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ProblemDefinition

Table compression was introduced by Buchsbaum et al. [2]
as a unique application of compression, based on sev-
eral distinguishing characteristics. Tables are collections of
fixed-length records and can grow to be terabytes in size.
They are often generated by information systems and kept
in data warehouses to facilitate ongoing operations. These
data warehouses will typically manage many terabytes of
data online, with significant capital and operational costs.
In addition, the tables must be transmitted to different
parts of an organization, incurring additional costs for
transmission. Typical examples are tables of transaction
activity, like phone calls and credit card usage, which are
stored once but then shipped repeatedly to different parts
of an organization: for fraud detection, billing, operations
support, etc. The goals of table compression are to be fast,
online, and effective: eventual compression ratios of 100:1
or better are desirable. Reductions in required storage and
network bandwidth are obvious benefits.

Tables are different than general databases [2]. Tables
are written once and read many times, while databases
are subject to dynamic updates. Fields in table records
are fixed in length, and records tend to be homogeneous;
database records often contain intermixed fixed- and vari-

able-length fields. Finally, the goals of compression dif-
fer. Database compression stresses index preservation, the
ability to retrieve an arbitrary record, under compres-
sion [6]. Tables are typically not indexed at the level of in-
dividual records; rather, they are scanned in toto by down-
stream applications.

Consider each record in a table to be a row in a matrix.
A naive method of table compression is to compress the
string derived from scanning the table in row-major order.
Buchsbaum et al. [2] observe experimentally that parti-
tioning the table into contiguous intervals of columns and
compressing each interval separately in this fashion can
achieve significant compression improvement. The parti-
tion is generated by a one-time, offline training procedure,
and the resulting compression strategy is applied online
to the table. In their application, tables are generated con-
tinuously, so offline training time can be ignored. They
also observe heuristically that certain rearrangements of
the columns prior to partitioning further improve com-
pression by grouping dependent columns more closely.
For example, in a table of addresses and phone numbers,
the area code can often be predicted by the zip code when
both are defined geographically. In information-theoretic
terms, these dependencies are contexts, which can be used
to predict parts of a table. Analogously to strings, where
knowledge of context facilitates succinct codings of a sym-
bols, the existence of contexts in tables implies, in princi-
ple, the existence of a more succinct representation of the
table.

Two main avenues of research have followed, one
based on the notion of combinatorial dependency [2,3]
and the other on the notion of column dependency [14,
15]. The first formalizes dependencies analogously to
the joint entropy of random variables, while the second
does so analogously to conditional entropy [7]. These ap-
proaches to table compression have deep connections to
universal similarity metrics [11], based on Kolmogorov
complexity and compression, and their later uses in classi-
fication [5]. Both approaches are instances of a new emerg-
ing paradigm for data compression, referred to as boost-
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ing [8], where data are reorganized to improve the per-
formance of a given compressor. A software platform to
facilitate the investigation of such invertible data transfor-
mations is described by Vo [16].

Notations

Let T be a table of n = jTj columns and m rows. Let T[i]
denote the ith column of T. Given two tables T1 and T2,
let T1T2 be the table formed by their juxtaposition. That is,
T = T1T2 is defined so that T[i] = T1[i] for 1 � i � jT1j
and T[i] = T2[i � jT1j] for jT1j < i � jT1j + jT2j. We
use the shorthand T[i; j] to represent the projection
T[i] � � � T[ j] for any j � i. Also, given a sequence P of col-
umn indices, we denote by T[P] the table obtained from T
by projecting the columns with indices in P.

Combinatorial Dependency and Joint Entropy
of RandomVariables

Fix a compressor C: e. g., gzip, based on LZ77 [17]; com-
press, based on LZ78 [18]; or bzip, based on Burrows–
Wheeler [4]. Let HC(T) be the size of the result of com-
pressing table T as a string in row-major order using C.
Let HC(T1; T2) = HC(T1T2):HC(�) is thus a cost function
defined on the ordered power set of columns. Two ta-
bles T1 and T2, which might be projections of columns
from a common table T, are combinatorially dependent
if HC(T1; T2) < HC(T1) + HC(T2) – if compressing them
together is better than compressing them separately –
and combinatorially independent otherwise. Buchsbaum
et al. [3] show that combinatorial dependency is a com-
pressive estimate of statistical dependency when formal-
ized by the joint entropy of two random variables, i. e., the
statistical relatedness of two objects is measured by the
gain realized by compressing them together rather than
separately. Indeed, combinatorial dependency becomes
statistical dependencywhenHC is replaced by the joint en-
tropy function [7]. Analogous notions starting from Kol-
mogorov complexity are derived by Li et al. [11] and used
for classification and clustering [5]. Figure 1 exemplifies
why rearranging and partitioning columns may improve
compression.

Problem 1 Find a partition P of T into sets of contiguous
columns that minimizes

P
Y2P HC(Y) over all such parti-

tions.

Problem 2 Find a partition P of T that minimizesP
Y2P HC(Y) over all partitions.

The difference between Problems 1 and 2 is that the latter
does not require the parts of P to be sets of contiguous
columns.

     
     
     
     

Table Compression, Figure 1
The first three columns of the table, taken in row-major order,
form a repetitive string that can be very easily compressed.
Therefore, it may be advantageous to compress these columns
separately. If the fifth column is swappedwith the fourth, we get
an even longer repetitive string that, again, can be compressed
separately from the other two columns

Column Dependency and Conditional Entropy
of Random Variables

Definition 1 For any table T, a dependency relation is
a pair (P, c) in which P is a sequence of distinct column
indices (possibly empty) and c 62 P is another column in-
dex. If the length of P is less than or equal to k, then (P, c)
is called a k-relation. P is the predictor sequence and c is the
predictee.

Definition 2 Given a dependency relation (P, c), the de-
pendency transform dtP(c) of c is formed by permuting col-
umn T[c] based on the permutation induced by a stable
sort of the rows of P.

Definition 3 A collection D of dependency relations for
table T is said to be a k-transform if and only if: (a)
each column of T appears exactly once as a predictee in
some dependency relation (P, c); (b) the dependency hy-
pergraph G(D) is acyclic; (c) each dependency relation
(P, c) is a k-relation.

Let !(P; c) be the cost of the dependency relation (P, c),
and let ı(m) be an upper bound on the cost of comput-
ing !(P; c). Intuitively, !(P; c) gives an estimate of how
well a rearrangement of column c will compress, using the
rows of P as contexts for its symbols. We will provide an
example after the formal definitions.

Problem 3 Find a k-transformDof minimum cost!(D) =P
(P;c)2D !(P; c).

Definition 1 extends to columns the notion of context that
is well known for strings. Definition 3 defines a micro-
transformation that reorganizes the column symbols by
grouping together those that have similar contexts. The
context of a column symbol is given by the corresponding
row in T[P]. The fundamental ideas here are the same as
in the Burrows and Wheeler transform [4]. Finally, Prob-
lem 3 asks for an optimal strategy to reorganize the data
prior to compression. The cost function ! provides an es-
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timate of how well c can be compressed using the knowl-
edge of T[P].

Vo and Vo [14] connect these ideas to the conditional
entropy of random variables. Let S be a sequence,A(S) its
distinct elements, and f a the frequency of each element a.
The zeroth-order empirical entropy of S [13] is

H0(S) = �
1
jSj

X
˛2A(S)

fa lg
fa
jSj

;

and themodified zeroth order empirical entropy [13] is

H�0 (S) =

8
<̂
:̂

0 if jSj = 0 ;
(1 + lg jSj)/jSj if jSj 6= 0 and H0(S) = 0 ;
H0(S) otherwise :

For a dependency relation (P, c) with nonempty P, the
modified conditional empirical entropy of c given P is then
defined as

H�P (c) =
1
m

X
�2A(T[P])

j�c jH�0 (�c ) ;

where �c is the string formed by catenating the symbols
in c corresponding to positions of � in T[P] [14]. A pos-
sible choice of !(P; c) is given by H�P (c). Vo and Vo also
develop another notion of entropy, called run length en-
tropy, to approximate more effectively the compressibility
of low-entropy columns and define another cost function
! accordingly.

Key Results

Combinatorial Dependency

Problem 1 admits a polynomial-time algorithm, based on
dynamic programming. Using the definition of combina-
torial dependency, one can show:

Theorem 1 ([2]) Let E[i] be the cost of an optimal, con-
tiguous partition of T[1; i]: E[n] is thus the cost of a solu-
tion to Problem 1. Define E[0] = 0; then, for 1 � i � n,

E[i] = min
0� j<i

E[ j] + HC(Tj+1; : : : ; Ti ) : (1)

The actual partition with cost E[n] can be maintained by
standard backtracking.

The only known algorithmic solution to Problem 2 is the
trivial one based on enumerating all possible feasible so-
lutions to choose an optimal one. Some efficient heuris-
tics based on asymmetric TSP, however, have been devised
and tested experimentally [3]. Define a weighted, com-
plete, directed graph, G(T), with a vertex Ti for each col-
umn T[i] 2 T ; the weight of edge fTi ; Tjg is w(Ti ; Tj) =

min(HC(Ti ; Tj);HC(Ti ) + HC(Tj)). One then generates
a set of tours of various weights by iteratively applying
standard optimizations (e. g., 3-opt, 4-opt). Each tour in-
duces an ordering of the columns, which are then opti-
mally partitioned using the dynamic program (1).

