standard BB84
protocol, the rate is positive as long as the bit-flip proba-
bility e of the channel satisfies e � 11:0% [14] (see Fig. 2
for a graph of the performance of an extended version of
the protocol).
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Security Against General Attacks A QKD protocol 

is said to be secure against general attacks if it is secure on
any arbitrary channelQ. This type of security is sometimes
also called full or unconditional security as it does not rely
on any assumptions on the type of attacks or the resources
needed by an adversary.

The first QKD protocol to be proved secure against
general attacks was the BB84 protocol. The original argu-
ment by Mayers [11] was followed by various alternative
proofs. Most notably, based on a connection to the prob-
lem of entanglement purification [4] established by Lo and
Chau [10], Shor and Preskill [14] presented a general argu-
ment which applies to various versions of the BB84 proto-
col.

More recently it has been shown that, for virtually
any QKD protocol, security against collective attacks im-
plies security against general attacks [12]. In particular,
the above statement about the security of QKD protocols
against collective attacks, including formula 2 for the key
rate, extends to security against general attacks.

Applications

Because the notion of security described above is com-
posable [13] (see [1,12] for a general discussion of com-
posability of QKD) the key generated by a secure QKD
protocol can in principle be used within any application
that requires a secret key (such as one-time pad encryp-
tion). More precisely, letA be a scheme which, when us-
ing a perfect key S (i. e., a uniformly distributed bitstring
which is independent of the adversary’s knowledge), has
some failure probability ı (according to some arbitrary
failure criterion). Then, if the perfect key S is replaced by
the key generated by an "-secure QKD protocol, the failure
probability ofA is bounded by ı + " [13].

Experimental Results

Most known QKD protocols (including BB84) only re-
quire relatively simple quantum operations on Alice and
Bob’s side (e. g., preparing a two-level quantum system in
a given state or measuring the state of such a system). This
makes it possible to realize them with today’s technology.
Experimental implementations of QKD protocols usually
use photons as carriers of quantum information, because
they can easily be transmitted (e. g., through optical fibers).
A main limitation, however, is noise in the transmission,
which, with increasing distance betweenAlice and Bob, re-
duces the performance of the protocol (see Fig. 2). We re-
fer to [9] for an overview on quantum cryptography with
a focus on experimental aspects.
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Keywords and Synonyms

Quantum unsorted database search

ProblemDefinition

Informal Description

The search problem can be described informally as, given
a set of N items, identify an item satisfying a given prop-
erty. Assume that it is easy to query whether a specific item
satisfies the property or not. Now, the set of N items is not
sorted and so there appears to be no shortcut to the brute-
force method of checking each item one by one until the
desired item is found. However, that intuition is only cor-
rect for classical computers; quantum computers can be in
multiple states simultaneously and can examine multiple
items at the same time. There is no obvious lower bound
to how fast search can be run by a quantum computer, but
nor is there an obvious technique faster than brute-force
search. It turns out, though, that there is an efficient quan-
tummechanical search algorithm that makes only O(

p
N)

queries, and this is optimal.
This quantum algorithm works very different from

searching with a classical computer [5]. The optimal clas-
sical strategy is to check the items one at a time in ran-
dom order. After � items are picked, the probability that
the search hasn’t yet succeeded is (1 � 1/N)(1 � 1/(N �
1)) � � � (1 � 1/(N � � + 1)). For �� N , the success proba-
bility is therefore roughly 1�(1�1/N)� 	 �/N . Increasing
the success probability to a constant requires the number
of items picked, �, to be˝(N).

In contrast, the quantum search algorithm through
a series of quantum mechanical operations steadily in-
creases the amplitude on the target item. In � steps it
increases this amplitude to roughly �/

p
N, and hence

the success probability (on measuring the state) to �2/N.
Boosting this to˝(1) requires only O(

p
N) steps, approx-

imately the square-root of the number of steps required by
any classical algorithm.

