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ProblemDefinition

The problem concerns the design of efficient rate-based
flow control algorithms for virtual-circuit communication
networks where a connection is established by allocating
a fixed path, called session, between the source and the des-
tination. Rate-based flow-control algorithms repeatedly
adjust the transmission rates of different sessions in an
end-to-end manner with primary objectives to optimize
the network utilization and achieve some kind of fairness
in sharing bandwidth between different sessions.

A widely-accepted fairness criterion for flow-control is
max-min fairness which requires that the rate of a session
can be increased only if this increase does not cause a de-
crease to any other session with smaller or equal rate. Once
max-min fairness has been achieved, no session rate can
be increased any further without violating the above con-
dition or exceeding the bandwidth capacity of some link.
Call max-min rates the session rates when max-min fair-
ness has been reached.

Rate-based flow control algorithms perform rate ad-
justments through a sequence of operations in a way that
the capacities of network links are never exceeded. Some
of these algorithms, called conservative [3,6,10,11,12], em-
ploy operations that gradually increase session rates until

they converge to the max-min rates without ever perform-
ing any rate decreases. On the other hand, optimistic algo-
rithms, introduced more recently by Afek, Mansour, and
Ostfeld [1], allow for decreases, so that a session’s rate may
be intermediately be larger than its final max-min rate.

Optimistic algorithms [1,7] employ a specific rate ad-
justment operation, called update operation (introduced
in [1]). The goal of an update operation is to achieve
fairness among a set of neighboring sessions and optimize
the network utilization in a local basis. More specifically,
an update operation calculates an increase for the rate
of a particular session (the updated session) for each link
the session traverses. The calculated increase on a partic-
ular link is the maximum possible that respects the max-
min fairness condition between the sessions traversing the
link; that is, this increase should not cause a decrease to the
rate of any other session traversing the link with smaller
rate than the rate of the updated session after the increase.
Once the maximum increase on each link has been cal-
culated the minimum among them is applied to the ses-
sion’s rate (let e be the link for which the minimum in-
crease has been calculated). This causes the decrease of
the rates of those sessions traversing e which had larger
rates than the increased rate of the updated session to
the new rate. Moreover, the update operation guaran-
tees that all the capacity of link e is allocated to the ses-
sions traversing it (so the bandwidth of this link is fully
utilized).

One important performance parameter of a rate-based
flow control algorithm is its locality which is character-
ized by the amount of knowledge the algorithm requires
to decide which session’s rate to update next. Oblivious
algorithms do not assume any knowledge of the network
topology or the current session rates. Partially oblivious al-
gorithms have access to session rates but they are unaware
of the network topology, while non-oblivious algorithms
require full knowledge of both the network topology and
the session rates. Another crucial performance parameter
of rate-based flow control algorithms is the convergence
complexity measured as the maximum number of rate-
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adjustment operations performed in any execution until
max-min fairness is achieved.

Key Results

Fatourou, Mavronicolas and Spirakis [7] have studied the
convergence complexity of optimistic rate-based flow con-
trol algorithms under varying degrees of locality. More
specifically, they have proved lower and upper bounds
on the convergence complexity of oblivious, partially-
oblivious and non-oblivious algorithms. These bounds are
expressed in terms of n the number of sessions laid out on
the network.

Theorem 1 (Lower Bound for Oblivious Algorithms, Fa-
tourou, Mavronicolas and Spirakis [7]) Any optimistic,
oblivious, rate-based flow control algorithm requires˝(n2)
update operations to compute the max-min rates.

Fatourou, Mavronicolas and Spirakis [7] have presented
algorithm RoundRobin, which applies update oper-
ations to sessions in a round robin order. Obviously,
RoundRobin is oblivious. It has been proved [7] that the
convergence complexity of RoundRobin is O(n2). This
shows that the lower bound for oblivious algorithms is
tight.

Theorem 2 (Upper Bound for Oblivious Algorithms, Fa-
tourou, Mavronicolas and Spirakis [7]) RoundRobin
computes the max-min rates after performing O(n2)
update operations.

RoundRobin belongs to a class of oblivious algorithms,
called Epoch [7]. Each algorithm of this class repeatedly
chooses some permutation of all session indices and ap-
plies update operations on the sessions in the order de-
termined by this permutation. This is performed n times.
Clearly, Epoch is a class of oblivious algorithms. It has
been proved [7] that each of the algorithms in this class
has convergence complexity O(n2).

Another oblivious algorithm, called Arbitrary, has
been presented in [1]. The algorithm works in a very sim-
ple way by choosing the next session to be updated in an
arbitrary way, but it requires an exponential number of
update operations to compute the max-min rates.

Fatourou, Mavronicolas and Spirakis [7] have proved
that partially-oblivious algorithms do not achieve better
convergence complexity than oblivious algorithms despite
the knowledge they employ.

Theorem 3 (Lower Bound for Partially Oblivious Algo-
rithms, Fatourou, Mavronicolas and Spirakis [7]) Any
optimistic, partially oblivious, rate-based flow control algo-

rithm requires ˝(n2) update operations to compute the
max-min rates.

Afek, Mansour and Ostfeld [1] have presented a partially
oblivious algorithm, called GlobalMin. The algorithm
chooses as the session to update next the one with themin-
imum rate among all sessions. The convergence complex-
ity of GlobalMin is O(n2) [1]. This shows that the lower
bound for partially-oblivious algorithms is tight.

Theorem 4 (Upper Bound for Partially Oblivious algo-
rithms, Afek, Mansour and Ostfeld [1]) GlobalMin
computes the max-min rates after performing O(n2)
update operations.

Another partially-oblivious algorithm, called LocalMin,
is also presented in [1]. The algorithm chooses to sched-
ule next a session which has a minimum rate among all
the sessions that share a link with it. LocalMin has time
complexity O(n2).

Fatourou, Mavronicolas and Spirakis [7] have pre-
sented a non-oblivious algorithm, calledLinear, that ex-
hibits linear convergence complexity. Linear follows the
classical idea [3,12] of selecting as the next updated session
one of the sessions that traverse the most congested link in
the network. To discover such a session, Linear requires
knowledge of the network topology and the session rates.

Theorem 5 (Upper Bound for Non-Oblivious Al-
gorithms, Fatourou, Mavronicolas and Spirakis [7])
Linear computes the max-min rates after performing
O(n) update operations.

The convergence complexity of Linear is optimal, since
n rate adjustments must be performed in any execution of
an optimistic rate-based flow control algorithm (assuming
that the initial session rates are zero). However, this comes
at a remarkable cost in locality which makes Linear
impractical.

Applications

Flow control is the dominant technique used in most
communication networks for preventing data traffic con-
gestion when the externally injected transmission load
is larger than what can be handled even with optimal
routing. Flow control is also used to ensure high net-
work utilization and fairness among the different connec-
tions. Examples of networking technologies where flow
control techniques have been extensively employed to
achieve these goals are TCP streams [5] and ATM net-
works [4]. An overview of flow control in practice is pro-
vided in [3].
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The idea of controlling the rate of a traffic source orig-
inates back to the data networking protocols of the ANSI
Frame Relay Standard. Rate-based flow control is consid-
ered attractive due to its simplicity and its low hardware
requirements. It has been chosen by the ATM Forum on
Traffic Management as the best suited technique for the
goals of ABR service [4].

A substantial amount of research work has been
devoted in past to conservative flow control algo-
rithms [3,6,10,11,12]. The optimistic framework has been
introduced much later by Afek et al. [1] as a more suit-
able approach for real dynamic networks where decreases
of session rates may be necessary (e. g., for accommo-
dating the arrival of new sessions). The algorithms pre-
sented in [7] improve upon the original algorithms pro-
posed in [1] in terms of either convergence complexity, or
locality, or both. Moreover, they identify that certain clas-
sical scheduling techniques, such as round-robin [11], or
adjusting the rates of sessions traversing one of the most
congested links [3,12] can be efficient under the optimistic
framework. The first general lower bounds on the conver-
gence complexity of rate-based flow control algorithms are
also presented in [7].

The performance of optimistic algorithms has been
theoretically analyzed in terms of an abstraction, namely
the update operation, which has been designed to ad-
dress most of the intricacies encountered by rate-based
flow control algorithms. However, the update operation
masks low-level implementation details, while it may incur
non-trivial, local computations on the switches of the net-
work. Fatourou, Mavronicolas and Spirakis [9] have stud-
ied the impact on the efficiency of optimistic algorithms
of local computations required at network switches in or-
der to implement the update operation, and proposed
a distributed scheme that implements a broad class of such
algorithms. On a different avenue, Afek, Mansour and
Ostfeld [2] have proposed a simple flow control scheme,
called Phantom, which employs the idea of considering
an imaginary session on each link [10,12], and they have
discussed how Phantom can be applied to ATMnetworks
and networks of TCP routers.

A broad class of modern distributed applications (e. g.,
remote video, multimedia conferencing, data visualiza-
tion, virtual reality, etc.) exhibit highly differing band-
width requirements and need some kind of quality of ser-
vice guarantees. To efficiently support a wide diversity of
applications sharing available bandwidth, a lot of research
work has been devoted on incorporating priority schemes
on current networking technologies. Priorities offer a basis
for modeling the diverse resource requirements of mod-
ern distributed applications, and they have been used to

accommodate the needs of network management policies,
traffic levels, or pricing. The first efforts for embedding
priority issues into max-min fair, rate-based flow control
were performed in [10,12]. An extension of the classical
theory of max-min fair, rate-based flow control to accom-
modate priorities of different sessions has been presented
in [8]. (A number of other papers addressing similar gen-
eralizations of max-min fairness to account for priorities
and utility have been presented after the original publica-
tion of [8].)

Many modern applications are not based solely on
point-to-point communication but they rather require
multipoint-to-multipoint transmissions. A max-min fair
rate-based flow control algorithm for multicast networks
is presented in [14]. Max-min fair allocation of bandwidth
in wireless adhoc networks is studied in [15].

Open Problems

The research work on optimistic, rate-based flow control
algorithms leaves open several interesting questions. The
convergence complexity of the proposed optimistic algo-
rithms has been analyzed only for a static set of sessions
laid out on the network. It would be interesting to evalu-
ate these algorithms under a dynamic network setting, and
possibly extend the techniques they employ to efficiently
accommodate arriving and departing sessions.

Although max-min fairness has emerged as the most
frequently praised fairness criterion for flow control al-
gorithms, achieving it might be expensive in highly dy-
namic situations. Afek et al. [1] have proposed a modi-
fied version of the update operation, called approximate
update, which applies an increase to some session only if
it is larger than some quantity ı > 0. An approximate opti-
mistic algorithm uses the approximate update operation
and terminates if no session rate can be increased by more
than ı. Obviously such an algorithm does not necessar-
ily reach max-min fairness. It has been proved [1] that for
some network topologies every approximate optimistic al-
gorithm may converge to session rates that are away from
their max-min counterparts by an exponential factor. The
consideration of other versions of update operation or
different termination conditions might lead to better max-
min fairness approximations and deservesmore study; dif-
ferent choices may also significantly impact the conver-
gence complexity of approximate optimistic algorithms.
It would be also interesting to derive trade-off results be-
tween the convergence complexity of such algorithms and
the distance of the terminating rates they achieve to the
max-min rates.
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Fairness formulations that naturally approximate the
max-min condition have been proposed by Kleinberg et
al. [13] as suitable fairness criteria for certain routing and
load balancing applications. Studying these formulations
under the rate-based flow control setting is an interesting
open problem.

Cross References
�Multicommodity Flow, Well-linked Terminals and

Routing Problems
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Round Robin and Equi-partition are the same algorithm.
Average Response time and Flow are basically the same
measure.

ProblemDefinition

The task is to schedule a set of n on-line jobs on p pro-
cessors. The jobs are J = fJ1; : : : ; Jng where job Ji has a re-
lease/arrival time ri and a sequence of phases hJ1i ; J

2
i ; : : : ;

Jqii i. Each phase is represented by hw
q
i ; 


q
i i, where w

q
i de-

notes the amount of work and 
 q
i is the speedup function

specifying the rate 
 q
i (ˇ) at which this work is executed

when given ˇ processors.
A phase of a job is said to be fully parallelizable if

its speedup function is 
 (ˇ) = ˇ. It is said to be sequen-
tial if its speedup function is 
 (ˇ) = 1.1 A speedup
function 
 is nondecreasing iff 
 (ˇ1) � 
 (ˇ2) whenever
ˇ1 � ˇ2;2 is sublinear iff 
 (ˇ1)/ˇ1 � 
 (ˇ2)/ˇ2;3 and
is strictly-sublinear by ˛ iff 
 (ˇ2)/
 (ˇ1) � (ˇ2/ˇ1)1�˛ :

An s-speed scheduling algorithm Ss(J) allocates s � p
processors each point in time to the jobs J in a way such
that all the work completes.4 More formally, it constructs
a function S(i; t) from f1; : : : ; ng � [0;1) to [0; sp] giv-
ing the number of processors allocated to job Ji at time
t. (A job is allowed to be allocated a non-integral num-
ber of processors.) Requiring that for all t,

Pn
i=1 S(i; t) �

sp ensures that at most sp processors are allocated at
any given time. Requiring that for all i, there exist ri =
c0i < c1i < � � � < cqii such that for all 1 � q � qi ,

1Note that an odd feature of this definition is that a sequential job
completes work at a rate of 1 even when absolutely no processors are
allocated to it. This assumption makes things easier for the adversary
and harder for any non-clairvoyant algorithm. Hence, it only makes
these results stronger.

2A job phase with a nondecreasing speedup function executes no
slower if it is allocated more processors.

3Ameasure of how efficient a job utilizes its processors is� (ˇ )/ˇ ,
which is the work completed by the job per time unit per proces-
sor. A sublinear speedup function is one whose efficiency does not
increase with more processors. This is a reasonable assumption if in
practice ˇ1 processors can simulate the execution of ˇ2 processors in
a factor of at most ˇ2/ˇ1 more time.

4Ss(J) is defined to be the scheduler with p processors of speed s.
Ss and Ss are equivalent on fully parallelizable jobs and Ss is s times
faster than Ss on sequential jobs.
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R cqi
cq�1i



q
i (S(i; t))dt = wq

i ensures that before a phase of

a job begins, the job must have been released and all of
the previous phases of the job must have completed. The
completion time of a job Ji, denoted ci, is the completion
time of the last phase of the job.

The goal of a scheduling algorithm is to mini-
mize the average response time, 1

n
P

i2J(ci � ri ), of the
jobs or equivalently its flow time Ss(J) =

P
i2J(ci � ri).

An alternative formalization is to integrate over time
the number of jobs nt alive at time t, Ss(J) =P

i2J
R1
0 (Ji is alive a time t)ıt =

R1
0 ntıt.

A scheduling algorithm is said to be on-line if it lacks
knowledge of which jobs will arrive in the future. It is said
to be non-clairvoyant if it also lacks all knowledge about
the jobs that are currently in the system, except for know-
ing when a job arrives and knowing when it completes.

The two examples of non-clairvoyant schedulers that
are often used in practice are Equi-partition (also called
Round Robin) and Balance. EQUIs is defined to be the
scheduler that allocates an equal number of processors to
each job that is currently alive. That is, for all i and t, if job
Ji is alive at time t, then EQUI(i; t) = sp/nt , where nt is
the number of jobs that are alive at time t. The schedule
BALs is defined in [8] to be the schedule that allocates all
of its processors to the job that has been allocated proces-
sors for the shortest length of time. (Though no one imple-
ments Balance directly, Unix uses a multi-level feedback
(MLF) queue algorithm which in a way approximates Bal-
ance).

The most obvious worst-case measure of the goodness
of an online non-clairvoyant scheduling algorithm S is its
competitive ratio. This compares the perform of the algo-
rithm to that of the optimal scheduler. However, in many
cases, the limited algorithm is unable to compete against
an all knowing all powerful optimal scheduler. To com-
pensate the algorithm Ss, it is given extra speed s. An on-
line scheduling algorithm S is said to be s-speed c-competi-
tive if: maxJ Ss(J)/Opt(J) � c. For example, being s-speed
2-competitive means that the cost Ss(J) of scheduler Swith
s � p processors on any instance J is at most twice the op-
timal cost for the same jobs when only given p processors.

Key Results

If all jobs arrive at time zero (batch), then the flow time
of EQUI is 2-competitive on fully parallelizable jobs [10]
and (2 +

p
3)-competitive on jobs with nondecreasing

sublinear speedup functions [3]. (The time until the last
job completes (makespan) on fully parallelizable jobs is
the same for EQUI and OPT, but can be a factor of

Scheduling with Equipartition, Figure 1
To understand the motivation for this resource augmentation
analysis [8], note that it is common for the quality of service of
a system to have a threshold property with respect to the load
that it is given. In this example, it seems that the online schedul-
ing algorithm S performs reasonably well in comparison to the
optimal scheduling algorithm. Despite this, one can see that the
competitive ratio of S is huge by looking at the vertical gap be-
tween the curves when the load is near capacity. To explain why
these curves are close, onemust alsomeasure thehorizontal gap
between curves. S performs at most c times worse than optimal,
when either the load is decreased or equivalently the speed is
increased by factor of s

	(log n/ log log n) worse for EQUI if the jobs can also have
sequential phases [11].) Table 1 summarizes all the results.

When the jobs have arbitrary arrival times and are
fully parallelizable, the optimal schedule simply allocates
all the processors to the jobs with least remaining work.
This, however, requires the scheduler to know the amount
of work per job. Without this knowledge, EQUI and BAL
are unable to compete with the optimal and hence can do
a factor of˝(n/ log n) and˝(n) respectively worse and no
non-clairvoyant schedulers has a better competitive ratio
than ˝(n1/3) [9,10]. Randomness improves the compet-
itive ratio of BAL to 	(log n log log n) [7]. Having more
(or faster) processors also helps. BALs achieves a s = 1 + �
speed competitive ratio of s

s�1 = 1 + 1
�
[8].

If some of the jobs are fully parallelizable and some are
sequential jobs, it is hard to believe that any non-clairvoy-
ant scheduler, even with sp processors, can perform well.
Not knowing which jobs are which, it waists too many
processors on the sequential jobs. Being starved, the fully
parallelizable jobs fall further and further behind and then
other fully parallelizable jobs arrive which fall behind as
well. For example, even the randomized version of BAL
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Scheduling with Equipartition, Table 1
Each row represents a specific scheduler and a class J of job sets. Here EQUIs denotes the Equi-partition scheduler with s times as
many processors and EQUIs the onewith processors that are s times as fast. The graphs give examples of speedup functions from the
class of those considered. The columns are for different extra resources ratios s. Each entry gives the corresponding ratio between
the given scheduler and the optimal

s = 1 s = 1 + � s = 2 + � s = 4 + 2� s = O(log p)
Batch , , or [2:71; 3:74]

Det. Non-clair ˝(n
1
3 ) �

Rand. Non-clair e�(log n) �

Rand. Non-clair or ˝(n
1
2 ) ˝( 1

�
)

BALs ˝(n) 1 + 1
�

2
s

BALs ˝(s�1/˛n)

EQUIs , , or ˝( n
log n ) ˝(n1�� ) [1 + 1

�
; 2 + 4

�
] � 1

EQUIs , , or ˝( n
log n ) ˝(n1�� ) [ 23 (1 +

1
�
); 2 + 4

�
] [ 2s ;

16
s ]

EQUI or [1:481/˛; 21/˛ ]
EQUI0s Few Preempts ˝(n1�� ) �(1)

H EQUIs or ˝(n1�� ) �(1)

H EQUI0s β or ˝(n) �(1)

can have an arbitrarily bad competitive ratio, even when
given arbitrarily fast processors.

EQUI, however, does amazingly well. EQUIs achieves
a s = 2 + � speed competitive ratio of 2 + 4

�
[1]. This

was later improved to 1 +O(ps/(s � 2)), which is bet-
ter for large s [1]. The intuition is that EQUIs is able
to automatically “self adjust” the number of processors
wasted on the sequential jobs. As it falls behind, it has
more uncompleted jobs in the system and hence allo-
cates fewer processors to each job and hence each job
utilizes the processors that it is given more efficiently.
The extra processors are enough to compensate for the
fact that some processors are still wasted on sequen-
tial jobs. For example, suppose the job set is such that
OPT has `t sequential jobs and at most one fully par-
allelizable job alive at any point in time t. (The proof
starts by proving that this is the worst case.) It may take
a while for the system under EQUIs to reach a “steady
state”, but when it does, mt , which denotes the num-
ber of fully parallelizable jobs it has alive at time t,
converges to `t

s�1 . At this time, EQUIs has `t + mt jobs
alive and OPT has `t + 1. Hence, the competitive ratio
is EQUIs (J)/OPT(J) = (`t + `t

s�1 ))/(`t + 1) � s
s�1 , which

is 1 + 1
e for s = 1 + �. This intuition makes it appear that

speed s = 1 + � is sufficient. However, unless the speed is
at least 2 then the competitive ratio can be bad during the
time until it reaches this steady state, [8].

More surprisingly if all the jobs are strictly sublinear,
i. e., are not fully parallel, then EQUI performs competi-

tively with no extra processors [1]. More specifically, it is
shown that if all the speedup functions are no more fully
parallelizable than 
 (ˇ) = ˇ1�˛ than the competitive ra-
tio is at most 2

1
˛ . For intuition, suppose the adversary al-

locates p
n processors to each of n jobs and EQUI falls be-

hind enough so that it has 2
1
˛ n uncompleted jobs. Then it

allocates p/(2
1
˛ n) processors to each, completing work at

an overall rate of (2
1
˛ n)
 (p/(2

1
˛ n)) = 2 � n
 (p/n). This is

a factor of 2 more than that by the adversary. Hence, as in
the previous result, EQUI has twice the speed and so per-
forms competitively.

The results for EQUIs can be extended further. There
is a competitive s = (8 + �)-speed non-clairvoyant sched-
uler that only preempts when the number of jobs in the
system goes up or down by a factor of two (in some sense
log n times). There is s = (4 + �)-speed one that includes
both sublinear and superlinear jobs. Finally, there
is a s = O(log p) speed one that includes both nondecreas-
ing β and gradual jobs.

The proof of these results for EQUIs require tech-
niques that are completely new. For example, the previous
results prove that their algorithm is competitive by prov-
ing that at every point in time, the number of jobs alive
under their algorithm is within a constant fraction of that
under the optimal schedule. This, however, is simply not
true with this less restricted model. There are job sets such
that for a period of time the ratio between the numbers of
alive jobs under the two schedules is unbounded. Instead,
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a potential function is used to prove that this can only hap-
pen for a relatively short period of time.

The proof first transforms each possible input into
a canonical input that as described above only has paral-
lelizable or sequential phases. Having the number of fully
parallelizable jobs alive under EQUIs at time t be much
bigger than the number of sequential jobs alive at this same
time is bad for EQUIs because it then has many more jobs
alive then OPT and hence is currently incurring much
higher costs. On the other hand, this same situation is
also good for EQUIs because it means that it is allocating
a larger fraction of its processors to the fully parallelizable
jobs and hence is catching up toOPT. Both of these aspects
of the current situation is carefully measured in a poten-
tial function ˚(t). It is proven that at each point in time,
the occurred cost to EQUIs plus the gain (d˚(t))/(dt) in
this potential function is at most c times the costs occurred
by OPT. Assuming that the potential function begins and
ends at zero, the result follows.

More formally, the potential function is ˚(t) = F(t) +
Q(t) whereQ(t) is total sequential work finished by EQUIs
by time t minus the total sequential work finished by
the adversary by time t. To define F(t) requires some
preliminary definitions. For u � t, define mu(t) (`u(t))
to be number of fully parallelizable (sequential) phases
executing under EQUIs at time u, for which EQUIs at
time u has still not processed as much work as the ad-
versary processed at time t. Let nu(t) = mu(t) + `u(t).
Then F(t) =

R1
t fu(mu(t); `u(t))du, where fu(m; `) =

s
s�2

(m�`)(m+`)
nu . As the definition of the potential function

suggests, the analysis is quite complicated.

Applications

In addition to being interesting results on their own, they
have been powerful tools for the theoretical analysis of
other on-line algorithms. For example, in [2,4] TCP was
reduced to this problem and in [5], the online broadcast
scheduling problem was reduced to this problem.

Open Problems

An open question is whether there is an algorithm that is
competitive when given processors of speed s = 1 + � (as
opposed to s = 2 + �). There is a candidate algorithm that
is part way between EQUIs and BALs.
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ProblemDefinition

Consider having a set of resources E in a system. For
each e 2 E, let de (�) be the delay per user that requests its
service, as a function of the total usage of this resource
by all the users. Each such function is considered to be
non�decreasing in the total usage of the corresponding
resource. Each resource may be represented by a pair of
points: an entry point to the resource and an exit point
from it. So, each resource is represented by an arc from its
entry point to its exit point and the model associates with
this arc the cost (e. g., the delay as a function of the load of
this resource) that each user has to pay if she is served by
this resource. The entry/exit points of the resources need
not be unique; they may coincide in order to express the
possibility of offering joint service to users, that consists
of a sequence of resources. Here, denote by V the set of
all entry/exit points of the resources in the system. Any
nonempty collection of resources corresponding to a di-
rected path in G � (V ; E) comprises an action in the sys-
tem.

Let N � [n] be a set of users, each willing to adopt
some action in the system. 8i 2 N , let wi denote user
i’s demand (e. g., the flow rate from a source node to
a destination node), while ˘i 
 2E n ; is the collection
of actions, any of which would satisfy user i (e. g., al-
ternative routes from a source to a destination node,
if G represents a communication network). The collec-
tion ˘ i is called the action set of user i and each of
its elements contains at least one resource. Any vector
r = (r1; : : : ; rn) 2 ˘ � �ni=1˘i is a pure strategies profile,
or a configuration of the users. Any vector of real func-
tions p = (p1; p2; : : : ; pn) s.t.8i 2 [n]; pi : ˘i ! [0; 1] is
a probability distribution over the set of allowable actions
for user i (i. e.,

P
r i2˘i

pi (ri ) = 1), and is called a mixed
strategies profile for the n users.

A congestion model typically deals with users of
identical demands, and thus, user cost function de-

pending on the number of users adopting each action
([1,4,6]). In this work the more general case is con-
sidered, where a weighted congestion model is the tuple
((wi )i2N ; (˘i )i2N ; (de )e2E). That is, the users are allowed
to have different demands for service from the whole sys-
tem, and thus affect the resource delay functions in a dif-
ferent way, depending on their own weights. A weighted
congestion game associated with this model, is a game
in strategic form with the set of users N and user de-
mands (wi)i2N , the action sets (˘i)i2N and cost func-
tions (�ir i )i2N;r i2˘i defined as follows: For any configu-
ration r 2 ˘ and 8e 2 E, let �e(r) = fi 2 N : e 2 rig be
the set of users exploiting resource e according to r (called
the view of resource e wrt configuration r). The cost �i (r)
of user i for adopting strategy ri 2 ˘i in a given configu-
ration r is equal to the cumulative delay �r i (r) along this
path:

�i (r) = �r i (r) =
X
e2r i

de (�e (r)) (1)

where, 8e 2 E; �e (r) �
P

i2�e (r) wi is the load on re-
source e wrt the configuration r.

On the other hand, for a mixed strategies profile p, the
expected cost of user i for adopting strategy ri 2 ˘i is

�ir i (p) =
X

r�i2˘�i

P(p�i ; r�i ) �
X
e2r i

de
�
�e(r�i ˚ ri )

�

(2)

where, r�i is a configuration of all the users except for user
i, p�i is the mixed strategies profile of all users except for
i, r�i ˚ ri is the new configuration with user i choosing
strategy ri , and P(p�i ; r�i ) �

Q
j2Nnfig p j(r j) is the oc-

currence probability of r�i .

Remark 1 Here notation is abused a little bit and the
model considers the user costs �ir i as functions whose ex-
act definition depends on the other users’ strategies: In the
general case of a mixed strategies profile p, (2) is valid and
expresses the expected cost of user i wrt p, conditioned on
the event that i chooses path ri . If the other users adopt
a pure strategies profile r�i , we get the special form of (1)
that expresses the exact cost of user i choosing action ri .

A congestion game in which all users are indistinguish-
able (i. e., they have the same user cost functions) and have
the same action set, is called symmetric. When each user’s
action set ˘ i consists of sets of resources that comprise
(simple) paths between a unique origin-destination pair of
nodes (si ; ti ) in a network G = (V ; E), the model refers
to a network congestion game. If additionally all origin-
destination pairs of the users coincide with a unique pair
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(s, t) one gets a single commodity network congestion game
and then all users share exactly the same action set. Ob-
serve that a single-commodity network congestion game
is not necessarily symmetric because the users may have
different demands and thus their cost functions will also
differ.

Selfish Behavior

Fix an arbitrary (mixed in general) strategies profile p for
a congestion game ((wi )i2N ; (˘i )i2N ; (de )e2E ). We say
that p is a Nash Equilibrium (NE) if and only if 8i 2
N;8ri ; 
i 2 ˘i ; pi (ri ) > 0 ) �ir i (p) � �i�i

(p):
A configuration r 2 ˘ is a Pure Nash Equilibrium (PNE)
if and only if (8i 2 N;8
i 2 ˘i ; �r i (r) � ��i (r�i ˚ 
i)
where, r�i ˚ 
i is the same configuration with r except
for user i that now chooses action 
 i.

Key Results

In this section the article deals with the existence and
tractability of PNE in weighted network congestion games.
First, it is shown that it is not always the case that a PNE ex-
ists, even for a weighted single-commodity network con-
gestion game with only linear and 2-wise linear (e. g., the
maximumof two linear functions) resource delays. In con-
trast, it is well known ([1,6]) that any unweighted (not nec-
essarily single-commodity, or even network) congestion
game has a PNE, for any kind of nondecreasing delays. It
should be mentioned that the same result has been inde-
pendently proved also by [3].

Lemma 1 There exist instances of weighted single–
commodity network congestion games with resource delays
being either linear or 2–wise linear functions of the loads,
for which there is no PNE.

Theorem 2 For any weighted multi–commodity network
congestion game with linear resource delays, at least one
PNE exists and can be computed in pseudo-polynomial
time.

Proof Fix an arbitrary network G = (V ; E) with linear
resource/edge delays de (x) = aex + be , e 2 E, ae ; be � 0.
Let r 2 ˘ be an arbitrary configuration for the corre-
sponding weighted multi–commodity congestion game
on G. For the configuration r consider the potential
˚(r) = C(r) +W(r), where

C(r) =
X
e2E

de (�e(r))�e (r) =
X
e2E

[ae�2e (r) + be�e(r)];

and

W(r) =
nX
i=1

X
e2r i

de(wi )wi =
X
e2E

X
i2˜e (r)

de (wi)wi =

X
e2E

X
i2˜e (r)

(aew2
i + bewi)

one concludes that

˚(r0) � ˚(r) = 2wi[�i (r0) � �i (r)] ;

Note that the potential is a global system function
whose changes are proportional to selfish cost improve-
ments of any user. The global minima of the potential then
correspond to configurations in which no user can im-
prove her cost acting unilaterally. Therefore, any weighted
multi–commodity network congestion game with linear
resource delays admits a PNE. �

Applications

In [5] many experiments have been conducted for several
classes of pragmatic networks. The experiments show even
faster convergence to pure Nash Equilibria.

Open Problems

The Potential function reported here is polynomial on the
loads of the users. It is open whether one can find a purely
combinatorial potential , which will allow strong polyno-
mial time for finding Pure Nash equilibria.
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ProblemDefinition

An algorithm is self-stabilizing if it eventually manifests
correct behavior regardless of initial state. The general
problem is to devise self-stabilizing solutions for a speci-
fied task. The property of self-stabilization is now known
to be feasible for a variety of tasks in distributed com-
puting. Self-stabilization is important for distributed sys-
tems and network protocols subject to transient faults.
Self-stabilizing systems automatically recover from faults
that corrupt state.

The operational interpretation of self-stabilization is
depicted in Fig. 1. Part (a) of the figure is an informal pre-
sentation of the behavior of a self-stabilizing system, with
time on the x-axis and some informal measure of correct-
ness on the y-axis. The curve illustrates a system trajec-
tory, through a sequence of states, during execution. At the
initial state, the system state is incorrect; later, the system
enters a correct state, then returns to an incorrect state,
and subsequently stabilizes to an indefinite period where
all states are correct. This period of stability is disrupted
by a transient fault that moves the system to an incorrect
state, after which the scenario above repeats. Part (b) of
the figure illustrates the scenario in terms of state predi-
cates. The box represents the predicate true, which char-
acterizes all possible states. Predicate C characterizes the
correct states of the system, and L � C depicts the closed
legitimacy predicate. Reaching a state in L corresponds to
entering a period of stability in part (a). Given an algo-
rithm A with this type of behavior, it is said that A self-
stabilizes to L; when L is implicitly understood, the state-
ment is simplified to: A is self-stabilizing.

Problem [3]. The first setting for self-stabilization
posed by Dijkstra is a ring of n processes numbered 0
through n � 1. Let the state of process i be denoted by
x[i]. Communication is unidirectional in the ring us-
ing a shared state model. An atomic step of process
i can be expressed by a guarded assignment of the form
g(x[i � 1]; x[i]) ! x[i]:= f (x[i� 1]; x[i]). Here, � is
subtraction modulo n, so that x[i � 1] is the state of the

previous process in the ring with respect to process i. The
guard g is a boolean expression; if g(x[i � 1]; x[i]) is true,
then process i is said to be privileged (or enabled). Thus
in one atomic step, privileged process i reads the state of
the previous process and computes a new state. Execution
scheduling is controlled by a central daemon, which fairly
chooses one among all enabled processes to take the next
step. The problem is to devise g and f so that, regardless
of initial states of x[i], 0 � i < n, eventually there is one
privilege and every process enjoys a privilege infinitely of-
ten.

Complexity Metrics

The complexity of self-stabilization is evaluated by mea-
suring the resource needed for convergence from an ar-
bitrary initial state. Most prominent in the literature of
self-stabilization aremetrics for worst-case time of conver-
gence and space required by an algorithm solving the given
task. Additionally, for reactive self-stabilizing algorithms,
metrics are evaluated for the stable behavior of the algo-
rithm, that is, starting from a legitimate state, and com-
pared to non-stabilizing algorithms, to measure costs of
self-stabilization.

Key Results

Composition

Many self-stabilizing protocols have a layered construc-
tion. Let fAi g

m�1
i=0 be a set programs with the property

that for every state variable x, if program Ai writes x, then
no program Aj, for j > i, writes x. Programs in fAj g

m�1
j=i+1

may read variables written by Ai, that is, they use the out-
put of Ai as input. Fair composition of programs B and C,
written B []C, assumes fair scheduling of steps of B and C.
Let Xj be the set of variables read by Aj and possibly writ-
ten by fAi g

j�1
i=0 .

Theorem 1 (Fair Composition [4]) Suppose Ai is self-
stabilizing to Li under the assumption that all variables
in Xi remain constant throughout any execution; then
A0 []A1[] � � � []Am�1 self-stabilizes to fLi g

m�1
i=0 .

Fair composition with a layered set fAi g
m�1
i=0 corresponds

to sequential composition of phases in a distributed algo-
rithm. For instance, let B be a self-stabilizing algorithm for
mutual exclusion in a network that assumes the existence
of a rooted, spanning tree and let algorithm C be a self-
stabilizing algorithm to construct a rooted spanning tree in
a connected network; then B []C is a self-stabilizing mu-
tual exclusion algorithm for a connected network.
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Self-Stabilization, Figure 1
Self-stabilization trajectories

Synchronization Tasks

One question related to the problem posed in Sect.
“Problem Definition” is whether or not there can be
a uniform solution, where all processes have identical al-
gorithms. Dijkstra’s result for the unidirectional ring is
a semi-uniform solution (all but one process have the same
algorithm), using n states per process. The state of each
process is a counter: process 0 increments the counter
modulo k, where k � n suffices for convergence; the other
processes copy the counter of the preceding process in
the ring. At a legitimate state, each time process 0 incre-
ments the counter, the resulting value is different from all
other counters in the ring. This ring algorithm turns out
to be self-stabilizing for the distributed daemon (any sub-
set of privileged processes may execute in parallel) when
k > n. Subsequent results have established that mutual ex-
clusion on a unidirection ring is 	(1) space per process
with a non-uniform solution. Deterministic uniform so-
lutions to this task are generally impossible, with the ex-
ceptional case where n is and prime. Randomized uniform
solutions are known for arbitrary n, using O(lg˛) space
where ˛ is the smallest number that does not divide n.
Some lower bounds on space for uniform solutions are
derived in [7]. Time complexity of Dijkstra’s algorithm is
O(n2) rounds, and some randomized solutions have been
shown to have expected O(n2) convergence time.

Dijkstra also presented a solution to mutual exclusion
for a linear array of processes, using O(1) space per pro-
cess [3]. This result was later generalized to a rooted tree
of processes, but with mutual exclusion relaxed to hav-
ing one privilege along any path from root to leaf. Subse-
quent research built on this theme, showing how tasks for

distributed wave computations have self-stabilizing solu-
tions. Tasks of phase synchronization and clock synchro-
nization have also been solved. See reference [9] for an ex-
ample of self-stabilizing mutual exclusion in a multipro-
cessor shared memory model.

Graph Algorithms

Communication networks are commonly represented
with graph models and the need for distributed graph
algorithms that tolerate transient faults motivates study
of such tasks. Specific results in this area include self-
stabilizing algorithms for spanning trees, center-finding,
matching, planarity testing, coloring, finding indepen-
dent sets, and so forth. Generally, all graph tasks can be
solved by self-stabilizing algorithms: tasks that have net-
work topology and possibly related factors, such as edge
weights, for input, and define outputs to be a function
of the inputs, can be solved by general methods for self-
stabilization. These general methods require considerable
space and time resource, and may also use stronger model
assumptions than needed for specific tasks, for instance
unique process identifiers and an assumed bound on net-
work diameter. Therefore research continues on graph al-
gorithms.

One discovery emerging from research on self-
stabilizing graph algorithms is the difference between algo-
rithms that terminate and those that continuously change
state, even after outputs are stable. Consider the task of
constructing a spanning tree rooted at process r. Some
algorithms self-stabilize to the property that, for every
p ¤ r, the variable up refers to p’s parent in the span-
ning tree and the state remains unchanged. Other algo-
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rithms are self-stabilizing protocols for token circulation
with the side-effect that the circulation route of the to-
ken establishes a spanning tree. The former type of al-
gorithm has O(lg n) space per process, whereas the lat-
ter has O(lg ı) where ı is the degree (number of neigh-
bors) of a process. This difference was formalized in the
notion of silent algorithms, which eventually stop chang-
ing any communication value; it was shown in [5] for the
link register model that silent algorithms for many graph
tasks have˝(lg n) space.

Transformation

The simple presentation of [3] is enabled by the abstract
computation model, which hides details of communica-
tion, program control, and atomicity. Self-stabilization be-
comes more complicated when considering conventional
architectures that have messages, buffers, and program
counters. A natural question is how to transform or re-
fine self-stabilizing algorithms expressed in abstract mod-
els to concrete models closer to practice. As an example,
consider the problem of transforming algorithms written
for the central daemon to the distributed daemon model.
This transformation can be reduced to finding a self-
stabilizing token-passing algorithm for the distributed
daemon model such that, eventually, no two neighboring
processes concurrently have a token; multiple tokens can
increase the efficiency of the transformation.

General Methods

The general problem of constructing a self-stabilizing al-
gorithm for an input nonreactive task can be solved using
standard tools of distributed computing: snapshot, broad-
cast, system reset, and synchronization tasks are building
blocks so that the global state can be continuously vali-
dated (in some fortunate cases L can be locally checked
and corrected). These building blocks have self-stabilizing
solutions, enabling the general approach.

Fault Tolerance

The connection between self-stabilization and transient
faults is implicit in the definition. Self-stabilization is also
applicable in executions that asynchronously change in-
puts, silently crash and restart, and perturb communi-
cation [10]. One objection to the mechanism of self-
stabilization, particularly when general methods are ap-
plied, is that a small transient fault can lead to a system-
wide correction. This problem has been investigated, for
example in [8], where it is shown how convergence can be

optimized for a limited number of faults. Self-stabilization
has also been combined with other types of failure tol-
erance, though this is not always possible: the task of
counting the number of processes in a ring has no self-
stabilizing solution in the shared state model if a process
may crash [1], unless a failure detector is provided.

Applications

Many network protocols are self-stabilizing by the follow-
ing simple strategy: periodically, they discard current data
and regenerate it from trusted information sources. This
idea does not work in purely asynchronous systems; the
availability of real-time clocks enables the simple strategy.
Similarly, watchdogs with hardware clocks can provide an
effective basis for self-stabilization [6].
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ProblemDefinition

The (balanced) separator problem asks for a cut of mini-
mum (edge)-weight in a graph, such that the two shores of
the cut have approximately equal (node)-weight.

Formally, given an undirected graph G = (V ; E), with
a nonnegative edge-weight function c : E ! R+, a non-
negative node-weight function 
 : V ! R+, and a con-
stant b � 1/2, a cut (S : V n S) is said to be b-balanced,
or a (b; 1 � b)-separator, if b
(V ) � 
(S) � (1 � b)
(V )
(where 
(S) stands for

P
v2S 
(v)).

Problem 1 (b-balanced separator)
Input: Edge- and node-weighted graph G = (V ; E; c; 
),
constant b � 1/2.
Output: A b-balanced cut (S : V n S). Goal: minimize the
edge weight c(ı(S)).

Closely related is the product sparsest cut problem.

Problem 2 ((Product) Sparsest cut)
Input: Edge- and node-weighted graph G = (V ; E; c; 
).
Output: A cut (S : V n S) minimizing the ratio-cost
(
c (ı(S)))/(
(S)
(V n S)).

Problem 2 is the most general version of sparsest cut
solved by Leighton and Rao. Setting all node weights are
equal to 1 leads to the uniform version, Problem 3.

Problem 3 ((Uniform) Sparsest cut)
Input: Edge-weighted graph G = (V ; E; c).
Output: A cut (S : V n S) minimizing the ratio-cost
(c(ı(S)))/(jSjjV n Sj):

Sparsest cut arises as the (integral version of the) lin-
ear programming dual of concurrent multicommodity flow
(Problem 4). An instance of a multicommodity flow prob-
lem is defined on an edge-weighted graph by specifying for
each of k commodities a source si 2 V , a sink ti 2 V , and
a demand Di. A feasible solution to the multicommodity
flow problem defines for each commodity a flow function
on E, thus routing a certain amount of flow from si to ti.

The edge weights represent capacities, and for each edge e,
a capacity constraint is enforced: the sum of all commodi-
ties’ flows through e is at most the capacity c(e).

Problem 4 (Concurrent multicommodity flow)
Input: Edge-weighted graph G = (V ; E; c), commodities
(s1; t1;D1); : : : (sk ; tk ;Dk).
Output: A multicommodity flow that routes f Di units of
commodity i from si to ti for each i simultaneously, without
violating the capacity of any edge. Goal: maximize f .

Problem 4 can be solved in polynomial time by lin-
ear programming, and approximated arbitrarily well by
several more efficient combinatorial algorithms (Sect.
“Implementation”). The maximum value f for which
there exists a multicommodity flow is called the max-
flow of the instance. The min-cut is the minimum
ratio (c(ı(S)))/(D(S;V n S)), where D(S;V n S) =P

i :jfs i ;t ig\Sj=1 Di . This dual interpretation motivates the
most general version of the problem, the nonuniform
sparsest cut (Problem 5).

Problem 5 ((Nonuniform) Sparsest cut) Input: Edge-
weighted graph G = (V ; E; c), commodities (s1; t1;D1);
: : : (sk ; tk ;Dk).
Output: A min-cut (S : V n S), that is, a cut of minimum
ratio-cost (c(ı(S)))/(D(S;V n S)).

(Most literature focuses on either the uniform or the gen-
eral nonuniform version, and both of these two versions
are sometimes referred to as just the “sparsest cut” prob-
lem.)

Key Results

Even when all (edge- and node-) weights are equal to 1,
finding a minimum-weight b-balanced cut is NP-hard (for
b = 1/2, the problem becomes graph bisection). Leighton
and Rao [23,24] give a pseudo-approximation algorithm
for the general problem.

Theorem 1 There is a polynomial-time algorithm that,
given a weighted graph G = (V ; E; c; 
), b � 1/2
and b0 < minfb; 1/3g, finds a b0-balanced cut of weight
O((log n)/(b � b0)) times the weight of the minimum b-
balanced cut.

The algorithm solves the sparsest cut problem on the given
graph, puts aside the smaller-weight shore of the cut, and
recurses on the larger-weight shore until both shores of the
sparsest cut found have weight at most (1� b0)
(G). Now
the larger-weight shore of the last iteration’s sparsest cut is
returned as one shore of the balanced cut, and everything
else as the other shore. Since the sparsest cut problem is
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itself NP-hard, Leighton and Rao first required an approx-
imation algorithm for this problem.

Theorem 2 There is a polynomial-time algorithmwith ap-
proximation ratio O(log p) for product sparsest cut (Prob-
lem 2), where p denotes the number of nonzero-weight
nodes in the graph.

This algorithm follows immediately from Theorem 3.

Theorem 3 There is a polynomial-time algorithm that
finds a cut (S : V n S) with ratio-cost (c(ı(S)))/(
(S)
(V n
S)) 2 O( f log p), where f is the max-flow for the prod-
uct multicommodity flow and p the number of nodes with
nonzero weight.

The proof of Theorem 3 is based on solving a linear pro-
gramming formulation of the multicommodity flow prob-
lem and using the solution to construct a sparse cut.

Related Results

Shahrokhi andMatula [27] gave a max-flowmin-cut theo-
rem for a special case of themulticommodity flow problem
and used a similar LP-based approach to prove their re-
sult. An O(log n) upper bound for arbitrary demands was
proved by Aumann and Rabani [6] and Linial et al. [26]. In
both cases, the solution to the dual of the multicommod-
ity flow linear program is interpreted as a finite metric and
embedded into `1 with distortion O(log n), using an em-
bedding due to Bourgain [10]. The resulting `1 metric is
a convex combination of cut metrics, fromwhich a cut can
be extracted with sparsity ratio at least as good as that of
the combination.

Arora et al. [5] gave an O(
p
log n) pseudo-approxi-

mation algorithm for (uniform or product-weight) bal-
anced separators, based on a semidefinite programming
relaxation. For the nonuniform version, the best bound is
O(
p
log n log log n) due to Arora et al. [4]. Khot and Vish-

noi [18] showed that, for the nonuniform version of the
problem, the semidefinite relaxation of [5] has an integral-
ity gap of at least (log log n)1/6�ı for any ı > 0, and fur-
ther, assuming their Unique Games Conjecture, that it is
NP-hard to (pseudo)-approximate the balanced separator
problem towithin any constant factor. The SDP integrality
gap was strengthened to˝(log log n) by Krauthgamer and
Rabani [20]. Devanur et al. [11] show an ˝(log log n) in-
tegrality gap for the SDP formulation even in the uniform
case.

Implementation

The bottleneck in the balanced separator algorithm is
solving the multicommodity flow linear program. There

exists a substantial amount of work on fast approxi-
mate solutions to such linear programs [19,22,25]. In
most of the following results, the algorithm produces
a (1 + �)-approximation, and its hidden constant depends
on ��2. Garg and Könemann [15], Fleischer [14] and
Karakostas [16] gave efficient approximation schemes for
multicommodity flow and related problems, with running
times Õ((k + m)m) [15] and Õ(m2) [14,16]. Benczúr and
Karger [7] gave an O(log n) approximation to sparsest cut
based on randomized minimum cut and running in time
Õ(n2). The current fastest O(log n) sparsest cut (balanced
separator) approximation is based on a primal-dual ap-
proach to semidefinite programming due to Arora and
Kale [3], and runs in time O(m + n3/2)(Õ(m + n3/2), re-
spectively). The same paper gives an O(

p
log n) approx-

imation in time O(n2)(Õ(n2), respectively), improving
on a previous Õ(n2) algorithm of Arora et al. [2]. If an
O(log2 n) approximation is sufficient, then sparsest cut
can be solved in time Õ(n3/2), and balanced separator in
time Õ(m + n3/2) [17].

Applications

Many problems can be solved by using a balanced separa-
tor or sparsest cut algorithm as a subroutine. The approx-
imation ratio of the resulting algorithm typically depends
directly on the ratio of the underlying subroutine. In most
cases, the graph is recursively split into pieces of balanced
size. In addition to the O(log n) approximation factor re-
quired by the balanced separator algorithm, this leads to
another O(log n) factor due to the recursion depth. Even
et al. [12] improved many results based on balanced sep-
arators by using spreading metrics, reducing the approxi-
mation guarantee to O(log n log log n) from O(log2 n).

Some applications are listed here; where no reference
is given, and for further examples, see [24].
� Minimum cut linear arrangement and minimum

feedback arc set. One single algorithm provides an
O(log2 n) approximation for both of these problems.

� Minimum chordal graph completion and elimination
orderings [1]. Elimination orderings are useful for solv-
ing sparse symmetric linear systems. The O(log2 n) ap-
proximation algorithm of [1] for chordal graph com-
pletion has been improved to O(log n log log n) by
Even et al. [12].

� Balanced node cuts. The cost of a balanced cut may
be measured in terms of the weight of nodes removed
from the graph. The balanced separator algorithm can
be easily extended to this node-weighted case.

� VLSI layout. Bhatt and Leighton [8] studied several
optimization problems in VLSI layout. Recursive par-
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titioning by a balanced separator algorithm leads to
polylogarithmic approximation algorithms for crossing
number, minimum layout area and other problems.

� Treewidth and pathwidth. Bodlaender et al. [9] showed
how to approximate treewidth within O(log n) and
pathwidth within O(log2 n) by using balanced node
separators.

� Bisection. Feige and Krauthgamer [13] gave an
O(˛ log n) approximation for the minimum bisection,
using any ˛-approximation algorithm for sparsest cut.

Experimental Results

Lang and Rao [21] compared a variant of the sparsest cut
algorithm from [24] to methods used in graph decompo-
sition for VLSI design.

Cross References

� Fractional Packing and Covering Problems
�Minimum Bisection
� Sparsest Cut

Recommended Reading

Further details and pointers to additional results may be
found in the survey [28].
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ProblemDefinition

Given a text string T = t1t2 : : : tn and a pattern string
P = p1p2 : : : pm , both being sequences over an alphabet˙
of size � , and given a distance function among strings d
and a threshold k, the approximate string matching (ASM)
problem is to find all the text positions that finish a so-
called approximate occurrence of P in T, that is, compute
the set f j; 9i; 1 � i � j; d(P; ti : : : t j) � kg. In the sequen-
tial version of the problem T, P, and k are given together,
whereas the algorithm can be tailored for a specific d.

The solutions to the problem vary widely depending
on the distance d used. This entry focuses on a very popu-
lar one, calledLevenshtein distance or edit distance, defined
as theminimumnumber of character insertions, deletions,
and substitutions necessary to convert one string into the
other. It will also pay some attention to other common
variants such as indel distance, where only insertions and

deletions are permitted and is the dual of the longest com-
mon subsequence lcs (d(A; B) = jAj + jBj � 2 � l cs(A; B));
and Hamming distance, where only substitutions are per-
mitted.

A popular generalization of all the above is the
weighted edit distance, where the operations are given pos-
itive real-valued weights and the distance is the minimum
sum of weights of a sequence of operations converting
one string into the other. The weight of deleting a char-
acter c is written w(c ! �), that of inserting c is written
w(� ! c), and that of substituting c by c0 6= c is written
w(c ! c0). It is assumed w(c ! c) = 0 and the triangle
inequality, that is, w(x ! y) + w(y ! z) � w(x ! z) for
any x; y; z 2 ˙ [ f�g. As the distance may now be asym-
metric, it is fixed that d(A; B) is the cost of converting A
into B. Of course any result for weighted edit distance ap-
plies to edit, Hamming and indel distances (collectively
termed unit-cost edit distances) as well, but other reduc-
tions are not immediate.

Both worst- and average-case complexity are consid-
ered. For the latter one assumes that pattern and text are
randomly generated by choosing each character uniformly
and independently from˙ . For simplicity and practicality,
m = o(n) is assumed in this entry.

Key Results

The most ancient and versatile solution to the prob-
lem [13] builds over the process of computing weighted
edit distance. Let A = a1a2 : : : am and B = b1b2 : : : bn be
two strings. Let C[0 : : :m; 0 : : : n] be a matrix such that
C[i; j] = d(a1 : : : ai ; b1 : : : bj). Then it holds C[0; 0] = 0
and

C[i; j] = min(C[i � 1; j] + w(ai ! �);C[i; j � 1]
+ w(� ! bj);C[i � 1; j � 1] + w(ai ! bj)) ;

where C[i;�1] = C[�1; j] =1 is assumed. This matrix is
computed in O(mn) time and d(A; B) = C[m; n]. In or-
der to solve the approximate string matching problem, one
takes A = P and B = T , and sets C[0; j] = 0 for all j, so that
the above formula is used only for i > 0.

Theorem 1 (Sellers 1980 [13]) There exists an O(mn)
worst-case time solution to the ASM problem under
weighted edit distance.

The space is O(m) if one realizes that C can be computed
column-wise and only column j � 1 is necessary to com-
pute column j. As explained, this immediately implies that
searching under unit-cost edit distances can be done in
O(mn) time as well. In those cases, it is quite easy to com-
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pute only part of matrix C so as to achieve O(kn) average-
time algorithms [14].

Yet, there exist algorithms with lower worst-case com-
plexity for weighted edit distance. By applying a Ziv-
Lempel parsing to P and T, it is possible to identify re-
gions of matrix C corresponding to substrings of P and T
that can be computed from other previous regions corre-
sponding to similar substrings of P and T [5].

Theorem 2 (Crochemore et al. 2003 [5]) There exists
an O(n + mn/ log� n) worst-case time solution to the ASM
problem under weighted edit distance. Moreover, the time
is O(n + mnh/ log n), where 0 � h � log � is the entropy
of T.

This result is very general, also holding for computing
weighted edit distance and local similarity (see section on
applications). For the case of edit distance and exploit-
ing the unit-cost RAM model, it is possible to do better.
On one hand, one can apply a four-Russian technique:
All the possible blocks (submatrices of C) of size t � t, for
t = O(log� n), are precomputed andmatrixC is computed
block-wise [9]. On the other hand, one can represent each
cell in matrix C using a constant number of bits (as it can
differ from neighboring cells by ˙ 1) so as to store and
process several cells at once in a single machine word [10].
This latter technique is called bit-parallelism and assumes
a machine word of	(log n) bits.

Theorem 3 (Masek and Paterson 1980 [9]; Myers
1999 [10]) There exist O(n + mn/(log� n)2) and O(n +
mn/ log n) worst-case time solutions to the ASM problem
under edit distance.