Buchsbaum et al. [3] also provide a general frame-
work for studying the computational complexity of sev-
eral variations of table compression problems based on
notions analogous to combinatorial dependence, and they
give some initial MAX-SNP-hardness results. Particularly
relevant is the set of abstract problems in which one is re-
quired to find an optimal arrangement of a set of strings to
be compressed, which establishes a nontrivial connection
between table compression and the classical shortest com-
mon superstring problem [1]. Giancarlo et al. [10] con-
nect table compression to the Burrows andWheeler trans-
form [4] by deriving the latter as a solution to an analog of
Problem 2.

Column Dependency

Theorem 2 ([14,15]) For k � 2, Problem 3 is NP-hard.

Theorem 3 ([14,15]) An optimum 1-transform for a table
T can be found in O(n2ı(m)) time.

Theorem 4 ([14,15]) A 2-transform can be computed in
O(n2ı(m)) time.

Theorem 5 ([14]) For any dependency relation (P, c) and
some constant �, jC(dtP(c))j � 5mH�p (c) + �.

Applications

Storage and transmission of alphanumeric tables.

Open Problems

All the techniques discussed use the general paradigms
of context-dependent data rearrangement for compres-
sion boosting. It remains open to apply these paradigms
to other domains, e. g., XML data [9,12], where high-level
structures can be exploited, and to domains where perti-
nent structures are not known a priori.

Experimental Results

Buchsbaum et al. [2] showed that optimal partitioning
alone (no column rearrangement) yielded about 55% bet-
ter compression compared to gzip on telephone usage
data, with small training sets. Buchsbaum et al. [3] exper-
imentally supported the hypothesis that good TSP heuris-
tics can effectively reorder the columns, yielding addi-
tional improvements of 5 to 20% relative to partitioning
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alone. They extended the data sets used to include other
tables from the telecom domain as well as biological data.
Vo and Vo [14,15] showed further 10 to 35% improve-
ment over these combinatorial dependency methods on
the same data sets.

Data Sets

Some of the data sets used for experimentation are pub-
lic [3].

URL to Code

The pzip package, based on combinatorial dependency, is
available at http://www.research.att.com/~gsf/pzip/pzip.
html. The Vcodex package, related to invertible trans-
forms, is available at http://www.research.att.com/~gsf/
download/ref/vcodex/vcodex.html. Although for the time
being Vcodex does not include procedures to compress
tabular data, it is a useful toolkit for their development.

Cross References
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Keywords and Synonyms

Balls and bins

ProblemDefinition

Consider a random allocation of m balls to n bins where
each ball is placed in a bin chosen uniformly and indepen-
dently. The properties of the resulting distribution of balls
among bins have been the subject of intensive study in
the probability and statistics literature [3,4]. In computer
science, this process arises naturally in randomized algo-
rithms and probabilistic analysis. Of particular interest is
the occupancy problem where the random variable under
consideration is the number of empty bins.

In this entry a series of bounds are presented (reminis-
cent of the Chernoff bound for binomial distributions) on
the tail of the distribution of the number of empty bins; the
tail bounds are successively tighter, but each new bound

http://www.research.att.com/~gsf/pzip/pzip.html.
http://www.research.att.com/~gsf/pzip/pzip.html.
http://www.research.att.com/~gsf/download/ref/vcodex/vcodex.html.
http://www.research.att.com/~gsf/download/ref/vcodex/vcodex.html.


Tail Bounds for Occupancy Problems T 943

has a more complex closed form. Such strong bounds do
not seem to have appeared in the earlier literature.

Key Results

The following notation in presenting sharp bounds on
the tails of distributions. The notation F 
 G will de-
note that F = (1 + o(1))G; further, F � G will denote that
ln F 
 lnG. The proof that f � g, is used for the purposes
of later claiming that 2 f � 2g . These asymptotic equalities
will be treated like actual equalities and it will be clear that
the results claimed are unaffected by this “approximation”.

Consider now the probabilistic experiment of throw-
ingm balls, independently and uniformly, into n bins.

Definition 1 Let Z be the number of empty bins when m
balls are placed randomly into n bins, and define r = m/n.
Define the function H(m; n; z) as the probability that
Z = z. The expectation of Z is given by

� = E[Z] = n
�
1 �

1
n

�m

 ne�r :

The following three theorems provide the bounds on the
tail of the distribution of the random variable Z. The proof
of the first bound is based on a martingale argument.

Theorem 1 (Occupancy Bound 1) For any � > 0,

P
	
jZ � �j � ��



� 2 exp

 
�
�2�2(n � 1

2 )
n2 � �2

!
:

Remark that for large r this bound is asymptotically equal
to

2 exp
�
�
�2 e�2r n
1 � e�2r

�
:

The reader may wish to compare this with the following
heuristic estimate of the tail probability assuming that the
distribution of Z is well approximated by the approximat-
ing normal distribution also far out in the tails [3,4].

P
	
jZ � �j � ��



� 2 exp

�
�

�2 e�r n
2 (1 � (1 + r)e�r)

�
:

The next two bounds are in terms of point probabilities
rather than tail probabilities (as was the case in the Bino-
mial Bound), but the unimodality of the distribution im-
plies that the two differ by at most a small (linear) factor.
These more general bounds on the point probability are
essential for the application to the satisfiability problem.
The next result is obtained via a generalization of the Bi-
nomial Bound to the case of dependent Bernoulli trials.

Theorem 2 (Occupancy Bound 2) For � > �1,

H(m; n; (1 + �)�) � exp (� ((1 + �) ln[1 + �] � �)�) :

In particular, for �1 � � < 0,

H(m; n; (1 + �)�) � exp
�
�
�2�

2

�
:

The last result is proved using ideas from large deviations
theory [7].

Theorem 3 (Occupancy Bound 3) For jz � �j = ˝(n),

H (m; n; z) �

exp

 "
�n

 Z 1� z
n

0
ln
�
k � x
1 � x

�
dx � r ln k

!#!

where k is defined implicitly by the equation z = n(1�k(1�
e�r/k)).

Applications

Random allocations of balls to bins is a basic model that
arises naturally in many areas in computer science in-
volving choice between a number of resources, such as
communication links in a network of processors, actua-
tor devices in a wireless sensor network, processing units
in a multi-processor parallel machine etc. For such situ-
ations, randomization can be used to “spread” the load
evenly among the resources, an approach particularly use-
ful in a parallel or distributed environment where resource
utilization decisions have to be made locally at a large
number of sites without reference to the global impact
of these decisions. In the process of analyzing the perfor-
mance of such algorithms, of particular interest is the oc-
cupancy problem where the random variable under con-
sideration is the number of empty bins (i. e., machines
with no jobs, routes with no load, etc.). The properties of
the resulting distribution of balls among bins and the cor-
responding tails bounds may help in order to analyze the
performance of such algorithms.
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� Approximation Schemes for Bin Packing
� Bin Packing
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ProblemDefinition
Technologymapping is the problem of implementing a se-
quential circuit using the gates of a particular technol-
ogy library. It is an integral component of any automated
VLSI circuit design flow. In the prototypical chip design
flow, combinational logic gates and sequential memory el-
ements are composed to form sequential circuits. These
circuits are subject to various logic optimizations to min-
imize area, delay, power and other performance metrics.
The resulting optimized circuits still consist of primitive
logic functions such as AND and OR gates. The next step
is to efficiently realize these circuits in a specific VLSI tech-
nology using a library of gates available from the semi-
conductor vendor. Such a library would typically consist
of gates of varying sizes and speeds for primitive logic
functions, (AND and OR) and more complex functions
(exclusive-OR, multiplexer). However, a naïve translation
of generic logic elements to gates in the library will fall
short of realistic performance goals. The challenge is to
construct a mapping that maximally utilizes the gates in
the library to implement the logic function of the circuit
and achieve some performance goal—for example, min-
imum area with the critical path delay less than a target
value. This is accomplished by technology mapping. For
the sake of simplicity, in the following discussion it is pre-
sumed that the sequential memory elements are stripped
from the digital circuit and mapped directly into memory

Technology Mapping, Figure 1
Subject graph (DAG) of a Boolean circuit expressed usingNAND2
and INVERTER gates

Technology Mapping, Figure 2
Library of pattern graphs (composed of NAND2 and INVERTER
gates) and associated costs

elements of the particular technology. Then, only Boolean
circuits composed of combinational logic gates remain to
be mapped. Further, each remaining Boolean circuit is
necessarily a directed acyclic graph (DAG).

The technology mapping problem can be restated in
a more general graph-theoretic setting: find a minimum
cost covering of the subject graph (Boolean circuit) by choos-
ing from the collection of pattern graphs (gates) available in
a library. The inputs to the problem are:

(a) Subject graph: This is a directed acyclic graph rep-
resentation of a Boolean circuit expressed using a set of
primitive functions (e. g., 2-input NAND gates and invert-
ers). An example subject graph is shown in Fig. 1.

(b) Library of pattern graphs: This is a collection
of gates available in the technology library. The pattern
graphs are also DAGs expressed using the same primitive
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functions used to construct the subject graph. Addition-
ally, each gate is annotated with a number of values for
different cost functions, such as area, delay, and power.
An example library and associated cost model is shown in
Fig. 2.

A valid cover is a network of pattern graphs imple-
menting the function of the subject graph such that: (a)
every vertex (i. e. gate) of the subject graph is contained
in some pattern graph, and (b) each input required by
a pattern graph is actually an output of some other pat-
tern graph (i. e. the inputs of a gate must exist as outputs
of other gates). Technology mapping can then be viewed
as an optimization problem to find a valid cover of mini-
mum cost of the subject graph.