The reason the quantum search algorithm has been
of so much interest in a variety of fields is that it can be
adapted to different settings, giving a new class of quan-
tum algorithms extending well beyond search problems.

Formal Statement

Given oracle access to a bit string x 2 f0; 1gN , find an in-
dex i such that xi = 1, if such index exists. In particular,
determine if x = 0N or not – i. e., evaluate the OR func-
tion x1 _ x2 _ � � � _ xN . To understand this, think of the
indices i as combinatorial objects of some sort, and xi in-
dicates whether i satisfies a certain property or not – with
xi efficiently computable given i. The problem is to find
an object satisfying the property. This search problem is
unstructured because the solution may be arbitrary. Or-
dered search of a sorted list, on the other hand, may be
abstracted as: given access to a string promised to be of the
form x = 0m1N�m , findm.

Classically, oracle access means that one has a black-
box subroutine that given i returns xi. The cost of query-
ing the oracle is taken to be one per query. The hardest in-
puts to search are clearly those x that are all zeros except in
a single position – when there is a single solution – a single
“needle in a haystack.” (For the OR function, such inputs
are hard to distinguish from x = 0N .) For any determin-
istic search algorithm, there exists such an input on which
the algorithm makes at least N oracle queries; brute-force
search is the best strategy. Any randomized search algo-
rithmwith " probability of successmustmakeN/" queries.

Quantumly, one is allowed black-box access to a uni-
tary oracle Ux that can query the oracle in a superposi-
tion and get an answer in a superposition. Ux is defined as
a controlled reflection about indices i with xi = 0:

Ux jc; ii = (�1)cxi jc; ii ; (1)

where jci is a control qubit. This can be implemented us-
ing U 0x satisfying U 0x (jc; i; bi) = jc; i; (cxi) ˚ bi – where
b 2 f0; 1g and˚ is addition mod two – by setting the sec-
ond register to (1/

p
2)(j0i � j1i).

For example, if � is a 3-SAT formula on n variables, i 2
f1; 2; : : : ;N = 2ng represents a setting for the variables,
and xi indicates if assignment i satisfies � ; then is � satisfi-
able? (Another common example is unstructured database
search: i is a record and xi a function of that record. How-
ever, this example is complicated because records need to
be stored in a physical memory device. If it is easier to ac-
cess nearby records, then spatial relationships come into
play.)

More generally, say there is a subroutine that returns
an efficiently verifiable answer to some problemwith prob-
ability ". To solve the problem with constant probability,
the subroutine can be run ˝(1/") times. Quantumly, if
the subroutine is a unitary process that returns the right
answer with amplitude

p
", is there a better technique

than measuring the outcome and running the subroutine
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˝(1/") times? It turns out that this question is closely re-
lated to search, because the uniform superposition over in-
dices (1/

p
N)
P

i jii has amplitude of returning the right
answer as 1/

p
N: Thus, an algorithm for this problem im-

mediately implies a search algorithm.

Key Results

Grover [13] showed that there exists a quantum search al-
gorithm that is quadratically faster than the optimal clas-
sical randomized algorithm:

Theorem 1 (Grover search) There is a quantum black-
box unstructured search algorithm with success probabil-
ity ", using O(

p
N") queries and O(

p
N" � log logN) time.

If promised that the Hamming weight of x is jxj � k, then
one of the i such that xi = 1 can be found using O(

p
N"/k)

queries.

The Grover search algorithm has its simplest form if given
the promise that jxj = 1. Then the single “marked item”
i* with xi� = 1 can be found by preparing the uniform
superposition over indices j�i = (1/

p
N)
P

i jii, then re-
peating

p
N times:

1. Apply the oracle Ux from Eq. (1), with the control bit
c = 1, to reflect about i*.

2. Reflect about j�i by applying UD = I � 2j�ih� j.
Finally, measure and output i.
It turns out that i = i� with constant probability. The

analysis is straightforward because the quantum state j'i
stays in the two-dimensional subspace spanned by ji�i
and j�i. Initially, the amplitude on i* is hi�j�i = 1/

p
N ,

and the angle between ji�i and the initial state j'0i = j�i
is 
/2 � � , with � = arcsin 1/

p
N 	 1/

p
N. Each pair

of reflection steps decreases the angle between the j'i and
ji�i by exactly � , so

p
N steps suffice to bound the angle

away from 
/2. (Using the small angle approximation, af-
ter t steps of alternating reflections the amplitude hi�j'ti is
about t/

p
N , making the success probability about t2/N .)