Both complexities are retained for indel distance, yet not
for Hamming distance.

For unit-cost edit distances, the complexity can de-
pend on k rather than on m, as k < m for the problem
to be nontrivial and usually k is a small fraction of m (or
even k = o(m)). A classic technique [8] computes matrix
C by processing in constant time diagonals C[i + d; j + d],
0 � d � s, along which cell values do not change. This is
possible by preprocessing the suffix trees of T and P for
Lowest Common Ancestor queries.

Theorem 4 (Landau and Vishkin 1989 [8]) There exists
an O(kn) worst-case time solution to the ASM problem un-
der unit-cost edit distances.

Other solutions exist which are better for small k, achiev-
ing time O(n(1 + k4/m)) [4]. For the case of Hamming
distance, one can achieve improved results using convo-
lutions [1].

Theorem 5 (Amir et al. 2004 [1]) There exist
O(n

p
k log k) and O(n(1 + k3/m) log k) worst-case time

solution to the ASM problem under Hamming distance.

The last result for edit distance [4] achieves O(n) time if k
is small enough (k = O(m1/4)). It is also possible to achieve
O(n) time on unit-cost edit distances at the expense of an
exponential additive term on m or k: The number of dif-
ferent columns in C is independent of n, so the transition
from every possible column to the next can be precom-
puted as a finite-state machine.

Theorem 6 (Ukkonen 1985 [14]) There exists an
O(n + mmin(3m ;m(2m�)k )) worst-case time solution to
the ASM problem under edit distance.

Similar results apply for Hamming and indel distance,
where the exponential term reduces slightly according to
the particularities of the distances.

The worst-case complexity of the ASM problem is of
course ˝(n), but it is not known if this can be attained
for any m and k. Yet, the average-case complexity of the
problem is known.

Theorem 7 (Chang andMarr 1994 [3]) The average-case
complexity of the ASM problem is	(n(k + log� m)/m) un-
der unit-cost edit distances.

It is not hard to prove the lower bound as an ex-
tension to Yao’s bound for exact string matching [15].
The lower bound was reached in the same paper [3],
for k/m < 1/3� O(1/

p
�). This was improved later to

k/m < 1/2� O(1/
p
�) [6] using a slightly different idea.

The approach is to precompute the minimum distance
to match every possible text substring (block) of length
O(log� m) inside P. Then, a text window is scanned back-
wards, block-wise, adding up those minimum precom-
puted distances. If they exceed k before scanning all the
window, then no occurrence of P with k errors can con-
tain the scanned blocks and the window can be safely slid
over the scanned blocks, advancing in T. This is an exam-
ple of a filtration algorithm, which discards most text areas
and applies an ASM algorithm only over those areas that
cannot be discarded.

Theorem 8 (Fredriksson and Navarro 2004 [6]) There
exists an optimal-on-average solution to the ASM prob-
lem under edit distance, for any k/m � 1�e/

p
�

2�e/
p
�

= 1/2 �
O(1/
p
�).

The result applies verbatim to indel distance. The same
complexity is achieved for Hamming distance, yet the limit
on k/m improves to 1 � 1/� . Note that, when the limit
k/m is reached, the average complexity is already 	(n). It
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is not clear up to which k/m limit could one achieve linear
time on average.

Applications

The problem has many applications in computational bi-
ology (to compare DNA and protein sequences, recover-
ing from experimental errors, so as to spot mutations or
predict similarity of structure or function), text retrieval
(to recover from spelling, typing or automatic recogni-
tion errors), signal processing (to recover from transmis-
sion and distortion errors), and several others. See [11] for
a more detailed discussion.

Many extensions of the ASM problem exist, particu-
larly in computational biology. For example, it is possible
to substitute whole substrings by others (called generalized
edit distance), swap characters in the strings (string match-
ing with swaps or transpositions), reverse substrings (rever-
sal distance), have variable costs for insertions/deletions
when they are grouped (similarity with gap penalties), and
look for any pair of substrings of both strings that are suffi-
ciently similar (local similarity). See for example Gusfield’s
book [7], where many related problems are discussed.

Open Problems

The worst-case complexity of the problem is not fully un-
derstood. For unit-cost edit distances it is 	(n) if m =
O(min(log n; (log� n)2)) or k = O(min(m1/4; logm� n)).
For weighted edit distance the complexity is 	(n) if
m = O(log� n). It is also unknown up to which k/m value
can one achieveO(n) average time; up to now this has been
achieved up to k/m = 1/2 � O(1/

p
�).

Experimental Results

A thorough survey on the subject [11] presents extensive
experiments. Nowadays, the fastest algorithms for edit dis-
tance are in practice filtration algorithms [6,12] combined
with bit-parallel algorithms to verify the candidate ar-
eas [2,10]. Those filtration algorithms work well for small
enough k/m, otherwise the bit-parallel algorithms should
be used stand-alone. Filtration algorithms are easily ex-
tended to handle multiple patterns searched simultane-
ously.

URL to Code

Well-known packages offering efficient ASM are agrep
(http://webglimpse.net/download.html, top-level subdi-
rectory agrep/) and nrgrep (http://www.dcc.uchile.cl/
~gnavarro/software).

Cross References

� Approximate Regular Expression Matching is the more
complex case where P can be a regular expression;

� Indexed Approximate String Matching refers to the
case where the text can be preprocessed;

� Local Alignment (with Concave Gap Weights) refers to
a more complex weighting scheme of interest in
computational biology.

� Sequential Exact String Matching is the simplified
version where no errors are permitted;
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Keywords and Synonyms

Integrated retiming and technology mapping; Technology
mapping with retiming

ProblemDefinition

One of the key steps in VLSI design flow is tech-
nology mapping which converts a Boolean network of
technology-independent logic gates and edge-triggered D-
flipflops (FFs) into an equivalent one comprised of cells
from a target technology cell library [1,3,5]. Technology
mapping can be formulated as a covering problem in
where logic gates are covered by cells from the technol-
ogy library. For ease of discussion, it is assumed that the
cell library contains only one cell, a K-input lookup table
(K-LUT) with one unit of delay. A K-LUT can realize any
Boolean function with up to K inputs as is the case in high
performance field-programmable gate arrays (FPGAs).

Sequential Circuit Technology Mapping, Figure 1
Technology mapping: (1) Original network, (2) covering, (3) mapping solution

Sequential Circuit Technology Mapping, Figure 2
Retiming and mapping: (1) Retiming and covering, (2) mapping solution, (3) retimed solution

Figure 1 shows an example of technology mapping.
The original network in (1) with three FFs and four gates,
is covered by three 3-input cones as indicated in (2). The
corresponding mapping solution using 3-LUTs is shown
in (3). Note that gate i is covered by two cones. The map-
ping solution in (3) has a cycle time (or clock period) of two
units, which is the total delay of a longest path between
FFs, from primary inputs (PIs) to FFs, and from FFs to
primary outputs (POs).

Retiming is a transformation that relocates FFs of a de-
sign while preserving its functionality [4]. Retiming can af-
fect technology mapping. Figure 2 (1) shows a design ob-
tained from the one in Fig. 1 (1) by retiming the FFs at the
output of y and i to their inputs. It can be covered with
just one 3-input cone as indicated in (1). The correspond-
ing mapping solution shown in (2) is better in both timing
and area than the functionally-equivalent solution in Fig. 1
(3) obtained without retiming.
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FindAllCuts(N , K)
foreach node v in N do C(v)( ffv0gg
while (new cuts discovered) do

foreach node v in N do C(v)( merge(C(u1); :::;C(ut ))

Sequential Circuit Technology Mapping, Figure 3
Cut enumeration procedure

iter a b i x y z o

0 fa0g fb0g fi0g fx0g fy0g fz0g fo0g

1 fa0g fi1; z1g
fa1; z1g

fi0; b0; z0g
fa0; b0; z0g

fx0; y1g
fi1; z1; b1g
fa1; z1; b1g
fi1; z1; y1g
fa1; z1; y1g

fz0g

2 fi1; x1; y2g
fa1; x1; y2g

Sequential Circuit Technology Mapping, Figure 4
Cut enumeration example

A K-bounded network is one in which each gate has at
most K inputs. The sequential circuit technology mapping
problem can be defined as follows: Given a K-bounded
Boolean network N and a target cycle time ' , find a map-
ping solution with a cycle time of ' , assuming FFs can be
repositioned using retiming.

Key Results

The first polynomial time algorithm for the problem was
proposed in [8,9]. An improved algorithm was proposed
in [2] to reduce runtime. Both algorithms are based on
min-cost flow computation.

In [7], another algorithm was proposed to take advan-
tage of the fact that K is a small integer usually between
3 and 6 in practice. The algorithm enumerates all K-input
cones for each gate. It can incorporate other optimization
objectives (e. g., area and power) and can be apllied to stan-
dard cells libraries.

Cut Enumeration

A Boolean network can be represented as an edge-
weighted directed graph where the nodes denote logic
gates, PIs, and POs. There is a directed edge (u, v) with
weight d if u, after going through d FFs, drives v.

A logic cone for a node can be captured by a cut con-
sisting of inputs to the cone. An element in a cut for v
consists of the driving node u and the total weight d on
the paths from u to v, denoted by ud. If u reaches v on

several paths with different FF counts, u will appear in
the cut multiple times with different d’s. As an example,
for the cone for z in Fig. 2 (2), the corresponding cut is
fz1; a1; b1g. A cut of size K is called a K-cut.

Let (ui, v) be an edge in N with weight di, and
C(ui) be a set of K-cuts for ui, for i = 1; : : : ; t. Let
merge(C(u1); : : : ;C(ut )) denote the following set opera-
tion:

ffv0gg [ fcd11 [ : : : [ cdtt jc1 2 C(u1); : : : ; ct 2 C(ut);

jcd11 [ : : : [ cdtt j � Kg

where cdii = fud+di jud 2 cig for i = 1; : : : ; t. It is obvious
that merge(C(u1); : : : ;C(ut )) is a set of K-cuts for v.

If the network N does not contain cycles, the K-cuts of
all nodes can be determined using the merge operation in

FindMinLabels(N)
foreach node v in N do l(v)(�wv � �

while(there are updates in labels) do
foreach node v in N do
l(v)( minc2C(v)fmaxfl(u)� d � � + 1jud

2 cgg
if v is a PO and l(v) > � , return failure

return success

Sequential Circuit Technology Mapping, Figure 5
Labeling procedure
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iter a b i x y z o
0 fa0g : 0 fb0g : 0 fi0g : 0 fx0g : �1 fy0g : 0 fz0g : �1 fo0g : �1
1 fa0g : 1 fa1; z1g : 0 fa0; b0; z0g : 1 fa1; z1; b1g : 0 fz0g : 0

Sequential Circuit Technology Mapping, Figure 6
Labeling example

a topological order starting from the PIs. For general net-
works, Fig. 3 outlines the iterative cut computation proce-
dure proposed in [7].

Figure 4 depicts the iterations in enumerating 3-cuts
for the design in Fig. 1 (1) when cuts are merged in the
order i, x, y, z, and o. At the beginning, every node has
its trivial cut formed by itself. Row 1 shows the new cuts
discovered in the first iteration. In second iteration, two
more cuts are discovered (for x). After that, the procedure
stops as further merging does not yield any new cut.

Lemma 1 After at most Kn iterations, the cut enumeration
procedure will find the K-cuts for all nodes in N.

Techniques have been proposed to speed up the proce-
dure [7]. With those techniques, all 4-cuts for each of the
ISCAS89 benchmark designs can be found in at most five
iterations.

Labeling Phase

After obtaining all K-cuts, the algorithm evaluates the cuts
based on sequential arrival times (or l-values), which is an
extension of traditional arrival times, to consider the effect
of retiming [6,8].

The labeling procedure tries to find a label for each
node as outlined in Fig. 5, where wv denotes the weight
of shortest paths from PIs to node v.

Figure 6 shows the iterations for label computation for
the design in Fig. 1 (1) assuming the target cycle time� = 1
and the nodes are evaluated in the order of i, x, y, z, and o.
In the table, the current label as well as a corresponding cut
for each node is listed. In this example, after first iteration,
none of the labels will change and the procedure stops.

It can be shown that the labeling procedure will stop
after at most n(n � 1) iterations [9]. The following lemma
relates labels to mapping:

Lemma 2 N has a mapping solution with cycle time ' iff
the labeling procedure returns “success”.

Mapping Phase

Once the labels for all nodes are computed successfully,
a mapping solution can be constructed starting from POs.
At each node v, the procedure selects a cut that realizes the

label of the node, and then moves on to select a cut for u
if ud is in the cut selected for v. On the edge from the LUT
for u to the LUT for v, d FFs are added. For the design
in Fig. 1 (1), the mapping solution generated based on the
labels found in Fig. 6 is exactly the network in Fig. 2 (2).

To obtain a mapping solution with the target cycle
time ', the LUT for v can be retimed by dl(v)/�e � 1. For
the design in Fig. 1 (1), the final mapping solution after
retiming is shown in Fig. 2 (3).

Applications

The algorithm can be used to map a technology-
independent Boolean network to a network consisting of
cells from a target technology library. The concepts and
framework are general enough to be adapted to study
other circuit optimizations such as sequential circuit clus-
tering and sequential circuit restructuring.

Cross References

� Circuit Retiming
� FPGA Technology Mapping
� Technology Mapping
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Keywords and Synonyms

Exact pattern matching

ProblemDefinition

Given a pattern string P = p1p2 : : : pm and a text string
T = t1t2 : : : tn , both being sequences over an alphabet ˙
of size � , the exact string matching (ESM) problem is to
find one or, more generally, all the text positions where P
occurs in T, that is, compute the set f j j 1 � j � n�m+1
and P = t j t j+1 : : : t j+m�1g. The pattern is assumed to be
given first and is then to be searched for in several texts.

Both worst- and average-case complexity are consid-
ered. For the latter one assumes that pattern and text are
randomly generated by choosing each character uniformly
and independently from˙ . For simplicity and practicality
the assumption m = o(n) is set in this entry.

Key Results

Most algorithms that solve the ESM problem proceed in
two steps: a preprocessing phase of the pattern P followed
by a searching phase over the text T. The preprocessing
phase serves to collect information on the pattern in order
to speed up the searching phase.

The searching phase of string-matching algorithms
works as follows: it first aligns the left ends of the pattern
and the text, then compare the aligned symbols of the text
and the pattern – this specific work is called an attempt
or a scan – and after a whole match of the pattern or af-
ter a mismatch it shifts the pattern to the right. It repeats
the same procedure again until the right end of the pat-
tern goes beyond the right end of the text. The scanning

part can be viewed as operating on the text through a win-
dow, which size is most often the length of the pattern.
This processing manner is called the scan and shift mech-
anism. Different scanning strategies of the window lead to
algorithms having specific properties and advantages.

The brute force algorithm for the ESM problem con-
sists in checking if P occurs at each position j on T, with
1 � j � n � m + 1. It does not need any preprocessing
phase. It runs in quadratic timeO(mn) with constant extra
space and performs O(n) character comparisons on aver-
age. This is to be compared with the following bounds.

Theorem 1 ( Cole et al. 1995 [3]) The minimum number
of character comparisons to solve the ESM problem in the
worst case is � n + 9/(4m)(n � m), and can be made �
n + 8/(3(m + 1))(n � m).

Theorem 2 (Yao 1979 [15]) The ESM problem can be
solved in optimal expected time O((logm/m) � n).

On-Line Text Parsing

The first linear ESM algorithm appears in the 1970’s. The
preprocessing phase consists in computing the periods
of the pattern prefixes, or equivalently the length of the
longest border for all the prefixes of the pattern. A border
of a string is both a prefix and a suffix of it distinct from
the string itself. Let next[i] be the length of the longest
border of p1 : : : pi�1. Consider an attempt at position j,
when the pattern p1 : : : pm is aligned with the segment
t j : : : t j+m�1 of the text. Assume that the first mismatch
(during a left to right scan) occurs between symbols pi and
ti+ j for 1 � i � m. Then, p1 : : : pi�1 = t j : : : ti+ j�1 = u
and a = pi ¤ ti+ j = b. When shifting, it is reasonable
to expect that a prefix v of the pattern matches some suf-
fix of the portion u of the text. Doing so, after a shift, the
comparisons can resume between pnex t[i] and ti+ j with-
out missing any occurrence of P in T and having to back-
track on the text. There exists two variants, depending on
whether pnex t[i] has to be different from pi or not.

Theorem 3 (Knuth, Morris and Pratt 1977 [11]) The
text searching can be done in time O(n) and space O(m).
Preprocessing the pattern can be done in time O(m).

The search can be realized using an implementation with
successor by default of the deterministic automatonD(P)
recognizing the language˙�P. The size of the implemen-
tation is O(m) independent of the alphabet size, due to the
fact thatD(P) possesses m + 1 states,m forward arcs, and
at mostm backward arcs. Using the automaton for search-
ing a text leads to an algorithm having an efficient delay
(maximum time for processing a character of the text).
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Theorem 4 (Hancart 1993 [10]) Searching for the pat-
tern P can be done with a delay of O(minf�; log2 m)g) letter
comparisons.

Note that for most algorithms the pattern preprocessing
is not necessarily done before the text parsing as it can be
performed on the fly during the parsing.

Practically-Efficient Algorithms

The Boyer–Moore algorithm is among the most efficient
ESM algorithms. A simplified version of it, or the entire
algorithm, is often implemented in text editors for the
search and substitute commands.

The algorithm scans the characters of the window
from right to left beginning with its rightmost symbol.
In case of a mismatch (or a complete match of the pat-
tern) it uses two precomputed functions to shift the pat-
tern to the right. These two shift functions are called
the bad-character shift and the good-suffix shift. They are
based on the following observations. Assume that a mis-
match occurs between character pi = a of the pattern
and character ti+ j = b of the text during an attempt at
position j. Then, pi+1 : : : pm = ti+ j+1 : : : t j+m = u and
pi ¤ ti+ j . The good-suffix shift consists in aligning the
segment ti+ j+1 : : : t j+m with its rightmost occurrence in P
that is preceded by a character different from pi. Another
variant called the best-suffix shift consists in aligning the
segment ti+ j : : : t j+m with its rightmost occurrence in P.
Both variants can be computed in time and space O(m)
independent of the alphabet size. If there exists no such
segment, the shift consists in aligning the longest suffix v
of ti+ j+1 : : : t j+m with a matching prefix of x. The bad-
character shift consists in aligning the text character ti+ j
with its rightmost occurrence in p1 : : : pm�1. If ti+ j does
not appear in the pattern, no occurrence of P in T can
overlap the symbol ti+ j , then the left end of the pattern is
aligned with the character at position i + j + 1. The search
can then be done in O(n/m) in the best case.

Theorem 5 (Cole 1994 (see [5,14])) During the search for
a non-periodic pattern P of length m (such that the length
of the longest border of P is less than m/2) in a text T of
length n, the Boyer-Moore algorithm performs at most 3n
comparisons between letters of P and of T.

Yao’s bound can be reached using an indexing structure
for the reverse pattern. This is done by the Reverse Factor
algorithm also called BDM (for Backward Dawg Match-
ing).

Theorem 6 (Crochemore et al. 1994 [4]) The search can
be done in optimal expected time O((logm/m) � n) using
the suffix automaton or the suffix tree of the reverse pattern.

A factor oracle can be used instead of an index structure,
this is made possible since the only string of length m ac-
cepted by the factor oracle of a string w of lengthm is w it-
self. This is done by the BackwardOracleMatching (BOM)
algorithm of Allauzen, Crochemore and Raffinot [1]. Its
behavior in practice is similar to the one of the BDM algo-
rithm.

Time-Space Optimal Algorithms

Algorithms of this type run in linear time (for both pre-
processing and searching) and need only constant space
in addition to the inputs.

Theorem 7 (Galil and Seiferas 1983 [8]) The search can
be done optimally in time O(n) and constant extra space.

After Galil and Seiferas’ first solution, other solutions are
by Crochemore-Perrin [6] and by Rytter [13]. Algorithms
rely on a partition of the pattern in two parts; they first
search for the right part of the pattern from left to right,
and then, if no mismatch occurs, they search for the left
part. The partition can be: the perfect factorization [8], the
critical factorization [6], or based on the lexicographically
maximum suffix of the pattern [13]. Another solution by
Crochemore (see [2]) is a variant of KMP [11]: it com-
putes lower bounds of pattern prefixes periods on the fly
and requires no preprocessing.

Bit-Parallel Solution

It is possible to use the bit-parallelism technique for ESM.

Theorem 8 (Baeza-Yates & Gonnet 1992; Wu &Manber
1992 (see [5,14])) If the length m of the string P is smaller
than the number of bits of a machine word, the preprocess-
ing phase can be done in time and space 	(� ). The search-
ing phase executes in time	(n).

It is even possible to use this bit-parallelism technique
to simulate the BDM algorithm. This is realized by the
BNDM (BackwardNon-deterministicDawgMatching) al-
gorithm (see [2,12]).

In practice, when scanning the window from right
to left during an attempt, it is sometimes more effi-
cient to only use the bad-character shift. This was first
done by the Horspool algorithm (see [2,12]). Other prac-
tical efficient algorithms are the Quick Search by Sun-
day (see [2,12]) and the Tuned Boyer-Moore by Hume and
Sunday (see [2,12]).

There exists another method that uses the bit-
parallelism technique that is optimal on the average
though it consists actually of a filtration method. It con-
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siders sparse q-grams and thus avoids to scan a lot of text
positions. It is due to Fredriksson and Grabowski [7].

Applications

The methods which are described here apply to the treat-
ment of the natural language, the treatment and analysis
of genetic sequences and of musical sequences, the prob-
lems of safety related to data flows like virus detection, and
the management of textual data bases, to quote only some
immediate applications.

Open Problems

There remain only a few open problems on this question.
It is still unknown if it is possible to design an average op-
timal time constant space string matching algorithm. The
exact size of the Boyer-Moore automaton is still unknown
(see [5]).

Experimental Results

The book of G. Navarro and M. Raffinot [12] is a good in-
troduction and presents an experimental map of ESM al-
gorithms for different alphabet sizes and pattern lengths.
Basically, the Shift-Or algorithm is efficient for small al-
phabets and short patterns, the BNDM algorithm is effi-
cient for medium size alphabets and medium length pat-
terns, the Horspool algorithm is efficient for large alpha-
bets, and the BOM algorithm is efficient for long patterns.

URL to Code

The site monge.univ-mlv.fr/~lecroq/string presents
a large number of ESM algorithms (see also [2]). Each
algorithm is implemented in C code and a Java applet is
given.

Cross References

� Indexed approximate string matching refers to the case
where the text is preprocessed;

� Regular expression matching is the more complex case
where P can be a regular expression.

� Sequential approximate string matching is the version
where errors are permitted;

� Sequential multiple string matching is the version
where a finite set of patterns is searched in a text;
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Keywords and Synonyms

Dictionary matching

ProblemDefinition

Given a finite set of k pattern strings P = fP1; P2; : : : ; Pkg

and a text string T = t1 t2 : : : tn , T and the Pis being se-
quences over an alphabet ˙ of size � , the multiple string
matching (MSM) problem is to find one or, more gener-
ally, all the text positions where a Pi occurs in T. More

http://monge.univ-mlv.fr/~lecroq/string
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precisely the problem is to compute the set f j j 9i; Pi =
t j t j+1 : : : t j+jP i j�1g, or equivalently the set f j j 9i; Pi =
t j�jP i j+1 t j�jP i j+2 : : : t jg. Note that reporting all the occur-
rences of the patterns may lead to a quadratic output (for
example, when Pis and T are drawn from a one-letter al-
phabet). The length of the shortest pattern in P is denoted
by `min. The patterns are assumed to be given first and are
then to be searched for in several texts. This problem is an
extension of the exact string matching problem.

Both worst- and average-case complexities are consid-
ered. For the latter one assumes that pattern and text are
randomly generated by choosing each character uniformly
and independently from˙ . For simplicity and practicality
the assumption jPi j = o(n) is set, for 1 � i � k, in this en-
try.

Key Results

A first solution to the multiple string matching problem
consists in applying an exact string matching algorithm
for locating each pattern in P. This solution has an O(kn)
worst case time complexity. There are more efficient so-
lutions along two main approaches. The first one, due to
Aho and Corasick [1], is an extension of the automaton-
based solution for matching a single string. The second
approach, initiated by Commentz-Walter [3], extends the
Boyer–Moore algorithm to several patterns.

The Aho–Corasick algorithm first builds a trie T(P),
a digital tree recognizing the patterns of P. The trie T(P)
is a tree whose edges are labeled by letters and whose
branches spell the patterns of P. A node p in the trie T(P)
is associated with the unique word w spelled by the path
of T(P) from its root to p. The root itself is identified with
the empty word ". Notice that if w is a node in T(P) then
w is a prefix of some Pi 2 P. If in addition a 2 ˙ then
child(w; a) is equal towa ifwa is a node in T(P); it is equal
to NIL otherwise.

During a second phase, when patterns are added to the
trie, the algorithm initializes an output function out. It as-
sociates the singleton {Pi} with the nodes Pi (1 � i � k),
and associates the empty set with all other nodes of T(P).

Finally, the last phase of the preprocessing consists in
building a failure link for each node of the trie, and si-
multaneously completing the output function. The failure
function fail is defined on nodes as follows (w is a node):
fail(w) = u where u is the longest proper suffix of w that
belongs to T(P). Computation of failure links is done
during a breadth-first traversal of T(P). Completion of
the output function is done while computing the failure
function fail using the following rule: if f ai l(w) = u then
out(w) = out(w) [ out(u).

Sequential Multiple String Matching, Figure 1
The Pattern Matching Machine or Aho–Corasick automaton for
the set of strings {search, ear, arch, chart}

To stop going back with failure links during the com-
putation of the failure links, and also to overpass text char-
acters for which no transition is defined from the root dur-
ing the searching phase, a loop is added on the root of the
trie for these symbols. This finally produces what is called
a PatternMatching Machine or an Aho–Corasick automa-
ton (see Fig. 1).

After the preprocessing phase is completed, the search-
ing phase consists in parsing the text T with T(P). This
starts at the root of T(P) and uses failure links whenever
a character inT does notmatch any label of outgoing edges
of the current node. Each time a node with a nonempty
output is encountered, this means that the patterns of the
output have been discovered in the text, ending at the cur-
rent position. Then, the position is output.

Theorem 1 (Aho and Corasick [1]) After preprocessing
P, searching for the occurrences of the strings ofP in a text T
can be done in time O(n � log �). The running time of the
associated preprocessing phase is O(jPj � log �). The extra
memory space required for both operations is O(jPj).

The Aho–Corasick algorithm is actually a generalization
to a finite set of strings of the Morris–Pratt exact string
matching algorithm.

Commentz-Walter [3] generalized the Boyer–Moore
exact string matching algorithm toMultiple String Match-
ing. Her algorithm builds a trie for the reverse patterns
in P together with two shift tables, and applies a right to
left scan strategy. However it is intricate to implement and
has a quadratic worst-case time complexity.
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Sequential Multiple String Matching, Figure 2
An example of DAWG, index structure used for matching the set
of strings {search, ear, arch, chart}. The automaton accepts
the reverse prefixes of the strings

The DAWG-match algorithm [4] is a generalization of
the BDM exact string matching algorithm. It consists in
building an exact indexing structure for the reverse strings
ofP such as a factor automaton or a generalized suffix tree,
instead as just a trie as in the previous solution (see Fig. 2).
The overall algorithm can be made optimal by using both
an indexing structure for the reverse patterns and an Aho–
Corasick automaton for the patterns. Then, searching in-
volves scanning some portions of the text from left to right
and some other portions from right to left. This enables to
skip large portions of the text T.

Theorem 2 (Crochemore et al. [4]) The DAWG-match
algorithm performs atmost 2n symbol comparisons. Assum-
ing that the sum of the length of the patterns in P is less
than `mink, the DAWG-match algorithm makes on aver-
age O((n log `min)/`min) inspections of text characters.

The bottleneck of the DAWG-match algorithm is the con-
struction time and space consumption of the exact index-
ing structure. This can be avoided by replacing the exact
indexing structure by a factor oracle for a set of strings.
When the factor oracle is used alone, it gives the Set Back-
ward Oracle Matching (SBOM) algorithm [2]. It is an ex-
act algorithm that behaves almost as well as the DAWG-
match algorithm.

The bit-parallelism technique can be used to simulate
the DAWG-match algorithm. It gives the MultiBNDM al-
gorithm of Navarro and Raffinot [7]. This strategy is effi-
cient when k � `min bits fit in a few computer words. The

prefixes of strings of P of length `min are packed together
in a bit vector. Then, the search is similar to the BNDM
exact string matching and is performed for all the prefixes
at the same time.

The use of the generalization of the bad-character shift
alone as done in the Horspool exact string matching algo-
rithm gives poor performances for the MSM problem due
to the high probability of finding each character of the al-
phabet in one of the strings of P.

The algorithm of Wu and Manber [11] considers
blocks of length `. Blocks of such a length are hashed
using a function h into values less than maxvalue. Then
shift[h(B)] is defined as the minimum between jPi j � j
and `min � ` + 1 with B = pij�`+1 : : : p

i
j for 1 � i � k

and 1 � j � jPi j. The value of ` varies with the minimum
length of the strings in P and the size of the alphabet. The
value ofmaxvalue varies with the memory space available.

The searching phase of the algorithm consists in
reading blocks B of length `. If shift[h(B)] > 0 then
a shift of length shift[h(B)] is applied. Otherwise, when
shift[h(B)] = 0 the patterns ending with block B are exam-
ined one by one in the text. The first block to be scanned
is t`min�`+1 : : : t`min . This method is incorporated in the
agrep command [10].

Applications

MSM algorithms serve as basis for multidimensional pat-
tern matching and approximate pattern matching with
wildcards. The problem has many applications in com-
putational biology, database search, bibliographic search,
virus detection in data flows, and several others.

Experimental Results

The book of G. Navarro and M. Raffinot [8] is a good in-
troduction to the domain. It presents experimental graph-
ics that report experimental evaluation of multiple string
matching algorithms for different alphabet sizes, pattern
lengths, and sizes of pattern set.

URL to Code

Well-known packages offering efficient MSM are agrep
(http://webglimpse.net/download.html, top-level subdi-
rectory agrep/) and grepwith the -F option (http://www.
gnu.org/software/grep/grep.html).

Cross References

� Indexed String Matching refers to the case where the
text can be preprocessed;

http://webglimpse.net/download.html
http://www.gnu.org/software/grep/grep.html
http://www.gnu.org/software/grep/grep.html
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�Multidimensional String Matching is the case where
the text dimension is greater than one.

� Regular Expression Matching is the more complex case
where the pattern can be a regular expression;

� Sequential Exact String Matching is the version where
a single pattern is searched for in a text;

Recommended Reading
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books: [5,6,8] and [9].
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Short History

The k-set agreement problem is a paradigm of coordina-
tion problems. Defined in the setting of systems made up
of processes prone to failures, it is a simple generalization
of the consensus problem (that corresponds to the case
k = 1). That problem was introduced in 1993 by Chaud-
huri [2] to investigate how the number of choices (k) al-
lowed for the processes is related to the maximumnumber
of processes that can crash. (After it has crashed, a process
executes no more steps: a crash is a premature halting.)

Definition

Let S be a systemmade up of n processes where up to t can
crash and where each process has an input value (called
a proposed value). The problem is defined by the three
following properties (i. e., any algorithm that solves that
problem has to satisfy these properties):
1. Termination. Every nonfaulty process decides a value.
2. Validity. A decided value is a proposed value.
3. Agreement. At most k different values are decided.

The Trivial Case

It is easy to see that this problem can be trivially solved
if the upper bound on the number of process failures t is
smaller than the allowed number of choices k, also called
the coordination degree. (The trivial solution consists in
having t + 1 predetermined processes that send their pro-
posed values to all the processes, and a process deciding
the first value it ever receives.) So, k� t is implicitly as-
sumed in the following.

Key Results

Key Results in Synchronous Systems

The Synchronous Model In this computation model,
each execution consists of a sequence of rounds. These are
identified by the successive integers 1; 2; etc. For the pro-
cesses, the current round number appears as a global vari-
able whose global progress entails their own local progress.

During a round, a process first broadcasts a message,
then receives messages, and finally executes local compu-
tation. The fundamental synchrony property the a syn-
chronous system provides the processes with is the fol-
lowing: a message sent during a round r is received by its
destination process during the very same round r. If dur-
ing a round, a process crashes while sending a message, an
arbitrary subset (not known in advance) of the processes
receive that message.
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Function k-set_agreement (vi )
(1) esti  vi ;
(2) when r = 1; 2; : : : ; b tk c + 1 do % r: round number %
(3) begin_round
(4) send (esti ) to all; % including pi itself %
(5) esti  min(fest j values received during

the current round rg);
(6) end_round;
(7) return (esti )

Set Agreement, Figure 1
A simple k-set agreement synchronous algorithm (code for pi)

Main Results The k-set agreement problem can always
be solved in a synchronous system. The main result is for
the minimal number of rounds (Rt) that are needed for
the nonfaulty processes to decide in the worst-case sce-
nario (this scenario is when exactly k processes crash in
each round). It was shown in [3] that Rt = b tk c + 1. A very
simple algorithm that meets this lower bound is described
in Fig. 1.

Although failures do occur, they are rare in practice.
Let f denote the number of processes that crash in a given
run, 0 � f � t. We are interested in synchronous algo-
rithms that terminate in at most Rt rounds when t pro-
cesses crash in the current run, but that allow the nonfaulty
processes to decide in far fewer rounds when there are
few failures. Such algorithms are called early-deciding al-
gorithms. It was shown in [4] that, in the presence of f pro-
cess crashes, any early-deciding k-set agreement algorithm
has runs in which no process decides before the round
R f = min(b fk c + 2; b tk c + 1). This lower bound shows an
inherent tradeoff linking the coordination degree k, the
maximum number of process failures t, the actual num-
ber of process failures f , and the best time complexity
that can be achieved. Early-deciding k-set agreement algo-
rithms for the synchronous model can be found in [4,12].

Other Failure Models In the send omission failure
model, a process is faulty if it crashes or forgets to send
messages. In the general omission failure model, a process
is faulty if it crashes, forgets to send messages, or forgets
to receive messages. (A send omission failure models the
failure of an output buffer, while a receive omission failure
models the failure of an input buffer.) These failuremodels
were introduced in [11].

The notion of strong termination for set agreement
problems was introduced in [13]. Intuitively, that prop-
erty requires that as many processes as possible decide. Let
a good process be a process that neither crashes nor com-
mits receive omission failures. A set agreement algorithm

is strongly terminating if it forces all the good processes to
decide. (Only the processes that crash during the execution
of the algorithm, or that do not receive enough messages,
can be prevented from deciding.)

An early-deciding k-set agreement algorithm for the
general omission failure model was described in [13]. That
algorithm, which requires t < n/2, directs a good process
to decide and stop in at most R f = min(b fk c + 2; b tk c + 1)
rounds. Moreover, a process that is not a good process
executes at most R f (not_good) = min(d fk e + 2; b tk c + 1)
rounds.

As Rf is a lower bound for the number of rounds in the
crash failure model, the previous algorithm shows that Rf
is also a lower bound for the nonfaulty processes to decide
in themore severe general omission failuremodel. Proving
that R f (not_good) is an upper bound for the number of
rounds that a nongood process has to execute remains an
open problem.

It was shown in [13] that, for a given coordination de-
gree k, t < k

k+1n is an upper bound on the number of pro-
cess failures when one wants to solve the k-set agreement
problem in a synchronous system prone to process gen-
eral omission failures. A k-set agreement algorithm that
meets this bound was described in [13]. That algorithm
requires the processes execute R = t + 2 � k rounds to de-
cide. Proving (or disproving) that R is a lower bound when
t < k

k+1n is an open problem. Designing an early-deciding
k-set agreement algorithm for t < k

k+1n and k > 1 is an-
other problem that remains open.

Key Results in Asynchronous Systems

Impossibility A fundamental result of distributed com-
puting is the impossibility to design a deterministic algo-
rithm that solves the k-set agreement problem in asyn-
chronous systems when k� t [1,7,15]. Compared with the
impossibility of solving asynchronous consensus despite
one process crash, that impossibility is based on deep
combinatorial arguments. This impossibility has opened
new research directions for the connection between dis-
tributed computing and topology. This topology approach
has allowed the discovery of links relating asynchronous k-
set agreement with other distributed computing problems
such as the renaming problem [5].

Circumventing the Impossibility Several approaches
have been investigated to circumvent the previous im-
possibility. These approaches are the same as those that
have been used to circumvent the impossibility of asyn-
chronous consensus despite process crashes.
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One approach consists in replacing the “deterministic
algorithm” by a “randomized algorithm.” In that case, the
termination property becomes “the probability for a cor-
rect process to decide tends to 1 when the number of
rounds tends to +1:” That approach was investigated
in [9].

Another approach that has been proposed is based on
failure detectors. Roughly speaking, a failure detector pro-
vides each process with a list of processes suspected to
have crashed. As an example, the class of failure detectors
denoted ÞSx includes all the failure detectors such that,
after some finite (but unknown) time, (1) any list con-
tains the crashed processes and (2) there is a set Q of x
processes such that Q contains one correct process and
that correct process is no longer suspected by the pro-
cesses of Q (let us observe that correct processes can be
suspected intermittently or even forever). Tight bounds
for the k-set agreement problem in asynchronous sys-
tems equipped with such failure detectors, conjectured
in [9], were proved in [6]. More precisely, such a fail-
ure detector class allows the k-set agreement problem to
be solved for k � t � x + 2 [9], and cannot solve it when
k < t � x + 2 [6].

Another approach that has been investigated is the
combination of failure detectors and conditions [8].
A condition is a set of input vectors, and each input vector
has one entry per process. The entries of the input vector
associated with a run contain the values proposed by the
processes in that run. Basically, such an approach guaran-
tees that the nonfaulty processes always decide when the
actual input vector belongs to the condition the k-set algo-
rithm has been instantiated with.

Applications

The set agreement problem was introduced to study how
the number of failures and the synchronization degree
are related in an asynchronous system; hence, it is mainly
a theoretical problem. That problem is used as a canoni-
cal problem when one is interested in asynchronous com-
putability in the presence of failures. Nevertheless, one
can imagine practical problems the solutions of which
are based on the set agreement problem (e. g., allocating
a small shareable resources—such as broadcast frequen-
cies—in a network).

Cross References

� Asynchronous Consensus Impossibility
� Failure Detectors
� Renaming
� Topology Approach in Distributed Computing
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The SET COVER problem has as input a set R of m items,
a set C of n subsets of R and a weight function w : C ! Q.
The task is to choose a subset C0 
 C of minimum weight
whose union contains all items of R.

The sets R and C can be represented by an m � n bi-
narymatrixA that consists of a row for every item in R and
a column for every subset of R inC, where an entry ai; j is 1
iff the ith item in R is part of the jth subset in C. Therefore,
the SET COVER problem can be formulated as follows.

Input: An m � n binary matrix A and a weight func-
tion w on the columns of A.
Task: Select some columns of A with minimum
weight such that the submatrixA0 ofA that is induced
by these columns has at least one 1 in every row.

While SET COVER is NP-hard in general [4], it can be
solved in polynomial time on instances whose columns
can be permuted in such a way that in every row the ones
appear consecutively, that is, on instances that have the
consecutive ones property (C1P).1

Motivated by problems arising from railway optimiza-
tion, Mecke and Wagner [7] consider the case of SET
COVER instances that have “almost the C1P”. Having al-
most the C1P means that the corresponding matrices are
similar to matrices that have been generated by starting
with a matrix that has the C1P and replacing randomly
a certain percentage of the 1’s by 0’s [7]. For Ruf and Schö-
bel [8], in contrast, having almost the C1P means that the
average number of blocks of consecutive 1’s per row is
much smaller than the number of columns of the matrix.
This entry will also mention some of their results.

1The C1P can be defined symmetrically for columns; this article
focuses on rows. SET COVER on instances with the C1P can be solved
in polynomial time, e. g., with a linear programming approach, be-
cause the corresponding coefficient matrices are totally unimodular
(see [9]).

Notation

Given an instance (A,w) of SET COVER, let R denote the
row set of A and C its column set. A column cj covers
a row ri, denoted by ri 2 c j , if ai; j = 1.

A binary matrix has the strong C1P if (without any col-
umn permutation) the 1’s appear consecutively in every
row. A block of consecutive 1’s is a maximal sequence of
consecutive 1’s in a row. It is possible to determine in lin-
ear time if a matrix has the C1P, and if so, to compute
a column permutation that yields the strong C1P [2,3,6].
However, note that it is NP-hard to permute the columns
of a binary matrix such that the number of blocks of con-
secutive 1’s in the resulting matrix is minimized [1,4,5].

A data reduction rule transforms in polynomial time
a given instance I of an optimization problem into an in-
stance I0 of the same problem such that jI0j < jIj and the
optimal solution for I0 has the same value (e. g., weight)
as the optimal solution for I. Given a set of data reduc-
tion rules, to reduce a problem instance means to repeat-
edly apply the rules until no rule is applicable; the resulting
instance is called reduced.

Key Results

Data Reduction Rules

For SET COVER there exist well-known data reduction
rules:

Row domination rule: If there are two rows
ri1 ; ri2 2 R
with8c 2 C : ri1 2 c implies ri2 2 c, then ri2 is dominated
by ri1 . Remove row ri2 from A.

Column domination rule: If there are two columns
c j1 ; c j2 2 C with w(c j1 ) � w(c j2 ) and 8r 2 R : r 2 c j1
implies r 2 c j2 , then c j1 is dominated by c j2 . Remove c j1
from A.

In addition to these two rules, a column c j1 2 C can
also be dominated by a subset C0 
 C of the columns in-
stead of a single column: If there is a subset C0 
 C with
w(c j1 ) �

P
c2C 0 w(c) and 8r 2 R : r 2 c j1 implies (9c 2

C0 : r 2 c), then remove c j1 from A. Unfortunately, it is
NP-hard to find a dominating subset C0 for a given set c j1 .
Mecke andWagner [7], therefore, present a restricted vari-
ant of this generalized column domination rule.

For every row r 2 R, let cmin(r) be a column in C that
covers r and hasminimumweight under this property. For
two columns c j1 ; c j2 2 C, define X(c j1 ; c j2 ) := fcmin(r) j
r 2 c j1 ^ r … c j2g. The new data reduction rule then reads
as follows.

Advanced column domination rule: If there are two
columns c j1 ; c j2 2 C and a row that is covered by both c j1
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and c j2 , and if w(c j1 ) � w(c j2 ) +
P

c2X(c j1 ;c j2 )
w(c), then

c j1 is dominated by fc j2g [ X(c j1 ; c j2 ). Remove c j1 fromA.

Theorem 1 ([7]) A matrix A can be reduced in
O(Nn) time with respect to the column domination rule, in
O(Nm) time with respect to the row domination rule, and in
O(Nmn) time with respect to all three data reduction rules
described above, when N is the number of 1’s in A.

In the databases used by Ruf and Schöbel [8], matrices are
represented by the column indices of the first and last 1’s
of its blocks of consecutive 1’s. For such matrix represen-
tations, a fast data reduction rule is presented [8], which
eliminates “unnecessary” columns and which, in the im-
plementations, replaces the column domination rule. The
new rule is faster than the column domination rule (a ma-
trix can be reduced in O(mn) time with respect to the new
rule), but not as powerful: Reducing a matrix A with the
new rule can result in a matrix that has more columns
than the matrix resulting from reducing A with the col-
umn domination rule.

Algorithms

Mecke and Wagner [7] present an algorithm that solves
SET COVER by enumerating all feasible solutions.

Given a row ri of A, a partial solution for the rows
r1; : : : ; ri is a subset C0 
 C of the columns of A such that
for each row rj with j 2 f1; : : : ; ig there is a column in C0

that covers row rj.
The main idea of the algorithm is to find an optimal

solution by iterating over the rows of A and updating in
every step a data structure S that keeps all partial solutions
for the rows considered so far. More exactly, in every iter-
ation step the algorithm considers the first row of A and
updates the data structure S accordingly. Thereafter, the
first row of A is deleted. The following code shows the al-
gorithm.

1 Repeatm times: {
2 for every partial solution C0 in S that does not cover

the first row of A: {
3 for every column c of A that covers the first row

of A: {
4 Add fcg [ C0 to S; }
5 Delete C0 from S; }
6 Delete the first row of A; }

This straightforward enumerative algorithm could create
a set S of exponential size. Therefore, the data reduction
rules presented above are used to delete after each itera-
tion step partial solutions that are not needed any more.
To this end, a matrix B is associated with the set S, where

every row corresponds to a row of A and every column
corresponds to a partial solution in S—an entry bi; j of B
is 1 iff the jth partial solution of B contains a column
of A that covers the row ri. The algorithm uses the matrix

C :=
�

A B
0 : : : 0 1 : : : 1

�
, which is updated together with S

in every iteration step.2 Line 6 of the code shown above is
replaced by the following two lines:

6 Delete the first row of the matrix C;
7 Reduce the matrix C and update S accordingly; }

At the end of the algorithm, S contains exactly one so-
lution, and this solution is optimal. Moreover, if the SET
COVER instance is nicely structured, the algorithm has
polynomial running time:

Theorem 2 ([7]) If A has the strong C1P, is reduced, and
its rows are sorted in lexicographic order, then the algorithm
has a running time of O(M3n) where M is the maximum
number of 1’s per row and per column.

Theorem 3 ([7]) If the distance between the first and the
last 1 in every column is at most k, then at any time through-
out the algorithm the number of columns in the matrix B
is O(2kn), and the running time is O(22kkmn2).

Ruf and Schöbel [8] present a branch and bound algorithm
for SET COVER instances that have a small average number
of blocks of consecutive 1’s per row.

The algorithm considers in each step a row ri of the
current matrix (which has been reduced with data reduc-
tion rules before) and branches into bli cases, where bli is
the number of blocks of consecutive 1’s in ri. In each case,
one block of consecutive 1’s in row ri is selected, and the 1’s
of all other blocks in this row are replaced by 0’s. There-
after, a lower and an upper bound on the weight of the
solution for each resulting instance is computed. If a lower
bound differs by a factor of more than 1 + �, for a given
constant ", from the best upper bound achieved so far, the
corresponding instance is subjected to further branchings.
Finally, the best upper bound that was found is returned.

In each branching step, the bli instances that are newly
generated are “closer” to have the (strong) C1P than the
instance from which they descend. If an instance has
the C1P, the lower and upper bound can easily be com-
puted by exactly solving the problem. Otherwise, standard
heuristics are used.

2The last row of C allows to distinguish the columns belonging
to A from those belonging to B.
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Applications

SET COVER instances occur e. g. in railway optimization,
where the task is to determine where new railway stations
should be built. Each row then corresponds to an exist-
ing settlement, and each column corresponds to a location
on the existing trackage where a railway station could be
build. A column c covers a row r, if the settlement corre-
sponding to r lies within a given radius around the location
corresponding to c.

If the railway network consisted of one straight line rail
track only, the corresponding SET COVER instance would
have the C1P; instances arising from real world data are
close to have the C1P [7,8].

Experimental Results

Mecke and Wagner [7] make experiments on real-world
instances as described in the Applications section and on
instances that have been generated by starting with a ma-
trix that has the C1P and replacing randomly a certain
percentage of the 1’s by 0’s. The real-world data consists
of a railway graph with 8200 nodes and 8700 edges, and
30 000 settlements. The generated instances consist of 50–
50 000 rows with 10–200 1’s per row. Up to 20% of the 1’s
are replaced by 0’s.

In the real-world instances, the data reduction rules
decrease the number of 1’s to between 1% and 25% of
the original number of 1’s without and to between 0.2%
and 2.5% with the advanced column reduction rule. In the
case of generated instances that have the C1P, the number
of 1’s is decreased to about 2% without and to 0.5% with
the advanced column reduction rule. In instances with
20% perturbation, the number of 1’s is decreased to 67%
without and to 20% with the advanced column reduction
rule.

The enumerative algorithm has a running time that
is almost linear for real-world instances and most gener-
ated instances. Only in the case of generated instances with
20% perturbation, the running time is quadratic.

Ruf and Schöbel [8] consider three instance types: real-
world instances, instances arising from Steiner triple sys-
tems, and randomly generated instances. The latter have
a size of 100 � 100 and contain either 1–5 blocks of con-
secutive 1’s in each row, each one consisting of between
one and nine 1’s, or they are generated with a probability
of 3% or 5% for any entry to be 1.

The data reduction rules used by Ruf and Schöbel turn
out to be powerful for the real-world instances (reducing
thematrix size from about 1100 � 3100 to 100 � 800 in av-
erage), whereas for all other instance types the sizes could
not be reduced noticeably.

The branch and bound algorithm could solve almost
all real-world instances up to optimality within a time of
less than a second up to one hour. In all cases where an
optimal solution has been found, the first generated sub-
problem had already provided a lower bound equal to the
weight of the optimal solution.
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ProblemDefinition

The problem is concerned with scheduling dynamically
arriving jobs in the scenario when the processing require-
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ments of jobs are unknown to the scheduler. The lack of
knowledge of how long a job will take to execute is a par-
ticularly attractive assumption in real systems where such
information might be difficult or impossible to obtain. The
goal is to schedule jobs to provide good quality of service
to the users. In particular the goal is to design algorithms
that have good average performance and are also fair in
the sense that no subset of users experiences substantially
worse performance than others.

Notations

Let J = f1; 2; : : : ; ng denote the set of jobs in the input
instance. Each job j is characterized by its release time rj
and its processing requirement pj. In the online setting,
job j is revealed to the scheduler only at time rj. A further
restriction is the non-clairvoyant setting, where only the
existence of job j is revealed at rj, in particular the sched-
uler does not know pj until the job meets its processing
requirement and leaves the system. Given a schedule, the
completion time cj of a job is the earliest time at which job
j receives pj amount of service. The flow time f j of j is de-
fined as c j � r j . The stretch of a job is defined the ratio
of its flow time divided by its size. Stretch is also referred
to as normalized flow time or slowdown, and is a natu-
ral measure of fairness as it measures the waiting time of
a job per unit of service received. A schedule is said to be
preemptive, if a job can be interrupted arbitrarily, and its
execution can be resumed later from the point of interrup-
tion without any penalty. It is well known that preemption
is necessary to obtain reasonable guarantees for flow time
even in the offline setting [5].

Recall that the online Shortest Remaining Processing
Time (SRPT) algorithm, that at any time works on the job
with the least remaining processing, is optimum for mini-
mizing average flow time. However, a common critique of
SRPT is that it may lead to starvation of jobs, where some
jobs may be delayed indefinitely. For example, consider
the sequence where a job of size 3 arrives at time t = 0,
and one job of size 1 arrives every unit of time starting
t = 1 for a long time. Under SRPT the size 3 job will be de-
layed until the size 1 jobs stop arriving. On the other hand,
if the goal is to minimize the maximum flow time, then it
is easily seen that First in First out (FIFO) is the optimum
algorithm. However, FIFO can perform very poorly with
respect to average flow time (for example, many small jobs
could be stuck behind a very large job that arrived just ear-
lier). A natural way to balance both the average and worst
case performance is to consider the `p norms of flow time
and stretch, where the `p norm of the sequence x1; : : : ; xn
is defined as (

P
i x

p
i )

1/p .

The Shortest Elapsed Time First (SETF) is a non-
clairvoyant algorithm that at any time works on the job
that has received the least amount of service thus far.
This is a natural way to favor short jobs given the lack
of knowledge of job sizes. In fact, SETF is the con-
tinuous version of the Multi-Level Feedback (MLF) al-
gorithm. Unfortunately, SETF (or any other determin-
istic non-clairvoyant algorithm) performs poorly in the
framework of competitive analysis, where an algorithm
is called c-competitive if for every input instance, its
performance is no worse than c times that of the opti-
mum offline (clairvoyant) solution for that instance [7].
However, competitive analysis can be overly pessimistic
in its guarantee. A way around this problem was pro-
posed by Kalyanasundaram and Pruhs [6] who allowed
the online scheduler a slightly faster processor to make
up for its lack of knowledge of future arrivals and job
sizes. Formally, an algorithm Alg is said to be s-speed,
c-speed competitive where c is worst case ratio over all in-
stance I, of Algs(I)/Opt1(I), where Algs is the value of so-
lution produced by Alg when given an s speed processor,
and Opt1 is the optimum value using a speed 1 processor.
Typically the most interesting results are those where c is
small and s = (1 + �) for any arbitrary � > 0.

Key Results

In their seminal paper [6], Kalyanasundaram and Pruhs
showed the following.

Theorem 1 ([6]) SETF is a (1 + �)-speed, (1 + 1/�)-
competitive non-clairvoyant algorithm for minimizing the
average flow time on a single machine with preemptions.

For minimizing the average stretch, Muthukrishnan, Ra-
jaraman, Shaheen and Gehrke [8] considered the clair-
voyant setting and showed that SRPT is 2-competitive
for a single machine and 14 competitive for multiple
machines. The non-clairvoyant setting was consider by
Bansal, Dhamdhere, Konemann and Sinha [1]. They
showed that

Theorem 2 ([1]) SETF is a (1 + �)-speed, O(log2 P)-
competitive for minimizing average stretch, where P is the
ratio of the maximum to minimum job size. On the other
hand, even with O(1)-speed, any non-clairvoyant algorithm
is at least˝(log P)-competitive. Interestingly, in terms of n,
any non-clairvoyant algorithm must be ˝(n)-competitive
even with O(1)-speedup. Moreover, SETF is O(n) competi-
tive (even without extra speedup).

For the special case when all jobs arrive at time 0,
SETF is optimum up to constant factors. It is O(log P)-
competitive (without any extra speedup). Moreover, any
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non-clairvoyant must be ˝(log P) competitive even with
factor O(1) speedup.

The key idea of the above result was a connection between
SETF and SRPT. First, at the expense of (1 + �)-speedup
it can be seen that SETF is no worse than MLF where the
thresholds are powers of (1 + �). Second, the behavior of
MLF on an instance I can be related to the behavior of
Shortest Job First (SJF) algorithm on another instance I0

that is obtained from I by dividing each job into logarith-
mically many jobs with geometrically increasing sizes. Fi-
nally, the performance of SJF is related to SRPT using an-
other (1 + �) factor speedup.

Bansal and Pruhs [2] considered the problem of min-
imizing the `p norms of flow time and stretch on a single
machine. They showed the following.

Theorem 3 ([2]) In the clairvoyant setting, SRPT and SJF
are (1 + �)-speed, O(1/�)-competitive for minimizing the
`p norms of both flowtime and stretch. On the other hand,
for 1 < p <1, no online algorithm (possibly clairvoyant)
can be O(1) competitive for minimizing `p norms of stretch
or flow time without speedup. In particular, any random-
ized online algorithm is at least ˝(n(p�1)/3p2 )-competitive
for `p norms of stretch, and is at least ˝(n(p�1)/p(3p�1))-
competitive for `p norms of flow time.