Key Results

To be viable in a realistic design flow, an algorithm for
minimum cost graph covering for technology mapping
should ideally possess the following characteristics: (a) the
algorithm should be easily adaptable to diverse libraries
and cost models—if the library is expanded or replaced,
the algorithm must be able to utilize the new gates effec-
tively, (b) it should allow detailed cost models to accu-
rately represent the performance of the gates in the library,
and (c) it should be fast and robust on large subject graph
instances and large libraries. One technique for solving
the minimum cost graph covering problem is to formu-
late it as a binate-covering problem, which is a specialized
integer linear program [5]. However, binate covering for
a DAG is NP-Hard for any set of primitive functions and
is typically unwieldy on large circuits. The DAGON al-
gorithm suggested solving the technology mapping prob-
lem through DAG covering and advanced an alternate ap-
proach for DAG covering based on a tree covering approx-
imation that produced near-optimal solutions for practical
circuits and was very fast even for large circuits and large
libraries [4].

DAGON was inspired by prevalent techniques for pat-
tern matching employed in the domain of code genera-
tion for programming language compilers [1]. The funda-
mental concept was to partition the subject graph (DAG)
into a forest of trees and solve the minimum cost covering
problem independently for each tree. The approach was
motivated by the existence of efficient dynamic program-
ming algorithms for optimum tree covering [2]. The three
salient components of the DAGON algorithm are: (a) sub-
ject graph partitioning, (b) pattern matching, and (c) cov-
ering.

(a) Subject graph partitioning: To apply the tree cov-
ering approximation the subject graph is first partitioned

into a forest of trees. One approach is to break the graph at
each vertex which has an out-degree greater than 1 (mul-
tiple fan-out point). The root of each tree is the primary
output of the corresponding sub-circuit and the leaves are
the primary inputs. Other heuristic partitions of the sub-
ject graph that consider duplication of vertices can also be
applied to improve the quality of the final cover. Alternate
subject graph partitions can also be derived starting from
different decompositions of the original Boolean circuit in
terms of the primitive functions.

(b) Pattern matching: The optimum covering of a tree
is determined by generating the complete set of matches
for each vertex in the tree (i. e. the set of pattern graphs
which are candidates for covering a particular vertex) and
then selecting the optimummatch from among the candi-
dates. An efficient approach for structural pattern match-
ing is to reduce the tree matching problem to a string
matching problem [2]. Fast string matching algorithms,
such as the Aho–Corasick and the Knuth–Morris–Pratt
algorithms, can then be used to find all strings (pattern
graphs) which match a given vertex in the subject graph
in time proportional to the length of the longest string in
the set of pattern graphs. Alternatively, Boolean match-
ing techniques can be used to find matches based on logic
functions [12]. Boolean matching is slower than structural
string matching, but it can compute matches independent
of the actual local decompositions and under different in-
put permutations.

(c) Covering: The final step is to generate a valid cover
of the subject tree using the pattern graph matches com-
puted at each vertex. Consider the problem of finding
a valid cover of minimum area for the subject tree. Every
pattern graph in the library has an associated area and the
area of a valid cover is the sum of the area of the pattern
graphs in the cover. The key property that makes mini-
mum area tree covering efficient is this: the minimum area
cover of a tree rooted at some vertex v can be computed us-
ing only the minimum area covers of vertices below v. If fol-
lows that for every pattern graph that matches at vertex
v, the area of the minimum cover containing that match
equals the sum of the area of the corresponding match at
v and the sum of the areas of the optimal covers of the
vertices which are inputs to that match. This property en-
ables a dynamic programming algorithm to compute the
minimum area cover of tree rooted at each vertex of the
subject tree. The base case is the minimum area cover of
a leaf (primary input) of subject tree. The area of a match
at a leaf is set to 0. A recursive formulation of this dy-
namic programming concept is summarized in the Algo-
rithm minimum_area_tree_cover shown below. As
an example, the minimum area cover displayed in Fig. 3 is
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Technology Mapping, Figure 3
Result of a minimum area tree covering of the subject graph in
Fig. 1 using the library of pattern graphs in Fig. 2

a result of applying this algorithm to the tree partitions of
the subject graph from Fig. 1 using the library from Fig. 2.

Given a vertex v in the subject tree, let M(v) denote the
set of candidate matches from the library of pattern graphs
for the sub-tree rooted at v.

Algorithm minimum_area_tree_cover (
Vertex v ) {

// the algorithm minimum_area_tree_cover
// finds an optimal cover of the tree
// rooted at Vertex v
// the algorithm computes best_match(v)
// and areas_of_best_match(v), which
// denote the best pattern graph match
// at v and the associated areas of
// the optimal cover of the tree rooted
// at v respectively

// check if v is a leaf of the tree
if ( v is a leaf) {

area_of_best_match(v) = 0;
best_match(v) = leaf;
return;

}

// compute optimal cover for each input
// of v
foreach ( input of Vertex v ) {

minimum_area_tree_cover( input );
}
// each tree rooted at each input of v is
// now annotated with its optimal cover

// find the optimal cover of the tree
// rooted at Vertex v
area_of_best_match(v) = INFINITY;
best_match(v) = NULL;

foreach ( Match m in the set of matches
M(v) ) {
// compute the area of match m at
// Vertex v
// area_of_match(v,m) denotes the area
// of the cover when Match m is
// selected for v
area_of_match(v,m) = area(m);
foreach input pin vi of matche m {

area_of_match (v,m) =
area_of_match(v,m) +

area_of_best_match(vi );
}

// update best pattern graph match
// and associated area of the optimal
// cover at Vertex v
if ( area_of_match(v,m) <

area_of_best_match(v) ) {
area_of_best_match(v) =

area_of_match(v,m);
best_match(v) = m;

}

}
}

In this algorithm each vertex in the tree is visited exactly
once. Hence, the complexity of the algorithm is propor-
tional to the number of vertices in the subject tree times
the maximum number of pattern matches at any vertex.
The maximumnumber of matches is a function of the pat-
tern graph library and is independent of the subject tree
size. As a result, the complexity of computing the mini-
mum cost valid cover of a tree is linear in the size of the
subject tree, and the memory requirements are also lin-
ear in the size of the subject tree. The algorithm computes
the optimum cover when the subject graph is a tree. In the
general case of the subject graph being a DAG, empirical
results have shown that the tree covering approximation
yields industrial-quality results achieving aggressive area
and timing requirements on large real circuit design prob-
lems [11,13].

Applications

Technology mapping is the key link between technology
independent logic synthesis and technology dependent
physical design of VLSI circuits. This motivates the need
for efficient and robust algorithms to implement large
Boolean circuits in a technology library. Early algorithms
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for technology mapping were founded on rule-based lo-
cal transformations [3]. DAGON was the first in advanc-
ing an algorithmic foundation in terms of graph transfor-
mations that was practicable in the inner loop of iterative
procedures in the VLSI design flow [4]. From a theoret-
ical standpoint, the graph covering formulation provided
a formal description of the problem and specified optimal-
ity criteria for evaluating solutions. The algorithmwas nat-
urally adaptable to diverse libraries and cost models, and
was relatively easy to implement and extend. The concept
of partitioning the subject graph into trees and covering
the trees optimally was effective for varied optimization
objectives such as area, delay, and power. The DAGON
approach has been incorporated in academic (SIS from
the University of California at Berkeley [6]) and industrial
(Synopsys™ Design Compiler) tool offerings for logic syn-
thesis and optimization.

The graph covering formulation has also served as
a starting point for advancements in algorithms for tech-
nology mapping over the last decade. Decisions related to
logic decomposition were integrated in the graph covering
algorithm, which in turn enabled technology independent
logic optimizations in the technology mapping phase [9].
Similarly, heuristics were proposed to impose placement
constraints and make technology mapping more aware of
the physical design and layout of the final circuit [10]. To
combat the problem of high power dissipation in mod-
ern submicron technologies, the graph algorithms were
enhanced to minimize power under area and delay con-
straints [8]. Specializations of these graph algorithms for
technology mapping have found successful application in
design flows for Field Programmable Gate Array (FPGA)
technologies [7]. We recommend the following works for
a comprehensive treatment of algorithms for technology
mapping and a survey of new developments and chal-
lenges in the design of modern VLSI circuits: [11,12,13].

Open Problems

The enduring problem with DAGON-related technology
mappers is handling non-tree pattern graphs that arise
from modeling circuit elements such as multiplexors,
Exclusive-Ors, or memory-elements (e. g. flip-flops) with
associated logic (e. g. scan logic). On the other hand, ap-
proaches that do not use the tree-covering formulation
face challenges in easily representing diverse technology
libraries and in matching the subject graph in a computa-
tionally efficient manner.
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ProblemDefinition

An n-qubit quantum state is a positive semi-definite oper-
ator of unit trace in the complex Hilbert spaceC2n . A pure
quantum state is a quantum state with a unique non-zero
eigenvalue. A pure state is also often represented by the
unique unit eigenvector corresponding to the unique non-
zero eigenvalue. In this article the standard (ket, bra) no-
tation is followed as is often used in quantum mechanics,
in which jvi (called as ‘ket v’) represents a column vector
and hvj (called as ‘bra v’) represents its conjugate trans-
pose. A classical n-bit state is simply a probability distri-
bution on the set f0; 1gn .

Let fj0i; j1ig be the standard basis for C2. For sim-
plicity of notation j0i ˝ j0i are represented as j0ij0i or
simply j00i. Similarly j0ih0j represents j0i ˝ h0j. An EPR
pair is a special two-qubit quantum state defined as j i ,
1p
2
(j00i+ j11i). It is one of the four Bell states which form

a basis for C4.
Suppose there are two spatially separated parties Al-

ice and Bob and Alice wants to send an arbitrary n-qubit
quantum state � to Bob. Since classical communication is
much more reliable, and possibly cheaper, than quantum
communication, it is desirable that this task be achieved
by communicating just classical bits. Such a procedure is
referred to as teleportation.