The reflection about the uniform superposition, UD =
I � 2j�ih� j, is known as a Grover diffusion step. If the
indices are represented in binary, with N = 2n , it can be
implemented as transversal Hadamard gates H˝n , where
H = 1p

2

�
1 1
1 �1

�
), followed by reflection about j0ni, fol-

lowed by H˝n again. This operation can also be inter-
preted as an inversion about the average of the amplitudes
fhij'tig. Note that if one measures i before each query to
the oracle, then the algorithm collapses to effectively clas-
sical search by random guessing.

Brassard and Høyer [6], and Grover [14] both realized
that quantum search can be applied on top of nearly any
quantum algorithm for any problem. Roughly, the am-

plitude amplification technique says that given one quan-
tum algorithm that solves a problem with small probabil-
ity ", then by usingO(m) calls to that algorithm the success
probability can be increased to aboutm2". (Classically, the
success probability could only be increased to about m".)
More formally,

Theorem 2 (Amplitude amplification, [1, Lemma 9])
Let A be a quantum algorithm that outputs a correct an-
swer and witness with probability ı � " where " is known.
Furthermore, let

m �



4 arcsin
p
"
�

1
2
:

Then there is an algorithmA0 that uses 2m + 1 calls toA
andA�1 and outputs a correct answer and a witness with
probability

ınew �

�
1 �

(2m + 1)2

3
ı

�
(2m + 1)2ı :

Here, one is “searching” for an answer to some problem.
The “oracle” is implemented by a routine that condition-
ally flips the phase based on whether or not the answer is
correct (checked using the witness). The reflection about
the initial state is implemented by inverting A, applying
a reflection about j0i, and then reapplyingA (similarly to
how the reflection about j�i can be implemented using
Hadamard gates). See also [7].

The square-root speedup in quantum search is opti-
mal; Bennett, Bernstein, Brassard and Vazirani [4] gave an
˝(
p
N) lower bound on the number of oracle queries re-

quired for a quantum search algorithm. Therefore, quan-
tum computers cannot give an exponential speedup for ar-
bitrary unstructured problems; there exists an oracle rela-
tive to which BQP ª NP (an NP machine can guess the
answer and verify it with one query). In fact, under the
promise that jxj = 1, the algorithm is precisely optimal
and cannot be improved by even a single query [22].

Grover’s search algorithm is robust in several ways:
� It is robust against changing both initial state and the

diffusion operator:

Theorem 3 ([2]) Assume jxj = 1with xi� = 1. Assume the
initial state j'0i has real amplitudes hij'0i, with hi�j'0i =
˛. Let the reflection oracle be Ux = I � 2ji�ihi�j. Let the
diffusion operator UD be a real unitary matrix in the basis
fjiig. Assume UD j'0i = j'0i and that UD j i = ei� j i
for � 2 ["; 2
 � "] (where " > 0 is a constant) for all
eigenvectors j i orthogonal to j'0i. Then, there exists t =
O(1/˛) such that jhi�j(UDUx )t j'0ij = ˝(1). (The constant
under˝(1) is independent of ˛ but can depend on ":)
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Therefore, there is in fact an entire class of related algo-
rithms that use different “diffusion” operators. This ro-
bustness is useful in applications, and may help to explain
why Grover search ideas appear so frequently in quantum
algorithms.
� Høyer, Mosca and de Wolf [16] showed that quan-

tum search can be implemented so as to be robust also
against faulty oracles, a problem known as Bounded-
Error Search:

Theorem 4 Suppose U 00x ji; bi =
p
pi ji; xi ˚ bi +p

1 � pi ji; (1 � xi) ˚ bi, with each pi � 9/10 (i. e., there
is a bounded coherent error rate in the oracle). Search can
still be implemented in O(

p
N) time.

