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ProblemDefinition

Consider a graph G(V ; E). For any two vertices u; v 2 V ,
d(u; v) denotes the distance of u; v inG. The general prob-
lem concerns a coloring of the graph G and it is defined as
follows:

Definition 1 (k-coloring problem)
INPUT: A graph G(V ; E).
OUTPUT: A function � : V ! f1; : : : ;1g, called k-col-
oring of G such that 8u; v 2 V , x 2 f0; 1; : : : ; kg: if
d(u; v) � k � x + 1 then j�(u)� �(v)j = x.
OBJECTIVE: Let j�(V)j = �
 . Then �
 is the number of
colors that ' actually uses (it is usually called order of G
under '). The number �
 = maxv2V�(v)�minu2V�(u)+
1 is usually called the span of G under '. The function '
satisfies one of the following objectives:
� minimum span: �
 is the minimum possible over all

possible functions ' of G;
� minimum order: �
 is the minimum possible over all

possible functions ' of G;
� Min span order: obtains a minimum span and more-

over, from all minimum span assignments, ' obtains
a minimum order.

� Min order span: obtains a minimum order and more-
over, from all minimum order assignments, ' obtains
a minimum span.

Note that the case k = 1 corresponds to the well known
problem of vertex graph coloring. Thus, k-coloring prob-
lem (with k as an input) isNP-complete [4]. The case of
k-coloring problem where k = 2, is called the Radiocolor-
ing problem.

Definition 2 (Radiocoloring Problem (RCP) [7])
INPUT: A graph G(V ; E).
OUTPUT: A function ˚ : V ! N� such that j˚(u) �
˚(v)j � 2 if d(u; v) = 1 and j˚(u) � ˚(v)j � 1 if
d(u; v) = 2.
OBJECTIVE: The least possible number (order) needed to
radiocolor G is denoted by Xorder(G). The least possible
number maxv2V ˚(v) �minu2V ˚(u) + 1 (span) needed
for the radiocoloring ofG is denoted as Xspan(G). Function
˚ satisfies one of the followings:
� Min span RCP: ˚ obtains a minimum span, i. e.
�˚ = Xspan(G);

� Min order RCP: ˚ obtains a minimum order
�˚ = Xorder(G);

� Min span order RCP: obtains a minimum span and
moreover, from all minimum span assignments, ˚ ob-
tains a minimum order.

� Min order span RCP: obtains a minimum order and
moreover, from all minimumorder assignments,˚ ob-
tains a minimum span.

A related to the RCP problem concerns to the square of
a graph G, which is defined as follows:

Definition 3 Given a graphG(V ; E),G2 is the graph hav-
ing the same vertex set V and an edge set E0 : fu; vg 2 E0

iff d(u; v) � 2 in G.

The related problem is to color the square of a graphG,G2

so that no two neighbor vertices (inG2) get the same color.
The objective is to use a minimum number of colors, de-
noted as �(G2) and called chromatic number of the square
of the graph G. [5,6] first observed that for any graph G,
Xorder(G) is the same as the (vertex) chromatic number of
G2, i. e. Xorder(G) = �(G2).
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Key Results

[5,6] studiedmin span order,min order andmin span RCP
in planar graph G. A planar graph, is a graph for which
its edges can be embedded in the plane without crossings.
The following results are obtained:
� It is first shown that the number of colors used in the

min span order RCP of graph G is different from the
chromatic number of the square of the graph, �(G2).
In particular, it may be greater than �(G2).

� It is then proved that the radiocoloring problem
for general graphs is hard to approximate (unless
NP = ZPP, the class of problems with polynomial
time zero-error randomized algorithms) within a fac-
tor of n1/2�� (for any � > 0), where n is the number of
vertices of the graph. However, when restricted to some
special cases of graphs, the problem becomes easier.
It is shown that the min span RCP and min span order
RCP areNP-complete for planar graphs. Note that few
combinatorial problems remain hard for planar graphs
and their proofs of hardness are not easy since they
have to use planar gadgets which are difficult to find
and understand.

� It presents a O(n�(G)) time algorithm that approxi-
mates the min order of RCP, Xorder, of a planar graph
G by a constant ratio which tends to 2 as the maximum
degree�(G) of G increases.
The algorithm presented is motivated by a constructive
coloring theorem of Heuvel and McGuiness [9]. The
construction of [9] can lead (as shown) to an O(n2)
technique assuming that a planar embedding of G is
given. [5,6] improves the time complexity of the ap-
proximation, and presents a much more simple algo-
rithm to verify and implement. The algorithm does not
need any planar embedding as input.

� Finally, the work considers the problem of estimating
the number of different radiocolorings of a planar graph
G. This is a #P-complete problem (as can be easily seen
from the completeness reduction presented there that
can be done parsimonious). They authors employ here
standard techniques of rapidly mixing Markov Chains
and the new method of coupling for purposes of prov-
ing rapid convergence (see e. g. [10]) and present a fully
polynomial randomized approximation scheme for esti-
mating the number of radiocolorings with � colors for
a planar graph G, when � � 4�(G) + 50.
In [8] and [7] it has been proved that the problem of

min span RCP is NP-complete, even for graphs of di-
ameter 2. The reductions use highly non-planar graphs.
In [11] it is proved that the problem of coloring the square
of a general graph isNP-complete.

Another variation of RCP for planar graphs, called
distance-2-coloring is studied in [12]. This is the problem
of coloring a given graph G with the minimum number of
colors so that the vertices of distance at most two get dif-
ferent colors. Note that this problem is equivalent to col-
oring the square of the graph G, G2. In [12] it is proved
that the distance-2-coloring problem for planar graphs is
NP-complete. As it is shown in [5,6], this problem is
different from the min span order RCP. Thus, the NP-
completeness proof in [12] certainly does not imply the
NP-completeness of min span order RCP proved in [5,6].
In [12] a 9-approximation algorithm for the distance-2-
coloring of planar graphs is also provided.

Independently and in parallel, Agnarsson and
Halldórsson in [1] presented approximations for the chro-
matic number of square and power graphs (Gk). In par-
ticular they presented an 1:8-approximation algorithm
for coloring the square of a planar graph of large degree
(�(G) � 749). Their method utilizes the notion of induc-
tiveness of the square of a planar graph.

Bodlaender et al. in [2] proved also independently and
and in parallel that the min span RCP, called �-labeling
there, isNP-complete for planar graphs, using a similar
to the approach used in [5,6]. In the same work the au-
thors presented approximations for the problem for some
interesting families of graphs: outerplanar graphs, graphs
of bounded treewidth, permutation and split graphs.

Applications

The Frequency Assignment Problem (FAP) in radio net-
works is a well-studied, interesting problem, aiming at as-
signing frequencies to transmitters exploiting frequency
reuse while keeping signal interference to acceptable lev-
els. The interference between transmitters are modeled by
an interference graph G(V ; E), where V (jV j = n) corre-
sponds to the set of transmitters and E represents distance
constraints (e. g. if two neighbor nodes in G get the same
or close frequencies then this causes unacceptable levels
of interference). In most real life cases the network topol-
ogy formed has some special properties, e. g. G is a lattice
network or a planar graph. Planar graphs are mainly the
object of study in [5,6].

The FAP is usually modeled by variations of the graph
coloring problem. The set of colors represents the available
frequencies. In addition, each color in a particular assign-
ment gets an integer value which has to satisfy certain in-
equalities compared to the values of colors of nearby nodes
in G (frequency-distance constraints). A discrete version
of FAP is the k-coloring problem, of which a particular in-
stance, for k = 2, is investigated in [5,6].
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Real networks reserve bandwidth (range of frequen-
cies) rather than distinct frequencies. In this case, an
assignment seeks to use as small range of frequencies as
possible. It is sometimes desirable to use as few distinct
frequencies of a given bandwidth (span) as possible, since
the unused frequencies are available for other use. How-
ever, there are cases where the primary objective is to min-
imize the number of frequencies used and the span is a sec-
ondary objective, since we wish to avoid reserving un-
necessary large span. These realistic scenaria directed re-
searchers to consider optimization versions of the RCP,
where one aims inminimizing the span (bandwidth) or the
order (distinct frequencies used) of the assignment. Such
optimization problems are investigated in [5,6].
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ProblemDefinition

This problem is concerned with using the multi-writer
multi-reader register primitive in the shared memory
model to design a fast, wait-free implementation of con-
sensus. Below are detailed descriptions of each of these
terms.

Consensus Problems

There are n processors and the goal is to design distributed
algorithms to solve the following two consensus problems
for these processors.

Problem 1 (Binary consensus)
Input: Processor i has input bit bi.
Output: Each processor i has output bit b0i such that: 1) all
the output bits b0i equal the same value v; and 2) v = bi for
some processor i.

Problem 2 (Id consensus)
Input: Processor i has a unique id ui.
Output: Each processor i has output value u0i such that:
1) all the output values u0i equal the same value u; and 2)
u = ui for some processor i.

Wait-Free

This result builds on extensive previous work on the
shared memory model of parallel computing. Shared ob-
ject types include data structures such as read/write regis-
ters and synchronization primitives such as “test and set”.
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A shared object is said to be wait-free if it ensures that ev-
ery invocation on the object is guaranteed a response in
finite time even if some or all of the other processors in the
system crash. In this problem, the existence of wait-free
registers is assumed and the goal is to create a fast wait-
free algorithm to solve the consensus problem. In the rest
of this summary, “wait-free implementations” will be re-
ferred to simply as “implementations” i. e. the term wait-
free will be omitted.

Multi-writer Multi-reader Register

Many past results on solving consensus in the shared
memory model assume the existence of a single writer
multi-reader register. For such a register, there is a single
writer client and multiple reader clients. Unfortunately,
it is easy to show that the per processor step complex-
ity of any implementation of consensus from single writer
multi-reader registers will be at least linear in the num-
ber of processors. Thus, to achieve a time efficient im-
plementation of consensus, the more powerful primitive
of a multi-writer multi-reader register must be assumed.
A multi-writer multi-reader register assumes the clients of
the register are multiple writers and multiple readers. It is
well known that it is possible to implement such a register
in the shared memory model.

The Adversary

Solving the above problems is complicated by the fact that
the programmer has little control over the rate at which
individual processors execute. To model this fact, it is as-
sumed that the schedule at which processors run is picked
by an adversary. It is well-known that there is no deter-
ministic algorithm that can solve either Binary consensus
or ID consensus in this adversarial model if the number of
processors is greater than 1 [6,7]. Thus, researchers have
turned to the use of randomized algorithms to solve this
problem [1]. These algorithms have access to random coin
flips. Three types of adversaries are considered for ran-
domized algorithms. The strong adversary is assumed to
know the outcome of a coin flip immediately after the coin
is flipped and to be able to modify its schedule accordingly.
The oblivious adversary has to fix the schedule before any
of the coins are flipped. The intermediate adversary is not
permitted to see the outcome of a coin flip until some pro-
cess makes a choice based on that coin flip. In particular,
a process can flip a coin and write the result in a global
register, but the intermediate adversary does not know the
outcome of the coin flip until some process reads the value
written in the register.

Key Results

Theorem 1 Assuming the existence of multi-writer multi-
reader registers, there exists a randomized algorithm to
solve binary consensus against an intermediate adversary
with O(1) expected steps per processor.

Theorem 2 Assuming the existence of multi-writer multi-
reader registers, there exists a randomized algorithm to
solve id-consensus against an intermediate adversary with
O(log2 n) expected steps per processor.

Both of these results assume that every processor has
a unique identifier. Prior to this result, the fastest known
randomized algorithm for binary consensus made use of
single writer multiple reader registers, was robust against
a strong adversary, and requiredO(n log2 n) steps per pro-
cessor [2]. Thus, the above improvements are obtained at
the cost of weakening the adversary and strengthening the
system model when compared to [2].

Applications

Binary consensus is one of the most fundamental prob-
lems in distributed computing. An example of its impor-
tance is the following result shown by Herlihy [8]: If an
abstract data type X together with shared memory is pow-
erful enough to implement wait-free consensus, then X
together with shared memory is powerful enough to im-
plement in a wait-free manner any other data structure
Y . Thus, using this result, a wait-free version of any data
structure can be created using only wait-free multi-writer
multi-reader registers as a building block.

Binary consensus has practical applications in many
areas including: database management, multiprocessor
computation, fault diagnosis, and mission-critical systems
such as flight control. Lynch contains an extensive discus-
sion of some of these application areas [9].

Open Problems

This result leaves open several problems. First, it leaves
open a gap on the number of steps per process required to
perform randomized consensus using multi-writer multi-
reader registers against the strong adversary. A recent re-
sult by Attiya and Censor shows an ˝(n2) lower bound
on the total number of steps for all processors with multi-
writer multi-reader registers (implying ˝(n) steps per
process) [3]. They also show a matching upper bound of
O(n2) on the total number of steps. However, closing the
gap on the per-process number of steps is still open.

Another open problem is whether there is a random-
ized implementation of id consensus using multi-reader



Randomized Broadcasting in Radio Networks R 725

multi-writer registers that is robust to the intermediate ad-
versary and whose expected number of steps per proces-
sor is better than O(log2 n). In particular, is a constant run
time possible? Aumann in follow up work to this result
was able to improve the expected run time per process to
O(log n) [4]. However, to the best of the reviewer’s knowl-
edge, there have been no further improvements.

A third open problem is to close the gap on the time
required to solve binary consensus against the strong ad-
versary with a single writer multiple reader register. The
fastest known randomized algorithm in this scenario re-
quires O(n log2 n) steps per processor [2]. A trivial lower
bound on the number of steps per processor when single-
writer registers are used is ˝(n). However, to the best
of this reviewers knowledge, a O(log2 n) gap still remains
open.

A final open problem is to close the gap on the to-
tal work required to solve consensus with single-reader
single-writer registers against an oblivious adversary. Au-
mann and Kapah-Levy describe algorithms for this sce-
nario that require O(n log n exp(2

p
ln n ln(c log n log� n)

expected total work for some constant c [5]. In particular,
the total work is less than O(n1+�) for any � > 0. A triv-
ial lower bound on total work is ˝(n), but a gap remains
open.
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ProblemDefinition

The paper investigates deterministic and randomized pro-
tocols for achieving broadcast (distributing a message
from a source to all other nodes) in arbitrary multi-hop
synchronous radio networks.

The model consists of an arbitrary (undirected) net-
work, with processors communicating in synchronous
time-slots subject to the following rules. In each time-slot,
each processor acts either as a transmitter or as a receiver.
A processor acting as a receiver is said to receive a mes-
sage in time-slot t if exactly one of its neighbors transmits
in that time-slot. Themessage received is the one transmit-
ted. If more than one neighbor transmits in that time-slot,
a conflict occurs. In this case the receiver may either get
amessage from one of the transmitting neighbors or get no
message. It is assumed that conflicts (or “collisions”) are
not detected, hence a processor cannot distinguish the case
in which no neighbor transmits from the case in which two
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or more of its neighbors transmits during that time-slot.
The processors are not required to have ID’s nor do they
know their neighbors, in particular the processors do not
know the topology of the network.

The only inputs required by the protocol are the num-
ber of processors in the network – n,� – an a priori known
upper bound on the maximum degree in the network and
the error bound –�. (All bounds are a priori known to the
algorithm.)

Broadcast is a task initiated by a single processor, called
the source, transmitting a single message. The goal is to
have the message reach all processors in the network.

Key Results

The main result is a randomized protocol that achieves
broadcast in time which is optimal up to a logarithmic
factor. In particular, with probability 1 � �, the protocol
achieves broadcast within O((D + log n/�) � log n) time-
slots.

On the other hand, a linear lower bound on the deter-
ministic time-complexity of broadcast is proved. Namely,
any deterministic broadcast protocol requires ˝(n) time-
slots, even if the network has diameter 3, and n is known
to all processors. These two results demonstrate an expo-
nential gap in complexity between randomization and de-
terminism.

Randomized Protocols

The Procedure Decay The basic idea used in the pro-
tocol is to resolve potential conflicts by randomly elimi-
nating half of the transmitters. This process of “cutting by
half” is repeated each time-slot with the hope that there
will exist a time-slot with a single active transmitter. The
“cutting by half” process is easily implemented distribu-
tively by letting each processor decide randomly whether
to eliminate itself. It will be shown that if all neighbors of
a receiver follow the elimination procedure then with pos-
itive probability there exists a time slot in which exactly
one neighbor transmits.

What follows is a description of the procedure for
sending a message m, that is executed by each processor
after receivingm:

procedure Decay(k;m);
repeat at most k times (but at least once!)

sendm to all neighbors;
set coin 0 or 1 with equal probability.

until coin = 0.

By using elementary probabilistic arguments, one can
prove:

Theorem 1 Let y be a vertex of G. Also let d � 2 neigh-
bors of y execute Decay during the time interval [0; k)
and assume that they all start the execution at Time = 0.
Then P(k, d), the probability that y receives a message by
Time = k, satisfies:
1. limk!1 P(k; d) � 2

3 ;
2. for k � 2dlog de, P(k; d) > 1

2 .
(All logarithms are to base 2.)

The expected termination time of the algorithm depends
on the probability that coin = 0. Here, this probability is
set to be one half. An analysis of the merits of using other
probabilities was carried out by Hofri [4].

The Broadcast Protocol The broadcast protocol makes
several calls to Decay(k,m). By Theorem 1 (2), to ensure
that the probability of a processor y receiving the message
be at least 1/2, the parameter k should be at least 2 log d
(where d is the number of neighbors sending a message
to y). Since d is not known, the parameter was chosen as
k = 2dlog�e (recall that � was defined to be an upper
bound on the in-degree). Theorem 1 also requires that all
participants start executing Decay at the same time-slot.
Therefore, Decay is initiated only at integer multiples of
2dlog�e .

procedure Broadcast;
k = 2dlog�e;
t = 2dlog(N/�)e;
Wait until receiving a message, saym;
do t times {

Wait until (Time mod k) = 0 ;
Decay(k,m) ;

}

A network is said to execute the Broadcast_scheme if some
processor, denoted s, transmits an initial message and each
processor executes the above Broadcast procedure.

Theorem 2 Let T = 2D + 5maxf
p
D;
p
log(n/�)g �p

log(n/�). Assume that Broadcast_scheme starts at
Time = 0. Then, with probability � 1 � 2�, by time
2dlog�e�T all nodes will receive the message. Furthermore,
with probability � 1 � 2�, all the nodes will terminate by
time 2dlog�e � (T + dlog(N/�)e).

The bound provided by Theorem 2 contains two additive
terms: the first represents the diameter of the network and
the second represents delays caused by conflicts (which are
rare, yet they exist).

Additional Properties of the Broadcast Protocol:
� Processor IDs – The protocol does not use processor

IDs, and thus does not require that the processors have
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distinct IDs (or that they know the identity of their
neighbors). Furthermore, a processor is not even re-
quired to know the number of its neighbors. This prop-
ertymakes the protocol adaptive to changes in topology
which occur throughout the execution, and resilient to
non-malicious faults.

� Knowing the size of the network – The protocol per-
forms almost as well when given instead of the actual
number of processors (i. e., n), a “good” upper bound
on this number (denoted N). An upper bound polyno-
mial in n yields the same time-complexity, up to a con-
stant factor (since complexity is logarithmic in N).

� Conflict detection – The algorithm and its complexity
remain valid even if no messages can be received when
a conflict occurs.

� Simplicity and fast local computation – In each time
slot each processor performs a constant amount of local
computation.

� Message complexity – Each processor is active for
dlog(N/�)e consecutive phases and the average number
of transmissions per phase is at most 2. Thus the ex-
pected number of transmissions of the entire network
is bounded by 2n � dlog(N/�)e.

� Adaptiveness to changing topology and fault re-
silience – The protocol is resilient to some changes in
the topology of the network. For example, edges may
be added or deleted at any time, provided that the net-
work of unchanged edges remains connected. This cor-
responds to fail/stop failure of edges, thus demonstrat-
ing the resilience to some non-malicious failures.

� Directed networks – The protocol does not use ac-
knowledgments. Thus it may be applied even when the
communication links are not symmetric, i. e., the fact
that processor v can transmit to u does not imply that
u can transmit to v. (The appropriate network model
is, therefore, a directed graph.) In real life this situation
occurs, for instance, when v has a stronger transmitter
than u.

A Lower Bound on Deterministic Algorithms

For deterministic algorithms one can show a lower bound:
for every n there exist a family of n-node networks such
that every deterministic broadcast scheme requires ˝(n)
time. For every non-empty subset S 
 f1; 2; : : : ; ng, con-
sider the following network GS (Fig. 1).

Node 0 is the source and node n + 1 the sink. The
source initiates the message and the problem of broadcast
inGS is to reach the sink. The difficulty stems from the fact
that the partition of the middle layer (i. e., S) is not known
a priori. The following theorem can be proved by a series

Randomized Broadcasting in Radio Networks, Figure 1
The network used for the lower bound

of reductions to a certain “hitting game”:

Theorem 3 Every deterministic broadcast protocol that is
correct for all n-node networks requires time˝(n).

In [2] there was some confusion concerning the broad-
cast model. In that paper it was erroneously claimed that
the lower bound holds also when a collision is indistin-
guishable from the absence of transmission. Kowalski and
Pelc [5] disproved this claim by showing how to broadcast
in logarithmic time on all networks of type GS.

Applications

The procedure Decay has been used to resolve contention
in radio and cellular phone networks.

Cross Reference

� Broadcasting in Geometric Radio Networks
� Communication in Ad Hoc Mobile Networks Using

RandomWalks
� Deterministic Broadcasting in Radio Networks
� Randomized Gossiping in Radio Networks

Recommended Reading

Subsequent papers showed the optimality of the random-
ized algorithm:
� Alon et al. [1] showed the existence of a family of

radius-2 networks on n vertices for which any broad-
cast schedule requires at least˝(log2 n) time slots.

� Kushilevitz and Mansour [7] showed that for any ran-
domized broadcast protocol there exists a network in
which the expected time to broadcast a message is
˝(D log(N/D).

� Bruschi and Del Pinto [3] showed that for any de-
terministic distributed broadcast algorithm, any n and
D � n/2 there exists a network with n nodes and di-
ameter D such that the time needed for broadcast is
˝(D log n).

� Kowalski and Pelc [6] discussed networks in which col-
lisions are indistinguishable from the absence of trans-
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mission. They showed an ˝(n log n/ log(n/D)) lower
bound and an O(n log n) upper bound. For this model,
they also showed an O(D log n + log2 n) randomized
algorithm, thus matching the lower bound of [1] and
improving the bound of [2] for graphs for which
D = �(n/ log n).
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ProblemDefinition

Recent developments in wireless communications and
digital electronics have led to the development of ex-
tremely small in size, low-power, low-cost sensor devices
(often called smart dust). Such tiny devices integrate sens-
ing, data processing and wireless communication capabil-
ities. Examining each such resource constraint device in-
dividually might appear to have small utility; however, the
distributed self-collaboration of large numbers of such de-
vices into an ad hoc network may lead to the efficient ac-
complishment of large sensing tasks i. e., reporting data

about the realization of a local event happening in the net-
work area to a faraway control center.

The problem considered is the development of a ran-
domized algorithm to balance energy among sensors
whose aim is to detect events in the network area and re-
port them to a sink. The network is sliced by the algo-
rithm into layers composed of sensors at approximately
equal distances from the sink [1,2,8] (Fig. 1). The slicing
of the network depends on the communication distance.
The sink initiates the process by sending a control mes-
sage containing a counter, the value of which is initially
1. Sensors receiving the message assign themselves to a
slice number corresponding to the counter, increment the
counter and propagate the message in the network. A sen-
sor already assigned to a slice ignores subsequent received
control messages.

The strategy suggested to balance the energy among
sensors consists in allowing a sensor to probabilistically
choose between either sending data to a sensor in the next
layer towards the sink or sending the data directly to the
sink. The difference between the two choices is the en-
ergy consumption, which is much higher if the sensor de-
cides to report to the sink directly. The energy consump-
tion is modeled as a function of the transmission distance
by assuming that the energy necessary to send data up to
a distance d is proportional to d2. Actually, more accurate
models can be considered, in which the dependence is of
the form d˛ , with 2 � ˛ � 5 depending on the particu-
lar environmental conditions. Although the model chosen

Randomized Energy Balance Algorithms in Sensor Networks,
Figure 1
The sink and five slices S1, . . . , S5
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determines the parameters of the algorithm, the particular
shape of the function describing the relationship between
the distance of transmission and energy consumption is
not relevant except that it might increase with distance.
The distance between two successive slices is normalized
to be 1. Hence, a sensor sending data to one of its neigh-
bors consumes one unit of energy and a sensor located in
slice i consumes i2 units of energy to report to the sink di-
rectly. Small hop transmissions are cheap (with respect to
energy consumption) but pass through the critical region
around the sink and might strain sensors in that region,
while expensive direct transmissions bypass that critical
area.

Energy balance is defined as follows:

Definition 1 The network is energy-balanced if the aver-
age per sensor energy dissipation is the same for all sectors,
i. e., when

E[Ei ]
Si

=
E[E j]
S j

; i; j = 1; : : : ; n (1)

where Ei is the total energy available and Si is the number
of nodes in slice number i.

The dynamics of the network is modeled by assigning
probabilities �i ; i = 1; : : : ;N;

P
�i = 1, of the occurrence

of an event in slice i. The protocol consists in transmitting
the data to a neighbor slice with probability pi and with
probability 1 � pi to the sink, for a sensor belonging to
slice i. Hence, the mean energy consumption per data unit
is pi + (1 � pi )i2. A central assumption in the following is
that the events are evenly generated in a given slice. Then,
denoting by ei the energy available per node in slice i (i. e.,
ei = Ei /Si ), the problem of energy-balanced data propa-
gation can be formally stated as follows:

Given �i ; ei ; Si ; i = 1; : : : ;N , find pi ; � such that

�
�i + �i+1pi+1 + : : : + �n pn pn�1 � � � pi+1„ ƒ‚ …

=:xi

�

�

�
pi

1
Si

+ (1 � pi )
i2

Si

�
= �ei ; i = 1; : : : ;N :

(2)

Equation (2) amounts to ensuring that the mean energy
dissipation for all sensors is proportional to the available
energy. In turn, this ensures that sensors might, on aver-
age, run out of energy all at the same time. Notice that (2)
contains the definitions of the xi. They are the ones esti-
mated in the pseudo-code in Fig. 2, the successive estima-
tions being denoted as x̃i . These variables are proportional
to the number of messages handled by slice i.

Initialize x̃0 = �; : : : ; x̃n
Initialize NbrLoop=1
repeat forever

Send x̃i and � values to the stations which compute
their pi probability

wait for a data
for i=0 to n

if the data passed through slice i then
X  1

else
X  0

end if
Generate R a x̃i -Bernoulli random variable
x̃i  x̃i + 1

NbrLoop (X � R)
Increment NbrLoop by one.

end for
end repeat

Randomized Energy Balance Algorithms in Sensor Networks,
Figure 2
Pseudo-code for estimation of the xi value by the sink

Key Results

In [1,2] recursive equations similar to (2) were suggested
and solved in closed form under adequate hypotheses. The
need for a priori knowledge of the probability of occur-
rence of the events, the �i parameters, was considered
in [7], in which these parameters were estimated by the
sink on the basis of the observations of the various paths
the data follow. The algorithm suggested is based on re-
cursive estimation, is computationally not expensive and
converges with rate O(1/pn). One might argue that the
rate of convergence is slow; however, it is numerically ob-
served that relatively quickly compared with the conver-
gence time, the algorithm finds an estimation close enough
to the final value. The estimation algorithm run by the sink
(which has no energy constraints) is given in Fig. 2.

Results taken from [1,2,7] all assume the existence of
an energy-balance solution. However, particular distribu-
tions of the eventsmight prevent the existence of such a so-
lution and the relevant question is no longer the compu-
tation of an energy-balance algorithm. For instance, as-
suming that �N = 0, sensors in slice N have no way of
balancing energy. In [9] the problem was reformulated
as finding the probability distribution fpigi=1;:::;N which
leads to the maximal functional lifetime of the networks. It
was proved that if an energy-balance strategy exists, then
it maximizes the lifetime of the network establishing for-
mally the intuitive reasoning which was the motivation
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to consider energy-balance strategies. A centralized algo-
rithm was presented to compute the optimal parameters.
Moreover, it was observed numerically that the interslice
energy consumption is prone to be uneven and a spread-
ing technique was suggested and numerically validated as
being efficient to overcome this limitation of the proba-
bilistic algorithm.

The communication graph considered is a restrictive
subset of the complete communication graph and it is le-
gitimate to wonder whether one can improve the situation
by extending it. For instance, by allowing data to be sent
two hops or more away. In [3,6] it was proved that the
topology in which sensors communicate only to neighbor
slices and the sink is the one which maximizes the flow of
data in the network. Moreover, the communication graph
in which sensors send data only to their neighbors and the
sink leads to a completely distributed algorithm balancing
energy [6]. Indeed, as a sensor sends data to a neighbor
slice, the neighbor must in turn send the data and can at-
tach information concerning its own energy level. This in-
formation might be captured by the initial sensor since it
belongs to the communication range of its neighbor (this
does not hold any longer if multiple hops are allowed).
Hence, a distributed strategy consists in sending data to
a particular neighbor only if its energy level consumption
is lower, otherwise the data are sent directly to the sink.

Applications
Among the several constraints sensor networks design-
ers have to face, energy management is central since sen-
sors are usually battery powered, making the lifetime of
the networks highly sensitive to the energy management.
Besides the traditional strategy consisting in minimizing
the energy consumption at sensor nodes, energy-balance
schemes aim at balancing the energy consumption among
sensors. The intuitive function of such schemes is to avoid
energy depletion holes appearing as some sensors that run
out of their available energy resources and are no longer
able to participate in the global function of the networks.
For instance, routing might be no longer possible if a small
number of sensors run out of energy, leading to a dis-
connected network. This was pointed out in [5] as well as
the need to develop application-specific protocols. Energy
balancing is suggested as a solution in order to make the
global functional lifetime of the network longer. The ear-
liest development of dedicated protocols ensuring energy
balance can be found in [4,10,11].

A key application is tomaximize the lifetime of the net-
work while gathering data to a sink. Besides increasing the
lifetime of the networks, other criteria have to be taken
into account. Indeed, the distributed algorithm might be

as simple as possible owing to limited computational re-
sources, might avoid collisions or limit the total number
of transmissions, and might ensure a large enough flow
of data from the sensors toward the sink. Actually, max-
imizing the flow of data is equivalent to maximizing the
lifetime of sensor networks if some particular realizable
conditions are fulfilled. Besides the simplicity of the dis-
tributed algorithm, the network deployment and the self-
realization of the network structure might be possible in
realistic conditions.

Cross References
� Obstacle Avoidance Algorithms in Wireless Sensor

Networks
� Probabilistic Data Forwarding in Wireless Sensor

Networks
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ProblemDefinition

The two classical problems of disseminating information
in computer networks are broadcasting and gossiping. In
broadcasting, the goal is to distribute amessage from a dis-
tinguished source node to all other nodes in the networks.
In gossiping, each node v in the network initially contains
a message mv ; and the task is to distribute each message
mv to all nodes in the network.

The radio network abstraction captures the features
of distributed communication networks with multi-access
channels, with minimal assumptions on the channel
model and processors’ knowledge. Directed edges model
uni-directional links, including situations in which one of
two adjacent transmitters is more powerful than the other.
In particular, there is no feedback mechanism (see, for ex-
ample, [6]). In some applications, collisions may be diffi-
cult to distinguish from the noise that is normally present
in the channel, justifying the need for protocols that do not
depend on the reliability of the collision detection mecha-
nism (see [3,4]). Some network configurations are subject
to frequent changes. In other networks, a network topol-
ogy could be unstable or dynamic; for example, when mo-
bile users are present. In such situations, algorithms that
do not assume any specific topology are more desirable.

More formally a radio network is a directed graph
G = (V ; E); where by jVj = n we denote the number of
nodes in this graph. Individual nodes in V are denoted

by letters u; v; : : :. If there is an edge from u to v, i. e.,
(u; v) 2 E; then we say that v is an out-neighbor of u and
u is an in-neighbor of v. Messages are denoted by letterm,
possibly with indices. In particular, the message originat-
ing from node v is denoted by mv. The whole set of initial
messages is M = fmv : v 2 Vg. During the computation,
each node v holds a set of messagesMv that have been re-
ceived by v so far. Initially, each node v does not possess
any information apart from Mv = fmvg. Without loss of
generality, whenever a node is in the transmitting mode,
one can assume that it transmits the whole content ofMv.