Unfortunately, it is easy to argue that this is in fact not
possible if arbitrary quantum states need to be commu-
nicated faithfully. However Bennett, Brassard, Crepeau,
Jozsa, Peres, Wootters [2] presented the following nice so-
lution to it.

Key Results

Alice and Bob are said to share an EPR pair if each hold
one qubit of the pair. In this article a standard notation
is followed in which classical bits are called ‘cbits’ and
shared EPR pairs are called ‘ebits’. Bennett et al. showed the
following:

Theorem 1 Teleportation of an arbitrary n-qubit state can
be achieved with 2n cbits and n ebits.

These shared EPR pairs are referred to as prior entangle-
ment to the protocol since they are shared at the begin-
ning of the protocol (before Alice gets her input state)
and are independent of Alice’s input state. This solution
is a good compromise since it is conceivable that Alice and
Bob share several EPR pairs at the beginning, when they
are possibly together, in which case they do not require
a quantum channel. Later they can use these EPR pairs
to transfer several quantum states when they are spatially
separated.

Now see how Bennett el al. [2] achieve teleportation.
First note that in order to show Theorem 1 it is enough to
show that a single qubit, which is possibly a part of a larger
state � can be teleported, while preserving its entangle-
ment with the rest of the qubits of �, using 2 cbits and 1
ebit. Also note that the larger state � can now be assumed
to be a pure state without loss of generality.

Theorem Let j�iAB = a0j�0iAB j0iA + a1j�1iAB j1iA,
where a0; a1 are complex numbers with ja0j2 + ja1j2 = 1.
Subscripts A, B (representing Alice and Bob respectively) on
qubits signify their owner.

It is possible for Alice to send two classical bits to
Bob such that at the end of the protocol the final state is
a0j�0iAB j0iB + a1j�1iAB j1iB.

Proof For simplicity of notation, let us assume below that
j�0iAB and j�1iAB do not exist. The proof is easily modi-
fied when they do exist by tagging them along. Let an EPR
pair j iAB = 1p

2
(j0iAj0iB + j1iAj1iB) be shared between

Alice and Bob. Let us refer to the qubit under concern that
needs to be teleported as the input qubit.

The combined starting state of all the qubits is

j�0iAB = j�iABj iAB

= (a0j0iA + a1j1iA)
�

1
p
2
(j0iAj0iB + j1iAj1iB)

�

Let CNOT (controlled-not) gate be a two-qubit unitary op-
eration described by the operator j00ih00j + j01ih01j +
j11ih10j + j10ih11j: Alice now performs a CNOT gate on
the input qubit and her part of the shared EPR pair. The
resulting state is then,

j�1iAB =
a0
p
2
j0iA (j0iAj0iB + j1iAj1iB)

+
a1
p
2
j1iA (j1iAj0iB + j0iAj1iB) :

Let the Hadamard transform be a single qubit unitary op-
eration with operator 1p

2
(j0i + j1i)h0j + 1p

2
(j0i � j1i)h1j.

Alice next performs a Hadamard transform on her input
qubit. The resulting state then is,

j�2iAB =
a0
2

(j0iA + j1iA) (j0iAj0iB + j1iAj1iB)

+
a1
2

(j0iA � j1iA) (j1iAj0iB + j0iAj1iB)

= 1
2 (j00iA (a0j0iB + a1j1iB) + j01iA (a0j1iB
+a1j0iB)) + 1

2 (j10iA (a0j0iB � a1j1iB)
+j11iA (a0j1iB � a1j0iB))

Alice next measures the two qubits in her possession in the
standard basis for C4 and sends the result of the measure-
ment to Bob.
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Teleportation of Quantum States, Figure 1
Teleportation protocol. H represent Hadamard transform and M
represents measurement in the standard basis for C4

Let the four Pauli gates be the single qubit unitary op-
erations: Identity: P00 = j0ih0j + j1ih1j, bit flip: P01 =
j1ih0j + j0ih1j, phase flip: P10 = j0ih0j � j1ih1j and bit flip
together with phase flip: P11 = j1ih0j�j0ih1j. On receiving
the two bits c0c1 from Alice, Bob performs the Pauli gate
Pc0c1 on his qubit. It is now easily verified that the resulting
state of the qubit with Bob would be a0j0iB + a1j1iB. The
input qubit is successfully teleported from Alice to Bob!
Please refer to Fig. 1 for the overall protocol. �

Super-Dense Coding

Super-dense coding [11] protocol is a dual to the teleporta-
tion protocol. In this Alice transmits 2 cbits of information
to Bob using 1 qubit of communication and 1 shared ebit.
It is discussed more elaborately in another article in the
encyclopedia.

Lower Bounds on Resources

The above implementation of teleportation requires 2 cbits
and 1 ebit for teleporting 1 qubit. It was argued in [2] that
these resource requirements are also independently opti-
mal. That is 2 cbits need to be communicated to teleport
a qubit independent of how many ebits are used. Also 1
ebit is required to teleport one qubit independent of how
much (possibly two-way) communication is used.

Remote State Preparation

Closely related to the problem of teleportation is the
problem of Remote state preparation (RSP) introduced by
Lo [10]. In teleportation Alice is just given the state to be
teleported in some input register and has no other infor-
mation about it. In contrast, in RSP, Alice knows a com-
plete description of the input state that needs to be tele-
ported. Also in RSP, Alice is not required to maintain any
correlation of the input state with the other parts of a pos-
sibly larger state as is achieved in teleportation. The extra
knowledge that Alice possesses about the input state can

be used to devise protocols for probabilistically exact RSP
with one cbit and one ebit per qubit asymptotically [3]. In
a probabilistically exact RSP, Alice and Bob can abort the
protocol with a small probability, however when they do
not abort, the state produced with Bob at the end of the
protocol, is exactly the state that Alice intends to send.

Teleportation as a Private QuantumChannel

The teleportation protocol that has been discussed in this
article also satisfies an interesting privacy property. That
is if there was a third party, say Eve, having access to the
communication channel between Alice and Bob, then Eve
learns nothing about the input state ofAlice that she is tele-
porting to Bob. This is because the distribution of the clas-
sical messages of Alice is always uniform, independent of
her input state. Such a channel is referred to as a Private
quantum channel [1,6,8].

Applications

Apart from the main application of transporting quantum
states over large distances using only classical channel, the
teleportation protocol finds other important uses as well.
A generalization of this protocol to implement unitary op-
erations [7], is used in Fault tolerant computation in or-
der to construct an infinite class of fault tolerant gates in
a uniform fashion. In another application, a form of tele-
portation called as the error correcting teleportation, in-
troduced by Knill [9], is used in devising quantum circuits
that are resistant to very high levels of noise.

Experimental Results

Teleportation protocol has been experimentally realized in
various different forms. To name a few, by Boschi et al. [4]
using optical techniques, by Bouwmeester et al. [5] using
photon polarization, by Nielsen et al. [12] using Nuclear
magnetic resonance (NMR) and by Ursin et al. [13] using
photons for long distance.
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ProblemDefinition

Text or string data naturally arises in many contexts in-
cluding document processing, information retrieval, nat-
ural and computer language processing, and describing
molecular sequences. In broad terms, the goal of text in-
dexing is to design methodologies to store text data so as
to significantly improve the speed and performance of an-
swering queries. While text indexing has been studied for
a long time, it shot into prominence during the last decade
due to the ubiquity of web-based textual data and search
engines to explore it, design of digital libraries for archiv-
ing human knowledge, and application of string tech-
niques to further understanding of modern biology. Text

indexing differs from the typical indexing of keys drawn
from an underlying total order—text data can have varying
lengths, and queries are often more complex and involve
substrings, partial matches, or approximate matches.

Queries on text data are as varied as the diverse array of
applications they support. Consequently, numerous meth-
ods for text indexing have been developed and this contin-
ues to be an active area of research. Text indexingmethods
can be classified into two categories: (i) methods that are
generalizations or adaptations of indexing methods devel-
oped for an ordered set of one-dimensional keys, and (ii)
methods that are specifically designed for indexing text
data. The most classic query in text processing is to find
all occurrences of a pattern P in a given text T (or equiv-
alently, in a given collection of strings). Important and
practically useful variants of this problem include finding
all occurrences of P subject to at most kmismatches, or at
most k insertions/deletions/mismatches. The focus in this
entry is on these two basic problems and remarks on gen-
eralizations of one-dimensional data structures to handle
text data.

Key Results

Consider the problem of finding a given pattern P in text
T, both strings over alphabet ˙ . The case of a collection
of strings can be trivially handled by concatenating the
strings using a unique end of string symbol, not in ˙ , to
create text T. It is worth mentioning the special case where
T is structured—i. e.,T consists of a sequence of words and
the pattern P is a word. Consider a total order of charac-
ters in ˙ . A string (or word) of length k can be viewed
as a k-dimensional key and the order on ˙ can be nat-
urally extended to lexicographic order between multidi-
mensional keys of variable length. Any one-dimensional
search data structure that supports O(log n) search time
can be used to index a collection of strings using lexico-
graphic order such that a string of length k can be searched
in O(k log n) time. This can be considerably improved as
below [8]:

Theorem 1 Consider a data structure on one-dimensional
keys that relies on constant-time comparisons among keys
(e. g., binary search trees, red-black trees etc.) and the in-
sertion of a key identifies either its predecessor or successor.
Let O(F(n)) be the search time of the data structure storing
n keys (e. g., O(log n) for red-black trees). The data struc-
ture can be converted to index n strings using O(n) addi-
tional space such that the query for a string s can be per-
formed in O(F(n)) time if s is one of the strings indexed,
and in O(F(n) + jsj) otherwise.
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A more practical technique that provides O(F(n) + jsj)
search time for a string s under more restrictions on the
underlying one-dimensional data structure is given in [9].
The technique is nevertheless applicable to several clas-
sic one-dimensional data structures, in particular binary
search trees and its balanced variants. For a collection of
strings that share long common prefixes such as IP ad-
dresses and XML path strings, a faster search method is
described in [5].