Applications

An early application of the Grover search algorithm was
to finding collisions; given oracle access to a 2-to-1 func-
tion f , find distinct points x, y such that f (x) = f (y).
Brassard, Høyer and Tapp [8] developed an O(N1/3)-time
collision algorithm. Finding x ¤ y such that f (x) =
f (y) for a general function f is known as the Element-
Distinctness problem. Buhrman et al. [9] later developed
an O(N3/4 logN)-time algorithm for Element Distinct-
ness, using amplitude amplification. In a breakthrough,
Ambainis [2] gave an optimal, O(N2/3)-time algorithm for
Element Distinctness, which has also led to other applica-
tions [18]. Ambainis’s algorithm extends quantum search
by using a certain quantumwalk to replace the Grover dif-
fusion step, and uses Theorem 3 for its analysis.

Grover search has also proved useful in communi-
cation complexity. For example, a straightforward dis-
tributed implementation of the search algorithm solves the
Set Intersection problem – Alice and Bob have respective
inputs x; y 2 f0; 1gN , and want to find an index i such
that xi = yi = 1 – with O(

p
N log N) qubits of commu-

nication. Recently, this technique has led to an exponen-
tial classical/quantum separation in the memory required
to evaluate a certain total function with a streaming in-
put [17].

Unlike the usual Grover search that has an oscil-
latory behavior, fixed-point quantum search algorithms
converge monotonically to the solution. These algorithms
replace the reflection operation – a phase shift of 
 – with
selective phase shifts of 
/3.

Theorem 5 ([15]) Let Rs and Rt be selective 
/3 phase
shifts of the source and target state(s), respectively. If
khtjUijsik2 = 1 � ", then

��htjURsU�RtU jsi
��2 = 1 � "3.

In other words, the deviation of the final state from the
desired final state reduces to the cube of what it was for

the original transformation. (Classically only an O("2) im-
provement is possible.) This clearly gives a monotonic
improvement towards the solution state, which is useful
when the number of solutions is very high. The technique
has also been applied to composite pulses [19]. However,
it does not give a square-root speedup.

Another extension of unstructured search is to game-
tree evaluation, which is a recursive search problem. Clas-
sically, using the alpha-beta pruning technique, the value
of a balanced binary AND-OR tree can be computed
with zero error in expected time O(N log2[(1+

p
33)/4]) =

O(N0:754 )[20], and this is optimal even for bounded-
error algorithms [21]. Applying quantum search recur-
sively, a depth-d regular AND-OR tree can be evaluated
with constant error in time

p
N � O(log N)d�1, where the

log factors come from amplifying the success probability
of inner searches to be close to one. Bounded-error quan-
tum search, Theorem 4, allows eliminating these log fac-
tors, so the time becomes O(

p
N � cd ), for some constant c.

Very recently, an N1/2+o(1)-time algorithm has been dis-
covered for evaluating an arbitrary AND-OR tree on N
variables [3,11,12].

Open Problems

As already mentioned, search of a sorted list may be
abstracted as, given x = 0m1N�m , find m. Classically,
dlog2 Ne queries are necessary and sufficient to find m,
with binary search achieving the optimum. Quantumly,
	(log N) queries are also necessary and sufficient, but the
constant is unknown. The best lower bound on an exact
algorithm (i. e., which succeeds with probability one after
a fixed number of queries) is about 0:221 log2 N and the
best exact algorithm uses about 0:443 log2 N queries (al-
though there is a quantum Las Vegas algorithm that uses
expected 0:32 log2 N queries) [10].
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ProblemDefinition

Quorum systems are tools for increasing the availability
and efficiency of replicated services. A quorum system for
a universe of servers is a collection of subsets of servers,
each pair of which intersect. Intuitively, each quorum can
operate on behalf of the system, thus increasing its avail-
ability and performance, while the intersection property
guarantees that operations done on distinct quorums pre-
serve consistency.