The time is divided into discrete time steps. All nodes
start simultaneously, have access to a common clock, and
work synchronously. A gossiping algorithm is a protocol
that for each node u, given all past messages received by
u, specifies, for each time step t, whether u will transmit
a message at time t, and if so, it also specifies the message.
A message M transmitted at time t from a node u is sent
instantly to all its out-neighbors. An out-neighbor v of u
receivesM at time step t only if no collision occurred, that
is, if the other in-neighbors of v do not transmit at time t at
all. Further, collisions cannot be distinguished from back-
ground noise. If v does not receive anymessage at time t, it
knows that either none of its in-neighbors transmitted at
time t, or that at least two did, but it does not know which
of these two events occurred. The running time of a gossip-
ing algorithm is the smallest t such that for any network
topology, and any assignment of identifiers to the nodes,
all nodes receive messages originating in every other node
no later than at step t.

Limited Broadcastv(k) Given an integer k and a node
v; the goal of limited broadcasting is to deliver the mes-
sage mv (originating in v) to at least k other nodes in the
network.

Distributed Coupon Collection The set of network
nodes V can be interpreted as a set of n bins and the set of
messagesM as a set of n coupons. Each coupon has at least
k copies, each copy belonging to a different bin. Mv is the
set of coupons in bin v. Consider the following process. At
each step, one opens every bin at random, independently,
with probability 1/n. If no bin is opened, or if two or more
bins are opened, a failure occurs and no coupons are col-
lected. If exactly one bin, say v, is opened, all coupons from
Mv are collected. The task is to establish how many steps
are needed to collect (a copy of) each coupon.

Key Results

Theorem 1 ([1]) There exists a deterministic O(k log2 n)-
time algorithm for limited broadcasting from any node in
radio networks with an arbitrary topology.
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Theorem 2 ([1]) Let ı be a given constant, 0 < ı < 1,
and s = (4n/k) ln(n/ı). After s steps of the distributed
coupon collection process, with probability at least 1 � ı, all
coupons will be collected.

Theorem 3 ([1]) Let � be a given constant, where
0 < � < 1. There exists a randomized O(n log3 n log(n/
�))-time Monte Carlo-type algorithm that completes radio
gossiping with probability at least 1 � �.

Theorem 4 ([1]) There exists a randomized Las Vegas-
type algorithm that completes radio gossiping with expected
running time O(n log4 n).

Applications
Further work on efficient randomized radio gossiping in-
clude the O(n log3 n)-time algorithm by Liu and Prab-
hakaran, see [5], where the deterministic procedure for
limited broadcasting is replaced by its O(k log n)-time
randomized counterpart. This bound was later reduced to
O(n log2 n) by Czumaj and Rytter in [2], where a new ran-
domized limited broadcasting procedure with an expected
running time O(k) is proposed.

Open Problems
The exact complexity of randomized radio gossiping
remains an open problem. All three gossiping algo-
rithms [1,2,5] are based on the concepts of limited broad-
cast and distributed coupon collection. The two improve-
ments [2,5] refer solely to limited broadcasting. Thus, very
likely further reduction of the time complexity must coin-
cide with more accurate analysis of the distributed coupon
collection process or with development of a new gossiping
procedure.
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ProblemDefinition

The input to the problem is a connected undirected graph
G = (V ; E) with a weight w(e) on each edge e 2 E. The
goal is to find a spanning tree of minimum weight, where
for any subset of edges E0 
 E, the weight of E0 is defined
to be w(E0) =

P
e2E0 w(e).

If the graph G is not connected, the goal of the prob-
lem is to find aminimum spanning forest, which is defined
to be a minimum spanning tree in each connected com-
ponent of G. Both problems will be referred to as theMST
problem.

The randomized MST algorithm by Karger, Klein and
Tarjan [9] which is considered here will be called the KKT
algorithm. Also it will be assumed that the input graph
G = (V ; E) has n vertices and m edges, and that the edge-
weights are distinct.

The MST problem has been studied extensively prior
to the KKT result, and several very efficient, deterministic
algorithms are available from these studies. All of these are
deterministic and are based on amethod that greedily adds
an edge to a forest that is a subgraph of theminimum span-
ning tree at all times. The early algorithms in this class are
already efficient with a running time of O(m log n). These
include the algorithms of Borůvka [1], Jarník [8] (later re-
discovered by Dijkstra and Prim [5]) and Kruskal [5].

The fastest algorithm known for MST prior to the
KKT algorithm runs in time O(m logˇ(m; n)) [7], where
ˇ(m; n) = minfij log(i) n � m/ng [7]; here log(i) n is de-
fined as log n if i = 1 and as log log(i�1) n if i > 1. Al-
though this running time is close to linear, it is not linear-
time if the graph is very sparse.

The problem of finding the minimum spanning tree
efficiently is an important and fundamental problem in
graph algorithms and combinatorial optimization.

Background
Some relevant background is summarized here.
� The basic step in Borůvka’s algorithm [1] is the

Borůvka step, which picks the minimum weight edge
incident on each vertex, adds it to the minimum span-
ning tree, and then contracts these edges. This step runs
in linear time, and also very efficiently in parallel. It is
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the backbone of most efficient parallel algorithms for
minimum spanning tree, and is also used in the KKT
algorithm.

� A related and simpler problem is that of minimum
spanning tree verification. Here, given a spanning tree T
of the input edge-weighted graph, one needs to deter-
mine if T is its minimum spanning tree. An algorithm
that solves this problem with a linear number of edge-
weight comparisons was shown by Komlós [13], and
later a deterministic linear-time algorithm was given
in [6] (see also [12] for a simpler algorithm).

Key Results
The main result in [9] is a randomized algorithm for the
minimum spanning tree problem that runs in expected
linear time. The only operations performed on the edge-
weights are pairwise comparisons. The algorithm does not
assume any particular representation of the edge-weights
(i. e., integer or real values), and only assumes that any
comparison between a pair of edge-weights can be per-
formed in unit time. The paper also shows that the algo-
rithm runs in O(m + n) time with the exponentially high
probability 1 � exp(�˝(m)), and that its worst-case run-
ning time is O(n + m log n).

The simple and elegantMST sampling lemma given in
Lemma 1 below is the key tool used to derive and analyze
the KKT algorithm. This lemma needs a couple of defini-
tions and facts:
1. The well-known cycle property for minimum spanning

tree states that the heaviest edge in any cycle in the in-
put graph G cannot be in the minimum spanning tree.

2. Let F be a forest of G (i. e., an acyclic subgraph of G).
An edge e 2 E is F-light if F [ feg either continues to
be a forest of G, or the heaviest edge in the cycle con-
taining e is not e. An edge in G that is not F-light is F-
heavy. Note that by the cycle property, an F-heavy edge
cannot be in the minimum spanning tree of G, no mat-
ter what forest F is used. Given a forest F of G, the set
of F-heavy edges can be determined in linear time by
a simple modification to existing linear-time minimum
spanning tree verification algorithms [6,12].

Lemma 1 (MST Sampling Lemma) Let H = (V ; EH) be
formed from the input edge-weighted graph G = (V ; E) by
including each edge with probability p independent of the
other edges. Let F be the minimum spanning forest of H.
Then, the expected number of F-light edges in G is� n/p.

TheKKT algorithm identifies edges in theminimum span-
ning tree of G only using Borůvka steps. However, after
every two Borůvka steps, it removes F-heavy edges using
the minimum spanning forest F of a subgraph obtained

through sampling edges with probability p = 1/2. As men-
tioned earlier, these F-heavy edges can be identified in lin-
ear time. The minimum spanning forest of the sampled
graph is computed recursively.

The correctness of the KKT algorithm is immediate
since every F-heavy edge it removes cannot be in the MST
of G since F is a forest of G, and every edge it adds to the
minimum spanning tree is in the MST since it is added
through a Borůvka step.

The expected running time analysis as well as the ex-
ponentially high probability bound for the running time
are surprisingly simple to derive using the MST Sampling
Lemma (Lemma 1).

In summary, the paper [9] proves the following results.

Theorem 2 The KKT algorithm is a randomized algo-
rithm that finds a minimum spanning tree of an edge-
weighted undirected graph on n nodes and m edges in
O(n + m) time with probability at least 1 � exp (�˝(m)).
The expected running time is O(n + m) and the worst-case
running time is O(n + m log n).

The model of computation used in [9] is the unit-cost
RAMmodel since the known MST verification algorithms
were for this model, and not the more restrictive pointer
machinemodel. More recently the MST verification result
and hence the KKT algorithm have been shown to work
on the pointer machine as well [2].

Lemma 1 is proved in [9] through a simulation of
Kruskal’s algorithm along with an analysis of the proba-
bility with which an F-light edge is not sampled. Another
proof that uses a backward analysis is given in [3].

Further Comments

� Recently (and since the appearance of the KKT al-
gorithm in 1995), two new deterministic algorithms
for MST have appeared, due to Chazelle [4] and
Pettie and Ramachandran [14]. The former [4] runs
in O(n + m˛(m; n)) time, where ˛ is an inverse of
the Ackermann’s function, whose growth rate is even
smaller than the ˇ function mentioned earlier for the
best result that was known prior to the KKT algo-
rithm [7]. The latter algorithm [14] provably runs in
time that is within a constant factor of the decision-tree
complexity of the MST problem, and hence is optimal;
its time bound is O(n + m˛(m; n)) and˝(n + m), and
the exact bound remains to be determined.

� Although the KKT algorithm runs in expected linear
time (and with exponentially high probability), it is not
the last word on randomized MST algorithms. A ran-
domized MST algorithm that runs in expected linear
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time and uses only O(log� n) random bits is given
in [16,17]. In contrast, the KKT algorithm uses a lin-
ear number of random bits.

Applications
Theminimum spanning tree problems has a large number
of applications, which are discussed in Minimum span-
ning trees.

Open Problems
Some open problems that remain are the following:
1. Can randomness be removed in the KKT algorithm?

A hybrid algorithm that uses the KKT algorithm within
a modified version of the Pettie–Ramachandran algo-
rithm [14] is given in [16,17] that achieves expected
linear time while reducing the number of random bits
used to only O(log� n). Can this tiny amount of ran-
domness be removed as well? If all randomness can be
removed from the KKT algorithm, that will establish
a linear time bound for the Pettie–Ramachandran al-
gorithm [14] and also provide another optimal deter-
ministic MST algorithm, this one based on the KKT ap-
proach.

2. Can randomness be removed from the work-optimal
parallel algorithms [10] for MST? A linear-work, ex-
pected logarithmic-time parallel MST algorithm for the
EREWPRAM is given in [15]. This parallel algorithm is
both work- and time-optimal. However, it uses a linear
number of random bits. Another work-optimal paral-
lel algorithm is given in [16,17] that runs in expected
polylog time using only polylog random bits. This leads
to the following open questions regarding parallel algo-
rithms for the MST problem:
� To what extent can dependence on random bits be

reduced (from the current linear bound) in a time-
and work-optimal parallel algorithm for MST?

� To what extent can the dependence on random bits
be reduced (from the current polylog bound) in
a work-optimal parallel algorithm with reasonable
parallelism (say polylog parallel time)?

Experimental Results
Katriel, Sanders, and Träff [11] performed an experimen-
tal evaluation of the KKT algorithm and showed that it has
good performance on moderately dense graphs.

Cross References

�Minimum Spanning Trees
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Keywords and Synonyms

Approximate maximum flow construction

ProblemDefinition

The work of Serna and Spirakis provides a parallel ap-
proximation schema for the Maximum Flow problem. An
approximate algorithm provides a solution whose cost is
within a factor of the optimal solution. The notation and
definitions are the standard ones for networks and flows
(see for example [2,7]).

A network N = (G; s; t; c) is a structure consisting of
a directed graph G = (V ; E), two distinguished vertices,
s; t 2 V (called the source and the sink), and c : E ! Z+,
an assignment of an integer capacity to each edge in E.
A flow function f is an assignment of a non-negative num-
ber to each edge of G (called the flow into the edge) such
that first at no edge does the flow exceed the capacity, and
second for every vertex except s and t, the sum of the flows
on its incoming edges equals the sum of the flows on its
outgoing edges. The total flow of a given flow function f is
defined as the net sum of flow into the sink t. The Maxi-
mum Flow problem can be stated as

Name Maximum Flow
Input A network N = (G; s; t; c)
Output Find a flow f for N for which the total flow is

maximum.

Maximum Flows and Matchings The Maximum Flow
problem is closely related to the Maximum Matching
problem on bipartite graphs.

Given a graph G = (V ; E) and a set of edges M 
 E is
a matching if in the subgraph (V ;M) all vertices have de-
gree at most one. A maximum matching for G is a match-
ing with a maximum number of edges. For a graph
G = (V ; E) with weight w(e), the weight of a matching M
is the sum of the weights of the edges in M. The problem
can be stated as follows:

Name MaximumWeight Matching
Input A graph G = (V ; E) and a weight w(e) for each

edge e 2 E
Output Find a matching of G with the maximum possi-

ble weight.

There is a standard reduction from the MaximumMatch-
ing problem for bipartite graphs to the Maximum Flow
problem ([7,8]). In the general weighted case one has just
to look at each edge with capacity c > 1 as c edges join-
ing the same points each with capacity one, and transform
the multigraph obtained as shown before. Notice that to

perform this transformation a c value is required which
is polynomially bounded. The whole procedure was intro-
duced by Karp, Upfal, and Wigderson [5] providing the
following results

Theorem 1 The Maximum Matching problem for bipar-
tite graphs is NC equivalent to the Maximum Flow prob-
lem on networks with polynomial capacities. Therefore, the
Maximum Flow with polynomial capacities problem be-
longs to the class RNC.

Key Results

The first contribution is an extension of Theorem 1 to
a generalization of the problem, namely the Maximum
Flow on networks with polynomially bounded maximum
flow. The proof is based on the construction (in NC) of
a second network which has the same maximum flow but
for which the maximum flow and the maximum capacity
in the network are polynomially related.

Lemma 2 Let N = (G; s; t; c). Given any integer k,
there is an NC algorithm that decides whether f (N) �
k or f (N) < km.

Since Lemma 2 applies even to numbers that are exponen-
tial in size, they get

Lemma 3 Let N = (G; s; t; c) be a network, there is an
NC algorithm that computes an integer value k such that
2k � f (N) < m 2k+1.

The following lemma establishes the NC-reduction from
the Maximum Flow problem with polynomial maximum
flow to the Maximum Flow problem with polynomial ca-
pacities.

Lemma 4 Let N = (G; s; t; c) be a network, there is
an NC algorithm that constructs a second network
N1 = (G; s; t; c1) such that

log(Max(N1)) � log( f (N1)) + O(log n)

and f (N) = f (N1).

Lemma 4 shows that the Maximum Flow problem re-
stricted to networks with polynomially bounded maxi-
mum flow is NC-reducible to the Maximum Flow prob-
lem restricted to polynomially bounded capacities, the lat-
ter problem is a simplification of the former one, so the
following results follow.

Theorem 5 For each polynomial p, the problem of con-
structing a maximum flow in a network N such that
f (N) � p(n) is NC-equivalent to the problem of construct-
ing a maximum matching in a bipartite graph, and thus it
is in RNC.
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Recall that [5] gave us an O(log2 n) randomized parallel
time algorithm to compute a maximum matching. The
combination of this with the reduction from the Maxi-
mum Flow problem to the Maximum Matching leads to
the following result.

Theorem 6 There is a randomized parallel algorithm to
construct a maximum flow in a directed network, such that
the number of processors is bounded by a polynomial in
the number of vertices and the time used is O((log n)˛

log f (N)) for some constant ˛ > 0.

The previous theorem is the first step towards finding an
approximate maximum flow in a network N by an RNC
algorithm. The algorithm, given N and an " > 0, outputs
a solution f 0 such that f (N)/ f 0 � 1 + 1/". The algorithm
uses a polynomial number of processors (independent of
") and parallel time O(log˛ n(log n + log ")), where ˛ is
independent of ". Thus, the algorithm is an RNC one as
long as " is at most polynomial in n. (Actually " can be
O(nlog

ˇ n) for some ˇ.) Thus, being a Fully RNC approxi-
mation scheme (FRNCAS).

The second ingredient is a rough NC approximation
to the Maximum Flow problem.

Lemma 7 Let N = (G; s; t; c) be a network. Let k � 1
be an integer, then there is an NC algorithm to construct
a network M = (G; s; t; c1) such that k f (M) � f (N) �
k f (M) + km.

Putting all together and allowing randomization the algo-
rithm can be sketched as follows:

FAST-FLOW(N = (G; s; t; c); ")
1. Compute k such that 2k � F(N) � 2k+1m.
2. Construct a network N1 such that

log(Max(N1)) � log(F(N1)) + O(log n) :

3. If 2k � (1 + ")m then F(N) � (1 + ")m2 so use the al-
gorithm given in Theorem 6 to solve the Maximum
Flow problem in N as a Maximum Matching and re-
turn

4. Let ˇ = b(2k)/((1 + ")m)c. Construct N2 from N1 and
ˇ using the construction in Lemma 7.

5. Solve the Maximum Flow problem in N2 as a Maxi-
mumMatching.

6. Output F 0 = ˇF(M2) and for all e 2 E, f 0(e) = ˇ f (e).

Theorem 8 Let N = (G; s; t; c) be a network. Then, algo-
rithm FAST-FLOW is an RNC algorithm such that for all
" > 0 at most polynomial in the number of network ver-
tices, the algorithm computes a legal flow of value f 0 such
that

f (N)
f 0
� 1 +

1
"
:

Furthermore, the algorithm uses a polynomial num-
ber of processors and runs in expected parallel time
O(log˛ n(log n + log ")), for some constant ˛, independent
of ".

Applications

The rounding/scaling technique is used in general to deal
with problems that are hard due to the presence of large
weights in the problem instance. The technique mod-
ifies the problem instance in order to produce a sec-
ond instance that has no large weights, and thus can be
solved efficiently. The way in which a new instance is ob-
tained consists of computing first an estimate of the opti-
mal value (when needed) in order to discard unnecessary
high weights. Then the weights are modified, scaling them
down by an appropriate factor that depends on the esti-
mation and the allowed error. The rounding factor is de-
termined in such a way that the so-obtained instance can
be solved efficiently. Finally, a last step consisting of scaling
up the value of the “easy” instance solution is performed in
order to meet the corresponding accuracy requirements.

It is known that in the sequential case, the only way to
construct FPTAS uses rounding/scaling and interval par-
tition [6]. In general, both techniques can be paralyzed,
although sometimes the details of the parallelization are
non-trivial [1].

The Maximum Flow problem has a long history
in Computer Science. Here are recorded some results
about its parallel complexity. Goldschlager, Shaw, and
Staples showed that the Maximum Flow problem is P-
complete [3]. The P-completeness proof for Maximum
Flow uses large capacities on the edges; in fact the values of
some capacities are exponential in the number of network
vertices. If the capacities are constrained to be no greater
than some polynomial in the number of network vertices
the problem is in ZNC. In the case of planar networks it is
known that the Maximum Flow problem is in NC, even if
arbitrary capacities are allowed [4].

Open Problems

The parallel complexity of the Maximum Weight Match-
ing problem when the weight of the edges are given in
binary is still an open problem. However, as mentioned
earlier, there is a randomized NC algorithm to solve the
problem in O(log2 n) parallel steps, when the weights of
the edges are given in unary. The scaling technique has
been used to obtain fully randomized NC approximation
schemes, for the Maximum Flow and Maximum Weight
Matching problems (see [10]). The result appears to be the
best possible in regard of full approximation, in the sense
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that the existence of an FNCAS for any of the problems
considered is equivalent to the existence of an NC algo-
rithm for perfect matching which is also still an open prob-
lem.
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ProblemDefinition

Randomized rounding is a technique for designing ap-
proximation algorithms for NP-hard optimization prob-
lems. Many combinatorial optimization problems can be
represented as 0-1 integer linear programs; that is, integer
linear programs in which variables take values in f0; 1g.

While 0-1 integer linear programming is NP-hard, the
rational relaxations (also referred to as fractional relax-
ations) of these linear programs are solvable in polynomial
time [12,13]. Randomized rounding is a technique to con-
struct a provably good solution to a 0-1 integer linear pro-
gram from an optimum solution to its rational relaxation
by means of a randomized algorithm.

Let ˘ be a 0-1 integer linear program with variables
xi 2 f0; 1g, 1 � i � n. Let ˘R be the rational relaxation
of ˘ obtained by replacing the xi 2 f0; 1g constraints
by xi 2 [0; 1]; 1 � i � n. The randomized rounding ap-
proach consists of two phases:
1. Solve ˘R using an efficient linear program solver. Let

the variable xi take on value x�i 2 [0; 1], 1 � i � n.
2. Compute a solution to˘ by setting the variables xi ran-

domly to one or zero according to the following rule:

Pr[xi = 1] = x�i :

For several fundamental combinatorial optimization
problems, the randomized rounding technique yields sim-
ple randomized approximation algorithms that yield solu-
tions provably close to optimal. Variants of the basic ap-
proach outlined above, in which the rounding of variable
xi in the second phase is done with a probability that is
some appropriate function of xi*, have also been studied.
The analyses of algorithms based on randomized rounding
often rely on Chernoff–Hoeffding bounds from probabil-
ity theory [5,11].

The work of Raghavan andThompson [14] introduced
the technique of randomized rounding for designing ap-
proximation algorithms for NP-hard optimization prob-
lems. The randomized rounding approach also implic-
itly proves the existence of a solution with certain desir-
able properties. In this sense, randomized rounding can
be viewed as a variant of the probabilistic method, due to
Erdös [1], which is widely used for various existence proofs
in combinatorics.

Raghavan and Thompson illustrate the randomized
rounding approach using three optimization problems:
VLSI routing, multicommodity flow, and k-matching in
hypergraphs.

Definition 1 In the VLSI Routing problem, we are given
a two-dimensional rectilinear lattice Ln over n nodes and
a collection of m nets fai : 1 � i � mg, where net ai, is
a set of nodes to be connected by means of a Steiner tree
in Ln. For each net ai, we are also given a set Ai of al-
lowed trees that can be used for connecting the nodes in
that set. A solution to the problem is a set T of trees
fTi 2Ai : 1 � i � mg. The width of solution T is the
maximum, over all edges e, of the number of trees in T
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that contain the edge. The goal of the VLSI routing prob-
lem is to determine a solution with minimum width.

Definition 2 In theMulticommodity Flow Congestiom
Minimization problem (or simply, the Congestion Mini-
mization problem), we are given a graph G = (V ; E), and
a set of source-destination pairs f(si ; ti ) : 1 � i � kg. For
each pair (si ; ti), we would like to route one unit of de-
mand from si to ti. A solution to the problem is a set
P = fPi : 1 � i � kg such that Pi is a path from si to ti in
G. We define the congestion of P to be the maximum, over
all edges e, of the number of paths containing e. The goal
of the undirected multicommodity flow problem is to de-
termine a path set P with minimum congestion.

In their original work [14], Raghavan and Thompson
studied the above problem for the case of undirected
graphs and referred to it as the UndirectedMulticommod-
ity Flow problem. Here, we adopt the more commonly-
used term of Congestion Minimization and consider both
undirected and directed graphs since the results of [14]
apply to both classes of graphs. Researchers have studied
a number of variants of the multicommodity flow prob-
lem, which differ in various aspects of the problem such as
the nature of demands (e. g., uniform vs. non-uniform),
the objective function (e. g., the total flow vs. the maxi-
mum fraction of each demand), and edge capacities (e. g.,
uniform vs. non-uniform).

Definition 3 In the Hypergraph Simple k-Matching
problem, we are given a hypergraph H over an n-element
vertex set V . A k-matching of H is a set M of edges such
that each vertex in V belongs to at most k of the edges
in M. A k-matching M is simple if no edge in H occurs
more than once inM. The goal of the problem is to deter-
mine a maximum-size simple k-matching of a given hy-
pergraph H.

Key Results

Raghavan and Thompson present approximation algo-
rithms for the above three problems using randomized
rounding. In each case, the algorithm is easy to present:
write a 0-1 integer linear program for the problem, solve
the rational relaxation of this program, and then apply
randomized rounding. They establish bounds on the qual-
ity of the solutions (i. e., the approximation ratios of the
algorithm) using Chernoff–Hoeffding bounds on the tail
of the sums of bounded and independent random vari-
ables [5,11].

The VLSI Routing problem can be easily expressed as
a 0-1 integer linear program, say ˘ 1. Let W* denote the

width of the optimum solution to the rational relaxation
of˘ 1.

Theorem 1 For any " such that 0 < " < 1, the width of the
solution produced by randomized rounding does not exceed

W� +
�
3W� ln

2n(n � 1)
"

�1/2

with probability at least 1� ", provided W� � 3 ln(2n(n�
1)/").

Since W* is a lower bound on the width of an optimum
solution to ˘ 1, it follows that the randomized rounding
algorithm has an approximation ratio of 1 + o(1) with high
probability as long asW* is sufficiently large.

The Congestion Minimization problem can be easily
expressed as a 0-1 integer linear program, say ˘ 2. Let C*

denote the congestion of the optimum solution to the lin-
ear relaxation of˘ 2. This optimum solution yields a set of
flows, one for each commodity i. The flow for commod-
ity i can be decomposed into a set 
 i of at most |E| paths
from si to ti. The randomized rounding algorithm selects,
for each commodity i, one path Pi at random from 
 i ac-
cording to the flow values determined by the flow decom-
position.

Theorem 2 For any " such that 0 < " < 1, the capacity
of the solution produced by randomized rounding does not
exceed

C� +
�
3C� ln

jEj
"

�1/2

with probability at least 1 � ", provided C� � 2 ln jEj.

Since C* is a lower bound on the width of an optimum
solution to ˘ 1, it follows that the randomized rounding
algorithm achieves a constant approximation ratio with
probability 1 � 1/n when C* is˝(log n).

For both the VLSI Routing and the Congestion Min-
imization problems, slightly worse approximation ratios
are achieved if the lower bound condition on W* and
C*, respectively, is removed. In particular, the approxima-
tion ratio achieved is O(log n/ log log n) with probability at
least 1 � n�c for a constant c > 0 whose value depends on
the constant hidden in the big-Oh notation.

The hypergraph k-matching problem is different than
the above two problems in that it is a packing problem
with a maximization objective while the latter are covering
problems with a minimization objective. Raghavan and
Thompson show that randomization rounding, in con-
junction with a scaling technique, yields good approxima-
tion algorithms for the hypergraph k-matching problem.
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They first express the matching problem as a 0-1 integer
linear program, solve its rational relaxation ˘ 3, and then
round the optimum rational solution by using appropri-
ately scaled values of the variables as probabilities. Let S*

denote the value of the optimum solution to˘ 3.

Theorem 3 Let ı1 and ı2 be positive constants such that
ı2 > n � e�k/6 and ı1 + ı2 < 1. Let ˛ = 3 ln(n/ı2)/k and

S0 = S�
�
1 �

(˛2 + 4˛)1/2 � ˛
2

�
:

Then, there exists a simple k-matching for the given hyper-
graph with size at least

S0 �

 
2S0 ln

1
ı1

!1/2

:

Note that the above result is stated as an existence result.
It can be modified to yield a randomized algorithm that
achieves essentially the same bound with probability 1 � "
for a given failure probability ".

Applications

Randomized rounding has found applications for a wide
range of combinatorial optimization problems. Follow-
ing the work of Raghavan and Thompson [14], Goemans
and Williamson showed that randomized rounding yields
an e/(e � 1)-approximation algorithm for MAXSAT, the
problem of finding an assignment that satisfies the max-
imum number of clauses of a given Boolean formula [7].
For the set cover problem, randomized rounding yields an
algorithm with an asymptotically optimal approximation
ratio of O(log n), where n is the number of elements in
the given set cover instance [10]. Srinivasan has developed
more sophisticated randomized rounding approaches for
set cover and more general covering and packing prob-
lems [15]. Randomized rounding also yields good approx-
imation algorithms for several flow and cut problems, in-
cluding variants of undirected multicommodity flow [9]
and the multiway cut problem [4].

While randomized rounding provides a unifying ap-
proach to obtain approximation algorithms for hard opti-
mization problems, better approximation algorithms have
been designed for specific problems. In some cases, ran-
domized rounding has been combined with other algo-
rithms to yield better approximation ratios than previ-
ously known. For instance, Goemans and Williamson
showed that the better of two solutions, one obtained by
randomized rounding and the other obtained by an earlier

algorithm due to Johnson, yields a 4/3 approximation for
MAXSAT [7].

The work of Raghavan and Thompson applied ran-
domized rounding to a solution obtained for the relax-
ation of a 0-1 integer program for a given problem. In re-
cent years, more sophisticated approximation algorithms
have been obtained by applying randomized rounding to
semidefinite program relaxations of the given problem.
Examples include the 0.87856-approximation algorithm
for MAXCUT due to Goemans andWilliamson [8] and an
O(
p
log n)-approximation algorithm for the sparsest cut

problem, due to Arora, Rao, and Vazirani [3].
An excellent reference for the above and other appli-

cations of randomized rounding in approximation algo-
rithms is the text by Vazirani [16].

Open Problems

While randomized rounding has yielded improved ap-
proximation algorithms for a number of NP-hard opti-
mization problems, the best approximation achievable by
a polynomial-time algorithm is still open for most of the
problems discussed in this article, including MAXSAT,
MAXCUT, the sparsest cut, the multiway cut, and sev-
eral variants of the congestion minimization problem.
For directed graphs, it has been shown that best ap-
proximation ratio achievable for congestion minimization
in polynomial time is ˝(log n/ log log n), unless NP �
ZPTIME(nO(log log n)), matching the upper bound men-
tioned in Sect. “Key Results” up to constant factors [6].
For undirected graphs, the best known inapproximability
lower bound is˝(log log n/ log log log n) [2].
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ProblemDefinition

This problem deals with finding a point at an unknown
position on one of a set of w rays which extend from
a common point (the origin). In this problem there is
a searcher, who starts at the origin, and follows a sequence
of commands such as “explore to distance d on ray i.”
The searcher detects immdiately when the target point is
crossed, but there is no other information provided from
the search environment. The goal of the searcher is to min-
imize the distance traveled.

There are several different ways this problem has been
formulated in the literature, including one called the “cow-
path problem” that involves a cow searching for a pasture

down a set of paths. When w = 2, this problem is to search
for a point on the line, which has also been described as
a robot searching for a door in an infinite wall or a ship-
wreck survivor searching for a stream after washing ashore
on a beach.

Notation

The problem is as described above, with w rays. The posi-
tion of the target point (or goal) is denoted (g, i) if it is at
distance g on ray i 2 f0; 1; � � � ;w � 1g. The standard no-
tion of competitive ratio is usedwhen analyzing algorithms
for this problem: An algorithm that knows which ray the
goal is on will simply travel distance g down that ray be-
fore stopping, so search algorithms are compared to this
optimal, omniscient strategy.

In particular, ifR is a randomized algorithm, then the
distance traveled to find a particular goal position is a ran-
dom variable denoted distance(R; (g; i)), with expected
value E[distance(R; (g; i))]. Algorithm R has competi-
tive ratio c if there is a constant a such that, for all goal
positions (g, i),

E[distance(R; (g; i))] � c � g + a : (1)

Key Results

This problem is solved optimally using a randomized ge-
ometric sweep strategy: Search through the rays in a ran-
dom (but fixed) order, with each search distance a constant
factor longer than the preceding one. The initial search
distance is picked from a carefully selected probability dis-
tribution, giving the following algorithm:

RAYSEARCHr,w
�  A random permutation of f0; 1; 2; � � � ;w � 1g;
�  A random real uniformly chosen from [0; 1);
d  r� ;
p 0;
repeat

Explore path �(p) up to distance d;
if goal not found then return to origin;
d  d � r;
p (p + 1) mod w;

until goal found;

The theorems below give the competitive ratio of this al-
gorithm, show how to pick the best r, and establish the op-
timality of the algorithm.

Theorem 1 ([9]) For any fixed r > 1, Algorithm
RAYSEARCHr, w has competitive ratio

R(r;w) = 1 +
2
w
�
1 + r + r2 + � � � + rw�1

ln r
;
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Randomized Searching on Rays or the Line, Table 1
The asymptotic growth of the competitive ratio with w is estab-
lished in the following theorem

w r�w Optimal randomized ratio Optimal deterministic
ratio

2 3.59112 4.59112 9
3 2.01092 7.73232 14.5
4 1.62193 10.84181 19.96296
5 1.44827 13.94159 25.41406
6 1.35020 17.03709 30.85984
7 1.28726 20.13033 36.30277

Theorem 2 ([9]) The unique solution of the equation

ln r =
1 + r + r2 + � � � + rw�1

r + 2r2 + 3r3 + � � � + (w � 1)rw�1
(2)

for r > 1, denoted by r�w , gives the minimum value for
R(r, w).

Theorem 3 ([7,9,12]) The optimal competitive ratio for
any randomized algorithm for searching on w rays is

min
r>1

�
1 +

2
w
�
1 + r + r2 + � � � + rw�1

ln r

�
:

Corollary 1 Algorithm RAYSEARCHr, w is optimally com-
petitive.