The above lower bounds are somewhat surprising, since
SRPT and FIFO are optimum for the case p = 1 and p =1
for flow time.

Bansal and Pruhs [2] also consider the non-clairvoyant
case.

Theorem 4 ([2]) In the non-clairvoyant setting, SETF is
(1 + �)-speed, O(1/�2+2/p)-competitive for minimizing the
`p norms of flow time. For minimizing `p norms of stretch,
SETF is (1 + �)-speed, O(1/�3+1/p � log1+1/p P)-competitive.

Finally, Bansal and Pruhs also consider Round Robin (RR)
or Processor Sharing that at any time splits the proces-
sor equally among the unfinished jobs. RR is considered
to be an ideal fair strategy since it treats all unfinished jobs
equally. However, they show that

Theorem5 For any p � 1, there is an � > 0 such that even
with a (1 + �) times faster processor, RR is not no(1) com-
petitive for minimizing the `p norms of flow time. In par-
ticular, for � < 1/2p, RR is (1 + �)-speed, ˝(n(1�2�p)/p)-
competitive. For `p norms of stretch, RR is ˝(n) competi-
tive as is in fact any randomized non-clairvoyant algorithm.

The results above have been extended in a couple of direc-
tions. Bansal and Pruhs [3] extend these results toweighted
`p norms of flow time and stretch. Chekuri, Khanna, Ku-

mar and Goel [4] have extended these results to the mul-
tiple machines case. Their algorithms are particularly ele-
gant: Each job is assigned to some machine at random and
all jobs at a particular machine are processed using SRPT
or SETF (as applicable).

Applications

SETF and its variants such asMLF are widely used in oper-
ating systems [9,10]. Note that SETF is not really practical
since each job could be preempted infinitely often. How-
ever, variants of SETF with fewer preemptions are quite
popular.

Open Problems

It would be interesting to explore other notions of fairness
in the dynamic scheduling setting. In particular, it would
be interesting to consider algorithms that are both fair and
have a good average performance.

An immediate open problem is whether the gap be-
tween O(log2 P) and ˝(log P) can be closed for minimiz-
ing the average stretch in the non-clairvoyant setting.
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ProblemDefinition

Consider the route-planning task for passengers of sched-
uled public transportation. Here, the running example is
that of a train system, but the discussion applies equally to
bus, light-rail and similar systems. More precisely, the task
is to construct a timetable information system that, based
upon the detailed schedules of all trains, provides passen-
gers with good itineraries, including the transfer between
different trains.

Solutions to this problem consist of a model of the
situation (e. g. can queries specify a limit on the number
of transfers?), an algorithmic approach, its mathematical
analysis (does it always return the best solution? Is it guar-
anteed to work fast in all settings?), and an evaluation in
the real world (Can travelers actually use the produced
itineraries? Is an implementation fast enough on current
computers and real data?).

Key Results

The problem is discussed in detail in a recent survey arti-
cle [6].

Modeling

In a simplistic model, it is assumed that a transfer between
trains does not take time. A more realistic model specifies

a certainminimum transfer time per station. Furthermore,
the objective of the optimization problem needs to be de-
fined. Should the itinerary be as fast as possible, or as cheap
as possible, or induce the least possible transfers? There
are different ways to resolve this as surveyed in [6], all
originating in multi-objective optimization, like resource
constraints or Pareto-optimal solutions. From a practical
point of view, the preferences of a traveler are usually diffi-
cult to model mathematically, and one might want to let
the user choose the best option among a set of reason-
able itineraries himself. For example, one can compute all
itineraries that are not inferior to some other itinerary in
all considered aspects. As it turns out, in real timetables the
number of such itineraries is not too big, such that this ap-
proach is computationally feasible and useful for the trav-
eler [5]. Additionally, the fare structure of most railways is
fairly complicated [4], mainly because fares usually are not
additive, i. e., are not the sum of fares of the parts of a trip.

Algorithmic Models

The current literature establishes two main ideas how to
transform the situation into a shortest path problem on
a graph. As an example, consider the simplistic model-
ing where transfer takes no time, and where queries spec-
ify starting time and station to ask for an itinerary that
achieves the earliest arrival time at the destination.

In the time-expandedmodel [11], every arrival and de-
parture event of the timetable is a vertex of the directed
graph. The arcs of the graph represent consecutive events
at one station, and direct train connections. The length of
an arc is given by the time difference of its end vertices.
Let s be the vertex at the source station whose time is di-
rectly after the starting time. Now, a shortest path from s to
any vertex of the destination station is an optimal itinerary.

In the time-dependent model [3,7,9,10], the vertices
model stations, and the arcs stand for the existence of a di-
rect (non-stop) train connection. Instead of edge length,
the arcs are labeled with edge-traversal functions that give
the arrival time at the end of the arc in dependence on the
time a passenger starts at the beginning of the arc, reflect-
ing the times when trains actually run. To solve this time-
dependent shortest path problem, a modification of Dijk-
stra’s algorithm can be used. Further exploiting the struc-
ture of this situation, the graph can be represented in a way
that allows constant time evaluation of the link traversal
functions [3]. To cope with more realistic transfer models,
a more complicated graph can be used.

Additionally, many of the speed-up techniques for
shortest path computations can be applied to the resulting
graph queries.
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Applications

The main application are timetable information systems
for scheduled transit (buses, trains, etc.). This extends to
route planning where trips in such systems are allowed, as
for example in the setting of fine-grained traffic simulation
to compute fastest itineraries [2].

Open Problems

Improve computation speed, in particular for fully inte-
grated timetables and the multi-criteria case. Extend the
problem to the dynamic case, where the current real situ-
ation is reflected, i. e., delayed or canceled trains, and oth-
erwise temporarily changed timetables are reflected.

Experimental Results

In the cited literature, experimental results usually are part
of the contribution [2,4,5,6,7,8,9,10,11]. The time-depen-
dent approach can be significantly faster than the time-
expanded approach. In particular for the simplistic mod-
els speed-ups in the range 10–45 are observed [8,10]. For
more detailed models, the performance of the two ap-
proaches becomes comparable [6].
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ProblemDefinition

This problem is to find shortest paths in planar graphs
with general edge weights. It is known that shortest paths
exist only in graphs that contain no negative weight cycles.
Therefore, algorithms that work in this casemust deal with
the presence of negative cycles, i. e., they must be able to
detect negative cycles.

In general graphs, the best known algorithm, the Bell-
man-Ford algorithm, runs in time O(mn) on graphs with
n nodes and m edges, while algorithms on graphs with no
negative weight edges run much faster. For example, Di-
jkstra’s algorithm implemented with the Fibonacchi heap
runs in time O(m+n log n), and, in case of integer weights
Thorup’s algorithm runs in linear time. Goldberg [5] also
presented an O(m

p
n log L)-time algorithm where L de-

notes the absolute value of the most negative edge weights.
Note that his algorithm is weakly polynomial.

Notations

Given a directed graph G = (V ; E) and a weight function
w : E ! R on its directed edges, a distance labeling for
a source node s is a function d : V ! R such that d(v) is
the minimum length over all s-to-v paths, where the length
of path P is

P
e2P w(e).

Problem 1 (Single-Source-Shortest-Path)
INPUT: A directed graph G = (V ; E), weight function
w : E ! R, source node s 2 V.
OUTPUT: If G does not contain negative length cycles, out-
put a distance labeling d for source node s. Otherwise, report
that the graph contains some negative length cycle.

The algorithm by Fakcharoenphol and Rao [4] deals with
the case when G is planar. They gave an O(n log3 n)-time
algorithm, improving on an O(n3/2)-time algorithm by
Lipton, Rose, and Tarjan [9] and an O(n4/3 log nL)-time
algorithm byHenzinger, Klein, Rao, and Subramanian [6].

Their algorithm, as in all previous algorithms, uses
a recursive decomposition and constructs a data struc-
ture called a dense distance graph, which shall be defined
next.

A decomposition of a graph is a set of subsets P1;
P2; : : : ; Pk (not necessarily disjoint) such that the union
of all the sets is V and for all e = (u; v) 2 E, there is
a unique Pi that contains e. A node v is a border node of
a set Pi if v 2 Pi and there exists an edge e = (v; x) where

x 62 Pi . The subgraph induced on a subset Pi is referred to
as a piece of the decomposition.

The algorithm works with a recursive decomposition
where at each level, a piece with n nodes and r border
nodes is divided into two subpieces such that each sub-
piece has no more than 2n/3 nodes and at most 2r/3+ c

p
n

border nodes, for some constant c. In this recursive con-
text, a border node of a subpiece is defined to be any bor-
der node of the original piece or any new border node in-
troduced by the decomposition of the current piece.

With this recursive decomposition, the level of a de-
composition can be defined in the natural way, with the
entire graph being the only piece in the level 0 decompo-
sition, the pieces of the decomposition of the entire graph
being the level 1 pieces in the decomposition, and so on.

For each piece of the decomposition, the all-pair short-
est path distances between all its border nodes along paths
that lie entirely inside the piece are recursively computed.
These all-pair distances form the edge set of a non-planar
graph representing shortest paths between border nodes.
The dense distance graph of the planar graph is the union
of these graphs over all the levels.

Using the dense distance graph, the shortest distance
queries between pairs of nodes can be answered.

Problem 2 (Shortest-Path-Distance-Data-Structure)
INPUT: A directed graph G = (V ; E), weight function
w : E ! R, source node s 2 V.
OUTPUT: If G does not contain negative length cycles, out-
put a data structure that support distance queries between
pairs of nodes. Otherwise, report that the graph contains
some negative length cycle.

The algorithm of Fakcharoenphol and Rao relies heav-
ily on planarity, i. e., it exploits properties regarding how
shortest paths on each piece intersect. Therefore, unlike
previous algorithms that require only that the graph can
be recursively decomposed with small numbers of border
nodes [10], their algorithm also requires that each piece
has a nice embedding.

Given an embedding of the piece, a hole is a bounded
face where all adjacent nodes are border nodes. Ideally,
one would hope that there is a planar embedding of any
piece in the recursive decomposition where all the border
nodes are on a single face and are circularly ordered, i. e.,
there is no holes in each piece. Although this is not always
true, the algorithm works with any decomposition with
a constant number of holes in each piece. This decomposi-
tion can be found in O(n log n) time using the simple cycle
separator algorithm by Miller [12].
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Key Results

Theorem 1 Given a recursive decomposition of a planar
graph such that each piece of the decomposition contains at
most a constant number of holes, there is an algorithm that
constructs the dense distance graph is O(n log3 n) time.

Given the procedure that constructs the dense distance
graph, the shortest paths from a source s can be computed
by first adding s as a border node in every piece of the
decomposition, computing the dense distance graph, and
then extending the distances into all internal nodes on ev-
ery piece. This can be done in time O(n log3 n).

Theorem 2 The single-source shortest path problem for
an n-node planar graph with negative weight edges can be
solved in time O(n log3 n).

The dense distance graph can be used to answer distance
queries between pairs of nodes.

Theorem 3 Given the dense distance graph, the short-
est distance between any pair of nodes can be found in
O(
p
n log2 n) time.

It can also be used as a dynamic data structure that answers
shortest path queries and allows edge cost updates.

Theorem 4 For planar graphs with only non-negative
weight edges, there is a dynamic data structure that sup-
ports distance queries and update operations that change
edge weights in amortized O(n2/3 log7/3 n) time per opera-
tion. For planar graph with negative weight edges, there is
a dynamic data structures that supports the same set of op-
erations in amortized O(n4/5 log13/5 n) time per operation.

Note that the dynamic data structure does not support
edge insertions and deletions, since these operations might
destroy the recursive decomposition.

Applications

The shortest path problem has long been studied and
continues to find applications in diverse areas. There are
a many problems that reduce to the shortest path prob-
lem where negative weight edges are required, for exam-
ple the minimum-mean length directed circuit. For planar
graphs, the problem has wide application even when the
underlying graph is a grid. For example, there are recent
image segmentation approaches that use negative cycle de-
tection [2,3]. Some of other applications for planar graphs
include separator algorithms [13] and multi-source multi-
sink flow algorithms [11].

Open Problems

Klein [8] gives a technique that improves the running
time of the construction of the dense distance graph to
O(n log2 n) when all edge weights are non-negative; this
also reduces the amortized running time for the dynamic
case down to O(n2/3 log5/3 n). Also, for planar graphs with
no negative weight edges, Cabello [1] gives a faster algo-
rithm for computing the shortest distances between k pairs
of nodes. However, the problem for improving the bound
of O(n log3 n) for finding shortest paths in planar graphs
with general edge weights remains opened.

It is not known how to handle edge insertions and
deletions in the dynamic data structure. A new data struc-
ture might be needed instead of the dense distance graph,
because the dense distance graph is determined by the de-
composition.
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ProblemDefinition

A point lattice is the set of all integer linear combinations

L(b1; : : : ; bn) =
( nX

i=1

xibi : x1; : : : ; xn 2 Z

)

of n linearly independent vectors b1; : : : ; bn 2 Rm

in m-dimensional Euclidean space. For computational
purposes, the lattice vectors b1; : : : ; bn are often as-
sumed to have integer (or rational) entries, so that
the lattice can be represented by an integer matrix
B = [b1; : : : ; bn] 2 Zm�n (called basis) having the gen-
erating vectors as columns. Using matrix notation, lattice
points in L(B) can be conveniently represented as Bx
where x is an integer vector. The integers m and n are
called the dimension and rank of the lattice respectively.
Notice that any lattice admits multiple bases, but they all
have the same rank and dimension.

The main computational problems on lattices are the
Shortest Vector Problem, which asks to find the shortest
nonzero vector in a given lattice, and the Closest Vector
Problem, which asks to find the lattice point closest to
a given target. Both problems can be defined with respect

to any norm, but the Euclidean norm kvk =
qP

i v
2
i is the

most common. Other norms typically found in computer
science applications are the `1 norm kvk1 =

P
i jvi j and

themax norm kvk1 = maxi jvi j. This entry focuses on the
Euclidean norm.

Since no efficient algorithm is known to solve SVP and
CVP exactly in arbitrary high dimension, the problems are
usually defined in their approximation version, where the
approximation factor � � 1 can be a function of the di-
mension or rank of the lattice.

Definition 1 (Shortest Vector Problem, SVP� ) Given
a lattice L(B), find a nonzero lattice vector Bx (where
x 2 Zn n f0g) such that kBxk � � � kByk for any
y 2 Zn n f0g.

Definition 2 (Closest Vector Problem, CVP� ) Given
a lattice L(B) and a target point t, find a lattice vector Bx
(where x 2 Zn) such that kBx � tk � � � kBy � tk for any
y 2 Zn .

Lattices have been investigated bymathematicians for cen-
turies in the equivalent language of quadratic forms, and
are the main object of study in the geometry of numbers,
a field initiated by Minkowski as a bridge between geom-
etry and number theory. For a mathematical introduction
to lattices see [3]. The reader is referred to [6,12] for an in-
troduction to lattices with an emphasis on computational
and algorithmic issues.

Key Results

The problem of finding an efficient (polynomial time) so-
lution to SVP� for lattices in arbitrary dimension was
first solved by the celebrated lattice reduction algorithm of
Lenstra, Lenstra and Lovász [11], commonly known as the
LLL algorithm.

Theorem 1 There is a polynomial time algorithm to solve
SVP� for � = (2/

p
3)n, where n is the rank of the input lat-

tice.

The LLL algorithm achieves more than just finding a rela-
tively short lattice vector: it finds a so-called reduced basis
for the input lattice, i. e., an entire basis of relatively short
lattice vectors. Shortly after the discovery of the LLL algo-
rithm, Babai [2] showed that reduced bases can be used to
efficiently solve CVP� as well within similar approxima-
tion factors.
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Corollary 1 There is a polynomial time algorithm to solve
CVP� for � = O(2/

p
3)n, where n is the rank of the input

lattice.

The reader is referred to the original papers [2,11] and
[12, chap. 2] for details. Introductory presentations of the
LLL algorithm can also be found in many other texts, e. g.,
[5, chap. 16] and [15, chap. 27]. It is interesting to note
that CVP is at least as hard as SVP (see [12, chap 2]) in
the sense that any algorithm that solves CVP� can be effi-
ciently adapted to solve SVP� within the same approxima-
tion factor.

Both SVP� and CVP� are known to be NP-hard in
their exact (� = 1) or even approximate versions for small
values of � , e. g., constant � independent of the dimension.
(See [13, chaps. 3 and 4] and [4,10] for the most recent re-
sults.) So, no efficient algorithm is likely to exist to solve
the problems exactly in arbitrary dimension. For any fixed
dimension n, both SVP and CVP can be solved exactly in
polynomial time using an algorithm of Kannan [9]. How-
ever, the dependency of the running time on the lattice di-
mension is nO(n). Using randomization, exact SVP can be
solved probabilistically in 2O(n) time and space using the
sieving algorithm of Ajtai, Kumar and Sivakumar [1].

As for approximate solutions, the LLL lattice reduction
algorithm has been improved both in terms of running
time and approximation guarantee. (See [14] and refer-
ences therein.) Currently, the best (randomized) polyno-
mial time approximation algorithm achieves approxima-
tion factor � = 2O(n log log n/ log n).

Applications

Despite the large (exponential in n) approximation factor,
the LLL algorithm has found numerous applications and
lead to the solution of many algorithmic problems in com-
puter science. The number and variety of applications is
too large to give a comprehensive list. Some of the most
representative applications in different areas of computer
science are mentioned below.

The first motivating applications of lattice basis reduc-
tion were the solution of integer programs with a fixed
number of variables and the factorization of polynomials
with rationals coefficients. (See [11] [8], and [5, chap. 16].)
Other classic applications are the solution of random
instances of low-density subset-sum problems, breaking
(truncated) linear congruential pseudorandomgenerators,
simultaneous Diophantine approximation, and the dis-
proof of Mertens’ conjecture. (See [8] and [5, chap. 17].)

More recently, lattice basis reduction has been exten-
sively used to solve many problems in cryptanalysis and
coding theory, including breaking several variants of the

RSA cryptosystem and the DSA digital signature algo-
rithm, finding small solutions to modular equations, and
list decoding of CRT (Chinese Reminder Theorem) codes.
The reader is referred to [7,13] for a survey of recent ap-
plications, mostly in the area of cryptanalysis.

One last class of applications of lattice problems is
the design of cryptographic functions (e. g., collision re-
sistant hash functions, public key encryption schemes,
etc.) based on the apparent intractability of solving SVP�
within small approximation factors. The reader is referred
to [12, chap. 8] and [13] for a survey of such applications,
and further pointers to relevant literature. One distin-
guishing feature of many such lattice based cryptographic
functions is that they can be proved to be hard to break on
the average, based on a worst-case intractability assump-
tion about the underlying lattice problem.

Open Problems

The main open problems in the computational study of
lattices is to determine the complexity of approximate
SVP� and CVP� for approximation factors � = nc poly-
nomial in the rank of the lattice. Specifically,
� Are there polynomial time algorithm that solve SVP�

or CVP� for polynomial factors � = nc? (Finding such
algorithms even for very large exponent c would be
a major breakthrough in computer science.)

� Is there an � > 0 such that approximating SVP� or
CVP� to within � = n� is NP-hard? (The strongest
known inapproximability results [4] are for factors of
the form nO(1/ log log n) which grow faster than any poly-
logarithmic function, but slower than any polynomial.)
There is theoretical evidence that for large polyno-

mials factors � = nc , SVP� and CVP� are not NP-hard.
Specifically, both problems belong to complexity class
coAM for approximation factor � = O(

p
n/ log n). (See

[12, chap. 9].) So, the problems cannot be NP-hard within
such factors unless the polynomial hierarchy PH collapses.

URL to Code

The LLL lattice reduction algorithm is implemented in
most library and packages for computational algebra, e. g.,
� GAP (http://www.gap-system.org)
� LiDIA (http://www.cdc.informatik.tu-darmstadt.de/

TI/LiDIA/)
� Magma (http://magma.maths.usyd.edu.au/magma/)
� Maple (http://www.maplesoft.com/)
� Mathematica (http://www.wolfram.com/products/

mathematica/index.html)
� NTL (http://shoup.net/ntl/).

http://www.gap-system.org
http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/
http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/
http://magma.maths.usyd.edu.au/magma/
http://www.maplesoft.com/
http://www.wolfram.com/products/mathematica/index.html
http://www.wolfram.com/products/mathematica/index.html
http://shoup.net/ntl/
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NTL also includes an implementation of Block Korkine-
Zolotarev reduction that has been extensively used for
cryptanalysis applications.
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ProblemDefinition

The problem of computing similarity between two strings
is concerned with comparing two strings using some scor-
ing metric. There exist various scoring metrics and a pop-
ular one is the Levenshtein distance (or edit distance) met-
ric. The standard solution for the Levenshtein distance
metric was proposed byWagner and Fischer [13], which is
based on dynamic programming. Other widely used scor-
ing metrics are the longest common subsequence met-
ric, the weighted edit distance metric, and the affine gap
penalty metric. The affine gap penalty metric is the most
general, and it is a quite complicated metric to deal with.
Table 1 shows the differences between the four metrics.

The problem considered in this entry is the similar-
ity between two compressed strings. This problem is con-
cerned with efficiently computing similarity without de-
compressing two strings. The compressions used for this

Similarity between Compressed Strings, Table 1
Various scoring metrics

Metric Match Mismatch Indel Indel of
k characters

Longest common
subsequence

1 0 0 0

Levenshtein
distance

0 1 1 k

Weighted edit
distance

0 ı � k�

Affine gap penalty 1 �ı �� �� �� � k�
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Similarity between Compressed Strings, Figure 1
Dynamic programming table for strings arcpbt and asbqcu is di-
vided into 9 blocks. For oneof theblocks, e.g., B, only thebottom
row C and the rightmost column D are computed from E and F

problem in the literature are run-length encoding and
Lempel-Ziv (LZ) compression [14].

Run-Length Encoding

A string S is run-length encoded if it is described as
an ordered sequence of pairs (�; i), often denoted “� i”,
each consisting of an alphabet symbol, � , and an inte-
ger, i. Each pair corresponds to a run in S, consisting of
i consecutive occurrences of � . For example, the string
aaabbbbaccccbb can be encoded a3b4a1c4b2 or, equiv-
alently, (a; 3)(b; 4)(a; 1)(c; 4)(b; 2). Let A and B be two
strings with lengths n and m, respectively. Let A0 and B0

be the run-length encoded strings of A and B, and n0 and
m0 be the lengths of A0 and B0, respectively.

Problem 1
INPUT: Two run-length encoded strings A0 and B0, a scoring
metric d.
OUTPUT: The similarity between A0 and B0 using d.

LZ Compression

Let X and Y be two strings with length O(n). Let X0 and
Y 0 be the LZ compressed strings of X and Y , respectively.
Then the lengths of X0 and Y 0 are O(hn/ log n), where
h � 1 is the entropy of strings X and Y .

Problem 2
INPUT: Two LZ compressed strings X0 and Y 0, a scoring
metric d.
OUTPUT: The similarity between X0 and Y 0 using d.

Block Computation

To compute similarity between compressed strings effi-
ciently, one can use a block computation method. Dy-
namic programming tables are divided into submatrices,
which are called “blocks”. For run-length encoded strings,

a block is a submatrix made up of two runs – one of A and
one of B. For LZ compressed strings, a block is a subma-
trix made up of two phrases – one phrase from each string.
See [5] for more details. Then, blocks are computed from
left to right and from top to bottom. For each block, only
the bottom row and the rightmost column are computed.
Figure 1 shows an example of block computation.

Key Results

The problem of computing similarity of two run-length
encoded strings, A0 and B0, has been studied for various
scoring metrics. Bunke and Csirik [4] presented the first
solution to Problem 1 using the longest common subse-
quence metric. The algorithm is based on block computa-
tion of the dynamic programming table.

Theorem 1 (Bunke and Csirik 1995 [4]) A longest com-
mon subsequence of run-length encoded strings A0 and B0

can be computed in O(nm0 + n0m) time.

For the Levenshtein distance metric, Arbell, Landau, and
Mitchell [2] and Mäkinen, Navarro, and Ukkonen [10]
presented O(nm0 + n0m) time algorithms, independently.
These algorithms are extensions of the algorithm of Bunke
and Csirik.

Theorem 2 (Arbell, Landau, and Mitchell 2002 [2],
Mäkinen, Navarro, and Ukkonen [10]) The Levenshtein
distance between run-length encoded strings A0 and B0 can
be computed in O(nm0 + n0m) time.

For the weighted edit distance metric, Crochemore, Lan-
dau, and Ziv-Ukelson [6] and Mäkinen, Navarro, and
Ukkonen [11] gave O(nm0 + n0m) time algorithms using
techniques completely different from each other. The al-
gorithm of Crochemore, Landau, and Ziv-Ukelson [6] is
based on the technique which is used in the LZ com-
pressed pattern matching algorithm [6], and the algorithm
of Mäkinen, Navarro, and Ukkonen [11] is an extension of
the algorithm for the Levenshtein distance metric.

Theorem 3 (Crochemore, Landau, and Ziv-Ukelson
2003 [6] Mäkinen, Navarro, and Ukkonen [11]) The
weighted edit distance between run-length encoded strings
A0 and B0 can be computed in O(nm0 + n0m) time.

For the affine gap penalty metric, Kim, Amir, Landau, and
Park [8] gave an O(nm0 + n0m) time algorithm. To com-
pute similarity in this metric efficiently, the problem is
converted into a path problem on a directed acyclic graph
and some properties of maximum paths in this graph are
used. It is not necessary to build the graph explicitly since
they came up with new recurrences using the properties of
the graph.
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Theorem 4 (Kim, Amir, Landau, and Park 2005 [8])
The similarity between run-length encoded strings A0 and
B0 in the affine gap penalty metric can be computed in
O(nm0 + n0m) time.

The above results show that comparison of run-length
encoded strings using the longest common subsequence
metric is successfully extended to more general scoring
metrics.

For the longest common subsequence metric, there
exist improved algorithms. Apostolico, Landau, and
Skiena [1] gave an O(n0m0 log(n0m0)) time algorithm. This
algorithm is based on tracing specific optimal paths.

Theorem 5 (Apostolico, Landau, and Skiena 1999 [1])
A longest common subsequence of run-length encoded
strings A0 and B0 can be computed in O(n0m0 log(n0 + m0))
time.

Mitchell [12] obtained anO((d + n0 + m0) log(d + n0 + m0))
time algorithm, where d is the number of matches of com-
pressed characters. This algorithm is based on computing
geometric shortest paths using special convex distance
functions.

Theorem 6 (Mitchell 1997 [12]) A longest common sub-
sequence of run-length encoded strings A0 and B0 can be
computed in O((d + n0 + m0) log(d + n0 + m0)) time, where
d is the number of matches of compressed characters.

Mäkinen, Navarro, and Ukkonen [11] conjectured an
O(n0m0) time algorithm on average under the assumption
that the lengths of the runs are equally distributed in both
strings.

Conjecture 1 (Mäkinen, Navarro, and Ukkonen
2003 [11]) A longest common subsequence of run-length
encoded strings A0 and B0 can be computed in O(n0m0) time
on average.

For Problem 2, Crochemore, Landau, and Ziv-Ukelson [6]
presented a solution using the additive gap penalty metric.
The additive gap penalty metric consists of 1 for match,�ı
for mismatch, and �� for indel, which is almost the same
as the weighted edit distance metric.

Theorem 7 (Crochemore, Landau, and Ziv-Ukelson
1993 [6]) The similarity between LZ compressed strings X0

and Y 0 in the additive gap penalty metric can be computed
in O(hn2/ log n) time, where h � 1 is the entropy of strings
X and Y.

Applications

Run-length encoding serves as a popular image compres-
sion technique, since many classes of images (e. g., bi-

nary images in facsimile transmission or for use in opti-
cal character recognition) typically contain large patches
of identically-valued pixels. Approximate matching on
images can be a useful tool to handle distortions. Even
a one-dimensional compressed approximate matching al-
gorithm would be useful to speed up two-dimensional ap-
proximate matching allowing mismatches and even rota-
tions [3,7,9].

Open Problems

The worst-case complexity of the problem is not fully un-
derstood. For the longest common subsequence metric,
there exist some results whose time complexities are better
than O(nm0 + n0m) to compute the similarity of two run-
length encoded strings [1,11,12]. It remains open to ex-
tend these results to the Levenshtein distance metric, the
weighted edit distance metric and the affine gap penalty
metric.

In addition, for the longest common subsequencemet-
ric, it is an open problem to prove Conjecture 1.
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ProblemDefinition

A dynamic graph algorithm maintains a given property P
on a graph subject to dynamic changes, such as edge in-
sertions, edge deletions and edge weight updates. A dy-
namic graph algorithm should process queries on prop-
erty P quickly, and perform update operations faster than
recomputing from scratch, as carried out by the fastest
static algorithm. An algorithm is fully dynamic if it can
handle both edge insertions and edge deletions and par-
tially dynamic if it can handle either edge insertions or
edge deletions, but not both.

Given a graph with n vertices and m edges, the transi-
tive closure (or reachability) problem consists of building
an n � n Boolean matrix M such that M[x; y] = 1 if and
only if there is a directed path from vertex x to vertex y in
the graph. The fully dynamic version of this problem can
be defifined as follows:

Definition 1 (Fully dynamic reachability problem) The
fully dynamic reachability problem consists of maintaining
a directed graph under an intermixed sequence of the fol-
lowing operations:

� insert(u,v): insert edge (u,v) into the graph.
� delete(u,v): delete edge (u,v) from the graph.
� reachable(x,y): return true if there is a directed path

from vertex x to vertex y, and false otherwise.

This entry addresses the single-source version of the fully-
dynamic reachability problem, where one is only inter-
ested in queries with a fixed source vertex s. The problem
is defined as follows:

Definition 2 (Single-source fully dynamic reachabil-
ity problem) The fully dynamic single-source reachability
problem consists of maintaining a directed graph under an
intermixed sequence of the following operations:
� insert(u,v): insert edge (u,v) into the graph.
� delete(u,v): delete edge (u,v) from the graph.
� reachable(y): return true if there is a directed path

from the source vertex s to vertex y, and false otherwise.

Approaches

A simple-minded solution to the problem of Definition
would be to keep explicit reachability information from
the source to all other vertices and update it by running
any graph traversal algorithm from the source s after each
insert or delete. This takes O(m + n) time per operation,
and then reachability queries can be answered in constant
time.

Another simple-minded solution would be to answer
queries by running a point-to-point reachability compu-
tation, without the need to keep explicit reachability in-
formation up to date after each insertion or deletion. This
can be done in O(m + n) time using any graph traver-
sal algorithm. With this approach, queries are answered in
O(m + n) time and updates require constant time. Notice
that the time required by the slowest operation is O(m+n)
for both approaches, which can be as high as O(n2) in the
case of dense graphs.

The first improvement upon these two basic solutions
is due to Demetrescu and Italiano, who showed how to
support update operations in O(n1:575) time and reacha-
bility queries in O(1) time [1] in a directed acyclic graph.
The result is based on a simple reduction of the single-
source problem of Definition to the all-pairs problem of
Definition. Using a result by Sankowski [2], the bounds
above can be extended to the case of general directed
graphs.

Key Results

This Section presents a simple reduction presented in [1]
that allows it to keep explicit single-source reachability in-
formation up to date in subquadratic time per operation
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in a directed graph subject to an intermixed sequence of
edge insertions and edge deletions. The bounds reported
in this entry were originally presented for the case of di-
rected acyclic graphs, but can be extended to general di-
rected graphs using the following theorem from [2]:

Theorem 1 Given a general directed graph with n vertices,
there is a data structure for the fully dynamic reachability
problem that supports each insertion/deletion in O(n1:575)
time and each reachability query in O(n0:575) time. The al-
gorithm is randomized with one-sided error.

The idea described in [1] is to maintain reachability infor-
mation from the source vertex s to all other vertices ex-
plicitly by keeping a Boolean array R of size n such that
R[y] = 1 if and only if there is a directed path from s to
y. An instance D of the data structure for fully dynamic
reachability of Theorem is also maintained. After each in-
sertion or deletion, it is possible to update D in O(n1:575)
time and then rebuild R in O(n � n0:575) = O(n1:575) time
by letting R[y]  D:reachable (s,y) for each vertex y.
This yields the following bounds for the single-source fully
dynamic reachability problem:

Theorem 2 Given a general directed graph with n vertices,
there is a data structure for the single-source fully dynamic
reachability problem that supports each insertion/deletion
in O(n1:575) time and each reachability query in O(1) time.

Applications

The graph reachability problem is particularly relevant to
the field of databases for supporting transitivity queries on
dynamic graphs of relations [3]. The problem also arises
in many other areas such as compilers, interactive verifi-
cation systems, garbage collection, and industrial robotics.

Open Problems

An important open problem is whether one can extend
the result described in this entry to maintain fully dynamic
single-source shortest paths in subquadratic time per op-
eration.

Cross References

� Trade-Offs for Dynamic Graph Problems
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ProblemDefinition

The single source shortest path problem (SSSP) is, given
a graph G = (V ; E; `) and a source vertex s 2 V , to find
the shortest path from s to every v 2 V . The difficulty of
the problem depends on whether the graph is directed or
undirected and the assumptions placed on the length func-
tion `. In the most general situation ` : E ! R assigns ar-
bitrary (positive & negative) real lengths. The algorithms
of Bellman-Ford and Edmonds [1,4] may be applied in
this situation and have running times of roughly O(mn),1

where m = jEj and n = jV j are the number of edges and
vertices. If ` assigns only non-negative real edge lengths
then the algorithms of Dijkstra and Pettie-Ramachan-
dran [4,14] may be applied on directed and undirected
graphs, respectively. These algorithms include a sorting
bottleneck and, in the worst case, take ˝(m + n log n)
time.2

A common assumption is that ` assigns integer edge
lengths in the range f0; : : : ; 2w � 1g or f�2w�1; : : : ;
2w�1 � 1g and that the machine is a w-bit word RAM;
that is, each edge length fits in one register. For general
integer edge lengths the best SSSP algorithms improve on
Bellman-Ford and Edmonds by a factor of roughly

p
n [7].

For non-negative integer edge lengths the best SSSP algo-
rithms are faster than Dijkstra and Pettie-Ramachandran

1Edmonds’s algorithm works for undirected graphs and presumes
that there are no negative length simple cycles.

2The [14] algorithm actually runs inO(m + n log log n) time if the
ratio of any two edge lengths is polynomial in n.
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by up to a logarithmic factor. They are frequently based on
integer priority queues [10].

Key Results

Thorup’s primary result [17] is an optimal linear time
SSSP algorithm for undirected graphs with integer edge
lengths. This is the first and only linear time shortest path
algorithm that does not make serious assumptions on the
class of input graphs.

Theorem 1 There is a SSSP algorithm for integer-weighted
undirected graphs that runs in O(m) time.

Thorup avoids the sorting bottleneck inherent in Dijk-
stra’s algorithm by precomputing (in linear time) a compo-
nent hierarchy. The algorithm of [17] operates in a manner
similar to Dijkstra’s algorithm [4] but uses the component
hierarchy to identify groups of vertices that can be visited
in any order. In later work, Thorup [18] extended this ap-
proach to work when the edge lengths are floating-point
numbers.3

Thorup’s hierarchy-based approach has since been
extended to directed and/or real-weighted graphs, and
to solve the all pairs shortest path (APSP) prob-
lem [12,13,14]. The generalizations to related SSSP prob-
lems are summarized by below. See [12,13] for hierarchy-
based APSP algorithms.

Theorem 2 (Hagerup [9], 2000) A component hierar-
chy for a directed graph G = (V ; E; `), where ` : E !
f0; : : : ; 2w � 1g, can be constructed in O(m logw) time.
Thereafter SSSP from any source can be computed in
O(m + n log log n) time.

Theorem 3 (Pettie and Ramachandran [14], 2005)
A component hierarchy for an undirected graph G =
(V ; E; `), where ` : E ! R+, can be constructed in
O(m˛(m; n)+minfn log log r; n log ng) time, where r is the
ratio of the maximum-to-minimum edge length. Thereafter
SSSP from any source can be computed in O(m log˛(m; n))
time.

The algorithms of Hagerup [9] and Pettie-Ramachan-
dran [14] take the same basic approach as Thorup’s algo-
rithm: use some kind of component hierarchy to identify
groups of vertices that can safely be visited in any order.
However, the assumption of directed graphs [9] and real
edge lengths [14] renders Thorup’s hierarchy inapplicable
or inefficient. Hagerup’s component hierarchy is based on
a directed analogue of the minimum spanning tree. The

3There is some flexibility in the definition of shortest path since
floating-point addition is neither commutative nor associative.

Pettie-Ramachandran algorithm enforces a certain degree
of balance in its component hierarchy and, when comput-
ing SSSP, uses a specialized priority queue to take advan-
tage of this balance.

Applications

Shortest path algorithms are frequently used as a sub-
routine in other optimization problems, such as flow and
matching problems [1] and facility location [19]. A widely
used commercial application of shortest path algorithms is
finding efficient routes on road networks, e. g., as provided
by Google Maps, MapQuest, or Yahoo Maps.

Open Problems

Thorup’s SSSP algorithm [17] runs in linear time and is
therefore optimal. The main open problem is to find a lin-
ear time SSSP algorithm that works on real-weighted di-
rected graphs. For real-weighted undirected graphs the
best running time is given in Theorem 3. For integer-
weighted directed graphs the fastest algorithms are based
on Dijkstra’s algorithm (not Theorem 2) and run in
O(m

p
log log n) time (randomized) and deterministically

in O(m + n log log n) time.

Problem 1 Is there an O(m) time SSSP algorithm for inte-
ger-weighted directed graphs?

Problem 2 Is there an O(m) + o(n log n) time SSSP al-
gorithm for real-weighted graphs, either directed or undi-
rected?

The complexity of SSSP on graphs with positive & negative
edge lengths is also open.

Experimental Results

Asano and Imai [2] and Pettie et al. [15] evaluated the per-
formance of the hierarchy-based SSSP algorithms [14,17].
There have been a number of studies of SSSP algorithms
on integer-weighted directed graphs; see [8] for the latest
and references to many others. The trend in recent years is
to find practical preprocessing schemes that allow for very
quick point-to-point shortest path queries. See [3,11,16]
for recent work in this area.

Data Sets

See [5] for a number of US and European road networks.

URL to Code

See [6] and [5].
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ProblemDefinition

The ski rental problemwas developed as a pedagogical tool
for understanding the basic concepts in some early results
in on-line algorithms.1 The ski rental problem considers
the plight of one consumer who, in order to socialize with
peers, is forced to engage in a variety of athletic activities,
such as skiing, bicycling, windsurfing, rollerblading, sky
diving, scuba-diving, tennis, soccer, and ultimate Frisbee,
each of which has a set of associated apparatus, clothing,
or protective gear.

In all of these, it is possible either to purchase the ac-
coutrements needed, or to rent them. For the purpose of
this problem, it is assumed that one-time rental is less ex-
pensive than purchasing. It is also assumed that purchased
items are durable, and suitable for reuse for future activ-
ities of the same type without further expense, until the
items wear out (which occurs at the same rate for all users),
are outgrown, become unfashionable, or are disposed of

1In the interest of full disclosure, the earliest presentations of these
results described the problem as the wedding-tuxedo-rental problem.
Objections were presented that this was a gender-biased name for
the problem, since while groomsmen can rent their wedding apparel,
bridesmaids usually cannot. A further complication, owing to the dif-
ficulty of instantaneously producing fitted garments or ski equipment
outlined below, suggests that some complications could have been
avoided by focusing on the dilemma of choosing between daily lift
passes or season passes, although this leads to the pricing complexi-
ties of purchasing season passes well in advance of the season, as op-
posed to the higher cost of purchasing them at the mountain during
the ski season. A similar problem could be derived from the question
as to whether to purchase the daily newspaper at a newsstand or to
take a subscription, after adding the challenge that one’s peers will
treat one contemptuously if one has not read the news on days on
which they have.

http://www.dis.uniroma1.it/~challenge9/
http://www.dis.uniroma1.it/~challenge9/
http://www.avglab.com/andrew/
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to make room for other purchased items. The social con-
sumer must make the decision to rent or buy for each
event, although it is assumed that the consumer is suffi-
ciently parsimonious as to abjure rental if already in pos-
session of serviceable purchased equipment.Whether pur-
chases are as easy to arrange as rentals, or whether some
advance planning is required (to mount bindings on a ski,
say) is a further detail considered in this problem. It is as-
sumed that the social consumer has no particular indepen-
dent interest in these activities, and engages in these activ-
ities only to socialize with peers who choose to engage in
these activities disregarding the consumer’s desires.

These putative peers are more interested in demon-
strating the superiority of their financial acumen to that
of the social consumer in question than they are in any
particular activity. To that end, the social consumer is
taunted mercilessly based on the ratio of his/her total ex-
penses on rentals and purchases to theirs. Consequently,
the peers endeavor to invite the social consumer to engage
in events while they are costly to him/her, and once the
activities are free to the social consumer, if continued ac-
tivity would be costly to them, cease. But, to present an
illusion of fairness, skis, both rented and purchased, have
the same cost for the peers as they do for the social con-
sumer in question. The ski rental problem takes a very re-
stricted setting. It assumes that purchased ski equipment
never needs replacement, and that there are no costs to
a ski trip other than the skis (thus, no cost for the gasoline,
for the lift and/or speeding tickets, for the hot chocolates
during skiing, or for the après-ski liqueurs and meals). It
is assumed that the social consumer experiences no phys-
ical disabilities preventing him/her from skiing, and has
no impending restrictions to his/her participation in ski
trips (obviously, a near-term-fatal illness or an anticipated
conviction leading to confinement for life in a peniten-
tiary would eliminate any potential interest in purchasing
alpine equipment—when the ratio of purchase to rental
exceeds the maximum need for equipment, one should al-
ways rent). It is assumed that the social consumer’s peers
have disavowed any interest in activities other than ski-
ing, and that the closet, basement, attic, garage, or stor-
age locker included in the social consumer’s rent or mort-
gage (or necessitated by other storage needs) has sufficient
capacity to hold purchased ski equipment without entail-
ing the disposal of any potentially useful items. Bringing
these complexities into consideration brings one closer to
the hardware-based problems which initially inspired this
work.

The impact of invitations issued with sufficient time
allowed for purchasing skis, as well as those without, will
be considered.

Given all of that, what ratio of expenses can the social
consumer hope to attain? What ratio can the social con-
sumer not expect to beat? These are the basic questions of
competitive analysis.

The impact of keeping secrets from one’s peers is fur-
ther considered. Rather than a fixed strategy for when to
purchase skis, the social consumer may introduce an ele-
ment of chance into the process. If the peers are able to
observe his/her ski equipment and notice when it changes
from rented skis to purchased skis, and change their
schedule for alpine recreation in light of this observation,
randomness provides no advantages. If, on the other hand,
the social consumer announces to the peers, in advance
of the first trip, how he/she will decide when the time is
right for purchasing skis, including any use of probabilis-
tic techniques, and they then decide on the schedule for ski
trips for the coming winter, a deterministic decision pro-
cedure generally produces a larger competitive ratio than
does a randomized procedure.

Key Results

Given an unbounded sequence of skiing trips, one should
eventually purchase skis if the cost of renting skis, r, is pos-
itive. In particular, let the cost of purchasing skis be some
number p � r. If one never intends to make a purchase,
one’s cost for the season will be rn, where n is the num-
ber of ski trips in which one participates. If n exceeds p/r,
one’s cost will exceed the price of purchasing skis; as n
continues to increase, the ratio of one’s costs to those of
one’s peers increases to nr/p, which grows unboundedly
with n, since your peers, knowing that n exceeds p/r, will
have purchased skis prior to the first trip.

On the other hand, if one rushes out to purchase skis
upon being told that the ski season is approaching, one’s
peers will decide that this season looks inopportune, and
that skiing is passé, leaving their costs at zero, and one’s
costs at p, leaving an infinite ratio between one’s costs and
theirs; if one chooses to defer the purchase until after one’s
first ski trip, this produces the less unfavorable ratio p/r or
1 + p/r, depending on whether the invitation left one time
to purchase skis before the first trip or not.

Suppose one chooses, instead, to defer one’s purchase
until after one has made k rentals, but before ski trip k + 1.
One’s costs are then bounded by kr + p. After k ski trips,
the cost to one’s peers will be the lesser of kr and p (as
one’s peers will have decided whether to rent or buy for
the season upon knowing one’s plans, which in this case
amounts to knowing k), for a ratio equal to the larger of
1 + kr/p and 1 + p/kr. Were they to choose to terminate
the activity earlier (so n < k), the ratio would be only the
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greater of kr/p and 1, which is guaranteed to be less than
the sum of the two—one’s peers would be shirking their
opportunity to make one’s behavior look foolish were they
to allow one to stop skiing prior to one’s purchase of a pair
of skis!

It is certain, since kr/p and p/kr are reciprocals, that
one of them is at least equal to 1, ensuring that one will be
compelled to spend at least twice as much as one’s peers.

The analysis above applies to the case where ski trips
are announced without enough warning to leave one time
to buy skis. Purchases in that case are not instantaneous;
in contrast, if one is able to purchase skis on demand, the
cost to one’s peers changes to the lesser of (k + 1) r and p.
The overall results are notmuch different; the ratio choices
become the larger of 1 + kr/p and 1 +

�
p � r

�
/ ((k + 1) r).

When probabilistic algorithms are considered with
oblivious frenemies (those who know the way in which
random choices will affect one’s purchasing decisions, but
who do not take time to notice that one’s skis are no longer
marked with the name and phone number of a rental
agency), one can appear more thrifty.

A randomized algorithm can be viewed as a distribu-
tion over deterministic algorithms. No good algorithm can
purchase skis prior to the first invitation, lest it exhibit in-
finite regrettability (some positive cost compared to zero).
A good algorithm must purchase skis by the time one’s
peers will have, otherwise one’s cost ratio continues to in-
crease with the number of ski trips. Moreover, the ratio
should be the same after every ski trip; if not, then there is
an earliest ratio not equal to the largest, and probabilities
can be adjusted to change this earliest ratio to be closer to
the largest while decreasing all larger ratios.

Consider, for example, the case of p = 2r, with pur-
chases allowed at the time of an invitation. The best de-
terministic ratio in this case is 1.5. It is only necessary to
choose a probability q, the probability of purchasing at
the time of the first invitation. The cost after one trip is
then

�
1 � q

�
r + 2qr = r

�
1 + q

�
, for a ratio of 1 + q, and

after two trips the costs is q (2r) +
�
1 � q

�
(3r) =

�
3 � q

�
r,

producing a ratio of
�
3 � q

�
/2. Setting these to be equal

yields q = 1/3, for a ratio of 4/3.
If insufficient time is allowed for purchases before ski-

ing, the best deterministic ratio is 2. Purchasing after the
first ski trip with probability q (and after the second with
probability 1� q) leads to expected costs of

�
1 � q

�
r +

3qr = r
�
1 + 2q

�
after the first trip, and

�
1 � q

�
(2 + 2) r +

3qr = r
�
4 � q

�
, leading to a ratio of 2� q/2. Setting

1 + 2q = 2 � q/2 yields q = 2/5, for a ratio of 9/5.
More careful analysis, for which readers are re-

ferred to the references and the remainder of this vol-
ume, shows that the best achievable ratio approaches

�/ (� � 1) 	 1:58197 as p/r increases, approaching the
limit from below if sufficient warning time is offered, and
from above otherwise.

Applications

The primary initial results were directed towards problems
of computer architecture; in particular, design questions
for capacity conflicts in caches, and sharedmemory design
in the presence of a shared communication channel. The
motivation for these analyses was to find designs which
would perform reasonably well on as-yet-unknown work-
loads, including those to be designed by competitors who
may have chosen alternative designs which favor certain
cases. While it is probably unrealistic to assume that pre-
cisely the least-desirable workloads will occur in ordinary
practice, it is not unreasonable to assume that extremal
workloads favoring either end of a decision will occur.

History and Further Reading

This technique of finding algorithms with bounded worst-
case performance ratios is common in analyzing approx-
imation algorithms. The initial proof techniques used for
such analyses (the method of amortized analysis) were first
presented by Sleator and Tarjan.

The reader is advised to consult the remainder of this
volume for further extensions and applications of the prin-
ciples of competitive on-line algorithms.
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ProblemDefinition

This problem is about finding the optimal orientations
of the cells in a slicing floorplan to minimize the total
area. In a floorplan, cells represent basic pieces of the cir-
cuit which are regarded as indivisible. After performing an
initial placement, for example, by repeated application of
a min-cut partitioning algorithm, the relative positions be-
tween the cells on a chip are fixed. Various optimization
can then be done on this initial layout to optimize differ-
ent cost measures such as chip area, interconnect length,
routability, etc. One such optimization, as mentioned in
Lauther [3], Otten [4], and Zibert and Saal [13], is to deter-
mine the best orientation of each cell to minimize the total
chip area. This work by Stockmeyer [8] gives a polynomial
time algorithm to solve the problem optimally in a spe-
cial type of floorplans called slicing floorplans and shows
that this orientation optimization problem in general non-
slicing floorplans is NP-complete.

Slicing Floorplan

A floorplan consists of an enclosing rectangle subdivided
by horizontal and vertical line segments into a set of non-
overlapping basic rectangles. Two different line segments
can meet but not cross. A floorplan F is characterized by
a pair of planar acyclic directed graphs AF and LF defined
as follows. Each graph has one source and one sink. The
graph AF captures the “above” relationships and has a ver-

Slicing Floorplan Orientation, Figure 1
A floorplan F and its AF and LF representing the above and left relationships

tex for each horizontal line segment, including the top and
the bottom of the enclosing rectangle. For each basic rect-
angle R, there is an edge eR directed from segment � to
segment � 0 if and only if � (or part of �) is the top of R
and � 0 (or part of � 0) is the bottom of R. There is a one-
to-one correspondence between the basic rectangles and
the edges in AF . The graph LF is defined similarly for the
“left” relationships of the vertical segments. An example is
shown in Fig. 1. Two floorplans F and G are equivalent if
and only if AF = AG and LF = LG . A floorplan F is slicing
if and only if both its AF and LF are series parallel.

Slicing Tree

A slicing floorplan can also be described naturally by
a rooted binary tree called slicing tree. In a slicing tree, each
internal node is labeled by either an h or a v, indicating
a horizontal or a vertical slice respectively. Each leaf corre-
sponds to a basic rectangle. An example is shown in Fig. 2.
There can be several slicing trees describing the same slic-
ing floorplan but this redundancy can be removed by re-
quiring the label of an internal node to differ from that
of its right child [12]. For the algorithm presented in this
work, a tree of smallest depth should be chosen and this
depth minimization process can be done in O(n log n)
time using the algorithm by Golumbic [2].

Slicing Floorplan Orientation, Figure 2
A slicing floorplan F and its slicing tree representation



Slicing Floorplan Orientation S 853

Orientation Optimization

In optimization of a floorplan layout, some freedom in
moving the line segments and in choosing the dimensions
of the rectangles are allowed. In the input, each basic rect-
angle R has two positive integers aR and bR, representing
the dimensions of the cell that will be fit into R. Each cell
has two possible orientations resulting in either the side of
length aR or bR being horizontal. Given a floorplan F and
an orientation �, each edge e in AF and LF is given a label
l(e) representing the height or the width of the cell cor-
responding to e depending on its orientation. Define an
(F, �)-placement to be a labeling l of the vertices in AF and
LF such that (i) the sources are labeled by zero, and (ii) if
e is an edge from vertex � to � 0; l(� 0) � l(�) + l(e). In-
tuitively, if � is a horizontal segment, l(�) is the distance
of � from the top of the enclosing rectangle and the in-
equality constraint ensures that the basic rectangle corre-
sponding to e is tall enough for the cell contained in it,
and similarly for the vertical segments. Now, hF(�) (resp.
wF(�)) is defined to be the minimum label of the sink
in AF(�) (resp. LF(�)) over all (F,�)-placements, where
AF(�) (resp. LF(�)) is obtained fromAF (resp. LF) by label-
ing the edges and vertices as described above. Intuitively,
hF(�) and wF(�) give the minimum height and width of
a floorplan F given an orientation � of all the cells such
that each cell fits well into its associated basic rectangle.
The orientation optimization problem can be defined for-
mally as follows:

Problem 1 (Orientation Optimization Problem for Slic-
ing Floorplan) INPUT: A slicing floorplan F of n cells de-
scribed by a slicing tree T, the widths and heights of the cells
ai and bi for i = 1 : : : n and a cost function  (h;w).
OUTPUT: An orientation � of all the cells that minimizes
the objective function  (hF (�);wF (�)) over all orienta-
tions �.

For this problem, Lauther [3] has suggested a greedy
heuristic. Zibert and Saal [13] use integer programming
methods to do rotation optimization and several other op-
timization simultaneously for general floorplans. In the
following sections, an efficient algorithm will be given to
solve the problem optimally in O(nd) time where n is the
number of cells and d is the depth of the given slicing tree.

Key Results

In the following algorithm, F(u) denotes the floorplan de-
scribed by the subtree rooted at u in the given slicing tree
T and let L(u) be the set of leaves in that subtree. For each
node u of T, the algorithm constructs recursively a list of

pairs:

f(h1;w1); (h2;w2); : : : ; (hm ;wm)g

where (1) m � jL(u)j + 1, (2) hi > hi+1 and wi < wi+1
for i = 1 : : :m � 1, (3) there is an orientation � of the
cells in L(u) such that (hi ;wi) = (hF(u)(�);wF(u)(�)) for
each i = 1 : : :m, and (4) for each orientation � of the
cells in L(u), there is a pair (hi ;wi) in the list such that
hi � hF(u)(�) and wi � wF(u)(�).