The motivation for quorum systems stems from the
need tomake critical missions performed bymachines that
are reliable. The only way to increase the reliability of a ser-
vice, aside from using intrinsically more robust hardware,
is via replication. To make a service robust, it can be in-
stalled on multiple identical servers, each one of which
holds a copy of the service state and performs read/write
operations on it. This allows the system to provide infor-
mation and perform operations even if some machines fail
or communication links go down. Unfortunately, repli-
cation incurs a cost in the need to maintain the servers
consistent. To enhance the availability and performance
of a replicated service, Gifford and Thomas introduced in
1979 [3,14] the usage of votes assigned to each server, such
that a majority of the sum of votes is sufficient to perform
operations. More generally, quorum systems are defined
formally as follows:

Quorum system: Assume a universe U of servers,
jUj = n, and an arbitrary number of clients. A quorum sys-
tem Q 
 2U is a set of subsets of U, every pair of which
intersect. Each Q 2 Q is called a quorum.
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Access Protocol

To demonstrate the usability of quorum systems in con-
structing replicated services, quorums are used here to im-
plement a multi-writer multi-reader atomic shared vari-
able. Quorums have also been used in various mutual ex-
clusion protocols, to achieve Consensus, and in commit
protocols.

In the application, clients perform read and write op-
erations on a variable x that is replicated at each server in
the universe U. A copy of the variable x is stored at each
server, along with a timestamp value t. Timestamps are as-
signed by a client to each replica of the variable when the
client writes the replica. Different clients choose distinct
timestamps, e. g., by choosing integers appended with the
name of c in the low-order bits. The read and write opera-
tions are implemented as follows.

Write: For a client c to write the value v, it queries
each server in some quorum Q to obtain a set of
value/timestamppairs A = fhvu ; tuigu2Q ; chooses a times-
tamp t 2 Tc greater than the highest timestamp value in A;
and updates x and the associated timestamp at each server
in Q to v and t, respectively.

Read: For a client to read x, it queries each server in
some quorum Q to obtain a set of value/timestamp pairs
A = fhvu ; tuigu2Q . The client then chooses the pair hv; ti
with the highest timestamp in A to obtain the result of the
read operation. It writes back hv; ti to each server in some
quorum Q0.

In both read and write operations, each server up-
dates its local variable and timestamp to the received val-
ues hv; ti only if t is greater than the timestamp currently
associated with the variable. The above protocol correctly
implements the semantics of a multi-writer multi-reader
atomic variable (see� Linearizability).

Key Results

Perhaps the two most obvious quorum systems are the
singleton, and the set of majorities, or more generally,
weighted majorities suggested by Gifford [3].

Singleton: The set system Q = ffugg for some u 2 U
is the singleton quorum system.

Weighted Majorities: Assume that every server s in
the universe U is assigned a number of votes ws. Then,
the set system Q = fQ 
 U :

P
q2Q wq > (

P
q2U wq)/2g

is a quorum system called Weighted Majorities. When all
the weights are the same, simply call this the system of Ma-
jorities.

An example of a quorum system that cannot be defined
by voting is the following Grid construction:

Quorums, Figure 1
The Grid quorum system of 6 � 6, with one quorum shaded

Grid: Suppose that the universe of servers is of size
n = k2 for some integer k. Arrange the universe into
a
p
n �
p
n grid, as shown in Fig. 1. A quorum is the union

of a full row and one element from each row below the full
row. This yields the Grid quorum system, whose quorums
are of size O(

p
n).