Using Theorem 2 and standard numerical techniques, r�w
can be computed to any required degree of precision. The
following table shows, for small values of w, approximate
values for r�w and the corresponding optimal competitive
ratio (achieved by RAYSEARCHr,w)—the optimal deter-
ministic competitive ratio (see [1]) is also shown for com-
parison:

Theorem 4 ([9]) The competitive ratio for algorithm
RAYSEARCHr, w (with r = r�w) is �w + o(w), where

� = min
s>0

�
2
es � 1
s2

�
	 3:088 :

Applications

The most direct applications of this problem are in geo-
metric searching, such as robot navigation problems. For
example, when a robot is traveling in an unknown area
and encounters an obstacle, a typical first step is to find the
nearest corner to go around [2,3], which is just an instance
of the ray searching problem (with w = 2).

In addition, any abstract search problem with a cost
function that is linear in the distance to the goal reduces to

ray searching. This includes applications in artificial intel-
ligence that search for a goal in a largely unknown search
space [11] and the construction of hybrid algorithms [7].
In hybrid algorithms, a set of algorithms A1;A2; � � � ;Aw
for solving a problem is considered—algorithm A1 is run
for a certain amount of time, and if the algorithm is not
successful algorithm A1 is stopped and algorithm A2 is
started, repeating through all algorithms as many times as
is necessary to find a solution. This notion of hybrid al-
gorithms has been used successfully for several problems
(such as the first competitive algorithm for the online k-
server problem [4]), and the ray search algorithm gives
the optimal strategy for selecting the trial running times
of each algorithm.

Open Problems

Several natural extensions of this problem have been stud-
ied in both deterministic and randomized settings, includ-
ing ray-searching when an upper bound on the distance to
the goal is known (i. e., the rays are not infinite, but are line
segments) [10,5,12], or when a probability distribution of
goal positions is known [8]. Other variations of this ba-
sic searching problem have been studied for deterministic
algorithms only, such as when the searcher’s control is im-
perfect (so distances can’t be specified precisely) [6] and
for more general search spaces like points in the plane [1].
A thorough study of these variants with randomized algo-
rithms remains an open problem.
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� Robotics
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ProblemDefinition
This classic problem in complexity theory is concerned
with efficiently finding a satisfying assignment to a propo-
sitional formula. The input is a formula with n Boolean
variables which is expressed as anAND of ORs with 3 vari-
ables in each OR clause (a 3-CNF formula). The goal
is to (1) find an assignment of variables to TRUE and
FALSE so that the formula has value TRUE, or (2) prove
that no such assignment exists. Historically, recognizing
satisfiable 3-CNF formulas was the first “natural” exam-
ple of an NP-complete problem, and, because it is NP-
complete, no polynomial-time algorithm can succeed on
all 3-CNF formulas unless P = NP [4,10]. Because of the
numerous practical applications of 3-SAT, and also due
to its position as the canonical NP-complete problem,
many heuristic algorithms have been developed for solving
3-SAT, and some of these algorithms have been analyzed
rigorously on random instances.

Notation A 3-CNF formula over variables x1; x2; : : : ; xn
is the conjunction ofm clauses C1 ^ C2 ^ � � � ^ Cm , where

each clause is the disjunction of 3 literals, Ci = `i1 _ `i2 _
`i3 , and each literal `i j is either a variable or the negation
of a variable (the negation of the variable x is denoted by
x). A 3-CNF formula is satisfiable if and only if there is an
assignment of variables to truth values so that every clause
contains at least one true literal. Here, all asymptotic anal-
ysis is in terms of n, the number of variables in the 3-CNF
formula, and a sequence of events fEng is said to holdwith
high probability (abbreviatedwhp) if limn!1 Pr[En] = 1.

Distributions There are many distributions over 3-CNF
formulas which are interesting to consider, and this chap-
ter focuses on dense satisfiable instances. Dense satisfi-
able instances can be formed by conditioning on the event
fIn;m is satisfiableg, but this conditional distribution is
difficult to sample from and to analyze. This has led to re-
search in “planted” random instances of 3-SAT, which are
formed by first choosing a truth assignment ' uniformly
at random, and then selecting each clause independently
from the triples of literals where at least one literal is set to
TRUE by the assignment '. The clauses can be included
with equal probabilities in analogy to the In;p or In;m dis-
tributions above [8,9], or different probabilities can be as-
signed to the clauses with one, two, or three literals set to
TRUE by ', in an effort to better hide the satisfying assign-
ment [2,7].

Problem 1 (3-SAT)
INPUT: 3-CNF Boolean formula F = C1 ^ C2 ^ � � � ^ Cm,
where each clause Ci is of the form Ci = `i1 _ `i2 _ `i3 ,
and each literal `i j is either a variable or the negation of
a variable.
OUTPUT: A truth assignment of variables to Boolean values
which makes at least one literal in each clause TRUE, or
a certificate that no such assignment exists.

Key Results

A line of basic research dedicated to identifying hard
search and decision problems, as well as the potential cryp-
tographic applications of planted instances of 3-SAT, has
motivated the development of algorithms for 3-SAT which
are known to work on planted random instances.

Majority Vote Heuristic: If every clause consistent with
the planted assignment is included with the same proba-
bility, then there is a bias towards including the literal sat-
isfied by the planted assignment more frequently than its
negation. This is the motivation behind the Majority Vote
Heuristic, which assigns each variable to the truth value
which will satisfy the majority of the clauses in which it ap-
pears. Despite its simplicity, this heuristic has been proven
successful whp for sufficiently dense planted instances [8].
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Theorem 1 When c is a sufficiently large constant and I 

I
n;cn log n, whp the majority vote heuristic finds the planted
assignment '.

When the density of the planted random instance is lower
than c log n, then the majority vote heuristic will fail, and if
the relative probability of the clauses satisfied by one, two,
and three literals are adjusted appropriately then it will fail
miserably. But there are alternative approaches.

For planted instances where the density is a sufficiently
large constant, the majority vote heuristic provides a good
starting assignment, and then the k-OPT heuristic can fin-
ish the job. The k-OPT heuristic of [6] is defined as follows:
Initialize the assignment by majority vote. Initialize k to 1.
While there exists a set of k variables for which flipping the
values of the assignment will (1) make false clauses true
and (2) will not make true clauses false, flip the values of
the assignment on these variables. If this reaches a local
optimum that is not a satisfying assignment, increase k and
continue.

Theorem 2 When c is a sufficiently large constant and I 

I
n;cn the k-OPT heuristic finds a satisfying assignment in
polynomial time whp. The same is true even in the semi-
random case, where an adversary is allowed to add clauses
to I that have all three literals set to TRUE by ' before giving
the instance to the k-OPT heuristic.

A related algorithm has been shown to run in expected
polynomial time in [9], and a rigorous analysis ofWarning
Propagation (WP), a message passing algorithm related to
Survey Propagation, has shown that WP is successful whp
on planted satisfying assignments, provided that the clause
density exceeds a sufficiently large constant [5].

When the relative probabilities of clauses containing
one, two, and three literals are adjusted carefully, it is pos-
sible to make the majority vote assignment very different
from the planted assignment. A way of setting these rel-
ative probabilities that is predicted to be difficult is dis-
cussed in [2]. If the density of these instances is high
enough (and the relative probabilities are anything be-
sides the case of “Gaussian elimination with noise”), then
a spectral heuristic provides a starting assignment close to
the planted assignment and local reassignment operations
are sufficient to recover a satisfying assignment [7].

More formally, consider instance I = In;p1;p2;p3 ,
formed by choosing a truth assignment ' on n variables
uniformly at random and including in I each clause with
exactly i literals satisfied by ' independently with proba-
bility pi. By setting p1 = p2 = p3 this reduces to the distri-
bution mentioned above.

Setting p1 = p2 and p3 = 0 yields a natural distri-
bution on 3CNFs with a planted not-all-equal assignment,
a situation where the greedy variable assignment rule gen-
erates a random assignment. Setting p2 = p3 = 0 gives
3CNFs with a planted exactly-one-true assignment (which
succumb to the greedy algorithm followed by the non-
spectral steps below). Also, correctly adjusting the ratios of
p1; p2; and p3 can obtain a variety of (slightly less natural)
instance distributions which thwart the greedy algorithm.
Carefully selected values of p1; p2; and p3 are considered
in [2], where it is conjectured that no algorithm running
in polynomial time can solve In;p1;p2;p3 whp when pi =
ci˛/n2 and

0:077 < c3 < 0:25 c2 = (1 � 4c3)/6

c1 = (1 + 2c3)/6 ˛ >
4:25
7

:

The spectral heuristic modeled after the coloring algo-
rithms of [1,3] was developed for such planted distribu-
tions in [7]. This polynomial time algorithmwhich returns
a satisfying assignment to In;p1;p2;p3 whp when p1 = d/n2,
p2 = �2d/n2 and p3 = �3d/n2, for 0 � �2; �3 � 1, and
d � dmin, where dmin is a function of �2; �3. The algorithm
is structured as follows:
1. Construct a graph G from the 3CNF.
2. Find the most negative eigenvalue of a matrix related to

the adjacency matrix of G.
3. Assign a value to each variable based on the signs of the

eigenvector corresponding to the most negative eigen-
value.

4. Iteratively improve the assignment.
5. Perfect the assignment by exhaustive search over

a small set containing all the incorrect variables.
A more elaborate description of each step is the following:

Step (1):Given 3CNF I = In;p1;p2;p3 , where p1 = d/n2,
p2 = �2d/n2, and p3 = �3d/n2, the graph in step (1),
G = (V ; E), has 2n vertices, corresponding to the literals
in I, and labeled fx1; x1; : : : xn ; xng.G has an edge between
vertices `i and ` j if I includes a clause with both `i and ` j
(and G does not have multiple edges).

Step (2): Consider G0 = (V ; E0), formed by deleting
all the edges incident to vertices with degree greater than
180d. Let A be the adjacency matrix of G0. Let � be the
most negative eigenvalue of A and v be the corresponding
eigenvector.

Step (3): There are two assignments to consider, 
+,
which is defined by


+(xi) =

(
T ; if vi � 0 ;
F ; otherwise ;
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and 
�, which is defined by


�(x) = :
+(x) :

Let 
0 be the better of 
+ and 
� (that is, the assign-
ment which satisfies more clauses). It can be shown that

0 agrees with ' on at least (1 � C/d)n variables for some
absolute constant C.

Step (4): For i = 1; : : : ; log n do the following: for
each variable x, if x appears in 5"d clauses unsatisfied by

i�1, then set 
i(x) = :
i�1(x), where " is an appropri-
ately chosen constant (taking " = 0:1 works); otherwise set

i (x) = 
i�1(x).

Step (5): Let 
 00 = 
log n denote the final assignment

generated in step (4). LetA� 00
4 be the set of variables which

do not appear in (3 ˙ 4")d clauses as the only true lit-
eral with respect to assignment 
 00, and let B be the set
of variables which do not appear in (�D ˙ ")d clauses,
where �Dd = (3 + 6)d + (6 + 3)�2d + 3�3d +O(1/n) is the
expected number of clauses containing variable x. Form
partial assignment 
10 by unassigning all variables inA� 00

4
and B. Now, for i � 1, if there is a variable xi which ap-
pears in less than (�D�2")d clauses consisting of variables
that are all assigned by 
 0i , then let 
 0i+1 be the partial as-
signment formed by unassigning xi in 
 0i . Let 


0 be the
partial assignment when this process terminates. Consider
the graph 
 with a vertex for each variable that is unas-
signed in 
 0 and an edge between two variables if they ap-
pear in a clause together. If any connected component in

 is larger than log n then fail. Otherwise, find a satisfying
assignment for I by performing an exhaustive search on
the variables in each connected component of 
 .

Theorem 3 For any constants 0 � �2; �3 � 1, except
(�2; �3) = (0; 1), there exists a constant dmin such that for
any d � dmin , if p1 = d/n2, p2 = �2d/n2, and p3 = �3d/n2

then this polynomial-time algorithm produces a satisfying
assignment for random instances drawn from In;p1;p2;p3
whp.

Applications

3-SAT is a universal problem, and due to its simplic-
ity, it has potential applications in many areas, including
proof theory and program checking, planning, cryptanal-
ysis, machine learning, and modeling biological networks.

Open Problems

An important direction is to develop alternative models
of random distributions which more accurately reflect the
type of instances that occur in the real world.

Data Sets

Sample instances of satisfiability and 3-SAT are available
on the web at http://www.satlib.org/.

URL to Code
Solvers and information on the annual satisfiability solving
competition are available on the web at http://www.satlive.
org/.
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Keywords and Synonyms

Popular matching

ProblemDefinition

This problem is concerned with matching a set of appli-
cants to a set of posts, where each applicant has a prefer-
ence list, ranking a non-empty subset of posts in order of
preference, possibly involving ties. Say that a matching M
is popular if there is no matchingM0 such that the number
of applicants preferring M0 to M exceeds the number of
applicants preferringM toM0. The rankedmatching prob-
lem is to determine if the given instance admits a popular
matching and if so, to compute one. There are many prac-
tical situations that give rise to such large-scale matching
problems involving two sets of participants – for exam-
ple, pupils and schools, doctors and hospitals – where par-
ticipants of one set express preferences over the partici-
pants of the other set; an allocation determined by a pop-
ular matching can be regarded as an optimal allocation in
these applications.

Notations and Definitions

An instance of the ranked matching problem is a bipartite
graphG = (A[P; E) and a partition E = E1 [̇E2 : : : [̇Er
of the edge set. Call the nodes inA applicants, the nodes
in P posts, and the edges in Ei the edges of rank i. If
(a; p) 2 Ei and (a; p0) 2 Ej with i < j, say that a prefers
p to p0. If i = j, say that a is indifferent between p and p0.
An instance is strict if the degree of every applicant in ev-
ery Ei is at most one.

A matchingM is a set of edges, no two of which share
an endpoint. In a matchingM, a node u 2A[ P is either
unmatched, or matched to some node, denoted by M(u).
Say that an applicant a prefersmatchingM0 toM if (i) a is
matched in M0 and unmatched in M, or (ii) a is matched
in bothM0 andM, and a prefers M0(a) toM(a).

Definition 1 M0 is more popular than M, denoted by
M0 � M, if the number of applicants preferring M0 to
M exceeds the number of applicants preferring M to M0.
A matching M is popular if and only if there is no match-
ingM0 that is more popular thanM.

Figure 1 shows an instance with A = fa1; a2; a3g, P =
fp1; p2; p3g, and each applicant prefers p1 to p2, and p2
to p3 (assume throughout that preferences are transitive).
Consider the three symmetrical matchingsM1 = f(a1; p1),
(a2; p2), (a3; p3)g, M2 = f(a1; p3), (a2; p1), (a3; p2)g and
M3 = f(a1; p2), (a2; p3), (a3; p1)g. It is easy to verify that
none of these matchings is popular, since M1 � M2,

a1 : p1 p2 p3
a2 : p1 p2 p3
a3 : p1 p2 p3

RankedMatching, Figure 1
An instance for which there is no popular matching

M2 � M3, and M3 � M1. In fact, this instance admits no
popular matching—the problem being, of course, that the
more popular than relation is not acyclic, and so there need
not be a maximal element.

The rankedmatching problem is to determine if a given
instance admits a popular matching, and to find such
a matching, if one exists. Popular matchings may have dif-
ferent sizes, and a largest such matching may be smaller
than a maximum-cardinality matching. The maximum-
cardinality popular matching problem then is to determine
if a given instance admits a popular matching, and to find
a largest such matching, if one exists.

Key Results

First consider strict instances, that is, instances (A [ P; E)
where there are no ties in the preference lists of the appli-
cants. Let n be the number of vertices andm be the number
of edges in G.

Theorem 1 For a strict instance G = (A[ P; E), it is pos-
sible to determine in O(m + n) time if G admits a popular
matching and compute one, if it exists.

Theorem 2 Find a maximum-cardinality popular match-
ing of a strict instance G = (A [ P; E), or determine that
no such matching exists, in O(m + n) time.

Next consider the general problem, where preference lists
may have ties.

Theorem 3 Find a popular matching of G = (A [ P; E),
or determine that no such matching exists, in O(

p
nm)

time.

Theorem 4 Find a maximum-cardinality popular match-
ing of G = (A [ P; E), or determine that no such matching
exists, in O(

p
nm) time.

Techniques

Our results are based on a novel characterization of pop-
ular matchings. For exposition purposes, create a unique
last resort post l(a) for each applicant a and assign the edge
(a; l(a)) a rank higher than any edge incident on a. In this
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way, assume that every applicant is matched, since any un-
matched applicant can be allocated to his/her last resort.
From now on then, matchings are applicant-complete, and
the size of a matching is just the number of applicants not
matched to their last resort. Also assume that instances
have no gaps, i. e., if an applicant has a rank i edge inci-
dent to it then it has edges of all smaller ranks incident to
it. First outline the characterization in strict instances and
then extend it to general instances.

Strict Instances For each applicant a, let f (a) denote
the most preferred post on a’s preference list. That is,
(a; f (a)) 2 E1. Call any such post p an f-post, and denote
by f (p) the set of applicants a for which f (a) = p.

For each applicant a, let s(a) denote the most preferred
non-f -post on a’s preference list; note that s(a) must exist,
due to the introduction of l(a). Call any such post p an s-
post, and remark that f -posts are disjoint from s-posts.

Using the definitions of f -posts and s-posts, show three
conditions that a popular matching must satisfy.

Lemma 5 Let M be a popular matching.
1. For every f -post p, (i) p is matched in M, and

(ii) M(p) 2 f (p).
2. For every applicant a, M(a) can never be strictly between

f (a) and s(a) on a’s preference list.
3. For every applicant a, M(a) is never worse than s(a) on

a’s preference list.

It is then shown that these three necessary conditions are
also sufficient. This forms the basis of the following pre-
liminary characterization of popular matchings.

Lemma 6 A matching M is popular if and only if (i) ev-
ery f -post is matched in M, and (ii) for each applicant a,
M(a) 2 f f (a); s(a)g.

Given an instance graph G = (A [ P; E), define the re-
duced graph G0 = (A [ P; E0) as the subgraph of G con-
taining two edges for each applicant a: one to f (a), the
other to s(a). The authors remark that G0 need not ad-
mit an applicant-complete matching, since l(a) is now iso-
lated whenever s(a) ¤ l(a). Lemma 6 shows that a match-
ing is popular if and only if it belongs to the graph G0 and
it matches every f -post. Recall that all popular matchings
are applicant-complete through the introduction of last re-
sorts. Hence, the following characterization is immediate.

Theorem 7 M is a popular matching of G if and only if
(i) every f -post is matched in M, and (ii) M is an applicant-
complete matching of the reduced graph G0.

The characterization in Theorem 7 immediately suggests
the following algorithm for solving the popular match-
ing problem. Construct the reduced graph G0. If G0 does

not admit an applicant-complete matching, then G ad-
mits no popular matching. If G0 admits an applicant-
complete matchingM, then modifyM so that every f -post
is matched. So for each f -post p that is unmatched in M,
let a be any applicant in f (p); remove the edge (a;M(a))
from M and instead match a to p. This algorithm can be
implemented in O(m + n) time. This shows Theorem 1.

Now, consider the maximum-cardinality popular
matching problem. Let A1 be the set of all applicants a
with s(a) = l(a). Let A1 be the set of all applicants with
s(a) = l(a). Our target matching must satisfy conditions
(i) and (ii) of Theorem 7, and among all such match-
ings, allocate the fewestA1-applicants to their last resort.
This scheme can be implemented in O(m + n) time. This
proves Theorem 2.

General Instances For each applicant a, let f (a) denote
the set of first-ranked posts on a’s preference list. Again,
refer to all such posts p as f-posts, and denote by f (p) the
set of applicants a for which p 2 f (a). It may no longer
be possible to match every f -post p with an applicant in
f (p) (as in Lemma 5), since, for example, theremay now be
more f -posts than applicants. LetM be a popularmatching
of some instance graph G = (A [ P; E). Define the first-
choice graph of G as G1 = (A[ P; E1), where E1 is the set
of all rank one edges. Next the authors show the following
lemma.

Lemma 8 Let M be a popular matching. Then M \ E1 is
a maximum matching of G1.

Next, work towards a generalized definition of s(a). Re-
strict attention to rank-one edges, that is, to the graph G1
and using M1, partition A [ P into three disjoint sets.
A node v is even (respectively odd) if there is an even (re-
spectively odd) length alternating path (with respect to
M1) from an unmatched node to v. Similarly, a node v is
unreachable if there is no alternating path (w.r.t.M1) from
an unmatched node to v. Denote by E, O, andU the sets
of even, odd, and unreachable nodes, respectively. Con-
clude the following facts about E, O, and U by using the
well-known Gallai–Edmonds decomposition theorem.

(a) E, O, and U are pairwise disjoint. Every maximum
matching in G1 partitions the vertex set into the same
partition of even, odd, and unreachable nodes.

(b) In any maximum-cardinality matching of G1, every
node in O is matched with some node in E, and every
node inU is matched with another node inU. The size
of a maximum-cardinality matching is jOj + jUj/2.

(c) No maximum-cardinality matching of G1 contains an
edge between two nodes in O, or a node in O and
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a node in U. And there is no edge in G1 connecting
a node in E with a node inU.

The above facts motivate the following definition of s(a):
let s(a) be the set of most preferred posts in a’s preference
list that are even in G1 (note that s(a) ¤ ;, since l(a) is al-
ways even in G1). Recall that our original definition of s(a)
led to parts (2) and (3) of Lemma 5 which restrict the set
of posts to which an applicant can be matched in a popular
matching. This shows that the generalized definition leads
to analogous results here.

Lemma 9 Let M be a popular matching. Then for every
applicant a,M(a) can never be strictly between f (a) and s(a)
on a’s preference list and M(a) can never be worse than s(a)
in a’s preference list.

The following characterization of popular matchings is
formed.

Lemma 10 A matching M is popular in G if and only if
(i) M \ E1 is a maximum matching of G1, and (ii) for each
applicant a, M(a) 2 f (a)[ s(a).

Given an instance graph G = (A [ P; E), we define the
reduced graph G0 = (A [ P; E0) as the subgraph of G con-
taining edges from each applicant a to posts in f (a)[ s(a).
The authors remark that G0 need not admit an applicant-
complete matching, since l(a) is now isolated whenever
s(a) ¤ fl(a)g. Lemma 11 tells us that a matching is popu-
lar if and only if it belongs to the graph G0 and it is a max-
imummatching on rank one edges. Recall that all popular
matchings are applicant-complete through the introduc-
tion of last resorts. Hence, the following characterization
is immediate.

Theorem 11 M is a popular matching of G if and only if
(i) M \ E1 is a maximum matching of G1, and (ii) M is an
applicant-complete matching of G0.

Using the characterization in Theorem 11, the authors
now present an efficient algorithm for solving the ranked
matching problem.

Popular-Matching(G = (A [ P; E))
1. Construct the graph G0 = (A [ P; E0), where

E0 = f(a; p) j p 2 f (a)[ s(a); a 2Ag.
2. Compute a maximum matchingM1 on rank one edges

i. e.,M1 is a maximummatching in G1 = (A[ P; E1).
(M1 is also a matching in G0 because E0 � E1)

3. Delete all edges in G0 connecting two nodes in the
set O or a node in O with a node in U, where O
and U are the sets of odd and unreachable nodes of
G1 = (A [ P; E1).

Determine a maximum matching M in the modified
graph G0 by augmentingM1.

4. If M is not applicant-complete, then declare that there
is no popular matching in G.
Else returnM.

The matching returned by the algorithm Popular-
Matching is an applicant-complete matching in G0 and it
is a maximummatching on rank one edges. So the correct-
ness of the algorithm follows from Theorem 11. It is easy
to see that the running time of this algorithm is O(

p
nm).

The algorithm of Hopcroft and Karp [7] is uesd to com-
pute a maximum matching in G1 and identify the set of
edges E0 and construct G0 in O(

p
nm) time. Repeatedly

augment M1 (by the Hopcroft–Karp algorithm) to obtain
M. This proves Theorem 3.

It is now a simple matter to solve the maximum-
cardinality popular matching problem. Assume that the
instance G = (A [ P; E) admits a popular matching.
(Otherwise, the process is done.) In order to compute an
applicant-complete matching in G0 that is a maximum
matching on rank one edges and which maximizes the
number of applicants not matched to their last resort, first
compute an arbitrary popular matchingM0 and remove all
edges of the form (a; l(a)) fromM0 and from the graphG0.
Call the resulting subgraph of G0 as H. Determine a max-
imum matching N in H by augmenting M0. N need not
be a popular matching, since it need not be a maximum
matching in the graph G0. However, this is easy to mend.
Determine a maximum matching M in G0 by augmenting
N. It is easy to show that M is a popular matching which
maximizes the number of applicants not matched to their
last resort. Since the algorithm takes O(

p
nm) time, The-

orem 4 is shown.

Applications

The bipartite matching problem with a graded edge set
is well-studied in the economics literature, see for exam-
ple [1,10,12]. It models some important real-world prob-
lems, including the allocation of graduates to training
positions [8], and families to government-owned hous-
ing [11]. The concept of a popular matching was first
introduced by Gardenfors [5] under the name majority
assignment in the context of the stable marriage prob-
lem [4,6].

Various other definitions of optimality have been con-
sidered. For example, a matching is Pareto-optimal [1,2,
10] if no applicant can improve his/her allocation (say by
exchanging posts with another applicant) without requir-
ing some other applicant to be worse off. Stronger defini-
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tions exist: a matching is rank-maximal [9] if it allocates
the maximum number of applicants to their first choice,
and then subject to this, the maximum number to their
second choice, and so on. A matching is maximum utility
if it maximizes

P
(a;p)2M ua;p , where ua;p is the utility of

allocating post p to applicant a. Neither rank-maximal nor
maximum-utility matchings are necessarily popular.
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ProblemDefinition

Given a static sequence b = b1 : : : bm of m bits, to pre-
process the sequence and to create a space-efficient data
structure that supports the following operations rapidly:

rank1(i) takes an index i as input, 1 � i � m, and returns
the number of 1s among b1 : : : bi .

select1(i) takes an index i � 1 as input, and returns the
position of the ith 1 in b, and�1 if i is greater than the
number of 1s in b.

The operations rank0 and select0 are defined analo-
gously for the 0s in b. As rank0(i) = i � rank1(i), one
considers just rank1 (abbreviated to rank), and refers to
select0 and select1 collectively as select. In what follows,
|x| denotes the length of a bit sequence x and w(x) denotes
the number of 1s in it. b is always used to denote the input
bit sequence,m to denote |b| and n to denote w(b).

Models of Computation, Time and Space Bounds

Two models of computation are commonly considered.
One is the unit-cost RAM model with word size O(lgm)
bits [1]. The other model, which is particularly useful for
proving lower bounds, is the bit-probe model, where the
data structure is stored in bit-addressablememory, and the
complexity of answering a query is the worst-case number
of bits of the data structure that are probed by the algo-
rithm to answer that query. In the RAM model, the algo-
rithm can readO(lgm) consecutive bits in one step, so sup-
porting all operations inO(1) time on the RAMmodel im-
plies a solution that uses O(lgm) bit-probes, but the con-
verse is not true.

This entry considers three variants of the problem: in
each variant, rank and select must be supported in O(1)
time on the RAM model, or in O(lgm) bit-probes. How-
ever, the use of memory varies:

Problem 1 (Bit-Vector) The overall space used must be
m + o(m) bits.

Problem 2 (Bit-Vector Index) b is given in read-only
memory and the algorithm can create auxiliary data struc-
tures (called indices) which must use o(m) bits.

Indices allow the representation of b to be de-coupled
from the auxiliary data structure, e. g., b can be stored (in
a potentially highly compressed form) in a data structure
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such as that of [6,9,17] which allows access to O(lgm) con-
secutive bits of b in O(1) time on the RAM model. Most
bit-vectors developed to date are bit-vector indices.

Recalling that n = w(b), observe that if m and n are
known to an algorithm, there are only l =

�m
n
�
possibili-

ties for b, so an information-theoretically optimal encod-
ing of b would require B(m; n) = dlg le bits (it can be ver-
ified that B(m; n) < m for allm, n). The next problem is:

Problem 3 (Compressed Bit-Vector) The overall space
used must be B(m; n) + o(n) bits.

It is helpful to understand the asymptotics of B(m; n) in
order to appreciate the difference between the bit-vector
and the compressed bit-vector problems:
� Using standard approximations of the factorial func-

tion, one can show [14] that:

B(m; n) = n lg(m/n) + n lg e + O(n2/m) (1)

If n = o(m), then B(m; n) = o(m), and if such a sparse
sequence b were represented as a compressed bit-
vector, then it would occupy o(m) bits, rather than
m + o(m) bits.

� B(m; n) = m � O(lgm), whenever jm/2 � nj =
O(
p
m lgm). In such cases, a compressed bit-vector

will take about the same amount of space as a bit-
vector.

� Taking p = n/m;H0(b) = (1/p) lg(1/p) + (1/(1 �
p)) lg(1/(1 � p)) is the empirical zeroth-order entropy
of b. If b is compressed using an ‘entropy’ compres-
sor such as non-adaptive arithmetic coding [18], the
size of the compressed output is at least mH0(b) bits.
However, B(m; n) = mH0(b) � O(logm). Applying
Golomb coding to the ‘gaps’ between successive 1s,
which is the best way to compress bit sequences that
represent inverted lists [18], also gives a space usage
close to B(m; n) [4].

Related Problems

Viewing b as the characteristic vector of a set S 
 U =
f1; : : : ;mg, note that the well-known predecessor prob-
lem – given y 2 U , return pred(y) = maxfz 2 Sjz �
yg – may be implemented as select1(rank1(y)). One may
also view b as a multiset of size m � n over the universe
f1; : : : ; n+1g [5]. First, append a 1 to b. Then, take each of
the n+1 1s to be the elements of the universe, and the num-
ber of consecutive 0s immediately preceding a 1 to indicate
their multiplicities. For example, b = 01100100 maps to
the multiset f1; 3; 3; 4; 4g. Seen this way, select1(i) � i on
b gives the number of items in the multiset that are � i,
and select0(i) � i + 1 gives the value of the ith element of
the multiset.

Lower-Order Terms

From an asymptotic viewpoint, the space utilization is
dominated by the main terms in the space bound. How-
ever, the second (apparently lower-order) terms are of
interest for several reasons, primarily because the lower-
order terms are extremely significant in determining
practical space usage, and also because non-trivial space
bounds have been proven for the size of the lower-order
terms.

Key Results

Reductions

It has been already noted that rank0 and rank1 reduce to
each other, and that operations on multisets reduce to se-
lect operations on a bit sequence. Some other reductions,
whereby one can support operations on b by performing
operations on bit sequences derived from b are:

Theorem 1

(a) rank reduces to select0 on a bit sequence c such that
jcj = m + n and w(c) = n.

(b) If b has no consecutive 1s, then select0 on b can be re-
duced to rank on a bit sequence c such that jcj = m� n
and w(c) is either n � 1 or n.

(c) From b one can derive two bit sequences b0 and b1 such
that jb0j = m � n; jb1j = n;w(b0);w(b1) � minfm �
n; ng and select0 and select1 on b can be supported by
supporting select1 and rank on b0 and b1.

Parts (a) and (b) follow from Elias’s observations on mul-
tiset representations (see the “Related Problems” para-
graph), specialized to sets. For part (a), create c from b by
adding a 0 after every 1. For example, if b = 01100100 then
c = 01010001000. Then, rank1 (i) on b equals select0(i)�
i on c. For part (b), essentially invert the mapping of
part (a). Part (c) is shown in [3].

Bit-Vector Indices

Theorem 2 ([8]) There is an index of size (1 +
o(1))(m lg lgm/ lgm) + O(m/ lgm) that supports rank and
select in O(1) time on the RAM model.

Elias previously gave an o(m)-bit index that supported se-
lect in O(lgm) bit-probes on average (where the average
was computed across all select queries). Jacobson gave
o(m)-bit indices that supported rank and select in O(lgm)
bit-probes in the worst case. Clark andMunro [2] gave the
first o(m)-bit indices that support both rank and select in
O(1) time on the RAM. A matching lower bound on the
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size of indices has also been shown (this also applies to in-
dices which support rank and select in O(1) time on the
RAM model):

Theorem 3 ([8]) Any index that allows rank or
select1 to be supported in O(lgm) bit-probes has size
˝(m lg lgm/ lgm) bits.

Compressed Bit-Vectors

Theorem 4 There is a compressed bit-vector that uses:

(a) B(m; n) + O(m lg lgm/ lgm) bits and supports rank
and select in O(1) time.

(b) B(m; n) +O(n(lg lg n)2/ lg n) bits and supports rank in
O(1) time, when n = m/(lgm)O(1).

(c) B(m; n) + O(n lg lg n/
p
lg n) bits and supports select1

in O(1) time.