L(u) is thus a non-redundant list of all possible dimen-
sions of the floorplan described by the subtree rooted at
u. Since the cost function  is non-decreasing, it can be
minimized over all orientations by finding the minimum
 (hi,wi) over all the pairs (hi,wi) in the list constructed at
the root of T. At the beginning, a list is constructed at each
leaf node of T representing the possible dimensions of the
cell. If a leaf cell has dimensions a and bwith a > b, the list
is f(a; b); (b; a)g. If a = b, there will just be one pair (a, b)
in the list. (If the cell has a fixed orientation, there will also
be just one pair as defined by the fixed orientation.) Notice
that the condition (1) above is satisfied in these leaf node
lists. The algorithm then works its way up the tree and
constructs the list at each node recursively. In general, as-
sume that u is an internal node with children v and v0 and
u represents a vertical slice. Let f(h1;w1) : : : (hk ;wk)g and
f(h01;w

0
1) : : : (h

0
m ;w0m)g be the lists at v and v0 respectively

where k � jL(v)j + 1 and m � jL(v0)j + 1. A pair (hi,wi)
from v can be put together by a vertical slice with a pair
(h0j ;w

0
j) from v0 to give a pair:

join((hi ;wi ); (h0j ;w
0
j)) = (max(hi ; h0j);wi + w0j)

in the list of u (see Fig. 3). The key fact is that most of
the km pairs are sub-optimal and do not need to be con-
sidered. For example, if hi > h0j , there is no need to join

Slicing Floorplan Orientation, Figure 3
An illustration of the merging step
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(hi ;wi ) with (h0z ;w0z) for any z > j since

max(hi ; h0z) = max(hi ; h0j) = hi ;

wi + w0z > wi + w0j

Similarly, if node u represents a horizontal slice, the join
operation will be:

join((hi ;wi); (h0j ;w
0
j)) = (hi + h0j;max(wi ;w0j))

The algorithm also keeps two pointers for each element in
the lists in order to construct back the optimal orientation
at the end. The algorithm is summarized by the following
pseudocode:

Pseudocode Stockmeyer()
1. Initialize the list at each leaf node.
2. Traverse the tree in postorder. At each internal node

u with children v and v0, construct a list at node u as
follows:

3. Let f(h1;w1) : : : (hk ;wk)g and f(h01;w
0
1) : : :

(h0m ;w0m)g be the lists at v and v0 respectively.
4. Initialize i and j to one.
5. If i > k or j > m, the whole list at u is constructed.
6. Add join((hi ;wi); (h0j ;w

0
j)) to the list with point-

ers pointing to (hi ;wi) and (h0j;w
0
j) in L(v) and

L(v0) respectively.
7. If hi > h0j , increment i by 1.
8. If hi < h0j , increment j by 1.
9. If hi = h0j , increment both i and j by 1.
10. Go to step 5.
11. Compute  (hi,wi) for each pair (hi,wi) in the list Lr

at the root r of T.
12. Return the minimum (hi,wi) for all (hi,wi) in Lr and

construct back the optimal orientation by following
the pointers.

Correctness

The algorithm is correct since at each node u, a list is con-
structed that records all the possible non-redundant di-
mensions of the floorplan described by the subtree rooted
at u. This can be proved easily by induction starting from
the leaf nodes and working up the tree recursively. Since
the cost function  is non-decreasing, it can be minimized
over all orientations of the cells by finding the minimum
 (hi,wi) over all the pairs (hi,wi) in the list Lr constructed
at the root r of T.

Runtime

At each internal node u with children v and v0. If the
lengths of the lists at v and v0 are k and m respectively,

the time spent at u to combine the two lists is O(k + m).
Each possible dimension of a cell will thus invoke one
unit of execution time at each node on its path up to the
root in the post-order traversal. The total runtime is thus
O(d � N) whereN is the total number of realizations of all
the n cells, which is equal to 2n in the orientation optimiza-
tion problem. Therefore, the runtime of this algorithm is
O(nd).

Theorem 1 Let  (h, w) be non-decreasing in both ar-
guments, i. e., if h � h0 and w � w0;  (h;w) �  (h0;w0),
and computable in constant time. For a slicing floorplan F
described by a binary slicing tree T, the problem of minimiz-
ing  (hF (�);wF (�)) over all orientations � can be solved
in time O(nd) time, where n is the number of leaves of T
(equivalently, the number of cells of F) and d is the depth
of T.

Applications

Floorplan design is an important step in the physical de-
sign of VLSI circuits. Stockmeyer’s optimal orientation al-
gorithm [8] has been generalized to solve the area min-
imization problem in slicing floorplans [7], in hierarchi-
cal non-slicing floorplans of order five [6,9] and in general
floorplans [5]. The floorplan area minimization problem
is similar except that each soft cell now has a number of
possible realizations, instead of just two different orienta-
tions. The same technique can be applied immediately to
solve optimally the area minimization problem for slicing
floorplans inO(nd) time where n is the total number of re-
alizations of all the cells in a given floorplan F and d is the
depth of the slicing tree of F. Shi [7] has further improved
this result to O(n log n) time. This is done by storing the
list of non-redundant pairs at each node in a balanced bi-
nary search tree structure called realization tree and using
a newmerging algorithm to combine two such trees to cre-
ate a new one. It is also proved in [7] that this O(n log n)
time complexity is the lower bound for this areaminimiza-
tion problem in slicing floorplans.

For hierarchical non-slicing floorplans, Pan et al. [6]
prove that the problem is NP-complete. Branch-and-
bound algorithms are developed by Wang and Wong [9],
and pseudopolynomial time algorithms are developed by
Wang and Wong [10], and Pan et al. [6]. For general
floorplans, Stockmeyer [8] has shown that the problem
is strongly NP-complete. It is therefore unlikely to have
any pseudopolynomial time algorithm. Wimer et al. [11],
and Chong and Sahni [1] propose branch-and-bound al-
gorithms. Pan et al. [5] develop algorithms for general
floorplans that are approximately slicing.
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ProblemDefinition

Implementing a snapshot object is an abstraction of the
problem of obtaining a consistent view of several shared
variables while other processes are concurrently updating
those variables.

In an asynchronous shared-memory distributed sys-
tem, a collection of n processes communicate by accessing
shared data structures, called objects. The system provides

basic types of shared objects; other needed types must be
built from them. One approach uses locks to guarantee ex-
clusive access to the basic objects, but this approach is not
fault-tolerant, risks deadlock or livelock, and causes delays
when a process holding a lock runs slowly. Lock-free algo-
rithms avoid these problems but introduce new challenges.
For example, if a process reads two shared objects, the val-
ues it reads may not be consistent if the objects were up-
dated between the two reads.

A snapshot object stores a vector ofm values, each from
some domain D. It provides two operations: scan and up-
date(i, v), where 1 � i � m and v 2 D. If the operations
are invoked sequentially, an update(i, v) operation changes
the value of the ith component of the stored vector to v,
and a scan operation returns the stored vector.

Correctness when snapshot operations by different
processes overlap in time is described by the linearizability
condition, which says operations should appear to occur
instantaneously. More formally, for every execution, one
can choose an instant of time for each operation (called its
linearization point) between the invocation and the com-
pletion of the operation. (An incomplete operation may
either be assigned no linearization point or given a lin-
earization point at any time after its invocation.) The re-
sponses returned by all completed operations in the ex-
ecution must return the same result as they would if all
operations were executed sequentially in the order of their
linearization points.

An implementation must also satisfy a progress prop-
erty. Wait-freedom requires that each process completes
each scan or update in a finite number of its own steps.
The weaker non-blocking progress condition says the sys-
tem cannot run forever without some operation complet-
ing.

This article describes implementations of snapshots
from more basic types, which are also linearizable, with-
out locks. Two types of snapshots have been studied. In
a single-writer snapshot, each component is owned by
a process, and only that process may update it. (Thus, for
single-writer snapshots, m = n.) In a multi-writer snap-
shot, any process may update any component. There also
exist algorithms for single-scanner snapshots, where only
one process may scan at a time [10,13,14,16]. Snapshots
were introduced by Afek et al. [1], Anderson [2] and Asp-
nes and Herlihy [4].

Space complexity is measured by the number of ba-
sic objects used and their size (in bits). Time complexity
is measured by the maximum number of steps a process
must do to finish a scan or update, where a step is an ac-
cess to a basic shared object. (Local computation and lo-
cal memory accesses are usually not counted.) Complexity



856 S Snapshots in Shared Memory

bounds will be stated in terms of n;m; d = log jDj and k,
the number of operations invoked in an execution. Ordi-
narily, there is no bound on k.

Most of the algorithms below use read-write registers,
the most elementary shared object type. A single-writer
register may only be written by one process. A multi-
writer register may be written by any process. Some algo-
rithms using stronger types of basic objects are discussed
in Sect. “Wait-Free Implementations from Small, Stronger
Objects”.

Key Results

A Simple Non-blocking Implementation
from Small Registers

Suppose each component of a single-writer snapshot ob-
ject is represented by a single-writer register. Process i
does an update(i, v) by writing v and a sequence num-
ber into register i, and incrementing its sequence num-
ber. Performing a scan operation is more difficult than
merely reading each of them registers, since some registers
might change while these reads are done. To scan, a pro-
cess repeatedly reads all the registers. A sequence of reads
of all the registers is called a collect. If two collects return
the same vector, the scan returns that vector (with the se-
quence numbers stripped away). The sequence numbers
ensure that, if the same value is read in a register twice,
the register had that value during the entire interval be-
tween the two reads. The scan can be assigned a lineariza-
tion point between the two identical collects, and updates
are linearized at the write. This algorithm is non-blocking,
since a scan continues running only if at least one update
operation is completed during each collect. A similar algo-
rithm, with process identifiers appended to the sequence
numbers, implements a non-blocking multi-writer snap-
shot from mmulti-writer registers.

Wait-Free Implementations from Large Registers

Afek et al. [1] described how to modify the non-blocking
single-writer snapshot algorithm tomake it wait-free using
scans embedded within the updates. An update(i, v) first
does a scan and then writes a triple containing the scan’s
result, v and a sequence number into register i. While
a process P is repeatedly performing collects to do a scan,
either two collects return the same vector (which P can re-
turn) or P will eventually have seen three different triples
in the register of some other process. In the latter case, the
third triple that P saw must contain a vector that is the re-
sult of a scan that started after P’s scan, so P’s scan outputs
that vector. Updates and scans that terminate after seeing

two identical collects are assigned linearization points as
before. If one scan obtains its output from an embedded
scan, the two scans are given the same linearization point.
This is a wait-free single-writer snapshot implementation
from n single-writer registers of (n + 1)d + log k bits each.
Operations complete withinO(n2) steps. Afek et al. [1] also
describe how to replace the unbounded sequence numbers
with handshaking bits. This requires n	(nd)-bit registers
and n2 1-bit registers. Operations still complete in O(n2)
steps.

The same idea can be used to build multi-writer snap-
shots from multi-writer registers. Using unbounded se-
quence numbers yields a wait-free algorithm that uses
m registers storing 	(nd + log k) bits each, in which each
operation completes within O(mn) steps. (This algorithm
is given explicitly in [9].) No algorithm can use fewer than
m registers if n � m [9]. If handshaking bits are used in-
stead, the multi-writer snapshot algorithm uses n2 1-bit
registers, m(d + log n)-bit registers and n (md)-bit regis-
ters, and each operation uses O(nm + n2) steps [1].

Guerraoui and Ruppert [12] gave a similar wait-free
multi-writer snapshot implementation that is anonymous,
i. e., it does not use process identifiers and all processes are
programmed identically.

Anderson [3] gave an implementation of a multi-
writer snapshot from a single-writer snapshot. Each pro-
cess stores its latest update to each component of the
multi-writer snapshot in the single-writer snapshot, with
associated timestamp information computed by scanning
the single-writer snapshot. A scan is done using just one
scan of the single-writer snapshot. An update requires
scanning and updating the single-writer snapshot twice.
The implementation involves some blow-up in the size of
the components, i. e., to implement a multi-writer snap-
shot with domain D requires a single-writer snapshot
with a much larger domain D0. If the goal is to imple-
ment multi-writer snapshots from single-writer registers
(rather than multi-writer registers), Anderson’s construc-
tion gives a more efficient solution than that of Afek
et al.

Attiya, Herlihy and Rachman [7] defined the lattice
agreement object, which is very closely linked to the prob-
lem of implementing a single-writer snapshot when there
is a known upper bound on k. Then, they showed how
to construct a single-writer snapshot (with no bound on
k) from an infinite sequence of lattice agreement ob-
jects. Each snapshot operation accesses the lattice agree-
ment object twice and does O(n) additional steps. Their
implementations of lattice agreement are discussed in
Sect. “Wait-Free Implementations from Small, Stronger
Objects”.
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Attiya and Rachman [8] used a similar approach to
give a single-writer snapshot implementation from large
single-writer registers using O(n log n) steps per opera-
tion. Each update has an associated sequence number.
A scanner traverses a binary tree of height log k from root
to leaf (here, a bound on k is required). Each node has
an array of n single-writer registers. A process arriving at
a node writes its current vector into a single-writer regis-
ter associated with the node and then gets a new vector by
combining information read from all n registers. It pro-
ceeds to the left or right child depending on the sum of the
sequence numbers in this vector. Thus, all scanners can
be linearized in the order of the leaves they reach. Up-
dates are performed by doing a similar traversal of the
tree. The bound on k can be removed as in [7]. Attiya
and Rachman also give a more direct implementation that
achieves this by recycling the snapshot object that assumes
a bound on k. Their algorithm has also been adapted to
solve condition-based consensus [15].

Attiya, Fouren and Gafni [6] described how to adapt
the algorithm of Attiya and Rachman [8] so that the num-
ber of steps required to perform an operation depends on
the number of processes that actually access the object,
rather than the number of processes in the system.

Attiya and Fouren [5] solve lattice agreement in O(n)
steps. (Here, instead of using the terminology of lattice
agreement, the algorithm is described in terms of imple-
menting a snapshot in which each process does at most
one snapshot operation.) The algorithm uses, as a data
structure, a two-dimensional array of O(n2) reflectors.
A reflector is an object that can be used by two processes
to exchange information. Each reflector is built from two
large single-writer registers. Each process chooses a path
through the array of reflectors, so that at most two pro-
cesses visit each reflector. Each reflector in column i is
used by process i to exchange information with one pro-
cess j < i. If process i reaches the reflector first, process j
learns about i’s update (if any). If process j reaches it first,
then process i learns all the information that j has already
gathered. (If both reach it at about the same time, both
processes learn the information described above.) As the
processes move from column i � 1 to column i, a pro-
cess that enters column i at some row r will have gath-
ered all the information that has been gathered by any pro-
cess that enters column i below row r (and possibly more).
This invariant is maintained by ensuring that if process i
passes information to any process j < i in row r of col-
umn i, it also passes that information to all processes that
entered column i above row r. Furthermore, process i ex-
its column i at a row that matches the amount of informa-
tion it learns while traveling through the column. When

processes have reached the rightmost column of the ar-
ray, the ones in higher rows know strictly more than the
ones in lower rows. Thus, the linearization order of their
scans is the order in which they exit the rightmost column,
from bottom to top. The techniques of Attiya, Herlihy and
Rachman [7,8], mentioned above, can be used to remove
the restriction that each process performs at most one op-
eration. The number of steps per operation is still O(n).

Wait-Free Implementations
from Small, Stronger Objects

All of the wait-free implementations described above use
registers that can store ˝(m) bits each, and are therefore
not practical whenm is large. Some implementations from
smaller objects equipped with stronger synchronization
operations, rather than just reads and writes, are described
in this section. An object is considered to be small if it can
store O(d + log n + log k) bits. This means that it can store
a constant number of component values, process identi-
fiers and sequence numbers.

Attiya, Herlihy and Rachman [7] gave an elegant
divide-and-conquer recursive solution to the lattice agree-
ment problem. The division of processes into groups for
the recursion can be done dynamically using test&set ob-
jects. This provides a snapshot algorithm that runs inO(n)
time per operation, and uses O(kn2 log n) small single-
writer registers and O(kn log2 n) test&set objects. (This
requires modifying their implementation to replace those
registers that are large, which are written only once, by
many small registers.) Using randomization, each test&set
object can be replaced by single-writer registers to give
a snapshot implementation from registers only with O(n)
expected steps per operation.

Jayanti [13] gave a multi-writer snapshot implementa-
tion from O(mn2) small compare&swap objects where up-
dates take O(1) steps and scans take O(m) steps. He began
with a very simple single-scanner, single-writer snapshot
implementation from registers that uses a secondary array
to store a copy of recent updates. A scan clears that array,
collects the main array, and then collects the secondary
array to find any overlooked updates. Several additional
mechanisms are introduced for the general, multi-writer,
multi-scanner snapshot. In particular, compare&swap op-
erations are used instead of writes to coordinate writers
updating the same component and multiple scanners co-
ordinate with one another to simulate a single scanner.
Jayanti’s algorithm builds on an earlier paper by Riany,
Shavit and Touitou [16], which gave an implementation
that achieved similar complexity, but only for a single-
writer snapshot.
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Applications

Applications of snapshots include distributed databases,
storing checkpoints or backups for error recovery, garbage
collection, deadlock detection, debugging distributed pro-
grammes and obtaining a consistent view of the values
reported by several sensors. Snapshots have been used
as building blocks for distributed solutions to random-
ized consensus and approximate agreement. They are also
helpful as a primitive for building other data structures.
For example, consider implementing a counter that stores
an integer and provides increment, decrement and read
operations. Each process can store the number of incre-
ments it has performed minus the number of its decre-
ments in its own component of a single-writer snapshot
object, and the counter may be read by summing the val-
ues from a scan. See [10] for references on many of the
applications mentioned here.

Open Problems

Some complexity lower bounds are known for implemen-
tations from registers [9], but there remain gaps between
the best known algorithms and the best lower bounds. In
particular, it is not known whether there is an efficient
wait-free implementation of snapshots from small regis-
ters.

Experimental Results

Riany, Shavit and Touitou gave performance evaluation
results for several implementations [16].

Cross References

� Implementing Shared Registers in Asynchronous
Message-Passing Systems

� Linearizability
� Registers

Recommended Reading

See also Fich’s survey paper on the complexity of imple-
menting snapshots [11].
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Keywords and Synonyms

Sorting by reversals; Inversion distance; Reversal dis-
tance

ProblemDefinition

This entry describes algorithms for finding the minimum
number of steps needed to sort a signed permutation (also
known as: inversion distance, reversal distance). This is
a real-world problem and for example is used in compu-
tational biology.

Inversion distance is a difficult computational prob-
lem that has been studied intensively in recent years [1,4,
6,7,8,9,10]. Finding the inversion distance between un-
signed permutations is NP-hard [7], but with signed ones,
it can be done in linear time [1].

Key Results

Bader et al. [1] present the first worst-case linear-time al-
gorithm for computing the reversal distance that is simple
and practical and runs faster than previous methods. Their
key innovation is a new technique to compute connected
components of the overlap graph using only a stack, which
results in the simple linear-time algorithm for computing
the inversion distance between two signed permutations.
Bader et al. provide ample experimental evidence that their
linear-time algorithm is efficient in practice as well as in
theory: they coded it as well as the algorithm of Berman
and Hannenhalli, using the best principles of algorithm
engineering to ensure that both implementationswould be
as efficient as possible, and compared their running times
on a large range of instances generated through simulated
evolution.

Bafna and Pevzner introduced the cycle graph of a per-
mutation [3], thereby providing the basic data structure
for inversion distance computations. Hannenhalli and
Pevzner then developed the basic theory for expressing the
inversion distance in easily computable terms (number of
breakpoints minus number of cycles plus number of hur-
dles plus a correction factor for a fortress [3,15]—hurdles
and fortresses are easily detectable from a connected com-
ponent analysis). They also gave the first polynomial-time
algorithm for sorting signed permutations by reversals [9];
they also proposed a O(n4) implementation of their al-
gorithm which runs in quadratic time when restricted to
distance computation. Their algorithm requires the com-
putation of the connected components of the overlap
graph, which is the bottleneck for the distance computa-
tion. Berman and Hannenhalli later exploited some com-
binatorial properties of the cycle graph to give a O(n˛(n))

algorithm to compute the connected components, lead-
ing to a O(n2˛(n)) implementation of the sorting algo-
rithm [6], where ˛ is the inverse Ackerman function.
(The later Kaplan–Shamir–Tarjan (KST) algorithm [10]
reduces the time needed to compute the shortest sequence
of inversions, but uses the same algorithm for computing
the length of that sequence.)

No algorithm that actually builds the overlap graph
can run in linear time, since that graph can be of quadratic
size. Thus, Bader’s key innovation is to construct an over-
lap forest such that two vertices belong to the same tree
in the forest exactly when they belong to the same con-
nected component in the overlap graph. An overlap forest
(the composition of its trees is unique, but their structure
is arbitrary) has exactly one tree per connected component
of the overlap graph and is thus of linear size. The linear-
time step for computing the connected components scans
the permutation twice. The first scan sets up a trivial forest
in which each node is its own tree, labeled with the be-
ginning of its cycle. The second scan carries out an iter-
ative refinement of this first forest, by adding edges and
so merging trees in the forest; unlike a Union-Find, how-
ever, this algorithm does not attempt to maintain the trees
within certain shape parameters. This step is the key to
Bader’s linear-time algorithm for computing the reversal
distance between signed permutations.

Applications

Some organisms have a single chromosome or contain
single-chromosome organelles (such as mitochondria or
chloroplasts), the evolution of which is largely indepen-
dent of the evolution of the nuclear genome. Given a par-
ticular strand from a single chromosome, whether lin-
ear or circular, we can infer the ordering and direction-
ality of the genes, thus representing each chromosome by
an ordering of oriented genes. In many cases, the evolu-
tionary process that operates on such single-chromosome
organisms consists mostly of inversions of portions of
the chromosome; this finding has led many biologists to
reconstruct phylogenies based on gene orders, using as
a measure of evolutionary distance between two genomes
the inversion distance, i. e., the smallest number of inver-
sions needed to transform one signed permutation into the
other [11,12,14].

The linear-time algorithm is in wide-use (as it has been
cited nearly 200 times within the first several years of its
publication). Examples include the handling multichro-
mosomal genome rearrangements [16], genome compari-
son [5], parsing RNA secondary structure [13], and phylo-
genetic study of the HIV-1 virus [2].
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Open Problems

Efficient algorithms for computing minimum distances
with weighted inversions, transpositions, and inverted
transpositions, are open.

Experimental Results

Bader et al. give experimental results in [1].

URL to Code

An implementation of the linear-time algorithm is avail-
able asC code fromwww.cc.gatech.edu/~bader. Two other
dominated implementations are available that are de-
signed to compute the shortest sequence of inversions as
well as its length; one, due to Hannenhalli that implements
his first algorithm [9], which runs in quadratic time when
computing distances, while the other, a Java applet writ-
ten by Mantin (http://www.math.tau.ac.il/~rshamir/GR/)
implements the KST algorithm [10], but uses an explicit
representation of the overlap graph and thus also takes
quadratic time. The implementation due to Hannenhalli
is very slow and implements the original method of Han-
nenhalli and Pevzner and not the faster one of Berman and
Hannenhalli. The KST applet is very slow as well since it
explicitly constructs the overlap graph.

Cross References

For finding the actual sorting sequence, see the entry:
� Sorting Signed Permutations by Reversal (Reversal

Sequence)
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Keywords and Synonyms

Sorting by inversions

ProblemDefinition

A signed permutation 
 of size n is a permutation over
f�n; : : : ;�1; 1 : : : ng, where 
�i = �
i for all i.

The reversal � = �i; j (1 � i � j � n) is an operation
that reverses the order and flips the signs of the elements
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i ; : : : ; 
 j in a permutation 
 :


 � � = (
1; : : : ; 
i�1;�
 j; : : : ;�
i ; 
 j+1; : : : ; 
n) :

If �1; : : : ; �k is a sequence of reversals, it is said
to sort a permutation 
 if 
 � �1 � � � �k = Id, where
Id = (1; : : : ; n) is the identity permutation. The length of
a shortest sequence of reversals sorting 
 is called the re-
versal distance of 
 , and is denoted by d(
).

If the computation of d(
) is solved in linear time [2]
(see the entry “reversal distance”), the computation of a se-
quence of size d(
) that sorts 
 is more complicated and
no linear algorithm is known so far. The best complex-
ity is currently achieved by the solution of Tannier and
Sagot [17], which has later been improved papers by Tan-
nier, Bergeron and Sagot [18] and Han [8].

Key Results

Recall there is a linear algorithm to compute the reversal
distance thanks to the formula d(
) = n + 1 � c(
) + t(
)
(notation from [4]), where c(
) is the number of cycles
in the breakpoint graph, and t(
) is computed from the
unoriented components of the permutation (see the entry
“reversal distance”). Once this is known, there is a trivial
algorithm that computes a sequence of size d(
): try ev-
ery possible reversal � at one step, until you find one such
that d(
 � �) = d(
) � 1. Such a reversal is called safe. This
necessitates O(n) computations for every possible reversal
(they are at most (n + 1)(n + 2)/2 = O(n2)), and iterating
this to find a sequence yields an O(n4) algorithm.

The first polynomial algorithm by Hannenhalli and
Pevzner [9] was not achieving a better complexity and the
algorithmic study of finding shortest sequences of rever-
sals began its history.

The Scenario of Reversals

All the published solutions for the computations of a sort-
ing sequence are divided into two, following the division
of the distance formula into two parameters: a first part
computes a sequence of reversals so that the resulting per-
mutation has no unoriented component, and a second part
sorts all oriented components.

The first part was given its best solution by Kaplan,
Shamir and Tarjan [10], whose algorithm runs in lin-
ear time when coupled with the linear distance computa-
tion [2], and it is based on Hannenhalli and Pevzner’s [9]
early results.

The second part is the bottleneck of the whole proce-
dure. At this point, if there is no unoriented component,
the distance is d(
) = n + 1 � c(
), so a safe reversal is

one that increases c(
) and do not create unoriented com-
ponents (that would increase t(
)).

A reversal that increases c(
) is called oriented. Find-
ing an oriented reversal is an easy part: any two consecu-
tive numbers that have different signs in the permutation
define one. The hard part is to make sure it does not in-
crease the number of unoriented components.

The quadratic algorithms designed on one side by
Berman and Hannenhalli [5] and on the other by Kaplan,
Shamir and Tarjan [10] are based on the linear recognition
of safe reversals. No better algorithm is known so far to
recognize safe reversals, and it seemed that a lower bound
had been reached, as witnessed by a survey of Ozery-Flato
and Shamir [14] in which they wrote that “a central ques-
tion in the study of genome rearrangements is whether one
can obtain a subquadratic algorithm for sorting by rever-
sals”. This was obtained by Tannier and Sagot [17], who
proved that the recognition of safe reversal at each step is
not necessary, but only the recognition of oriented rever-
sals.

The algorithm is based on the following theo-
rem, taken from [18]. A sequence of oriented reversals
�1; : : : ; �k is said to be maximal if there is no oriented re-
versal in 
 � �1 � � � �k . In particular a sorting sequence is
maximal, but the converse is not true.

Theorem 1 If S is a maximal but not a sorting sequence
of oriented reversals for a permutation, then there exists
a nonempty sequence S0 of oriented reversals such that S
may be split into two parts S = S1; S2, and S1; S0; S2 is a se-
quence of oriented reversal.

This allows to construct sequences of oriented reversals in-
stead of safe reversals, and increase their size by adding
reversals inside the sequence instead of at the end, and ob-
tain a sorting sequence.

This algorithm, with a classical data structure to rep-
resent permutations (as an array for example) has still an
O(n2) complexity, because at each step it has to test the
presence of an oriented reversal, and apply it to the per-
mutation.

The slight modification of a data structure invented by
Kaplan and Verbin [11] allows to pick and apply an ori-
ented reversal in O(

p
n log n), and using this, Tannier and

Sagot’s algorithm achieves O(n3/2
p
log n) time complex-

ity.
Recently, Han [8] announced another data structure

that allows to pick and apply an oriented reversal in
O(
p
n) time, and a similar slight modification can prob-

ably decrease the complexity of the overall method to
O(n3/2).
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The Space of all Optimal Solutions

Almost all the studies on sorting sequences of reversals
were devoted to giving only one sequence, though it has
been remarked that there are often plenty of them (it may
be over several millions even for n � 10). A few studies
have tried to fill this deficiency.

An algorithm to enumerate all safe reversals at one
step has been designed and implemented by Siepel [16].
A structure of the space of optimal solutions has been dis-
covered by Chauve et al. [3], and the algorithmics related
to this structure are studied in [6].

Applications

The motivation as well as the main application of this
problem is in computational biology. Signed permutations
are an adequate object to model the relative position and
orientation of homologous blocks of DNA in two species.
A generalization of this problem to multichromosomal
models has been solved by and applied in mammalian
genomes [15] to argue for a model of evolution where re-
versals do not occur randomly.

Ajana et al. [1] used a random exploration in the space
of solutions to test the hypothesis that in bacteria, reversals
occur mainly around an origin or terminus of replication.

Generalizations to the comparison of more than two
genomes has been the subject of an abundant literature,
and applied to reconstruct evolutionary events and the or-
ganization of the genomes of common ancestors of living
species, or to infer gene orthology from their positions,
and they are based on heuristic principles guided by the
theory of sorting signed permutations by reversals [12,13].

Open Problems

� Finding a better complexity than O(n3/2). It could be
achieved by a smarter data structure, or changing the
principle of the algorithm, so that there is no need to
apply at each step a sorting reversal to be able to com-
pute the next ones.

� The efficient representation and enumeration of the
whole set of solutions (see some advances in [3,6]).

� Finding, among the solutions, the ones that fit some
biological constraints, as preserving some common
groups of genes or favoring small inversions (see some
advances in [7]).

Experimental Results

The algorithm of Tannier, Bergeron and Sagot [18] has
been implemented in its quadratic version (without any
special data structure, which are probably worth only for

very big sizes of permutations) by Diekmann (biomserv.
univ-lyon1.fr/~tannier/PSbR/), but no implementation of
the data structures nor experiments on the complexity are
reported.

URL to Code

� www.cse.ucsd.edu/groups/bioinformatics/GRIMM/
In Pevzner’s group, Tesler has put online an implemen-
tation of the multicromosomal generalization of the al-
gorithm of Kaplan, Shamir, and Tarjan [10], that he has
called GRIMM, for “Genome Rearrangements In Man
and Mouse”.

� www.cs.unm.edu/~moret/GRAPPA/
GRAPPA stands for “Genome Rearrangements Anal-
ysis under Parsimony and other Phylogenetic Algo-
rithms”. It contains the distance computation, and the
algorithm to find all safe reversals at one step. It has
been developed in Moret’s team.

� www.math.tau.ac.il/~rshamir/GR/
An applet written by Mantin implementing the algo-
rithm of Kaplan, Shamir and Tarjan [10].

� biomserv.univ-lyon1.fr/~tannier/PSbR/
A program by Diekmann to find a scenario of reversals
with additional constraints for signed permutations,
implementing the algorithm of Tannier and Sagot [17].

� www.geocities.com/mdvbraga/baobabLuna.html
A program by Braga for the manipulation of permuta-
tions, and in particular sorting signed permutations by
reversals, and giving a condensed representation of all
optimal sorting sequences, implementing an algorithm
of [6].
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ProblemDefinition

One of the most promising ways to determine evolu-
tionary distance between two organisms is to compare
the order of appearance of identical (e. g., orthologous)
genes in their genomes. The resulting genome rearrange-
ment problem calls for finding a shortest sequence of re-
arrangement operations that sorts one genome into the
other. In this work [8], Hartman and Sharan provide
a 1.5-approximation algorithm for the problem of sort-
ing by transpositions, transreversals and revrevs, improv-
ing on a previous 1.75 ratio for this problem. Their algo-
rithm is also faster than current approaches and requires
O(n3/2

p
log n) time for n genes.

Notations and Definition

A signed permutation 
 = [
1; 
2; : : : ; 
n] on n(
) � n
elements is a permutation in which each element is la-
beled by a sign of plus or minus. A segment of 
 is a se-
quence of consecutive elements 
i ; 
i+1; : : : ; 
k , where
1 � i � k � n. A reversal � is an operation that reverses
the order of the elements in a segment and also flips their
signs. Two segments 
i ; 
i+1; : : : ; 
k and 
 j; 
 j+1; : : : ; 
l
are said to be contiguous if j = k + 1 or i = l + 1. A trans-
position � is an operation that exchanges two contiguous
(disjoint) segments. A transreversal ��A;B (respectively,
��B;A) is a transposition that exchanges two segments
A and B and also reverses A (respectively, B). A revrev
operation �� reverses each of the two contiguous seg-
ments (without transposing them). The problem of find-
ing a shortest sequence of transposition, transreversal and
revrev operations that transforms a permutation into the
identity permutation is called sorting by transpositions,
transreversals and revrevs. The distance of a permutation

 , denoted by d(
), is the length of the shortest sorting
sequence.

Key Results

Linear vs. Circular Permutations

An operation is said to operate on the affected segments
as well as on the elements in those segments. Two oper-
ations � and �0 are equivalent if they have the same re-
arrangement result, i. e., � � 
 = �0 � 
 for all 
 . In this
work [8], Hartman and Sharan showed that for an ele-
ment x of a circular permutation 
 , if � is an operation
that operates on x, then there exists an equivalent oper-
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Sorting by Transpositions and Reversals (Approximate Ratio 1.5), Figure 1
a The equivalence of transreversal and revrev on circular permutations. b The breakpoint graph G(�) of the permutation
� = [1; �4;6; �5;2; �7; �3], for which f (�) = [1;2;8;7;11;12;10;9;3;4;14;13;6;5]. It is convenient to draw G(�) on a circle
such that black edges (i. e., thick lines) are on the circumference and gray edges (i. e., thin lines) are chords

ation �0 that does not operate on x. Based on this prop-
erty, they further proved that the problem of sorting by
transpositions, transreversals and revrevs is equivalent for
linear and circular permutations. Moreover, they observed
that revrevs and transreversals are equivalent operations
for circular permutations (as illustrated in Fig. 1a), imply-
ing that the problem of sorting a linear/circular permuta-
tion by transpositions, transreversals and revrevs can be
reduced to that of sorting a circular permutation by trans-
positions and transreversals only.

The Breakpoint Graph

Given a signed permutation 
 on f1; 2; : : : ; ng of n el-
ements, it is transformed into an unsigned permutation
f (
) = 
 0 = [
 01; 


0
2; : : : ; 


0
2n] on f1; 2; : : : ; 2ng of 2n el-

ements by replacing each positive element i with two el-
ements 2i � 1; 2i (in this order) and each negative ele-
ment �i with 2i; 2i � 1. The extended f (
) is consid-
ered here as a circular permutation by identifying 2n + 1
and 1 in both indices and elements. To ensure that ev-
ery operation on f (
) can be mimicked by an operation
on 
 , only operations that cut before odd position are al-
lowed for f (
). The breakpoint graph G(
) is an edge-
colored graph on 2n vertices f1; 2; : : : ; 2ng, in which for
every 1 � i � n, 
 02i is joined to 
 02i+1 by a black edge and
2i is joined to 2i + 1 by a gray edge (see Fig. 1b for an
example). Since the degree of each vertex in G(
) is ex-
actly 2, G(
) uniquely decomposes into cycles. A k-cycle
(i. e., a cycle of length k) is a cycle with k black edges, and
it is odd if k is odd. The number of odd cycles in G(
) is
denoted by codd(
). It is not hard to verify that G(
) con-
sists of n 1-cycles and hence codd(
) = n, if 
 is an iden-
tity permutation [1; 2; : : : ; n]. Gu et al. [5] have shown
that codd(� � 
) � codd(
) + 2 for all linear permutations


 and operations�. In this work [8], Hartman and Sharan
further noted that the above result holds also for circular
permutations and proved that the lower bound of d(
) is
(n(
) � codd(
))/2.

Transformation into 3-Permutations

A permutation is called simple if its breakpoint graph
contains only k-cycle, where k � 3. A simple permuta-
tion is also called a 3-permutation if it contains no 2-
cycles. A transformation from 
 to 
̂ is said to be safe if
n(
) � codd(
) = n(
̂) � codd(
̂). It has been shown that
every permutation 
 can be transformed into a simple
one 
 0 by safe transformations and, moreover, every sort-
ing of 
 0 mimics a sorting of 
 with the same number of
operations [6,11]. Here, Hartman and Sharan [8] further
showed that every simple permutation 
 0 can be trans-
formed into a 3-permutation 
̂ by safe paddings (of trans-
forming those 2-cycles into 1-twisted 3-cycles) and, more-
over, every sorting of 
̂ mimics a sorting of 
 0 with the
same number of operations. Hence, based on these two
properties, an arbitrary permutation 
 can be transformed
into a 3-permutation 
̂ such that every sorting of 
̂ mim-
ics a sorting of 
 with the same number of operations,
suggesting that one can restrict attention to circular 3-
permutations only.

Cycle Types

An operation that cuts some black edges is said to act on
these edges. An operation is further called a k-operation
if it increases the number of odd cycles by k. A (0, 2, 2)-
sequence is a sequence of three operations, of which the
first is a 0-operation and the next two are 2-operations.
An odd cycle is called oriented if there is a 2-operation
that acts on three of its black edges; otherwise, it is unori-
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Sorting by Transpositions and Reversals (Approximate Ratio 1.5), Figure 2
Configurations of 3-cycles. aUnoriented, 0-twisted 3-cycle.bUnoriented, 1-twisted 3-cycle. cOriented, 2-twisted 3-cycle.dOriented,
3-twisted 3-cycle. e A pair of intersecting 3-cycles. f A pair of interleaving 3-cycles

ented. A configuration of cycles is a subgraph of the break-
point graph that contains one ore more cycles. As shown
in Fig. 2a–d, there are four possible configurations of sin-
gle 3-cycles. A black edge is called twisted if its two ad-
jacent gray edges cross each other in the circular break-
point graph. A cycle is k-twisted if k of its black edges are
twisted. For example, the 3-cycles in Fig. 2a–d are 0-, 1-
, 2- and 3-twisted, respectively. Hartman and Sharan ob-
served that a 3-cycle is oriented if and only if it is 2- or
3-twisted.

Cycle Configurations

Two pairs of black edges are called intersecting if they al-
ternate in the order of their occurrence along the circle.
A pair of black edges intersects with cycle C, if it intersects
with a pair of black edges that belong to C. Cycles C andD
intersect if there is a pair of black edges in C that intersects
with D (see Fig. 2e). Two intersecting cycles are called in-
terleaving if their black edges alternate in their order of oc-
currence along the circle (see Fig. 2f). Clearly, the relation
between two cycles is one of (1) non-intersecting, (2) inter-
secting but non-interleaving and (3) interleaving. A pair of
black edges is coupled if they are connected by a gray edge
and when reading the edges along the cycle, they are read
in the same direction. For example, all pairs of black edges
in Fig. 2a are coupled. Gu et al. [5] have shown that given
a pair of coupled black edges (b1, b2), there exists a cycle
C that intersects with (b1, b2). A 1-twisted pair is a pair of
1-twisted cycles, whose twists are consecutive on the circle
in a configuration that consists of these two cycles only.
A 1-twisted cycle is called closed in a configuration if its
two coupled edges intersect with some other cycle in the
configuration. A configuration is closed if at least one of its
1-twisted cycles is closed; otherwise, it is called open.

The Algorithm

The basic ideas of the Hartman and Sharan’s 1.5-approxi-
mation algorithm [8] for the problem of sorting by trans-

positions, transreversals and revrevs are as follows. Hart-
man and Sharan reduced the problem to that of sorting
a circular 3-permutation by transpositions and transre-
versals only and then focused on transforming the 3-cy-
cles into 1-cycles in the breakpoint graph of this 3-per-
mutation. By definition, an oriented (i. e., 2- or 3-twisted)
3-cycle admits a 2-operation and, therefore, they contin-
ued to consider unoriented (i. e., 0- or 1-twisted) 3-cycles
only. Since configurations involving only 0-twisted 3-cy-
cles were handled with (0, 2, 2)-sequences in [7], Hart-
man and Sharan restricted their attention to those con-
figurations that consist of 0- and 1-twisted 3-cycles. They
showed that these configurations are all closed and that
it can be sorted by a (0, 2, 2)-sequence of operations
for each of the following five possible closed configu-
rations: (1) a closed configuration with two unoriented,
interleaving 3-cycles that do not form a 1-twisted pair,
(2) a closed configuration with two intersecting, 0-twisted
3-cycles, (3) a closed configuration with two intersecting,
1-twisted 3-cycles, (4) a closed configuration with a 0-
twisted 3-cycles that intersects with the coupled edges of
a 1-twisted 3-cycle, and (5) a closed configuration that
contains k � 2 mutually interleaving 1-twisted 3-cycles
such that all their twists are consecutive on the circle
and k is maximal with this property. As a result, the se-
quence of operations used by Hartman and Sharan in
their algorithm contains only 2-operations and (0, 2, 2)-
sequences. Since every sequence of three operations in-
creases the number of odd cycles by at least 4 out of 6
possible in 3 steps, the ratio of their approximation algo-
rithm is 1.5. Furthermore, Hartman and Sharan showed
that their algorithm can be implemented in O(n3/2

p
log n)

time using the data structure of Kaplan and Verbin [10],
where n is the number of elements in the permuta-
tion.

Theorem 1 The problem of sorting linear permutations by
transpositions, transreversals and revrevs is linearly equiv-
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alent to the problem of sorting circular permutations by
transpositions, transreversals and revrevs.

Theorem 2 There is a 1.5-approximation algorithm for
sorting by transpositions, transreversals and revrevs, which
runs in O(n3/2

p
log n) time.

Applications

When trying to determine evolutionary distance between
two organisms using genomic data, biologists may wish to
reconstruct the sequence of evolutionary events that have
occurred to transform one genome into the other. One of
themost promising ways to do this phylogenetic study is to
compare the order of appearance of identical (e. g., orthol-
ogous) genes in two different genomes [9,12]. This com-
parison of computing global rearrangement events (such
as reversals, transpositions and transreversals of genome
segments) may provide more accurate and robust clues to
the evolutionary process than the analysis of local point
mutations (i. e., substitutions, insertions and deletions of
nucleotides/amino acids). Usually, the two genomes being
compared are represented by signed permutations, with
each element standing for a gene and its sign represent-
ing the (transcriptional) direction of the corresponding
gene on a chromosome. Then the goal of the resulting
genome rearrangement problem is to find a shortest se-
quence of rearrangement operations that transforms (or,
equivalently, sorts) one permutation into the other. Pre-
vious work focused on the problem of sorting a permu-
tation by reversals. This problem has been shown by Ca-
para [2] to be NP-hard, if the considered permutation is
unsigned. However, for signed permutations, this prob-
lem becomes tractable and Hannenhalli and Pevzer [6]
gave the first polynomial-time algorithm for it. On the
other hand, there has been less progress on the prob-
lem of sorting by transpositions. Thus far, the complex-
ity of this problem is still open, although several 1.5-
approximation algorithms [1,3,7] have been proposed for
it. Recently, the approximation ratio of sorting by trans-
positions was further improved to 1.375 by Elias andHart-
man [4]. Gu et al. [5] and Lin and Xue [11] gave quadratic-
time 2-approximation algorithms for sorting signed, lin-
ear permutations by transpositions and transreversals.
In [11], Lin and Xue considered the problem of sort-
ing signed, linear permutations by transpositions, transre-
versals and revrevs, and proposed a quadratic-time 1.75-
approximation algorithm for it. In this work [8], Hartman
and Sharan further showed that this problem is equivalent
for linear and circular permutations and can be reduced to
that of sorting signed, circular permutations by transpo-
sitions and transreversals only. In addition, they provided

a 1.5-approximation algorithm that can be implemented
in O(n3/2

p
log n) time.
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ProblemDefinition

For a pair of numbers ˛; ˇ, ˛ � 1, ˇ � 0, a sub-
graph G0 = (V ;H) of an unweighted undirected graph
G = (V ; E), H 
 E, is an (˛; ˇ)-spanner of G if for every
pair of vertices u;w 2 V , distG0(u;w) � ˛ �distG (u;w)+ˇ,
where distG (u;w) stands for the distance between u and w
in G. It is desirable to show that for every n-vertex graph
there exists a sparse (˛; ˇ)-spanner with as small values of
˛ and ˇ as possible. The problem is to determine asymp-
totic tradeoffs between ˛ and ˇ on one hand, and the spar-
sity of the spanner on the other.

Key Results

The main result of Elkin and Peleg [6] establishes the exis-
tence and efficient constructibility of (1 + �; ˇ)-spanners
of size O(ˇn1+1/�) for every n-vertex graph G, where
ˇ = ˇ(�; �) is constant whenever � and � are. The specific
dependence of ˇ on � and � is ˇ(�; �)=� log log��log� .

An important ingredient of the construction of [6] is
a partition of the graph G into regions of small diame-
ter in such a way that the super-graph induced by these
regions is sparse. The study of such partitions was initi-
ated by Awerbuch [2], that used them for network syn-
chronization. Peleg and Schäffer [8] were the first to em-
ploy such partitions for constructing spanners. Specifi-
cally, they constructed (O(�); 1)-spanners with O(n1+1/�)
edges. Althofer et al. [1] provided an alternative proof of
the result of Peleg and Schäffer that uses an elegant greedy
argument. This argument also enabled Althofer et al. to
extend the result to weighted graphs, to improve the con-
stant hidden by the O-notation in the result of Peleg and
Schäffer, and to obtain related results for planar graphs.

Applications

Efficient algorithms for computing sparse (1 + �; ˇ)-
spanners were devised in [5] and [11]. The algorithm of [5]
was used in [5,7,10] for computing almost shortest paths

in centralized, distributed, streaming, and dynamic cen-
tralized models of computations. The basic approach used
in these results is to construct a sparse spanner, and then to
compute exact shortest paths on the constructed spanner.
The sparsity of the latter guarantees that the computation
of shortest paths in the spanner is far more efficient than
in the original graph.

Open Problems

Themain open question is whether it is possible to achieve
similar results with � = 0. More formally, the question is:
Is it true that for any � � 1 and any n-vertex graph G
there exists (1; ˇ(�))-spanner of G with O(n1+1/� ) edges?
This question was answered in affirmitive for � equal to 2
and 3 [3,4,6]. Some lower bounds were recently proved by
Woodruff [12].

A less challenging problem is to improve the depen-
dence of ˇ on � and �. Some progress in this direction was
achieved by Thorup and Zwick [11], and very recently by
Pettie [9].
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ProblemDefinition

In the Sparsest Cut problem, informally, the goal is to par-
tition a given graph into two or more large pieces while re-
moving as few edges as possible. Graph partitioning prob-
lems such as this one occupy a central place in the theory of
network flow, geometric embeddings, andMarkov chains,
and form a crucial component of divide-and-conquer ap-
proaches in applications such as packet routing, VLSI lay-
out, and clustering.

Formally, given a graph G = (V ; E), the sparsity or
edge expansion of a non-empty set S � V , jSj � 1

2 jV j, is
defined as follows:

˛(S) =
jE(S;V n S)j
jSj

:

The sparsity of the graph, ˛(G), is then defined as follows:

˛(G) = min
S�V ;jSj� 1

2 jV j
˛(S) :

The goal in the Sparsest Cut problem is to find a subset
S � V with the minimum sparsity, and to determine the
sparsity of the graph.

The first approximation algorithm for the Sparsest Cut
problem was developed by Leighton and Rao in 1988 [13].
Employing a linear programming relaxation of the prob-
lem, they obtained an O(log n) approximation, where n is
the size of the input graph. Subsequently Arora, Rao and
Vazirani [4] obtained an improvement over Leighton and
Rao’s algorithm using a semi-definite programming relax-
ation, approximating the problem to within an O(

p
log n)

factor.
In addition to the Sparsest Cut problem, Arora et al.

also consider the closely related Balanced Separator prob-
lem. A partition (S;V n S) of the graph G is called a c-
balanced separator for 0 < c � 1

2 , if both S and V n S have

at least cjVj vertices. The goal in the Balanced Separator
problem is to find a c-balanced partition with the mini-
mum sparsity. This sparsity is denoted ˛c(G).

Key Results

Arora et al. provide an O(
p
log n) pseudo-approximation

to the balanced-separator problem using semi-definite
programming. In particular, given a constant c 2 (0; 12 ],
they produce a separator with balance c0 that is slightly
worse than c (that is, c0 < c), but sparsity within an
O(
p
log n) factor of the sparsity of the optimal c-balanced

separator.

Theorem 1 Given a graph G = (V ; E), let ˛c(G) be the
minimum edge expansion of a c-balanced separator in this
graph. Then for every fixed constant a < 1, there exists
a polynomial-time algorithm for finding a c0-balanced sep-
arator in G, with c0 � ac, that has edge expansion at most
O(
p
log n˛c(G)).

Extending this theorem to include unbalanced partitions,
Arora et al. obtain the following:

Theorem 2 Let G = (V ; E) be a graph with sparsity ˛(G).
Then there exists a polynomial-time algorithm for finding
a partition (S;V n S), with S � V, S ¤ ;, having sparsity
at most O(

p
log n˛(G)).

An important contribution of Arora et al. is a new geo-
metric characterization of vectors in n-dimensional space
endowed with the squared-Euclideanmetric. This result is
of independent significance and has lead to or inspired im-
proved approximation factors for several other partition-
ing problems (see, for example, [1,5,6,7,11]).

Informally, the result says that if a set of points in
n-dimensional space is randomly projected on to a line,
a good separator on the line is, with high probability,
a good separator (in terms of squared-Euclidean distance)
in the original high-dimensional space. Separation on the
line is related to separation in the original space via the
following definition of stretch.

Definition 1 (Def. 4 in [4]) Let Ex1; Ex2; : : : ; Exn be a set
of n points in Rn , equipped with the squared-Euclidean
metric d(x; y) = jjx � yjj22. The set of points is said to be
(t; �; ˇ)-stretched at scale `, if for at least a � fraction
of all the n-dimensional unit vectors u, there is a par-
tial matching Mu = f(xi ; yi )gi among these points, with
jMuj � ˇn, such that for all (x; y) 2 Mu , d(x; y) � `2 and
hu; Ex � Eyi � t`/

p
n. Here h�; �i denotes the dot product of

two vectors.

Theorem 3 For any �; ˇ > 0, there is a constant
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C = C(�; ˇ) such that if t > C log1/3 n, then no set of n
points inRn can be (t; �; ˇ)-stretched for any scale `.

In addition to the SDP-rounding algorithm, Arora et al.
provide an alternate algorithm for finding approximate
sparsest cuts, using the notion of expander flows. This re-
sult leads to fast (quadratic time) implementations of their
approximation algorithm [3].

Applications

One of the main applications of balanced separators is in
improving the performance of divide and conquer algo-
rithms for a variety of optimization problems.

One example is the Minimum Cut Linear Arrange-
ment problem. In this problem, the goal is to order the
vertices of a given n vertex graph G from 1 through
n in such a way that the capacity of the largest of
the cuts (f1; 2; � � � ; ig; fi + 1; � � � ; ng), i 2 [1; n], is mini-
mized. Given a �-approximation to the balanced separa-
tor problem, the following divide and conquer algorithm
gives an O(� log n)-approximation to the Minimum Cut
Linear Arrangement problem: find a balanced separator in
the graph, then recursively order the two parts, and con-
catenate the orderings. The approximation follows by not-
ing that if the graph has a balanced separator with expan-
sion ˛c (G), only O(�n˛n (G)) edges are cut at every level,
and given that a balanced separator is found at every step,
the number of levels of recursion is at most O(log n).

Similar approaches can be used for problems such as
VLSI layout and Gaussian elimination. (See the survey by
Shmoys [14] for more details on these topics.)

The Sparsest Cut problem is also closely related to
the problem of embedding squared-Euclideanmetrics into
the Manhattan (`1) metric with low distortion. In par-
ticular, the integrality gap of Arora et al.’s semi-definite
programming relaxation for Sparsest Cut (generalized to
include weights on vertices and capacities on edges) is
exactly equal to the worst-case distortion for embedding
a squared-Euclidean metric into the Manhattan metric.
Using the technology introduced by Arora et al., improved
embeddings from the squared-Euclidean metric into the
Manhattan metric have been obtained [5,7].

Open Problems

Hardness of approximation results for the Sparsest
Cut problem are fairly weak. Recently Chuzhoy and
Khanna [9] showed that this problem is APX-hard, that
is, there exists a constant � > 0, such that a (1 + �)-
approximation algorithm for Sparsest Cut would im-
ply P=NP. It is conjectured that the weighted version

of the problem is NP-hard to approximate better than
O((log log n)c ) for some constant c, but this is only known
to hold true assuming a version of the so-called Unique
Games conjecture [8,12]. On the other hand, the semi-
definite programming relaxation of Arora et al. is known
to have an integrality gap of ˝(log log n) even in the
unweighted case [10]. Proving an unconditional super-
constant hardness result for weighted or unweighted
Sparsest Cut, or obtaining o(

p
log n)-approximations for

these problems remain open.
The directed version of the Sparset Cut problem has

also been studied, and is known to be hard to approxi-
mate within a 2˝(log1�� n) factor [9]. On the other hand,
the best approximation known for this problem only
achieves a polynomial factor of approximation—a fac-
tor of O(n11/23 logO(1) n) due to Aggarwal, Alon and
Charikar [2].
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ProblemDefinition

Speed scaling is a power management technique in mod-
ern processor that allows the processor to run at different
speeds. There is a power function P(s) that specifies the
power, which is energy used per unit of time, as a func-
tion of the speed. In CMOS-based processors, the cube-
root rule states that P(s) 	 s3. This is usually generalized
to assume that P(s) = s˛ form some constant ˛. The goals
of power management are to reduce temperature and/or
to save energy. Energy is power integrated over time. The-
oretical investigations to date have assumed that there is
a fixed ambient temperature and that the processor cools
according to Newton’s law, that is, the rate of cooling is

proportional to the temperature difference between the
processor and the environment.

In the resulting scheduling problems, the scheduler
must not only have a job-selection policy to determine the
job to run at each time, but also a speed scaling policy to
determine the speed at which to run that job. The resulting
problems are generally dual objective optimization prob-
lems. One objective is some quality of service measure for
the schedule, and the other objective is temperature or en-
ergy.

We will consider problems where jobs arrive at the
processor over time. Each job i has a release time ri when it
arrives at the processor, and a work requirement wi. A job
i run at speed s takes wi /s units of time to complete.

Key Results

[5] initiated the theoretical algorithmic investigation of
speed scaling problems. [5] assumed that each job i had
a deadline di, and that the quality of service measure was
deadline feasibility (each job completes by its deadline). [5]
gives a greedy algorithm YDS to find the minimum en-
ergy feasible schedule. The job selection policy for YDS is
to run the job with the earliest deadline. To understand
the speed scaling policy for YDS, define the intensity of
a time interval to be the work that must be completed in
this time interval divided by the length of the time inter-
val. YDS then finds the maximum intensity interval, runs
the jobs that must be run in this interval at constant speed,
eliminates these jobs and this time interval from the in-
stance, and proceeds recursively. [5] gives two online al-
gorithms: OA and AVR. In OA the speed scaling policy is
the speed that YDS would run at, given the current state
and given that no more jobs will be released in the future.
In AVR, the rate at which each job is completed is constant
between the time that a job is released and the deadline for
that job. [5] showed that AVR is 2˛�1˛˛-competitive with
respect to energy.

The results in [5] were extended in [2]. [2] showed
that OA is ˛˛-competitive with respect to energy. [2] pro-
posed another online algorithm, BKP. BKP runs at the
speed of the maximum intensity interval containing the
current time, taking into account only the work that has
been released by the current time. They show that the
competitiveness of BKP with respect to energy is at most
2(˛/(˛�1))˛ e˛ . They also show that BKP is e-competitive
with respect to the maximum speed.