Maekawa suggests in [6] a quorum system that has sev-
eral desirable symmetry properties, and in particular, that
every pair of quorums intersect in exactly one element:

FPP: Suppose that the universe of servers is of size
n = q2 + q + 1, where q = pr for a prime p. It is known that
a finite projective plane exists for n, with q + 1 pairwise in-
tersecting subsets, each subset of size q + 1, andwhere each
element is contained in q + 1 subsets. Then the set of finite
projective plane subsets forms a quorum system.

Voting and Related Notions

Since generally it would be senseless to access a large quo-
rum if a subset of it is a quorum, a good definition may
avoid such anomalies. Garcia-Molina and Barbara [2] call
such well-formed systems coteries, defined as follows:

Coterie: A coterie Q 
 2U is a quorum system such
that for any Q;Q0 2 Q : Q 6
 Q0.

Of special interest are quorum systems that cannot be
reduced in size (i. e., that no quorum in the system can be
reduced in size). Garcia-Molina and Barbara [2] use the
term “dominates” to mean that one quorum system is al-
ways superior to another, as follows:

Domination: Suppose that Q;Q0 are two coteries,
Q ¤ Q0, such that for every Q0 2 Q0, there exists a Q 2 Q
such that Q 
 Q0. Then Q dominates Q0:Q0 is dominated
if there exists a coterie Q that dominates it, and is non-
dominated if no such coterie exists.

Voting was mentioned above as an intuitive way of
thinking about quorum techniques. As it turns out, vote
assignments and quorums are not equivalent. Garcia-



Quorums Q 717

Molina and Barbara [2] show that quorum systems are
strictly more general than voting, i. e. each vote assignment
has some corresponding quorum system but not the other
way around. In fact, for a system with n servers, there is
a double-exponential (22cn ) number of non-dominated co-
teries, and only O(2n2 ) different vote assignments, though
for n � 5, voting and non-dominated coteries are identi-
cal.

Measures

Several measures of quality have been identified to ad-
dress the question of which quorum system works best for
a given set of servers; among these, load and availability
are elaborated on here.

Load A measure of the inherent performance of a quo-
rum system is its load. Naor and Wool define in [10] the
load of a quorum system as the probability of accessing the
busiest server in the best case. More precisely, given a quo-
rum system Q, an access strategy w is a probability distri-
bution on the elements of Q; i. e.,PQ2Q w(Q) = 1: w(Q)
is the probability that quorum Q will be chosen when the
service is accessed. Load is then defined as follows:

Load: Let a strategy w be given for a quo-
rum system Q = fQ1; : : : ;Qmg over a universe U. For
an element u 2 U , the load induced by w on u is
lw(u) =

P
Qi3u w(Qi ). The load induced by a strategy w

on a quorum systemQ is

Lw(Q) = max
u2U
flw(u)g:

The system load (or just load) on a quorum systemQ is

L(Q) = min
w
fLw (Q)g;

where the minimum is taken over all strategies.
The load is a best-case definition, and will be achieved

only if an optimal access strategy is used, and only in the
case that no failures occur. A strength of this definition is
that load is a property of a quorum system, and not of the
protocol using it.

The following theorem was proved in [10] for all quo-
rum systems.

Theorem 1 Let Q be a quorum system over a universe of
n elements. Denote by c(Q) the size of the smallest quo-
rum of Q. Then L(Q) � maxf 1

c(Q) ;
c(Q)
n g. Consequently,

L(Q) � 1p
n .

Availability The resilience f of a quorum system pro-
vides one measure of how many crash failures a quorum
system is guaranteed to survive.

Resilience: The resilience f of a quorum system Q is
the largest k such that for every set K 
 U , jKj = k, there
exists Q 2 Q such that K \ Q = ;.