Theorem 4(a) and (c) were shown by Raman et al. [16]
and Theorem 4(b) by Pagh [14]. Note that Theorem 4(a)
has a lower-order term that is o(m), rather than o(n) as
required by the problem statement. As compressed bit-
vectorsmust represent b compactly, they are not bit-vector
indices, and the lower bound of Theorem 3 does not ap-
ply to compressed bit-vectors. Coarser lower bounds are
obtained by reduction to the predecessor problem on sets
of integers, for which tight upper and lower bounds in the
RAMmodel are now known. In particular the work of [15]
implies:

Theorem 5 Let U = f1; : : : ;Mg and let S 
 U; jSj = N.
Any data structure on a RAM with word size O(lgM) bits
that occupies at most O(N lgM) bits of space can sup-
port predecessor queries on S in O(1) time only when N =
M/(lgM)O(1) or N = (lgM)O(1).

As noted in the paragraph “Related Problems”, the pre-
decessor problem can be solved by the use of rank and
select1 operations. Thus, Theorem 5 has consequences for
compressed bit-vector data structures, which are spelt out
below:

Corollary 1 There is no data structure that uses B(m; n)+
o(n) bits and supports either rank or select0 in O(1) time
unless n = m/(lgm)O(1), or n = (logm)O(1).

Given a set S 
 U = f1; : : : ;mg; jSj = n, we have already
noted that the predecessor problem on S is equivalent to
rank and select1 on a bit-vector c with w(c) = n, and
jcj = m. However, B(m; n)+o(n) = O(n lgm). Thus, given
a bit-vector that uses B(m; n)+o(n) bits and supports rank
in O(1) time for m = n(lg n)!(1), we can augment it with

the trivial O(1)-time data structure for select1, that stores
the value of select1 (i) for i = 1; : : : ; n (which occupies
a further O(n lgm) bits), solving the predecessor problem
in O(1) time, a contradiction. The hardness of select0 is
shown in [16], but follows easily from Theorem 1(a) and
Eq. (1).

Applications

There are a vast number of applications of bit-vectors in
succinct and compressed data structures (see e. g. [12]).
Such data structures are used for, e. g., text indexing, com-
pact representations of graphs and trees, and representa-
tions of semi-structured (XML) data.

Experimental Results

Several teams have implemented bit-vectors and com-
pressed bit-vectors. When implementing bit-vectors for
good practical performance, both in terms of speed and
space usage, the lower-order terms are very important,
even for uncompressed bit-vectors1, and can dominate the
space usage even for bit-vector sizes that are at the limit
of conceivable future practical interest. Unfortunately, this
problem may not be best addressed purely by a theoretical
analysis of the lower-order terms. Bit-vectors work by par-
titioning the input bit sequence into (usually equal-sized)
blocks at several levels of granularity – usually 2–3 levels
are needed to obtain a space bound of m+o(m) bits. How-
ever, better space usage – as well as better speed – in prac-
tice can be obtained by reducing the number of levels, re-
sulting in space bounds of the form (1 + �)m bits, for any
� > 0, with support for rank and select in O(1/�) time.

Clark [2] implemented bit-vectors for external-
memory suffix trees. More recently, an implementation
using ideas of Clark and Jacobson was used by [7], which
occupied (1+�)m bits and supported operations in O(1/�)
time. Using a substantially different approach, Kim et
al. [11] gave a bit-vector that takes (2 + �)n bits to support
rank and select. Experiments using bit sequences derived
from real-world data in [3,4] showed that if parameters are
set to ensure that [11] and [7] use similar space – on typ-
ical inputs – the Clark–Jacobson implementation of [7] is
somewhat faster than an implementation of [11]. On some
inputs, the Clark–Jacobson implementation can use signif-
icantly more space, whereas Kim et al.’s bit-vector appears
to have stable space usage; Kim et al.’s bit-vector may also
be superior for somewhat sparse bit-vectors. Combining
ideas from [7,11], a third practical bit-vector (which is not

1For compressed bit-vectors, the ‘lower-order’ o(m) or o(n) term
can dominate B(m; n), but this is not our concern here.
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a bit-vector index) was described in [4], and appears to
have desirable features of both [11] and [7]. A first imple-
mentational study on compressed bit-vectors can be found
in [13] (compressed bit-vectors supporting only select1
were considered in [4]).

URL to Code

Bit-vector implementations from [3,4,7] can be found at
http://hdl.handle.net/2381/318.
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ProblemDefinition

Liu and Layland [9] introduced rate-monotonic schedul-
ing in the context of the scheduling of recurrent real-time
processes upon a computing platform comprised of a sin-
gle preemptive processor.

The Periodic Task Model

The periodic task abstraction models real-time processes
that make repeated requests for computation. As defined
in [9], each periodic task �i is characterized by an ordered
pair of positive real-valued parameters (Ci ; Ti ), where Ci
is the worst-case execution requirement and Ti the period
of the task. The requests for computation that are made by
task �i (subsequently referred to as jobs that are generated
by �i ) satisfy the following assumptions:

A1: �i ’s first job arrives at system start time (assumed to
equal time zero), and subsequent jobs arrive every Ti
time units. I.e., one job arrives at time-instant k � Ti
for all integer k � 0.

A2: Each job needs to execute for at most Ci time units.
I.e.,Ci is the maximum amount of time that a proces-
sor would require to execute each job of �i , without
interruption.

http://hdl.handle.net/2381/318
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A3: Each job of �i must complete before the next job ar-
rives. That is, each job of task �i must complete execu-
tion by a deadline that is Ti time-units after its arrival
time.

A4: Each task is independent of all other tasks – the exe-
cution of any job of task �i is not contingent on the
arrival or completion of jobs of any other task � j .

A5: A job of �i may be preempted on the processor with-
out additional execution cost. In other words, if a job
of �i is currently executing, then it is permitted that
this execution be halted, and a job of a different task
� j begin execution immediately.

A periodic task system �
def= f�1; �2; : : : ; �ng is a collec-

tion of n periodic tasks. The utilization U(�) is defined as
follows:

U(�) def=
nX
i=1

Ci /Ti : (1)

Intuitively, this denotes the fraction of time that may be
spent by the processor executing jobs of tasks in � , in the
worst case.

The Rate-Monotonic Scheduling Algorithm

A (uniprocessor) scheduling algorithm determines which
task executes on the shared processor at each time-instant.
If a scheduling algorithm is guaranteed to always meet
all deadlines when scheduling a task system � , then � is
said to be schedulablewith respect to that scheduling algo-
rithm.

Many scheduling algorithms work as follows: At each
time-instant, they assign a priority to each job, and se-
lect for execution the greatest-priority job with remain-
ing execution. A static priority (often called fixed priority)
scheduling algorithm for scheduling periodic tasks is one
in which it is required that all the jobs of each periodic task
be assigned the same priority.

Liu and Layland [9] proposed the rate-monotonic (RM)
static priority scheduling algorithm, which assigns priority
to jobs according to the period parameter of the task that
generates them: the smaller the period, the higher the pri-
ority. Hence if Ti < Tj for two tasks �i and � j , then each
job of �i has higher priority than all jobs of � j and hence
any executing job of � j will be preempted by the arrival of
one of �i ’s jobs. Ties may be broken arbitrarily but con-
sistently – if Ti = Tj , then either all jobs of �i are assigned
higher priority than all jobs of � j , or all jobs of � j are as-
signed higher priority than all jobs of �i .

Key Results

Results from the original paper by Liu and Layland [9] are
presented in Sect. “Results from [9]” below; results extend-
ing the original work are briefly described in Sect. “Results
since [9]”.

Results from [9]

Optimality Liu and Layland were concerned with de-
signing “good” static priority scheduling algorithms. They
defined a notion of optimality for such algorithms: A static
priority algorithmA is optimal if any periodic task system
that is schedulable with respect to some static priority al-
gorithm is also schedulable with respect toA.

Liu and Layland obtained the following result for the
rate-monotonic scheduling algorithm (RM):

Theorem 1 For periodic task systems, RM is an optimal
static priority scheduling algorithm.

Schedulability Testing A schedulability test for a par-
ticular scheduling algorithm determines, for any periodic
task system � , whether � is schedulable with respect to that
scheduling algorithm. A schedulability test is said to be ex-
act if it is the case that it correctly identifies all schedula-
ble task systems, and sufficient if it identifies some, but not
necessarily all, schedulable task systems.

In order to derive good schedulability tests for the rate-
monotonic scheduling algorithm, Liu and Layland consid-
ered the concept of response time. The response time of
a job is defined as the elapsed time between the arrival of
a job and its completion time in a schedule; the response
time of a task is defined to be the largest response time
that may be experienced by one its jobs. For static priority
scheduling, Liu and Layland obtained the following result
on the response time:

Theorem 2 The maximum response time for a periodic
task �i occurs when a job of �i arrives simultaneously
with jobs of all higher-priority tasks. Such a time-instant is
known as the critical instant for task �i .

Observe that the critical instant of the lowest-priority task
in a periodic task system is also a critical instant for all
tasks of higher priority. An immediate consequence of the
previous theorem is that the response-time of each task
in the periodic task system can be obtained by simulat-
ing the scheduling of the periodic task system starting at
the critical instant of the lowest-priority task. If the re-
sponse time for each task �i obtained from such simula-
tion does not exceed Ti, then the task system will always
meet all deadlines when scheduled according to the given
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priority assignment. This argument immediately gives rise
to a schedulability analysis test [7] for any static priority
scheduling algorithm. Since the simulation may need to
be carried out until maxni=1fTig, this schedulability test has
run-time pseudo-polynomial in the representation of the
task system:

Theorem 3 ([7]) Exact rate-monotonic schedulability
testing of a periodic task system may be done in time
pseudo-polynomial in the representation in the task system.

Liu and Layland also derived a polynomial-time sufficient
(albeit not exact) schedulability test for RM, based upon
the utilization of the task system:

Theorem 4 Let n denote the number of tasks in periodic
task system � . If U(�) � n(21/n � 1), then � is schedulable
with respect to the RM scheduling algorithm.

Results since [9]

The utilization-bound sufficient schedulability test (The-
orem 4) was shown to be tight in the sense that for all n,
there are unschedulable task systems comprised of n tasks
with utilization exceeding n(21/n � 1) by an arbitrarily
small amount. However, tests have been devised that ex-
ploit more knowledge about tasks’ period parameters. For
instance, Kuo and Mok [6] provide a potentially superior
utilization bound for task systems in which the task period
parameters tend to be harmonically related – exact multi-
ples of one another. Suppose that a collection of numbers
is said to comprise a harmonic chain if for every two num-
bers in the set, it is the case that one is an exact multiple of
the other. Let ñ denote theminimum number of harmonic
chains into which the period parameters fTigni=1 of tasks in
� may be partitioned; a sufficient condition for task system
� to be RM-schedulable is that

U(�) � ñ(21/ñ � 1) :

Since ñ � n for all task systems � , this utilization bound
above is never inferior to the one in Theorem 4, and is su-
perior for all � for which ñ < n.

A different polynomial-time schedulability test was
proposed by Bini, Buttazzo, and Buttazzo [3]: they showed
that

nY
i=1

((Ci /Ti ) + 1) � 2

is sufficient to guarantee that the periodic task system
f�1; �2; : : : ; �ng is rate-monotonic schedulable. This test is
commonly referred to as the hyperbolic schedulability test
for rate-monotonic schedulability. The hyperbolic test is

in general known to be superior to the utilization-based
test of Theorem 4 – see [3] for details.

Other work done since the seminal paper of Liu and
Layland has focused on relaxing the assumptions of the
periodic task model.

The (implicit-deadline) sporadic task model relaxed
assumption A1 by allowing Ti to be the minimum (rather
than exact) separation between arrivals of successive jobs
of task �i . It turns out that the results in Sect. “Results from
[9]” – Theorems 1–4 – hold for systems of such tasks as
well.

A more general sporadic task model has also been
studied that relaxes assumption A3 in addition to assump-
tion A1, by allowing for the explicit specification of a dead-
line parameter for each task (which may differ from the
task’s period). The deadline monotonic scheduling algo-
rithm [8] generalizes rate-monotonic scheduling to such
task systems.

Work has also been done [2,10] in removing the inde-
pendence assumption of A4, by allowing for different tasks
to use critical sections to access non-preemptable serially
reusable resources.

Current work is focused on scheduling tasks on mul-
tiprocessor or distributed systems where one or more of
the assumptions A1–A5 have been relaxed. In addition, re-
cent work has relaxed the assumption (A2) that worst-case
execution requirement is known and instead probabilistic
execution requirement distributions are considered [4].

Applications

The periodic task model has been invaluable for model-
ing several different types of systems. For control systems,
the periodic task model is well-suited for modeling the pe-
riodic requests and computations of sensors and actua-
tors. Multimedia and network applications also typically
involve computation of periodically arriving packets and
data. Many operating systems for real-time systems pro-
vide support for periodic tasks as a standard primitive.

Many of the results described in Sect. “Key Results”
above have been integrated into powerful tools, tech-
niques, and methodologies for the design and analysis of
real-time application systems [1,5]. Although these are
centered around the deadline-monotonic rather than rate-
monotonic scheduling algorithm, the general methodol-
ogy is commonly referred to as the rate-monotonic analysis
(RMA) methodology.

Open Problems

There are plenty of interesting and challenging open prob-
lems in real-time scheduling theory; however, most of
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these are concerned with extensions to the basic task and
scheduling model considered in the original Liu and Lay-
land paper [9]. Perhaps the most interesting open prob-
lem with respect to the task model in [9] is regarding
the computational complexity of schedulability analysis
of static priority scheduling. While all known exact tests
(e. g., Theorem 3) run in pseudo-polynomial time and all
known polynomial-time tests are sufficient rather than ex-
act, there has been no significant result pigeonholing the
computational complexity of static priority schedulability
analysis for periodic task systems.
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ProblemDefinition

Given a set of n points in a plane, a spanning tree is a set of
edges that connects all the points and contains no cycles.
When each edge is weighted using some distance metric
of the incident points, the metric minimum spanning tree
is a tree whose sum of edge weights is minimum. If the
Euclidean distance (L2) is used, it is called the Euclidean
minimum spanning tree; if the rectilinear distance (L1) is
used, it is called the rectilinear minimum spanning tree.

Since the minimum spanning tree problem on
a weighted graph is well studied, the usual approach
for metric minimum spanning tree is to first define an
weighted graph on the set of points and then to construct
a spanning tree on it.

Much like a connection graph is defined for the maze
search [4], a spanning graph can be defined for the mini-
mum spanning tree construction.

Definition 1 Given a set of points V in a plane, an undi-
rected graphG = (V ; E) is called a spanning graph if it con-
tains a minimum spanning tree of V in the plane.

Since spanning graphs with fewer edges givemore efficient
minimum spanning tree construction, the cardinality of
a spanning graph is defined as its number of edges. It is
easy to see that a complete graph on a set of points con-
tains all spanning trees, thus is a spanning graph. However,
such a graph has a cardinality of O(n2). A rectilinear span-
ning graph of cardinality O(n) can be constructed within
O(n log n) time [6] and will be described here.

Minimum spanning tree algorithms usually use two
properties to infer the inclusion and exclusion of edges in
a minimum spanning tree. The first property is known as
the cut property. It states that an edge of smallest weight
crossing any partition of the vertex set into two parts be-
longs to a minimum spanning tree. The second prop-
erty is known as the cycle property. It says that an edge
with largest weight in any cycle in the graph can be safely
deleted. Since the two properties are stated in connection
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Rectilinear Spanning Tree, Figure 1
Octal partition and the uniqueness property

with the construction of a minimum spanning tree, they
are useful for a spanning graph.

Key Results

Using the terminology given in [3], the uniqueness prop-
erty is defined as follows.

Definition 2 Given a point s, a region R has the unique-
ness property with respect to s if for every pair of points
p; q 2 R; jjpqjj < max(jjspjj; jjsqjj). A partition of space
into a finite set of disjoint regions is said to have the
uniqueness property with respect to s if each of its regions
has the uniqueness property with respect to s.

The notation ||sp|| is used to represent the distance be-
tween s and p under the L1 metric. Define the octal par-
tition of the plane with respect to s as the partition in-
duced by the two rectilinear lines and the two 45 degree
lines through s, as shown in Fig. 2a. Here, each of the re-
gions R1 through R8 includes only one of its two bounding
half line as shown in Fig. 2b. It can be shown that the octal
partition has the uniqueness property.

Lemma 1 Given a point s in the plane, the octal partition
with respect to s has the uniqueness property.

Proof To show a partition has the uniqueness property,
it needs to prove that each region of the partition has the
uniqueness property. Since the regions R1 through R8 are
similar to each other, a proof for R1 will be sufficient.

The points in R1 can be characterized by the following
inequalities

x � xs ;
x � y < xs � ys :

Suppose there are two points p and q in R1. Without loss
of generality, it can be assumed xp � xq . If yp � yq , then

jjsqjj = jjspjj + jjpqjj > jjpqjj. Therefore it only needs to
consider the case when yp > yq . In this case,

jjpqjj = jxp � xqj + jyp � yq j
= xq � xp + yp � yq
= (xq � yq) + yp � xp
< (xs � ys ) + yp � xs
= yp � ys
� xp � xs + yp � ys
= jjspjj :

�
Given two points p, q in the same octal region of
point s, the uniqueness property says that jjpqjj <

max(jjspjj; jjsqjj). Consider the cycle on points s, p, and q.
Based on the cycle property, only one point with the min-
imum distance from s needs to be connected to s. An in-
teresting property of the octal partition is that the contour
of equi-distant points from s forms a line segment in each
region. In regions R1, R2, R5, R6, these segments are cap-
tured by an equation of the form x + y = c; in regions R3,
R4, R7, R8, they are described by the form x � y = c.

From each point s, the closest neighbor in each oc-
tant needs to be found. It will be described how to effi-
ciently compute the neighbors inR1 for all points. The case
for other octant is symmetric. For the R1 octant, a sweep
line algorithm will run on all points according to non-
decreasing x + y. During the sweep, maintained will be an
active set consisting of points whose nearest neighbors in
R1 are yet to be discovered. When a point p is processed,
all points in the active set that have p in their R1 regions
will be found. If s is such a point in the active set, since
points are scanned in non-decreasing x + y, then p must
be the nearest point in R1 for s. Therefore, the edge sp will
be added and s will be deleted from the active set. After
processing those active points, the point p will be added
into the active set. Each point will be added and deleted at
most once from the active set.

A fundamental operation in the sweep line algorithm
is to find a subset of active points such that a given point
p is in their R1 regions. Based on the observation that
point p is in the R1 region of point s if and only if s is
in the R5 region of p, it needs to find the subset of active
points in the R5 region of p. Since R5 can be represented as
a two-dimensional range (�1; xp] � (xp � yp;+1) on
(x; x � y), a priority search tree [1] can be used to main-
tain the active point set. Since each of the insertion and
deletion operations takes O(log n) time, and the query op-
eration takes O(log n + k) time where k is the number of
objects within the range, the total time for the sweep is
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O(n log n). Since other regions can be processed in the
similar way as in R1, the algorithm is running in O(n log n)
time. Priority search tree is a data structure that relies on
maintaining a balanced structure for the fast query time.
This works well for static input sets. When the input set
is dynamic, re-balancing the tree can be quite challeng-
ing. Fortunately, the active set has a structure that can be
explored for an alternate representation. Since a point is
deleted from the active set if a point in its R1 region is
found, no point in the active set can be in the R1 region
of another point in the set.

Lemma 2 For any two points p, q in the active set, it must
be xp ¤ xq, and if xp < xq then xp � yp � xq � yq.

Based on this property, the active set can be ordered in
increasing order of x. This implies a non-decreasing order
on x � y. Given a point s, the points which have s in their
R1 region must obey the following inequalities

x � xs ;
x � y > xs � ys :

To find the subset of active points which have s in their R1
regions, it can first find the largest x such that x � xs , then
proceed in decreasing order of x until x � y � xs � ys .
Since the ordering is kept on only one dimension, using
any binary search tree with O(log n) insertion, deletion,
and query time will also give us an O(n log n) time algo-
rithm. Binary search trees also need to be balanced. An
alternative is to use skip-lists [2] which use randomiza-
tion to avoid the problem of explicit balancing but provide
O(log n) expected behavior.

A careful study also shows that after the sweep pro-
cess for R1, there is no need to do the sweep for R5,
since all edges needed in that phase are either connected
or implied. Moreover, based on the information in R5,
the number of edge connections can be further reduced.
When the sweep step processes point s, it finds a sub-
set of active points which have s in their R1 regions.
Without lost of generality, suppose p and q are two of
them. Then p and q are in the R5 region of s, which
means jjpqjj < max(jjspjj; jjsqjj). Therefore, it needs only
to connect s with the nearest active point.

Since R1 and R2 have the same sweep sequence, they
can be processed together in one pass. Similarly, R3 and
R4 can be processed together in another pass. Based on the
above discussion, the pseudo-code of the algorithm is pre-
sented in Fig. 2.

The correctness of the algorithm is stated in the fol-
lowing theorem.

Rectilinear Spanning Tree, Figure 2
The rectilinear spanning graph algorithm

Theorem 3 Given n points in the plane, the rectilinear
spanning graph algorithm constructs a spanning graph in
O(n log n) time, and the number of edges in the graph is
O(n).

Proof The algorithm can be considered as deleting edges
from the complete graph. As described, all deleted edges
are redundant based on the cycle property. Thus, the out-
put graph of the algorithm will contain at least one recti-
linear minimum spanning tree.

In the algorithm, each given point will be inserted and
deleted atmost once from the active set for each of the four
regions R1 through R4. For each insertion or deletion, the
algorithm requires O(log n) time. Thus, the total time is
upper bounded by O(n log n). The storage is needed only
for active sets, which is at most O(n). �

Applications

Rectilinear minimum spanning tree problem has wide ap-
plications in VLSI CAD. It is frequently used as a met-
ric of wire length estimation during placement. It is of-
ten constructed to approximate a minimum Steiner tree
and is also a key step in many Steiner tree heuristics. It
is also used in an approximation to the traveling salesper-
son problem which can be used to generate scan chains
in testing. It is important to emphasize that for real world
applications, the input sizes are usually very large. Since
it is a problem that will be computed hundreds of thou-
sands times and many of them will have very large in-
put sizes, the rectilinear minimum spanning tree problem
needs a very efficient algorithm.

Experimental Results

The experimental results using the Rectilinear Spanning
Graph (RSG) followed by Kruskal’s algorithm for a rec-
tilinear minimum spanning tree were reported in Zhou
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Rectilinear Spanning Tree, Table 1
Experimental Results

Input Complete Bound-degree RSG
orig distinct #edge time #edge time #edge time
1000 999 498501 5.095 s 3878 0.299 s 2571 0.112 s
2000 1996 1991010 24.096 s 7825 0.996 s 5158 0.218 s
4000 3995 7978015 2m 7.233 s 15761 3.452 s 10416 0.337 s
6000 5991 17943045 5m 54.697 s 23704 7.515 s 15730 0.503 s
8000 7981 31844190 13m 7.682 s 31624 13.141 s 21149 0.672 s

10000 9962 49615741 – 39510 20.135 s 26332 0.934 s
12000 11948 – – 47424 32.300 s 31586 1.052 s
14000 13914 – – 55251 46.842 s 36853 1.322 s
16000 15883 – – 63089 1m 3.759 s 42251 1.486 s
18000 17837 – – 70876 1m 19.812 s 47511 1.701 s
20000 19805 – – 78723 1m 45.792 s 52732 1.907 s

et al. [5]. Two other approaches were compared. The first
approach used the complete graph on the point set as the
input to Kruskal’s algorithm. The second approach is an
implementation of concepts described in [3]; namely for
each point, scan all other points but only connect the near-
est one in each quadrant region. With sizes ranging from
1000 to 20,000, randomly generated point sets were used
in the experiments. The results are reproduced here in
Table 1. The first column gives the number of generated
points; the second column gives the number of distinct
points. For each approach, the number of edges in the
given graph and the total running time are reported. For
input size larger than 10,000, the complete graph approach
simply runs out of memory.
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ProblemDefinition

Given n points on a plane, a Steiner minimal tree connects
these points through some extra points (called Steiner
points) to achieve a minimal total length. When the length
between two points is measured by the rectilinear distance,
the tree is called a rectilinear Steiner minimal tree.

Because of its importance, there is much previous
work to solve the SMT problem. These algorithms can
be grouped into two classes: exact algorithms and heuris-
tic algorithms. Since SMT is NP-hard, any exact algo-
rithm is expected to have an exponential worst-case run-
ning time. However, two prominent achievements must
be noted in this direction. One is the GeoSteiner al-
gorithm and implementation by Warme, Winter, and
Zacharisen [14,15], which is the current fastest exact so-
lution to the problem. The other is a Polynomial Time
Approximation Scheme (PTAS) by Arora [1], which is
mainly of theoretical importance. Since exact algorithms
have long running time, especially on large input sizes,
much more previous efforts were put on heuristic algo-
rithms. Many of them generate a Steiner tree by improv-
ing on a minimal spanning tree topology [7], since it was
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Rectilinear Steiner Tree, Figure 1
Edge substitution by Borah et al.

proved that a minimal spanning tree is a 3/2 approxima-
tion of a SMT [8]. However, since the backbones are re-
stricted to the minimal spanning tree topology in these
approaches, there is a reported limit on the improvement
ratios over the minimal spanning trees. The iterated 1-
Steiner algorithm by Kahng and Robins [10] is an early
approach to deviate from that restriction and an improved
implementation [6] is a champion among such programs
in public domain. However, the implementation in [10]
has a running time of O(n4 log n) and the implementa-
tion in [6] has a running time of O(n3). A much more
efficient approach was later proposed by Borah et al. [2].
In their approach, a spanning tree is iteratively improved
by connecting a point to an edge and deleting the longest
edge on the created circuit. Their algorithm and imple-
mentation had a worst-case running time of 	(n2), even
though an alternative O(n log n) implementation was also
proposed. Since the backbone is no longer restricted to the
minimal spanning tree topology, its performance was re-
ported to be similar to the iterated 1-Steiner algorithm [2].
A recent effort in this direction is a new heuristic by Man-
doiu et al. [11] which is based on a 3/2 approximation
algorithm of the metric Steiner tree problem on quasi-
bipartite graphs [12]. It performs slightly better than the
iterated 1-Steiner algorithm, but its running time is also
slightly longer than the iterated 1-Steiner algorithm (with
the empty rectangle test [11] used). More recently, Chu [3]
and Chu and Wong [4] proposed an efficient lookup table
based approach for rectilinear Steiner tree construction.

Key Results

The presented algorithm is based on the edge substitution
heuristic of Borah et al. [2]. The heuristic works as fol-
lows. It starts with a minimal spanning tree and then it-
eratively considers connecting a point (for example p in
Fig. 1) to a nearby edge (for example (a, b)) and deleting
the longest edge ((b, c)) on the circuit thus formed. The al-

Rectilinear Steiner Tree, Figure 2
Aminimal spanning tree and its merging binary tree

gorithm employs the spanning graph [17] as a backbone of
the computation: it is first used to generate the initial min-
imal spanning tree, and then to generate point-edge pairs
for tree improvements. This kind of unification happens
also in the spanning tree computation and the longest edge
computation for each point-edge pair: using Kruskal’s al-
gorithm with disjoint set operations (instead of Prim’s al-
gorithm) [5] will unify these two computations.

In order to reduce the number of point-edge pair can-
didates from O(n2) to O(n), Borah et al. suggested to use
the visibility of a point from an edge, that is, only a point
visible from an edge can be considered to connect to that
edge. This requires a sweepline algorithm to find visibil-
ity relations between points and edges. In order to skip
this complex step, the geometrical proximity information
embedded within the spanning graph is leveraged. Since
a point has eight nearest points connected around it, it
is observed that if a point is visible to an edge then the
point is usually connected in the graph to at lease one end
point. In the algorithm, the spanning graph is used to gen-
erate point-edge pair candidates. For each edge in the cur-
rent tree, all points that are neighbors of either of the end
points will be considered to form point-edge pairs with the
edge. Since the cardinality of the spanning graph is O(n),
the number of possible point-edge pairs generated in this
way is also O(n).

When connecting a point to an edge, the longest edge
on the formed circuit needs to be deleted. In order to find
the corresponding longest edge for each point-edge pair
efficiently, it explores how the spanning tree is formed
through Kruskal’s algorithm. This algorithm first sorts the
edges into non-decreasing lengths and each edge is con-
sidered in turn. If the end points of the edge have been
connected, then the edge will be excluded from the span-
ning tree, otherwise, it will be included. The structure of
these connecting operations can be represented by a bi-
nary tree, where the leaves represent the points and the
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Rectilinear Steiner Tree (RST) Algorithm
T = ;;
Generate the spanning graph G by RSG algorithm;
for (each edge (u; v) 2 G in non-decreasing length) {

s1 = find_set(u); s2 = find_set(v);
if (s1 != s2) {

add (u, v) in tree T ;
for (each neighbor w of u, v in G)

if (s1 == find_set(w))
lca_add_query(w; u; (u; v));

else lca_add_query(w; v; (u; v));
lca_tree_edge((u, v), s1.edge);
lca_tree_edge((u, v), s2.edge);
s = union_set(s1; s2); s.edge = (u, v);

}
}
generate point-edge pairs by lca_answer_queries;
for (each pair (p; (a; b); (c; d)) in non-increasing positive gains)

if ((a; b); (c; d) has not been deleted from T) {
connect p to (a, b) by adding three edges to T ;
delete (a; b); (c; d) from T ;

}

Rectilinear Steiner Tree, Figure 3
The rectilinear Steiner tree algorithm

internal nodes represent the edges. When an edge is in-
cluded in the spanning tree, a node is created representing
the edge and has as its two children the trees representing
the two components connected by this edge. To illustrate
this, a spanning tree with its representing binary tree are
shown in Fig. 2. As can be seen, the longest edge between
two points is the least common ancestor of the two points
in the binary tree. For example, the longest edge between
p and b in Fig. 2 is (b, c), which is the least common ances-
tor of p and b in the binary tree. To find the longest edge
on the circuit formed by connecting a point to an edge, it
needs to find the longest edge between the point and one
end point of the edge that are in the same component be-
fore connecting the edge. For example, consider the pair
p and (a, b), since p and b are in the same component be-
fore connecting (a, b), the edge needs to be deleted is the
longest between p and b.

Based on the above discussion, the pseudo-code of the
algorithm can be described in Fig. 3. At the beginning of
the algorithm, Zhou et al.’s rectilinear spanning graph al-
gorithm [17] is used to generate the spanning graph G for

the given set of points. Then Kruskal’s algorithm is used
on the graph to generate a minimal spanning tree. The
data structure of disjoint sets [5] is used to merge compo-
nents and check whether two points are in the same com-
ponent (the first for loop). During this process, the merg-
ing binary tree and the queries for least common ancestors
of all point-edge pairs are also generated. Here s, s1, and
s2 represent disjoint sets and each records the root of the
component in themerging binary tree. For each edge (u, v)
adding to T, each neighbor w of either u or v will be con-
sidered to connect to (u, v). The longest edge for this pair
is the least common ancestor of w, u or w, v depending on
which point is in the same component asw. The procedure
lca_add_query is used to add this query. Connecting
the two components by (u, v) will also be recorded in the
merging binary tree by the procedure lca_tree_edge.
After generating the minimal spanning tree, it also has
the corresponding merging binary tree and the least
common ancestor queries ready. Using Tarjan’s off-line
least common ancestor algorithm [5] (represented by
lca_answer_queries), it can generate all longest
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Rectilinear Steiner Tree, Table 1
Comparison with other algorithms I

Input
size

GeoSteiner BI1S BOI RST

Improve Time Improve Time Improve Time Improve Time
100 11:440 0:487 10:907 0:633 9.300 0:0267 10.218 0.004
200 11:492 3:557 10:897 4:810 9.192 0:1287 10.869 0.020
300 11:492 12:685 10:931 18:770 9.253 0:2993 10.255 0.041
500 11:525 72:192 – – 9.274 0:877 10.381 0.084
800 11:343 536:173 – – 9.284 2:399 10.719 0.156

1000 – – – – 9.367 4:084 10.433 0.186
2000 – – – – 9.326 31:098 10.523 0.381
3000 – – – – 9.390 104:919 10.449 0.771
5000 – – – – 9.356 307:977 10.499 1.330

Rectilinear Steiner Tree, Table 2
Comparison with other algorithms II

Input
size

BGA Borah Rohe RST

Improve Time Improve Time Improve Time Improve Time
Randomly generated testcases

100 10:272 0:006 10:341 0:004 9:617 0:000 10:218 0:002
500 10:976 0:068 10:778 0:178 10:028 0:010 10:381 0:041

1000 10:979 0:162 10:829 0:689 9:768 0:020 10:433 0:121
5000 11:012 1:695 11:015 25:518 10:139 0:130 10:499 0:980

10000 11:108 4:135 11:101 249:924 10:111 0:310 10:559 2:098
50000 11:120 59:147 – – 10:109 1:890 10:561 13:029

100000 11:098 161:896 – – 10:079 4:410 10:514 28:527
500000 – – – – 10:059 27:210 10:527 175:725

VLSI testcases
337 6:434 0:035 6:503 0:037 5:958 0:010 5:870 0:016
830 3:202 0:070 3:185 0:213 3:102 0:020 2:966 0:033

1944 7:850 0:342 7:772 2:424 6:857 0:040 7:533 0:238
2437 7:965 0:549 7:956 4:502 7:094 0:050 7:595 0:408
2676 8:928 0:623 8:994 3:686 8:067 0:060 8:507 0:463

12052 8:450 4:289 8:465 232:779 7:649 0:300 8:076 2:281
22373 9:848 11:330 9:832 1128:365 8:987 0:570 9:462 4:605
34728 9:046 18:416 9:010 2367:629 8:158 0:900 8:645 5:334

edges for the pairs. With the longest edge for each point-
edge pair, the gain of connecting the point to the edge can
be calculated. Then each of the point to edge connections
will be realized in a non-increasing order of their gains.
A connection can only be realized if both the connection
edge and deletion edge have not been deleted yet.