When answering a sequence of queries, significant sav-
ings can be obtained by promoting frequently searched
strings so that they are among the first to be encountered
in a search path through the indexing data structure. Ciri-
ani et al. [4] use self-adjusting skip lists to derive an ex-
pected bound for a sequence of queries that matches the
information-theoretic lower bound.

Theorem 2 A collection of n strings of total length N
can be indexed in optimal O(N) space so that a sequence
of m string queries, say s1,� � � ,sm, can be performed in
O(
Pm

j=1 js jj +
Pn

i=1 ni log(m/ni ) expected time, where ni
is the number of times the ith string is queried.

Notice that the first additive term is a lower bound for
reading the input, and the second additive term is a stan-
dard information-theoretic lower bound denoting the en-
tropy of the query sequence. Ciriani et al. also extended
the approach to the external memory model, and to the
case of dynamic sets of strings. More recently, Ko and
Aluru developed a self-adjusting tree layout for dynamic
sets of strings in secondary storage that provides optimal
number of disk accesses for a sequence of string or sub-
string queries, thus providing a deterministic algorithm
that matches the information-theoretic lower bound [4].

The next part of this entry deals with some of the
widely used data structures specifically designed for string
data, suffix trees, and suffix arrays. These are particularly
suitable for querying unstructured text data, such as the
genomic sequence of an organism. The following nota-
tion is used: Let s[i] denote the ith character of string s,
s[i:: j] denote the substring s[i]s[i + 1] : : : s[ j], and Si =
s[i]s[i + 1] : : : s[jsj] denote the suffix of s starting at ith
position. The suffix Si can be uniquely described by the
integer i. In case of multiple strings, the suffix of a string
can be described by a tuple consisting of the string num-
ber and the starting position of the suffix within the string.
Consider a collection of strings over˙ , having total length
n, each extended by adding a unique termination symbol
$ … ˙ . The suffix tree of the strings is a compacted trie
of all suffixes of these extended strings. The suffix array of
the strings is the lexicographic sorted order of all suffixes

of these extended strings. For convenience, we list ‘$’, the
last suffix of each string, just once. The suffix tree and suf-
fix array of strings ‘apple’ and ‘maple’ are shown in Fig. 1.
Both these data structures takeO(n) space and can be con-
structed in O(n) time [11, 13], both directly and from each
other.

Without loss of generality, consider the problem of
searching for a pattern P as a substring of a single string T.
Assume the suffix tree ST of T is available. If P occurs
in T starting from position i, then P is a prefix of suffix
Ti = T[i]T[i + 1] : : : T[jTj] in T. It follows that Pmatches
the path from root to leaf labeled i in ST. This property re-
sults in the following simple algorithm: Start from the root
of ST and follow the path matching characters in P, until P
is completely matched or a mismatch occurs. If P is not
fully matched, it does not occur in T. Otherwise, each leaf
in the subtree below the matching position gives an occur-
rence of P. The positions can be enumerated by traversing
the subtree in O(occ) time, where occ denotes the num-
ber of occurrences of P. If only one occurrence is desired,
ST can be preprocessed in O(jTj) time such that each in-
ternal node contains the suffix at one of the leaves in its
subtree.

Theorem 3 Given a suffix tree for text T and a pattern P,
whether P occurs in T can be answered in O(jPj) time. All
occurrences of P in T can be found in O(jPj + occ) time,
where occ denotes the number of occurrences.

Now consider solving the same problem using the suf-
fix array SA of T. All suffixes prefixed by P appear
in consecutive positions in SA. These can be found
using binary search in SA. Naively performed, this
would take O(jPj � log jTj) time. It can be improved to
O(jPj + log jTj) time as follows [15]:

Let SA[L::R] denote the range in the suffix array where
the binary search is focused. To begin with, L = 1 and
R = jTj. Let � denote “lexicographically smaller”, � de-
note “lexicographically smaller or equal”, and l cp(˛; ˇ)
denote the length of the longest common prefix between
strings ˛ and ˇ. At the beginning of an iteration, TSA[L] �
P � TSA[R]. Let M = d(L + R)/2e. Let l = l cp(P; TSA[L])
and r = l cp(P; TSA[R]). Because SA is lexicographically or-
dered, l cp(P; TSA[M]) � min(l ; r). If l = r, then compare
P and TSA[M] starting from the (l+1)th character. If l ¤ r,
consider the case when l > r.

Case I: l < l cp(TSA[L]; TSA[M]). In this case, TSA[M] � P
and l cp(P; TSA[M]) = l cp(P; TSA[L]). Continue search
in SA[M::R]. No character comparisons required.

Case II: l > l cp(TSA[L]; TSA[M]). In this case, P � TSA[M]
and l cp(P; TSA[M]) = l cp(TSA[L]; TSA[M]). Continue
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Text Indexing, Figure 1
Suffix tree and suffix array of strings apple andmaple

search in SA[L::M]. No character comparisons re-
quired.

Case III: l = l cp(TSA[L]; TSA[M]). In this case, l cp(P;
TSA[M]) � l . Compare P and TSA[M] beyond lth char-
acter to determine their relative order and lcp.

Similarly, the case when r > l can be handled such that
comparisons between P and TSA[M], if at all needed, start
from (r + 1)th character. To start the execution of the al-
gorithm, l cp(P; TSA[1]) and l cp(P; TSA[jTj]) are computed
directly using at most 2jPj character comparisons. It re-
mains to be described how the l cp(TSA[L]; TSA[M]) and
l cp(TSA[R]; TSA[M]) values required in each iteration are
computed. Let Lcp[1 : : : jTj � 1] be an array such that
Lcp[i] = l cp(SA[i]; SA[i + 1]). The Lcp array can be com-
puted from SA in O(jTj) time [12]. For any 1 � i < j � n,
l cp(TSA[i]; TSA[ j]) = min j�1

k=i Lcp[k]. In order to find the
lcp values required by the algorithm in constant time, note
that the binary search can be viewed as traversing a path
in the binary tree corresponding to all possible search in-
tervals used by any execution of the binary search algo-
rithm [15]. The root of the tree denotes the interval [1::n].
If [i:: j] ( j � i � 2) is the interval at an internal node of the
tree, its left child is given by [i::d(i + j)/2e] and its right
child is given by [d(i + j)/2e:: j]. The lcp value for each
interval in the tree is precomputed and recorded in O(n)
time and space.

Theorem 4 Given the suffix array SA of text T and
a pattern P, the existence of P in T can be checked in
O(jPj + log jTj) time. All occurrences of P in T can be found

in O(occ) additional time, where occ denotes their number.

Proof The algorithm makes at most 2jPj comparisons in
determining l cp(P; TSA[1]) and l cp(P; TSA[n]). A compar-
ison made in an iteration to determine l cp(P; TSA[M]) is
categorized successful if it contributes the lcp, and catego-
rized failed otherwise. There is at most one failed com-
parison per iteration. As for successful comparisons, note
that the comparisons start with (max(l ; r) + 1)th charac-
ter of P, and each successful comparison increases the
value of max(l, r) for the next iteration. Thus, each char-
acter of P is involved only once in a successful compari-
son. The total number of character comparisons is at most
3jPj + log jTj = O(jPj + log jTj). �

Abouelhoda et al. [1] reduce this time further to O(jPj)
by mimicking the suffix tree algorithm on a suffix array
with some auxiliary information. The strategy is useful in
other applications based on top-down traversal of suffix
trees. At this stage, the distinction between suffix trees and
suffix arrays is blurred as the auxiliary information stored
makes the combined data structure equivalent to a suffix
tree. Using clever implementation techniques, the space is
reduced to approximately 6n bytes. A major advantage of
the suffix tree and suffix array based methods is that the
text T is often large and relatively static, while it is queried
with several short patterns.With suffix trees and enhanced
suffix arrays [1], once the text is preprocessed in O(jTj)
time, each pattern can be queried in O(jPj) time for con-
stant size alphabet. For large alphabets, the query can be
answered in O(jPj � log j˙ j) time using O(nj˙ j) space
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(by storing an ordered array of j˙ j pointers to potential
children of a node), or in O(jPj � j˙ j) time using O(n)
space (by storing pointers to first child and next sibling).1

For indexing in various text-dynamic situations, see [3,7]
and references therein. The problem of compressing suf-
fix trees and arrays is covered in more detail in other en-
tries.

While exact pattern matching has many useful appli-
cations, the need for approximate pattern matching arises
in several contexts ranging from information retrieval to
finding evolutionary related biomolecular sequences. The
classic approximate pattern matching problem is to find
substrings in the text T that have an edit distance of k or
less to the pattern P, i. e., the substring can be converted to
P with at most k insert/delete/substitute operations. This
problem is covered in more detail in other entries. Also
see [16], the references therein, and Chapter 36 of [2].