Note that, the resilience f is at most c(Q)� 1, since by
disabling the members of the smallest quorum every quo-
rum is hit. It is possible, however, that an f -resilient quo-
rum system, though vulnerable to a few failure configura-
tions of f + 1 failures, can survive many configurations of
more than f failures. One way to measure this property of
a quorum system is to assume that each server crashes in-
dependently with probability p and then to determine the
probability Fp that no quorum remains completely alive.
This is known as failure probability and is formally defined
as follows:

Failure probability: Assume that each server in the
system crashes independently with probability p. For ev-
ery quorum Q 2 Q let EQ be the event that Q is hit,
i. e., at least one element i 2 Q has crashed. Let crash(Q)
be the event that all the quorums Q 2 Q were hit, i. e.,
crash(Q) = VQ2Q EQ . Then the system failure probabil-
ity is Fp(Q) = Pr(crash(Q)).

Peleg and Wool study the availability of quorum sys-
tems in [11]. A good failure probability Fp(Q) for a quo-
rum system Q has limn!1 Fp(Q) = 0 when p < 1

2 . Note
that, the failure probability of any quorum system whose
resilience is f is at least e�˝( f ). Majorities has the best
availability when p < 1

2 ; for p = 1
2 , there exist quorum

constructions with Fp(Q) = 1
2 ; for p >

1
2 , the singleton has

the best failure probability Fp(Q) = p, but for most quo-
rum systems, Fp(Q) tends to 1.

The Load and Availability of Quorum Systems

Quorum constructions can be compared by analyzing
their behavior according to the above measures. The sin-
gleton has a load of 1, resilience 0, and failure probability
Fp = p. This system has the best failure probability when
p > 1

2 , but otherwise performs poorly in both availability
and load.

The system of Majorities has a load of d n+12n e 	
1
2 . It

is resilient to b n�12 c failures, and its failure probability is
e�˝(n). This system has the highest possible resilience and
asymptotically optimal failure probability, but poor load.

Grid’s load is O( 1p
n ), which is within a constant factor

from optimal. However, its resilience is only
p
n � 1 and

it has poor failure probability which tends to 1 as n grows.
The resilience of a FPP quorum system is q 	

p
n.

The load of FPP was analyzed in [10] and shown to
be L(FPP) = q+1

n 	 1/
p
n, which is optimal. However, its

failure probability tends to 1 as n grows.
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As demonstrated by these systems, there is a trade-
off between load and fault tolerance in quorum systems,
where the resilience f of a quorum system Q satisfies
f � nL(Q). Thus, improving one must come at the ex-
pense of the other, and it is in fact impossible to si-
multaneously achieve both optimally. One might con-
clude that good load conflicts with low failure probabil-
ity, which is not necessarily the case. In fact, there ex-
ist quorum systems such as the Paths system of Naor
and Wool [10] and the Triangle Lattice of Bazzi [1] that
achieve asymptotically optimal load of O(1/

p
n) and have

close to optimal failure probability for their quorum sizes.
Another construction is the CWlog system of Peleg and
Wool [12], which has unusually small quorum sizes of
log n � log log n, and for systems with quorums of this
size, has optimal load, L(CWlog) = O(1/ log n), and opti-
mal failure probability.

Byzantine Quorum Systems
For the most part, quorum systems were studied in envi-
ronments where failures may simply cause servers to be-
come unavailable (benign failures). But what if a server
may exhibit arbitrary, possiblymalicious behavior?Malkhi
and Reiter [7] carried out a study of quorum systems in
environments prone to arbitrary (Byzantine) behavior of
servers. Intuitively, a quorum system tolerant of Byzan-
tine failures is a collection of subsets of servers, each pair
of which intersect in a set containing sufficiently many
correct servers to mask out the behavior of faulty servers.
More precisely, Byzantine quorum systems are defined as
follows:

Masking quorum system: A quorum system Q is a b-
masking quorum system if it has resilience f � b, and each
pair of quorums intersect in at least 2b + 1 elements.

The masking quorum system requirements enable
a client to obtain the correct answer from the service de-
spite up to b Byzantine server failures. More precisely,
a write operation remains as before; to obtain the cor-
rect value of x from a read operation, the client reads
a set of value/timestamp pairs from a quorum Q and
sorts them into clusters of identical pairs. It then chooses
a value/timestamp pair that is returned from at least b + 1
servers, and therefore must contain at least one correct
server. The properties of masking quorum systems guar-
antee that at least one such cluster exists. If more than
one such cluster exists, the client chooses the one with the
highest timestamp. It is easy to see that any value so ob-
tained was written before, and moreover, that the most
recently written value is obtained. Thus, the semantics of
a multi-writer multi-reader safe variable are obtained (see
� Linearizability) in a Byzantine environment.