The running time of the algorithm is dominated by the
spanning graph generation and edge sorting, which take
O(n log n) time. Since the number of edges in the spanning
graph is O(n), both Kruskal’s algorithm and Tarjan’s off-
line least common ancestor algorithm take O(n˛(n)) time,
where ˛(n) is the inverse of Ackermann’s function, which
grows extremely slow.

Applications

The Steiner Minimal Tree (SMT) problem has wide appli-
cations in VLSI CAD. A SMT is generally used in initial
topology creation for non-critical nets in physical synthe-
sis. For timing critical nets, minimization of wire length is
generally not enough. However, since most nets are non-
critical in a design and a SMT gives the most desirable
route of such a net, it is often used as an accurate estima-
tion of congestion and wire length during floorplanning
and placement. This implies that a Steiner tree algorithm
will be invoked millions of times. On the other hand, there
exist many large pre-routes in modern VLSI design. The
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pre-routes are generally modeled as large sets of points,
thus increasing the input sizes of the Steiner tree problem.
Since the SMT is a problem that will be computed millions
of times and many of them will have very large input sizes,
highly efficient solutions with good performance are de-
sired.

Experimental Results
As reported in [16], the first set of experiments were con-
ducted on a Linux system with a 928MHz Intel Pen-
tium III processor and 512M memory. The RST algo-
rithm was compared with other publicly available pro-
grams: the exact algorithm GeoSteiner (version 3.1) by
Warme,Winter, and Zacharisen [14]; the Batched Iterated
1-Steiner (BI1S) by Robins; and the Borah et al.’s algo-
rithm implemented by Madden (BOI).

Table 1 gives the results of the first set of experi-
ments. For each input size ranging from 100 to 5000,
30 different test cases are randomly generated through
the rand_points program in GeoSteiner. The im-
provement ratios of a Steiner tree St over its cor-
responding minimal spanning tree MST is defined as
100 � (MST � St)/MST. For each input size, the average
of the improvement ratios and the average running time
(in seconds) on each of the programs is reported. As can
be seen, RST always gives better improvements than BOI
with less running times.

The second set of experiments comparedRSTwith Bo-
rah’s implementation of Borah et al.’s algorithm (Borah),
Rohe’s Prim-based algorithm (Rohe) [13], and Kahng
et al.’s Batched Greedy Algorithm (BGA) [9]. They were
run on a different Linux system with a 2.4GHz Intel Xeon
processor and 2G memory. Besides the randomly gener-
ated test cases, the VLSI industry test cases used in [9] were
also used. The results are reported in Table 2.
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ProblemDefinition

Consider a system of asynchronous processes that com-
municate among themselves by only executing read and
write operations on a set of shared variables (also known as
shared registers). The system has no global clock or other
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synchronization primitives. Every shared variable is asso-
ciated with a process (called owner) which writes it and
the other processes may read it. An execution of a write
(read) operation on a shared variable will be referred to as
aWrite (Read) on that variable. A Write on a shared vari-
able puts a value from a pre-determined finite domain into
the variable, and a Read reports a value from the domain.
A process that writes (reads) a variable is called a writer
(reader) of the variable.

The goal is to construct shared variables in which the
following two properties hold. (1) Operation executions
are not necessarily atomic, that is, they are not indivisible
but rather consist of atomic sub-operations, and (2) every
operation finishes its execution within a bounded num-
ber of its own steps, irrespective of the presence of other
operation executions and their relative speeds. That is,
operation executions are wait-free. These two properties
give rise to a classification of shared variables, depend-
ing on their output characteristics. Lamport [8] distin-
guishes three categories for 1-writer shared variables, us-
ing a precedence relation on operation executions defined
as follows: for operation executions A and B, A precedes
B, denoted A �! B, if A finishes before B starts; A and
B overlap if neither A precedes B nor B precedes A. In 1-
writer variables, all theWrites are totally ordered by “�!”.
The three categories of 1-writer shared variables defined
by Lamport are the following.
1. A safe variable is one in which a Read not overlap-

ping anyWrite returns the most recently written value.
A Read that overlaps aWritemay return any value from
the domain of the variable.

2. A regular variable is a safe variable in which a Read that
overlaps one or more Writes returns either the value of
the most recent Write preceding the Read or of one of
the overlapping Writes.

3. An atomic variable is a regular variable in which the
Reads and Writes behave as if they occur in some total
order which is an extension of the precedence relation.
A shared variable is boolean1 or multivalued depend-

ing upon whether it can hold only one out of two or one
out of more than two values. A multiwriter shared vari-
able is one that can be written and read (concurrently) by
many processes. If there is only one writer and more than
one reader it is called amultireader variable.

Key Results

In a series of papers starting in 1974, for details see [4],
Lamport explored various notions of concurrent reading
and writing of shared variables culminating in the semi-

1Boolean variables are referred to as bits.

nal 1986 paper [8]. It formulates the notion of wait-free
implementation of an atomic multivalued shared vari-
able—written by a single writer and read by (another) sin-
gle reader—from safe 1-writer 1-reader 2-valued shared
variables, being mathematical versions of physical flip-
flops, later optimized in [13]. Lamport did not consider
constructions of shared variables with more than one
writer or reader.

Predating the Lamport paper, in 1983 Peterson [10]
published an ingenious wait-free construction of an
atomic 1-writer, n-reader m-valued atomic shared vari-
able from n + 2 safe 1-writer n-reader m-valued registers,
2n 1-writer 1-reader 2-valued atomic shared variables, and
2 1-writer n-reader 2-valued atomic shared variables. He
presented also a proper notion of the wait-freedom prop-
erty. In his paper, Peterson didn’t tell how to construct the
n-reader boolean atomic variables from flip-flops, while
Lamport mentioned the open problem of doing so, and,
incidentally, uses a version of Peterson’s construction to
bridge the algorithmically demanding step from atomic
shared bits to atomic shared multivalues. On the basis
of this work, N. Lynch, motivated by concurrency con-
trol of multi-user data-bases, posed around 1985 the ques-
tion of how to construct wait-free multiwriter atomic vari-
ables from 1-writer multireader atomic variables. Her stu-
dent Bloom [1] found in 1985 an elegant 2-writer con-
struction, which, however, has resisted generalization to
multiwriter. Vitányi and Awerbuch [14] were the first
to define and explore the complicated notion of wait-
free constructions of general multiwriter atomic variables,
in 1986. They presented a proof method, an unbounded
solution from 1-writer 1-reader atomic variables, and
a bounded solution from 1-writer n-reader atomic vari-
ables. The bounded solution turned out not to be atomic,
but only achieved regularity (“Errata” in [14]). The paper
introduced important notions and techniques in the area,
like (bounded) vector clocks, and identified open prob-
lems like the construction of atomic wait-free bounded
multireader shared variables from flip-flops, and atomic
wait-free bounded multiwriter shared variables from the
multireader ones. Peterson who had been working on the
multiwriter problem for a decade, together with Burns,
tried in 1987 to eliminate the error in the unbounded
construction of [14] retaining the idea of vector clocks,
but replacing the obsolete-information tracking tech-
nique by repeated scanning as in [10]. The result [11]
was found to be erroneous in the technical report (R.
Schaffer, On the correctness of atomic multiwriter reg-
isters, Report MIT/LCS/TM-364, 1988). Neither the re-
correction in Schaffer’s Technical Report, nor the claimed
re-correction by the authors of [11] has appeared in print.
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Also in 1987 there appeared at least five purported solu-
tions for the implementation of 1-writer n-reader atomic
shared variable from 1-writer 1-reader ones: [2,7,12] (for
the others see [4]) of which [2] was shown to be incor-
rect (S. Haldar, K. Vidyasankar, ACM Oper. Syst. Rev,
26:1(1992), 87–88) and only [12] appeared in journal ver-
sion. The paper [9], initially a 1987 Harvard Tech Re-
port, resolved all multiuser constructions in one stroke:
it constructs a bounded n-writer n-reader (multiwriter)
atomic variable from O(n2) 1-writer 1-reader safe bits,
which is optimal, and O(n2) bit-accesses per Read/Write
operation which is optimal as well. It works by making the
unbounded solution of [14] bounded, using a new tech-
nique, achieving a robust proof of correctness. “Projec-
tions” of the construction give specialized constructions
for the implementation of 1-writer n-reader (multireader)
atomic variables from O(n2) 1-writer 1-reader ones using
O(n) bit accesses per Read/Write operation, and for the
implementation of n-writer n-reader (multiwriter) atomic
variables from n 1-writer n-reader (multireader) ones. The
first “projection” is optimal, while the last “projection”
may not be optimal since it uses O(n) control bits per
writer while only a lower bound of ˝(log n) was estab-
lished. Taking up this challenge, the construction in [6]
claims to achieve this lower bound.

Timestamp System

In a multiwriter shared variable it is only required that
every process keeps track of which process wrote last.
There arises the general question whether every process
can keep track of the order of the last Writes by all pro-
cesses. A. Israeli and M. Li were attracted to the area by
the work in [14], and, in an important paper [5], they
raised and solved the question of the more general and
universally useful notion of a bounded timestamp sys-
tem to track the order of events in a concurrent system.
In a timestamp system every process owns an object, an
abstraction of a set of shared variables. One of the re-
quirements of the system is to determine the temporal
order in which the objects are written. For this purpose,
each object is given a label (also referred to as a times-
tamp) which indicates the latest (relative) time when it
has been written by its owner process. The processes as-
sign labels to their respective objects in such a way that
the labels reflect the real-time order in which they are
written to. These systems must support two operations,
namely labeling and scan. A labeling operation execution
(Labeling, in short) assigns a new label to an object, and
a scan operation execution (Scan, in short) enables a pro-
cess to determine the ordering in which all the objects are

written, that is, it returns a set of labeled-objects ordered
temporally. The concern is with those systems where op-
erations can be executed concurrently, in an overlapped
fashion. Moreover, operation executions must be wait-
free, that is, each operation execution will take a bounded
number of its own steps (the number of accesses to the
shared space), irrespective of the presence of other op-
eration executions and their relative speeds. Israeli and
Li [5] constructed a bit-optimal bounded timestamp sys-
tem for sequential operation executions. Their sequential
timestamp system was published in the above journal ref-
erence, but the preliminary concurrent timestamp system
in the conference proceedings, of which a more detailed
version has been circulated in manuscript form, has not
been published in final form. The first generally accepted
solution of the concurrent case of the bounded timestamp
system was from Dolev and Shavit [3]. Their construc-
tion is of the type presented in [5] and uses shared vari-
ables of size O(n), where n is the number of processes in
the system. Each Labeling requires O(n) steps, and each
Scan O(n2 log n) steps. (A ‘step’ accesses an O(n) bit vari-
able.) In [4] the unbounded construction of [14] is cor-
rected and extended to obtain an efficient version of the
more general notion of a bounded concurrent timestamp
system.

Applications

Wait-free registers are, together with message-passing sys-
tems, the primary interprocess communication method in
distributed computing theory. They form the basis of all
constructions and protocols, as can be seen in the text-
books. Wait-free constructions of concurrent timestamp
systems (CTSs, in short) have been shown to be a pow-
erful tool for solving concurrency control problems such
as various types of mutual exclusion, multiwriter multi-
reader shared variables [14], and probabilistic consensus,
by synthesizing a “wait-free clock” to sequence the actions
in a concurrent system. For more details see [4].

Open Problems

There is a great deal of work in the direction of regis-
ter constructions that use less constituent parts, or sim-
pler parts, or parts that can tolerate more complex fail-
ures, than previous constructions referred to above. Only,
of course, if the latter constructions were not yet optimal
in the parameter concerned. Further directions are work
on wait-free higher-typed objects, as mentioned above, hi-
erarchies of such objects, and probabilistic constructions.
This literature is too vast and diverse to be surveyed here.
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Experimental Results

Register constructions, or related constructions for asyn-
chronous interprocess communication, are used in cur-
rent hardware and software.
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ProblemDefinition

Regular expressions (REs) provide an expressive and pow-
erful formalism for capturing the structure of messages,
events, and documents. Consequently, they have been
used extensively in the specification of a number of lan-
guages for important application domains, including the
XPath pattern language for XML documents [6], and the
policy language of the Border Gateway Protocol (BGP)
for propagating routing information between autonomous
systems in the Internet [12]. Many of these applications
have to manage large databases of RE specifications and
need to provide an effective matching mechanism that,
given an input string, quickly identifies all the REs in the
database that match it. This RE retrieval problem is there-
fore important for a variety of software components in the
middleware and networking infrastructure of the Internet.

The RE retrieval problem can be stated as follows:
Given a large set S of REs over an alphabet˙ , where each
RE r 2 S defines a regular language L(r), construct a data
structure on S that efficiently answers the following query:
given an arbitrary input string w 2 ˙�, find the subset Sw
of REs in S whose defined regular languages include the
string w. More precisely, r 2 Sw iff w 2 L(r). Since S is
a large, dynamic, disk-resident collection of REs, the data
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structure should be dynamic and provide efficient support
of updates (insertions and deletions) to S. Note that this
problem is the opposite of the more traditional RE search
problem where S 
 ˙� is a collection of strings and the
task is to efficiently find all strings in S that match an input
regular expression.

Notations

An RE r over an alphabet˙ represents a subset of strings
in ˙� (denoted by L(r)) that can be defined recursively
as follows [9]: (1) the constants � and ; are REs, where
L(�) = f�g and L(;) = ;; (2) for any letter a 2 ˙ , a is a RE
where L(a) = fag; (3) if r1 and r2 are REs, then their union,
denoted by r1 +r2, is a RE where L(r1 +r2) = L(r1) [ L(r2);
(4) if r1 and r2 are REs, then their concatenation, denoted
by r1:r2, is a RE where L(r1:r2) = fs1s2 j s1 2 L(r1); s2 2
L(r2)g; (5) if r is a RE, then its closure, denoted by r�, is
a RE where L(r�) = L(�) [ L(r) [ L(rr) [ L(rrr) [ � � �;
and (6) if r is a RE, then a parenthesized r, denoted by (r),
is a RE where L((r)) = L(r). For example, if˙ = fa; b; cg,
then (a + b):(a + b + c)�:c is a RE representing the set of
strings that begins with either a “a” or a “b” and ends with
a “c”. A string s 2 ˙� is said to match a RE r if s 2 L(r).

The language L(r) defined by an RE r can be recog-
nized by a finite automaton (FA) M that decides if an input
string w is in L(r) by reading each letter in w sequentially
and updating its current state such that the outcome is de-
termined by the final state reached by M after w has been
processed [9]. Thus, M is an FA for r if the language ac-
cepted by M, denoted by L(M), is equal to L(r). An FA is
classified as a deterministic finite automaton (DFA) if its
current state is always updated to a single state; otherwise,
it is a non-deterministic finite automaton (NFA) if its cur-
rant state could refer to multiple possible states. The trade
off between a DFA and an NFA representations for a RE
is that the latter is more space-efficient while the former
is more time-efficient for recognizing a matching string by
checking a single path of state transitions. Let jL(M)j de-
note the size of L(M) and jLn(M)j denote the number of
length-n strings in L(M). Given a setM of finite automata,
let L(M) denote the language recognized by the automata
inM; i. e., L(M) =

S
Mi2M L(Mi).

Key Results

The RE retrieval problem was first studied for a restricted
class of REs in the context of content-based dissemina-
tion of XML documents using XPath-based subscriptions
(e. g., [1,3,7]), where each XPath expression is processed in
terms of a collection of path expressions. While the XPath
language [6] allows rich patterns with tree structure to be

specified, the path expressions that it supports lack the full
expressive power of REs (e. g., XPath does not permit the
RE operators �, + and � to be arbitrarily nested in path ex-
pressions), and thus extending these XML-filtering tech-
niques to handle general REs may not be straightforward.
Further, all of the XPath-based methods are designed for
indexing main-memory resident data. Another possible
approach would be to coalesce the automata for all the REs
into a single NFA, and then use this structure to determine
the collection of matching REs. It is unclear, however, if
the performance of such an approach would be superior
to a simple sequential scan over the database of REs; fur-
thermore, it is not easy to see how such a scheme could be
adapted for disk-resident RE data sets.

The first disk-based data structure that can handle
the storage and retrieval of REs in their full generality is
the RE-tree [4,5]. Similar to the R-tree [8], an RE-tree is
a dynamic, height-balanced, hierarchical index structure,
where the leaf nodes contain data entries corresponding
to the indexed REs, and the internal nodes contain “direc-
tory” entries that point to nodes at the next level of the
index. Each leaf node entry is of the form (id,M), where
id is the unique identifier of an RE r and M is a finite au-
tomaton representing r. Each internal node stores a collec-
tion of finite automata; and each node entry is of the form
(M, ptr), whereM is a finite automaton and ptr is a pointer
to some node N (at the next level) such that the following
containment property is satisfied: IfMN is the collection of
automata contained in nodeN, then L(MN ) 
 L(M). The
automatonM is referred to as the bounding automaton for
MN . The containment property is key to improving the
search performance of hierarchical index structures like
RE-trees: if a query string w is not contained in L(M), then
it follows thatw 62 L(Mi ) for allMi 2MN . As a result, the
entire subtree rooted at N can be pruned from the search
space. Clearly, the closer L(M) is to L(MN ), the more ef-
fective this search-space pruning will be.

In general, there are an infinite number of bounding
automata forMN with different degrees of precision from
the least precise bounding automaton with L(M) = ˙� to
the most precise bounding automaton, referred to as the
minimal bounding automaton, with L(M) = L(MN ). Since
the storage space for an automaton is dependent on its
complexity (in terms of the number of its states and tran-
sitions), there is a space-precision tradeoff involved in the
choice of a bounding automaton for each internal node en-
try. Thus, even though minimal bounding automata result
in the best pruning due to their tightness, it may not be de-
sirable (or even feasible) to always storeminimal bounding
automata in RE-trees since their space requirement can be
too large (possibly exceeding the size of an index node),
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thus resulting in an index structure with a low fan-out.
Therefore, to maintain a reasonable fan-out for RE-trees,
a space constraint is imposed on the maximum number
of states (denoted by ˛) permitted for each bounding au-
tomaton in internal RE-tree nodes. The automata stored
in RE-tree nodes are, in general, NFAs with a minimum
number of states. Also, for better space utilization, each
individual RE-tree node is required to contain at least m
entries. Thus, the RE-tree height is O(logm(jSj)).

RE-trees are conceptually similar to other hierarchi-
cal, spatial index structures, like the R-tree [8] that is de-
signed for indexing a collection of multi-dimensional rect-
angles, where each internal entry is represented by a min-
imal bounding rectangle (MBR) that contains all the rect-
angles in the node pointed to by the entry. RE-tree search
simply proceeds top-down along (possibly) multiple paths
whose bounding automaton accepts the input string; RE-
tree updates try to identify a “good” leaf node for inser-
tion and can lead to node splits (or, node merges for dele-
tions) that can propagate all the way up to the root. There
is, however, a fundamental difference between the RE-tree
and the R-tree in the indexed data types: regular languages
typically represent infinite sets with no well-defined no-
tion of spatial locality. This difference mandates the de-
velopment of novel algorithmic solutions for the core RE-
tree operations. To optimize for search performance, the
core RE-tree operations are designed to keep each bound-
ing automatonM in every internal node to be as “tight” as
possible. Thus, if M is the bounding automaton forMN ,
then L(M) should be as close to L(MN ) as possible.

There are three core operations that need to be ad-
dressed in the RE-tree context: (P1) selection of an op-
timal insertion node, (P2) computing an optimal node
split, and (P3) computing an optimal bounding automa-
ton. The goal of (P1) is to choose an insertion path for
a new RE that leads to “minimal expansion” in the bound-
ing automaton of each internal node of the insertion path.
Thus, given the collection of automata M(N) in an in-
ternal index node N and a new automaton M, an opti-
mal Mi 2M(N) needs to be chosen to insertM such that
jL(Mi) \ L(M)j is maximum. The goal of (P2), which
arises when splitting a set of REs during an RE-tree node-
split, is to identify a partitioning that results in theminimal
amount of “covered area” in terms of the languages of the
resulting partitions. More formally, given the collection of
automataM = fM1;M2; � � � ;Mkg in an overflowed index
node, find the optimal partition of M into two disjoint
subsetsM1 andM2 such that jM1j � m, jM2j � m and
jL(M1)j + jL(M2)j is minimum. The goal of (P3), which
arises during insertions, node-splits, or node-merges, is to
identify a bounding automaton for a set of REs that does

not cover too much “dead space”. Thus, given a collection
of automataM, the goal is to find the optimal bounding
automaton M such that the number of states of M is no
more than ˛, L(M) 
 L(M) and jL(M)j is minimum.

The objective of the above three operations is to max-
imize the pruning during search by keeping bounding au-
tomata tight. In (P1), the optimal automaton Mi selected
(within an internal node) to accommodate a newly in-
serted automatonM is to maximize jL(Mi) \ L(M)j. The
set of automataM are split into two tight clusters in (P2),
while in (P3), the most precise automaton (with no more
than ˛ states) is computed to cover the set of automata
in M. Note that (P3) is unique to RE-trees, while both
(P1) and (P2) have their equivalents in R-trees. The heuris-
tics solutions [2,8] proposed for (P1) and (P2) in R-trees
aim to minimize the number of visits to nodes that do not
lead to any qualifying data entries. Although the minimal
bounding automata in RE-trees (which correspond to reg-
ular languages) are very different from the MBRs in R-
trees, the intuition behind minimizing the area of MBRs
(total area or overlapping area) in R-trees should be ef-
fective for RE-trees as well. The counterpart for area in
an RE-tree is jL(M)j, the size of the regular language for
M. However, since a regular language is generally an infi-
nite set, new measures need to be developed for the size of
a regular language or for comparing the sizes of two regu-
lar languages.

One approach to compare the relative sizes of two reg-
ular languages is based on the following definition: for
a pair of automata Mi and Mj, L(Mi) is said to be larger
than L(Mj) if there exists a positive integer N such that
for all k � N ,

Pk
l=1 jLl (Mi)j �

Pk
l=1 jLl (Mj)j. Based on

the above intuition, three increasingly sophisticated mea-
sures are proposed to capture the size of an infinite regu-
lar language. The max-count measure simply counts the
number of strings in the language up to a certain size
�; i. e., jL(M)j =

P

i=1 jLi(M)j. This measure is useful for

applications where the maximum length of all the REs
to be indexed are known and is not too large so that �
can be set to some value slightly larger than the max-
imum length of the REs. A second more robust mea-
sure that is less sensitive to the � parameter value is
the rate-of-growth measure which is based on the intu-
ition that a larger language grows at a faster rate than
a smaller language. The size of a language is approxi-
mated by computing the rate of change of its size from
one “window” of lengths to the next consecutive “win-
dow” of lengths: if � is a length parameter that denote the
start of the first window and � is a window-size parameter,
then jL(M)j =

P
+2��1

+� jLi(M)j/

P
+��1

 jLi(M)j. As in
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the max-count measure, the parameters � and � should be
chosen to be slightly greater than the number of states of
M to ensure that strings involving a substantial portion of
paths, cycles, and accepting states are counted in each win-
dow. However, there are cases where the rate-of-growth
measure also fails to capture the “larger than” relation-
ship between regular languages [4]. To address some of the
shortcomings of the first two metrics, a third information-
theoretic measure is proposed that is based on Rissanen’s
Minimum description length (MDL) principle [11]. The
intuition is that if L(Mi) is larger than L(Mj), then the
per-symbol-cost of an MDL-based encoding of a random
string in L(Mi) using Mi is very likely to be higher than
that of a string in L(Mj) using Mj, where the per-symbol-
cost of encoding a string w 2 L(M) is the ratio of the cost
of an MDL-based encoding of w using M to the length
of w. More specifically, if w = w1:w2: � � � :wn 2 L(M) and
s0; s1; : : : ; sn is the unique sequence of states visited by w
in M, then the MDL-based encoding cost of w using M is
given by

Pn�1
i=0 dlog2(ni )e, where each ni denotes the num-

ber of transitions out of state si, and log2(ni ) is the num-
ber of bits required to specify the transition out of state si.
Thus, a reasonable measure for the size of a regular lan-
guage L(M) is the expected per-symbol-cost of an MDL-
based encoding for a random sample of strings in L(M).

To utilize the above metrics for measuring L(M), one
common operation needed is the computation of jLn(M)j,
the number of length-n strings in L(M). While jLn(M)j
can be efficiently computed when M is a DFA, the prob-
lem becomes #P-complete when M is an NFA [10]. Two
approaches were proposed to approximate jLn(M)j when
N is an NFA [10]. The first approach is an unbiased esti-
mator for jLn(M)j, which can be efficiently computed but
can have a very large standard deviation. The second ap-
proach is a more accurate randomized algorithm for ap-
proximating jLn(M)j but it is not very useful in practice
due to its high time complexity of O(nlog(n)). A more prac-
tical approximation algorithm with a time complexity of
O(n2jMj2 minfj˙ j; jMjg) was proposed in [4].

The RE-tree operations (P1) and (P2) require frequent
computations of jL(Mi \ Mj)j and jL(Mi [ Mj)j to be
performed for pairs of automata Mi ;Mj . These computa-
tions can adversely affect RE-tree performance since con-
struction of the intersection and union automaton M can
be expensive. Furthermore, since the final automaton M
may have many more states than the two initial automata
Mi and Mj, the cost of measuring jL(M)j can be high.
The performance of these computations can, however, be
optimized by using sampling. Specifically, if the counts
and samples for each L(Mi) are available, then this infor-
mation can be utilized to derive approximate counts and

samples for L(Mi \Mj) and L(Mi [ Mj) without incur-
ring the overhead of constructing the automata Mi \Mj
andMi [ Mj and counting their sizes. The sampling tech-
niques used are based on the following results for approx-
imating the sizes of and generating uniform samples of
unions and intersections of arbitrary sets:

Theorem 1 (Chan, Garofalakis, Rastogi, [4]) Let r1 and
r2 be uniform random samples of sets S1 and S2, respec-
tively.
1. (jr1 \ S2jjS1j)/jr1j is an unbiased estimator of the size of

S1 \ S2.
2. r1 \ S2 is a uniform random sample of S1 \ S2 with size
jr1 \ S2j.

3. If the sets S1 and S2 are disjoint, then a uniform ran-
dom sample of S1 [ S2 can be computed in O(jr1j + jr2j)
time. If S1 and S2 are not disjoint, then an approximate
uniform random sample of S1 [ S2 can be computed
with the same time complexity.

Applications

The RE retrieval problem also arises in the context of both
XML document classification, which identifies match-
ing DTDs for XML documents, as well as BGP rout-
ing, which assigns appropriate priorities to BGP advertise-
ments based on their matching routing-system sequences.

Experimental Results

Experimental results with synthetic data sets [5] clearly
demonstrate that the RE-tree index is significantly more
effective than performing a sequential search for match-
ing REs, and in a number of cases, outperforms sequential
search by up to an order of magnitude.
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ProblemDefinition

Given a text string T of length n and a regular expression
R, the regular expression matching problem (REM) is to
find all text positions at which an occurrence of a string in
L(R) ends (see below for definitions).

For an alphabet˙ , a regular expression R over˙ con-
sists of elements of ˙ [ f"g (" denotes the empty string)
and operators � (concatenation), | (union), and � (iter-
ation, that is, repeated concatenation); the set of strings
L(R) represented by R is defined accordingly; see [5].
It is important to distinguish two measures for the size
of a regular expression: the size, m, which is the total
number of characters from ˙ [ f�; j;�g, and ˙-size, m˙ ,
which counts only the characters in˙ . As an example, for
R = (AjT)((CjCG)�), the set L(R) contains all strings that
start with an A or a T followed by zero or more strings in
the set {C, CG}; the size of R is m = 8 and the ˙-size is

m˙ = 5. Any regular expression can be processed in lin-
ear time so that m = O(m˙ ) (with a small constant); the
difference becomes important when the two sizes appear
as exponents.

Key Results

Finite Automata

The classical solutions for the REM problem involve fi-
nite automata which are directed graphs with the edges
labeled by symbols from ˙ [ f"g; their nodes are called
states; see [5] for details. Unrestricted automata are called
nondeterministic finite automata (NFA). Deterministic fi-
nite automata (DFA) have no "-labels and require that
no two outgoing edges of the same state have the same
label. Regular expressions and DFAs are equivalent, that
is, the sets of strings represented are the same, as shown
by Kleene [8]. There are two classical ways of computing
an NFA from a regular expression. Thompson’s construc-
tion [14], builds an NFA with up to 2m states and up to
4m edges whereas Glushkov–McNaughton–Yamada’s au-
tomaton [3,9] has theminimumnumber of states,m˙ + 1,
and O(m2

˙ ) edges; see Fig. 1. Any NFA can be converted
into an equivalent DFA by the subset construction: each
subset of the set of states of the NFA becomes a state of
the DFA. The problem is that the DFA can have exponen-
tially more states than the NFA. For instance, the regular
expression ((ajb)�)a(ajb)(ajb) : : : (a|b), with k occur-
rences of the (a|b) term, has a (k + 2)-state NFA but re-
quires˝(2k) states in any equivalent DFA.

Classical Solutions

A regular expression is first converted into anNFAorDFA
which is then simulated on the text. In order to be able to
search for a match starting anywhere in the text, a loop
labeled by all elements of˙ is added to the initial state; see
Fig. 1.

Searching with an NFA requires linear space but many
states can be active at the same time and to update them all
one needs, for Thompson’s NFA,O(m) time for each letter
of the text; this gives Theorem 1. On the other hand, DFAs
allow searching time that is linear in n but require more
space for the automaton. Theorem 2 uses the DFA ob-
tained from the Glushkov–McNaughton–Yamada’s NFA.

Theorem 1 (Thompson [14]) The REM problem can be
solved with an NFA inO(mn) time andO(m) space.

Theorem 2 (Kleene [8]) The REM problem can be solved
with a DFA inO(n + 2m˙ ) time and O(2m˙ ) space.

http://www.w3.org./TR/xpath
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Regular ExpressionMatching, Figure 1
Thompson’s NFA (left) and Glushkov–McNaughton–Yamada’s NFA (right) for the regular expression (A|T)((C|CG)*); the initial
loops labeled A,T,C,G are not part of the construction, they are needed for REM

Lazy Construction and Modules

One heuristic to alleviate the exponential increase in the
size of DFA is to build only the states reached while scan-
ning the text, as implemented in Gnu Grep. Still, the space
needed for the DFA remains a problem. A four-Russians
approach was presented by Myers [10] where a tradeoff
between the NFA and DFA approaches is proposed. The
syntax tree of the regular expression is divided into mod-
ules which are implemented as DFAs and are thereafter
treated as leaf nodes in the syntax tree. The process con-
tinues until a single module is obtained.

Theorem 3 (Myers [10]) The REM problem can be solved
in O(mn/ log n) time andO(mn/ log n) space.

Bit-Parallelism

The simulation of the above mentioned modules is done
by encoding all states as bits of a single computer word
(called bit mask) so that all can be updated in a single op-
eration. The method can be used without modules, to sim-
ulate directly an NFA as done in [17] and implemented
in the Agrep software [16]. Note that, in fact, the DFA is
also simulated: a whole bit mask corresponds to a subset
of states of the NFA, that is, one state of the DFA.

The bit-implementation of Wu and Manber [17] uses
the property of Thompson’s automaton that all˙-labeled
edges connect consecutive states, that is, they carry a bit
1 from position i to position i + 1. This makes it easy to
deal with the ˙-labeled edges but the "-labeled ones are
more difficult. A table of size linear in the number of states
of the DFA needs to be precomputed to account for the
"-closures (set of states reachable from a given state by "-
paths).