Applications

Text indexing has many practical applications—finding
words or phrases in documents under preparation, search-
ing text for information retrieval from digital libraries,
searching distributed text resources such as the web, pro-
cessing XML path strings, searching for longest matching
prefixes among IP addresses for internet routing, to name
just a few. The reader interested in further exploring text
indexing is referred to the book by Crochemore and Ryt-
ter [6], and to other entries in this Encyclopedia. The last
decade of explosive growth in computational biology is
aided by the application of string processing techniques to
DNA and protein sequence data. String indexing and ag-
gregate queries to uncover mutual relationships between
strings are at the heart of important scientific challenges
such as sequencing genomes and inferring evolutionary
relationships. For an in depth study of such techniques,
the reader is referred to Parts I and II of [10] and Parts II
and VIII of [2].

Open Problems

Text indexing is a fertile research area, making it impossi-
ble to cover many of the research results or actively pur-
sued open problems in a short amount of space. Providing
better algorithms and data structures to answer a flow of
string-search queries when caches or other query models
are taken into account, is an interesting research issue [4].

1Recently, Cole et al. (2006) showed how to further reduce the
search time toO(jPj + log j˙ j) while still keeping the optimal O(jTj)
space.

Cross References
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ProblemDefinition

Consider n Boolean variables V = fx1; : : : ; xng and the
corresponding set of 2n literals L = fx1; x1 : : : ; xn ; xng.
A k-clause is a disjunction of k literals of distinct under-
lying variables. A random formula �n;m in k Conjunctive
Normal Form (k-CNF) is the conjunction of m clauses,
each selected in a uniformly random and independent way
amongst the 2k

�n
k
�
possible k-clauses on n variables in V .

The density rk of a k-CNF formula �n;m is the clauses-to-
variables ratiom/n.

It was conjectured that for each k � 2 there exists
a critical density r�k such that asymptotically almost all
(a.a.a.) k-CNF formulas with density r < r�k (r > r�k ) are
satisfiable (unsatisfiable, respectively). So far, the conjec-
ture has been proved only for k = 2 [3,11]. For k � 3, the
conjecture still remains open but is supported by exper-
imental evidence [14] as well as by theoretical, but non-
rigorous, work based on Statistical Physics [15]. The value
of the putative threshold r�3 is estimated to be around 4.27.
Approximate values of the putative threshold for larger
values of k have also been computed.

As far as rigorous results are concerned, Friedgut [10]
proved that for each k � 3 there exists a sequence
r�k (n) such that for any � > 0, a.a.a. k-CNF formu-
las �n;b(r�k (n)��)nc (�n;d(r�k (n)+�)ne) are satisfiable (unsat-
isfiable, respectively). The convergence of the sequence
r�k (n); n = 0; 1; : : : for k � 3 remains open.

Let now

r��k = limn!1r�k (n)
= supfrk : Pr[�n;brk nc is satisfiable ! 1]g

and

r�+k = limn!1r�k (n)
= inffrk : Pr[�n;drk neis satisfiable! 0]g :

Obviously, r��k � r�+k . Bounding from below (from above)
r��k (r�+k , respectively) with an as large as possible (as small
as possible, respectively) bound has been the subject of in-
tense research work in the past decade.

Upper bounds to r�+k are computed by counting argu-
ments. To be specific, the standard technique is to com-
pute the expected number of satisfying truth assignments
of a random formula with density rk and find an as small
as possible value of rk for which this expected value ap-
proaches zero. Then, by Markov’s inequality, it follows
that for such a value of rk, a random formula �n;drk ne is
unsatisfiable asymptotically almost always. This argument
has been refined in two directions: First, considering not
all satisfying truth assignments but a subclass of themwith
the property that a satisfiable formula always has a satisfy-
ing truth assignment in the subclass considered. The re-
striction to a judiciously chosen such subclass forces the
expected value of the number of satisfying truth assign-
ments to get closer to the probability of satisfiability, and
thus leads to a better (smaller) upper bound rk. However,
it is important that the subclass should be such that the
expected value of the number of satisfying truth assign-
ments can be computable by the available probabilistic
techniques.

Second, make use in the computation of the expected
number of satisfying truth assignments of typical charac-
teristics of the random formula, i. e. characteristics shared
by a.a.a. formulas. Again this often leads to an expected
number of satisfying truth assignments that is closer to the
probability of satisfiability (non-typical formulasmay con-
tribute to the increase of the expected number). Increas-
ingly better upper bounds to r�+3 have been computed us-
ing counting arguments as above (see the surveys [6,13]).
Dubois, Boufkhad and Mandler [7] proved r�+3 < 4:506.
The latter remains the best upper bound to date.

On the other hand, for fixed and small values of k (es-
pecially for k = 3) lower bounds to r��k are usually com-
puted by algorithmic methods. To be specific, one designs
an algorithm that for an as large as possible rk it returns
a satisfying truth assignment for a.a.a. formulas �n;brk nc.
Such an rk is obviously a lower bound to r��k . The simpler
the algorithm, the easier to perform the probabilistic anal-
ysis of returning a satisfying truth assignment for a given
rk, but the smaller the rk’s for which a satisfying truth as-
signment is returned asymptotically almost always. In this
context, backtrack-free DPLL algorithms [4,5] of increas-
ing sophistication were rigorously analyzed (see the sur-
veys [2,9]). At each step of such an algorithm, a literal
is set to TRUE and then a reduced formula is obtained
by (i) deleting clauses where this literal appears and by
(ii) deleting the negation of this literal from the clauses it
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appears. At steps at which 1-clauses exist (known as forced
steps), the selection of the literal to be set to TRUE is made
so as a 1-clause becomes satisfied. At the remaining steps
(known as free steps), the selection of the literal to be set
to TRUE is made according to a heuristic that characterizes
the particular DPLL algorithm. A free step is followed by
a round of consecutive forced steps. To facilitate the prob-
abilistic analysis of DPLL algorithms, it is assumed that
they never backtrack: if the algorithm ever hits a contradic-
tion, i. e. a 0-clause is generated, it stops and reports fail-
ure, otherwise it returns a satisfying truth assignment. The
previously best lower bound for the satisfiability threshold
obtained by such an analysis was 3:26 < r��3 (Achlioptas
and Sorkin [1]).

The previously analyzed such algorithms (with the ex-
ception of the Pure Literal algorithm [8]) at a free
step take into account only the clause size where the se-
lected literal appears. Due to this limited information ex-
ploited on selecting the literal to be set, the reduced for-
mula in each step remains random conditional only on the
current numbers of 3- and 2-clauses and the number of yet
unassigned variables. This retention of “strong” random-
ness permits a successful probabilistic analysis of the algo-
rithm in a not very complicated way. However, for k = 3
it succeeds to show satisfiability only for densities up to
a number slightly larger than 3.26. In particular, in [1] it is
shown that this is the optimal value that can be attained by
such algorithms.

Key Results

In [12], a DPLL algorithm is described (and then prob-
abilistically analyzed) such that each free step selects the
literal to be set to TRUE taking into account its degree (i. e.
its number of occurrences) in the current formula.

Algorithm Greedy [Section 4.A in 12]

The first variant of the algorithm is very simple: At each
free step, a literal with the maximum number of occur-
rences is selected and set to TRUE. Notice that in this
greedy variant, a literal is selected irrespectively of the
number of occurrences of its negation. This algorithm suc-
cessfully returns a satisfying truth assignment for a.a.a.
formulas with density up to a number slightly larger
than 3.42, establishing that r��3 > 3:42. Its simplicity, con-
trasted with the improvement over the previously ob-
tained lower bounds, suggests the importance of analyzing
heuristics that take into account degree information of the
current formula.

Algorithm CL [Section 5.A in 12]

In the second variant, at each free step t, the degree of
the negation � of the literal � that is set to TRUE is also
taken into account. Specifically, the literal to be set to
TRUE is selected so as upon the completion of the round
of forced steps that follow the free step t, the marginal
expected increase of the flow from 2-clauses to 1-clauses
per unit of expected decrease of the flow from 3-clauses
to 2-clauses is minimized. The marginal expectation cor-
responding to each literal can be computed from the num-
bers of its positive and negative occurrences. More specifi-
cally, if mi ; i = 2; 3 equals the expected flow of i-clauses to
(i � 1)-clauses at each step of a round, and � is the literal
set to TRUE at the beginning of the round, then � is chosen
so as to minimize the ratio j4m2

4m3
j of the differences 4m2

and4m3 between the beginning and the end of the round.
This has as effect the bounding of the rate of generation of
1-clauses by the smallest possible number throughout the
algorithm. For the probabilistic analysis to go through, we
need to know for each i, j the number of literals with de-
gree i whose negation has degree j. This heuristic succeeds
in returning a satisfying truth assignment for a.a.a. formu-
las with density up to a number slightly larger than 3.52,
establishing that r��3 > 3:52.

Applications

Some applications of SAT solvers include Sequential Cir-
cuit Verification, Artificial Intelligence, Automated de-
duction and Planning, VLSI, CAD, Model-checking and
other type of formal verification. Recently, automatic SAT-
based model checking techniques were used to effectively
find attacks on security protocols.

Open Problems

The main open problem in the area is to formally show
the existence of the threshold r�k for all (or at least some)
k � 3. To rigorously compute upper and lower bounds
better than the ones mentioned here still attracts some in-
terest. Related results and problems arise in the framework
of variants of the satisfiability problem and also the prob-
lem of colorability.

Cross References
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ProblemDefinition

The application of techniques from Combinatorial and Al-
gebraic Topology has been successful at solving a number
of problems in distributed computing. In 1993, three in-
dependent teams [3,15,17], using different ways of gener-
alizing the classical graph-theoretical model of distributed
computing, were able to solve set agreement a long-
standing open problem that had eluded the standard ap-
proaches. Later on, in 2004, journal articles by Herlihy and
Shavit [15] and by Saks and Zaharoglou [17] were to win
the prestigious Gödel prize. This paper describes the ap-
proach taken by the Herlihy/Shavit paper, which was the
first draw the connection between Algebraic and Combi-
natorial Topology and Distributed Computing.