For a b-masking quorum system, the following lower
bound on the load holds:

Theorem 2 Let Q be a b-masking quorum sys-
tem. Then L(Q) � maxf 2b+1c(Q) ;

c(Q)
n g, and consequently

L(Q) �
q

2b+1
n :

This bound is tight, and masking quorum constructions
meeting it were shown.

Malkhi and Reiter explore in [7] two variations of
masking quorum systems. The first, called dissemination
quorum systems, is suited for services that receive and dis-
tribute self-verifying information from correct clients (e. g.,
digitally signed values) that faulty servers can fail to redis-
tribute but cannot undetectably alter. The second varia-
tion, called opaque masking quorum systems, is similar to
regular masking quorums in that it makes no assumption
of self-verifying data, but it differs in that clients do not
need to know the failure scenarios for which the service
was designed. This somewhat simplifies the client protocol
and, in the case that the failures are maliciously induced,
reveals less information to clients that could guide an at-
tack attempting to compromise the system. It is also shown
in [7] how to deal with faulty clients in addition to faulty
servers.

Probabilistic Quorum Systems

The resilience of any quorum system is bounded by half
of the number of servers. Moreover, as mentioned above,
there is an inherent tradeoff between low load and good
resilience, so that it is in fact impossible to simultane-
ously achieve both optimally. In particular, quorum sys-
tems over n servers that achieve the optimal load of 1p

n
can tolerate at most

p
n faults.

To break these limitations, Malkhi et al. propose in [8]
to relax the intersection property of a quorum system so
that “quorums” chosen according to a specified strategy
intersect only with very high probability. They accord-
ingly name these probabilistic quorum systems. These sys-
tems admit the possibility, albeit small, that two opera-
tions will be performed at non-intersecting quorums, in
which case consistency of the systemmay suffer. However,
even a small relaxation of consistency can yield dramatic
improvements in the resilience and failure probability of
the system, while the load remains essentially unchanged.
Probabilistic quorum systems are thus most suitable for
use when availability of operations despite the presence
of faults is more important than certain consistency. This
might be the case if the cost of inconsistent operations is
high but not irrecoverable, or if obtaining the most up-to-
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date information is desirable but not critical, while having
no information may have heavier penalties.

The family of constructions suggested in [8] is as fol-
lows:

W(n; `) Let U be a universe of size n:W(n; `),
` � 1, is the system hQ;wi where Q is the set system
Q = fQ 
 U : jQj = `

p
ng; w is an access strategy w de-

fined by 8Q 2 Q;w(Q) = 1
jQj .

The probability of choosing according to w two quo-
rums that do not intersect is less than e�`2 , and can be
made sufficiently small by appropriate choice of `. Since
every element is in

� n�1
`
p

n�1
�
quorums, the load L(W(n; `))

is p̀n = O( 1p
n ). Because only `

p
n servers need be avail-

able in order for some quorum to be available, W(n; `)
is resilient to n � `

p
n crashes. The failure probability of

W(n; `) is less than e�˝(n) for all p � 1 � p̀n , which

is asymptotically optimal. Moreover, if 1
2 � p � 1 � p̀n ,

this probability is provably better than any (non-proba-
bilistic) quorum system.

Relaxing consistency can also provide dramatic im-
provements in environments that may experience Byzan-
tine failures. More details can be found in [8].

Applications
Just about any fault tolerant distributed protocol, such as
Paxos [5] or consensus [1] implicitly builds on quorums,
typically majorities. More concretely, scalable data repos-
itories were built, such as Fleet [9], Rambo [4], and Rose-
bud [13].
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