Note that in Theorems 1, 2, and 3 the space complexity
is given in words. In Theorems 4 and 5 below, for a more
practical analysis, the space is given in bits and the alpha-
bet size is also taken into consideration. For comparison,
the space in Theorem 2, given in bits, is O(j˙ jm˙2m˙ ).

Theorem 4 (Wu andManber [17]) Thompson’s automa-
ton can be implemented using 2m(22m+1 + j˙ j) bits.

Glushkov–McNaughton–Yamada’s automaton has differ-
ent structural properties. First, it is "-free, that is, there are
no "-labels on edges. Second, all edges incoming to a given
state are labeled the same. These properties are exploited
by Navarro and Raffinot [13] to construct a bit-parallel im-
plementation that requires less space. The results is a sim-
ple algorithm for regular expression searching which uses
less space and usually performs faster than any existing al-
gorithm.

Theorem 5 (Navarro and Raffinot [13]) Glushkov–
McNaughton–Yamada’s automaton can be implemented
using (m˙ + 1)(2m˙+1 + j˙ j) bits.

All algorithms in this category run in O(n) time but
smaller DFA representation implies more locality of refer-
ence and thus faster algorithms in practice. An improve-
ment of any algorithm using Glushkov–McNaughton–
Yamada’s automaton can be done by reducing first the
automaton by merging some of its states, as done by
Ilie et al. [6]. The reduction can be performed in such
a way that all useful properties of the automaton are pre-
served. The search becomes faster due to the reduction in
size.

Filtration

The above approaches examine every character in the
text. In [15] a multipattern search algorithm is used to
search for strings that must appear inside any occurrence
of the regular expression. Another technique is used in
Gnu Grep; it extracts the longest string that must appear in
any match (it can be used only when such a string exists).
In [13], bit-parallel techniques are combined with a re-
verse factor search approach to obtain a very fast character
skipping algorithm for regular expression searching.
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Related Problems

Regular expressions with backreference have a feature that
helps remembering what was matched to be used later;
the matching problem becomes NP-complete; see [1]. Ex-
tended regular expressions involve adding two extra oper-
ators, intersection and complement, which do not change
the expressive power. The corresponding matching prob-
lem can be solved inO((n + m)4) time using dynamic pro-
gramming, see [5, Exercise 3.23].

Concerning finite automata construction, recall that
Thompson’s NFA has O(m) edges whereas the "-free
Glushkov–McNaughton–Yamada’s NFA can have a quad-
ratic number of edges. It has been shown in [2] that one
can always build an "-free NFAwithO(m logm) edges (for
fixed alphabets). However, it is the number of states which
is more important in the searching algorithms.

Applications

Regular expression matching is a powerful tool in text-
based applications, such as text retrieval and text editing,
and in computational biology to find various motifs in
DNA and protein sequences. See [4] for more details.

Open Problems

The most important theoretical problem is whether lin-
ear time and linear space can be achieved simultane-
ously. Characterizing the regular expressions that can be
searched for using a linear-size equivalent DFA is also of
interest. The expressions consisting of a single string are
included here – the algorithm of Knuth, Morris, and Pratt
is based on this. Also, it is not clear howmuch an NFA can
be efficiently reduced (as done by [6]); the problem of find-
ing a minimal NFA is PSPACE-complete, see [7]. Finally,
for testing, it is not clear how to define random regular ex-
pressions.

Experimental Results

A disadvantage of the bit-parallel technique compared
with the classical implementation of a DFA is that the for-
mer builds all possible subsets of states whereas the latter
builds only the states that can be reached from the initial
one (the other ones are useless). On the other hand, bit-
parallel algorithms are simpler to code, more flexible (they
allow also approximate matching), and there are tech-
niques for reducing the space required. Among the bit-
parallel versions, Glushkov–McNaughton–Yamada-based
algorithms are better than Thompson-based ones. Mod-
ules obtain essentially the same complexity as bit-parallel
ones but are more complicated to implement and slower

in practice. As the number of computer words increases,
bit-parallel algorithms slow down and modules may be-
come attractive. Note also that technological progress has
more impact on the bit-parallel algorithms, as opposed to
classical ones, since the former depend very much on the
machine word size. For details on comparison among var-
ious algorithms (including filtration based) see [12]; more
recent comparisons are in [13], including the fastest algo-
rithms to date.

URL to Code

Many text editors and programming languages include
regular expression search features. They are, as well,
among the tools used in protein databases, such as
PROSITE and SWISS-PROT, which can be found at
http://www.expasy.org/. The package agrep [17] can be
downloaded from http://webglimpse.net/download.html
and nrgrep [11] from http://www.dcc.uchile.cl/gnavarro/
software.
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� Approximate Regular Expression Matching is a more
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Neuro dynamic programming

ProblemDefinition

Many sequential decision problems ranging from dynamic
resource allocation to robotics can be formulated in terms
of stochastic control and solved by methods of Reinforce-
ment learning. Therefore, Reinforcement learning (a.k.a
Neuro Dynamic Programming) has become one of the
major approaches to tackling real life problems.

In Reinforcement learning, an agent wanders in an un-
known environment and tries to maximize its long term
return by performing actions and receiving rewards. The
most popular mathematical models to describe Reinforce-
ment learning problems are the Markov Decision Process
(MDP) and its generalization Partially Observable MDP.
In contrast to supervised learning, in Reinforcement learn-
ing the agent is learning through interaction with the envi-
ronment and thus influences the “future”. One of the chal-
lenges that arises in such cases is the exploration-exploita-
tion dilemma. The agent can choose either to exploit its
current knowledge and perhaps not learn anything new or
to explore and risk missing considerable gains.

While Reinforcement learning contains many prob-
lems, due to lack of space this entry focuses on the basic
ones. For a detailed history of the development of Rein-
forcement learning, see [13] chapter 1, the focus of the en-
try is on Q-learning and Rmax.

Notation

Markov Decision Process: A Markov Decision Process
(MDP) formalizes the following problem. An agent is in
an environment, which is composed of different states. In
each time step the agent performs an action and as a result
observes a signal. The signal is composed from the reward
to the agent and the state it reaches in the next time step.
More formally the MDP is defined as follows,

Definition 1 AMarkov Decision process (MDP)M is a 4-
tuple (S;A; P; R), where S is a set of the states, A is a set
of actions, Pa

s;s0 is the transition probability from state s
to state s0 when performing action a 2 A in state s, and
R(s, a) is the reward distribution when performing action
a in state s.

A strategy for an MDP assigns, at each time t, for each
state s a probability for performing action a 2 A, given
a history Ft�1 = fs1; a1; r1; : : : ; st�1; at�1; rt�1g which in-
cludes the states, actions and rewards observed until time
t � 1. While executing a strategy 
 an agent performs at
time t action at in state st and observe a reward rt (dis-
tributed according to R(st ; at)), and a next state st+1 (dis-
tributed according to Pat

st ;�). The sequence of rewards is
combined into a single value called the return. The agent’s
goal is to maximize the return. There are several natural
ways to define the return.
� Finite horizon: The return of policy 
 for a given hori-

zon H is
PH

t=0 rt .
� Discounted return: For a discount parameter � 2 (0; 1),

the discounted return of policy 
 is
P1

t=0 �
t rt .

� Undiscounted return: The return of policy 
 is
limt!1

1
t+1
Pt

i=0 ri .
Due to to lack of space, only discounted return, which
is the most popular approach mainly due to its math-
ematical simplicity, is considered. The value func-
tion for each state s, under policy 
 , is defined as
V� (s) = E� [

P1
i=0 ri�

i], where the expectation is over
a run of policy 
 starting at state s. The state-action value
function for using action a in state s and then following 

is defined as Q� (s; a) = R(s; a) + �

P
s0 P

a
s;s0V

� (s0).
There exists a stationary deterministic optimal policy,


�, which maximizes the return from any start state [11].
This implies that for any policy 
 and any state s,
V�� (s) � V� (s), and 
�(s) = argmaxa(Q

�� (s; a)). A po-
licy 
 is "-optimal if kV�� � V�k1 � �.

Problems Formulation

The Reinforcement learning problems are divided into
two categories, planning and learning.
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Planning: Given an MDP in its tabular form compute
the optimal policy. An MDP is given in its tabular form if
the 4-tuple, (A; S; P; R) is given explicitly.

The standard methods for the planning problem in
MDP are given below.

Value Iteration: The value iteration is defined as fol-
lows. Start with some initial value function, Cs and then it-
erate using the Bellman operator, TV (s) = maxa R(s; a) +
�
P

s02S P
a
s;s0V(s0).

V0(s) = Cs

Vt+1(s) = TVt(s) ;

This method relies on the fact that the Bellman operator
is contracting. Therefore, the distance between the opti-
mal value function and current value function contracts
by a factor of � with respect to max norm (L1) in each
iteration.

Policy Iteration: This algorithm starts with initial pol-
icy 
0 and iterates over polices. The algorithm has two
phases for each iteration. In the first phase, the Value
evaluation step, a value function for 
t is calculated, by
finding the fixed point of T�t V�t = V�t , where T�t V =
R(s; 
t(s)) + �

P
s02S P

�t (s)
s;s0 V(s0). The second phase, Pol-

icy Improvement step, is taking the next policy, 
t+1 as
a greedy policy with respect to V�t . It is known that Policy
iteration converges with fewer iterations than value itera-
tion. In practice the convergence of Policy iteration is very
fast.

Linear Programming: Formulates and solves an MDP
as linear program (LP). The LP variables are V1,. . . ,Vn,
where Vi = V (si). The definition is:

Variables: V1; : : : ;Vn

Minimize:
X
i

Vi

Subject to: Vi � [R(si ; a) + �
X
j

Psi ;s j (a)Vj]

8a 2 A; si 2 S:

Learning: Given the states and action identities, learn an
(almost)optimal policy through interaction with the en-
vironment. The methods are divided into two categories:
model free learning and model based learning.

The widely used Q-learning [16] is a model free al-
gorithm. This algorithm belongs to the class of tempo-
ral difference algorithms [12]. Q-learning is an off policy
method, i. e. it does not depend on the underlying policy

Rmax
Set K = ;;
if s 2 K? then

Execute 
̂(s)
else

Execute a random action;
if s becomes known then

K = K
S
fsg;

Compute optimal policy, 
̂ for
the modified empirical model

end
end

Reinforcement Learning, Algorithm 1
Amodel based algorithm

and as immediately will be seen it depends on the trajec-
tory and not on the policy generating the trajectory.

Q learning: The algorithm estimates the state-action
value function (for discounted return) as follows:

Q0(s; a) = 0
Qt+1(s; a) = (1 � ˛t(s; a))Qt(s; a)

+ ˛t(s; a)(rt(s; a) + �Vt(s0))

where s0 is the state reached from state s when perform-
ing action a at time t, and Vt(s) = maxa Qt(s; a). As-
sume that ˛t(s0; a0) = 0 if at time t action a0 was not per-
formed at state s0. A learning rate ˛t is well-behaved if
for every state action pair (s, a): (1)

P1
t=1 ˛t(s; a) =1 and

(2)
P1

t=1 ˛
2
t (s; a) <1. As will be seen this is necessary for

the convergence of the algorithm.
The model based algorithms are very simple to de-

scribe; they simply build an empirical model and use any
of the standard methods to find the optimal policy in the
empirical (approximate) model. The main challenge in
this methods is in balancing exploration and exploitation
and having an appropriate stopping condition. Several al-
gorithms give a nice solution for this [3,7]. A version of
these algorithms appearing in [6] is described below.

On an intuitive level a state will become known when it
was visited “enough” times and one can estimate with high
probability its parameters with good accuracy. The mod-
ified empirical model is defined as follows. All states that
are not in K are represented by a single absorbing state in
which the reward is maximal (which causes exploration).
The probability to move to the absorbing state from a state
s 2 K is the empirical probability to move out of K from
s and the probability to move between states in K is the
empirical probability.
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Sample complexity [6] measures how many samples
an algorithm need in order to learn. Note that the sample
complexity translates into the time needed for the agent to
wander in the MDP.

Key Results

The first Theorem shows that the planning problem is easy
as long as theMDP is given in its tabular form, and one can
use the algorithms presented in the previous section.

Theorem 1 ([10]) Given an MDP the planning problem is
P-complete.

The learning problem can be done also efficiently using the
Rmax algorithm as is shown below.

Theorem 2 ([3,7]) Rmax computes an "-optimal policy
from state s with probability at least 1 � ı with sample com-
plexity polynomial in jAj; jSj; 1

�
and log 1

ı
, where s is the

state in which the algorithm halts. Also the algorithm’s com-
putational complexity is polynomial in jAj and jSj.

The fact that Q-learning converges in the limit to the op-
timal Q function (which guarantees that the greedy pol-
icy with respect to the Q function will be optimal) is now
shown.

Theorem 3 ([17]) If every state-action is visited infinitely
often and the learning rate is well behaved then Qt con-
verges to Q� with probability one.

The last statement is regarding the convergence rate of
Q-learning. This statement must take into consideration
some properties of the underlying policy, and assume that
this policy covers the entire state space in reasonable time.
The next theorem shows that the convergence rate of Q-
learning can vary according to the tuning of the algorithm
parameters.

Theorem 4([4]) Let L be the time needed for the underly-
ing policy to visit every state action with probability 1/2. Let
T be the time until kQ� � QTk � � with probability at least
1 � ı and #(s; a; t) be the number of times action a was per-
formed at state s until time t. Then if ˛t(s; a) = 1/#(s; a; t),
then T is polynomial in L; 1

�
; log 1

ı
and exponential in 1

1�� .
If ˛t(s; a) = 1/#(s; a; t)! for ! 2 (1/2; 1), then T is polyno-
mial L; 1

�
; log 1

ı
and 1

1�� .

Applications

The biggest successes of Reinforcement learning so far
are mentioned here. For a list of Reinforcement learn-
ing successful applications see http://neuromancer.eecs.
umich.edu/cgi-bin/twiki/view/Main/SuccessesOfRL.

Backgammon Tesauro [14] used Temporal difference
learning combined with neural network to design a player
who learned to play backgammon by playing itself, and re-
sult in one level with the world’s top players.
Helicopter control Ng et al. [9] used inverse Reinforce-
ment learning for autonomous helicopter flight.

Open Problems

While in this entry only MDPs given in their tabular form
were discussed much of the research is dedicated to two
major directions: large state space and partially observable
environments.

In many real world applications, such as robotics, the
agent cannot observe the state she is in and can only ob-
serves a signal which is correlated with it. In such scenar-
ios the MDP framework is no longer suitable, and another
model is in order. The most popular reinforcement learn-
ing for such environment is the Partially ObservableMDP.
Unfortunately, for POMDP even the planning problems
are intractable (and not only for the optimal policy which
is not stationary but even for the optimal stationary pol-
icy); the learning contains evenmore obstacles as the agent
cannot repeat the same state twice with certainty and thus
it is not obvious how she can learn. An interesting open
problem is trying to characterize when a POMDP is “solv-
able” and when it is hard to solve according to some struc-
ture.

In most applications the assumption that the MDP
can be be represented in its tabular form is not realistic
and approximate methods are in order. Unfortunately not
much theoretically is known under such conditions. Here
are a few of the prominent directions to tackle large state
space.

Function Approximation: The term function approxi-
mation is due to the fact that it takes examples from a de-
sired function (e. g., a value function) and construct an ap-
proximation of the entire function. Function approxima-
tion is an instance of supervised learning, which is studied
inmachine learning and other fields. In contrast to the tab-
ular representation, this time a parameter vector	 repre-
sents the value function. The challenge will be to learn the
optimal vector parameter in the sense of minimum square
error, i. e.

min�
X
s2S

(V� (s) � V (s; 	))2;

where V(s; 	) is the approximation function. One of
the most important function approximations is the linear

http://neuromancer.eecs.umich.edu/cgi-bin/twiki/view/Main/SuccessesOfRL
http://neuromancer.eecs.umich.edu/cgi-bin/twiki/view/Main/SuccessesOfRL
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function approximation,

Vt(s; 	) =
TX
i=1

�s(i)	t(i) ;

where each state has a set of vector features, �s . A feature
based function approximation was analyzed and demon-
strated in [2,15]. The main goal here is designing algo-
rithm which converge to almost optimal polices under re-
alistic assumptions.

Factored Markov Decision Process: In a FMDP the set
of states is described via a set of random variables X =
fX1; : : : ; Xng, where each Xi takes values in some finite
domain Dom(Xi). A state s defines a value xi 2 Dom(Xi )
for each variable Xi. The transition model is encoded us-
ing a dynamic Bayesian network. Although the represen-
tation is efficient, not only is finding an "-optimal policy
intractable [8], but it cannot be represented succinctly [1].
However, under few assumptions on the FMDP structure
there exists algorithms such as [5] that have both theoreti-
cal guarantees and nice empirical results.

Cross References

� Attribute-Efficient Learning
� Learning Automata
� Learning Constant-Depth Circuits
�Mobile Agents and Exploration
� PAC Learning
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Wait-free renaming

ProblemDefinition

Consider a system in which n + 1 processes P0; : : : ; Pn
communicate either by message-passing or by reading
and writing a shared memory. Processes are asynchronous:
there is no upper or lower bounds on their speeds, and up
to t of themmay fail undetectably by halting. In the renam-
ing task proposed by Attiya, Bar-Noy, Dolev, Peleg, and
Reischuk [1], each process is given a unique input name
taken from a range 0; : : : ;N , and chooses a unique output
name taken from a strictly smaller range 0; : : : ;K. To rule
out trivial solutions, a process’s decision function must de-
pend only on input names, not its preassigned identifier
(so that Pi cannot simply choose output name i). Attiya et
al. showed that the task has no solution when K = n, but
does have a solution when K = N + t. In 1993, Herlihy
and Shavit [2] showed that the task has no solution when
K < N + t.

Vertexes, simplexes, and complexes model decision
tasks. (See the companion article entitled� Topology Ap-
proach in Distributed Computing). A process’s state at the
start or end of a task is represented as a vertex Ev labeled
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with that process’s identifier, and a value, either input or
output: Ev = hP; vi i. Two such vertexes are compatible if
(1) they have distinct process identifiers, and (2) those pro-
cess can be assigned those values together. For example,
in the renaming task, input values are required to be dis-
tinct, so two input vertexes are compatible only if they are
labeled with distinct process identifiers and distinct input
values.

Figure 1 shows the output complex for the three-
process renaming task using four names. Notice that the
two edges marked A are identical, as are the two edges
marked B. By identifying these edges, this task defines
a simplicial complex that is topologically equivalent to
a torus. Of course, after changing the number of processes
or the number of names, this complex is no longer a torus.

Key Results

Theorem 1 Let Sn be an n-simplex, and Sm a face of Sn.
Let S be the complex consisting of all faces of Sm, and Ṡ the
complex consisting of all proper faces of Sm (the boundary
complex of S). If �(Ṡ) is a subdivision of Ṡ, and � : �(Ṡ)!
F(S) a simplicial map, then there exists a subdivision �(S)
and a simplicial map  : �(S) ! F(S) such that �(Ṡ) =
�(Ṡ), and � and  agree on �(Ṡ).
Informally, any simplicial map of anm-sphere toF can be
“filled in” to a simplicial map of the (m + 1)-disk. A span
for F(Sn) is a subdivision � of the input simplex Sn to-
gether with a simplicial map � : �(Sn)! F(Sn) such that
for every face Sm of Sn, � : �(Sm) ! F(Sm). Spans are
constructed one dimension at a time. For each Es = hPi ; vi i
2 Sn ; � carries Es to the solo execution by Pi with input
Evi . For each S1 = (Es0; Es1), Theorem 1 implies that �(Es0)
and �(Es1) can be joined by a path in F(S1). For each
S2 = (Es0; Es1; Es2), the inductively constructed spans define
each face of the boundary complex � : �(S1i j) ! F(S1)i j ,
for i; j 2 f0; 1; 2g. Theorem 1 implies that one can “fill
in” this map, extending the subdivision from the bound-
ary complex to the entire complex.

Theorem 2 If a decision task has a protocol in asyn-
chronous read/write memory, then each input simplex has
a span.

One can restrict attention to protocols that have the prop-
erty that any process chooses the same name in a solo exe-
cution.

Definition 1 A protocol is comparison-based if the only
operations a process can perform on processor identifiers
is to test for equality and order; that is, given two P and
Q, a process can test for P = Q; P � Q, and P � Q, but

cannot examine the structure of the identifiers in anymore
detail.

Lemma 3 If a wait-free renaming protocol for K names
exists, then a comparison-based protocol exists.

Proof Attiya et al. [1] give a simple comparison-based
wait-free renaming protocol that uses 2n+1 output names.
Use this algorithm to assign each process an intermedi-
ate name, and use that intermediate name as input to the
K-name protocol. �

Comparison-based algorithms are symmetric on the
boundary of the span. Let Sn be an input simplex,
� : �(Sn)! F(Sn) a span, andR the output complex for
2n names. Composing the span map � and the decision
map ı yields a map �(Sn) ! R. This map can be simpli-
fied by replacing each output name by its parity, replacing
the complexR with the binary n-sphere Bn .

� : �(Sn)! Bn : (1)

Denote the simplex of Bn whose values are all zero by 0n,
and all one by 1n.

Lemma 4 ��1(0n) = ��1(1n) = ;.

Proof The range 0; : : : ; 2n � 1 does not contain n + 1
distinct even names or n + 1 distinct odd names. �

The n-cylinder Cn is the binary n-sphere without 0n and
1n. Informally, the rest of the argument proceeds by show-
ing that the boundary of the span is “wrapped around” the
hole in Cn a non-zero number of times.

The span �(Sn) (indeed any any subdivided n-sim-
plex) is a (combinatorial) manifold with boundary: each
(n � 1)-simplex is a face of either one or two n-simplexes.
If it is a face of two, then the simplex is an internal simplex,
and otherwise it is a boundary simplex. An orientation of
Sn induces an orientation on each n-simplex of �(Sn) so
that each internal (n� 1)-simplex inherits opposite orien-
tations. Summing these oriented simplexes yields a chain,
denoted ��(Sn), such that

@��(Sn) =
nX
i=0

(�1)i��(facei (S
n)) :

The following is a standard result about the homology of
spheres.

Theorem 5 Let the chain 0n be the simplex 0n oriented like
Sn. (1) For 0 < m < n, any two m-cycles are homologous,
and (2) every n-cycle Cn is homologous to k � @0n , for some
integer k. Cn is a boundary if and only if k = 0.
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Output complex for 3-process renaming with 4 names

Let Sm be the face of Sn spanned by solo executions of
P0; : : : ; Pm . Let 0m denote some m-simplex of Cn whose
values are all zero. Which one will be clear from context.

Lemma 6 For every proper face Sm�1 of Sn, there is an
m-chain ˛(Sm�1) such that

��(��(Sm )) � 0m �
mX
i=0

(�1)i˛(facei (S
m))

is a cycle.

Proof By induction on m. When m = 1, ids(S1) = fi; jg.
01 and ��(��(S1)) are 1-chains with a common bound-
ary hPi ; 0i � hPj ; 0i, so ��(��(S1)) � 01 is a cycle, and
˛(hPi ; 0i) = ;.

Assume the claim for m; 1 � m < n � 1. By Theo-
rem 5, every m-cycle is a boundary (for m < n � 1), so
there exists an (m + 1)-chain ˛(Sm ) such that

��(��(Sm )) � 0m �
mX
i=0

(�1)i˛(facei (S
m)) = @˛(Sm ) :

Taking the alternating sum over the faces of Sm+1, the
˛(facei (S

m)) cancel out, yielding

��(@��(Sm+1)) � @0m+1 =
m+1X
i=0

(�1)i@˛(facei(S
m+1)) :

Rearranging terms yields

@

 
��(��(Sm+1)) � 0m+1 �

m+1X
i=0

(�1)i˛(facei (S
m+1))

!

= 0 ;

implying that

��(��(Sm+1)) � 0m+1 �

m+1X
i=0

(�1)i˛(facei (S
m+1))

is an (m + 1)-cycle. �

Theorem 7 There is no wait-free renaming protocol for
(n + 1) processes using 2n output names.

Proof Because

��(��(Sn�1)) � 0n�1 �
nX
i=0

(�1)i˛(facei (S
n�1))

is a cycle, Theorem 5 implies that it is homologous to k �
@0n , for some integer k. Because � is symmetric on the
boundary of �(Sn), the alternating sum over the (n � 1)-
dimensional faces of Sn yields:

��(@��(Sn)) � @0n 
 (n + 1)k � @0n

or

��(@��(Sn)) 
 (1 + (n + 1)k) � @0n :

Since there is no value of k for which (1 + (n + 1)k) is zero,
the cycle ��(@��(Sn)) is not a boundary, a contradiction.

�

Applications

The renaming problem is a key tool for understanding the
power of various asynchronous models of computation.
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Open Problems

Characterizing the full power of the topological approach
to proving lower bounds remains an open problem.
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Full partition function

ProblemDefinition

This problem is concerned with computing features of the
Boltzmann distribution over RNA secondary structures
in the context of the standard Gibbs free energy model
used for RNA Secondary Structure Prediction by Mini-
mum Free Energy (cf. corresponding entry). Thermody-
namics state that for a system with configuration space ˝
and free energy given by E : ˝ 7! R, the probability of the
system being in state ! 2 ˝ is proportional to e�E(!)/RT

where R is the universal gas constant and T the absolute
temperature of the system. The normalizing factor

Z =
X
!2˝

e�E(!)/RT (1)

is called the full partition function of the system.
Over the past several decades, a model approximating

the free energy of a structured RNAmolecule by indepen-
dent contributions of its secondary structure components
has been developed and refined. The main purpose of this
work has been to assess the stability of individual sec-
ondary structures. However, it immediately translates into
a distribution over all secondary structures. Early work fo-
cused on computing the pairing probability for all pairs
of bases, i. e. the sum of the probabilities of all secondary
structures containing that base pair. Recent work has ex-
tended methods to compute probabilities of base pairing
probabilities for RNA heterodimers [2], i. e. interacting
RNAmolecules, and expectation, variance and higher mo-
ments of the Boltzmann distribution.

Notation

Let s 2 fA;C;G;Ug� denote the sequence of bases of an
RNA molecule. Use X � Y where X;Y 2 fA;C;G;Ug to
denote a base pair between bases of type X and Y , and i � j
where 1 � i < j � jsj to denote a base pair between bases
s[i] and s[j].

Definition 1 (RNA Secondary Structure) A secondary
structure for an RNA sequence s is a set of base pairs
S = fi � j j 1 � i < j � jsj ^ i < j � 3g. For i � j; i0 � j0 2 S
with i � j ¤ i0 � j0

� fi; jg \ fi0; j0g = ; (each base pairs with at most one
other base)

� fs[i]; s[ j]g 2 ffA;Ug; fC;Gg; fG;Ugg (only Watson-
Crick and G,U wobble base pairs)

� i < i0 < j) j0 < j (base pairs are either nested or jux-
taposed but not overlapping)

The second requirement, that only canonical base pairs are
allowed, is standard but not consequential in solutions to
the problem. The third requirement states that the struc-
ture does not contain pseudoknots. This restriction is cru-
cial for the results listed in this entry.

Energy Model

The model of Gibbs free energy applied, usually referred
to as the nearest-neighbor model, was originally proposed
by Tinoco et al. [10,11]. It approximates the free energy by
postulating that the energy of the full three dimensional
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RNA Secondary Structure Boltzmann Distribution, Figure 1
A hypothetical RNA structure illustrating the different loop
types. Bases are represented by circles, the RNA backbone by
straight lines, and base pairs by zigzagged lines

structure only depends on the secondary structure, and
that this in turn can be broken into a sum of independent
contributions from each loop in the secondary structure.

Definition 2 (Loops) For i � j 2 S, base k is accessible
from i � j iff i < k < j and :9i0 � j0 2 S : i < i0 < k <
j0 < j. The loop closed by i � j; `i � j , consists of i � j and all
the bases accessible from i � j. If i0 � j0 2 S and i0 and j0 are
accessible from i � j, then i0 � j0 is an interior base pair in
the loop closed by i � j.

Loops are classified by the number of interior base pairs
they contain:
� hairpin loops have no interior base pairs
� stacked pairs, bulges, and internal loops have one in-

terior base pair that is separated from the closing base
pair on neither side, on one side, or on both sides, re-
spectively

� multibranched loops have two or more interior base
pairs

Bases not accessible from any base pair are called external.
This is illustrated in Fig. 1. The free energy of structure S
is

�G(S) =
X
i � j2S

�G(`i � j) (2)

where �G(`i � j) is the free energy contribution from the
loop closed by i � j. The contribution of S to the full parti-
tion function is

e��G(S)/RT = e�
P

i� j2S�G(`i� j)/RT =
Y
`i� j2S

e��G(`i� j)/RT :

(3)

Problem 1 (RNA Secondary Structure Distribution)
INPUT: RNA sequence s, absolute temperature T and speci-
fication of�G at T for all loops.

OUTPUT:
P
S e
��G(S)/RT , where the sum is over all sec-

ondary structures for s.

Key Results

Solutions are based on recursions similar to those for RNA
Secondary Structure Prediction byMinimum Free Energy,
replacing sum and minimization with multiplication and
sum (or more generally with amerge function and a choice
function [8]). The key difference is that recursions are re-
quired to be non-redundant, i. e. any particular secondary
structure only contributes through one path through the
recursions.

Theorem 1 Using the standard thermodynamic model
for RNA secondary structures, the partition function can
be computed in time O(|s|3) and space O(|s|2). More-
over, the computation can build data structures that al-
low O(1) queries of the pairing probability of i � j for any
1 � i < j � jsj [5,6,7].

Theorem 2 Using the standard thermodynamic model for
RNA secondary structures, the expectation and variance of
free energy over the Boltzmann distribution can be com-
puted in time O(|s|3) and space O(|s|2). More generally, the
kth moment

EBoltzmann[�G] = 1/Z
X
S

e��G(S)/RT�Gk (S) ; (4)

where Z =
P
S e
��G(S)/RT is the full partition function and

the sums are over all secondary structures for s, can be com-
puted in time O(k2|s|3) and space O(k|s|2) [8].

In Theorem 2 the free energy does not hold a special place.
The theorem holds for any function ˚ defined by an inde-
pendent contribution from each loop,

˚(S) =
X
i � j2S

�
�
`i � j
�
; (5)

provided each loop contribution can be handled with the
same efficiency as the free energy contributions. Hence,
moments over the Boltzmann distribution of e. g. num-
ber of base pairs, unpaired bases, or loops can also be ef-
ficiently computed by applying appropriately chosen indi-
cator functions.

Applications

The original use of partition function computations was
for discriminating between well defined and less well de-
fined regions of a secondary structure. Minimum free en-
ergy predictions will always return a structure. Base pair-
ing probabilities help identify regions where the predic-
tion is uncertain, either due to the approximations of the
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model or that the real structure indeed does fluctuate be-
tween several low energy alternatives. Moments of Boltz-
mann distributions are used in identifying how biological
RNA molecules deviates from random RNA sequences.

The data structures computed in Theorem 1 can also
be used to efficiently sample secondary structures from the
Boltzmann distribution. This has been used for probabilis-
tic methods for secondary structure prediction, where the
centroid of the most likely cluster of sampled structures is
returned rather than themost likely, i. e.minimum free en-
ergy, structure [3]. This approach better accounts for the
entropic effects of large neighborhoods of structurally and
energetically very similar structures. As a simple illustra-
tion of this effect, consider twice flipping a coin with prob-
ability p > 0:5 for heads. The probability p2 of heads in
both flips is larger than the probability p(1 � p) of heads
followed by tails or tails followed by heads (which again is
larger than the probability (1� p)2 of tails in both flips).
However, if the order of the flips is ignored the probabil-
ity of one heads and one tails is 2p(1 � p). The probability
of two heads remains p2 which is smaller than 2p(1 � p)
when p < 2

3 . Similarly a large set of structures with fairly
low free energy may be more likely, when viewed as a set,
than a small set of structures with very low free energy.

Open Problems

As for RNA Secondary Structure Prediction by Minimum
Free Energy, improvements in time and space complexity
are always relevant. Thismay bemore difficult for comput-
ing distributions, as the more efficient dynamic program-
ming techniques of [9] cannot be applied. In the context
of genome scans, the fact that the start and end positions
of encoded RNA molecule is unknown has recently been
considered [1].

Also the problem of including structures with pseu-
doknots, i. e. structures violating the last requirement in
Def. 1, in the configuration space is an active area of re-
search. It can be expected that all the methods of Theo-
rems 3 through 6 in the entry on RNA Secondary Struc-
ture Prediction Including Pseudoknots can be modified to
computation of distributions without affecting complexi-
ties. This may require some further bookkeeping to ensure
non-redundancy of recursions, and only in [4] has this ac-
tively been considered.