Pioneering work in this area, such as by Biran, Moran,
and Zaks [2] used graph-theoretic notions to model un-
certainty, and were able to express certain lower bounds in
terms of graph connectivity. This approach, however, had
limitations. In particular, it proved difficult to capture the
effects of multiple failures or to analyze decision problems
other then consensus.

Combinatorial topology generalizes the notion of
a graph to the notion of a simplicial complex, a structure
that has been well-studied in mainstreammathematics for
over a century. One property of central interest to topolo-
gists is whether a simplicial complex has no “holes” below
a certain dimension k, a property known as k-connectiv-
ity. Lower bounds previously expressed in terms of con-
nectivity of graphs can be generalized by recasting them
in terms of k-connectivity of simplicial complexes. By ex-
ploiting this insight, it was possible to solve some open
problems (k-set agreement, renaming), to pose and solve
some new problems ([13]), and to unify a number of dis-
parate results and models [14].

Key Results

A vertex Ev is a point in a high-dimensional Euclidean
space. Vertexes Ev0; : : : ; Evn are affinely independent if Ev1 �
Ev0; : : : ; Evn�Ev0 are linearly independent. An n-dimensional
simplex (or n-simplex) Sn = (Es0; : : : ; Esn) is the convex hull
of a set of n + 1 affinely-independent vertexes. For exam-
ple, a 0-simplex is a vertex, a 1-simplex a line segment,
a 2-simplex a solid triangle, and a 3-simplex a solid tetra-
hedron. Where convenient, superscripts indicate dimen-
sions of simplexes. The Es0; : : : ; Esn are said to span Sn. By
convention, a simplex of dimension d < 0 is an empty
simplex.

A simplicial complex (or complex) is a set of simplexes
closed under containment and intersection. The dimen-
sion of a complex is the highest dimension of any of its
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simplexes. L is a subcomplex ofK if every simplex of L is
a simplex of K. A map � : K ! L carrying vertexes to
vertexes is simplicial if it also induces a map of simplexes
to simplexes.

Definition 1 A complexK is k-connected if every contin-
uous map of the k-sphere toK can be extended to a con-
tinuous map of the (k + 1)-disk. By convention, a complex
is (�1)-connected if and only if it is nonempty, and every
complex is k-connected for k < �1.

A complex is 0-connected if it is connected in the graph-
theoretic sense, and a complex is k-connected if it has no
holes in dimensions k or less. The definition of k-connec-
tivity may appear difficult to use, but fortunately reasoning
about connectivity can be done in a combinatorial way, us-
ing the following elementary consequence of the Mayer–
Vietoris sequence.

Theorem 2 IfK and L are complexes such thatK and L
are k-connected, andK \ L is (k�1)-connected, thenK [
L is k-connected.

This theorem, plus the observation that any non-empty
simplex is k-connected for all k, allows reasoning about
a complex’s connectivity inductively in terms of the con-
nectivity of its components.

A set of n + 1 sequential processes communicate either
by sending messages to one another or by applying opera-
tions to shared objects. At any point, a process may crash:
it stops and takes no more steps. There is a bound f on the
number of processes that can fail. Models differ in their
assumptions about timing. At one end of the spectrum is
the synchronous model in which computation proceeds in
a sequence of rounds. In each round, a process sends mes-
sages to the other processes, receives the messages sent to
it by the other processes in that round, and changes state.
(Or it applies operations to shared objects.) All processes
take steps at exactly the same rate, and all messages are de-
livered with exactly the samemessage delivery time. At the
other end is the asynchronous model in which there is no
bound on the amount of time that can elapse between pro-
cess steps, and there is no bound on the time it can take for
a message to be delivered. Between these extremes is the
semi-synchronous model in which process step times and
message delivery times can vary, but are bounded between
constant upper and lower bounds. Proving a lower bound
in any of these models requires a deep understanding of
the global states that can arise in the course of a protocol’s
execution, and of how these global states are related.

Each process starts with an input value taken from
a setV , and then executes a deterministic protocol in which
it repeatedly receives one or more messages, changes its

local state, and sends one or more messages. After a finite
number of steps, each process chooses a decision value and
halts.

In the k-set agreement task [5], processes are required
to (1) choose a decision value after a finite number of steps,
(2) choose as their decision values some process’s input
value, and (3) collectively choose no more than k distinct
decision values.When k = 1, this problem is usually called
consensus [16].

Here is the connection between topological models
and computation. An initial local state of process P is mod-
eled as a vertex Ev = hP; vi labeled with P’s process id
and initial value v. An initial global state is modeled as
an n-simplex Sn = (hP0; v0i; : : : ; hPn ; vni), where the Pi
are distinct. The term ids(Sn) denotes the set of process ids
associated with Sn, and val s(Sn) the set of values. The set
of all possible initial global states forms a complex, called
the input complex.

Any protocol has an associated protocol complexP, de-
fined as follows. Each vertex is labeled with a process id
and a possible local state for that process. A set of ver-
texes hP0; v0i; : : : ; hPd ; vd i spans a simplex ofP if and only
if there is some protocol execution in which P0; : : : ; Pd
finish the protocol with respective local states v0; : : : ; vd .
Each simplex thus corresponds to an equivalence class of
executions that “look the same” to the processes at its ver-
texes. The term P(Sm) to denote the subcomplex of P
corresponding to executions in which only the processes
in ids(Sm) participate (the rest fail before sending any
messages). If m < n � f , then there are no such execu-
tions, and P(Sm) is empty. The structure of the protocol
complex P depends both on the protocol and on the tim-
ing and failure characteristics of the model. P often refers
to both the protocol and its complex, relying on context to
disambiguate.

A protocol solves k-set agreement if there is a simplicial
map ı, called decisionmap, carrying vertexes ofP to values
in V such that if Ep 2 P(Sn) then ı(Ep) 2 val s(Sn), and
ı maps the vertexes of any given simplex in P(Sn) to at
most k distinct values.

Applications

The renaming problem is a key tool for understanding the
power of various asynchronous models of computation.

Open Problems

Characterizing the full power of the topological approach
to proving lower bounds remains an open problem.
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ProblemDefinition

A dynamic graph algorithm maintains a given property P
on a graph subject to dynamic changes, such as edge in-
sertions, edge deletions and edge weight updates. A dy-
namic graph algorithm should process queries on prop-
erty P quickly, and perform update operations faster than
recomputing from scratch, as carried out by the fastest
static algorithm. A typical definition is given below:

Definition 1 (Dynamic graph algorithm) Given a graph
and a graph property P, a dynamic graph algorithm is
a data structure that supports any intermixed sequence of
the following operations:

insert(u; v) : insert edge (u; v) into the graph.
delete(u; v) : delete edge (u; v) from the graph.
query(: : :) : answer a query about property P

of the graph.

A graph algorithm is fully dynamic if it can handle both
edge insertions and edge deletions and partially dynamic if
it can handle either edge insertions or edge deletions, but
not both: it is incremental if it supports insertions only,
and decremental if it supports deletions only. Some pa-
pers study variants of the problem where more than one
edge can be deleted of inserted at the same time, or edge
weights can be changed. In some cases, an update may be
the insertion or deletion of a node along with all edges
incident to them. Some other papers only deal with spe-
cific classes of graphs, e. g., planar graphs, directed acyclic
graphs (DAGs), etc.

There is a vast literature on dynamic graph algorithms.
Graph problems for which efficient dynamic solutions are
known include graph connectivity, minimum cut, mini-
mum spanning tree, transitive closure, and shortest paths
(see, e. g. [3] and the references therein). Many of them
update explicitly the property P after each update in or-
der to answer queries in optimal time. This may be a good
choice in scenarios where there are few updates and many
queries. In applications where the numbers of updates and
queries are comparable, a better approach would be to try
to reduce the update time, possibly at the price of increas-
ing the query time. This is typically achieved by relaxing
the assumption that the property P should be maintained
explicitly.

This entry focuses on algorithms for dynamic graph
problems that maintain the graph property implicitly, and
thus require non-constant query time while supporting
faster updates. In particular, it considers two problems: dy-
namic transitive closure (also known as dynamic reachabil-
ity) and dynamic all-pairs shortest paths, defined below.

Definition 2 (Fully dynamic transitive closure) The
fully dynamic transitive closure problem consists of main-
taining a directed graph under an intermixed sequence of
the following operations:

insert(u; v) : insert edge (u; v) into the graph.
delete(u; v) : delete edge (u; v) from the graph.
query(x; y) : return true if there is a directed

path from vertex x to vertex y,
and false otherwise.

Definition 3 (Fully dynamic all-pairs shortest paths)
The fully dynamic transitive closure problem consists of
maintaining a weighted directed graph under an inter-
mixed sequence of the following operations:

insert(u; v;w) : insert edge (u; v) into the graph
with weight w.

delete(u; v) : delete edge (u; v) from the graph.
query(x; y) : return the distance from x to y in

the graph, or +1 if there is no
directed path from x to y.

Recall that the distance from a vertex x to a vertex y is the
weight of a minimum-weight path from x to y, where the
weight of a path is defined as the sum of edge weights in
the path.

Key Results

This section presents a survey of query/update trade-
offs for dynamic transitive closure and dynamic all-pairs
shortest paths.