[2] initiated the theoretical algorithmic investigation
of speed scaling to manage temperature. [2] showed
that the deadline feasible schedule that minimizes maxi-
mum temperature can in principle be computed in poly-
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nomial time. [2] showed that the competitiveness of
BKP with respect to maximum temperature is at most
2˛+1 e˛(6(˛/(˛ � 1))˛ + 1).

[4] initiated the theoretical algorithmic investigation
into speed scaling when the quality-of-service objective is
average/total flow time. The flow time of a job is the delay
from when a job is released until it is completed. [4] give
a rather complicated polynomial-time algorithm to find
the optimal flow time schedule for unit work jobs, given
a bound on the energy available. It is easy to see that no
O(1)-competitive algorithm exists for this problem.

[1] introduce the objective ofminimizing a linear com-
bination of energy used and total flow time. This has a nat-
ural interpretation if one imagines the user specifying how
much energy he is willing to use to increase the flow time
of a job by a unit amount. [1] give an O(1)-competitive
online algorithm for the case of unit work jobs. [3] im-
proves upon this result and gives a 4-competitive online
algorithm. The speed scaling policies of the online algo-
rithms in [1] and [3] essentially run as power equal to the
number of unfinished jobs (in each case modified in a par-
ticular way to facilitate analysis of the algorithm). [3] ex-
tend these results to apply to jobs with arbitrary work, and
even arbitrary weight. The speed scaling policy is essen-
tially to run at power equal to the weight of the unfinished
work. The expression for the resulting competitive ratio is
a bit complicated but is approximately 8 when the cube-
root rule holds.

The analysis of the online algorithms in [2] and [3]
heavily relied on amortized local competitiveness. An on-
line algorithm is locally competitive for a particular objec-
tive if for all times the rate of increase of that objective for
the online algorithm, plus the rate of change of some po-
tential function, is at most the competitive ratio times the
rate of increase of the objective in any other schedule.

Applications

None

Open Problems

The outstanding open problem is probably to determine if
there is an efficient algorithm to compute the optimal flow
time schedule given a fixed energy bound.
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ProblemDefinition

The sphere packing problem seeks to pack spheres into
a given geometric domain. The problem is an instance
of geometric packing. Geometric packing is a venerable
topic in mathematics. Various versions of geometric pack-
ing problems have been studied, depending on the shapes
of packing domains, the types of packing objects, the po-
sition restrictions on the objects, the optimization crite-
ria, the dimensions, etc. It also arises in numerous ap-
plied areas. The sphere packing problem under consid-
eration here finds applications in radiation cancer treat-
ment using Gamma Knife systems. Unfortunately, even
very restricted versions of geometric packing problems
(e. g., regular-shaped objects and domains in lower dimen-
sional spaces) have been proved to be NP-hard. For exam-
ple, for congruent packing (i. e., packing copies of the same
object), it is known that the 2-D cases of packing fixed-
sized congruent squares or disks in a simple polygon are
NP-hard [7]. Baur and Fekete [2] considered a closely re-
lated dispersion problem of packing k congruent disks in
a polygon of n vertices such that the radius of the disks is
maximized; they proved that the dispersion problem can-
not be approximated arbitrarily well in polynomial time
unless P = NP, and gave a 2

3 -approximation algorithm for
the L1 disk case with a time bound of O(n38).

Chen et al. [4] proposed a practically efficient heuristic
scheme, called pack-and-shake, for the congruent sphere
packing problem, based on computational geometry tech-
niques. The problem is defined as follows.
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The Congruent Sphere Packing Problem

Given a d-D polyhedral region R(d = 2; 3) of n vertices
and a value r > 0, find a packing SP of R using spheres of
radius r, such that (i) each sphere is contained in R, (ii) no
two distinct spheres intersect each other in their interior,
and (iii) the ratio (called the packing density) of the cov-
ered volume in R by SP over the total volume of R is max-
imized.

In the above problem, one can view the spheres as
“solid” objects. The region R is also called the domain or
container. Without loss of generality, let r = 1.

Much work on congruent sphere packing studied the
case of packing spheres into an unbounded domain or
even the whole space [5]. There are also results on pack-
ing congruent spheres into a bounded region. Hochbaum
and Maass [8] presented a unified and powerful shifting
technique for designing pseudo-polynomial time approxi-
mation schemes for packing congruent squares into a rec-
tilinear polygon. But, the high time complexities associ-
ated with the resulting algorithms restrict their applicabil-
ity in practice. Another approach is to formulate a packing
problem as a non-linear optimization problem, and resort
to an available optimization software to generate packings;
however, this approach works well only for small problem
sizes and regular-shaped domains.

To reduce the running time yet achieve a dense pack-
ing, a common idea is to consider objects that form
a certain lattice or double-lattice. A number of results
were given on lattice packing of congruent objects in
the whole (especially high dimensional) space [5]. For
a bounded rectangular 2-D domain, Milenkovic [10]
adopted a method that first finds the densest translational
lattice packing for a set of polygonal objects in the whole
plane, and then uses some heuristics to extract the actual
bounded packing.

Key Results

The pack-and-shake scheme of Chen et al. [4] for pack-
ing congruent spheres in an irregular-shaped 2-D or 3-D
bounded domain R consists of three phases. In the first
phase, the d-D domain R is partitioned into a set of con-
vex subregions (called cells). The resulting set of cells de-
fines a dual graph GD, such that each vertex v of GD cor-
responds to a cell C(v) and an edge connects two vertices
if and only if their corresponding cells share a (d � 1)-D
face. In the second phase, the algorithm repeats the follow-
ing trimming and packing process until GD = ;: Remove
the lowest degree vertex v from GD and pack the cell C(v).
In the third phase, a shake procedure is applied to globally
adjust the packing to obtain a denser one.

The objective of the trimming and packing procedure
is that after each cell is packed, the remaining “packable”
subdomain R0 of R is always kept as a connected region.
The rationale for maintaining the connectivity of R0 is as
follows. To pack spheres in a bounded domain R, two
typical approaches have been used: (a) packing spheres
layer by layer going from the boundary of R towards its
interior [9], and (b) packing spheres starting from the
“center” of R, such as its medial axis, towards its bound-
ary [3,13,14]. Due to the shape irregularity of R, both ap-
proaches may fragment the remaining “packable” subdo-
main R0 into more and more disconnected regions; how-
ever, at the end of packing each such region, a small “un-
packable” area may eventually remain that allows no fur-
ther packing. It could fit more spheres if the “packable”
subdomain R0 is lumped together instead of being divided
into fragments, which is what the trimming and packing
procedure aims to achieve.

Due to the packing of its adjacent cells that have been
done by the trimming and packing procedure, the bound-
ary of a cell C(v) that is to be packed may consist of
both line segments and arcs (from packed spheres). Hence,
a key problem is to pack spheres in a cell bounded by
curves of low degrees. Chen et al.’s algorithms [4] for pack-
ing each cell are based on certain lattice structures and al-
low the cell to both translate and rotate. Their algorithms
have fairly low time bounds. In certain cases, they even run
in nearly linear time.

An interesting feature of the cell packings generated by
the trimming and packing procedure is that the resulted
spheres cluster together in the middle of the cells of the
domain R, leaving some small unpackable areas scattered
along the boundary ofR. The “shake” procedure in [4] thus
seeks to collect these small areas together by “pushing” the
spheres towards the boundary of R, in the hope of obtain-
ing some “packable” region in the middle of R.

The approach in [4] is to first obtain a densest lattice
unit sphere packing LSP(C) for each cell C of R, and then
use a “shake” procedure to globally adjust the resulting
packing of R to generate a denser packing SP in R. Sup-
pose the plane P is already packed by infinitely many unit
spheres whose center points form a lattice (e. g., the hexag-
onal lattice). To obtain a densest packing LSP(C) for a cell
C from the lattice packing of the plane P, a position and
orientation of C on P need to be computed such that C
contains the maximum number of spheres from the lat-
tice packing of P. There are two types of algorithms in [4]
for computing an optimal placement of C on P: transla-
tional algorithms that allow C to be translated only, and
translational/rotational algorithms that allow C to be both
translated and rotated.
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Let n = jCj, the number of bounding curves of C, and
m be the number of spheres along the boundary of C in
a sought optimal packing of C.

Theorem 1 Given a polygonal regionC bounded by n alge-
braic curves of constant degrees, a densest lattice unit sphere
packing of C based only on translational motion can be
computed in O(N logN + K) time, where N = f (n;m) is
a function of n and m, and K is the number of intersections
between N planar algebraic curves of constant degrees that
are derived from the packing instance.

Note: In the worst case,N = f (n;m) = n �m. But in prac-
tice, N may be much smaller. The N planar algebraic
curves in Theorem 1 form a structure called arrangement.
Since all these curves are of a constant degree, any two
such curves can intersect each other at most a constant
number of times. In the worst case, the number K of in-
tersections between the N algebraic curves, which is also
the size of the arrangement, is O(N2). The arrangement of
these curves can be computed by the algorithms [1,6] in
O(N logN + K) time.

Theorem 2 Given a polygonal regionC bounded by n alge-
braic curves of constant degrees, a densest lattice unit sphere
packing of C based on both translational and rotationalmo-
tions can be computed in O(T(n) + (N + K0) log N) time,
where N = f (n;m) is a function of n and m, K 0 is the size
of the arrangement of N pseudo-plane surfaces in 3-D that
are derived from the packing instance, and T(n) is the time
for solving O(n2) quadratic optimization problem instances
associated with the packing instance.

In Theorem 2, K0 = O(N3) in the worst case. In practice,
K 0 can be much smaller.

The results on 2-D sphere packing in [4] can be ex-
tended to d-D for any constant integer d � 3, so long as
a good d-D lattice packing of the d-D space is available.

Applications

Recent interest in the considered congruent sphere pack-
ing problem was motivated by medical applications in
Gamma Knife radiosurgery [4,11,12]. Radiosurgery is
a minimally invasive surgical procedure that uses radi-
ation to destroy tumors inside human body while spar-
ing the normal tissues. The Gamma Knife is a radiosur-
gical system that consists of 201 Cobalt-60 sources [3,14];
the gamma-rays from these sources are all focused on
a common center point, thus creating a spherical vol-
ume of radiation field. The Gamma Knife treatment nor-
mally applies high radiation dose. In this setting, overlap-
ping spheres may result in overdose regions (called hot

spots) in the target treatment domain, while a low packing
density may cause underdose regions (called cold spots)
and a non-uniform dose distribution. Hence, one may
view the spheres used in Gamma Knife packing as “solid”
spheres. Therefore, a key geometric problem in Gamma
Knife treatment planning is to fit multiple spheres into a 3-
D irregular-shaped tumor [3,13,14]. The total treatment
time crucially depends on the number of spheres used.
Subject to a given packing density, the minimum number
of spheres used in the packing (i. e., treatment) is desired.
The Gamma Knife currently produces spheres of four dif-
ferent radii (4mm, 8mm, 14mm, and 18mm), and hence
the Gamma Knife sphere packing is in general not con-
gruent. In practice, a commonly used approach is to pack
larger spheres first, and then fit smaller spheres into the
remaining subdomains, in the hope of reducing the total
number of spheres involved and thus shortening the treat-
ment time. Therefore, congruent sphere packing can be
used as a key subroutine for such a common approach.

Open Problems

An open problem is to analyze the quality bounds of the
resulting packing for the algorithms in [4]; such packing
quality bounds are currently not yet known. Another open
problem is to reduce the running time of the packing algo-
rithms in [4], since these algorithms, especially for sphere
packing problems in higher dimensions, are still very time-
consuming. In general, it is highly desirable to develop effi-
cient sphere packing algorithms in d-D (d � 2) with guar-
anteed good packing quality.

Experimental Results

Some experimental results of the 2-D pack-and-shake
sphere packing algorithms were given in [4]. The planar
hexagonal lattice was used for the lattice packing. On pack-
ings whose sizes are in the hundreds, the C++ programs
of the algorithms in [4] based only on translational mo-
tion run very fast (a few minutes), while those of the algo-
rithms based on both translation and rotation take much
longer time (hours), reflecting their respective theoretical
time bounds, as expected. On the other hand, the packing
quality of the translation-and-rotation based algorithms is
a little better than the translation based algorithms. The
packing densities of all the algorithms in the experiments
are well above 70% and some are even close to or above
80%. Comparing with the nonconvex programmingmeth-
ods, the packing algorithms in [4] seemed to run faster
based on the experiments.
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ProblemDefinition

Periodicities and repetitions in strings have been exten-
sively studied and are important both in theory and prac-
tice (combinatorics of words, pattern-matching, computa-
tional biology). The words of the type ww andwww, where
w is a nonempty primitive (not of the form uk for an in-
teger k > 1) word, are called squares and cubes, respec-
tively. They are well-investigated objects in combinatorics
on words [16] and in string-matching with small mem-
ory [5].

A string w is said to be periodic iff period(w) � jwj/2,
where period(w) is the smallest positive integer p for which
w[i] = w[i + p] whenever both sides of the equality are de-
fined. In particular each square and cube is periodic.

A repetition in a string x = x1x2 : : : xn is an interval
[i : : j] 
 [1 : : n] for which the associated factor x[i : : j] is
periodic. It is an occurrence of a periodic word x[i : : j],
also called a positioned repetition. A word can be associ-
ated with several repetitions, see Fig. 1.

Initially people investigatedmostly positioned squares,
but their number is˝(n log n) [2], hence algorithms com-
puting all of them cannot run in linear time, due to the po-
tential size of the output. The optimal algorithms report-
ing all positioned squares or just a single square were de-
signed in [1,2,3,19]. Unlike this, it is known that onlyO(n)
(un-positioned) squares can appear in a string of length
n [8].

The concept of maximal repetitions, called runs
(equivalent terminology) in [14], has been introduced to
represent all repetitions in a succinct manner. The crucial
property of runs is that there are only O(n) runs in a word
of length n [15,21].

A run in a string x is an interval [i : : j] such that both
the associated string x[i : : j] has period p � ( j � i + 1)/2,
and the periodicity cannot be extended to the right nor to
the left: x[i � 1] ¤ x[x + p � 1] and x[ j � p + 1] ¤ x[ j +
1] when the elements are defined. The set of runs of x is
denoted by RUNS(x) . An example is displayed in Fig. 1.

Key Results

The main results concern fast algorithms for computing
positioned squares and runs, as well as combinatorial esti-
mation on the number of corresponding objects.

Theorem 1 (Crochemore [1], Apostolico-Preparata [2],
Main-Lorentz [19]) There exists an O(n log n)worst-case
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Squares and Repetitions, Figure 1
The structure of RUNS(x) where x = baababaababbabaababaab = bz2(zR)2b, for z = aabab. The operation �R is reversing the
string

Squares and Repetitions, Figure 2
The f-factorization of the example string x = baababaababbabaababaab and the set of its internal runs; all other runs overlap
factorization points

time algorithm for computing all the occurrences of squares
in a string of length n.

Techniques used to design the algorithms are based on
partitioning, suffix trees, and naming segments. A simi-
lar result has been obtained by Franek, Smyth, and Tang
using suffix arrays [11]. The key component in the next al-
gorithm is the function described in the following lemma.

Lemma 2 (Main-Lorentz [19]) Given two square-free
strings u and v, reporting if uv contains a square centered
in u can be done in worst-case time O(juj).

Using suffix trees or suffix automata together with the
function derived from the lemma, the following fact has
been shown.

Theorem 3 (Crochemore [3], Main-Lorentz [19]) Test-
ing the square-freeness of a string of length n can be done in
worst-case time O(n log a), where a is the size of the alpha-
bet of the string.

As a consequence of the algorithms and of the estimation
on the number of squares, the most important result re-
lated to repetitions can be formulated as follows.

Theorem 4 (Kolpakov-Kucherov [15], Rytter [21],
Crochemore-Ilie [4])
(1) All runs in a string can be computed in linear time (on

a fixed-size alphabet).
(2) The number of all runs is linear in the length of the

string.

The point (2) is very intricate, it is of purely combinato-
rial nature and has nothing to do with the algorithm. We

sketch shortly the basic components in the constructive
proof of the point (1). The main idea is to use, as for the
previous theorem, the f-factorization (see [3]): a string x
is decomposed into factors u1; u2; : : : ; uk , where ui is the
longest segment which appears before (possibly with over-
lap) or is a single letter if the segment is empty.

The runs which fit in a single factor are called internal
runs, other runs are called here overlapping runs. There
are three crucial facts:
� all overlapping runs can be computed in linear time,
� each internal run is a copy of an earlier overlapping

run,
� the f-factorization can be computed in linear time (on

a fixed-size alphabet) if we have the suffix tree or suffix
automaton of the string. Figure 2 shows f-factorization
and internal runs of an example string.
It follows easily from the definition of the f-factoriza-

tion that if a run overlaps two (consecutive) factors uk�1
and uk then its size is at most twice the total size of these
two factors.

Figure 3 shows the basic idea for computing runs that
overlap u v in time O(juj + jvj). Using similar tables as
in the Morris–Pratt algorithm (border and prefix tables),
see [6], we can test the continuation of a period p from po-
sition p in v to the left and to the right. The corresponding
tables can be constructed in linear time in a preprocessing
phase. After computing all overlapping runs the internal
runs can be copied from their earlier occurrences by pro-
cessing the string from left to right.

Another interesting result concerning periodicities is
the following lemma and its fairly immediate corollary.
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Squares and Repetitions, Figure 3
If an overlapping run with period p starts in u, ends in v, and its
part in v is of size at least p then it is easily detectable by comput-
ing continuations of the periodicity p in two directions: left and
right

Lemma 5 (Three Prefix Squares, Crochemore-
Rytter [5]) If u, v, and w are three primitive words
satisfying: juj < jvj < jwj, uu is a prefix of vv, and vv
is a prefix of ww, then juj + jvj � jwj

Corollary 1 Any nonempty string x possesses less than
log˚ jyj prefixes that are squares.

In the configuration of the lemma, a second consequence
is that uu is a prefix of w. Therefore, a position in a string
x cannot be the largest position of more than two squares,
which yields the next corollary. A simple direct proof of it
is by Ilie [13], see also [17].

Corollary 2 (Fraenkel and Simpson [8]) Any string x
contains at most 2jxj (different) squares, that is: cardfu j
u primitive and u2 factor of yg � 2jxj :

The structure of all squares and of un-positioned runs has
been also computed within the same time complexities as
above in [18] and [12].

Applications

Detecting repetitions in strings is an important element
of several questions: pattern matching, text compression,
and computational biology to quote a few. Pattern-match-
ing algorithms have to cope with repetitions to be effi-
cient as these are likely to slow down the process; the large
family of dictionary-based text compression methods use
a weaker notion of repeats (like the software gzip); repeti-
tions in genomes, called satellites, are intensively studied
because, for example, some over-repeated short segments
are related to genetic diseases; some satellites are also used
in forensic crime investigations.

Open Problems

The most intriguing question remains the asymptotically
tight bound for the maximum number �(n) of runs in
a string of size n. The first proof (by painful induction)
was quite difficult and has not produced any concrete con-
stant coefficient in the O(n) notation. This subject has

been studied in [9,10,22,23]. The best-known lower bound
of approximately 0:927 n is from [10]. The exact number
of runs has been considered for special strings: Fibonacci
words and (more generally) Sturmian words [7,14,20]. It is
proved in a structural and intricate manner in the full ver-
sion of [21] that �(n) � 3:44 n, by introducing a sparse-
neighbors technique. The neighbors are runs for which
both the distance between their starting positions is small
and the difference between their periods is also propor-
tionally small (according to some fixed coefficient of pro-
portionality). The occurrences of neighbors satisfy certain
sparsity properties which imply the linear upper bound.
Several variations for the definitions of neighbors and
sparsity are possible. Considering runs having close cen-
ters the bound has been lowered to 1:6 n in [4].

As a conclusion, we believe that the following fact is
valid.

Conjecture: A string of length n contains less than n runs,
i. e., jRUNSj(n) < n.

Cross References

Elements of the present entry are of main importance for
run-length compression as well as for� Run-length
Compressed Pattern Matching. They are also related to
the� Approximate Tandem Repeats entries because
“tandem repeat” is a synonym of repetition and
“power.”
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Stable matching

ProblemDefinition

The objective in stable matching problems is to match to-
gether pairs of elements of a set of participants, taking
into account the preferences of those involved, and fo-
cusing on a stability requirement. The stability property

ensures that no pair of participants would both prefer to
be matched together rather than to accept their allocation
in the matching. Such problems have widespread applica-
tion, for example in the allocation of medical students to
hospital posts, students to schools or colleges, etc.

An instance of the classical Stable Marriage problem
(SM), introduced by Gale and Shapley [2], involves a set
of 2n participants comprising n men fm1; : : : ;mng and
n women fw1; : : : ;wng. Associated with each participant
is a preference list, which is a total order over the partici-
pants of the opposite sex. A man mi prefers woman wj to
woman wk if wj precedes wk on the preference list of mi,
and similarly for the women. A matching M is a bijection
between the sets of men and women, in other words a set
of man-woman pairs so that each man and each woman
belongs to exactly one pair ofM. For a manmi,M(mi) de-
notes the partner of mi in M, i. e., the unique woman wj
such that (mi ;wj) is in M. Similarly, M(wj) denotes the
partner of woman wj inM. A matchingM is stable if there
is no blocking pair, namely a pair (mi ;wj) such that mi
prefers wj toM(mi) and wj prefers mi toM(wj).

Relaxing the requirements that the numbers of men
and women are equal, and that each participant should
rank all of the members of the opposite sex, gives the Sta-
ble Marriage problem with Incomplete lists (SMI). So an in-
stance of SMI comprises a set of n1 men fm1; : : : ;mn1g

and a set of n2 women fw1; : : : ;wn2g, and each partici-
pant’s preference list is a total order over a subset of the
participants of the opposite sex. The implication is that if
woman wj does not appear on the list of man mi then she
is not an acceptable partner formi, and vice versa. A man-
woman pair is acceptable if each member of the pair is
on the preference list of the other, and a matching M is
now a set of acceptable pairs such that each man and each
woman is in atmost one pair ofM. In this context, a block-
ing pair for matching M is an acceptable pair (mi ;wj)
such that mi is either unmatched in M or prefers wj to
M(mi), and likewise, wj is either unmatched or prefers mi
toM(wj). A matching is stable if it has no blocking pair. So
in an instance of SMI, a stable matching need not match all
of the participants.

Gale and Shapley also introduced a many-one version
of stable marriage, which they called the College Admis-
sions problem, but which is now more usually referred to
as the � Hospitals/Residents Problem (HR) because of its
well-known applications in the medical employment field.
This problem is covered in detail in Entry 150 of this vol-
ume.

A comprehensive treatment ofmany aspects of the Sta-
ble Marriage problem, as of 1989, appears in the mono-
graph of Gusfield and Irving [5].
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Key Results

Theorem 1 For every instance of SM or SMI there is at
least one stable matching.

Theorem 1 was proved constructively by Gale and Shap-
ley [2] as a consequence of the algorithm that they gave to
find a stable matching.

Theorem 2
(i) For a given instance of SM involving n men and

n women, there is a O(n2) time algorithm that finds
a stable matching.

(ii) For a given instance of SMI in which the combined
lengths of all the preference lists is a, there is a O(a)
time algorithm that finds a stable matching.

The algorithm for SMI is a simple extension of that for
SM. Each can be formulated in a variety of ways, but is
most usually expressed in terms of a sequence of ‘propos-
als’ from the members of one sex to the members of the
other. A pseudocode version of the SMI algorithm appears
in Fig. 1, in which the traditional approach of allowing
men to make proposals is adopted.

The complexity bound of Theorem 2(i) first appeared
in Knuth’s monograph on Stable Marriage [11]. The fact
that this algorithm is asymptotically optimal was subse-
quently established by Ng and Hirschberg [15] via an ad-
versary argument. On the other hand, Wilson [19] proved
that the average running time, taken over all possible in-
stances of SM, is O(n log n).

The algorithm of Fig. 1, in its various guises, has come
to be known as the Gale–Shapley algorithm. The variant
of the algorithm given here is calledman-oriented, because
men have the advantage of proposing. Reversing the roles

M = ;;
assign each person to be free; /* i. e., not a member of a pair in M */
while (some man m is free and has not proposed to every woman on his list)

m proposes to w, the first woman on his list to whom he has not proposed;
if (w is free)

add (m;w) to M; /* w acceptsm */
else if (w prefersm to her current partnerm0)

remove (m0;w) from M; /* w rejectsm0, setting m0 free */
add (m;w) to M; /* w acceptsm */

else
M remains unchanged; /* w rejectsm */

return M;

Stable Marriage, Figure 1
The Gale–Shapley Algorithm

of men and women gives the woman-oriented variant. The
‘advantage’ of proposing is remarkable, as spelled out in
the next theorem.

Theorem 3 Theman-oriented version of the Gale–Shapley
algorithm for SM or SMI yields the man-optimal stable
matching in which each man has the best partner that he
can have in any stable matching, but in which each woman
has her worst possible partner. The woman-oriented version
yields the woman-optimal stable matching, which has anal-
ogous properties favoring the women.

The optimality property of Theorem 3 was established
by Gale and Shapley [2], and the corresponding ‘pessi-
mality’ property was first observed by McVitie and Wil-
son [14].

As observed earlier, a stable matching for an instance
of SMI need not match all of the participants. But the
following striking result was established by Gale and So-
tomayor [3] and Roth [17] (in the context of the more gen-
eral HR problem).

Theorem 4 In an instance of SMI, all stable matchings
have the same size and match exactly the same subsets of
the men and women.

For a given instance of SM or SMI, there may be many
different stable matchings. Indeed Knuth [11] showed that
the maximum possible number of stable matchings grows
exponentially with the number of participants. He also
pointed out that the set of stable matchings forms a dis-
tributive lattice under a natural dominance relation, a re-
sult attributed to Conway. This powerful algebraic struc-
ture that underlies the set of stable matchings can be ex-
ploited algorithmically in a number of ways. For example,
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Gusfield [4] showed how all k stable matchings for an in-
stance of SM can be generated in O(n2 + kn) time. � Op-
timal Stable Marriage.

Extensions of these problems that are important in
practice, so-called SMT and SMTI (extensions of SM and
SMI respectively), allow the presence of ties in the prefer-
ence lists. In this context, three different notions of stabil-
ity have been defined [7] –weak, strong and super-stability,
depending on whether the definition of a blocking pair re-
quires that both members should improve, or at least one
member improves and the other is no worse off, or merely
that neither member is worse off. The following theorem
summarizes the basic algorithmic results for these three
varieties of stable matchings.

Theorem 5 For a given instance of SMT or SMTI:
(i) A weakly stable matching is guaranteed to exist, and

can be found in O(n2) or O(a) time, respectively;
(ii) A super-stable matching may or may not exist; if one

does exist it can be found in O(n2) or O(a) time respec-
tively;

(iii) A strongly stable matching may or may not exist; if one
does exist it can be found in O(n3) or O(na) time, re-
spectively.

Theorem 5 parts (i) and (ii) are due to Irving [7] (for SMT)
andManlove [12] (for SMTI). Part (iii) is due toMehlhorn
et al. [10], who improved earlier algorithms of Irving and
Manlove.

It turns out that, in contrast to the situation described
by Theorem 4(i), weakly stable matchings in SMTI can
have different sizes. The natural problem of finding a max-
imum cardinality weakly stable matching, even under se-
vere restrictions on the ties, is NP-hard [13].� StableMar-
riage with Ties and Incomplete Lists explores this problem
further.

The Stable Marriage problem is an example of a bipar-
tite matching problem. The extension in which the bipar-
tite requirement is dropped is the so-called Stable Room-
mates (SR) problem.

Gale and Shapley had observed that, unlike the case
of SM, an instance of SR may or may not admit a stable
matching, and Knuth [11] posed the problem of finding an
efficient algorithm for SR, or proving it NP-complete. Irv-
ing [6] established the following theorem via a non-trivial
extension of the Gale–Shapley algorithm.

Theorem 6 For a given instance of SR, there exists a O(n2)
time algorithm to determine whether a stable matching ex-
ists, and if so to find such a matching.

Variants of SR may be defined, as for SM, in which pref-
erence lists may be incomplete and/or contain ties – these
are denoted by SRI, SRT and SRTI – and in the presence of
ties, the three flavors of stability, weak, strong and super,
are again relevant.

Theorem 7 For a given instance of SRT or SRTI:
(i) A weakly stable matching may or may not exist, and it

is an NP-complete problem to determine whether such
a matching exists;

(ii) A super-stable matching may or may not exist; if one
does exist it can be found in O(n2) or O(a) time respec-
tively;

(iii) A strongly stable matching may or may not exist; if one
does exist it can be found in O(n4) or O(a2) time, re-
spectively.

Theorem 7 part (i) is due to Ronn [16], part (ii) is due to
Irving and Manlove [9], and part (iii) is due to Scott [18].

Applications

Undoubtedly the best known and most important appli-
cations of stable matching algorithms are in centralized
matching schemes in the medical and educational do-
mains. � Hospitals/Residents Problem includes a sum-
mary of some of these applications.

Open Problems

The parallel complexity of stable marriage remains open.
The best known parallel algorithm for SMI is due to Feder,
Megiddo and Plotkin [1] and has O(

p
a log3 a) running

time using a polynomially bounded number of processors.
It is not known whether the problem is in NC, but nor is
there a proof of P-completeness.

One of the open problems posed by Knuth in his early
monograph on stable marriage [11] was that of determin-
ing the maximum possible number xn of stable matchings
for any SM instance involving n men and n women. This
problem remains open, although Knuth himself showed
that xn grows exponentially with n. Irving and Leather [8]
conjecture that, when n is a power of 2, this function satis-
fies the recurrence

xn = 3x2n/2 � 2x4n/4 :

Many open problems remain in the setting of weak
stability, such as finding a good approximation algorithm
for a maximum cardinality weakly stable matching – see
� Stable Marriage with Ties and Incomplete Lists – and
enumerating all weakly stable matchings efficiently.
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Keywords and Synonyms

Stable matching

ProblemDefinition

In the stable marriage problem first defined by Gale and
Shapley [7], there are one set each of men and women hav-
ing the same size, and each person has a strict preference
order on persons of the opposite gender. The problem is
to find a matching such that there is no pair of a man
and a woman who prefer each other to their partners in
the matching. Such a matching is called a stable marriage
(or stable matching). Gale and Shapley showed the exis-
tence of a stable marriage and gave an algorithm for find-
ing one. Fleiner [4] extended the stable marriage problem
to the framework of matroids, and Eguchi, Fujishige, and
Tamura [3] extended this formulation to a more general
one in terms of discrete convex analysis, which was devel-
oped by Murota [8,9]. Their formulation is described as
follows.

Let M and W be sets of men and women who at-
tend a dance party at which each person dances a waltz
T times and the number of times that he/she can dance
with the same person of the opposite gender is unlimited.
The problem is to find an “agreeable” allocation of dance
partners, in which each person is assigned at most T per-
sons of the opposite gender with possible repetition. Let
E = M �W , i. e., the set of all man-woman pairs. Also de-
fine E(i) = fig �W for all i 2 M and E( j) = M � f jg for all
j 2 W. Denoting by x(i; j) the number of dances between
man i and woman j, an allocation of dance partners can be
described by a vector x = (x(i; j) : i 2 M; j 2 W) 2 ZE ,
where Z denotes the set of all integers. For each y 2 ZE

and k 2 M [W , denote by y(k) the restriction of y on
E(k). For example, for an allocation x 2 ZE , x(k) repre-
sents the allocation of person k with respect to x. Each
person k describes his/her preferences on allocations by
using a value function fk : ZE(k) ! R [ f�1g, where R
denotes the set of all reals and fk(y) = �1means that al-
location y 2 ZE(k) is unacceptable for k. Note that the val-
uation of each person on allocations is determined only by
his/her allocations. Let dom fk = fy j fk(y) 2 Rg. Assume
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that each value function f k satisfies the following assump-
tion:

(A) dom fk is bounded and hereditary, and has 0 as
the minimum point, where 0 is the vector of all zeros and
heredity means that for any y; y0 2 ZE(k) ; 0 � y0 � y 2
dom fk implies y0 2 dom fk .

For example, the following value functions with
M = f1g andW = f2; 3g

f1(x(1; 2); x(1; 3)) =8
<
:
10(x(1; 2)+x(1; 3))�x(1; 2)2�x(1; 3)2 if x(1; 2); x(1; 3) � 0

and x(1; 2)+x(1; 3) � 3
�1 otherwise,

f j(x(1; j)) =

(
x(1; j) if x(1; j) 2 f0; 1; 2; 3g( j = 2; 3)
�1 otherwise

represent the case where (1) everyone wants to dance as
many times, up to three, as possible, and (2) man 1 wants
to divide his dances between women 2 and 3 as equally as
possible. Allocations (x(1; 2); x(1; 3)) = (1; 2) and (2,1) are
stable in the sense below.

A vector x 2 ZE is called a feasible allocation if
x(k) 2 dom fk for all k 2 M [W . An allocation x is said
to satisfy incentive constraints if each person has no incen-
tive to unilaterally decrease the current units of x, that is if
it satisfies

fk(x(k)) = maxf fk(y) j y � x(k)g (8k 2 M[W): (1)

An allocation x is called unstable if it does not satisfy in-
centive constraints or there exist i 2 M, j 2W , y0 2 ZE(i)

and y00 2 ZE( j) such that

fi(x(i)) < fi(y0) ; (2)

y0(i; j0) � x(i; j0) (8 j0 2W n f jg) ; (3)

f j(x( j)) < f j(y00); (4)

y00(i0; j) � x(i0; j) (8i0 2 M n fig) ; (5)

y0(i; j) = y00(i; j) : (6)

Conditions (2) and (3) say that man i can strictly increase
his valuation by changing the current number of dances
with jwithout increasing the numbers of dances with other
women, and (4) and (5) describe a similar situation for
women. Condition (6) requires that i and j agree on the

number of dances between them. An allocation x is called
stable if it is not unstable.

Problem 1 Given disjoint sets M and W, and value func-
tions fk : ZE(k) ! R[ f�1g for k 2 M [W satisfying as-
sumption (A), find a stable allocation x.

Remark 1 A time schedule for a given feasible allocation
can be given by a famous result on graph coloring, namely,
“any bipartite graph can be edge-colorable with the maxi-
mum degree colors.”

Key Results

The work of Eguchi, Fujishige, and Tamura [3] gave a so-
lution to Problem 1 in the case where each value function
f k is M\-concave.

Discrete Convex Analysis: M\-Concave Functions

Let V be a finite set. For each S 
 V , eS denotes the char-
acteristic vector of S defined by: eS(v) = 1 if v 2 S and
eS(v) = 0 otherwise. Also define e0 as the zero vector in
ZV . For a vector x 2 ZV , its positive support supp+(x)
and negative support supp�(x) is defined by supp+(x) =
fu 2 V j x(u) > 0g and supp�(x) = fu 2 V j x(u) < 0g.
A function f : ZV ! R [ f�1g is called M\-concave
if it satisfies the following condition 8x; y 2 dom f ,
8u 2 supp+(x � y), 9v 2 supp�(x � y) [ f0g :

f (x) + f (y) � f (x � eu + ev) + f (y + eu � ev) :

The above condition says that the sum of the function val-
ues at two points does not decrease as the points symmet-
rically move one or two steps closer to each other on the
set of integral lattice points of ZV . This is a discrete ana-
logue of the fact that for an ordinary concave function the
sum of the function values at two points does not decrease
as the points symmetrically move closer to each other on
the straight line segment between the two points.

Example 1 A nonempty family T of subsets of V is called
a laminar family if X \ Y = ;, X 
 Y or Y 
 X holds
for every X;Y 2 T . For a laminar family T and a fam-
ily of univariate concave functions fY : R! R [ f�1g
indexed by Y 2 T , the function f : ZV ! R[ f�1g de-
fined by

f (x) =
X
Y2T

fY

 X
v2Y

x(v)

!
(8x 2 ZV )

is M\-concave. The stable marriage problem can be for-
mulated as Problem 1 by using value functions of this type.



882 S Stable Marriage and Discrete Convex Analysis

Example 2 For the independence family I 
 2V of a ma-
troid on V and w 2 RV , the function f : ZV ! R[f�1g
defined by

f (x) =

(P
u2X w(u) if x = eX for someX 2 I

�1 otherwise

(8x 2 ZV )

is M\-concave. Fleiner [4] showed that there always exists
a stable allocation for value functions of this type.

Theorem 1 ([6]) Assume that the value functions
fk (k 2 M [W) are M\-concave satisfying (A). Then
a feasible allocation x is stable if and only if there exist
zM = (z(i) j i 2 M) 2 (Z [ f+1g)E and zW = (z( j) j
j 2W) 2 (Z [ f+1g)E such that

x(i) 2 argmaxf fi(y) j y � z(i)g (8i 2 M) ; (7)

x( j) 2 argmaxf f j(y) j y � z( j)g (8 j 2W) ; (8)

zM(e) = +1 or zW (e) = +1 (8e 2 E) ; (9)

where argmaxf fi(y) j y � z(i)g denotes the set of all
maximizers of f i under the constraints y � z(i).

Theorem 2 ([3]) Assume that the value functions
fk (k 2 M [W) are M\-concave satisfying (A). Then there
always exists a stable allocation.

Eguchi, Fujishige, and Tamura [3] proved Theorem 2 by
showing that the following algorithm finds a feasible allo-
cation x, and zM , zW satisfying (7), (8), and (9).

Algorithm EXTENDED-GS
Input: M\-concave functions fM ; fW with fM(x) =

P
i2M

fi(x(i)) and fW (x) =
P

j2W f j(x( j)) ;
Output: (x; zM ; zW ) satisfying (7), (8), and (9);

zM := (+1; � � � ;+1),zW := xW := 0;
repeat{

let xM be any element in
argmaxf fM(y) j xW � y � zMg ;
let xW be any element in
argmaxf fW(y) j y � xMg ;
for each e 2 E with xM(e) > xW (e) {

zM(e) := xW (e) ;
zW (e) := +1 ;

} ;
} until xM = xW ;
return (xM; zM ; zW _ xM).

Here zW _ xM is defined by (zW _ xM)(e) = maxfzW (e);
xM(e)g for all e 2 E.

Applications

Abraham, Irving, and Manlove [1] dealt with a student-
project allocation problem which is a concrete example of
models in [4] and [3], and discussed the structure of stable
allocations.

Fleiner [5] generalized the stable marriage problem
and its extension in [4] to a wide framework, and showed
the existence of a stable allocation by using a fixed point
theorem.

Fujishige and Tamura [6] proposed a common gener-
alization of the stable marriage problem and the assign-
ment game defined by Shapley and Shubik [10] by utiliz-
ing M\-concave functions, and gave a constructive proof
of the existence of a stable allocation.

Open Problems

Algorithm EXTENDED-GS solves the maximization prob-
lem of an M\-concave function in each iteration. A max-
imization problem of an M\-concave function f on E
can be solved in polynomial time in jEj and log L, where
L = maxfjjx � yjj1 j x; y 2 dom f g, provided that the
function value f (x) can be calculated in constant time for
each x [11,12]. Eguchi, Fujishige, and Tamura [3] showed
that EXTENDED-GS terminates after at most L iterations,
where L is defined by fjjxjj1 j x 2 dom fMg in this case,
and there exist a series of instances in which EXTENDED-
GS requires numbers of iterations proportional to L. On
the other hand, Baïou and Balinski [2] gave a polynomial
time algorithm in jEj for the special case where f M and
f W are linear on rectangular domains. Whether a stable
allocation for the general case can be found in polynomial
time in jEj and log L or not is open.

Cross References

� Assignment Problem
� Hospitals/Residents Problem
� Optimal Stable Marriage
� Stable Marriage
� Stable Marriage with Ties and Incomplete Lists
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ProblemDefinition

In the original setting of the stable marriage problem in-
troduced by Gale and Shapley [2], each preference list has
to include all members of the other party, and further-
more, each preference list must be totally ordered (see en-
try� Stable Marriage also).

One natural extension of the problem is then to allow
persons to include ties in preference lists. In this extension,
there are three variants of the stability definition, super-
stability, strong stability, and weak stability (see below
for definitions). In the first two stability definitions, there
are instances that admit no stable matching, but there is

a polynomial-time algorithm in each case that determines
if a given instance admits a stable matching, and finds one
if exists [8]. On the other hand, in the case of weak stabil-
ity, there always exists a stable matching and one can be
found in polynomial time.

Another possible extension is to allow persons to de-
clare unacceptable partners, so that preference lists may be
incomplete. In this case, every instance admits at least one
stable matching, but a stable matching may not be a per-
fect matching. However, if there are two or more stable
matchings for one instance, then all of them have the same
size [3].

The problem treated in this entry allows both exten-
sions simultaneously, which is denoted as SMTI (Stable
Marriage with Ties and Incomplete lists).

Notations

An instance I of SMTI comprises n men, n women and
each person’s preference list that may be incomplete and
may include ties. If a man m includes a woman w in his
list, w is acceptable to m. wi �m wj means that m strictly
prefers wi to wj in I. wi =m wj means that wi and wj are
tied inm0s list (including the case wi = wj). The statement
wi �m wj is true if and only if wi �m wj or wi =m wj .
Similar notations are used for women’s preference lists.
A matching M is a set of pairs (m,w) such that m is ac-
ceptable to w and vice versa, and each person appears at
most once in M. If a man m is matched with a woman w
inM, it is written as M(m) = w and M(w) = m.

A man m and a woman w are said to form a block-
ing pair for weak stability for M if they are not partners in
M but by matching them, both become better off, namely,
(i) M(m) ¤ w but m and w are acceptable to each other,
(ii) w �m M(m) orm is single inM, and (iii) m �w M(w)
or w is single inM.

Two persons x and y are said to form a blocking pair
for strong stability for M if they are not partners in M but
by matching them, one becomes better off, and the other
does not become worse off, namely, (i) M(x) ¤ y but x
and y are acceptable to each other, (ii) y �x M(x) or x is
single inM, and (iii) x �y M(y) or y is single inM.

A man m and a woman w are said to form a blocking
pair for super-stability for M if they are not partners in M
but by matching them, neither become worse off, namely,
(i) M(m) ¤ w but m and w are acceptable to each other,
(ii) w �m M(m) orm is single inM, and (iii) m �w M(w)
or w is single inM.

A matching M is called weakly stable (strongly stable
and super-stable, respectively) if there is no blocking pair
for weak (strong and super, respectively) stability forM.
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Problem 1 (SMTI)
INPUT: n men, n women, and each person’s preference list.
OUTPUT: A stable matching.

Problem 2 (MAX SMTI)
INPUT: n men, n women, and each person’s preference list.
OUTPUT: A stable matching of maximum size.

The following problem is a restriction of MAX SMTI in
terms of the length of preference lists:

Problem 3 ((p, q)-MAX SMTI)
INPUT: n men, n women, and each person’s preference list,
where each man’s preference list includes at most p women,
and each woman’s preference list includes at most q men.
OUTPUT: A stable matching of maximum size.

Definition of Approximation Ratios

A goodness measure of an approximation algorithm T for
a maximization problem is defined as follows: the approxi-
mation ratio of T is maxfopt(x)/T(x)g over all instances x
of size N , where opt(x) and T(x) are the size of the optimal
and the algorithm’s solution, respectively.

Key Results

SMTI andMAX SMTI in Super-Stability
and Strong Stability

Theorem 1 ([16]) There is an O(n2)-time algorithm that
determines if a given SMTI instance admits a super-stable
matching, and finds one if exists.

Theorem 2 ([15]) There is an O(n3)-time algorithm that
determines if a given SMTI instance admits a strongly stable
matching, and finds one if exists.

It is shown that all stable matchings for a fixed instance are
of the same size [16]. So, the above theorems imply that
MAX SMTI can also be solved in the same time complex-
ity.

SMTI andMAX SMTI inWeak Stability

In the case of weak stability, every instance admits at
least one stable matching, but one instance can have sta-
ble matchings of different sizes. If the size is not impor-
tant, a stable matching can be found in polynomial time
by breaking ties arbitrarily and applying the Gale-Shapley
algorithm.

Theorem 3 There is an O(n2)-time algorithm that finds
a weakly stable matching for a given SMTI instance.

However, if larger stable matchings are required, the prob-
lem becomes hard.

Theorem 4 ([5,7,12,17]) MAX SMTI is NP-hard, and
cannot be approximated within 21/19� � for any positive
constant �, unless P = NP. (21/19 ' 1:105)

The current best approximation algorithm is a local search
type algorithm.

Theorem 5 ([13]) There is a polynomial-time approxima-
tion algorithm for MAX SMTI, whose approximation ratio
is at most 15/8(= 1:875).

There are a couple of approximation algorithms for re-
stricted inputs.

Theorem 6 ([6]) There is a polynomial-time randomized
approximation algorithm for MAX SMTI whose expected
approximation ratio is at most 10/7(' 1:429), if in a given
instance, ties appear in only one side and the length of each
tie is two.

Theorem 7 ([6]) There is a polynomial-time randomized
approximation algorithm for MAX SMTI whose expected
approximation ratio is at most 7/4(= 1:75), if in a given in-
stance, the length of each tie is two.

Theorem 8 ([7]) There is a polynomial-time approxima-
tion algorithm for MAX SMTI whose approximation ratio
is at most 2/(1 + L�2), if in a given instance, ties appear in
only one side and the length of each tie is at most L.

Theorem 9 ([7]) There is a polynomial-time approxima-
tion algorithm for MAX SMTI whose approximation ratio
is at most 13/7(' 1:858), if in a given instance, the length
of each tie is two.

(p, q)-MAX SMTI inWeak Stability

Irving et al. show the boundary between P andNP in terms
of the length of preference lists.

Theorem 10 ([11]) (2,1)-MAX SMTI is solvable in time
O(n

3
2 log n).

Theorem 11 ([11]) (3,4)-MAX SMTI is NP-hard, and
cannot be approximated within some constant ı(> 1), un-
less P = NP.

Recently, Manlove proved NP-hardness of (3,3)-MAX
SMTI [18].

Applications

One of the most famous applications of the stable mar-
riage problem is a centralized assignment system between
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medical students (residents) and hospitals. This is an ex-
tension of the stablemarriage problem to amany-one vari-
ant: Each hospital declares the number of residents it can
accept, which may be more than one, while each resident
has to be assigned to at most one hospital. Actually, there
are several applications in the world, known as NRMP in
the US [4], CaRMS in Canada [1], SPA in Scotland [9,10],
and JRMP in Japan [14]. One of the optimization criteria
is clearly the number of matched residents. In a real-world
application such as the above residents matching, hospi-
tals and residents tend to submit short preference lists that
include ties, in which case, the problem can be naturally
considered as MAX SMTI.

Open Problems

One apparent open problem is to narrow the gap of ap-
proximability of MAX SMTI in weak stability, namely,
between 15/8(= 1:875) and 21/19(' 1:105) for general
case. The same problem can be considered for restricted
instances. The reduction shown in [7] creates instances
where ties appear in only one side, and the length of ties
is two. So, considering Theorem 8 for L = 2, there is a gap
between 8/5(= 1:6) and 21/19(' 1:105) in this case. It is
shown in [7] that if the 2 � � lower bound (for any posi-
tive constant �) on the approximability of Minimum Ver-
tex Cover is derived, the same reduction shows the 5/4� ı
lower bound (for any positive constant ı) on the approx-
imability of MAX SMTI.
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games [3,6,16]; some variants correspond to the Directed
cycle cover problems [1]. Important special cases are the
Stable Matching Problems [17]. .

ProblemDefinition

In the Stable Partition Problem a set of participants has to
be split into several disjoint sets called coalitions. The re-
sulting partition should fulfill some stability requirements
that take into account the preferences of participants.

Various variants of this problem arise if the partici-
pants are required to express their preferences over all the
possible coalitions to which they could belong or when
only preferences over other players are given and those are
then extended to preferences over coalitions. Sometimes
one seeks rather a permutation of players and the partition
is given by the cycles of the permutation [1, 19].

Notation

An instance of the Stable Partition Problem (SPP for short)
is a pair (N ,P), where N is a finite set of participants and
P the collection of their preferences, called the preference
profile. If the preferences of participants are given as lin-
early ordered lists of the coalitions to which a particular
participant can belong (i. e. participant i writes a list of
subsets of N that contain i), we say that the instance of
the SPP is in the LC form (list of coalitions). A special case
of the SPP in the LC form is obtained when participants
do not care about the actual content of the coalitions, only
about their sizes. Preferences are then called anonymous.

A more succinct representation is obtained when each
participant i linearly orders only individual participants,
or more precisely, a subset of them – these are acceptable
for i. In this case the SPP is in the LP form (list of par-
ticipants). With the exception of Stable Matchings, when
the obtained partitions are allowed to contain only single-
tons or a two-element sets, preferences over participants
have to be extended to preferences over coalitions. Algo-
rithmically, the most intensively studied are the following
extensions:

B-preferences – a participant orders coalitions first on
the basis of the most preferred (briefly best) member
of the coalition, and if those are equal or tied, the coali-
tion with smaller cardinality is preferred;

W -preferences – a participant orders coalitions on the
basis of the least preferred (briefly worst) member of
the coalition;

BW -preferences – a participant orders coalitions first on
the basis of the best member of the coalition, and if

those are equal or tied, the coalition with a more pre-
ferred worst member is preferred.

The above preferences are said to be strict, if the original
preferences over individuals are strict linear orders and
they are called dichotomous if all acceptable participants
are tied in each preference list. The presence of ties very
often leads to different computational results compared to
the case with strict preferences.

In additively separable preferences it is supposed that
for each i 2 N there exists a function vi : N ! R such
that i prefers a coalition S to coalition T if and only
if
P

j2S vi( j) >
P

j2T vi ( j). Additively separable prefer-
ences and their various variants are studied in [7].

Another approach is presented in [16]. The authors
call these preferences simple and it is supposed that for
each participant i a set Fi of friends and a set Ei of ene-
mies are given. A participant i has appreciation of friends
when he prefers a coalition S to a coalition T if jS \ Fi j >
jT \ Fi j and he has aversion against enemies when he
prefers a coalition S to a coalition T if jS \ Ei j < jT \ Ei j.

Stability Definitions

LetM(i) denote the set of partitionM that contains partic-
ipant i.

Definition 1 A set Z 
 N is called blocking for partition
M, if each participant i 2 Z prefers Z toM(i). A set Z 
 N
is called weakly blocking for partition M, if each partici-
pant i 2 Z prefers Z to M(i) or is indifferent between Z
and M(i) and at least one participant j 2 Z prefers Z to
M( j).

A participant i is said to be covered if jM(i)j � 2.
In the literature, several different stability definitions

were studied, including Nash stability, individual stability,
contractual individual stability, Pareto optimality etc. An
interested reader can consult [4] or [6]. Algorithmically,
themost deeply studied notions are the core and the strong
core.

Definition 2 A partition M is called a core partition, if
there is no blocking set for M. A partition M is called
a strong core partition, if there is no weakly blocking set
forM.

Problems

Several decision or computational problems arise in the
context of the SPP:
� STABILITYTEST: Given (N,P) and a partition M of N,

isM stable?



Stable Partition Problem S 887

� EXISTENCE: Does a stable partition for a given (N,P)
exist?

� CONSTRUCTION: If a stable partition for a given (N,P)
exists, find one.

� STRUCTURE: Describe the structure of stable partitions
for a given (N ,P).

Their complexity depends on the particular type of prefer-
ences used.

Key Results

SPP in LC Form

EXISTENCE for core partitions is NP-complete even when
the given preferences over coalitions are strict or anony-
mous [3].

W -preferences

The SPP with strictW -preferences hasmany features sim-
ilar to the Stable Roommates Problem [17]. First, each
core partition set contains at most two participants and if
a blocking set exists, then there is a blocking set of size at
most 2, hence STABILITYTEST is polynomial. EXISTENCE
and CONSTRUCTION are polynomial in the strict prefer-
ences case [11], which can be shown using an extension of
Irving’s Stable Roommates Algorithm (discussed in detail
in [17]). This algorithm can also be used to derive some
results for STRUCTURE. In the case of ties, EXISTENCE is
NP-complete and a complete solution to STRUCTURE is
not available [11].

B-preferences
A polynomial algorithm for STABILITYTEST is given
in [9]. For strict B-preferences a core as well as strong
core partition always exists and one can be found by the
Top Trading Cycles algorithm attributed to Gale in [19]
(an implementation of this algorithm of time complex-
ity O(m), where m is the total length of the preference
lists of all participants, was described in [2]). However,
if preferences of participants contain ties, EXISTENCE is
NP-complete for both core and strict core [10]. In the di-
chotomous case, a core partition can be constructed in
polynomial time, but EXISTENCE for strong core is NP-
complete [8].

Very little is known about the STRUCTURE. Several
questions about the existence of core partitions with spe-
cial properties are shown to be NP-hard even for the strict
preferences case [15]:
� Does a core partitionM exist, such that jM(i)j < jT(i)j

for each participant i, where T is the partition obtained
by the Top Trading Cycles algorithm?

� Does a core partition M exist, such that jM(i)j � 3 for
each participant i?

� Does a core partition M exist that covers all partici-
pants?

Moreover, the maximum number of participants covered
by a core partition is not approximable within n1�" [5].

BW -preferences

In the strict preferences case a core partition always exists
and one can be obtained by the Top Trading Cycles algo-
rithm. However, if preferences contain ties, EXISTENCE is
NP-hard [12]. STABILITYTEST remains open.

Simple Preferences

If all the participants have aversion to enemies, a core par-
tition always exists, but CONSTRUCTION is NP-hard. In
the appreciation-of-friends case, a strong core partition al-
ways exists and CONSTRUCTION can be solved in O(n3)
time, where n is the number of participants [16].

Applications

Stable partitions give rise to various economic and game
theoretical models. They appear in the study of exchange
economies with discrete commodities [19], in barter ex-
change markets [20], or in the study of formation of coun-
tries [14]. A recent application concerns exchange of kid-
neys for transplantation between willing donors and their
incompatible intended recipients [18]. In this context, the
use of B-preferences was suggested in [8], as they express
the wish of each patient for the best suitable kidney as well
as his desire for the shortest possible exchange cycle.

Open Problems

Because of the great number of variants, a lot of open prob-
lems exist. In almost all cases, STRUCTURE is not satisfac-
torily solved. For instances with no stable partition, one
may seek one that minimizes the number of participants
who have an incentive to deviate. Parallel algorithms were
also not studied.