Though the moments of functions that are defined as
sums over independent loop contributions can be com-
puted efficiently, it is unknown whether the same holds for
functions with more complex definitions. One such func-
tion that has traditionally been used for statistics on RNA
secondary structure [12] is the order of a secondary struc-

ture which refers to the nesting depth of multibranched
loops.

URL to Code

Software for partition function computation and a range
of related problems is available from www.bioinfo.rpi.edu/
applications/hybrid/download.php and www.tbi.univie.
ac.at/~ivo/RNA/. Software including a restricted class of
structures with pseudoknots [4] is available at www.
nupack.org.
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Keywords and Synonyms

Abbreviated as Pseudoknot Prediction

ProblemDefinition

This problem is concerned with predicting the set of base
pairs formed in the native structure of an RNA molecule,
including overlapping base pairs also known as pseudo-
knots. Standard approaches to RNA secondary structure
prediction only allow sets of base pairs that are hierarchi-
cally nested. Though few known real structures require the
removal of more than a small percentage of their base pairs
to meet this criteria, a significant percentage of known real
structures contain at least a few base pairs overlapping
other base pairs. Pseudoknot substructures are known to
be crucial for biological function in several contexts. One
of the more complex known pseudoknot structures is il-
lustrated in Fig. 1

Notation

Let s 2 fA;C;G;Ug� denote the sequence of bases of an
RNA molecule. Use X � Y where X;Y 2 fA;C;G;Ug to
denote a base pair between bases of type X and Y , and i � j
where 1 � i < j � jsj to denote a base pair between bases
s[i] and s[ j].

Definition 1 (RNA Secondary Structure) A secondary
structure for an RNA sequence s is a set of base pairs
S = fi � j j 1 � i < j � jsj ^ i < j � 3g. For i � j; i0 � j0 2 S
with i � j ¤ i0 � j0

� fi; jg \ fi0; j0g = ; (each base pairs with at most one
other base)

� fs[i]; s[ j]g 2 ffA;Ug; fC;Gg; fG;Ugg (only Watson-
Crick and G;U wobble base pairs)

The second requirement, that only canonical base pairs are
allowed, is standard but not consequential in solutions to
the problem.

Scoring Schemes

Structures are usually assessed by extending the model of
Gibbs free energy used for RNA Secondary Structure Pre-
diction by Minimum Free Energy (cf. corresponding en-

try) with ad hoc extrapolation of multibranched loop ener-
gies to pseudoknot substructures [11], or by summing in-
dependent contributions e. g. obtained from base pair re-
stricted minimum free energy structures from each base
pair [13]. To investigate the complexity of pseudoknot
prediction the following three simple scoring schemes will
also be considered:

Number of Base Pairs,

#BP(S) = jSj

Number of Stacking Base Pairs

#SBP(S)= jfi � j2S j i + 1 � j � 12S _ i � 1 � j + 12Sgj

Number of Base Pair Stackings

#BPS(S) = jfi � j 2 S j i + 1 � j � 1 2 Sgj

These scoring schemes are inspired by the fact that
stacked pairs are essentially the only loops having a sta-
bilizing contribution in the Gibbs free energy model.

Problem 1 (Pseudoknot Prediction)
INPUT:RNA sequence s and an appropriately specified scor-
ing scheme.
OUTPUT: A secondary structure S for s that is optimal un-
der the scoring scheme specified.

Key Results

Theorem 1 The complexities of pseudoknot prediction un-
der the three simplified scoring schemes can be classified as
follows, where˙ denotes the alphabet.

Fixed alphabet Unbounded alphabet
#BP [13] Time O

�
jsj3

�
,

spaceO
�
jsj2

� Time O
�
jsj3

�
,

space O
�
jsj2

�

#SBP [7] Time
O
�
jsj1+j˙ j

2+j˙ j3
�
,

spaceO
�
jsjj˙ j

2+j˙ j3
�

NP hard

#BPS NP hard for j˙ j = 2,
PTAS [7]
1/3-approximation
in timeO

�
jsj
�
[6]

NP hard [7],
1/3-approximation
in time and spaceO

�
jsj2

�
[6]

Theorem 2 If structures are restricted to be planar, i. e. the
graph with the bases of the sequence as nodes and base
pairs and backbone links of consecutive bases as edges is re-
quired to be planar, pseudoknot prediction under the #BPS
scoring scheme is NP hard for an alphabet of size 4. Con-
versely, a 1/2-approximation can be found in time O

�
jsj3
�
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RNA Secondary Structure Prediction Including Pseudoknots, Figure 1
Secondary structure of the Escherichia coli ˛ operon mRNA from position 16 to position 127, cf. [5], Figure 1. The backbone of the
RNAmolecule is drawn as straight lineswhile base pairings are shown with zigzagged lines

and space O
�
jsj2
�
by observing that an optimal pseudoknot

free structure is a 1/2-approximation [6].

There are no steric reasons that RNA secondary structures
should be planar, and the structure in Fig. 1 is actually
non-planar. Nevertheless, known real structures have rel-
atively simple overlapping base pair patterns with very few
non-planar structures known. Hence, planarity has been
used as a defining restriction on pseudoknotted struc-
tures [2,15]. Similar reasoning has lead to development of
several algorithms for finding an optimal structure from
restricted classes of structures. These algorithms tend to
use more realistic scoring schemes, e. g. extensions of the
Gibbs free energy model, than the three simple scoring
schemes considered above.

Theorem 3 Pseudoknot prediction for a restricted class of
structures including Fig. 2a through Fig. 2e, but not Fig. 2f,
can be done in time O

�
jsj6
�
and space O

�
jsj4
�
[11].

Theorem 4 Pseudoknot prediction for a restricted class of
planar structures including Fig. 2a through Fig. 2c, but not
Fig. 2d through Fig. 2f, can be done in time O

�
jsj5
�
and

space O
�
jsj4
�
[14].

Theorem 5 Pseudoknot prediction for a restricted class
of planar structures including Fig. 2a and Fig. 2b, but not
Fig. 2c through Fig. 2f, can be done in time O

�
jsj5
�
and

space O
�
jsj4
�
or O

�
jsj3
�
[1,4] (methods differ in generality

of scoring schemes that can be used).

Theorem 6 Pseudoknot prediction for a restricted class of
planar structures including Fig. 2a, but not Fig. 2b through
Fig. 2f, can be done in time O

�
jsj4
�
and space O

�
jsj2
�
[1,8].

Theorem 7 Recognition of structures belonging to the re-
stricted classes of Theorems 3, 5, and 6, and enumeration

of all irreducible cycles (i. e. loops) in such structures can be
done in time O (jsj) [3,9].

Applications

As for the prediction of RNA secondary structures with-
out pseudoknots, the key application of these algorithms
are for predicting the secondary structure of individual
RNAmolecules. Due to the steep complexities of the algo-
rithms of Theorems 3 through 6, these are less well suited
for genome scans than prediction without pseudoknots.

Enumerating all loops of a structure in linear time also
allows scoring a structure in linear time, as long as the
scoring scheme allows the score of a loop to be computed
in time proportional to its size. This has practical applica-
tions in heuristic searches for good structures containing
pseudoknots.

Open Problems

Efficient algorithms for prediction based on restricted
classes of structures with pseudoknots that still contain
a significant fraction of all known structures is an active
area of research. Even using the more theoretical simple
#SBP scoring scheme, developing e. g. an O

�
jsjj˙ j

�
algo-

rithm for this problem would be of practical significance.
From a theoretical point of view, the complexity of planar
structures is the least well understood, with results for only
the #BPS scoring scheme.

Classification of and realistic energy models for RNA
secondary structures with pseudoknots are much less de-
veloped than for RNA secondary structures without pseu-
doknots. Several recent papers have been addressing this
gap [3,9,12].
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RNA Secondary Structure Prediction Including Pseudoknots, Figure 2
RNA secondary structures illustrating restrictions of pseudoknot prediction algorithms. Backbone is drawn as a straight line while
base pairings are shownwith zigzagged arcs

Data Sets

PseudoBase at http://biology.leidenuniv.nl/~batenburg/
PKB.html is a repository of representatives of most known
RNA structures with pseudoknots.

URL to Code

The method of Theorem 3 is available at http://selab.
janelia.org/software.html#pknots, of one of the methods
of Theorem 5 at http://www.nupack.org, and an imple-
mentation applying a slight heuristic reduction of the
class of structures considered by the method of Theo-
rem 6 is available at http://bibiserv.techfak.uni-bielefeld.
de/pknotsrg/ [10].
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Keywords and Synonyms

RNA Folding

ProblemDefinition

This problem is concerned with predicting the set of base
pairs formed in the native structure of an RNA molecule.
The main motivation stems from structure being cru-
cial for function and the growing appreciation of the im-
portance of RNA molecules in biological processes. Base
pairing is the single most important factor determining
structure formation. Knowledge of the secondary struc-
ture alone also provides information about stretches of
unpaired bases that are likely candidates for active sites.
Early work [7] focused on finding structures maximiz-
ing the number of base pairs. With the work of Zuker
and Stiegler [17] focus shifted to energy minimization in
a model approximating the Gibbs free energy of struc-
tures.

Notation

Let s 2 fA;C;G;Ug� denote the sequence of bases of an
RNA molecule. Use X � Y where X;Y 2 fA;C;G;Ug to
denote a base pair between bases of type X and Y , and i � j
where 1 � i < j � jsj to denote a base pair between bases
s[i] and s[ j].

Definition 1 (RNA Secondary Structure) A sec-
ondary structure for an RNA sequence s is a set
of base pairs S = fi � j j 1 � i < j � jsj ^ i < j � 3g. For
i � j; i0 � j0 2 S with i � j ¤ i0 � j0

� fi; jg \ fi0; j0g = ; (each base pairs with at most one
other base)

� fs[i]; s[ j]g 2 ffA;Ug; fC;Gg; fG;Ugg (only Watson-
Crick and G;U wobble base pairs)

� i < i0 < j) j0 < j (base pairs are either nested or jux-
taposed but not overlapping).

The second requirement, that only canonical base pairs are
allowed, is standard but not consequential in solutions to
the problem. The third requirement states that the struc-
ture does not contain pseudoknots. This restriction is cru-
cial for the results listed in this entry.

Energy Model

The model of Gibbs free energy applied, usually referred
to as the nearest-neighbor model, was originally proposed
by Tinoco et al. [10,11]. It approximates the free energy by
postulating that the energy of the full three dimensional
structure only depends on the secondary structure, and

RNA Secondary Structure Prediction by Minimum Free Energy,
Figure 1
A hypothetical RNA structure illustrating the different loop
types. Bases are represented by circles, the RNA backbone by
straight lines, and base pairs by zigzagged lines

that this in turn can be broken into a sum of indepen-
dent contributions from each loop in the secondary struc-
ture.

Definition 2 (Loops) For i � j 2 S, base k is accessible from
i � j iff i < k < j and :9i0 � j0 2 S : i < i0 < k < j0 < j.
The loop closed by i � j; `i � j , consists of i � j and all the bases
accessible from i � j. If i0 � j0 2 S and i0 and j0 are accessible
from i � j, then i0 � j0 is an interior base pair in the loop
closed by i � j.

Loops are classified by the number of interior base pairs
they contain:
� hairpin loops have no interior base pairs
� stacked pairs, bulges, and internal loops have one in-

terior base pair that is separated from the closing base
pair on neither side, on one side, or on both sides, re-
spectively

� multibranched loops have two or more interior base
pairs.

Bases not accessible from any base pair are called external.
This is illustrated in Fig. 1. The free energy of structure S
is

´G(S) =
X
i � j2S

´G(`i � j) ; (1)

where ´G(`i � j) is the free energy contribution from the
loop closed by i � j.

Problem 1 (Minimum Free Energy Structure)
INPUT: RNA sequence s and specification of ´G for all loops.
OUTPUT: argminS f´G(S) j S secondary structure for sg.
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Key Results

Solutions are based on using dynamic programming to
solve the general recursion

V[i; j] = min
k�0;i<i1< j1<:::<ik< jk< j

(
�G(`i � j;i1 � j1;:::;ik � jk )

+
kX
l=1

V[il ; jl ]

)

W[i] = min
�
W[i � 1]; min

0<k<i
fW[k � 1] + V[k; i]g

�
;

where ´G(`i � j;i1 � j1;:::;ik � jk ) is the free energy of the loop
closed by i � j and interior base pairs i1 � j1; : : : ; ik � jk and
with initial condition W[0] = 0. In the following it is as-
sumed that all loop energies can be computed in timeO(1).

Theorem 1 If the free energy of multibranched loops is
a sum of
� an affine function of the number of interior base pairs

and unpaired bases
� contributions for each base pair from stacking with ei-

ther neighboring unpaired bases in the loop or with
a neighboring base pair in the loop, whichever is more
favorable,

a minimum free energy structure can be computed in time
O(jsj4) and space O(jsj2) [17].

With these assumptions the time required to handle the
multibranched loop parts of the recursion reduces to
O(jsj3). Hence handling the O(jsj4) possible internal loops
becomes the bottleneck.

Theorem 2 If furthermore the free energy of internal loops
is a sum of
� a function of the total size of the loop, i. e. the number of

unpaired bases in the loop,
� a function of the asymmetry of the loop, i. e. the differ-

ence in number of unpaired bases on the two sides of the
loop,

� contributions from the closing and interior base pairs
stacking with the neighboring unpaired bases in the loop,

a minimum free energy structure can be computed in time
O(jsj3) and space O(jsj2) [5].

Under these assumptions the time required to handle in-
ternal loops reduces to O(jsj3). With further assumptions
on the free energy contributions of internal loops this can
be reduced even further, again making the handling of
multibranched loops the bottleneck of the computation.

Theorem 3 If furthermore the size dependency is con-
cave and the asymmetry dependency is constant for all but

O(1) values, a multibranched loop free minimum free en-
ergy structure can be computed in time O(jsj2 log2 jsj) and
space O(jsj2) [8].

The above assumptions are all based on the nature of
current loop energies [6]. These energies have to a large
part been developed without consideration of computa-
tional expediency and parameters determined experimen-
tally, although understanding of the precise behavior of
larger loops is limited. For multibranched loops some the-
oretical considerations [4] would suggest that a logarith-
mic dependency would be more appropriate.

Theorem 4 If the restriction on the dependency on num-
ber of interior base pairs and unpaired bases in Theorem 1
is weakened to any function that depends only on the num-
ber of interior base pairs, the number of unpaired bases,
or the total number of bases in the loop, a minimum free
energy structure can be computed in time O(n4) and space
O(n3) [13].

Theorem 5 All the above theorems can be modified to
compute a data structure that for any 1 � i < j � jsj al-
lows us to compute the minimum free energy of any struc-
ture containing i � j in time O(1) [15].

Applications

Naturally the key application of these algorithms are for
predicting the secondary structure of RNAmolecules. This
holds in particular for sequences with no homologues with
common structure, e. g. functional analysis based on mu-
tational effects and to some extent analysis of RNA ap-
tamers. With access to structurally conserved homologues
prediction accuracy is significantly improved by incorpo-
rating comparative information [2].

Incorporating comparative information seems to be
crucial when using secondary structure prediction as the
basis of RNA gene finding. As it turns out, the minimum
free energy of known RNA genes is not sufficiently dif-
ferent from the minimum free energy of comparable ran-
dom sequences to reliably separate the two [9,14]. How-
ever, minimum free energy calculations is at the core of
one successful comparative RNA gene finder [12].

Open Problems

Most current research is focused on refinement of the
energy parametrization. The limiting factor of sequence
lengths for which secondary structure prediction by the
methods described here is still feasible is adequacy of the
nearest neighbor approximation rather than computation
time and space. Still improvements on time and space
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complexities are useful as biosequence analyzes are invari-
ably used in genome scans. In particular improvements on
Theorem 4, possibly for dependencies restricted to be log-
arithmic or concave, would allow for more advanced scor-
ing of multibranched loops. A more esoteric open prob-
lem is to establish the complexity of computing the min-
imum free energy under the general formulation of (1),
with no restrictions on loop energies except that they are
computable in time polynomial in |s|.

Experimental Results

With the release of the most recent energy parameters [6]
secondary structure prediction by finding a minimum free
energy structure was found to recover approximately 73%
of the base pairs in a benchmark data set of RNA se-
quences with known secondary structure. Another inde-
pendent assessment [1] put the recovery percentage some-
what lower at around 56%. This discrepancy is discussed
and explained in [1].

Data Sets

Families of homologous RNA sequences aligned and
annotated with secondary structure are available from
the Rfam data base at www.sanger.ac.uk/Software/Rfam/.
Three dimensional structures are available from the Nu-
cleic Acid Database at ndbserver.rutgers.edu/. An exten-
sive list of this and other data bases is available at www.
imb-jena.de/RNA.html.

URL to Code

Software for RNA folding and a range of related prob-
lems is available from www.bioinfo.rpi.edu/applications/
hybrid/download.php and www.tbi.univie.ac.at/~ivo/
RNA/. Software implementing the efficient handling of
internal loops of [8] is available from ftp.ncbi.nlm.nih.
gov/pub/ogurtsov/Afold.

Cross References
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� RNA Secondary Structure Prediction Including

Pseudoknots
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Keywords and Synonyms

Navigation problem – Search problem
Exploration problem – Mapping problem; Gallery tour
problem
Localization problem – Kidnapped robot problem

ProblemDefinition

Definitions

There are three fundamental algorithmic problems in
robotics: exploration, navigation, and localization. Explo-
rationmeans to draw a complete map of an unknown en-
vironment. Navigation (or search) means to find a way
to a predescribed location among unknown obstacles. Lo-
calization means to determine the current position on
a known map. Normally, the environment is modeled as
a simple polygon with or without holes. To distinguish
the underlying combinatorial problems from the geomet-
ric problems, the environment may also be modeled as
a graph.

Normally, a robot has a compass, i. e., it can distinguish
between different directions, and it can measure travel dis-
tance. A blind (or tactile) robot can only sense its immedi-
ate surroundings (for example, it only notices an obsta-
cle when it bumps into it; this is also sometimes called
"-radar), while a robot with vision can see objects far in
the distance, unless the view is blocked by opaque obsta-
cles. Robots on graphs are usually blind. In polygonal envi-
ronments, vision may help to judge the size of an obstacle
without moving, but a blind robot can circumvent obsta-
cles with a performance loss of only a factor of nine by
using the lost-cow doubling strategy [2].

Online Algorithms

An algorithm that tries to approximate an optimal so-
lution by making decisions under a given uncertainty is
called an online algorithm (see the surveys in [9]). Its per-
formance is measured by the competitive ratio, which is the
approximation ratio of the online algorithm maximized
over all possible input scenarios. In the case of exploration,
navigation, and localization, the robot should minimize its
travel distance. Therefore, the competitive ratio measures
the length of the detour compared to the optimal shortest
tour.

A randomized online algorithm against an oblivious
adversary uses randomization on a fixed predetermined
input (which is unknown to the online algorithm). In this
case, the competitive ratio is a random variable, and it is
maximized over all possible inputs.

Exploration

Deng et. al [7] introduced the gallery tour problem. Given
a polygonal room with polygonal obstacles, an entry
point s and exit point t, a robot with vision needs to travel
along a path from s to t such that it can see every point
of the perimeter of the polygons. If s = t, the problem is
known as thewatchman’s route problem. In the online ver-
sion of the problem, the polygon is initially unknown. The
problem becomes easier in rectilinear environments with
L1-metric.

Navigation

Blum et. al [5] studied the problem of a blind robot trying
to reach a goal t from a start position s (point-to-point nav-
igation) in a scene of non-overlapping axis-parallel rect-
angles of width at least one. In the wall problem, t is an
infinite vertical line. In the room problem, the obstacles are
within a square room with entry door s.

Localization

In the localization problem the robot knows a map of the
environment, but not its current position, which it deter-
mines by moving around and matching the observed local
environment with the given map.

Key Results

Exploration

Theorem 1 ([7]) The shortest exploration tour in L1-
metric in a known simple rectilinear polygon with n vertices
can be computed in time O(n3).

Theorem 2 ([15]) There is a 26.5-competitive online al-
gorithm to explore an unknown simple polygon without ob-
stacles.

Theorem 3 ([7]) There is an O(k + 1)-competitive online
algorithm to explore an unknown simple polygon with k
polygonal obstacles.

Theorem 4 ([1]) No randomized online algorithm can ex-
plore an unknown simple rectilinear polygon with k recti-
linear obstacles better than˝(

p
k)-competitively.

Navigation

Theorem 5 ([19]) No online algorithm for the wall prob-
lem with n rectangles can be better than ˝(

p
n)-competi-

tive.
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Theorem 6 ([5]) There are O(
p
n)-competitive online

algorithms for the wall problem, the room problem, and
point-to-point navigation in scenes with n axis-parallel rect-
angles.

Theorem 7 ([3]) There is an optimal 	(log n)-competi-
tive online algorithms for the room problem with n axis-
parallel rectangles.

Theorem 8 ([4]) There are O(log n)-competitive random-
ized online algorithms against oblivious adversary for the
wall problem and point-to-point navigation in scenes with
n axis-parallel rectangles.

Theorem 9 ([16]) No randomized online algorithm
against oblivious adversary for point-to-point navigation
between n rectangles can be better than ˝(log log n)-com-
petitive.

Theorem 10 ([5]) There is a lower bound of n/8 for the
competitiveness of navigating between n non-convex obsta-
cles. A simple memoryless algorithm achieves a competitive
ratio of 50:4 � n.

Localization

Theorem 11 ([17]) No algorithm for localization in geo-
metric trees with n nodes can be better than ˝(

p
n)-com-

petitive.

Theorem 12 ([11]) There is an O(
p
n)-competitive algo-

rithm for localization in geometric trees with n nodes.

Applications

Exploration

It is NP-hard to find a shortest exploration tour in a known
polygonal environment [7]. Unknown scenes with arbi-
trary obstacles can be efficiently explored by Lumelsky’s
Sightseer Strategy. Most online exploration algo-
rithms can be transformed into an efficient online algo-
rithm to approximate the search ratio, a measure related
to the competitive ratio of the navigation problem [10].

The problem of exploring a polygonal environment is
closely related to the problem of exploring strongly con-
nected digraphs. Here, the competitive ratio is usually
given as a function of the deficiency of the graph which
is the minimum number of edges that must be added to
the graph to make it Eulerian. Eulerian graphs can be
explored with a simple optimal 2-competitive algorithm,
while graphs of deficiency d can be explored with a com-
petitive factor of O(d8) [14].

Navigation

In applied robotics, it is common to measure the compet-
itive ratio as a function of the aspect ratio of the obstacle
rectangles. Lumelsky’s BUG2 algorithm can navigate be-
tween convex obstacles, in the worst case moving at most
once around every obstacle, which is optimal.

A robot with a compass can sometimes find the goal
exponentially faster than a robot without a compass.

If we need to do several trips in an unknown environ-
ment, it may help to use partial map information from pre-
vious trips. In particular, the i-th trip between the same
two points can be searched

q
n
i -competitively.

Localization

There is a simple k-competitive localization algorithm in
polygons and graphs, where k is the number of positions
on the map matching the observed environment at the
wake-up point.

The visibility polygon of a point v is that part of a poly-
gon that a robot can see when sitting at v. One can com-
pute in polynomial time all points of a given simple poly-
gon whose visibility polygon matches a given star polygon.

Computing a shortest localization tour in a known
polygon is NP-hard. It can be approximated with a fac-
tor of O(log3 n), but not better than ˝(log n) unless
P = NP [18].

Open Problems

Exploration

� A polynomial time algorithm for computing the short-
est exploration tour in a known simple polygonwithout
obstacles. Such an algorithm is known for the watch-
man’s route problem.

� A simple online exploration algorithm for simple poly-
gons with tight analysis.

� Exploration and navigation with limited memory.

Navigation

� Online searching among convex polygonal obstacles.
� Three-dimensional navigation, in particular among

non-convex obstacles (3d-mazes).

Localization

� A simple algorithm for online localization in trees.
� Online localization in general graphs.
� A randomized online localization algorithm beating

deterministic algorithms.
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Experimental Results

Exploration

Fleischer and Trippen [13] implemented most known al-
gorithms for exploring a directed graph and demonstrated
that the simple (but inferior) greedy algorithms usually
outperform the more sophisticated algorithms on random
graphs.

Navigation

Coffman and Gilbert [6] implemented eight heuristics for
point-to-point navigation in L1-metric.

Localization

Fleischer and Trippen [12] visualized their localization al-
gorithm in geometric trees.

Cross References

� Alternative Performance Measures in Online
Algorithms

� Deterministic Searching on the Line
�Metrical Task Systems
� Randomized Searching on Rays or the Line
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ProblemDefinition

Algorithms in computational geometry are usually de-
signed under the Real RAMmodel. In implementing these
algorithms, however, fixed-precision arithmetic is used in
place of exact arithmetic. This substitution introduces nu-
merical errors in the computations thatmay lead to nonro-
bust behavior in the implementation, such as infinite loops
or segmentation faults.

There are various approaches in the the literature ad-
dressing the problem of nonrobustness in geometric com-
putations; see [9] for a survey. These approaches can be
classified along two lines: the arithmetic approach and the
geometric approach.
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The arithmetic approach tries to address nonrobust-
ness in geometric algorithms by handling the numerical
errors arising because of fixed-precision arithmetic; this
can be done, for instance, by using multi-precision arith-
metic [6], or by using rational arithmetic whenever possi-
ble. In general, all the arithmetic operations, including ex-
act comparison, can be performed on algebraic quantities.
The drawback of such a general approach is its inefficiency.

The geometric approaches guarantee that certain ge-
ometric properties are maintained by the algorithm. For
example, if the Voronoi diagram of a planar point set
is being computed then it is desirable to ensure that the
output is a planar graph as well. Other geometric ap-
proaches are finite resolution geometry [7], approximate
predicates and fat geometry [8], consistency and topolog-
ical approaches [4], and topology oriented approach [13].
The common drawback of these approaches is that they
are problem or algorithm specific.

In the past decade, a general approach called the Ex-
act Geometric Computation (EGC) [15] has become very
successful in handling the issue of nonrobustness in ge-
ometric computations; strictly speaking, this approach is
subsumed in the arithmetic approaches. To understand
the EGC approach, it helps to understand the two parts
common to all geometric computations: a combinatorial
structure characterizing the discrete relations between ge-
ometric objects, e. g., whether a point is on a hyperplane
or not; and a numerical part that consists of the numeri-
cal representation of the geometric objects, e. g. the coor-
dinates of a point expressed as rational or floating-point
numbers. Geometric algorithms characterize the combi-
natorial structure by numerically computing the discrete
relations (that are embodied in geometric predicates) be-
tween geometric objects. Nonrobustness arises when nu-
merical errors in the computations yield an incorrect char-
acterization. The EGC approach ensures that all the geo-
metric predicates are evaluated correctly thereby ensuring
the correctness of the computed combinatorial structure
and hence the robustness of the algorithm.

Notation

An expression E refers to a syntactic object constructed
from a given set of operators over the reals R. For ex-
ample, the set of expressions on the set of operators
fZ;+;�;�;pg is the set of division-free radical expres-
sions on the integers; more concretely, expressions can be
viewed as directed acyclic graphs (DAG) where the inter-
nal nodes are operators with arity at least one, and the
leaves are constants, i. e., operators with arity zero. The
value of an expression is naturally defined using induction;

note that the value may be undefined. Let E represent both
the value of the expression and the expression itself.

Key Results

Following are the key results that have led to the feasibility
and success of the EGC approach.

Constructive Zero Bounds

The possibility of EGC approach hinges on the com-
putability of the sign of an expression. For determining
the sign of algebraic expressions EGC libraries currently
use a numerical approach based upon zero bounds. A zero
bound b > 0 for an expression E is such that absolute
value jEj of E is greater than b if the value of E is valid and
nonzero. To determine the sign of the expression E, com-
pute an approximation Ẽ to E such that jẼ � Ej < b

2 if
E is valid, otherwise Ẽ is also invalid. Then sign of E is the
same as the sign of Ẽ if jẼj � b

2 , otherwise it is zero. A con-
structive zero bound is an effectively computable function
B from the set of expressions to real numbers R such that
B(E) is a zero bound for any expression E. For examples of
constructive zero bounds, see [2,11].

Approximate Expression Evaluation

Another crucial feature in developing the EGC approach is
developing algorithms for approximate expression evalu-
ation, i. e., given an expression E and a relative or absolute
precision p, compute an approximation to the value of the
expression within precision p. The main computational
paradigm for such algorithms is the precision-driven ap-
proach [15]. Intuitively, this is a downward-upward pro-
cess on the input expression DAG; propagate precision
values down to the leaves in the downward direction; at
the leaves of the DAG, assume the ability to approximate
the value associated with the leaf to any desired precision;
finally, propagate the approximations in the upward di-
rection towards the root. Ouchi [10] has given detailed
algorithms for the propagation of “composite precision”,
a generalization of relative and absolute precision.

Numerical Filters

Implementing approximate expression evaluation re-
quires multi-precision arithmetic. But efficiency can be
gained by exploiting machine floating-point arithmetic,
which is fast and optimized on current hardware. The
basic idea is to to check the output of machine evalua-
tion of predicates, and fallback on multi-precision meth-
ods if the check fails. These checks are called numerical
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filters; they certify certain properties of computed numer-
ical values, such as their sign. There are two main clas-
sifications of numerical filters: static filters are those that
can be mostly computed at compile time, but they yield
overly pessimistic error bounds and thus are less effective;
dynamic filters are implemented during run time and even
though they have higher costs they are much more effec-
tive than static filters, i. e., have better estimate on error
bounds. See Fortune and van Wyk [5].

Applications

The EGC approach has led to the development of libraries,
such as LEDA Real and CORE, that provide EGC number
types, i. e., a class of expressions whose signs are guaran-
teed. CGAL, another major EGC Library that provides ro-
bust implementation of algorithms in computational ge-
ometry, offers various specialized EGC number types, but
for general algebraic numbers it can also use LEDA Real
or CORE.

Open Problems

1. An important challenge from the perspective of effi-
ciency for EGC approach is high degree algebraic com-
putation, such as those found in Computer Aided De-
sign. These issues are beginning to be addressed, for in-
stance [1].

2. The fundamental problem of EGC is the zero problem:
given any set of real algebraic operators, decide whether
any expression over this set is zero or not. The main
focus here is on the decidability of the zero problem
for non-algebraic expressions. The importance of this
problem has been highlighted by Richardson [12]; re-
cently some progress has been made for special non-
algebraic problems [3].

3. When algorithms in EGC approach are embedded in
larger application systems (such as mesh generation
systems), the output of one algorithm needs to be cas-
caded as input to another; the output of such algo-
rithms may be in high precision, so it is desirable to
reduce the precision in the cascade. The geometric ver-
sion of this problem is called the geometric rounding
problem: given a consistent geometric object in high
precision, “round” it to a consistent geometric object at
a lower precision.

4. Recently a computational model for the EGC approach
has been proposed [14]. The corresponding complex-
ity model needs to be developed. Standard complexity
analysis based on input size is inadequate for evaluat-
ing the complexity of real computation; the complexity
should be expressed in terms of the output precision.

URL to Code

1 Core Library: http://www.cs.nyu.edu/exact
2 LEDA: http://www.mpi-sb.mpg.de/LEDA
3 CGAL: http://www.cgal.org
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ProblemDefinition

One of the most often used techniques in modern com-
puter networks is routing. Routing means selecting paths
in a network along which to send data. Demands usually
randomly appear on the nodes of a network, and routing
algorithms should be able to send data to their destination.
The transfer is done through intermediate nodes, using the
connecting links, based on the topology of the network.
The user waits for the network to guarantee that it has
the required capacity during data transfer, meaning that
the network behaves like its nodes would be connected di-
rectly by a physical line. Such service is usually called the
permanent virtual circuit (PVC) service. To model real life
situations, assume that demands arrive on line, given by
source and destination points, and capacity (bandwidth)
requirements.

Similar routing problems may occur in other environ-
ments, for example in parallel computation. In this case
there are several processors connected together by wires.
During an operation some data appear at given proces-
sors which should be sent to specific destinations. Thus,
this also defines a routing problem. However, this paper
mainly considers the networkmodel, not the parallel com-
puter one.

For any given situation there are several routing possi-
bilities. A natural question is to ask which is the best possi-
ble algorithm. To find the best algorithm one must define
an objective function, which expresses the effectiveness of
the algorithm. For example, the aim may be to reduce the
load of the network. Load can be measured in different
ways, but tomeasure the utilization percent of the nodes or

the links of the network is the most natural. In the online
setting, it is interesting to compare the behavior of a rout-
ing algorithm designed for a specific instance to the best
possible routing.

There are two fundamental approaches towards rout-
ing algorithms. The first approach is to route adaptively,
i. e. depending on the actual loads of the nodes or the links.
The second approach is to route obviously, without using
any information about the current state of the network.
Here the authors survey only results on oblivious routing
algorithms.