Experimental Results

In the context of kidney exchange, Roth et al. in [18] per-
formed extensive experiments with the Top Trading Cy-
cles algorithm on simulated patients’ data. The number
of covered participants and sizes of the obtained parti-
tion sets were recorded. The structure of core partitions
forB-preferences was studied in [15]. Two heuristics were
tested. The starting point was the stable partition obtained
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by the Top Trading Cycles algorithm. Heuristic Cut-Cycle
tried to split at least one of the obtained partition sets, Cut-
and-Add tried to add an uncovered participant to an ex-
isting partition set on condition that the new partition re-
mained in the core. It was shown that as the total number
of participants grows, the percentage of participants un-
covered in the Top Trading Cycles partition decreases and
the percentage of successes of both heuristics grows.
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ProblemDefinition

Stackelberg games [15] may model the interplay amongst
an authority and rational individuals that selfishly demand
resources on a large scale network. In such a game, the
authority (Leader) of the network is modeled by a distin-
guished player. The selfish users (Followers) are modeled
by the remaining players.

It is well known that selfish behavior may yield a Nash
Equilibriumwith cost arbitrarily higher than the optimum
one, yielding unbounded Coordination Ratio or Price of
Anarchy (PoA) [7,13]. Leader plays his strategy first as-
signing a portion of the total demand to some resources of
the network. Followers observe and react selfishly assign-
ing their demand to the most appealing resources. Leader
aims to drive the system to an a posteriori Nash equilib-
rium with cost close to the overall optimum one [4,6,8,10].
Leader may also eager for his own rather than system’s
performance [2,3].

A Stackelberg game can be seen as a special, and
easy [6] to implement, case ofMechanismDesign. It avoids
the complexities of either computing taxes or assigning
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prices, or even designing the network at hand [9]. How-
ever, a central authority capable to control the overall de-
mand on the resources of a network may be unrealistic
in networks which evolute and operate under the effect of
many and diversing economic entities. A realistic way [4]
to act centrally even in large nets could be via Virtual Pri-
vate Networks (VPNs) [1]. Another flexible way is to com-
bine such strategies with Tolls [5,14].

A dictator controlling the entire demand optimally on
the resources surely yields PoA = 1. On the other hand,
rational users do prefer a liberal world to live. Thus, it is
important to compute the optimal Leader-strategy which
controls theminimum of the resources (Price of Optimum)
and yields PoA = 1. What is the complexity of comput-
ing the Price of Optimum? This is not trivial to answer,
since the Price of Optimum depends crucially on comput-
ing an optimal Leader strategy. In particular, [6] proved
that computing the optimal Leader strategy is hard.

The central result of this lemma is Theorem 5. It says
that on nonatomic flows and arbitrary s-t networks &
latencies, computing the minimum portion of flow and
Leader’s optimal strategy sufficient to induce PoA = 1 is
easy [10].

Problem (G(V ; E); s; t 2 V ; r)
INPUT: Graph G, 8e 2 E latency `e, flow r, a source-
destination pair (s, t) of vertices in V.
OUTPUT: (i) The minimum portion ˛G of the total flow r
sufficient for an optimal Stackelberg strategy to induce the
optimum on G. (ii) The optimal Stackelberg strategy.

Models & Notations

Consider a graph G(V ; E) with parallel edges allowed.
A number of rational and selfish users wish to route from
a given source s to a destination node t an amount of
flow r. Alternatively, consider a partition of users in k
commodities, where user(s) in commodity i wish to route
flow ri through a source-destination pair (si ; ti ), for each
i = 1; : : : ; k. Each edge e 2 E is associated to a latency
function `e(), positive, differentiable and strictly increas-
ing on the flow traversing it.

Nonatomic Flows There are infinitely many users, each
routing his infinitesimally small amount of the total flow
ri from a given source si to a destination vertex ti in graph
G(V ; E). A flow f is an assignment of jobs f e on each edge
e 2 E. The cost of the injected flow f e (satisfying the stan-
dard constraints of the corresponding network-flow prob-
lem) that traverses edge e 2 E equals ce ( fe) = fe � `e( fe).
It is assumed that on each edge e the cost is convex with
respect the injected flow f e. The overall system’s cost is

the sum
P

e2E fe � `e ( fe) of all edge-costs in G. Let fP
the amount of flow traversing the si-ti path P. The la-
tency `P( f ) of si-ti pathP is the sum

P
e2P `e ( fe) of laten-

cies per edge e 2 P. The cost CP ( f ) of si-ti path P equals
the flow fP traversing it multiplied by path-latency `P( f ).
That is, CP ( f ) = fP �

P
e2P `e ( fe).

In an Nash equilibrium, all si-ti paths traversed by
nonatomic users in part i have a common latency, which
is at most the latency of any untraversed si-ti path. More
formally, for any part i and any pair P1;P2 of si-ti paths,
if fP1 > 0 then `P1 ( f ) � `P2 ( f ). By the convexity of edge-
costs the Nash equilibrium is unique and computable in
polynomial time given a floating-point precision. Also
computable is the unique Optimum assignment O of flow,
assigning flow oe on each e 2 E and minimizing the over-
all cost

P
e2E oe`e(oe ). However, not all optimally tra-

versed si-ti paths experience the same latency. In partic-
ular, users traversing paths with high latency have incen-
tive to reroute towards more speedy paths. Therefore the
optimal assignment is unstable on selfish behavior.

A Leader dictates aweak Stackelberg strategy if on each
commodity i = 1; : : : ; k controls a fixed ˛ portion of flow
ri, ˛ 2 [0; 1]. A strong Stackelberg strategy is more flex-
ible, since Leader may control ˛i ri flow in commodity i
such that

Pk
i=1 ˛i = ˛. Let a Leader dictating flow se on

edge e 2 E. The a posteriori latencyèe (ne) of edge e, with
respect to the induced flow ne by the selfish users, equals
èe(ne ) = `e(ne + se). In the a posteriori Nash equilibrium,
all si-ti paths traversed by the free selfish users in com-
modity i have a common latency, which is at most the
latency of any selfishly untraversed path, and its cost isP

e2E(ne + se ) �èe (ne).

Atomic Splittable Flows There is a finite number of
atomic users 1; : : : ; k. Each user i is responsible for rout-
ing a non-negligible flow-amount ri from a given source
si to a destination vertex ti in graph G. In turn, each flow-
amount ri consists of infinitesimally small jobs.

Let flow f assigning jobs f e on each edge e 2 E.
Each edge-flow f e is the sum of partial flows f 1e ; : : : ; f ke
injected by the corresponding users 1; : : : ; k. That is,
fe = f 1e + � � � + f ke . As in the model above, the latency on
a given si-ti pathP is the sum

P
e2P `e ( fe) of latencies per

edge e 2 P. Let f iP be the flow that user i ships through an
si-ti path P. The cost of user i on a given si-ti path P is
analogous to her path-flow f iP routed via P times the to-
tal path-latency

P
e2P `e( fe). That is, the path-cost equals

f iP �
P

e2P `e ( fe). The overall cost Ci(f ) of user i is the
sum of the corresponding path-costs of all si-ti paths.

In a Nash equilibrium no user i can improve his cost
Ci(f ) by rerouting, given that any user j ¤ i keeps his
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routing fixed. Since each atomic user minimizes its cost,
if the game consists of only one user then the cost of the
Nash equilibrium coincides to the optimal one.

In a Stackelberg game, a distinguished atomic Leader-
player controls flow r0 and plays first assigning flow
se on edge e 2 E. The a posteriori latency èe(x) of
edge e on induced flow x equals èe(x) = `e(x + se). In-
tuitively, after Leader’s move, the induced selfish play
of the k atomic users is equivalent to atomic split-
table flows on a graph where each initial edge-latency
`e has been mapped to èe . In game-parlance, each
atomic user i 2 f1; : : : ; kg, having fixed Leader’s strategy,
computes his best reply against all others atomic users
f1; : : : ; kg n fig. If ne is the induced Nash flow on edge e
this yields total cost

P
e2E (ne + se) �èe(ne ).

Atomic Unsplittable Flows The users are finite 1; : : : ; k
and user i is allowed to sent his non-negligible job ri only
on a single path. Despite this restriction, all definitions
given in atomic splittable model remain the same.

Key Results

Let us see first the case of atomic splittable flows, on par-
allel M/M/1 links with different speeds connecting a given
source-destination pair of vertices.

Theorem 1 (Korilis, Lazar, Orda [6]) The Leader can en-
force in polynomial time the network optimum if she con-
trols flow r0 exceeding a critical value r0.

In the sequel, we focus on nonatomic flows on s-t graphs
with parallel links. In [6] primarily were studied cases that
Leader’s flow cannot induce network’s optimum and was
shown that an optimal Stackelberg strategy is easy to com-
pute. In this vain, if s-t parallel-links instances are re-
stricted to ones with linear latencies of equal slope then
an optimal strategy is easy [4].

Theorem 2 (Kaporis, Spirakis [4]) The optimal Leader
strategy can be computed in polynomial time on any in-
stance (G; r; ˛) where G is an s-t graph with parallel-links
and linear latencies of equal slope.

Another positive result is that the optimal strategy can
be approximated within (1 + �) in polynomial time, given
that link-latencies are polynomials with non-negative co-
efficients.

Theorem 3 (Kumar, Marathe [8]) There is a fully
polynomial approximate Stackelberg scheme that runs in
pol y(m; 1

�
) time and outputs a strategy with cost (1 + �)

within the optimum strategy.

For parallel link s-t graphs with arbitrary latencies more
can be achieved: in polynomial time a “threshold” value
˛G is computed, sufficient for the Leader’s portion to in-
duce the optimum. The complexity of computing opti-
mal strategies changes in a dramatic way around the crit-
ical value ˛G from “hard” to “easy” (G; r; ˛) Stackelberg
scheduling instances. Call ˛G as the Price of Optimum for
graph G.

Theorem 4 (Kaporis, Spirakis [4]) On input an s-t par-
allel link graph G with arbitrary strictly increasing latencies
the minimum portion ˛G sufficient for a Leader to induce
the optimum, as well as her optimal strategy, can be com-
puted in polynomial time.

As a conclusion, the Price of Optimum ˛G essentially cap-
tures the hardness of instances (G; r; ˛). Since, for Stack-
elberg scheduling instances (G; r; ˛ � ˛G ) the optimal
Leader strategy yields PoA = 1 and it is computed as hard
as in P, while for (G; r; ˛ < ˛G ) the optimal strategy yields
PoA < 1 and it is as easy as NP [10].

The results above are limited to parallel-links connect-
ing a given s-t pair of vertices. Is it possible to efficiently
compute the Price of Optimum for nonatomic flows on
arbitrary graphs? This is not trivial to settle. Not only be-
cause it relies on computing an optimal Stackelberg strat-
egy, which is hard to tackle [10], but also because Proposi-
tion B.3.1 in [11] ruled out previously known performance
guarantees for Stackelberg strategies on general nets.

The central result of this lemma is presented below and
completely resolves this question (extending Theorem 4).

Theorem 5 (Kaporis, Spirakis [4]) On arbitrary s-t
graphs G with arbitrary latencies the minimum portion ˛G
sufficient for a Leader to induce the optimum, as well as her
optimal strategy, can be computed in polynomial time.

Example

Consider the optimum assignment O of flow r that wishes
to travel from source vertex s to sink t. O assigns flow oe
incurring latency `e(oe ) per edge e 2 G. Let Ps!t the set
of all s-t paths. The shortest paths in Ps!t with respect to
costs `e(oe ) per edge e 2 G can be computed in polyno-
mial time. That is, the paths that given flow assignment
O attain latency: minP2Ps!t

�P
e2P `e(oe )

�
i. e., minimize

their latency. It is crucial to observe that, if we want the in-
duced Nash assignment by the Stackelberg strategy to at-
tain the optimum cost, then these shortest paths are the
only choice for selfish users that eager to travel from s to t.
Furthermore, the uniqueness of the optimum assignment
O determines the minimum part of flow which can be self-
ishly scheduled on these shortest paths. Observe that any
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Stackelberg Games: The Price of Optimum, Figure 1
A bad example for Stackelberg routing

flow assigned byO on a non-shortest s-t path has incentive
to opt for a shortest one. Then a Stackelberg strategymust
frozen the flow on all non-shortest s-t paths.

In particular, the idea sketched above achieves coordi-
nation ratio 1 on the graph in Fig. 1. On this graph Rough-
garden proved that 1

˛
� (optimum cost) guarantee is not

possible for general (s, t)-networks, Appendix B.3 in [11].
The optimal edge-flows are (r = 1):

os!v =
3
4
� � ; os!w =

1
4
+ � ; ov!w =

1
2
� 2� ;

ov!t =
1
4
+ � ; ow!t =

3
4
� �

The shortest path P0 2 P with respect to the optimum O
is P0 = s! v ! w ! t (see [11] pp. 143, 5th-3th lines be-
fore the end) and its flow is fP0 =

1
2 � 2�. The non short-

est paths are: P1 = s! v ! t and P2 = s! w ! t with
corresponding optimal flows: fP1 =

1
4 + � and fP2 =

1
4 + �.

Thus the Price of Optimum is

fP1 + fP2 =
1
2
+ 2� = r � fP0

Applications

Stackelberg strategies are widely applicable in network-
ing [6], see also Section 6.7 in [12].

Open Problems

It is important to extend the above results on atomic un-
splittable flows.

Cross References

� Algorithmic Mechanism Design
� Best Response Algorithms for Selfish Routing
� Facility Location
� Non-approximability of Bimatrix Nash Equilibria
� Price of Anarchy
� Selfish Unsplittable Flows: Algorithms for Pure

Equilibria

Recommended Reading

1. Birman, K.: Building Secure and Reliable Network Applications.
Manning, (1996)

2. Douligeris, C., Mazumdar, R.: Multilevel flow control of Queues.
In: Johns Hopkins Conference on Information Sciences, Balti-
more, 22–24 Mar 1989 (2006)

3. Economides, A., Silvester, J.: Priority load sharing: an approach
using stackelberg games. In: 28th Annual Allerton Conference
on Communications, Control and Computing (1990)

4. Kaporis, A., Spirakis, P.G.: Stackelberg games on arbitrary net-
works and latency functions. In: 18th ACM Symposium on Par-
allelism in Algorithms and Architectures (2006)

5. Karakostas, G., Kolliopoulos, G.: Stackelberg strategies for self-
ish routing in general multicommodity networks. Technical re-
port, Advanced Optimization Laboratory, McMaster Univercity
(2006) AdvOL2006/08, 2006-06-27

6. Korilis, Y.A., Lazar, A.A., Orda, A.: Achieving network optima us-
ing stackelberg routing strategies. IEEE/ACMTrans. Netw. 5(1),
161–173 (1997)

7. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In:
16th Symposium on Theoretical Aspects in Computer Science,
Trier, Germany. LNCS, vol. 1563, pp. 404–413. Springer (1999)

8. Kumar, V.S.A., Marathe, M.V.: Improved results for stackelberg
scheduling strategies. In: 29th International Colloquium, Au-



892 S Statistical Data Compression

tomata, Languages and Programming. LNCS, pp. 776–787.
Springer (2002)

9. Roughgarden, T.: Designing networks for selfish users is hard.
In: 42nd IEEE Annual Symposium of Foundations of Computer
Science, pp. 472–481 (2001)

10. Roughgarden, T.: Stackelberg scheduling strategies. In: 33rd
ACM Annual Symposium on Theory of Computing, pp. 104–
113 (2001)

11. Roughgarden, T.: Selfish Routing. Dissertation, Cornell Univer-
sity, USA, May 2002, http://theory.stanford.edu/~tim/

12. Roughgarden, T.: Selfish Routing and the Price of Anarchy. The
MIT Press, Cambridge (2005)

13. Roughgarden, T., Tardos, E.: How bad is selfish routing? In: 41st
IEEE Annual Symposium of Foundations of Computer Science,
pp. 93–102. J. ACM 49(2), pp 236–259, 2002, ACM, New York
(2000)

14. Swamy, C.: The effectiveness of stackelberg strategies and tolls
for network congestion games. In: ACM-SIAM Symposium on
Discrete Algorithms, Philadelphia, PA, USA (2007)

15. von Stackelberg, H.: Marktform und Gleichgewicht. Springer,
Vienna (1934)

Statistical Data Compression
� Arithmetic Coding for Data Compression

StatisticalMultiple Alignment
2003; Hein, Jensen, Pedersen

ISTVÁN MIKLÓS
Department of Plant Taxonomy and Ecology,
Eötvös Lóránd University, Budapest, Hungary

Keywords and Synonyms

Evolutionary hidden Markov models

ProblemDefinition

The three main types of mutations modifying biological
sequences are insertions, deletions and substitutions. The
simplest model involving these three types of mutations is
the so-called Thorne–Kishino–Felsenstein model [13]. In
this model, the characters of a sequence evolve indepen-
dently. Each character in the sequence can be substituted
with another character according to a prescribed reversible
time-continuous Markov model on the possible charac-
ters. Insertion-deletions are modeled as a birth-death pro-
cess, characters evolve independently and identically, with
insertion and deletion rates � and �.

The multiple statistical alignment problem is to cal-
culate the likelihood of a set of sequences, namely, what
is the probability of observing a set of sequences, given

all the necessary parameters that describe the evolution of
sequences. Hein, Jensen and Pedersen were the first who
gave an algorithm to calculate this probability [4]. Their
algorithm has O(5nLn) running time, where n is the num-
ber of sequences, and L is the geometric mean of the se-
quences. The running time has been improved to O(2nLn)
by Lunter et al. [10].

Notations

Insertions and Deletions In the Thorne–Kishino–
Felsenstein model (TKF91 model) [13], both the birth and
the death processes are Poisson processes with parameters
� and �, respectively. Since each character evolves inde-
pendently, the probability of an insertion-deletion pattern
given by an alignment can be calculated as the product of
the probabilities of patterns. Each pattern starts with an
ancestral character, except the first that starts with the be-
ginning of the alignment, end ends before the next ances-
tral character, except the last that ends at the end of the
alignment. The probability of the possible patterns can be
found on Fig. 1.

Evolutionary Trees An evolutionary tree is a leaf-
labeled, edge weighted, rooted binary tree. Labels are the
species related by the evolutionary tree, weights are evo-
lutionary distances. It might happen that the evolution-
ary changes had different speed at different lineages, and
hence the tree is not necessary ultrametric, namely, the
root not necessary has the same distance to all leaves.

Given a set S of l-long sequences over alphabet ˙ ,
a substitution model M on ˙ and an evolutionary tree T
labeled by the sequences. The likelihood of the tree is the
probability of observing the sequences at the leaves of the
tree, given that the substitution process starts at the root
of the tree with the equilibrium distribution. This likeli-
hood is denoted by P(SjT;M). The substitution likelihood
problem is to calculate the likelihood of the tree.

Let˙ be a finite alphabet and let S1 = s1;1s1;2 : : : s1;L1 ,
S2 = s2;1s2;2 : : : s2;L2 , : : : Sn = sn;1sn;2 : : : sn;Ln be se-

Statistical Multiple Alignment, Figure 1
The probabilities of alignment patterns. From left to right: k in-
sertions at the beginning of the alignment, a match followed by
k � 1 insertions, a deletion followed by k insertions, a deletion

not followed by insertions. ˇ = 1�e(���)t

���e(���)t

http://theory.stanford.edu/~tim/
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quences over this alphabet. Let a TKF91 model TKF91 be
given with its parameters: substitution model M, inser-
tion rate � and deletion rate �. Let T be an evolutionary
tree labeled by S1; S2 : : : Sn . The multiple statistical align-
ment problem is to calculate the likelihood of the tree,
P(S1; S2; : : : Sn jT; TKF91), given that the TKF91 process
starts at the root with the equilibrium distribution.

Multiple Hidden Markov Models It will turn out that
the TKF91 model can be transformed to a multiple Hid-
den Markov Model, therefore it is formally defined here.
A multiple Hidden Markov Model (multiple-HMM) is
a directed graph with a distinguished Start and End state,
(the in-degree of the Start and the out-degree of the End
state are both 0), together with the following described
transition and emission distributions. Each vertex has
a transition distribution over its out-edges. The vertexes
can be divided for two classes, the emitting and silent
states. Each emitting state emits one-one random charac-
ter to a prescribed set of sequences, it is possible that a state
emits only one character to one sequence. For each state,
an emission distribution over the alphabet and the set of
sequences gives the probabilities which characters will be
emitted to which sequences. The Markov process is a ran-
dom walk from the Start to the End, following the tran-
sition distribution on the out edges. When the walk is in
an emitting state, characters are emitted according to the
emission distribution of the state. The process is hidden
since the observer sees only the emitted sequences, and
the observer does not observe which character is emitted
by which state, even the observer does not see which char-
acters are co-emitted. The multiple-HMM problem is to
calculate the emission probability of a set of sequences for
a multiple-HMM. This probability can be calculated with
the Forward algorithm that has O(V 2Ln) running time,
where V is the number of emitting states in the multiple-
HMM, L is the geometric mean of the sequences and n is
the number of sequences [2].

Key Results

Substitutions have been modeled with time-continuous
Markov models since the late sixties [7] and an effi-
cient algorithm for likelihood calculations was published
in 1981 [3]. The running time of this efficient algorithm
grows linearly both with the number of sequences and
with the length of the sequences being analyzed, and it
grows squarely with the size of the alphabet. The algorithm
belongs to the class of dynamic programming algorithms.

Thorne, Kishino and Felsenstein gave an O(nm) run-
ning time algorithm for calculating the likelihood of an

n-long and an m-long sequence under their model [13].
It was not clear for long time how to extend this algo-
rithm to more than two sequences. In 2001, several re-
searchers [6,11] realized that the TKF91 model for two se-
quences is equivalent with a pair Hidden Markov Model
(pair-HMM) in the sense that the transition and emis-
sion probabilities of the pair-HMM can be parameterized
with �, �, and the transition and equilibrium probabili-
ties of the substitutionmodel,moreover there is a bijection
between the paths emitting the two sequences and align-
ments such that the probability of a path in the pair-HMM
equals to the probability of the corresponding alignment of
the two sequences. Hence the likelihood of two sequences
can be calculated with the Forward algorithm of the pair-
HMM.

After this discovery, it was relatively easy to develop
an algorithm for multiple statistical alignment [4]. The
key observation is that a multiple-HMM can be created as
a composition of pair-HMMs along the evolutionary tree.
This technique was already known in the speech recog-
nition literature [12], and was also rediscovered by Ian
Holmes [5], who named this technique as transducer com-
position. The number of states in the so-created multiple-
HMM is O(5

n
2 ), where n is the number of leaves of the

tree. The emission probabilities are the substitution likeli-
hoods on the tree, which can be efficiently calculated using
Felsenstein’s algorithm [3]. The running time of the For-
ward algorithm is 5nLn , where L is the geometric mean of
the sequence lengths.

Lunter et al. [10] introduced an algorithm that does
not need a multiple-HMM description of the TKF91
model to calculate the likelihood of a tree. Using a logi-
cal sieve algorithm, they were able to reduce the running
time to O(2nLn). They called their algorithm the “one-
state recursion” since their dynamic programming algo-
rithm does not need different state of a multiple-HMM to
calculate the likelihood correctly.

Applications

Since the running time of the best known algorithm for
multiple statistical alignment grows exponentially with the
number of sequences, on its own it is not useful in practice.
However, Lunter et al. also showed that there is a one-state
recursion to calculate the likelihood of the tree given an
alignment [8]. The running time of this algorithm grows
only linearly with both the alignment length and the num-
ber of sequences. Since the number of states in a multiple-
HMM that can emit the same multiple alignment column
might grow exponentially, this version of the one-state re-
cursion is a significant improvement. The one-state recur-
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sion for multiple alignments is used in a Bayesian Markov
chain Monte Carlo where the state space is the Descart
product of the possible multiple alignments and evolu-
tionary trees. The one-state recursion provides an efficient
likelihood calculation for a point in the state space [9].

Csűrös and Miklós introduced a model for gene con-
tent evolution that is equivalent with the multiple statisti-
cal alignment problem for alphabet size 1 [1]. They gave
a polynomial running time algorithm that calculates the
likelihood of the tree. The running time is O(n + hL2),
where n is the number of sequences, h is the height of
the evolutionary tree, and L is the sum of the sequences
lengths.

Open Problems

It is conjectured that the multiple statistical alignment
problem cannot be solved in polynomial time for any non-
trivial alphabet size. One also can ask what the most likely
multiple alignment is or equivalently, what the most prob-
able path in the multiple-HMM is that emits the given se-
quences. For a set of sequences, a TKF91 model and an
evolutionary tree, the decision problem “Is there a multi-
ple alignment that is more probable than p” is conjectured
to be NP-complete.

Thorne, Kishino and Felsenstein also introduced
a fragment model, also called the TKF92 model, in which
multiple insertions and deletions are allowed. The birth
process is still a Poisson process, but instead of single char-
acters, fragments of characters are inserted with a geo-
metrically distributed length. The fragments are unbreak-
able, and the death process is going on the fragments. The
TKF92 model for a pair of sequences also can be described
into a pair-HMM and the TKF92 model on a tree can be
transformed to a multiple-HMM. It is conjectured that
there is no one-state recursion for the TKF92 model.
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ProblemDefinition

The problem deals with learning f�1;+1g-valued func-
tions from random labeled examples in the presence of
random noise in the labels. In the random classification
noisemodel of Angluin and Laird [1] the label of each ex-
ample given to the learning algorithm is flipped randomly
and independently with some fixed probability � called the
noise rate. The model is the extension of Valiant’s PAC
model [14] that formalizes the simplest type of white label
noise.

Robustness to this relatively benign noise is an impor-
tant goal in the design of learning algorithms. Kearns de-
fined a powerful and convenient framework for construct-
ing noise-tolerant algorithms based on statistical queries.
Statistical query (SQ) learning is a natural restriction of
PAC learning that models algorithms that use statistical
properties of a data set rather than individual examples.
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Kearns demonstrated that any learning algorithm that is
based on statistical queries can be automatically converted
to a learning algorithm in the presence of random classifi-
cation noise of arbitrary rate smaller than the information-
theoretic barrier of 1/2. This result was used to give the first
noise-tolerant algorithm for a number of important learn-
ing problems. In fact, virtually all known noise-tolerant
PAC algorithms were either obtained from SQ algorithms
or can be easily cast into the SQ model.

Definitions and Notation

Let C be a class of f�1;+1g-valued functions (also called
concepts) over an input space X. In the basic PAC model
a learning algorithm is given examples of an unknown
function f from C on points randomly chosen from some
unknown distributionD over X and should produce a hy-
pothesis h that approximates f . More formally, an example
oracle EX( f ;D) is an oracle that upon being invoked re-
turns an example hx; f (x)i, where x is chosen randomly
with respect to D, independently of any previous exam-
ples. A learning algorithm forC is an algorithm that for ev-
ery " > 0, ı > 0, f 2 C, and distributionD over X, given
", ı, and access to EX( f ;D) outputs, with probability at
least 1 � ı, a hypothesis h that "-approximates f with re-
spect toD (i. e. PrD[ f (x) ¤ h(x)] � "). Efficient learning
algorithms are algorithms that run in time polynomial in
1/", 1/ı, and the size of the learning problem s. The size of
a learning problem is determined by the description length
of f under some fixed representation scheme for functions
in C and the description length of an element in X (often
proportional to the dimension n of the input space).

A number of variants of this basic framework are com-
monly considered. The basic PAC model is also referred
to as distribution-independent learning to distinguish it
from distribution-specificPAC learning in which the learn-
ing algorithm is required to learn with respect to a sin-
gle distributionD known in advance. A weak learning al-
gorithm is a learning algorithm that can produce a hy-
pothesis whose error on the target concept is noticeably
less than 1/2 (and not necessarily any " > 0). More pre-
cisely, a weak learning algorithm produces a hypothesis h
such thatPrD[ f (x) ¤ h(x)] � 1/2� 1/p(s) for some fixed
polynomial p. The basic PAC model is often referred to as
strong learning in this context.

In the random classification noise model EX( f ;D) is
replaced by a faulty oracle EX�( f ;D), where � is the noise
rate. When queried, this oracle returns a noisy example
hx; bi where b = f (x) with probability 1� � and : f (x)
with probability � independently of previous examples.
When � approaches 1/2 the label of the corrupted exam-

ple approaches the result of a random coin flip, and there-
fore the running time of learning algorithms in this model
is allowed to depend on 1

1�2� (the dependence must be
polynomial for the algorithm to be considered efficient).
For simplicity one usually assumes that � is known to the
learning algorithm. This assumption can be removed us-
ing a simple technique due to Laird [12].

To formalize the idea of learning from statistical prop-
erties of a large number of examples, Kearns introduced
a new oracle STAT( f ;D) that replaces EX( f ;D). The or-
acle STAT( f ;D) takes as input a statistical query (SQ) of
the form (�; �) where � is a f�1;+1g-valued function on
labeled examples and � 2 [0; 1] is the tolerance parameter.
Given such a query the oracle responds with an estimate of
PrD[�(x; f (x)) = 1] that is accurate to within an additive
˙� . Chernoff bounds easily imply that STAT( f ;D) can,
with high probability, be simulated using EX( f ;D) by es-
timatingPrD[�(x; f (x)) = 1] on O(��2) examples. There-
fore the SQ model is a restriction of the PAC model. Effi-
cient SQ algorithms allow only efficiently evaluable�’s and
impose an inverse polynomial lower bound on the toler-
ance parameter over all oracle calls.

Key Results

Statistical Queries and Noise-Tolerance

The main result given by Kearns is a way to simulate sta-
tistical queries using noisy examples.

Lemma 1 ([10]) Let (�; �) be a statistical query such
that � can be evaluated on any input in time T and let
EX�( f ;D) be a noisy oracle. The value PrD[�(x; f (x)) =
1] can, with probability at least 1 � ı, be estimatedwithin �
using O(��2(1�2�)�2 log (1/ı)) examples from EX�( f ;D)
and time O(��2(1 � 2�)�2 log (1/ı) � T).

This simulation is based on estimating several probabili-
ties using examples from the noisy oracle and then offset-
ting the effect of noise. The lemma implies that any effi-
cient SQ algorithm for a concept class C can be converted
to an efficient learning algorithm for C tolerating random
classification noise of any rate � < 1/2.

Theorem 2 ([10]) Let C be a concept class efficiently PAC
learnable from statistical queries. Then C is efficiently PAC
learnable in the presence of random classification noise of
rate � for any � < 1/2.

Kearns also shows that in order to simulate all the statisti-
cal queries used by an algorithm one does not necessarily
need new examples for each estimation. Instead, assuming
that the set of possible queries of the algorithm has Vap-
nik–Chervonenkis dimension d, all its statistical queries
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can be simulated using Õ(d��2(1 � 2�)�2 log (1/ı) + "�2)
examples [10].

One of the most significant results on learning in
the distribution-independent PAC learning model is the
equivalence of weak and strong learnability demonstrated
by Schapire’s celebrated boosting method [13]. Aslam and
Decatur showed that this equivalence holds in the SQ
model as well [2].

A natural way to extend the SQmodel is to allow query
functions that depend on a t-tuple of examples instead
of just one example. Blum et al. proved that this exten-
sion does not increase the power of the model as long as
t = O(log s) [5].

Statistical Query Dimension

The restricted way in which SQ algorithms use examples
makes it simpler to understand the limitations of efficient
learning in this model. A long-standing open problem in
learning theory is learning of the concept class of all par-
ity functions over f0; 1gn with noise (a parity function is
a XOR of some subset of n Boolean inputs). Kearns has
demonstrated that parities cannot be efficiently learned us-
ing statistical queries even under the uniform distribution
over f0; 1gn [10]. This hardness result is unconditional in
the sense that it does not rely on any unproven complexity
assumptions.

The technique of Kearns was generalized by Blum et al.
who proved that efficient SQ learnability of a concept
class C is characterized by a relatively simple combina-
torial parameter of C called the statistical query dimen-
sion [4]. The quantity they defined measures the maxi-
mum number of “nearly uncorrelated” functions in a con-
cept class. More formally,

Definition 3 For a concept class C and distribution D,
the statistical query dimension of C with respect toD, de-
noted SQ-DIM(C;D), is the largest number d such that C
contains d functions f1; f2; : : : ; fd such that for all i ¤ j,
jED[ fi f j]]j � 1

d3 .

Blum et al. relate the SQ dimension to learning in the SQ
model as follows.

Theorem 4 ([4]) Let C be a concept class andD be a dis-
tribution such that SQ-DIM(C;D) = d.
� If all queries are made with tolerance of at least 1/d1/3,

then at least d1/3 queries are required to learn C with
error 1/2� 1/d3 in the SQ model.

� There exists an algorithm for learning C with respect to
D that makes d fixed queries, each of tolerance 1/3d3,
and finds a hypothesis with error at most 1/2 � 1/3d3.

Thus SQ-DIM characterizes weak learnability in the SQ
model up to a polynomial factor. Parity functions are un-
correlated with respect to the uniform distribution and
therefore any concept class that contains a superpolyno-
mial number of parity functions cannot be learned by sta-
tistical queries with respect to the uniform distribution.
This for example includes such important concept classes
as k-juntas over f0; 1gn (or functions that depend on at
most k input variables) for k = !(1) and decision trees of
superconstant size.

The following important result is due to Blum et al. [5]:

Theorem 5 ([5]) For any constant � < 1/2, parities that
depend on the first log n log log n input variables are effi-
ciently PAC learnable in the presence of random classifica-
tion noise of rate �.

Since there are nlog log n parity functions that depend on the
first log n log log n input variables, this shows that there
exist concept classes that are efficiently learnable in the
presence of noise (at constant rate � < 1/2) but are not ef-
ficiently learnable in the SQ model.

Applications

Learning by statistical queries was used to obtain noise-
tolerant algorithms for a number of important concept
classes. One of the ways this can be done is by showing that
a PAC learning algorithm can be modified to use statistical
queries instead of random examples. Examples of learning
problems for which the first noise-tolerant algorithm was
obtained using this approach include [10]:
� Learning decision trees of constant rank.
� Attribute-efficient algorithms for learning conjunc-

tions.
� Learning axis-aligned rectangles overRn.
� Learning AC0 (constant-depth unbounded fan-in)

Boolean circuits over f0; 1gn with respect to the uni-
form distribution in quasipolynomial time.

Blum et al. also use the SQ model to show that their al-
gorithm for learning linear threshold functions is noise-
tolerant [3], resolving an important open problem.

The ideas behind the use of statistical queries to pro-
duce noise tolerant algorithms were adapted to learning
using membership queries (or ability to ask for the value
of the unknown function at any point). There the noise
model has to be modified slightly to prevent the learner
from asking for independently corrupted labels on the
same point. An appropriate modification is the introduc-
tion of persistent classification noise by Goldman et al. [7].
In this model, as before, the answer to a query at each point
x is flipped with probability 1� �. However, if the mem-
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bership oracle was already queried about the value of f at
some specific point x or x was already generated as a ran-
dom example, the returned label has the same value as in
the first occurrence.

Extensions of the SQ model suggested by Jackson
et al. [9] and Bshouty and Feldman [6] allow any algo-
rithm based on these extended statistical queries to be con-
verted to a noise-tolerant PAC algorithm with member-
ship queries. In particular, they used this approach to con-
vert Jackson’s algorithm for learning DNF with respect to
the uniform distribution to a noise-tolerant one. Bshouty
and Feldman also show that learnability in their extension
can be characterized using a dimension similar to the SQ
dimension of Blum et al. [4].

Open Problems

The main questions related to learning with random clas-
sification noise are still open. Is every concept class effi-
ciently learnable in the PAC model also learnable in the
presence of random classification noise? Is every concept
class efficiently learnable in the presence of random clas-
sification noise of arbitrarily high rate (less than 1/2) also
efficiently learnable using statistical queries? Note that the
algorithm of Blum et al. assumes that the noise rate is
a constant and therefore does not provide a complete an-
swer to this question [5]. For both questions a central issue
seems to be obtaining a better understanding of the com-
plexity of learning parities with noise.

Another important direction of research is learning
with weaker assumptions on the nature of noise. A natu-
ral model that places no assumptions on the way in which
the labels are corrupted is the agnostic learning model de-
fined by Haussler [8] and Kearns et al. [11]. Efficient learn-
ing algorithms that can cope with this, possibly adversar-
ial, noise is a very desirable if hard to achieve goal. For
example, learning conjunctions of input variables in this
model is an open problem known to be at least as hard
as learning DNF expressions in the PAC model [11]. It is
therefore important to identify and investigate useful and
general models of noise based on less pessimistic assump-
tions.
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ProblemDefinition

The Steiner forest problem is a fundamental problem in
network design. Informally, the goal is to establish con-
nections between pairs of vertices in a given network
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at minimum cost. The problem generalizes the well-
known Steiner tree problem. As an example, assume that
a telecommunication company receives communication
requests from their customers. Each customer asks for
a connection between two vertices in a given network. The
company’s goal is to build a minimum cost network in-
frastructure such that all communication requests are sat-
isfied.

Formal Definition and Notation

More formally, an instance I = (G; c; R) of the Steiner for-
est problem is given by an undirected graph G = (V ; E)
with vertex setV and edge set E, a non-negative cost func-
tion c : E ! Q+, and a set of vertex pairs R = f(s1; t1); : : : ;
(sk ; tk )g 
 V �V . The pairs in R are called terminal pairs.
A feasible solution is a subset F 
 E of the edges of G such
that for every terminal pair (si ; ti ) 2 R there is a path be-
tween si and ti in the subgraph G[F] induced by F. Let the
cost c(F) of F be defined as the total cost of all edges in F,
i. e., c(F) =

P
e2F c(e). The goal is to find a feasible solu-

tion F of minimum cost c(F). It is easy to see that there
exists an optimum solution which is a forest.

The Steiner forest problem may alternatively be de-
fined by a set of terminal groups R = fg1; : : : ; gkg with
gi 
 V instead of terminal pairs. The objective is to com-
pute a minimum cost subgraph such that all terminals be-
longing to the same group are connected. This definition
is equivalent to the one given above.

Related Problems

A special case of the Steiner forest problem is the Steiner
tree problem (see also the entry � Steiner Tree). Here,
all terminal pairs share a common root vertex r 2 V ,
i. e., r 2 fsi ; tig for all terminal pairs (si ; ti ) 2 R. In other
words, the problem consists of a set of terminal vertices
R 
 V and a root vertex r 2 V and the goal is to connect
the terminals in R to r in the cheapest possible way. Amin-
imum cost solution is a tree.

The generalized Steiner network problem (see the entry
� Generalized Steiner Network), also known as the sur-
vivable network design problem, is a generalization of the
Steiner forest problem. Here, a connectivity requirement
function r : V � V ! N specifies the number of edge dis-
joint paths that need to be established between every pair
of vertices. That is, the goal is to find a minimum cost
multi-subsetH of the edges of G (H may contain the same
edge several times) such that for every pair of vertices
(x; y) 2 V there are r(x, y) edge disjoint paths from x to
y in G[H]. The goal is to find a set H of minimum cost.

Clearly, if r(x; y) 2 f0; 1g for all (x; y) 2 V � V , this prob-
lem reduces to the Steiner forest problem.

Key Results

Agrawal, Klein and Ravi [1,2] give an approximation algo-
rithm for the Steiner forest problem that achieves an ap-
proximation ratio of 2. More precisely, the authors prove
the following theorem.

Theorem 1 There exists an approximation algorithm that
for every instance I = (G; c; R) of the Steiner forest problem,
computes a feasible forest F such that

c(F) �
�
2 �

1
k

�
� OPT(I) ;

where k is the number of terminal pairs in R and OPT(I) is
the cost of an optimal Steiner forest for I.

Related Work

The Steiner tree problem is NP-hard [10] and APX-com-
plete [4,8]. The current best lower bound on the achiev-
able approximation ratio for the Steiner tree problem
is 1.0074 [21]. Goemans and Williamson [11] general-
ized the results obtained by Agrawal, Klein and Ravi to
a larger class of connectivity problems, which they term
constrained forest problems. For the Steiner forest problem,
their algorithm achieves the same approximation ratio of
(2 � 1/k). The algorithms of Agrawal, Klein and Ravi [2]
and Goemans and Williamson [11] are both based on the
classical undirected cut formulation for the Steiner for-
est problem [3]. The integrality gap of this relaxation is
known to be (2 � 1/k) and the results in [2,11] are there-
fore tight. Jain [15] presents a 2-approximation algorithm
for the generalized Steiner network problem.

Primal-Dual Algorithm

The main ideas of the algorithm by Agrawal, Klein and
Ravi [2] are sketched below; subsequently, AKR is used to
refer to this algorithm. The description given here differs
from the one in [2]; the interested reader is referred to [2]
for more details.

The algorithm is based on the following integer pro-
gramming formulation for the Steiner forest problem. Let
I = (G; c; R) be an instance of the Steiner forest problem.
Associate an indicator variable xe 2 f0; 1gwith every edge
e 2 E. The value of xe is 1 if e is part of the forest F and 0
otherwise. A subset S 
 V of the vertices is called a Steiner
cut if there exists at least one terminal pair (si ; ti ) 2 R
such that jfsi ; tig \ Sj = 1; S is said to separate terminal
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pair (si, ti). Let S be the set of all Steiner cuts. For a subset
S 
 V , define ı(S) as the the set of all edges in E that have
exactly one endpoint in S. Given a Steiner cut S 2 S, any
feasible solution F of I must contain at least one edge that
crosses the cut S, i. e.,

P
e2ı(S) xe � 1. This gives rise to the

following undirected cut formulation:

minimize
X
e2E

c(e)xe (IP)

subject to
X

e2ı(S)

xe � 1 8S 2 S (1)

xe 2 f0; 1g 8e 2 E : (2)

The dual of the linear programming relaxation of (IP) has
a variable yS for every Steiner cut S 2 S. There is a con-
straint for every edge e 2 E that requires that the total dual
assigned to sets S 2 S that contain exactly one endpoint of
e is at most the cost c(e) of the edge:

maximize
X
S2S

yS (D)

subject to
X

S2S : e2ı(S)

yS � c(e) 8e 2 E (3)

yS � 0 8S 2 S : (4)

Algorithm AKR is based on the primal-dual schema (see,
e. g., [22]). That is, the algorithm constructs both a fea-
sible primal solution for (IP) and a feasible dual solution
for (D). The algorithm starts with an infeasible primal
solution and reduces its degree of infeasibility as it pro-
gresses. At the same time, it creates a feasible dual packing
of subsets of large total value by raising dual variables of
Steiner cuts.

One can think of an execution of AKR as a process over
time. Let x� and y� , respectively, be the primal incidence
vector and feasible dual solution at time � . Initially, let
x0e = 0 for all e 2 E and y0S = 0 for all S 2 S. Let F� denote
the forest corresponding to the set of edges with x�e = 1.
A tree T in F� is called active at time � if it contains a ter-
minal that is separated from its mate; otherwise it is inac-
tive. Intuitively, AKR grows trees in F� that are active. At
the same time, the algorithm raises dual values of Steiner
cuts that correspond to active trees. If two active trees col-
lide, they are merged. The process terminates if all trees
are inactive and thus there are no unconnected terminal
pairs. The interplay of the primal (growing trees) and the
dual process (raising duals) is somewhat subtle and out-
lined next.

An edge e 2 E is tight if the corresponding con-
straint (3) holds with equality; a path is tight if all its edges
are tight. Let H� be the subgraph of G that is induced by

the tight edges for dual y� . The connected components of
H� induce a partition C� on the vertex setV . Let S� be the
set of all Steiner cuts contained in C� , i. e., S� = C� \ S.
AKR raises the dual values yS for all sets S 2 S� uniformly
at all times � � 0. Note that y� is dual feasible. The algo-
rithm maintains the invariant that F� is a subgraph of H�

at all times. Consider the event that a path P between two
trees T1 and T2 of F� becomes tight. The missing edges of
P are then added to F� and the process continues. Eventu-
ally, all trees in F� are inactive and the process halts.

Applications

The computation of (approximate) solutions for the
Steiner forest problem has various applications both in
theory and practice; only a few recent developments are
mentioned here.

Algorithms for more complex network design prob-
lems often rely on good approximation algorithms for the
Steiner forest problem. For example, the recent approxi-
mation algorithms [6,9,12] for the multi-commodity rent-
or-buy problem (MRoB) are based on the random sam-
pling framework by Gupta et al. [12,13]. The framework
uses a Steiner forest approximation algorithm that satis-
fies a certain strictness property as a subroutine. Fleischer
et al. [9] show that AKR meets this strictness requirement,
which leads to the current best 5-approximation algorithm
for MRoB. The strictness property also plays a crucial role
in the boosted sampling framework by Gupta et al. [14]
for two-stage stochastic optimization problems with re-
course.

Online versions of Steiner tree and forest problems
have been studied by by Awerbuch et al. [5] and Berman
and Coulston [7]. In the area of algorithmic game theory,
the development of group-strategyproof cost sharing mech-
anisms for network design problems such as the Steiner
tree problem has recently received a lot of attention; see
e. g., [16,17,19,20]. An adaptation of AKR yields such a cost
sharing mechanism for the Steiner forest problem [18].

Cross References
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Definition

Given a set of points, called terminals, in a metric space,
the problem is to find the shortest tree interconnecting
all terminals. There are three important metric spaces for
Steiner trees, the Euclidean plane, the rectilinear plane,
and the edge-weighted network. The Steiner tree prob-
lems in those metric spaces are called the Euclidean Steiner
Tree (EST), the Rectilinear Steiner Tree (RST), and the
Network Steiner Tree (NST), respectively. EST and RST
has been found to have polynomial-time approximation
schemes (PTAS) by using adaptive partition. However, for
NST, there exists a positive number r such that comput-
ing r-approximation is NP-hard. So far, the best perfor-
mance ratio of polynomial-time approximation for NST is
achieved by k-restricted Steiner trees. However, in prac-
tice, the iterated 1-Steiner tree is used very often. Actu-
ally, the iterated 1-Steiner was proposed as a candidate
of good approximation for Steiner minimum trees a long
time ago. It has a very good record in computer experi-
ments, but no correct analysis was given showing the iter-
ated 1-Steiner tree having a performance ratio better than
that of the minimum spanning tree until the recent work
by Du et al.[9]. There is minimal difference in construction
of the 3-restricted Steiner tree and the iterated 1-Steiner
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tree, which makes a big difference in analysis of those two
types of trees. Why does the difficulty of analysis make so
much difference? This will be explained in this article.

History and Background

The Steiner tree problem was proposed by Gauss in
1835 as a generalization of the Fermat problem. Given
three points A, B, and C in the Euclidean plane, Fer-
mat studied the problem of finding a point S to minimize
jSAj + jSBj + jSCj. He determined that when all three in-
ner angles of triangle ABC are less than 120°, the optimal S
should be at the position that †ASB = †BSC = †CSA =
120ı.

The generalization of the Fermat problem has two di-
rections:
1. Given n points in the Euclidean plane, find a point S

to minimize the total distance from S to n given points.
This is still called the Fermat problem.

2. Given n points in the Euclidean plane, find the shortest
network interconnecting all given points.
Gauss found the second generalization through com-

munication with Schumacher. On March 19, 1836, Schu-
macher wrote a letter to Gauss and mentioned a paradox
about Fermat’s problem: Consider a convex quadrilateral
ABCD. It is known that the solution of Fermat’s problem
for four points A, B, C, and D is the intersection E of di-
agonals AC and BD. Suppose extending DA and CB can
obtain an intersection F. Now, move A and B to F. Then E
will also be moved to F. However, when the angle at F is
less than 120°, the point F cannot be the solution of Fer-
mat’s problem for three given points F, D, and C. What
happens? (Fig. 1.)

On March 21, 1836, Gauss wrote a letter replying to
Schumacher in which he explained that the mistake of
Schumacher’s paradox occurs at the place where Fermat’s
problem for four points A, B, C, and D is changed to

Steiner Trees, Figure 1

Fermat’s problem for three points F, C, and D. When
A and B are identical to F, the total distance from E to
four points A, B, C, andD equals 2jEFj + jECj + jEDj, not
jEFj + jECj + jEDj. Thus, the point E may not be the so-
lution of Fermat’s problem for F, C, and D. More impor-
tantly, Gauss proposed a new problem. He said that it is
more interesting to find the shortest network rather than
a point. Gauss also presented several possible connections
of the shortest network for four given points.

It was unfortunate that Gauss’ letter was not seen by
researchers of Steiner trees at an earlier stage. Especially, R.
Courant and H. Robbins who in their popular bookWhat
ismathematics? (published in 1941) [6] calledGauss’ prob-
lem the Steiner tree so that “Steiner tree” became a popular
name for the problem.

The Steiner tree became an important research topic in
mathematics and computer science due to its applications
in telecommunication and computer networks. Starting
with Gilbert and Pollak’s work published in 1968, many
publications on Steiner trees have been generated to solve
various problems concerning it.

One well-known problem is the Gilbert–Pollak con-
jecture on the Steiner ratio, which is the least ratio of
lengths between the Steiner minimum tree and the mini-
mum spanning tree on the same set of given points. Gilbert
and Pollak in 1968 conjectured that the Steiner ratio in the
Euclidean plane is

p
3/2 which is achieved by three vertices

of an equilateral triangle. A great deal of research effort has
been put into the conjecture and it was finally proved by
Du and Hwang [7].

Another important problem is called the better ap-
proximation. For a long time no approximation could
be proved to have a performance ratio smaller than the
inverse of the Steiner ratio. Zelikovsky [14] made the
first breakthrough. He found a polynomial-time 11/6-
approximation for NST which beats 1/2, the inverse of
the Steiner ratio in the edge-weighted network. Later,
Berman and Ramaiye [2] gave a polynomial-time 92/72-
approximation for RST and Du, Zhang, and Feng [8]
closed the story by showing that in any metric space, there
exists a polynomial-time approximation with a perfor-
mance ratio better than the inverse of the Steiner ratio
provided that for any set of a fixed number of points, the
Steiner minimum tree is polynomial-time computable.

All the above better approximations came from the
family of k-restricted Steiner trees. By improving some de-
tail of construction, the constant performance ratio was
decreasing, but the improvements were also becoming
smaller. In 1996, Arora [1] made significant progress for
EST and RST. He showed the existence of PTAS for EST
and RST. Therefore, the theoretical researchers now pay
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more attention to NST. Bern and [3] showed that NST is
MAX SNP-complete. This means that there exists a posi-
tive number r, computing the r-approximation for NST is
NP-hard. The best-known performance for NSTwas given
by Robin and Zelikovsky [12]. They also gave a very simple
analysis to a well-known heuristic, the iterated 1-Steiner
tree for pseudo-bipartite graphs.

Analysis of the iterated 1-Steiner tree is another long-
standing open problem. Since Chang [4,5] proposed that
the iterated 1-Steiner tree approximates the Steiner min-
imum tree in 1972, its performance has been claimed
to be very good through computer experiments[10,13],
but no theoretical analysis supported this claim. Actually,
both the k-restricted Steiner tree and the iterated 1-Steiner
tree are obtained by greedy algorithms, but with different
types of potential functions. For the iterated 1-Steiner tree,
the potential function is non-submodular, but for the k-
restricted Steiner tree, it is submodular; a property that
holds for k-restricted Steiner trees may not hold for iter-
ated 1-Steiner trees. Actually, the submodularity of poten-
tial function is very important in analysis of greedy ap-
proximations [11]. Du et al. [9] gave a correct analysis for
the iterated 1-Steiner tree with a general technique to deal
with non-submodular potential function.

Key Results

Consider input edge-weighted graph G = (V ; E) of NST.
Assume that G is a complete graph and the edge-weight
satisfies the triangular inequality, otherwise, consider the
complete graph onV with each edge (u, v) having a weight
equal to the length of the shortest path between u and v in
G. Given a set P of terminals, a Steiner tree is a tree inter-
connecting all given terminals such that every leaf is a ter-
minal.

In a Steiner tree, a terminal may have degreemore than
one. The Steiner tree can be decomposed, at those termi-
nals with degreemore than one, into smaller trees in which
every terminal is a leaf. In such a decomposition, each re-
sulting small tree is called a full component. The size of
a full component is the number of terminals in it. A Steiner
tree is k-restricted if every full component of it has a size at
most k. The shortest k-restricted Steiner tree is also called
the k-restricted Steiner minimum tree. Its length is denoted
by smtk(P). Clearly, smt2(P) is the length of the minimum
spanning tree on P, which is also denoted by mst(P). Let
smt(P) denote the length of the Steiner minimum tree on
P. If smt3(P) can be computed in polynomial-time, then
it is better than mst(P) for an approximation of smt(P).
However, so far no polynomial-time approximation has
been found for smt3(P). Therefore, Zelikovsky [14] used

a greedy approximation of smt3(P) to approximate smt(P).
Actually, Chang [4,5] used a similar greedy algorithm to
compute an iterated 1-Steiner tree. Let F be a family of
subgraphs of input edge-weighted graph G. For any con-
nected subgraph H, denote by mst(H) the length of the
minimum spanning tree ofH and for any subgraphH, de-
note by mst(H) the sum of mst(H0) for H0 over all con-
nected components ofH. Define

gain(H) = mst(P) � mst(P : H)� mst(H) ;

where mst(P : H) is the length of the minimum spanning
tree interconnecting all unconnected terminals in P after
every edge of H shrinks into a point.

Greedy Algorithm H ;;
while P has not been interconnected by H do

choose F 2 F to maximize gain(H [ F);
output mst(H).

When F consists of all full components of size at most
three, this greedy algorithm gives the 3-restricted Steiner
tree of Zelikovsky [14]. WhenF consists of all 3-stars and
all edges where a 3-star is a tree with three leaves and a cen-
tral vertex, this greedy algorithm produces the iterated 1-
Steiner tree. An interesting fact pointed out by Du et al. [9]
is that the function gain(�) is submodular over all full com-
ponents of size at most three, but not submodular over all
3-stars and edges.

Let us consider a base set E and a function f from all
subsets of E to real numbers. f is submodular if for any two
subsets A, B of E,

f (A) + f (B) � f (A[ B) + f (A\ B) :

For x 2 E and A 
 E, denote�x f (A) = f (A[fxg)� f (A).

Lemma 1 f is submodular if and only if for any A � E and
distinct x; y 2 E � A,

�x�y f (A) � 0 : (1)

Proof Suppose f is submodular. Set B = A[ fxg
and C = A[ fyg. Then B [ C = A[ A[ fx; yg and
B \ C = A. Therefore, one has

f (A[ fx; yg)� f (A[ fxg)� f (A[ fyg) + f (A) � 0 ;

that is, (1) holds.
Conversely, suppose (1) holds for any A � E and dis-

tinct x; y 2 E � A. Consider two subsets A; B of E. If
A 
 B or B 
 A, it is trivial to have

f (A) + f (B) � f (A[ B) + f (A\ B) :
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Therefore, one may assume that A n B ¤ ; and
B n A¤ ;. Write A n B = fx1; : : : ; xkg and B n A = fy1;
: : : ; yhg. Then

f (A[ B) � f (A) � f (B) + f (A\ B)

=
kX
i=1

hX
j=1

�xi�y j f (A[ fx1; : : : ; xi�1g [ fy1; : : : ; y j�1g)

� 0 ;

where fx1; : : : xi�1g = ; for i = 1 and fy1; : : : ; y j�1g = ;
for j = 1. �

Lemma 2 Define f (H) = �mst(P : H). Then f is submod-
ular over edge set E.