Notations and Definitions

A mathematical model of the network routing problem is
now presented.

LetG(V ; E; c) be a capacitated network, whereV is the
set of nodes and E is the set of edges with a capacity func-
tion c : E ! R+. Let jV j = n; jEj = m. It can be assumed
that G is directed, because if G is undirected then for each
undirected edge e = (u; v) two new nodes x, y and four
new directed edges e1 = (u; x); e2 = (v; x); e3 = (y; u);
e4 = (y; u) with infinite capacity may be added to the
graph. If e is considered as an undirected edge with the
same capacity then a directed network equivalent to the
original one is received.

Definition 1 A set of functions
f := f fi jji; j 2 V ; fi j : E(G)! R+g is called a multi–
commodity flow if

X
e2E+

k

fi j(e) =
X
e2E�k

fi j(e)

holds for all k ¤ i; k ¤ j, where k 2 V and E+
k ; E
�
k are the

set of edges coming out from k and coming into k resp.
Each function f ij defines a single–commodity flow from i
to j.

Definition 2 The value of a multi–commodity flow is an
n � n matrix Tf = (t fi j), where

t fi j =
X

e2E+
i

fi j(e) �
X
e2E�i

fi j(e) ;

if i ¤ j and v f
i i = 0 ; for all i; j 2 V :

Definition 3 Let D be a nonnegative n � n matrix where
the diagonal entries are 0. D is called as demand matrix.
The flow on an edge e 2 E routing the demand matrix D
by routing r is defined by

flow(e; r;D) =
X
i; j2V

di jri j(e) ;
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while the edge congestion is

con(e; r;D) =
flow(e; r;D)

c(e)
:

The congestion of demandD using routing r is

con(r;D) = max
e2E

con(e; r;D) :

Definition 4 Amulti–commodity flow r is called routing
if tri j = 1, and if i ¤ j for all i; j 2 V .

Routing represents a way of sending information over
a network. The real load of the edges can be represented
by scaling the edge congestions with the demands.

Definition 5 The oblivious performance ratio Pr of
routing r is

Pr = sup
D

�
con(r;D)
opt(D)

�

where opt(D) is the optimal congestion which can be
achieved on D. The optimal oblivious routing ratio for
a network G is denoted by opt(G), where

opt(G) = min
r

Pr

Problem
INPUT: A capacitated network G(V ; E; c).
OUTPUT: An oblivious routing r, where Pr is minimal.

Key Results

Theorem 1 There is a polynomial time algorithm that for
any input network G (directed or undirected) finds the opti-
mal oblivious routing ratio and the corresponding routing r.

Theorem 2 There is a directed graph G of n vertices such
that opt(G) is at least˝(

p
n).

Applications

Most importantly, with these results one can efficiently
calculate the best routing strategy for a network topol-
ogy with capacity constraints. This is a good tool for net-
work planning. The effectiveness of a given topology can
be tested without any knowledge of the the network traffic
using this analysis.

Many researchers have investigated the variants of
routing problems. For surveys on the most important
models and results, see [10] and [11]. Oblivious rout-
ing algorithms were first analyzed by Valiant and Breb-
ner ([15]). Here, they considered the parallel computer

model and investigated specific architectures, like hyper-
cube, square grids, etc. Borodin and Hopcroft investigated
general networks ([6]). They showed that such simple de-
terministic strategies like oblivious routing can not be very
efficient for online routing and proved a lower bound on
the competitive ration of oblivious algorithms. This lower
bound was later improved by Kaklamanis et al. ([9]), and
they also gave an optimal oblivious deterministic algo-
rithm for the hypercube.

In 2002, Räcke constructed a polylog competitive ran-
domized algorithm for general undirected networks. More
precisely, he proved that for any demand there is a rout-
ing such that the maximum edge congestion is at most
polylog(n) times the optimal congestion for this demand
([12]). The work of Azar et al. extends this result by giving
a polynomial method for calculating the optimal oblivious
routing for a network. They also prove that for directed
networks no logarithmic oblivious performance ratio ex-
ists. Recently, Hajiaghayi et al. present an oblivious rout-
ing algorithm which is O

�
log2 n

�
-competitive with high

probability in directed networks ([8]).
A special online model has been investigated in [5],

where the authors define the so called “repeated game” set-
ting, where the algorithm is allowed to chose a new routing
in each day. This means that it is oblivious to the demands,
that will occur the next day. They present an 1 + "-compet-
itive algorithm for this model.

There are better algorithms for the adaptive case, for
example in [2]. For the offline case Raghavan and Thom-
son gave an efficient algorithm in [13].

Open Problems

The authors investigated edge congestion in this paper,
but in practice, node congestion may be interesting as
well. Node congestion means the ratio of the total traf-
fic traversing a node to its capacity. Some results can be
found for this problem in [7] and in [3]. It is an open prob-
lemwhether this method used for edge congestion analysis
can be applied for such a model. Another interesting open
question may be whether there is a more efficient algo-
rithm to compute the optimal oblivious performance ratio
of a network ([1,14]).

Experimental Results

The authors applied their method on ISP network topolo-
gies and found that the calculated optimal oblivious ratios
are surprisingly low, between 1.4 and 2. Other research
dealing with this question found similar results ([1,14]).
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ProblemDefinition

Network Model/Communication Protocol

In geometric networks, the nodes are embedded into Eu-
clidean plane. Each node is aware of its geographic loca-
tion, i. e., it knows its (x; y) coordinates in the plane.

Each node has the same transmission range, i. e., if
a node v is within the transmission range of another node
u; the node u can transmit to v directly and vice versa.
Thus, the network can be modeled as an undirected graph
G = (V ; E); where two nodes u; v 2 V are connected by
an edge (u; v) 2 E if u and v are within their transmis-
sion ranges. Such two nodes are called neighboring nodes
or simply neighbors. If two nodes are outside of their trans-
mission ranges a multi-hop transmission is involved, i. e.,
the two nodes must communicate via intermediate nodes.

The cost c(e) of sending a message over an edge e 2 E
to a neighboring node has beenmodeled in many different
ways. The most common ones include: the hop (link) met-
ric (c(e) = 1), the Euclidean metric (c(e) = jej), where |e|
is the Euclidean length of the edge e, and the energy metric
(c(e) = jej˛ for ˛ � 2).

In geometric networks there is no fixed infrastructure
nor a central server. I.e., all the nodes act as hosts as well
as routers. The topology of the network is unknown to
the nodes apart from their direct neighborhood, i. e., each
node is aware of its own location as well as the coordi-
nates of its neighbors. The nodes need to discover and
maintain routes (involved in multi-hop transmissions) by
themselves in a distributed manner. It is also very often as-
sumed (in the context of sensor networks) that each node
has limited memory and power.

Geometric routing is to route a message from a source
node s to a destination t using geographic location infor-
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mation, i. e., the coordinates of the nodes. It is assumed
that the source node knows the coordinates of the destina-
tion node. A dedicated external location service is used for
the source node to obtain this information [8]. The routing
protocol consists of a sequence of communication steps.
During each step, both the label of a unique transmitting
node as well as the label of one of its neighbors who is ex-
pected to receive the transmitted message are specified by
the routing protocol. Geometric routing is uniform in the
context that all nodes execute the same protocol when de-
ciding to which other node to forward a message.

Three classes of geometric routing algorithms are con-
sidered: on-line geometric routing, off-line geometric rout-
ing and dynamic geometric routing. In the context of all
three classes, the focus is on routing the message from
the source node to the destination using as small number
of communication steps as possible. Note that the num-
ber of communication steps corresponds to the total num-
ber of transmissions. Thus by minimizing the number of
communication steps, the number of transmissions is also
minimized resulting in reduced power consumption. In
what follows a list of combinatorial and algorithmic defini-
tions commonly used in the context of geometric routing
is given.

Planar Graph A graph G = (V ; E) is planar if nodes
in V can be embedded into a 2-dimensional Euclidean
Space R2, i. e., each node in V obtains a unique coordi-
nates and an edge is drawn between every pair of nodes
in E, in such way the resulting edges do not cross each
other inR2.

Unit-Disk Graph (UDG) is defined to be a graph G =
(V ; E) embedded into R2 where two nodes u; v 2 V are
connected by an edge e if the Euclidean distance between
u and v, denoted by ju; vj, is not greater than one.

�-Precision/˝(1) Model or Civilized Graph is de-
fined to be a graph G = (V ; E) embedded into R2 where
for any fixed �>0, two nodes u; v 2 V are of a distance at
least � apart.

Gabriel Graph (GG) is defined to be a graph G =
(V ; E) embedded into R2 where for any u; v 2 V an edge
(u; v) 2 E if u and v are the only nodes in V belonging to
the circle with (u; v) as diameter.

Delaunay Triangulation � of a set of nodes V em-
bedded into R2 is the geometric dual of the Voronoi dia-
gram [9] of V , where any two nodes in V are linked by an
edge in � if their corresponding cells in the Voronoi dia-
gram are incident. A Delaunay triangulation� is unit if it
contains edges of length at most one.

The Right Hand Principle is a rule used by graph
traversal algorithms that primarily chooses the first edge
to the right while moving towards the destination.

Heap-Like Structure Let G = (V ; E) be an undirected
planar graph, s.t., each node in V contains some numer-
ical value. A heap-like structure is a BFS tree T spanning
all nodes in G, s.t., for every node v other than the root,
the value stored at v is smaller than the value stored at v’s
parent.

Systems of clusters [2] Let G = (V ; E) be an undi-
rected planar graph with jVj = n and radius R. One
can construct a system of families of clusters F(0);
F(1); : : : ; F(log R), s.t., (a) the diameter of each cluster
in F(i) is O(2i log n), (b) every node belongs to at most
O(log n) clusters, and (c) for any two nodes whose dis-
tance inG is 2i�1 < d � 2i , there exists at least one cluster
in F(i) that contains the two nodes.

Key Result and Applications

The key results on geometric routing rely on the following
lemmas about Delaunay triangulation, planar graph and
unit disk graph.

Lemma 1 ([9]) The Delaunay triangulation� for a set of
points V of cardinality n can be computed locally in time
O(n log n).

Lemma 2 ([4]) Consider any s; t 2 V. Assume x and y
are two points such that s, x and y belong to a Delaunay
triangulation �. And let ˛ and ˇ be the angles formed by
segments xs and st, and by segments ts and sy respectively.
If ˛ < ˇ, then jxsj < jstj. Otherwise jysj < jstj.

Lemma 3 Let G = (V ; E) be a planar graph embedded
intoR2 and s; t 2 V : Further, let xi be the closest to t inter-
section point defined by some edge ei belonging to some face
Fi and the line segment st. Similarly, let xi+1 be the closest to
t intersection point defined by some edge belonging to face
Fi+1 and the line segment st, where Fi+1 is the face incident
to Fi via edge ei. Then jxi ; tj>jxi+1; tj:

Lemma 4 ([6]) Let G = (V ; E) be a planar civilized graph
embedded into R2. Any ellipse with major axis c covers at
most O(c2) nodes and edges.

Lemma 5 ([5]) Let R be a convex region inR2 with area
A(R) and perimeter P(R), and let V � R: If the unit disk
graph of V has maximum degree k, the number of nodes in
V is bounded by jV j � 8(k + 1)(A(R) + P(R) + 
)/
 .

Lemma 6 ([2]) The number of transmissions required to
construct a heap-like structure and the system of clusters for
a planar graph G is bounded by O(nD) and O(n2D), respec-
tively, where n is the number of nodes and D is the diameter
of G.
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Applications
On-Line Geometric Routing
On-line geometric routing is based on very limited control
information possessed by the routed message and the local
information available at the network nodes. This results in
natural scalability of geometric routing. It is also assumed
that the network is static, i. e., the nodes do not move and
no edges disappear nor (re)appear.

Compass Routing I (CR-I) [4] is a greedy procedure
based on Delaunay triangulation and the observation from
Lemma 2, where during each step the message is always
routed to a neighboring node which is closer to the desti-
nation t. Unfortunately, the message may eventually end
up in a local minimum (dead end) where all neighbors are
further away from t.CR-I is very simple. Also computation
of Delaunay triangulation is local and cheap, see Lemma 1.
However, the algorithm does not guarantee successful de-
livery.

Compass Routing II (CR-II) [1,4] is the first geomet-
ric routing algorithm based on the right hand principle
and the observation from Lemma 3 which guarantee suc-
cessful delivery in any graph embedded intoR2. The algo-
rithm is also known as Face Routing since the routed mes-
sage traverses along perimeters of faces closer and closer
to the destination. In convex graph, the segment st inter-
sects the perimeter of any face at most twice. Thus when
the routed message hits the first edge e that intersects st,
it immediately changes the face to the other side of e. In
consequence, every edge in each face is traversed at most
twice. However, in general graph the routed message has
to visit all edges incident to the face. This is to find the clos-
est intersection point xi to the destination t. In this case
each edge can be visited even 4 times. However if after
the traversal of all edges the routed message chooses the
shorter path to xi (rather than using the right hand princi-
ple), the amortized traversal cost of each edge is 3 [1]. The
proof of correctness follows from Lemma 3.

Theorem 7 ([1]) Compass Routing II guarantees success-
ful delivery in planar graphs using O(n) time where n is the
number of nodes in the network.

Adaptive Face Routing (AFR) [6] is an asymptotically op-
timal geometric routing in planar civilized graphs. The al-
gorithm attempts to estimate the length c of the shortest
path between s and t by bc (starting with bc = 2jstj and
doubling it in every consecutive round). In each round,
the face traversal is restricted to the region formed by the
ellipse with the major axisbc centered in st. In AFR each
edge is traversed at most 4 times, and the time complexity
of AFR is O(c2), see Lemma 4. The corresponding lower
bound is also provided in [6].

Theorem 8 ([6]) The time complexity O(c2), where c is
the length of the shortest path between s and t, is asymp-
totically optimal in civilized Unit Disk Graphs possessing
Gabriel Graph properties.

Geometric Ad-hoc Routing (GOAFR+) [5] has prov-
ably good theoretical and practical performance. Due to
Lemma 5, rather non-practical ˝ (1) assumption can
be dropped. GOAFR+ combines greedy routing and face
routing algorithms. The algorithm starts with the greedy
routing CR-I and when the routed message enters a local
minimum (dead end), it switches to Face Routing.

However,GOAFR+ intends to return to greedy routing
as early as possible via application of early fallback tech-
nique. The simulations show that GOAFR+ outperforms
GOAFR and GOAFRFC considered in [7] in the average
case.

Theorem 9 ([2]) GOAFR+ has the optimal time complex-
ity O(c2) in any Unit Disk Graphs possessingGabriel Graph
properties.

Off-Line Geometric Routing

In off-line geometric routing, the routing stage is preceded
by the preprocessing stage, when several data structures
are constructed on the basis of the input graph G. This is
to speed up the routing phase. The preprocessing is worth-
while if it is followed by further frequent queries.

Single-SourceQueries [2] is a routingmechanism that
allows to route messages from a distinguished source s to
any other node t in the network in time O(c), where c is
the distance between s and t in G. The routing procedure
is based on indirect addressing mechanism implemented
in a heap-like structure that can be efficiently computed,
see Lemma 6.

Multiple-Source-Queries [2] is an extension of
the single-source querying mechanism that provides
O(c log n)-time routing between any pair of nodes located
at distance c in G, where n is the number of nodes in G.
The extension is based on the system of clusters that can
be computed efficiently, see Lemma 6.

Theorem ([5]) After preprocessing, single-source queries
take time O(c) and multiple-source queries take time
O(c log n) in Unit Disk Graphs possessing Gabriel Graph
properties.

Dynamic Geometric Routing

Geometric Routing in Graphs with Dynamic Edges [3]
applies to the model in which the nodes are fault-free and
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stationary but the edges alternate their status between ac-
tive and inactive. However, it is assumed that despite dy-
namic changes in the topology the network always remains
connected. In this model Timestamp-Traversal routing al-
gorithm combines the use of the global time and the start-
ing time of the routing to traverse a spanning subgraph
containing only stable links.

An alternative solution called Tethered-Traversal is
based on the observation that (re)appearing edges poten-
tially shorten the traversal paths, where the time/space
complexity of the routing procedure is linear in the num-
ber of nodes n.

Open Problems

Very little is known about space efficient on-line routing in
static directed graphs. Also the current bounds in dynamic
geometric routing appear to be far from optimal.

Cross References
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RandomWalks

�Minimum k-Connected Geometric Networks
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ProblemDefinition

For a given directed graph G = (V ; E) with non-negative
edge weights, the problem is to compute a shortest path
in G from a source node s to a target node t for given s
and t. Under the assumption that G does not change and
that a lot of source-target queries have to be answered, it
pays to invest some time for a preprocessing step that al-
lows for very fast queries. As output, either a full descrip-
tion of the shortest path or only its length d(s, t) is ex-
pected—depending on the application.

Dijkstra’s classical algorithm for this problem [4] iter-
atively visits all nodes in the order of their distance from
the source until the target is reached. When dealing with
very large graphs, this general algorithm gets too slow
for many applications so that more specific techniques
are needed that exploit special properties of the particu-
lar graph. One practically very relevant case is routing in
road networks where junctions are represented by nodes
and road segments by edges whose weight is determined
by some weighting of, for example, expected travel time,
distance, and fuel consumption. Road networks are typi-
cally sparse (i. e., jEj = O(jV j)), almost planar (i. e., there
are only a few overpasses), and hierarchical (i. e., more or
less ‘important’ roads can be distinguished). An overview
on various speedup techniques for this specific problem is
given in [7].

Key Results

Transit-node routing [2,3] is based on a simple observation
intuitively used by humans: When you start from a source
node s and drive to somewhere ‘far away’, you will leave
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Routing in Road Networks with Transit Nodes, Figure 1
Finding the optimal travel time between two points (flags) somewhere between Saarbrücken and Karlsruhe amounts to retrieving
the 2× 4 access nodes (diamonds), performing 16 table lookups between all pairs of access nodes, and checking that the two disks
defining the locality filter do not overlap. Transit nodes that do not belong to the access node sets of the selected source and target
nodes are drawn as small squares. The figure draws the levels of the highway hierarchy using colors gray, red, blue, and green for
levels 0–1, 2, 3, and 4, respectively

your current location via one of only a few ‘important’
traffic junctions, called (forward) access nodes

�!
A (s). An

analogous argument applies to the target t, i. e., the tar-
get is reached from one of only a few backward access
nodes

 �
A (t). Moreover, the union of all forward and back-

ward access nodes of all nodes, called transit-node set T ,
is rather small. The two observations imply that for each
node the distances to/from its forward/backward access
nodes and for each transit-node pair (u, v), the distance
between u and v can be stored. For given source and target
nodes s and t, the length of the shortest path that passes at
least one transit node is given by

dT (s; t) = minfd(s; u) + d(u; v) + d(v; t) j

u 2
�!
A (s); v 2

 �
A (t)g :

Note that all involved distances d(s, u), d(u, v), and d(v, t)
can be directly looked up in the precomputed data struc-
tures. As a final ingredient, a locality filter L : V � V !
ftrue; falseg is needed that decides whether given nodes s
and t are too close to travel via a transit node. L has to fulfill
the property that :L(s; t) implies that d(s; t) = dT (s; t).
Note that in general the converse need not hold since this
might hinder an efficient realization of the locality filter.

Thus, false positives, i. e., “L(s; t) ^ d(s; t) = dT (s; t)”, may
occur.

The following algorithm can be used to compute
d(s, t):

If :L(s; t), then compute and return dT (s; t);
else, use any other routing algorithm.

Figure 1 gives an example. Knowing the length of the
shortest path, a complete description of it can be effi-
ciently derived using iterative table lookups and precom-
puted representations of paths between transit nodes. Pro-
vided that the above observations hold and that the per-
centage of false positives is low, the above algorithm is
very efficient since a large fraction of all queries can be
handled in line 1, dT (s; t) can be computed using only
a few table lookups, and source and target of the re-
maining queries in line 2 are quite close. Indeed, the re-
maining queries can be further accelerated by introduc-
ing a secondary layer of transit-node routing, based on
a set of secondary transit nodes T2 � T . Here, it is not
necessary to compute and store a complete T2 � T2 dis-
tance table, but it is sufficient to store only distances
fd(u; v) j u; v 2 T2 ^ d(u; v) ¤ dT (s; t)g, i. e., distances
that cannot be obtained using the primary layer. Analo-
gously, further layers can be added.
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Routing in Road Networks with Transit Nodes, Table 1
Statistics on preprocessing. The size of transit-node sets, the number of entries in distance tables, and the average number of access
nodes to the respective layer are given; furthermore, the space overhead and the preprocessing time

layer 1 layer 2 layer 3
jT j |A| avg. jT2j |table2| [�106] |A2| avg. jT3j |table3| [�106] space [B/node] time [h]

Europe 11 293 9.9 323 356 130 4.1 2 954 721 119 251 2:44
USA 10 674 5.7 485 410 204 4.2 3 855 407 173 244 3:25

Routing in Road Networks with Transit Nodes, Table 2
Performance of transit-node routing with respect to 10 000000 randomqueries. The column for layer i specifies which fraction of the
queries is correctly answered using only information available at layers � i. Each box spreads from the lower to the upper quartile
and contains themedian, the whiskers extend to the minimum andmaximum value omitting outliers, which are plotted individually

#nodes #edges layer 1 layer 2 layer 3 query
Europe 18 029 721 42 199 587 99.74% 99.9984% 99.99981% 5.6�s
USA 24 278 285 58 213 192 99.89% 99.9986% 99.99986% 4.9�s

Routing in Road Networks with Transit Nodes, Figure 2
Query time distribution as a function of Dijkstra rank–thenumber of iterations Dijkstra’s algorithmwould need to solve this instance.
The distributions are represented as box-and-whisker plots: each box spreads from the lower to the upper quartile and contains the
median, the whiskers extended to the minimum andmaximum value omitting, which are plotted individually

There are two different implementations: one is based
on a simple geometric grid and one on highway hierar-
chies, the fastest previous approach [5,6]. A highway hier-
archy consists of a sequence of levels (Fig. 1), where level

i + 1 is constructed from level i by bypassing low-degree
nodes and removing edges that never appear far away from
the source or target of a shortest path. Interestingly, these
levels are geometrically decreasing in size and otherwise
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similar to each other. The highest level contains the most
‘important’ nodes and becomes the primary transit-node
set. The nodes of lower levels are used to form the transit-
node sets of subordinated layers.

Applications

Apart from the most obvious applications in car navi-
gation systems and server-based route planning systems,
transit-node routing can be applied to several other fields,
for instance to massive traffic simulations and to various
optimization problems in logistics.

Open Problems

It is an open question whether one can find better transit-
node sets or a better locality filter so that the performance
can be further improved. It is also not clear if transit-node
routing can be successfully applied to other graph types
than road networks. In this context, it would be desir-
able to derive some theoretical guarantees that apply to
any graph that fulfills certain properties. For some practi-
cal applications, a dynamic version of transit-node routing
would be required in order to deal with time-dependent
networks or unexpected edge weight changes caused, for
example, by traffic jams. The latter scenario can be handled
by a related approach [8], which is, however, considerably
slower than transit-node routing.

Experimental Results

Experiments were performed on road networks of West-
ern Europe and the USA using a cost function that solely
takes expected travel time into account. The results exhibit
various tradeoffs between average query time (5 μs to 63 μs
for the USA), preprocessing time (59 min to 1200 min),
and storage overhead (21 bytes/node to 244 bytes/node).
For the variant that uses three layers and is tuned for best
query times, Tables 1 and 2 show statistics on the prepro-
cessing and the query performance, respectively. The av-
erage query times of about 5 μs are six orders of magni-
tude faster than Dijkstra’s algorithm. In addition, Fig. 2
gives for each rank r on the x-axis a distribution for 1 000
queries with random starting point s and the target node t
for which Dijkstra’s algorithm would need r iterations to
find it. The three layers of transit-node routing with small
transition zones in between can be recognized: for large
ranks, it is sufficient to access only the primary layer yield-
ing query times of about 5 μs, for smaller ranks, additional
layers have to be accessed resulting in median query times
of up to 20 μs.

Data Sets

The European road network has been provided by the
company PTV AG, the US network has been obtained
from the TIGER/Line Files [9]. Both graphs have also been
used in the 9th DIMACS Implementation Challenge on
Shortest Paths [1].

URL to Code

The source code might be published at some point in the
future at http://algo2.iti.uka.de/schultes/hwy/.

Cross References

� All Pairs Shortest Paths in Sparse Graphs
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ProblemDefinition

Problem Statement and the I/OModel

Let S be a set of N axis-parallel hypercubes in Rd . A very
basic operation in a spatial database is to answer window
queries on the set S. A window query Q is also an axis-
parallel hypercube in Rd that asks us to return all hyper-
cubes in S that intersect Q. Since the set S is typically huge
in a large spatial database, the goal is to design a disk-based,
or external memory data structure (often called an index
in the database literature) such that these window queries
can be answered efficiently. In addition, given S, the data
structure should be constructed efficiently, and should be
able to support insertions and deletions of objects.

When external memory data structures are concerned,
the standard external memory model [2], a.k.a. the I/O
model, is often used as the model of computation. In this
model, the machine consists of an infinite-size external
memory (disk) and a main memory of size M. A block of
B consecutive elements can be transferred between main
memory and disk in one I/O operation (or simply I/O). An
external memory data structure is a structure that is stored
on disk in blocks, but computation can only occur on ele-
ments in main memory, so any operation (e. g. query, up-
date, and construction) on the data structure must be per-
formed using a number I/Os, which is the measure for the
complexity of the operation.

R-Trees

The R-tree, first proposed by Guttman [9], is a multi-way
tree T , very similar to a B-tree, that is used to store the set
S such that a window query can be answered efficiently.
Each node of T fits in one disk block. The hypercubes of
S are stored only in the leaves of T . All leaves of T are
on the same level, and each stores 	(B) hypercubes from
S; while each internal node, except the root, has a fan-out
of 	(B). The root of T may have a fan-out as small as 2.
For any node u 2 T , let R(u) be the smallest axis-parallel

hypercube, called theminimal bounding box, that encloses
all the hypercubes stored below u. At each internal node
v 2 T , whose children are denoted v1,: : :,vk, the bound-
ing box R(vi) is stored along with the pointer to vi for
i = 1; : : : ; k. Note that these bounding boxes may overlap.
Please see Fig. 1 for an example of an R-tree in two dimen-
sions.

For a window query Q, the query answering process
starts from the root of T and visits all nodes u for which
R(u) intersects Q. When reaching a leaf v, it checks each
hypercube stored at v to decide if it should be reported.
The correctness of the algorithm is obvious, and the effi-
ciency (the number of I/Os) is determined by the number
of nodes visited.

Any R-tree occupies a linear number O(N/B) disk
blocks, but different R-trees might have different query,
update, and construction costs. When analyzing the query
complexity of window queries, the output size T is also
used, in addition to N,M, and B.

Key Results

Although the structure of an R-tree is restricted, there is
much freedom in grouping the hypercubes into leaves and
grouping subtrees into bigger subtrees. Different group-
ing strategies result in different variants of R-trees. Most
of the existing R-trees use various heuristics to group to-
gether hypercubes that are “close” spatially, so that a win-
dow query will not visit toomany unnecessary nodes. Gen-
erally speaking, there are two ways to build an R-tree: re-
peated insertion and bulk-loading. The former type of al-
gorithms include the original R-tree [9], the R+-tree [15],
the R*-tree [6], etc. These algorithms use O(logB N) I/Os
to insert an object and hence O(N logB N) I/Os to build
the R-tree on S, which is not scalable for large N. When
the set S is known in advance, it is much more efficient to
bulk-load the entire R-tree at once. Many bulk-loading al-
gorithms have been proposed, e. g. [7,8,10,11,13]. Most of
these algorithms build the R-tree with O(N/B logM/B N/B)
I/Os (the number of I/Os needed to sort N elements), and
they typically result in better R-trees than those obtained
by repeated insertion. During the past decades, there have
been a large number of works devoted to R-trees from the
database community, and the list here is by nomeans com-
plete. The reader is referred to the book by Manolopou-
los et al. [14] for an excellent survey on this subject in the
database literature. However, no R-tree variant mentioned
above has a guarantee on the query complexity; in fact,
Arge et al. [3] constructed an example showing that some
of the most popular R-trees may have to visit all the nodes
without reporting a single result.
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R-Trees, Figure 1
An R-tree example in two dimensions

From the theoretical perspective, the following are the
two main results concerning the worst-case query com-
plexity of R-trees.

Theorem 1 ([1,12]) There is a set of N points inRd , such
that for any R-tree T built on these points, there exists an
empty window query for which the query algorithm has to
visit˝((N/B)1�1/d ) nodes of T .

The priority R-tree, proposed by Arge et al. [3], matches
the above lower bound.

Theorem 2 ([3]) For any set S of N axis-parallel hyper-
cubes in Rd , the priority R-tree answers a window query
with O((N/B)1�1/d + T/B) I/Os. It can be constructed with
O(N/B logM/B N/B) I/Os.

It is also reported that the priority R-tree performs well in
practice, too [3]. However, it is not known how to update it
efficiently while preserving the worst-case bound. The log-
arithmic method was used to support insertions and dele-
tions [3] but the resulted structure is no longer an R-tree.

Note that the lower bound in Theorem 1 only holds
for R-trees. If the data structure is not restricted to R-trees,
better query bounds can be obtained for the window-query
problem; see e. g. [4].

Applications

R-trees have been used widely in practice due to its sim-
plicity, the ability to store spatial objects of various shapes,
and to answer various queries. The areas of applica-
tions span from geographical information systems (GIS),
computer-aided design, computer vision, and robotics.
When the objects are not axis-parallel hypercubes, they
are often approximated by their minimal bounding boxes,
and the R-tree is then built on these bounding boxes. To
answer a window query, first the R-tree is used to locate

all the intersecting bounding boxes, followed by a filter-
ing step that checks the objects exactly. The R-tree can
also be used to support other kinds of queries, for exam-
ple aggregation queries, nearest-neighbors, etc. In aggre-
gation queries, each object o in S is associatedwith a weight
w(o) 2 R, and the goal is to compute

P
w(o) where the

sum is taken over all objects that intersect the query range
Q. The query algorithm is same as before, except that in
addition it keeps running sum while traversing the R-tree,
and may skip an entire subtree rooted at some u if R(u)
is completely contained in Q. To find the nearest neigh-
bor of a query point q, a priority queue is maintained,
which stores all the nodes u that might contain an object
that is closer to the current nearest neighbor found so far.
The priority of u in the queue is the distance between q
and R(u). The search terminates when the current near-
est neighbor is closer than the top element in the priority
queue. However, no worst-case guarantees are known for
R-trees answering these other types of queries, although
they tend to perform well in practice.

Open Problems

Several interesting problems remain open with respect to
R-trees. Some of them are listed here.
� Is it possible to design an R-tree with the optimal query

bound O((N/B)1�1/d + T/B) that can also be efficiently
updated? Or prove a lower bound on the update cost
for such an R-tree.

� Is there an R-tree that supports aggregation queries for
axis-parallel hypercubes in O((N/B)1�1/d ) I/Os? This
would be optimal because the lower bound of Theo-
rem 1 also holds for aggregation queries on R-trees.
Note that, however, no sub-linearworst-case bound ex-
ists for nearest-neighbor queries, since it is not difficult
to design a worst-case example for which the distance
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between the query point q and any bounding box is
smaller than the distance between q and its true nearest
neighbor.

� When the window query Q shrinks to a point, that
is, the query asks for all hypercubes in S that con-
tain the query point, the problem is often referred
to as stabbing queries or point enclosure queries. The
lower bound of Theorem 1 does not hold for this spe-
cial case; while a lower bound of ˝(log2 N + T/B) was
proved in [5], which holds in the strong indexability
model. It is intriguing to find out the true complex-
ity for stabbing queries using R-trees, which is between
˝(log2 N + T/B) and O((N/B)1�1/d + T/B).

Experimental Results

Nearly all studies on R-trees include experimental evalu-
ations, mostly in two dimensions. Reportedly the Hilbert
R-tree [10,11] has been shown to have good query perfor-
mance while being easy to construct. The R*-tree’s inser-
tion algorithm [6] has often been used for updating the R-
tree. Please refer to the book by Manolopoulos et al. [14]
for more discussions on the practical performance of R-
trees.

Data Sets

Besides some synthetic data sets, the TIGER/Line
data (http://www.census.gov/geo/www/tiger/) from the
US Census Bureau has been frequently used as real-
world data to test R-trees. The R-tree portal (http://www.
rtreeportal.org/) also contains many interesting data sets.

URL to Code

Code for many R-tree variants is available at the R-tree
portal (http://www.rtreeportal.org/). The code for the pri-
ority R-tree is available at http://www.cse.ust.hk/~yike/
prtree/.
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