Proof Note that for any two distinct edges x and y not in
subgraph H,

�x� f (H)
= �mst(P : H [ x [ y) + mst(P : H [ x)
+ mst(P : H [ y) � mst(P : H)

= (mst(P : H) � mst(P : H [ x [ y))
� (mst(P : H)� mst(P : H [ x)) + (mst(P : H)
� mst(P : H [ y)) :

Let T be a minimum spanning tree for unconnected termi-
nals after every edge of H shrinks into a point. T contains
a path Px connecting two endpoints of x and also a path
Py connecting two endpoints of y. Let ex (ey) be a longest
edge in Px (Py). Then

mst(P : H)� mst(P : H [ x) = l eng th(ex ) ;
mst(P : H) � mst(P : H [ y) = l eng th(ey) :

mst(P : H)� mst(P : H [ x [ y) can be computed as fol-
lows: Choose a longest edge e0 from Px [ Py . Note
that T [ x [ y � e0 contains a unique cycle Q. Choose
a longest edge e00 from (Px [ Py) \ Q. Then

mst(P : H)�mst(P : H[x[y) = l eng th(e0)+l eng th(e00):

Now, to show the submodularity of f , it suffices to prove

l eng th(ex )+ l eng th(ey) � l eng th(e0)+ l eng th(e00): (2)

Case 1. ex 62 Px \ Py and ey 62 Px \ Py . Without loss of
generality, assume l eng th(ex ) � l eng th(ey). Then one
may choose e0 = ex so that (Px [ Py) \ Q = Py . Hence
one can choose e00 = ey . Therefore, the equality holds
for (2).

Steiner Trees, Figure 2

Case 2. ex 62 Px \ Py and ey 2 Px \ Py . Clearly,
l eng th(ex ) � l eng th(ey). Hence, one may choose e0 = ex
so that (Px [ Py) \ Q = Py . Hence one can choose
e00 = ey . Therefore, the equality holds for (2).

Case 3. ex 2 Px \ Py and ey 62 Px \ Py . Similar to
Case 2.

Case 4. ex 2 Px \ Py and ey 2 Px \ Py . In this
case, l eng th(ex ) = l eng th(ey) = l eng th(e0). Hence, (2)
holds. �

The following explains that the submodularity of gain(�)
holds for a k-restricted Steiner tree.

Proposition Let E be the set of all full components of
a Steiner tree. Then gain(�) as a function on the power set
of E is submodular.

Proof Note that for anyH � E and x; y 2 E �H ,

�x�ymst(H) = 0 ;

where H = [z2H z. Thus, this proposition follows from
Lemma 2. �

Let F be the set of 3-stars and edges chosen in the
greedy algorithm to produce an iterated 1-Steiner tree.
Then gain(�) may not be submodular on F . To see this
fact, consider two 3-stars x and y in Fig. 2. Note that
gain(x [ y) > gain(x); gain(y) � 0 and gain(;) = 0.
One has

gain(x [ y) � gain(x) � gain(y) + gain(;) > 0 :

Applications

The Steiner tree problem is a classic NP-hard problem
with many applications in the design of computer circuits,
long-distance telephone lines, multicast routing in com-
munication networks, etc. There exist many heuristics of
the greedy-type for Steiner trees in the literature. Most of
them have a good performance in computer experiments,
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without support from theoretical analysis. The approach
given in this work may apply to them.

Open Problems

It is still open whether computing the 3-restricted Steiner
minimum tree is NP-hard or not. For k � 4, it is known
that computing the k-restricted Steiner minimum tree is
NP-hard.

Cross References
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ProblemDefinition

Scheduling is concerned with the allocation of scarce re-
sources (such as machines or servers) to competing ac-
tivities (such as jobs or customers) over time. The dis-
tinguishing feature of a stochastic scheduling problem
is that some of the relevant data are modeled as ran-
dom variables, whose distributions are known, but whose
actual realizations are not. Stochastic scheduling prob-
lems inherit several characteristics of their determinis-
tic counterparts. In particular, there are virtually an un-
limited number of problem types depending on the ma-
chine environment (single machine, parallel machines, job
shops, flow shops), processing characteristics (preemptive
versus non-preemptive; batch scheduling versus allowing
jobs to arrive “over time”; due-dates; deadlines) and ob-
jectives (makespan, weighted completion time, weighted
flow time, weighted tardiness). Furthermore, stochastic
scheduling models have some new, interesting features (or
difficulties!):
� The scheduler may be able to make inferences about

the remaining processing time of a job by using infor-
mation about its elapsed processing time; whether the
scheduler is allowed to make use of this information or
not is a question for the modeler.

� Many scheduling algorithms make decisions by com-
paring the processing times of jobs. If jobs have de-
terministic processing times, this poses no problems
as there is only one way to compare them. If the pro-
cessing times are random variables, comparing pro-
cessing times is a subtle issue. There are many ways to
compare pairs of random variables, and some are only
partial orders. Thus any algorithm that operates by
comparing processing times must now specify the par-
ticular ordering used to compare random variables
(and to determine what to do if two random variables
are not comparable under the specified ordering).

These considerations lead to the notion of a scheduling
policy, which specifies how the scarce resources have to
be allocated to the competing activities as a function of
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the state of the system at any point in time. The state of
the system includes information such as prior job com-
pletions, the elapsed time of jobs currently in service, the
realizations of the random release dates and due-dates (if
any), and any other information that can be inferred based
on the history observed so far. A policy that is allowed
to make use of all this information is said to be dynamic,
whereas a policy that is not allowed to use any state infor-
mation is static.

Given any policy, the objective function for a stochas-
tic scheduling model operating under that policy is typi-
cally a random variable. Thus comparison of two policies
entails the comparison of the associated random variables,
so the sense in which these random variables are compared
must be specified. A common approach is to find a so-
lution that optimizes the expected value of the objective
function (which has the advantage that it is a total order-
ing); less commonly, other orderings such as the stochastic
ordering or the likelihood ratio ordering are used.

Key Results

Consider a single machine that processes n jobs, with the
(random) processing time of job i given by a distribu-
tion Fi(�) whose mean is pi. The Weighted Shortest Ex-
pected Processing Time first (WSEPT) rule sequences the
jobs in decreasing order of wi /pi . Smith [13] proved that
the WSEPT rule minimizes the sum of weighted comple-
tion times when the processing times are deterministic.
Rothkopf [11] generalized this result and proved the fol-
lowing:

Theorem 1 The WSEPT rule minimizes the expected sum
of the weighted completion times in the class of all nonpre-
emptive dynamic policies (and hence also in the class of all
nonpreemptive static policies).

If preemption is allowed, the WSEPT rule is not optimal.
Nevertheless, Sevcik [12] showed how to assign an “in-
dex” to each job at each point in time such that scheduling
a job with the largest index at each point in time is optimal.
Such policies are called index policies and have been inves-
tigated extensively because they are (relatively) simple to
implement and analyze. Often the optimality of index poli-
cies can be proved under some assumptions on the pro-
cessing time distributions. For instance, Weber, Varaiya,
and Walrand [14] proved the following result for schedul-
ing n jobs on m identical parallel machines:

Theorem 2 The SEPT rule minimizes the expected sum of
completion times in the class of all nonpreemptive dynamic
polices, if the processing time distributions of the jobs are
stochastically ordered.

For the same problem but with the makespan objective,
Bruno, Downey, and Frederickson [3] proved the optimal-
ity of the Longest Expected Processing Time first rule pro-
vided all the jobs have exponentially distributed process-
ing times.

One of the most significant achievements in stochas-
tic scheduling is the proof of optimality of index policies
for themulti-armed bandit problem and its many variants,
due originally to Gittins and Jones [5,6]. In an instance of
the bandit problem there are N projects, each of which is
in any one of a possibly finite number of states. At each
(discrete) time, any one of the projects can be attempted,
resulting in a random reward; the attempted project un-
dergoes a (Markovian) state-transition, whereas the other
projects remain frozen and do not change state. The goal
of the decisionmaker is to determine an optimal way to at-
tempt the projects so as to maximize the total discounted
reward. Of course one can solve this problem as a large,
stochastic dynamic program, but such an approach does
not reveal any structure, and is moreover computationally
impractical except for very small problems. (Also, if the
state space of any project is countable or infinite, it is not
clear how one can solve the resulting DP exactly!) The re-
markable result of Gittins and Jones [5] is the optimality of
index policies: to each state of each project, one can asso-
ciate an index so that attempting a project with the largest
index at any point in time is optimal. The original proof of
Gittins and Jones [5] has subsequently been simplified by
many authors; moreover, several alternative proofs based
on different techniques have appeared, leading to a much
better understanding of the class of problems for which in-
dex policies are optimal.[2,4,6,10,17]

While index policies are easy to implement and ana-
lyze, they are often not optimal in many problems. It is
therefore natural to investigate the gap between an opti-
mal index policy (or a natural heuristic) and an optimal
policy. For example, the WSEPT rule is a natural heuris-
tic for the problem of scheduling jobs on identical parallel
machines to minimize the expected sum of the weighted
completion times. However, the WSEPT rule is not nec-
essarily optimal. Weiss [16] showed that, under mild and
reasonable assumptions, the expected number of times
that the WSEPT rule differs from the optimal decision is
bounded above by a constant, independent of the num-
ber of jobs. Thus, the WSEPT rule is asymptotically opti-
mal. As another example of a similar result, Whittle [18]
generalized the multi-armed bandit model to allow for
state-transitions in projects that are not activated, giving
rise to the “restless bandit” model. For this model, Whit-
tle [18] proposed an index policy whose asymptotic opti-
mality was established by Weber andWeiss [15].
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A number of stochastic scheduling models allow for
jobs to arrive over time according to a stochastic process.
A commonly used model in this setting is that of a mul-
ticlass queueing network. Multiclass queueing networks
serve as useful models for problems in which several types
of activities compete for a limited number of shared re-
sources. They generalize deterministic job-shop problems
in two ways: jobs arrive over time, and each job has a ran-
dom processing time at each stage. The optimal control
problem in a multiclass queueing network is to find an op-
timal allocation of the available resources to activities over
time. Not surprisingly, index policies are optimal only for
restricted versions of this general model. An important ex-
ample is scheduling a multiclass single-server system with
feedback: there are N types of jobs, type i jobs arrive ac-
cording to a Poisson process with rate �i , require service
according to a service-time distribution Fi(�) with mean
processing time si, and incur holding costs at rate ci per
unit time. A type i job after undergoing processing be-
comes a type j job with probability pij, or exits the sys-
tem with probability 1 �

P
j pi j . The objective is to find

a scheduling policy that minimizes the expected holding
cost rate in steady-state. Klimov [9] proved the optimality
of index policies for this model, as well as for the objective
in which the total discounted holding cost is to be min-
imized. While the optimality result does not hold when
there are many parallel machines, Glazebrook and Niño-
Mora [7] showed that this rule is asymptotically optimal.
For more general models, the prevailing approach is to use
approximations such as fluid approximations [1] or diffu-
sion approximations [8].

Applications

Stochastic scheduling models are applicable in many set-
tings, most prominently in computer and communication
networks, call centers, logistics and transportation, and
manufacturing systems [4,10].
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ProblemDefinition

The problem is to sort a set of strings into lexicographical
order. More formally: A string over an alphabet ˙ is a fi-
nite sequence x1x2x3 : : : xk where xi 2 ˙ for i = 1; : : : ; k.
The xi’s are called the characters of the string, and k is the
length of the string. If the alphabet ˙ is ordered, the lexi-
cographical order on the set of strings over˙ is defined by
declaring a string x = x1x2x3 : : : xk smaller than a string
y = y1y2y3 : : : yl if either there exists a j � 1 such that
xi = yi for 1 � i < j and x j < y j , or if k < l and xi = yi
for 1 � i � k. Given a set S of strings over some ordered
alphabet, the problem is to sort S according to lexicograph-
ical order.

The input to the string sorting problem consists of an
array of pointers to the strings to be sorted. The output is
a permutation of the array of pointers, such that traversing
the array will point to the strings in non-decreasing lexico-
graphical order.

The complexity of string sorting depends on the alpha-
bet as well as the machine model. The main solution [15]
described in this entry works for alphabets of unbounded
size (i. e., comparisons are the only operations on charac-
ters of˙), and can be implemented on a pointer machine.
See below for more information on the asymptotic com-
plexity of string sorting in various settings.

Key Results

This section is structured as follows: first the key result
appearing in title of this entry [15] is described, then an
overview of other relevant results in the area of string sort-
ing is given.

The string sorting algorithm proposed by Bentley and
Sedgewick in 1997 [15] is called Three-Way Radix Quick-
sort [5]. It works for unbounded alphabets, for which it
achieves optimal performance.

Theorem 1 The algorithm Three-Way Radix Quicksort
sorts K strings of total length N in time O(K log K + N).

That this time complexity is optimal follows by consider-
ing strings of the form bbb : : : bx, where all x’s are dif-
ferent: Sorting the strings can be no faster than sorting
the x’s, and all b’s must be read (else an adversary could
change one unread b to a or c, making the returned or-
der incorrect). Amore precise version of the bounds above
(upper as well as lower) is K log K + D, whereD is the sum
of the lengths of the distinguishing prefixes of the strings.
The distinguishing prefix ds of a string s in a set S is the
shortest prefix of s which is not a prefix of another string
in S (or is s itself, if s is a prefix of another string). Clearly,
K � D � N .

The Three-Way Radix Quicksort of Bentley and
Sedgewick is not the first algorithm to achieve this com-
plexity—however, it is a very simple and elegant way of do-
ing it. As demonstrated in [3,15], it is also very fast in prac-
tice. Although various elements of the algorithm had been
noted earlier, their practical usefulness for string sorting
was overlooked until the work in [15].

Three-Way Radix Quicksort is shown in pseudo-code
in Fig. 1 (adapted from [5]), where S is a list of strings
to be sorted and d is an integer. To sort S, an initial call
SORT(S, 1) is made. The value sd denotes the dth charac-
ter of the string s, and + denotes concatenation. The pre-
sentation in Fig. 1 assumes that all strings end in a special

SORT(S, d)
IF jSj � 1:

RETURN
Choose a partitioning character
v 2 fsd j s 2 Sg
S< = fs 2 S j sd < vg
S= = fs 2 S j sd = vg
S> = fs 2 S j sd > vg
SORT(S<; d)
IF v ¤ EOS:

SORT(S=; d + 1)
SORT(S>; d)
S = S< + S= + S>

String Sorting, Figure 1
Three-Way Radix Quicksort (assuming each string ends in a spe-
cial EOS character)
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End-Of-String (EOS) character (such as the null charac-
ter in C). In an actual implementation, S will be an array
of pointers to strings, and the sort will in-place (using an
in-place method from standard Quicksort for three-way
partitioning of the array into segments holding S<, S=, and
S>), rendering concatenation superfluous.

Correctness follows from the following invariant be-
ing maintained by the algorithm: At the start of a call
SORT(S, d), all strings in S agree on the first d � 1 char-
acters.

Time complexity depends on how the partitioning
character v is chosen. One particular choice is the me-
dian of all the dth characters (including doublets) of the
strings in S. Partitioning and median finding can be done
in time O(|S|), which is O(1) time per string partitioned.
Hence, the total running time of the algorithm is the sum
over all strings of the number of partitionings they take
part in. For each string, let a partitioning be of type I if
the string ends up in S< or S>, and of type II if it ends up
in S=. For a string s, type II can only occur |ds| times and
type I can only occur logK times. Hence, the running time
is O(K logK + D).

Like for standard Quicksort, median finding impairs
the constant factors of the algorithm, and more practical
choices of partitioning character include selecting a ran-
dom element among all the dth characters of the strings
in S, and selecting the median of three elements in this set.
The worst-case bound is lost, but the result is a fast, ran-
domized algorithm.

Note that the ternary recursion tree of Three-Way
Radix Quicksort is equivalent to a trie over the strings
sorted, with trie nodes implemented by binary trees
(where the elements stored in a binary tree are the char-
acters of the trie edges leaving the trie node). The equiva-
lence is as follows: an edge representing a recursive call on
S< or S> corresponds to an edge of a binary tree (imple-
menting a trie node), and an edge representing a recursive
call on S= corresponds to a trie edge leading to a child node
in the trie. This trie implementation is named Ternary
Search Trees in [15]. Hence, Three-Way Radix Quicksort
may additionally be viewed as a construction algorithm for
an efficient dictionary structure for strings.

For the version of the algorithmwhere the partitioning
character v is chosen as the median of all the dth charac-
ters, it is not hard to see that the binary trees represent-
ing the trie nodes become weighted trees, i. e., binary trees
in which each element x has an associated weight wx, and
searches for x takesO(logW/wx ), whereW = ˙xwx is the
sum of all weights in the binary tree. The weight of a bi-
nary tree node storing character x is the number of strings
in the trie which reside below the trie edge labeled with

character x and leaving the trie node represented by the
binary tree. As shown in [13], in such a trie implementa-
tion searching for a string P among K stored strings takes
time O(log K + jPj), which is optimal for unbounded (i. e.,
comparison-based) alphabets.

Other key results in the area of string sorting are now
described. The classic string sorting algorithm is Radix-
sort, which assumes a constant sized alphabet. The Least-
Significant-Digit-first variant is easy to implement, and
runs in O(N + l j˙ j) time, where l is the length of the
longest string. The Most-Significant-Digit-first variant is
more complicated to implement, but has a better running
time of O(D + dj˙ j), where D is the sum of the lengths
of the distinguishing prefixes, and d is the longest dis-
tinguishing prefix. [12] discusses in depth efficient imple-
mentations of Radixsort.

If the alphabet consists of integers, then on a word-
RAM the complexity of string sorting is essentially de-
termined by the complexity of integer sorting. More pre-
cisely, the time (when allowing randomization) for sort-
ing strings is 	(SortInt(K) + N), where SortInt(K) is the
time to sort K integers [2], which currently is known to
be O(K

p
log logK) [11].

Returning to comparison-based model, the pa-
pers [8,10] give generic methods for turning any data
structure over one-dimensional keys into a data struc-
ture over strings. Using finger search trees, this gives
an adaptive sorting method for strings which uses
O(N + K log(F/K)) time, where F is the number of inver-
sions among the strings to be sorted.

Concerning space complexity, it has been shown [9]
that string sorting can still be done in O(K log K + N) time
using onlyO(1) space besides the strings themselves.How-
ever, this assumes that all strings have equal lengths.

All algorithms so far are designed to work in inter-
nal memory, where CPU time is assumed to be the dom-
inating factor. For external memory computation, a more
relevant cost measure is the number of I/Os performed,
as captured by the I/O-model [1], which models a two-
level memory hierarchy with an infinite outer memory,
an inner memory of size M, and transfer (I/Os) between
the two levels taking place in blocks of size B. In exter-
nal memory, upper bounds were first given in [4], along
with matching lower bounds in restricted I/O-models.
For a comparison based model where strings may only
be moved in blocks of size B (hence, characters may not
be moved individually), it is shown that string sorting
takes 	(N1/B logM/B(N1/B) + K2 logM/B K2 + N/B) I/Os,
where N1 is the total length of strings shorter than B char-
acters, K2 is the number of strings of at least B char-
acters, and N is the total number of characters. This
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bound is equal to the sum of the I/O costs of sort-
ing the characters of the short strings, sorting B char-
acters from each of the long strings, and scanning all
strings. In the same paper, slightly better bounds in
a model where characters may be moved individually
in internal memory are given, as well as some upper
bounds for non-comparison based string sorting. Fur-
ther bounds (using randomization) for non-comparison
based string sorting have been given, with I/O bounds
of O(K/B logM/B(K/M) log logM/B(K/M) + N/B) [7] and1

O(K/B(logM/B(N/M))2 log2 K + N/B).
Returning to internal memory, it may also there be

the case that memory hierarchy effects are the determin-
ing factor for the running time of algorithms, but now due
to cache faults rather than disk I/Os. Heuristic algorithms
(i. e., algorithms without good worst case bounds), aim-
ing at minimizing cache faults for internal memory string
sorting, have been developed. Of these, the Burstsort line
of algorithms [16] have particularly promising experimen-
tal results reported.

Applications

Data sets consisting partly or entirely of string data are
very common: Most database applications have strings as
one of the data types used, and in some areas, such as
bioinformatics, web retrieval, and word processing, string
data is predominant. Additionally, strings form a general
and fundamental data model, containing e. g. integers and
multi-dimensional data as special cases. Since sorting is ar-
guably among the most important data processing tasks
in any domain, string sorting is a general and important
problem with wide practical applications.

Open Problems

As appears from the bounds discussed above, the asymp-
totic complexity of the string sorting problem is known
for comparison based alphabets. For integer alphabets on
the word-RAM, the problem is almost closed in the sense
that it is equivalent to integer sorting, for which the gap
left between the known bounds and the trivial linear lower
bound is small.

In external memory, the situation is less settled. As
noted in [4], a natural upper bound to hope for in
a comparison based setting is to meet the lower bound
of 	(K/B logM/B K/M + N/B) I/Os, which is the sorting
bound for K single characters plus the complexity of scan-
ning the input. The currently known upper bounds only

1Ferragina, personal communication.

gets close to this if leaving the comparison based setting
and allowing randomization.

Further open problems include adaptive sorting algo-
rithms for other measures of presortedness than that used
in [8,10], and algorithms for sorting general strings (not
necessarily of equal lengths) using only O(1) additional
space [9].

Experimental Results

In [15], experimental comparison of two implementations
(one simple and one tuned) of Three-Way Radix Quick-
sort with a tuned Quicksort [6] and a tuned Radixsort [12]
showed the simple implementation to always outperform
the Quicksort implementation, and the tuned implemen-
tation to be competitive with the Radixsort implementa-
tion.

In [3], experimental comparison among existing and
new Radixsort implementations (including the one used
in [15]), as well as tuned Quicksort and tuned Three-Way
Radix Quicksort was performed. This study confirms the
picture of Three-Way Radix Quicksort as very competi-
tive, always being one of the fastest algorithms, and ar-
guably the most robust across various input distributions.

Data Sets

The data sets used in [15]: http://www.cs.princeton.edu/
~rs/strings/. The data sets used in [3]: http://www.jea.acm.
org/1998/AnderssonRadixsort/.

URL to Code

Code in C from [15]:
http://www.cs.princeton.edu/~rs/strings/.
Code in C from [3]:
http://www.jea.acm.org/1998/AnderssonRadixsort/.
Code in Java from [14]:
http://www.cs.princeton.edu/~rs/Algs3.java1-4/code.txt.
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ProblemDefinition

The Substring Parsimony Problem, introduced by Blan-
chette et al. [1] in the context of motif discovery in biolog-

ical sequences, can be described in a more general frame-
work:
Input:
� A discrete space S on which an integral distance d is

defined (i. e. d(x; y) 2 N 8x; y 2 S).
� A rooted binary tree T = (V ; E) with n leaves. Vertices

are labeled f1; 2; : : : ; n; : : : ; jV jg, where the leaves are
vertices f1; 2; : : : ; ng.

� Finite sets S1; S2; : : : ; Sn , where set Si 
 S is assigned
to leaf i, for all i = 1 : : : n.

� A non-negative integer t
Output: All solutions of the form (x1; x2; : : : ; xn ; : : : ; xjV j)
such that:
� xi 2 S for all i = 1 : : : jV j
� xi 2 Si for all i = 1 : : : n
�
P

(u;v)2E d(xu ; xv) � t
The problem thus consists of choosing one element xi
from each set Si such that the Steiner distance of the set
of points is at most t. This is done on a Steiner tree T of
fixed topology. The case where jSi j = 1 for all i = 1 : : : n
is a standard Steiner tree problem on a fixed tree topology
(see [11]). It is known as the Maximum Parsimony Prob-
lem and its complexity depends on the space S.

Key Results

The substring parsimony problem can be solved using
a dynamic programming algorithm. Let u 2 V and s 2 S.
Let Wu[s] be the score of the best solution that can be ob-
tained for the subtree rooted at node u, under the con-
straint that node u is labeled with s, i. e.

Wu[s] = min
x1;:::;x

jVj2S
xu=s

X
(i; j)2E

i; j2subtree(u)

d(xi ; x j) :

Let v be a child of u, and let X(u;v)[s] be the score of the
best solution that can be obtained for the subtree consist-
ing of node u together with the subtree rooted at its child
v, under the constraint that node u is labeled with s:

X(u;v)[s] = min
x1;:::;x

jVj2S
xu=s

X
(i; j)2E

i; j2subtree(v)[f(u;v)g

d(xi ; x j) :

Then, we have:

Wu[s] =

8
<̂
:̂

0 if u is a leaf and s 2 Su
+1 if u is a leaf and s … SuP
v2children(u)

X(u;v)[s] if u is not a leaf

and

X(u;v)[s] = min
y02S

Wu[s0] + d(s; s0) :
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Tables W and X can thus be computed using a dy-
namic programming algorithm, proceeding in a post-
order traversal of the tree. Solutions can then be recov-
ered by tracing the computation back for all s such that
Wroot[s] � t. Note that the same solution may be recov-
ered more than once in this process.

A straight-forward implementation of this dynamic
programming algorithm would run in time O(n � jSj2 �
� (S)), where � (S) is the time needed to compute the dis-
tance between any two points in S. Let Na(S) be the
maximum number of a-neighbors a point in S can have,
i. e. Na(S) = maxx2S jfy 2 S : d(x; y) = agj. Blanchette et
al. [3] showed how to use a modified breadth-first search
of the space S to compute each table X(u;v) in time
O(jSj � N1(S)), thus reducing the total time complexity to
O(n � jSj � N1(S)). Since only solutions with a score of at
most t are of interest, the complexity can be further re-
duced by only computing those table entries which will
yield a score of at most t. This results in an algorithm
whose running time is O(n �M � Nbt/2c(S) � N1(S)) where
M = maxi=1:::n jSi j.

The problem has been mostly studied in the context
of biological sequence analysis, where S = fA;C;G; Tgk ,
for some small k (k = 5; : : : ; 20 are typical values). The
distance d is the Hamming distance, and a phylogenetic
tree T is given. The case where jSi j = 1 for all i = 1 : : : n
is known as the Maximum Parsimony Problem and can
be solved in time O(n � k) using Fitch’s algorithm [9]
or Sankoff’s algorithm [12]. In the more general ver-
sion, a long DNA sequence Pu of length L is assigned
to each leaf u. The set Su is defined as the set of all
k-substrings of Pu. In this case, M = L � k + 1 2 O(L),
and Na 2 O(min(4k ; (3k)a)), resulting in a complexity of
O(n � L � 3k �min(4k ; (3k)bd/2c)). Notice that for a fixed k
and d, the algorithm is linear over the whole sequence.
The problem was independently shown to be NP-hard by
Blanchette et al. [3] and by Elias [7].

Applications

Most applications are found in computational biology,
although the algorithm can be applied to a wide vari-
ety of domains. The algorithm for the substring parsi-
mony problem has been implemented in a software pack-
age called FootPrinter [5] and applied to the detection of
transcription factor binding sites in orthologous DNA reg-
ulatory sequences through a method called phylogenetic
footprinting [4]. Other applications include the search for
conserved RNA secondary structure motifs in ortholo-
gous RNA sequences [2]. Variants of the problem have
been defined to identify motifs regulating alternative splic-

ing [13]. Blanchette et al. [3] study a relaxation of the prob-
lem where one does not require that a substring be cho-
sen from each of the input sequences, but instead asks
that substrings be chosen from a sufficiently large subset of
the input sequence. Fang and Blanchette [8] formulate an-
other variant of the problem where substring choices are
constrained to respect a partial order relation defined by
a set of local multiple sequence alignments.

Open Problems

Optimizations taking advantage of the specific structure
of the space S may yield more efficient algorithms in cer-
tain cases. Many important variations could be consid-
ered. First, the case where the tree topology is not given
needs to be considered, although the resulting problems
would usually be NP-hard even when jSi j = 1. Another
important variation is one where the phylogenetic rela-
tionships between trees is not given by a tree but rather
by a phylogenetic network [10]. Finally, randomized algo-
rithms similar to those proposed by Buhler et al. [6] may
yield important and practical improvements.

URL to Code

http://bio.cs.washington.edu/software.html

Cross References

� Closest Substring
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� Statistical Multiple Alignment
� Steiner Trees
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Succinct balanced parentheses

ProblemDefinition

This problem is to design succinct representation of bal-
anced parentheses in a manner in which a number of
“natural” queries can be supported quickly, and use it
to represent trees and graphs succinctly. The problem of
succinctly representing balanced parentheses was initially
proposed by Jacobson [6] in 1989, when he proposed suc-
cinct data structures, i. e. data structures that occupy space
close to the information-theoretic lower bound to repre-
sent them, while supporting efficient navigational opera-
tions. Succinct data structures provide solutions to ma-
nipulate large data in modern applications. The work of
Munro and Raman [8] provides an optimal solution to the
problem of balanced parentheses representation under the
word RAM model, based on which they design succinct
trees and graphs.

Balanced Parentheses

Given a balanced parenthesis sequence of length 2n, where
there are n opening parentheses and n closing parentheses,
consider the following operations:
� findclose(i) (findopen(i)), the matching closing

(opening) parenthesis for the opening (closing) paren-
thesis at position i;

� excess(i), the number of opening parentheses minus
the number of closing parentheses in the sequence up
to (and including) position i;

� enclose(i), the closest enclosing (matching paren-
thesis) pair of a given matching parenthesis pair whose
opening parenthesis is at position i.

Trees

There are essentially two forms of trees. An ordinal tree is
a rooted tree in which the children of a node are ordered
and specified by their ranks, while in a cardinal tree of de-
gree k, each child of a node is identified by a unique num-
ber from the set f1; 2; � � � ; kg. An binary tree is a cardinal
tree of degree 2. The information-theoretic lower bound
of representing an ordinal tree or binary tree of n nodes
is 2n � o(n) bits, as there are

�2n
n
�
/(n + 1) different ordinal

trees or binary trees.
Consider the following operations on ordinal trees

(a node is referred to by its preorder number):
� child(x,i), the ith child of node x for i � 1;
� child_rank(x), the number of left siblings of node

x;
� depth(x), the depth of x, i. e. the number of edges in

the rooted path to node x;
� parent(x), the parent of node x;
� nbdesc(x), the number of descendants of node x;
� height(x), the height of the subtree rooted at node x;
� LCA(x,y), the lowest common ancestor of node x and

node y.
On binary trees, the operations parent, nbdesc and the
following operations are considered:
� leftchild(x) (rightchild(x)), the left (right)

child of node x.

Graphs

Consider an undirected graph G of n vertices andm edges.
Bernhart and Kainen [1] introduced the concept of page
book embedding. A k-book embedding of a graph is a topo-
logical embedding of it in a book of k pages that speci-
fies the ordering of the vertices along the spine, and car-
ries each edge into the interior of one page, such that the
edges on a given page do not intersect. Thus, a graph with



Succinct Data Structures for Parentheses Matching S 913

Succinct Data Structures for Parentheses Matching, Figure 1
An example of the balanced parenthesis sequence of a given or-
dinal tree

one page is an outerplanar graph. The pagenumber or book
thickness [1] of a graph is the minimum number of pages
that the graph can be embedded in. A very common type
of graphs are planar graphs, and any planar graph can be
embedded in at most 4 pages [15]. Consider the following
operations on graphs:
� adjacency(x,y), whether vertices x and y are adja-

cent;
� degree(x), the degree of vertex x;
� neighbors(x), the neighbors of vertex x.

Key Results

All the results cited are under the word RAM model with
word size 	(lg n) bits1, where n is the size of the problem
considered.

Theorem 1 ([8]) A sequence of balanced parentheses of
length 2n can be represented using 2n + o(n) bits to sup-
port the operations findclose, findopen, excess
and enclose in constant time.

There is a polymorphism between a balanced parenthesis
sequence and an ordinal tree: when performing a depth-
first traversal of the tree, output an opening parenthesis
each time a node is visited, and a closing parenthesis im-
mediately after all the descendants of a node are visited
(see Fig. 1 for an example). Thework ofMunro andRaman
proposes a succinct representation of ordinal trees using
2n + o(n) bits to support depth, parent and nbdesc
in constant time, and child(x,i) in O(i) time. Lu and
Yeh have further extended this representation to support
child, child_rank, height and LCA in constant
time.

1lg n denotes dlog2 ne.

Theorem 2 ([8,7]) An ordinal tree of n nodes can be
represented using 2n + o(n) bits to support the opera-
tions child, child_rank, parent, depth, nbdesc,
height and LCA in constant time.

A similar approach can be used to represent binary trees:

Theorem 3 ([8]) A binary tree of n nodes can be rep-
resented using 2n + o(n) bits to support the operations
leftchild, rightchild, parent and nbdesc in
constant time.

Finally, balanced parentheses can be used to represent
graphs. To represent a one-page graph, the work of Munro
and Raman proposes to list the vertices from left to right
along the spine, and each node is represented by a pair
of parentheses, followed by zero or more closing paren-
theses and then zero or more opening parentheses, where
the number of closing (or opening) parentheses is equal to
the number of adjacent vertices to its left (or right) along
the spine (see Fig. 2 for an example). This representation
can be applied to each page to represent a graph with pa-
genumber k.

Theorem 4 ([8]) An outerplanar graph of n vertices and
m edges can be represented using 2n + 2m + o(n + m) bits
to support operations adjacency and degree in con-
stant time, and neighbors(x) in time proportional to the
degree of x.

Theorem 5 ([8]) A graph of n vertices and m edges with
pagenumber k can be represented using 2kn+2m+o(nk+m)
bits to support operations adjacency and degree in
O(k) time, and neighbors(x) in O(d(x) + k) time where
d(x) is the degree of x. In particular, a planar graph of n ver-
tices and m nodes can be represented using 8n + 2m + o(n)
bits to support operations adjacency and degree in
constant time, and neighbors(x) in O(d(x)) time where
d(x) is the degree of x.

Applications

Succinct Representation of Suffix Trees

As a result of the growth of the textual data in databases
and on the World Wide Web, and also applications in
bioinformatics, various indexing techniques have been de-
veloped to facilitate pattern searching. Suffix trees [14] are
a popular type of text indexes. A suffix tree is constructed
over the suffixes of the text as a tree-based data structure,
so that queries can be performed by searching the suffixes
of the text. It takes O(m) time to use a suffix tree to check
whether an arbitrary pattern P of length m is a substring
of a given text T of length n, and to count the number
of the occurrences, occ, of P in T. O(occ) additional time
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Succinct Data Structures for Parentheses Matching, Figure 2
An example of the balanced parenthesis sequence of a graph with one page

is required to list all the occurrences of P in T. However,
a standard representation of a suffix tree requires some-
where between 4n lg n and 6n lg n bits, which is impracti-
cal for many applications.

By reducing the space cost of representing the tree
structure of a suffix tree (using the work of Munro and
Raman), Munro, Raman and Rao [9] have designed space-
efficient suffix trees. Given a string of n characters over
a fixed alphabet, they can represent a suffix tree using
n lg n + O(n) bits to support the search of a pattern in
O(m + occ) time. To achieve this result, they have also ex-
tended the work of Munro and Raman to support vari-
ous operations to retrieve the leaves of a given subtree in
an ordinal tree. Based on similar ideas and by applying
compressed suffix arrays [5], Sadakane [13] has proposed
a different trade-off; his compressed suffix tree occupies
O(n lg �) bits, where � is the size of the alphabet, and can
support any algorithm on a suffix tree with a slight slow-
down of a factor of polylog(n).

Succinct Representation of Functions

Munro and Rao [11] have considered the problem of suc-
cinctly representing a given function, f : [n]! [n], to
support the computation of f k(i) for an arbitrary integer
k. The straightforward representation of a function is to
store the sequence f (i), for i = 0; 1; : : : ; n � 1. This takes
n lg n bits, which is optimal. However, the computation of
f k(i) takes	(k) time even in the easier case when k is pos-
itive. To address this problem, Munro and Rao [11] first
extends the representation of balanced parenthesis to sup-
port the next_excess(i,k) operator, which returns the
minimum j such that j > i and excess( j) = k. They fur-
ther use this operator to support the level_anc(x,i) op-
erator on succinct ordinal trees, which returns the ith an-
cestor of node x for i � 0 (given a node x at depth d, its ith
ancestor is the ancestor of x at depth d � i). Then, using
succinct ordinal trees with the support for level_anc,
they propose a succinct representation of functions using
(1 + �)n lg n + O(1) bits for any fixed positive constant �,

to support f k(i) in constant time when k > 0, and f k(i) in
O(1 + j f k(i)j) time when k < 0.

Multiple Parentheses and Graphs

Chuang et al. [3] have proposed to succinctly represent
multiple parentheses, which is a string of O(1) types of
parentheses that may be unbalanced. They have extended
the operations on balanced parentheses to multiple paren-
theses and designed a succinct representation. Based on
the properties of canonical orderings for planar graphs,
they have used multiple parentheses and the succinct or-
dinal trees to represent planar graphs. One of their main
results is a succinct representation of planar graphs of
n vertices and m edges in 2m + (5 + �)n + o(m + n) bits,
for any constant � > 0, to support the operations sup-
ported on planar graphs in Theorem 5 in asymptotically
the same amount of time. Chiang et al. [2] have further re-
duced the space cost to 2m + 3n + o(m + n) bits. In their
paper, they have also shown how to support the opera-
tion wrapped(i), which returns the number of match-
ing parenthesis pairs whose closest enclosing (matching
parenthesis) pair is the pair whose opening parenthesis is
at position i, in constant time on balanced parentheses.
They have used it to show how to support the operation
degree(x), which returns the degree of node x (i. e. the
number of its children), in constant time on succinct ordi-
nal trees.

Open Problems

One open research area is to support more operations on
succinct trees. For example, it is not known how to support
the operation to convert a given node’s rank in a preorder
traversal into its rank in a level-order traversal.

Another open research area is to further reduce the
space cost of succinct planar graphs. It is not known
whether it is possible to further improve the encoding of
Chiang et al. [2].
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A third direction for future work is to design succinct
representations of dynamic trees and graphs. There have
been some preliminary results by Munro et al. [10] on
succinctly representing dynamic binary trees, which have
been further improved by Raman and Rao [12]. It may
be possible to further improve these results, and there are
other related dynamic data structures that do not have suc-
cinct representations.

Experimental Results

Geary et al. [4] have engineered the implementation of
succinct ordinal trees based on balanced parentheses. They
have performed experiments on large XML trees. Their
implementation uses orders of magnitude less space than
the standard pointed-based representation, while support-
ing tree traversal operations with only a slight slowdown.

Cross References

� Compressed Suffix Array
� Compressed Text Indexing
� Rank and Select Operations on Binary Strings
� Succinct Encoding of Permutations: Applications to

Text Indexing
� Text Indexing
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ProblemDefinition

A succinct data structure for a given data type is a repre-
sentation of the underlying combinatorial object that uses
an amount of space “close” to the information theoretic
lower bound together with algorithms that support op-
erations of the data type “quickly.” A natural example is
the representation of a binary tree [5]: an arbitrary binary
tree on n nodes can be represented in 2n + o(n) bits while
supporting a variety of operations on any node, which in-
clude finding its parent, its left or right child, and return-
ing the size of its subtree, each in O(1) time. As there are�2n
n
�
/(n + 1) binary trees on n nodes and the logarithm of

this term1 is 2n � o(n), the space used by this representa-
tion is optimal to within a lower-order term.

In the applications considered in this entry, the prin-
ciple concern is with indexes supporting search in strings
and in XML-like documents (i. e., tree-structured objects
with labels and “free text” at various nodes). As it happens,
not only labeled trees but also arbitrary binary relations

1All logarithms are taken to the base 2. By convention, the iterated
logarithm is denoted by lg(i) n; hence, lg lg lg x is lg(3) x.

http://dx.doi.org/10.1007/s00224-006-1198-x
http://dx.doi.org/10.1007/s00224-006-1198-x
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A permutation on f1; : : : ; 8g, with two cycles and three back pointers. The full black lines correspond to the permutation, the dashed
lines to the back pointers and the gray lines to the edges traversed to compute ��1(3)

over finite domains are key building blocks for this. Pre-
processing such data structures so as to be able to perform
searches is a complex process requiring a variety of subor-
dinate structures.

A basic building block for this work is the represen-
tation of a permutation of the integers f0; : : : ; n�1g, de-
noted by [n]. A permutation 
 is trivially representable in
ndlg ne bits which is within O(n) bits of the information
theoretic bound of lg(n!). The interesting problem is to
support both the permutation and its inverse: namely, how
to represent an arbitrary permutation 
 on [n] in a suc-
cinct manner so that 
 k(i) (
 iteratively applied k times
starting at i, where k can be any integer so that 
�1 is the
inverse of 
) can be evaluated quickly.

Key Results

Munro et al. [7] studied the problem of succinctly rep-
resenting a permutation to support computing 
 k(i)
quickly. They give two solutions: one supports the opera-
tions arbitrarily quickly, at the cost of extra space; the other
uses essentially optimal space at the cost of slower evalua-
tion.

Given an integer parameter t, the permutations 
 and

�1 can be supported by simply writing down 
 in an ar-
ray of n words of dlg ne bits each, plus an auxiliary array
S of at most n/t shortcuts or back pointers. In each cycle
of length at least t, every tth element has a pointer t steps
back. 
(i) is simply the ith value in the primary struc-
ture, and 
�1(i) is found by moving forward until a back
pointer is found and then continuing to follow the cycle
to the location that contains the value i. The trick is in the
encoding of the locations of the back pointers: this is done
with a simple bit vectorB of length n, in which a 1 indicates
that a back pointer is associated with a given location. B is
augmented using o(n) additional bits so that the number of
1’s up to a given position and the position of the rth 1 can

be found in constant time (i. e., using the rank and select
operations on binary strings [8]). This gives the location of
the appropriate back pointer in the auxiliary array S.

For example, the permutation 
 = (4; 8; 6; 3; 5; 2; 1; 7)
consists of two cycles, (1; 4; 3; 6; 2; 8; 7) and (5) (Fig. 1).
For t = 3, the back pointers are cycling backward between
1, 6 and 7 in the largest cycle (there are none in the other
because it is smaller than t). To find 
�1(3), follow 
 from
3 to 6, observe that 6 is a back pointer because it is marked
by the second 1 in B, and follow the second value of S to
1, then follow 
 from 1 to 4 and then to 3: the predecessor
of 3 has been found. As there are back pointers every t el-
ements in the cycle, finding the predecessor requires O(t)
memory accesses.

For arbitrary i and k, 
 k(i) is supported by writ-
ing the cycles of 
 together with a bit vector B mark-
ing the beginning of each cycle. Observe that the cycle
representation itself is a permutation in “standard form,”
call it � . For example, the permutation 
 = (6; 4; 3; 5; 2; 1)
has three cycles f(1; 6); (3); (2; 5; 4)g and is encoded by
the permutation � = (1; 6; 3; 2; 5; 4) and the bit vector
B = (1; 0; 1; 1; 0; 0). The first task is to find i in the rep-
resentation: it is in position ��1(i). The segment of the
representation containing i is found through the rank and
select operations on B. From this 
 k(i) is easily deter-
mined by taking k modulo the cycle length and moving
that number of steps around the cycle starting at the posi-
tion of i.

Other than the support of the inverse of � , all opera-
tions are performed in constant time; hence, the total time
depends on the value chosen for t.

Theorem 1 (Munro et al. [7]) There is a representa-
tion of an arbitrary permutation 
 on [n] using at most
(1+")n lg n+O(n) bits that can support the operation 
 k()
in time O(1/"), for any constant " less than 1 and for any
arbitrary value of k.
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It is not difficult to prove that this technique is optimal
under a restricted model of a pointer machine. So, for ex-
ample, using O(n) extra bits (i. e., O(n/ lg n) extra words),
˝(lg n) time is necessary to compute both 
 and 
�1.
However, using another approachMunro et al. [7] demon-
strated that the lower bound suggested does not hold in the
RAMmodel. The approach is based on the Benes network,
a communication network composed of switches that can
be used to implement permutations.

Theorem 2 (Munro et al. [7]) There is a representa-
tion of an arbitrary permutation 
 on [n] using at most
dlg(n!)e + O(n) bits that can support the operation 
 k() in
time O(lg n/ lg(2) n).

While this data structure uses less space than the other,
it requires more time for each operation. It is not known
whether this time bound can be improved using only O(n)
“extra space.” As a consequence, the first data structure is
used in all applications. Obviously, any other solution can
be used, potentially with a better time/space trade-off.

Applications

The results on permutations are particularly useful for two
lines of research: first in the extension of the results on per-
mutation to arbitrary integer functions; and second, and
probably more importantly, in encoding and indexing text
strings, which themselves are used to encode sparse binary
relations and labeled trees. This section summarizes some
of these results.

Functions

Munro and Rao [9] extended the results on permutations
to arbitrary functions from [n] to [n]. Again f k(i) in-
dicates the function iterated k times starting at i. If k is
nonnegative, this is straightforward. The case in which k
is negative is more interesting as the image is a (possi-
bly empty) multiset over [n] (see Fig. 2 for an example).
Whereas 
 is a set of cycles, f can be viewed as a set of
cycles in which each node is the root of a tree. Starting at
any node (element of [n]), the evaluation moves one step
toward the root of the tree or one step along a cycle (e. g.,
f (8) = 7; f (10) = 11). Moving k steps in a positive direc-
tion is straightforward; one moves up a tree and perhaps
around a cycle (e. g. f 5(9) = f 3(9) = 3) When k is nega-
tive one must determine all nodes of distance k from the
starting location, i, in the direction towards the leaves of
the trees (e. g., f�1(13) = f1; 11; 12g, f�1(3) = f4; 5g). The
key technical issue is to run across succinct tree represen-
tations picking off all nodes at the appropriate levels.

Theorem 3 (Munro and Rao [9]) For any fixed ", there
is a representation of a function f : [n] ! [n] that takes
(1+")n lg n+O(1) bits of space, and supports f k(i) in O(1+
j f k(i)j) time, for any integer k and for any i 2 [n].

Text Strings

Indexing text strings to support the search for patterns is
an important general issue. Barbay et al. [2] considered
“negative” searches, along the following lines.

Definition 1 Consider a string S[1; n] over the alphabet
[l]. A position x 2 [n]matches a literal ˛ 2 [l] if S[x] = ˛.
A position x 2 [n] matches a literal ¯̨ if S[x] ¤ ˛. The set
f1̄; : : : ; l̄g is denoted by [ l̄].

Given a string S of length n over an alphabet of size l, for
any position x in the string, any literal ˛ 2 [l][ [ l̄] and
any integer r, consider the following operators:
� string_rankS(˛; x): the number of occurrences of
˛ in S[1::x];

� string_selectS(˛; r): the position of the rth oc-
currence of ˛ in S, or1 if none exists;

� string_accessS(x): the label S[x];
� string_predS(˛; x): the last occurrence of ˛ in

S[1 : : : x], or1 if none exists;
� string_succS(˛; r): the first occurrence of ˛ in

S[x : : :], or1 if none exists.
Golynski et al. [4] observed that a string of length l on al-
phabet [l] can be encoded and indexed by a permutation
on [l] (which for each label lists the positions of all its oc-
currences) together with a bit vector of length 2l (which
signals the end of each sublist of occurrences correspond-
ing to a label). For instance, the string ACCA on alpha-
bet fA; B;C;Dg is encoded by the permutation (1; 4; 2; 3)
and the bit vector (0; 0; 1; 1; 1; 0; 0; 1). Golynski et al. were
then able to support the operators rank, select and access
in time O(lg(2) n), by using a value of t = lg(2) n in the en-
coding of permutation of Theorem 1.

This encoding achieves fast support for the search op-
erators defined above restricted to labels (not literals), with
a small overhead in space, by integrating the encodings of
the text and the indexing information. Barbay et al. [2] ex-
tended those operators to literals, and showed how to sep-
arate the succinct encoding of the string S, in a manner that
assumes we can access a word of S in a fixed time bound,
and a succinct index containing auxiliary information use-
ful to support the search operators defined above.

Theorem 4 (Barbay et al. [2]) Given access to a label
in the raw encoding of a string S 2 [l]n in time f (n, l),
there is a succinct index using n(1 + o(lg l)) bits that sup-
ports the operators string_rankS , string_predS
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Succinct Encoding of Permutations: Applications to Text Indexing, Figure 2
A function on f1; : : : ; 13g, with three cycles and two nontrivial tree structures

and string_succS for any literal ˛ 2 [l] [ [ l̄] in
O(lg(2) l � lg(3) l � ( f (n; t) + lg(2) l)) time, and the opera-
tor string_selectS for any label ˛ 2 [l] in O(lg(3) l �
( f (n; t) + lg(2) l)) time.

The separation between the encoding of the string or of
an XML-like document and its index has twomain advan-
tages:
1. The string can now be compressed and searched at the

same time, provided that the compressed encoding of
the string supports the access in reasonable time, as
does the one described by Ferragina and Venturini [3].

2. The operators can be supported for several orderings
of the string, for instance, induced by distinct traver-
sals of a labeled tree, with only a small cost in space.
It is important, for instance, when those orders corre-
spond to various traversals of a labeled structure, such
as the depth-first and Depth First Uniary Degree Se-
quence (DFUDS) traversals of a labeled tree [2].

Binary Relations

Given two ordered sets of sizes l and n, denoted by [l] and
[n], a binary relation R between these sets is a subset of
their Cartesian product, i. e., R � [l]�[n]. It is used, for
instance, to represent the relation between a set of labels
[l] and a set of objects [n].

Although a string can be seen as a particular case of
a binary relation, where the objects are positions and ex-
actly one label is associated with each position, the search
operations on binary relations are diverse, including oper-
ators on both the labels and the objects. For any literal ˛,
object x and integer r, consider the following operators:
� label_rankR(˛; x): the number of objects labeled ˛

preceding or equal to x;
� label_selectR(˛; r): the position of the rth object

labeled ˛ if any, or1 otherwise;
� label_nbR (˛), the number of objects with label ˛;

� object_rankR(x; ˛): the number of labels associ-
ated with object x preceding or equal to label ˛;

� object_selectR(x; r): the rth label associated with
object x, if any, or1 otherwise;

� object_nbR(x): the number of labels associated with
object x;

� table_accessR(x; ˛): checks whether object x is
associated with label ˛.

Barbay et al. [1] observed that such a binary relation, con-
sisting of t pairs from [n] � [l], can be encoded as a text
string S listing the t labels, and a binary string B indicating
how many labels are associated with each object. So search
operations on the objects associated with a fixed label are
reduced to a combination of operators on text and binary
strings. Using a more direct reduction to the encoding of
permutations, the index of the binary relation can be sep-
arated from its encoding, and even more operators can be
supported [2].

Theorem 5 (Barbay et al. [2]) Given support for
object_accessR in f (n; l ; t) time on a binary relation
formed by t pairs from an object set [n] and a label set [l],
there is a succinct index using t(1 + o(lg l)) bits that sup-
ports label_rankR for any literal ˛ 2 [l] [ [ l̄] and
label_accessR for any label ˛ 2 [l] in O(lg(2) l � lg(3) l �
( f (n; l ; t) + lg(2) l)) time, and label_selectR for any
label ˛ 2 [l] in O(lg(3) l � ( f (n; l ; t) + lg(2) l)) time.

To conclude this entry, note that a labeled tree T can be
represented by an ordinal tree coding its structure [6] and
a string S listing the labels of the nodes. If the labels are
listed in preorder (respectively in DFUDS order) the oper-
ator string_succS enumerates all the descendants (re-
spectively children) of a node matching some literal ˛. Us-
ing succinct indexes, a single encoding of the labels and
the support of a permutation between orders is sufficient
to implement both enumerations, and other search opera-
tors on the labels. These issues, along with strings and la-
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beled trees compression techniques which achieve the en-
tropy of the indexed data, are covered in more detail in the
entries cited in� Tree Compression and Indexing.

Cross References

� Compressed Suffix Array
� Compressed Text Indexing
� Rank and Select Operations on Binary Strings
� Text Indexing
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ProblemDefinition

The suffix array [5,14] is the lexicographically sorted array
of all the suffixes of a string. It is a popular text index struc-
ture with many applications. The subject of this entry are
algorithms that construct the suffix array.

More precisely, the input to a suffix array construc-
tion algorithm is a text string T = T[0; n) = t0t1 � � � tn�1,
i. e., a sequence of n characters from an alphabet ˙ . For
i 2 [0; n], let Si denote the suffix T[i; n) = ti ti+1 � � � tn�1.
The output is the suffix array SA[0; n] of T, a permutation
of [0; n] satisfying SSA[0] < SSA[1] < � � � < SSA[n], where
< denotes the lexicographic order of strings.

Two specificmodels for the alphabet˙ are considered.
An ordered alphabet is an arbitrary ordered set with con-
stant time character comparisons. An integer alphabet is
the integer range [1; n]. There is also a result that holds for
any alphabet.

Many applications require that the suffix array is aug-
mentedwith additional information, most commonly with
the longest common prefix array LCP[0; n). An entry
LCP[i] of the LCP array is the length of the longest com-
mon prefix of the suffixes SSA[i] and SSA[i+1]. The en-
hanced suffix array [1] adds two more arrays to obtain
a full range of text index functionalities.

Another related array, the Burrows–Wheeler transform
BWT[0; n) is often computed by suffix array construc-
tion using the equations BWT[i] = T[SA[i] � 1] when
SA[i] ¤ 0 and BWT[i] = T[n � 1] when SA[i] = 0.

There are other important text indexes, most notably
suffix trees and compressed text indexes, covered in sep-
arate entries. Each of these indexes have their own con-
struction algorithms, but they can also be constructed effi-
ciently from each other. However, in this entry, the focus is
on direct suffix array construction algorithms that do not
rely on other text indexes.

Key Results

The naive approach to suffix array construction is to use
a general sorting algorithm or an algorithm for sorting
strings. However, any such algorithm has a worst-case
time complexity˝(n2) because the total length of the suf-
fixes is˝(n2).

The first efficient algorithms were based on the dou-
bling technique of Karp, Miller, and Rosenberg [8]. The
idea is to assign a rank to all substrings whose length is
a power of two. The rank tells the lexicographic order of
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the substring among substrings of the same length. Given
the ranks for substrings of length h, the ranks for sub-
strings of length 2h can be computed using a radixsort step
in linear time (doubling). The technique was first applied
to suffix array construction by Manber and Myers [14].
The best practical algorithm based on the technique is by
Larsson and Sadakane [13].

Theorem 1 (Manber and Myers [14]; Larsson and
Sadakane [13]) The suffix array can be constructed in
O(n log n)worst-case time, which is optimal for the ordered
alphabet.

Faster algorithms for the integer alphabet are based on
a different technique, recursion. The basic procedure is as
follows.
1. Sort a subset of the suffixes. This is done by construct-

ing a shorter string, whose suffix array gives the order of
the desired subset. The suffix array of the shorter string
is constructed by recursion.

2. Extend the subset order to full order.
The technique first appeared in suffix tree construction [4],
but 2003 saw the independent and simultaneous publica-
tion of three linear time suffix array construction algo-
rithms based on the approach but not using suffix trees.
Each of the three algorithms uses a different subset of suf-
fixes requiring a different implementation of the second
step.

Theorem 2 (Kärkkäinen, Sanders and Burkhardt [7];
Kim el al. [10]; Ko and Aluru [11]) The suffix array can
be constructed in the optimal linear time for the integer al-
phabet.

The algorithm of Kärkkäinen, Sanders, and Burkhardt [7]
has generalizations for several parallel and hierarchical
memory models of computation including an optimal al-
gorithm for external memory and a linear work algorithm
for the BSP model.

The above algorithms andmany other suffix array con-
struction algorithms are surveyed in [18].

The ˝(n log n) lower bound for the ordered alphabet
mentioned in Theorem 1 comes from the sorting complex-
ity of characters, since the initial characters of the sorted
suffixes are the text characters in sorted order. Theorem 2
allows a generalization of this result. For any alphabet, one
can first sort the characters of T, remove duplicates, as-
sign a rank to each character, and construct a new string
T 0 over the alphabet [1; n] by replacing the characters of T
with their ranks. The suffix array of T 0 is exactly the same
as the suffix array of T. Optimal algorithms for the integer
alphabet then give the following result.

Theorem 3 For any alphabet, the complexity of suffix ar-
ray construction is the same as the complexity of sorting the
characters of the string.

The result extends to the related arrays.

Theorem 4 (Kasai et al. [9]; Abouelhoda, Kurtz and
Ohlebusch [1]) The LCP array, the enhanced suffix ar-
ray, and the BWT can be computed in linear time given the
suffix array.

One of the main advantages of suffix arrays over suffix
trees is their smaller space requirement (by a constant
factor), and a significant effort has been spent making
construction algorithms space efficient, too. A technique
based on the notion of difference covers gives the following
results.

Theorem 5 (Burkhardt and Kärkkäinen [2]; Kärkkäi-
nen, Sanders and Burkhardt [7]) For any v = O(n2/3),
the suffix array can be constructed in O(n(v + log n)) time
for the ordered alphabet and in O(nv) time for the integer
alphabet usingO(n/pv) space in addition to the input (the
string T) and the output (the suffix array).

Kärkkäinen [6] uses the difference cover technique to con-
struct the suffix array in blocks without ever storing the
full suffix array obtaining the following result for comput-
ing the BWT.

Theorem 6 (Kärkkäinen [6]) For any v = O(n2/3), the
BWT can be constructed inO(n(v + log n)) time for the or-
dered alphabet using O(n/pv) space in addition to the in-
put (the string T) and the output (the BWT).

Compressed text index construction algorithms are alter-
natives to space-efficient BWT computation.

Applications

The suffix array is a simple and powerful text index struc-
ture with numerous applications detailed in the entry Text
Indexing. In addition, due to the existence of efficient and
practical construction algorithms, the suffix array is often
used as an intermediate data structure in computing some-
thing else. The BWT is usually computed from the suffix
array and has applications in text compression and com-
pressed index construction. The suffix tree is also easy to
construct given the suffix array and the LCP array.

Open Problems

Theoretically, the suffix array construction problem is es-
sentially solved. The development of ever more efficient
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practical algorithms is still going on with several different
nontrivial heuristics available [18] including very recent
ones [15].

Experimental Results

An experimental comparison of a large number of suffix
array construction algorithms is presented in [18]. The
best algorithms in the comparison are the algorithm by
Maniscalco and Puglisi [15], which is the fastest but has
an ˝(n2) worst-case complexity, and a variant of the al-
gorithm by Burkhardt and Kärkkäinen [2], which is the
fastest among algorithms with good worst-case complex-
ity. Both algorithms are also space efficient. The algorithm
of Manzini and Ferragina [17] is still slightly more space
efficient and also very fast in practice.

There are also experiments with parallel [12] and ex-
ternal memory algorithms [3]. Variants of the algorithm
by Kärkkäinen, Sanders and Burkhardt [7] show high per-
formance and scalability in both cases.

Algorithms for computing the LCP array from the suf-
fix array are compared in [16].

Data Sets

The input to a suffix array construction algorithm is sim-
ply a text, so an abundance of data exists. Commonly used
text collections include the Canterbury Corpus at http://
corpus.canterbury.ac.nz/, the corpus compiled byManzini
and Ferragina at http://www.mfn.unipmn.it/~manzini/
lightweight/corpus/, and the Pizza&Chili Corpus at http://
pizzachili.dcc.uchile.cl/texts.html.

URL to Code

The implementations of many of the algorithms men-
tioned here are publicly available, for example: http://
www.larsson.dogma.net/research.html [13], http://www.
mpi-sb.mpg.de/~sanders/programs/suffix/ [7], and http://
www.cs.helsinki.fi/juha.karkkainen/publications/cpm03.
tar.gz [2]. Manzini provides a package that computes the
LCP array and the BWT, too, at http://www.mfn.unipmn.
it/~manzini/lightweight/index.html. The bzip2 com-
pression program (http://www.bzip.org/) computes the
BWT through suffix array construction.

Cross References
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� Compressed Text Indexing
� String Sorting
� Suffix Tree Construction in Hierarchical Memory
� Suffix Tree Construction in RAM

� Text Indexing
� Two-Dimensional Pattern Indexing
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ProblemDefinition

The suffix tree is the ubiquitous data structure of combi-
natorial pattern matching because of its elegant uses in
a myriad of situations–-just to cite a few, searching, data
compression and mining, bioinformatics [6]. In these ap-
plications, the large data sets now available involve the
use of numerous memory levels which constitute the stor-
age medium of modern PCs: L1 and L2 caches, internal
memory, multiple disks and remote hosts over a network.
The power of this memory organization is that it may be
able to offer the expected access time of the fastest level
(i. e. cache) while keeping the average cost per memory
cell near the one of the cheapest level (i. e. disk), pro-
vided that data are properly cached and delivered to the
requiring algorithms. Neglecting questions pertaining to
the cost of memory references may even prevent the use
of algorithms on large sets of input data. Engineering re-
search is presently trying to improve the input/output
subsystem to reduce the impact of these issues, but it is
very well known [16] that the improvements achievable
by means of a proper arrangement of data and a prop-
erly structured algorithmic computation abundantly sur-
pass the best-expected technology advancements.

The Model of Computation

In order to reason about algorithms and data structures
operating on hierarchical memories, it is necessary to in-
troduce a model of computation that grasps the essence
of real situations so that algorithms that are good in the
model are also good in practice. The model considered
here is the external memory model [16], which received
much attention because of its simplicity and reasonable
accuracy. A computer is abstracted to consist of two mem-
ory levels: the internal memory of size M, and the (un-
bounded) disk memory which operates by reading/writing
data in blocks of size B (called disk pages). The perfor-

mance of algorithms is then evaluated by counting: (a) the
number of disk accesses (I/Os), (b) the internal running
time (CPU time), and (c) the number of disk pages occu-
pied by the data structure or used by the algorithm as its
working space. This simple model suggests, correctly, that
a good external-memory algorithm should exploit both
spatial locality and temporal locality. Of course, “I/O” and
“two-level view” refer to any two levels of the memory hi-
erarchy with their parametersM and B properly set.

Notation

Let S[1; n] be a string drawn from alphabet ˙ , and con-
sider the notation: Si for the ith suffix of string S,lcp(˛; ˇ)
for the longest common prefix between the two strings ˛
and ˇ, and lca(u; v) for the lowest common ancestor be-
tween two nodes u and v in a tree.

The suffix tree of S[1; n], denoted hereafter by TS , is
a tree that stores all suffixes of S# in a compact form,
where # 62 ˙ is a special character (see Fig. 1). TS con-
sists of n leaves, numbered from 1 to n, and any root-to-
leaf path spells out a suffix of S#. The endmarker # guar-
antees that no suffix is the prefix of another suffix in S#.
Each internal node has at least two children and each edge
is labeled with a non empty substring of S. No two edges
out of a node can begin with the same character, and sib-
ling edges are ordered lexicographically according to that
character. Edge labels are encoded with pairs of integers –
say S[x; y] is represented by the pair hx; yi. As a result,
all 	(n2) substrings of S can be represented in O(n) opti-
mal space by TS ’s structure and edge encoding. Further-
more, the rightward scan of the suffix tree leaves gives the
ordered set of S’s suffixes, also known as the suffix array
of S [12]. Notice that the case of a large string collection
� = fS1; S2; : : : ; Skg reduces to the case of one long string
S = S1#1S2#2 � � � Sk#k , where #i 62 ˙ are special symbols.

Numerous algorithms are known that build the suffix
tree optimally in the RAM model (see [3] and references
therein). However, most of them exhibit a marked absence
of locality of references and thus elicit many I/Os when the
size of the indexed string is too large to be fit into the in-
ternal memory of the computer. This is a serious problem
because the slow performance of these algorithms can pre-
vent the suffix tree being used even inmedium-scale appli-
cations. This encyclopedia’s entry surveys algorithmic so-
lutions that deal efficiently with the construction of suffix
trees over large string collections by executing an optimal
number of I/Os. Since it is assumed that the edges leaving
a node in TS are lexicographically sorted, sorting is an ob-
vious lower bound for building suffix trees (consider the
suffix tree of a permutation!). The presented algorithms
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Suffix Tree Construction in Hierarchical Memory, Figure 1
The suffix tree of S = ACACACCG on the left, and its compact edge-encoding on the right. The endmarker # is not shown. Node v
spells out the string ACAC. Each internal node stores the length of its associated string, and each leaf stores the starting position of
its corresponding suffix

DIVIDE-AND-CONQUER ALGORITHM
(1) Construct the string S0[ j] = rank of hS[2 j]; S[2 j + 1]i, and recursively compute TS0 .
(2)Derive fromTS0 the compacted trieTo of all suffixes of S beginning at odd positions.
(3)Derive fromTo the compacted trieTe of all suffixes of S beginning at even positions.
(4)MergeTo andTe into the whole suffix treeTS , as follows:
(4.1) OvermergeTo andTe into the treeTM .
(4.2) Partially unmergeTM to getTS .

Suffix Tree Construction in Hierarchical Memory, Figure 2
The algorithm that builds the suffix tree directly

have sorting as their bottleneck, thus establishing that the
complexity of sorting and suffix tree construction match.

Key Results

Designing a disk-efficient approach to suffix-tree con-
struction has found efficient solutions only in the last few
years [4]. The present section surveys two theoretical ap-
proaches which achieve the best (optimal!) I/O-bounds in
the worst case, the next section will discuss some practical
solutions.

The first algorithm is based on a Divide-and-Conquer
approach that allows us to reduce the construction process
to external-memory sorting and few low-I/O primitives. It
builds the suffix tree TS by executing four (macro)steps,
detailed in Fig. 2. It is not difficult to implement the
first three steps in Sort(n) = O( nB logM/B

n
B ) I/Os [16].

The last (merging) step is the most difficult one and its
I/O-complexity bounds the cost of the overall approach.
[3] proposes an elegant merge for To and Te : substep

(4.1) temporarily relaxes the requirement of getting TS in
one shot, and thus it blindly (over)merges the paths of To
and Te by comparing edges only via their first characters;
then substep (4.2) re-fixes TM by detecting and undoing
in an I/O-efficient manner the (over)merged paths. Note
that the time and I/O-complexity of this algorithm follow
a nice recursive relation: T(n) = T(n/2) + O(Sort(n)).

Theorem 1 (Farach-Colton et al. 1999) Given an ar-
bitrary string S[1; n], its suffix tree can be constructed in
O(Sort(n)) I/Os, O(n log n) time and using O(n/B) disk
pages.

The second algorithm is deceptively simple, elegant and
I/O-optimal, and applies successfully to the construction
of other indexing data structures, like the String B-tree [5].
The key idea is to derive TS from the suffix array AS
and from the lcp array, which stores the longest-com-
mon-prefix length of adjacent suffixes in AS . Its pseu-
docode is given in Fig. 3. Note that Step (1) may deploy
any external-memory algorithm for suffix array construc-
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SUFFIXARRAY-BASED ALGORITHM
(1) Construct the suffix arrayAS and the array lcpS of the string S.
(2) Initially set TS as a single edge connecting the root to a leaf pointing to suffixAS [1].
(2) For i = 2; : : : ; n:
(2.1) Create a new leaf `i that points to the suffixAS [i].
(2.2)Walk up from `i�1 until a node ui is met whose string-length xi is� lcpS [i].
(2.3) If xi = lcpS [i], leaf `i is attached to ui .
(2.4) If xi < lcpS[i], create node u0i with string-length xi , attach it to ui and leaf `i to u0i .

Suffix Tree Construction in Hierarchical Memory, Figure 3
The algorithm that builds the suffix tree passing through the suffix array

tion: Used here is the elegant and optimal Skew algorithm
of [9] which takes O(Sort(n)) I/Os. Step (2) takes a to-
tal of O(n/B) I/Os by using a stack that stores the nodes
on the current rightmost path of TS in reversed order,
i. e. leaf `i is on top. Walking upward, splitting edges or
attaching nodes in TS boils down to popping/pushing
nodes from this stack. As a result, the time and I/O-
complexity of this algorithm follow the recursive relation:
T(n) = T(2n/3) + O(Sort(n)).

Theorem 2 (Kärkkäinen and Sanders 2003) Given an
arbitrary string S[1; n], its suffix tree can be constructed in
O(Sort(n)) I/Os, O(n log n) time and using O(n/B) disk
pages.

It is not evident which one of these two algorithms is better
in practice. The first one exploits a recursion with param-
eter 1/2 but incurs a large space overhead because of the
management of the tree topology; the second one is more
space efficient and easier to implement, but exploits a re-
cursion with parameter 2/3.

Applications

The reader is referred to [4] and [6] for a long list of appli-
cations of large suffix trees.

Open Problems

The recent theoretical and practical achievements mean
the idea that “suffix trees are not practical except when
the text size to handle is so small that the suffix tree fits
in internal memory” is no longer the case [13]. Given
a suffix tree, it is known now (see e. g. [4,10]) how to
map it onto a disk-memory system in order to allow I/O-
efficient traversals for subsequent pattern searches. A for-
tiori, suffix-tree storage and construction are challenging
problems that need further investigation.

Space optimization is closely related to time optimiza-
tion in a disk-memory system, so the design of succinct

suffix-tree implementations is a key issue in order to scale
to Gigabytes of data in reasonable time. This topic is an
active area of theoretical research with many fascinating
solutions (see e. g. [14]), which have not yet been fully ex-
plored in the practical setting.

It is theoretically challenging to design a suffix-tree
construction algorithm that takes optimal I/Os and space
proportional to the entropy of the indexed string. The
more compressible is the string, the lighter should be
the space requirement of this algorithm. Some results are
known [7,10,11], but both issues of compression and I/Os
have not yet been tackled jointly.

Experimental Results

The interest in building large suffix trees arose in the last
few years because of the recent advances in sequencing
technology, which have allowed the rapid accumulation
of DNA and protein data. Some recent papers [1,2,8,15]
proposed new practical algorithms that allow us to scale
to Gbps/hours. Surprisingly enough, these algorithms are
based on disk-inefficient schemes, but they properly se-
lect the insertion order of the suffixes and exploit care-
fully the internal memory as a buffer, so that their perfor-
mance does not suffers significantly from the theoretical
I/O-bottleneck.

In [8] the authors propose an incremental algorithm,
called PrePar, which performs multiple passes over the
string S and constructs the suffix tree for a subrange of suf-
fixes at each pass. For a user-defined a parameter q, a suf-
fix subrange is defined as the set of suffixes prefixed by the
same q-long string. Suffix subranges induce subtrees ofTS
which can thus be built independently, and evicted from
internal memory as they are completed. The experiments
reported in [8] successfully index 286Mbps using 2Gb in-
ternal memory.

In [2] the authors propose an improved version of
PrePar, called DynaCluster, that deploys a dynamic
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technique to identify suffix subranges. Unlike Prepar,
DynaCluster does not scan over and over the string S,
but it starts from the q-based subranges and then splits
them recursively in a DFS-manner if their size is larger
than a fixed threshold � . Splitting is implemented by look-
ing at the next q characters of the suffixes in the subrange.
This clustering and lazy-DFS visit of TS significantly re-
duce the number of I/Os incurred by the frequent edge-
splitting operations that occur during the suffix tree con-
struction process; and allow it to cope efficiently with skew
data. As a result, DynaCluster constructs suffix trees
for 200Mbps with only 16Mb internal memory.

More recently, [15] improved the space requirement
and the buffering efficiency, thus being able to construct
a suffix tree of 3 Gbps in 30 hours; whereas [1] improved
the I/O behavior of RAM-algorithms for online suffix-tree
construction, by devising a novel low-overhead buffering
policy.
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ProblemDefinition

The suffix tree is perhaps the best-known and most-
studied data structure for string indexing with applications
in many fields of sequence analysis. After its invention in
the early 1970s, several approaches for the efficient con-
struction of the suffix tree of a string have been developed
for various models of computation. The most prominent
of those that construct the suffix tree in main memory are
summarized in this entry.

Notations

Given an alphabet ˙ , a trie over ˙ is a rooted tree whose
edges are labeled with strings over˙ such that no two la-
bels of edges leaving the same vertex start with the same
symbol. A trie is compacted if all its internal vertices, ex-
cept possibly the root, are branching. Given a finite string
S 2 ˙ n , the suffix tree of S, T(S), is the compacted trie over
˙ such that the concatenations of the edge labels along the
paths from the root to the leaves are the suffixes of S. An
example is given in Fig. 1.
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Suffix Tree Construction in RAM, Figure 1
The suffix tree for the string S = MAMMAMIA. Dashed arrows de-
note suffix links that are employed by all efficient suffix tree con-
struction algorithms

The concatenation of the edge labels from the root to
a vertex v of T(S) is called the path-label of v, P(v). For ex-
ample, the path-label of the vertex indicated by the asterisk
in Fig. 1 is P(�) = MAM.

Constraints

The time complexity of constructing the suffix tree of
a string S of length n depends on the size of the underly-
ing alphabet˙ . It may be constant, it may be the alphabet
of integers ˙ = f1; 2; : : : ; ng, or it may be an arbitrary fi-
nite set whose elements can be compared in constant time.
Note that the latter case reduces to the previous one if one
maps the symbols of the alphabet to the set f1; : : : ; ng,
though at the additional cost of sorting˙ .

Problem 1 (suffix tree construction)
INPUT: A finite string S of length n over an alphabet˙ .
OUTPUT: The suffix tree T(S).

If one assumes that the outgoing edges at each vertex are
lexicographically sorted, which is usually the case, the suf-
fix tree allows to retrieve the sorted order of S0s characters
in linear time. Therefore, suffix tree construction inherits
the lower bounds from the problem complexity of sorting:
˝(n log n) in the general alphabet case, and˝(n) for inte-
ger alphabets.

Key Results

Theorem 1 The suffix tree of a string of length n requires
	(n log n) bits of space.

This is easy to see since the number of leaves of T(S) is
at most n, and so is the number of internal vertices that,
by definition, are all branching, as well as the number of
edges. In order to see that each edge label can be stored
in O(log n) bits of space, note that an edge label is always
a substring of S. Hence it can be represented by a pair (`, r)
consisting of left pointer ` and right pointer r, if the label is
S[`, r].

Note that this space bound is not optimal since there
are |˙ |n different strings and hence suffix trees, while
n log n bits would allow to represent n! different entities.

Theorem 2 Suffix trees can be constructed in optimal time,
in particular:
1. For constant-size alphabet, the suffix tree T(S) of a string

S of length n can be constructed in O(n) time [11,
12,13]. For general alphabet, these algorithms require
O(n log n) time.

2. For integer alphabet, the suffix tree of S can be con-
structed in O(n) time [4,9].

Generally, there is a natural strategy to construct a suf-
fix tree: Iteratively all suffixes are inserted into an initially
empty structure. Such a strategy will immediately lead to
a linear-time construction algorithm if each suffix can be
inserted in constant time. Finding the correct position
where to insert a suffix, however, is the main difficulty of
suffix tree construction.

The first solution for this problemwas given byWeiner
in his seminal 1973 paper [13]. His algorithm inserts the
suffixes from shortest to longest, and the insertion point
is found in amortized constant time for constant-size al-
phabet, using rather a complicated amount of additional
data structures. A simplified version of the algorithm was
presented by Chen and Seiferas [3]. They give a cleaner
presentation of the three types of links that are required in
order to find the insertion points of suffixes efficiently, and
their complexity proof is easier to follow. Since the suffix
tree is constructed while reading the text from right to left,
these two algorithms are sometimes called anti-online con-
structions.

A different algorithm was given 1976 by Mc-
Creight [11]. In this algorithm the suffixes are inserted
into the growing tree from longest to shortest. This sim-
plifies the update procedure, and the additional data struc-
ture is limited to just one type of link: an internal vertex
v with path label P(v) = aw for some symbol a 2 ˙ and
string w 2 ˙� has a suffix link to the vertex uwith path la-
bel P(u) = w. In Fig. 1, suffix links are shown as dashed
arrows. They often connect vertices above the insertion
points of consecutively inserted suffixes, like the vertex
with path-label “M” and the root, when inserting suffixes
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“MAMIA” and “AMIA” in the example of Fig. 1. This
property allows to reach the next insertion point without
having to search for it from the root of the tree, thus en-
suring amortized constant time per suffix insertion. Note
that since McCreight’s algorithm treats the suffixes from
longest to shortest and the intermediate structures are not
suffix trees, the algorithm is not an online algorithm.

Another linear-time algorithm for constant size alpha-
bet is the online construction by Ukkonen [12]. It reads
the text from left to right and updates the suffix tree in
amortized constant time per added symbol. Again, the al-
gorithm uses suffix links in order to quickly find the inser-
tion points for the suffixes to be inserted. Moreover, since
during a single update the edge labels of all leaf-edges need
to be extended by the new symbol, it requires a trick to ex-
tend all these labels in constant time: all the right pointers
of the leaf edges refer to the same end of string value, which
is just incremented.

An even stronger concept than online construction is
real-time construction, where the worst-case (instead of
amortized) time per symbol is considered. Amir et al. [1]
present for general alphabet a suffix tree construction al-
gorithm that requires O(log n) worst-case update time per
every single input symbol when the text is read from right
to left, and thus requires overall O(n log n) time, like the
other algorithms for general alphabet mentioned so far.
They achieve this goal using a binary search tree on the
suffixes of the text, enhanced by additional pointers repre-
senting the lexicographic and the textual order of the suf-
fixes, called Balanced Indexing Structure. This tree can be
constructed in O(log n) worst-case time per added sym-
bol and allows to maintain the suffix tree in the same time
bound.

The first linear-time suffix tree construction algorithm
for integer alphabets was given by Farach–Colton [4]. It
uses the so-called odd-even technique that proceeds in
three steps:
1. Recursively compute the compacted trie of all suffixes

of S beginning at odd positions, called the odd tree To.
2. From To compute the even tree Te, the compacted trie

of the suffixes beginning at even positions in S.
3. Merge To and Te into the whole suffix tree T(S).

The basic idea of the first step is to encode pairs of
characters as single characters. Since at most n/2 different
such characters can occur, these can be radix-sorted and
range-reduced to an alphabet of size n/2. Thus, the string
S of length n over the integer alphabet ˙ = f1; : : : ; ng is
translated in O(n) time into a string S0 of length n/2 over
the integer alphabet˙ 0 = f1; : : : ; n/2g. Applying the algo-
rithm recursively to this string yields the suffix tree of S0.
After translating the edge labels from substrings of S0 back

to substrings of S, some vertices may exist with outgoing
edges whose labels start with the same symbol, because two
distinct symbols from ˙ 0 may be pairs with the same first
symbol from ˙ . In such cases, by local modifications of
edge labels or adding additional vertices the trie property
can be regained and the desired tree To is obtained.

In the second step, the odd tree To from the first step
is used to generate the lexicographically sorted list (lex-
ordering for short) of the suffixes starting at odd positions.
Radix-sorting these with the characters at the preceding
even positions as keys yields a lex-ordering of the even
suffixes in linear time. Together with the longest common
prefixes of consecutive positions that can be computed in
linear time from To using constant-time lowest common
ancestor queries and the identity

l cp(l2i ; l2 j) =
�

l cp(l2i+1; l2 j+1) + 1 if S[2i] = S[2 j]
0 otherwise

this ordering allows to reconstruct the even tree Te in lin-
ear time.

In the third step, the two tries To and Te are merged
into the suffix tree T(S). Conceptually, this is a straight-
forward procedure: the two tries are traversed in parallel,
and every part that is present in one or both of the two
trees, is inserted in the common structure. However, this
procedure is simple only if edges are traversed character
by character such that common and differing parts can be
observed directly. Such a traversal would, however, require
O(n2) time in the worst case, impeding the desired overall
linear running time. Therefore, Farach-Colton suggests to
use an oracle that tells, for an edge of To and an edge of
Te the length of their common prefix. However, the sug-
gested oracle may overestimate this length, and that is why
sometimes the tree generatedmust be corrected, called un-
merging. The full details of the oracle and the unmerging
procedure can be found in [4].

Overall, if T(n) is the time it takes to build the suf-
fix tree of a string S 2 f1; : : : ; ngn , the first step takes
T(n/2) + O(n) time and the second and third step take
O(n) time, thus the whole procedure takes O(n) overall
time on the RAM model.

Another linear-time construction of suffix trees for in-
teger alphabets can be achieved via linear-time construc-
tion of suffix arrays together with longest common prefix
tabulation, as described by Kärkkäinen and Sanders in [9].

In some applications the so-called generalized suffix
tree of several strings is used, a dictionary obtained by con-
structing the suffix tree of the concatenation of the con-
tained strings. An important question that arises in this
context is that of dynamically updating the tree upon in-
sertion and deletion of strings from the dictionary. More
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specifically, since edge-labels are stored as pairs of point-
ers into the original string, when deleting a string from
the dictionary the corresponding pointers may become in-
valid and need to be updated. An algorithm to solve this
problem in amortized linear time was given by Fiala and
Greene [6], a linear worst-case (and hence real-time) algo-
rithm was given by Ferragina et al. [5].

Applications

The suffix tree supports many applications, most of them
in optimal time and space, including exact string match-
ing, set matching, longest common substring of two or
more sequences, all-pairs suffix-prefix matching, repeat
finding, and text compression. These and several other ap-
plications, many of them from bioinformatics, are given
in [2] and [8].

Open Problems

Some theoretical questions regarding the expected size and
branching structure of suffix trees under more compli-
cated than i. i. d. sequence models are still open. Currently
most of the research has moved towards more space-
efficient data structures like suffix arrays and compressed
string indices.

Experimental Results

Suffix trees are infamous for their high memory require-
ments. The practical space consumption is between 9 and
11 times the size of the string to be indexed, even in
the most space-efficient implementations known [7,10].
Moreover, [7] also shows that suboptimal algorithms
like the very simple quadratic-time write-only top-down
(WOTD) algorithm can outperform optimal algorithms
on many real-world instances in practice, if carefully en-
gineered.

URL to Code

Several sequence analysis libraries contain code for suf-
fix tree construction. For example, Strmat (http://www.
cs.ucdavis.edu/~gusfield/strmat.html) by Gusfield et al.
contains implementations of Weiner’s and Ukkonen’s
algorithm. An implementation of the WOTD algo-
rithm by Kurtz can be found at (http://bibiserv.techfak.
uni-bielefeld.de/wotd).
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ProblemDefinition

In 1992 Vapnik and coworkers [1] proposed a super-
vised algorithm for classification that has since evolved
into what are now known as Support Vector Machines
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(SVMs) [2]: a class of algorithms for classification, regres-
sion and other applications that represent the current state
of the art in the field. Among the key innovations of this
method were the explicit use of convex optimization, sta-
tistical learning theory, and kernel functions.

Classification

Given a training set S = f(x1; y1); : : : ; (x`; y`)g of data
points xi from X 
 Rn with corresponding labels yi from
Y = f�1;+1g, generated from an unknown distribution,
the task of classification is to learn a function g : X ! Y
that correctly classifies new examples (x; y) (i. e. such that
g(x) = y) generated from the sameunderlying distribution
as the training data.

A good classifier should guarantee the best possible
generalization performance (e. g. the smallest error on un-
seen examples). Statistical learning theory [3], from which
SVMs originated, provides a link between the expected
generalization error for a given training set and a property
of the classifier known as its capacity. The SV algorithm
effectively regulates the capacity by considering the func-
tion corresponding to the hyperplane that separates, ac-
cording to the labels, the given training data and it is max-
imally distant from them (maximal margin hyperplane).
When no linear separation is possible a non-linear map-
ping into a higher dimensional feature space is realized.
The hyperplane found in the feature space corresponds to
a non-linear decision boundary in the input space.

Let � : I 
 Rn ! F 
 Rn a mapping from the input
space I to the feature space F (Fig. 1a). In the learning
phase, the algorithm finds a hyperplane defined by the
equation hw; �(xi)i = b such that the margin

� = min1�i�` yi (hw; �(xi)i�b) = min1�i�` yi g(xi ) (1)

is maximized, where h; i denotes the inner product,w is a `
dimensional vector of weights, b is a threshold.

The quantity (hw; �(xi)i � b)/kwk is the distance of
the sample xi from the hyperplane. When multiplied by
the label yi it gives a positive value for correct classifi-
cation and a negative value for an uncorrect one. Given
a new data point x a label is assigned evaluating the deci-
sion function:

g(x) = sign(hw; �(x)i � b) (2)

Maximizing the Margin

For linearly separable classes, there exists a hyperplane
(w; b) such that:

yi(hw; �(xi )i � b) � � i = 1; : : : ; ` (3)

Imposing kwk2 = 1, the choice of the hyperplane such that
the margin is maximized is equivalent to the following op-
timization problem:

maxw;b;��
subject to yi (hw; �(xi)i � b) � � i = 1; : : : ; `

and kwk2 = 1:

(4)

An efficient solution can be found in the dual space by
introducing the Lagrange multipliers ˛i , i = 1; : : : `. The
problem (4) can be recast in the following dual form:

max˛

X̀
i=1

˛i �
X̀
i=1

X̀
j=1

˛i˛ j yi y jh�(xi); �(x j)i

subject to
X̀
i=1

˛i yi = 0; ˛i � 0

(5)

This formulation shows how the problem reduces to a con-
vex (quadratic) optimization task. A key property of solu-
tions ˛� of this kind of problems is that they must satisfy
the Karush–Kuhn–Tucker (KKT) conditions, that ensure
that only a subset of training examples needs to be associ-
ated to a non-zero ˛i. This property is called sparseness of
the SVM solution, and is crucial in practical applications.

In the solution ˛�, often only a subset of training ex-
amples is associated to non-zero ˛i . These are called sup-
port vectors and correspond to the points that lie closest
to the separating hyperplane (Fig. 1b). For the maximal
margin hyperplane the weights vector w� is given by lin-
ear function of the training points:

w� =
X̀
i=1

˛�i yi�(xi) (6)

Then the decision function (2) can equivalently be ex-
pressed as:

g(x) = sign(
X̀
i=1

˛�i yi h�(xi); �(x)i � b) (7)

For a support vector xi , it is hw�; �(xi)i � b = yi from
which the optimum bias b� can be computed. How-
ever, it is better to average the values obtained by con-
sidering all the support vectors [2]. Both the quadratic
programming (QP) problem (5) and the decision func-
tion (7) depend only on the dot product between
data points. The matrix of dot products with elements
Ki j = K(xi ; x j) = h�(xi); �(x j)i is called the kernel ma-
trix. In the case of linear separation K(xi ; x j) = hxi ; x ji,
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Support Vector Machines, Figure 1
a The feature map simplifies the classification task. b Amaximal margin hyperplane with its support vectors highlighted

but in general, one can use functions that provide non-
linear decision boundaries. Widely used kernels are the
polynomial K(xi ; x j) = (hxi ; x ji + 1)d or the Gaussian

K(xi ; x j) = e�
kxi�x jk2

�2 where d and � are user-defined pa-
rameters.

Key Results

In the framework of learning from examples, SVMs have
shown several advantages compared to traditional neu-
ral network models (which represented the state of the
art in many classification tasks up to 1992). The statisti-
cal motivation for seeking the maximal margin solution is
to minimize an upper bound on the test error that is inde-
pendent of the number of dimensions and inversely pro-
portional to the separation margin (and the sample size).
This directly suggests embedding of the data in a high-
dimensional space where a large separation margin can
be achieved; that this can be done efficiently with ker-
nels, and in a convex fashion, are two crucial computa-
tional considerations. The sparseness of the solution, im-
plied by the KKT conditions, adds to the efficiency of the
result.

The initial formulation of SVMs by Vapnik and
coworkers [1] has been extended by many other re-
searchers. Here we summarize some key contributions.

Soft Margin

In the presence of noise the SV algorithm can be subjected
to overfitting. In this case one needs to tolerate some train-
ing errors in order to obtain a better generalization power.
This has led to the development of the soft margin clas-
sifiers [4]. Introducing the slack variables �i � 0, optimal

class separation can be obtained by:

minw;b;�;� � � + C
X̀
i=1

�i

subject to yi (hw; �(xi)i � b) � � � �i ; �i � 0

i = 1; : : : ; ` and kwk2 = 1:

(8)

The constant C is user-defined and controls the trade-off
between the maximization of the margin and the number
of classification errors. The dual formulation is the same
as (5) with the only difference in the bound constraints
(0 � ˛i � C; i = 1; : : : ; `). The choice of soft margin pa-
rameter is one of the two main design choices (together
with the kernel function) in applications. It is an elegant
result [5] that the entire set of solutions for all possible val-
ues of C can be found with essentially the same computa-
tional cost over finding a single solution: this set is often
called the regularization path.

Regression

A SV algorithm for regression, called support vector re-
gression (SVR), was proposed in 1996 [6]. A linear algo-
rithm is used in the kernel-induced feature space to con-
struct a function such that the training points are inside
a tube of given radius ". As for classification the regression
function only depends on a subset of the training data.

Speeding up the Quadratic Program

Since the emergence of SVMs, many researchers have de-
veloped techniques to effectively solve the problem (5):
a quite time-consuming task, especially for large training
sets. Most methods decompose large-scale problems into
a series of smaller ones. The most widely used method is
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that of Platt [7] and it is known as Sequential Minimal Op-
timization.

Kernel Methods

In SVMs, both the learning problem and the decision
function can be formulated only in terms of dot products
between data points. Other popular methods (i. e. Princi-
pal Component Analysis, Canonical Correlation Analysis,
Fisher Discriminant) have the same property. This fact has
led to a huge number of algorithms that effectively use ker-
nels to deal with non-linear functions keeping the same
complexity of the linear case. They are referred to as ker-
nel methods [8,9].

Choosing the Kernel

The main design choice when using SVMs is the selection
of an appropriate kernel function, a problem of model se-
lection that roughly relates to the choice of a topology for
a neural network. It is a non-trivial result [10] that also
this key task can be translated into a convex optimization
problem (a semi-definite program) under general condi-
tions. A kernel can be optimally selected from a kernel
space resulting from all linear combinations of a basic set
of kernels.

Kernels for General Data

Kernels are not just useful tools to allow us to deploymeth-
ods of linear statistics in a non-linear setting. They also al-
low us to apply them to non-vectorial data: kernels have
been designed to operate on sequences, graphs, text, im-
ages, and many other kinds of data [8].

Applications

Since their emergence, SVMs have been widely used in
a huge variety of applications. To give some examples good
results have been obtained in text categorization, hand-
written character recognition, and biosequence analysis.

Text Categorization

Automatic text categorization is where text documents
are classified into a fixed number of predefined cate-
gories based on their content. In the works performed by
Joachims [11] and by Dumais et al. [12], documents are
represented by vectors with the so-called bag-of-words ap-
proach used in the information retrieval field. The dis-
tance between two documents is given by the inner prod-
uct between the corresponding vectors. Experiments on

the collection of Reuters news stories showed good results
of SVMs compared to other classification methods.

Hand-Written Character Recognition

This is the first real-world task on which SVMs were
tested. In particular two publicly available data sets (USPS
and NIST) have been considered since they are usu-
ally used for benchmarking classifiers. A lot of experi-
ments, mainly summarized in [13], were performed which
showed that SVMs can perform as well as other complex
systems without incorporating any detailed prior knowl-
edge about the task.

Bioinformatics

SVMs have been widely used also in bioinformatics. For
example, Jaakkola and Haussler [14] applied SVMs to the
problem of protein homology detection, i. e. the task of re-
lating new protein sequences to proteins whose properties
are already known. Brown et al. [15] describe a success-
ful use of SVMs for the automatic categorization of gene
expression data from DNAmicroarrays.

URL to Code

Many free software implementations of SVMs are avail-
able at the website
� www.support-vector.net/software.html
Two in particular deserve a special mention for their effi-
ciency:
� SVMlight: Joachims T. Making large-scale SVM learn-

ing practical. In: Schölkopf B, Burges CJC, and Smola
AJ (eds) Advances in Kernel Methods Support Vector
Learning, MIT Press, 1999. Software available at http://
svmlight.joachims.org

� LIBSVM: Chang CC, and Lin CJ, LIBSVM: a library
for support vector machines, 2001. Software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Cross References

� PAC Learning
� Perceptron Algorithm
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ProblemDefinition

Design verification is the process of taking a design
and checking that it works correctly. More specifically,
every design verification paradigm has three compo-
nents [6]—(1.) a language for specifying the design in an
unambiguous way, (2.) a language for specifying proper-
ties that are to be checked of the design, and (3.) a checking
procedure, which determines whether the properties hold
of the design.

The verification problem is very general: it arises in
low-level designs, e. g., checking that a combinational cir-
cuit correctly implements arithmetic, as well as high-level
designs, e. g., checking that a library written in high-level
language correctly implements an abstract data type.

Hardware Verification

The verification of hardware designs is particularly chal-
lenging. Verification is difficult in part because the large
number of concurrent operations, make it very difficult to
conceive of and construct all possible corner-cases, e. g.,
one unit initiating a transaction at the same cycle as an-
other receiving an exception. In addition, software mod-
els used for simulation run orders of several magnitude
slower than the final chip operates at. Faulty hardware
is usually impossible to correct after fabrication, which
means that the cost of a defect is very high, since it takes
several months to go through the process of designing and
fabricating new hardware. Wile et al. [15] provide a com-
prehensive account of hardware verification.

State Explosion

Since the number of state holding elements in digital hard-
ware is bounded, the number of possible states that the
design can be in is infinite, so complete automated ver-
ification is, in principle, possible. However, the number
of states that a hardware design can reach from the ini-
tial state can be exponential in the size of the design; this
phenomenon is referred to as “state explosion.” In par-
ticular, algorithms for verifying hardware that explicitly
record visited states, e. g., in a hash table, have very high
time complexity, making them infeasible for all but the
smallest designs. The problem of complete hardware ver-
ification is known to be PSPACE-hard, which means that
any approach must be based on heuristics.

Hardware Model

A hardware design is formally described using cir-
cuits [4,8]. A combinational circuit consists of Boolean
combinational elements connected by wires. The Boolean

http://www.kernel-methods.net
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combinational elements are gates and primary inputs.
Gates come in three types: NOT, AND, and OR. The NOT
gate functions as follows: it takes a single Boolean-valued
input, and produces a single Boolean-valued output which
takes value 0 if the input is 1, and 1 if the input is 0. The
AND gate takes two Boolean-valued inputs and produce
a single output; the output is 1 if both inputs are 1, and 0
otherwise. The OR gate is similar to AND, except that its
output is 1 if one or both inputs are 1. A circuit can be rep-
resented as a directed graph where the nodes represent the
gates and wires represent edges in the direction of signal
flow.

A circuit can be represented by a directed graph where
the nodes represent the gates and primary inputs, and
edges represent wires in the direction of signal flow. Cir-
cuits are required to be acyclic, that is there is no cycle
of gates. The absence of cycles implies that a Boolean-
assignment to the primary inputs can be propagated
through the gates in topological order.

A sequential circuit extends the notion of circuit de-
scribed above by adding stateful elements. Specifically, a se-
quential circuit includes registers. Each register has a single
input, which is referred to as its next-state input.

A valuation on a setV is a function whose domain isV .
A state in a sequential circuit is a Boolean-valued valuation
on the set of registers. An input to a sequential circuit is
a Boolean-valued valuation on the set of primary inputs.
Given a state s and an input i, the logic gates in the circuit
uniquely define a Boolean-valued valuation t to the set of
register inputs—this is referred to as the next state of the
circuit at state s under input i, and say s transitions to t
on input i. It is convenient to denote such a transition by

s
i
! t.
A sequential circuit can naturally be identified with

a finite state machine (FSM), which is a graph defined over
the set of all states; an edge (s, t) exists in the FSM graph if
there exists an input i, state s transitions to t on input i.

Invariant Checking

An invariant is a set of states; informally, the term is used
to refer to a set of states that are “good” in some sense. One
common way to specify an invariant is to write a Boolean
formula on the register variables—the states which satisfy
the formula are precisely the states in the invariant.

Given states r and s, define r to be reachable from s
if there is a sequence of inputs hi0; i1; : : : ; in�1i such that

s = s0
i0
! s1

i1
! � � � sn = t. A fundamental problem in

hardware verification is the following—given an invari-
ant A, and a state s, does there exists a state r reachable
from s which is not in A?

Key Results
Symbolic model checking (SMC) is a heuristic approach
to hardware verification. It is based on the idea that rather
than representing and manipulating states one-at-a-time,
it is more efficient to use symbolic expressions to represent
and manipulate sets of states.

A key idea in SMC is that given a set A � f0; 1gn ,
a Boolean function A can be constructed such that
fA : f0; 1gn 7! f0; 1g given by f (˛1; : : : ; ˛n) = 1 iff
(˛1; : : : ; ˛n) 2 A. Note that given a characteristic func-
tion f A, A can be obtained and vice versa.

There are many ways in which a Boolean function
can be represented—formulas in DNF, general Boolean
formulas, combinational circuits, etc. In addition to an
efficient representation for state sets, the ability to per-
form fast computations with sets of states is also impor-
tant—for example, in order to determine if an invariant
holds, it is required to compute the set of states reachable
from a given state. BDDs [2] are particularly well-suited
to representing Boolean functions, as they combine suc-
cinct representation with efficient manipulation; they are
the data structure underlying SMC.

Image Computation
A key computation that arises in verification is determin-
ing the image of a set of states A in a design D—the image
of A is the set of all states t for which there exists a state
in A and an input i such that state s transitions to t under
input i. The image of A is denoted by Img(A).

The transition relation of a design is the set of (s, i, t)
triples such that s transitions to t under input i. Let the
design have n registers, and m primary inputs; then the
transition relation is subset of f0; 1gn � f0; 1gm � f0; 1gn .

Conceptually, the transition relation completely cap-
tures the dynamics of the design—given an initial state,
and input sequence, the evolution of the design is com-
pletely determined by the transition relation.

Since the transition relation is a subset of f0; 1gn+m+n ,
it has a characteristic function fT : f0; 1gn+m+n 7! f0; 1g.
View f T as being defined over the variables x0; : : : ; xn�1;
i0; : : : ; im�1; y0; : : : ; yn�1. Let the set of states A be
represented by the function f A defined over variables
x0; : : : ; xn�1. Then the following identity holds

Img(A) = (9x0 � 9xn�19i0 � � � 9im�1)( fA � fT) :

The identity hold because (ˇ0; : : : ; ˇn�1) satisfies the
right-hand side expression exactly when there are values
˛0; : : : ; ˛n�1 and �0; : : : ; �m�1 such that (˛0; : : : ; ˛n�1)
2 A and the state (˛0; : : : ; ˛n�1) transitions to (ˇ0; : : : ;
ˇn�1) on input (�0; : : : ; �m�1).



934 S Symbolic Model Checking

Invariant Checking
The set of all states reachable from a given setA is the limit
as n tends to infinity of the sequence of states hR0; R1; : : : i

defined below:

R0 = A
Ri+1 = Ri [ Img(Ri ) :

Since for all i; Ri 
 Ri+1 and the number of distinct state
sets is finite, the limit is reached in some finite number
of steps, i. e., for some n, it must be that Rn+1 = Rn . It
is straightforward to show that the limit is exactly equal
to the set of states reachable from A—the basic idea is to
inductively construct input sequences that lead from states
in A to Ri, and to show that state t is reachable from a state
in A under an input sequence of length l, then t must be in
Rl.

Given BDDs F and G representing functions f and g
respectively, there is an algorithm based on dynamic pro-
gramming for performing conjunction, i. e., for comput-
ing the BDD for f � g. The algorithm has polynomial
complexity, specifically O(jFj � jGj), where |B| denotes the
number of nodes in the BDD B. There are similar algo-
rithms for performing disjunction ( f + g), and comput-
ing cofactors (f x and f x0). Together these yield an algo-
rithm for the operation of existential quantification, since
(9x) f = fx + fx0 .

It is straightforward to build BDDs for f A and fT : A
is typically given using a propositional formula, and the
BDD for f A can be built up using functions for conjunc-
tion, disjunction, and negation. The BDD for f T is built
using from the BDDs for the next-state nodes, over the
register and primary input variables. Since the only gate
types are AND, OR, and NOT, the BDD can be built using
the standard BDD operators for conjunction, disjunction,
and negation. Let the next state functions be f0; : : : ; fn�1;
then f T is (y0 = f0) � (y1 = f1) � � � � � (yn�1 = fn�1), and so
the BDD for f T can be constructed using the usual BDD
operators.

Since the image computation operation can be ex-
pressed in terms of f A and FT , and conjunction and ex-
istential quantification operations, it can be performed us-
ing BDDs. The computation of Ri involves an image op-
eration, and a disjunction, and since BDDs are canonical,
the test for fixed-point is trivial.

Applications
The primary application of the technique described above
is for checking properties of hardware designs. These
properties can be invariants described using propositional
formulae over the register variables, in which case the ap-

proach above is directly applicable. More generally, prop-
erties can be expressed in a temporal logic [5], specifically
through formulae which express acceptable sequences of
outputs and transitions.

CTL is one common temporal logic. A CTL formula
is given by the following grammar: if x is a variable corre-
sponding to a register, then x is a CTL formula; otherwise,
if ' and are CTL formulas, then so as (:�); (�_ ); (�^
 ); (� !  ), and EX�; E�U , and EG� .

A CTL formula is interpreted as being true at a state;
a formula x is true at a state if that register is 1 in that
state. Propositional connectives are handled in the stan-
dard way, e. g., a state satisfies a formula (� ^  ) if it sat-
isfies both ' and  . A state s satisfies EX� if there ex-
ists a state t such that s transitions to, and t satisfies '.
A state s satisfies E�U if there exists a sequence of inputs
hi0; : : : ; ini leading through state hs0 = s; s1; s2; : : : ; sn+1i
such that sn+1 satisfies  , and all states si ; i � n + 1
satisfy '. A state s satisfies EG� if there exists an infi-
nite sequence of inputs hi0; i1; : : : i leading through state
hs0 = s; s1; s2; : : : i such that all states si satisfy '.

CTL formulas can be checked by a straightforward
extension of the technique described above for invariant
checking. One approach is to compute the set of states in
the design satisfying subformulas of ', starting from the
subformulas at the bottom of the parse tree for '. A minor
difference between invariant checking and this approach,
is that the latter relies on pre-image computation; the pre-
image of A is the set of all states t for which there exists an
input i such that t transitions under i to a state in A.

Symbolic analysis can also be used to check the equiv-
alence of two designs by forming a new design which op-
erates the two initial designs in parallel, and has a single
output that is set to 1 if the two initial designs differ [14].
In practice this approach is too inefficient to be useful, and
techniques which rely more on identifying common sub-
structures across designs are more successful.

The complement of the set of reachable states can be
used to identify parts of the design which are redundant,
and to propagate don’t care conditions from the input of
the design to internal nodes [12].

Many of the ideas in SMC can be applied to software
verification—the basic idea is to “finitize” the problem,
e. g., by considering integers to lie in a restricted range, or
setting an a priori bound on the size of arrays [7].

Experimental Results

Many enhancements have been made to the basic ap-
proach described above. For example, the BDD for the en-
tire transition relation can grow large, so partitioned tran-
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sition relations [11] are used instead; these are based on
the observation that 9x:( f � g) = f � 9x:g, in the spe-
cial case that f is independent of x. Another optimiza-
tion is the use of don’t cares; for example when comput-
ing the image of A, the BDD for f T can be simplified with
respect to transitions originating at A0 [13]. Techniques
based on SAT have enjoyed great success recently. These
approach case the verification problem in terms of satisfia-
bility of a CNF formula. They tend to be used for bounded
checks, i. e., determining that a given invariant holds on
all input sequences of length k [1]. Approaches based on
transformation-based verification, complement symbolic
model checking by simplifying the design prior to verifi-
cation. These simplifications typically remove complexity
that was added for performance rather than functionality,
e. g., pipeline registers.

The original paper by Clarke et al. [3] reported results
on a toy example, which could be described in a few dozen
lines of a high-level language. Currently, themost sophisti-
cated model checking tool for which published results are
ready is SixthSense, developed at IBM [10].

A large number of papers have been published on ap-
plying SMC to academic and industrial designs. Many re-
port success on designs with an astronomical number of
states—these results become less impressive when taking
into consideration the fact that a design with n registers
has 2n states.

It is very difficult to define the complexity of a design.
Onemeasure is the number of registers in the design. Real-
istically, a hundred registers is at the limit of design com-
plexity that can be handles using symbolic model check-
ing. There are cases of designs with many more registers
that have been successfully verified with symbolic model
checking, but these registers are invariably part of a very
regular structure, such as a memory array.

Data Sets

The SMV system described in [9] has been updated, and
its latest incarnation nuSMV (http://nusmv.irst.itc.it/) in-
clude a number of examples.

The VIS (http://embedded.eecs.berkeley.edu/pubs/
downloads/vis) system from UC Berkeley and UC Boul-
der also includes a large collection of verification prob-
lems, ranging from simple hardware circuits, to complex
multiprocessor cache systems.

The SIS (http://embedded.eecs.berkeley.edu/pubs/
downloads/sis/) system from UC Berkeley is used for
logic synthesis. It comes with a number of sequential
circuits that have been used for benchmarking symbolic
reachability analysis.
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Keywords and Synonyms

Network synchronization; Low-stretch spanning sub-
graphs

ProblemDefinition

Consider a communication network, modeled by an n-
vertex undirected unweighted graph G = (V ; E), for some
positive integer n. Each vertex of G hosts a processor of
unlimited computational power; the vertices have unique
identity numbers, and they communicate via the edges
of G by sending messages of size O(log n) each.

In the synchronous setting the communication occurs
in discrete rounds, and a message sent in the beginning
of a round R arrives at its destination before the round R
ends. In the asynchronous setting each vertexmaintains its
own clock, and clocks of distinct vertices may disagree. It
is assumed that each message sent (in the asynchronous
detting) arrives at its destination within a certain time �
after it was sent, but the value of � is not known to the
processors.

It is generallymuch easier to devise algorithms that ap-
ply to the synchronous setting (henceforth, synchronous
algorithms) rather than to the asynchronous one (hence-
forth, asynchronous algorithms). In [1] Awerbuch initi-
ated the study of simulation techniques that translate syn-
chronous algorithms to asynchronous ones. These simula-
tion techniques are called synchronizers.

To devise the first synchronizers Awerbuch [1] con-
structed a certain graph partition which is of its own inter-
est. In particular, Peleg and Schäffer noticed [8] that this
graph partition induces a subgraph with certain interest-
ing properties. They called this subgraph a graph spanner.
Formally, for an integer positive parameter k, a k-spanner
of a graph G = (V ; E) is a subgraph G0 = (V ;H), H 
 E,
such that for every edge e = (v; u) 2 E, the distance be-
tween the vertices v and u in H, distG0(v; u), is at most k.

Key Results

Awerbuch devised three basic synchronizers, called ˛, ˇ,
and � . The synchronizer ˛ is the simplest one; using it
results in only a constant overhead in time, but in a very
significant overhead in communication. Specifically, the
latter overhead is linear in the number of edges of the
underlying network. Unlike the synchronizer ˛, the syn-
chronizer ˇ requires a somewhat costly initialization stage.
In addition, using it results in a significant time over-
head (linear in the number of vertices n), but it is more
communication-efficient than ˛. Specifically, its commu-
nication overhead is linear in n.

Finally, the synchronizer � represents a tradeoff be-
tween the synchronizers ˛ and ˇ. Specifically, this syn-
chronizer is parametrized by a positive integer parameter
k. When k is small then the synchronizer behaves simi-
larly to the synchronizer ˛, and when k is large it behaves
similarly to the synchronizer ˇ. A particularly important
choice of k is k = log n. At this point on the tradeoff curve
the synchronizer � has a logarithmic in n time overhead,
and a linear in n communication overhead. The synchro-
nizer � has, however, a quite costly initialization stage.

The main result of [1] concerning spanners is that for
every k = 1; 2; : : :, and every n-vertex unweighted undi-
rected graphG = (V ; E), there exists anO(k)-spanner with
O(n1+1/k ) edges. (This result was explicated by Peleg and
Schäffer [8].)

Applications

Synchronizers are extensively used for constructing asyn-
chronous algorithms. The first applications of synchro-
nizers are constructing the breadth-first-search tree and
computing the maximum flow. These applications were
presented and analyzed by Awerbuch in [1]. Later syn-
chronizers were used for maximum matching [10], for
computing shortest paths [7], and for other problems.

Graph spanners were found useful for a variety
of applications in distributed computing. In particular,
some constructions of synchronizers employ graph span-
ners [1,9]. In addition, spanners were used for routing [4],
and for computing almost shortest paths in graphs [5].

Open Problems

Synchronizers with improved properties were devised by
Awerbuch and Peleg [3], and Awerbuch et al. [2]. Both
these synchronizers have polylogarithmic time and com-
munication overheads. However, the synchronizers of
Awerbuch and Peleg [3] require a large initialization time.
(The latter is at least linear in n.) On the other hand, the
synchronizers of [2] are randomized. A major open prob-
lem is to obtain deterministic synchronizers with polylog-
arithmic time and communication overheads, and sublin-
ear in n initialization time. In addition, the degrees of the
logarithm in the polylogarithmic time and communica-
tion overheads in synchronizers of [2,3] are quite large.
Another important open problem is to construct synchro-
nizers with improved parameters.

In the area of spanners, spanners that distort large dis-
tances to a significantly smaller extent than they distort
small distances were constructed by Elkin and Peleg in [6].
These spanners fall short from achieving a purely additive
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distortion. Constructing spanners with a purely additive
distortion is a major open problem.
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� Sparse Graph Spanners
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