Dynamic Transitive Closure

The first query/update tradeoff for this problem was de-
vised by Henzinger and King [6], who proved the follow-
ing result:

Theorem 1 (Henzinger and King 1995 [6]) Given a gen-
eral directed graph, there is a randomized algorithm with
one-sided error for the fully dynamic transitive closure that
supports a worst-case query time of O(n/ log n) and an
amortized update time of O(m

p
n log2 n).

The first subquadratic algorithm for this problem is due
to Demetrescu and Italiano for the case of directed acyclic
graphs [4,5]:

Theorem 2 (Demetrescu and Italiano 2000 [4,5]) Given
a directed acyclic graph with n vertices, there is a random-
ized algorithm with one-sided error for the fully dynamic
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Trade-Offs for Dynamic Graph Problems, Table 1
Fully dynamic transitive closure algorithms with implicit solution representation

Type of graphs Type of algorithm Update time Query time Reference
General Monte Carlo O(m

p
n log2 n) amort. O(n/ log n) HK [6]

DAG Monte Carlo O(n1.575) O(n0.575) DI [4]
General Monte Carlo O(n1.575) O(n0.575) Sank. [13]
General Monte Carlo O(n1.495) O(n1.495) Sank. [13]
General Deterministic O(m

p
n) amort. O(

p
n) RZ [10]

General Deterministic O(m + n log n) amort. O(n) RZ [11]

transitive closure problem that supports each query in O(n�)
time and each insertion/deletion in O(n!(1;�;1)�� + n1+�),
for any � 2 [0; 1], where !(1; �; 1) is the exponent of the
multiplication of an n � n� matrix by an n� � n matrix.

Notice that the dependence of the bounds upon parame-
ter " leads to a full range of query/update tradeoffs. Bal-
ancing the two terms in the update bound of Theorem 2
yields that " must satisfy the equation !(1; �; 1) = 1 + 2�.
The current best bounds on !(1; �; 1) [2,7] imply that
� < 0:575. Thus, the smallest update time is O(n1.575),
which gives a query time of O(n0.575):

Corollary 1 (Demetrescu and Italiano 2000 [4,5]) Given
a directed acyclic graph with n vertices, there is a ran-
domized algorithm with one-sided error for the fully dy-
namic transitive closure problem that supports each query
in O(n0.575) time and each insertion/deletion in O(n1.575)
time.

This result has been generalized to the case of general di-
rected graphs by Sankowski [13]:

Theorem 3 (Sankowsk 2004 [13]) Given a general di-
rected graph with n vertices, there is a randomized algo-
rithm with one-sided error for the fully dynamic transitive
closure problem that supports each query in O(n) time and
each insertion/deletion in O(n!(1;�;1)�� + n1+�), for any
� 2 [0; 1], where !(1; �; 1) is the exponent of the multipli-
cation of an n � n� matrix by an n� � n matrix.

Corollary 2 (Sankowski 2004 [13]) Given a general di-
rected graph with n vertices, there is a randomized algo-
rithm with one-sided error for the fully dynamic transitive
closure problem that supports each query in O(n0.575) time
and each insertion/deletion in O(n1.575) time.

Sankowski has also shown how to achieve an even faster
update time of O(n1.495) at the expense of a much higher
O(n1.495) query time:

Theorem 4 (Sankowski 2004 [13]) Given a general di-
rected graph with n vertices, there is a randomized algo-
rithm with one-sided error for the fully dynamic transitive

closure problem that supports each query and each inser-
tion/deletion in O(n1.495) time.

Roditty and Zwick presented algorithms designed to
achieve better bounds in the case of sparse graphs:

Theorem 5 (Roditty and Zwick 2002 [10]) Given a gen-
eral directed graph with n vertices and m edges, there is
a deterministic algorithm for the fully dynamic transitive
closure problem that supports each insertion/deletion in
O(m
p
n) amortized time and each query in O(

p
n) worst-

case time.

Theorem 6 (Roditty and Zwick 2004 [11]) Given a gen-
eral directed graph with n vertices and m edges, there is
a deterministic algorithm for the fully dynamic transitive
closure problem that supports each insertion/deletion in
O(m + n log n) amortized time and each query in O(n)
worst-case time.

Observe that the results of Theorem 5 and Theorem 6 are
subquadratic for m = o(n1:5) and m = o(n2), respectively.
Moreover, they are not based on fast matrix multiplica-
tion, which is theoretically efficient but impractical.

Dynamic Shortest Paths

The first effective tradeoff algorithm for dynamic shortest
paths is due to Roditty and Zwick in the special case of
sparse graphs with unit edge weights [12]:

Theorem 7 (Roditty and Zwick 2004 [12]) Given
a general directed graph with n vertices, m edges, and
unit edge weights, there is a randomized algorithm with
one-sided error for the fully dynamic all-pairs short-
est paths problem that supports each distance query in
O(t + n log n

k )worst-case time and each insertion/deletion in

O(mn2 log n
t2 + km + mn log n

k ) amortized time.

By choosing k = (n log n)1/2 and (n log n)1/2 � t � n3/4

(log n)1/4 in Theorem 7, it is possible to obtain an amor-
tized update time of O(mn2 log n

t2 ) and a worst-case query
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time of O(t). The fastest update time of O(m
p
n log n) is

obtained by choosing t = n3/4(log n)1/4.
Later, Sankowski devised the first subquadratic algo-

rithm for dense graphs based on fast matrix multiplica-
tion [14]:

Theorem 8 (Sankowski 2005 [14]) Given a general di-
rected graph with n vertices and unit edge weights, there is
a randomized algorithm with one-sided error for the fully
dynamic all-pairs shortest paths problem that supports each
distance query in O(n1.288) time and each insertion/deletion
in O(n1.932) time.

Applications

The transitive closure problem studied in this entry is par-
ticularly relevant to the field of databases for supporting
transitivity queries on dynamic graphs of relations [16].
The problem also arises in many other areas such as com-
pilers, interactive verification systems, garbage collection,
and industrial robotics.

Application scenarios of dynamic shortest paths in-
clude network optimization [1], document formatting [8],
routing in communication systems, robotics, incremen-
tal compilation, traffic information systems [15], and
dataflow analysis. A comprehensive review of real-world
applications of dynamic shortest path problems appears
in [9].

Open Problems

It is a fundamental open problem whether the fully dy-
namic all pairs shortest paths problem of Definition 3 can
be solved in subquadratic time per operation in the case of
graphs with real-valued edge weights.
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ProblemDefinition

In the traveling salesman problem (TSP) n cities 1, 2, : : :, n
together with all the pairwise distances d(i, j) between
cities i and j are given. The goal is to find the shortest
tour that visits every city exactly once and in the end re-
turns to its starting city. The TSP is one of the most fa-
mous problems in combinatorial optimization, and it is
well-known to be NP-hard. For more information on the
TSP, the reader is referred to the book by Lawler, Lenstra,
Rinnooy Kan, and Shmoys [14].

A special case of the TSP is the so-called Euclidean
TSP, where the cities are points in the Euclidean plane, and
the distances are simply the Euclidean distances. A spe-
cial case of the Euclidean TSP is the convex Euclidean TSP,
where the cities are further restricted so that they lie in
convex position. The EuclideanTSP is still NP-hard [4,17],
but the convex Euclidean TSP is quite easy to solve: Run-
ning along the boundary of the convex hull yields a short-
est tour. Motivated by these two facts, the following natu-
ral question is posed: What is the influence of the number
of inner points on the complexity of the problem? Here,
an inner point of a finite point set P is a point from P
which lies in the interior of the convex hull of P. Intuition
says that “Fewer inner points make the problem easier to
solve.”

The result below answers this question and supports
the intuition above by providing simple exact algorithms.

Key Results

Theorem 1 The special case of the Euclidean TSP with few
inner points can be solved in the following time and space
complexity. Here, n denotes the total number of cities and
k denotes the number of cities in the interior of the convex
hull. 1. In timeO(k!kn) and spaceO(k). 2. In timeO(2kk2n)
and spaceO(2kkn) [1].

Here, assume that the convex hull of a given point set is
already determined, which can be done in time O(n log n)
and space O(n). Further, note that the above space bounds
do not count the space needed to store the input but they
just count the space in working memory (as usual in theo-
retical computer science).

Theorem 1 implies that, from the viewpoint of param-
eterized complexity [2,3,16], these algorithms are fixed-
parameter algorithms, when the number k of inner points

is taken as a parameter, and hence the problem is fixed-pa-
rameter tractable (FPT). (A fixed-parameter algorithm has
running time O( f (k)poly(n)), where n is the input size, k
is a parameter and f : N ! N is an arbitrary computable
function. For example, an algorithm with running time
O(5kn) is a fixed-parameter algorithm whereas one with
O(nk ) is not.) Observe that the second algorithm gives
a polynomial-time exact solution to the problem when
k = O(log n).

The method can be extended to some generalized ver-
sions of the TSP. For example, Deı̆neko et al. [1] stated that
the prize-collecting TSP and the partial TSP can be solved
in a similar manner.

Applications

The theorem is motivated more from a theoretical side
rather than an application side. No real-world application
has been assumed.

As for the theoretical application, the viewpoint (intro-
duced in the problem definition section) has been applied
to other geometric problems. Some of them are listed be-
low.

The MinimumWeight Triangulation Problem: Given
n points in the Euclidean plane, the problem asks to
find a triangulation of the points which has mini-
mum total length. The problem is now known to be
NP-hard [15].
Hoffmann and Okamoto [10] proved that the prob-
lem is fixed-parameter tractable with respect to the
number k of inner points. The time complexity they
gave is O(6kn5 log n). This is subsequently improved
by Grantson, Borgelt, and Levcopoulos [6] to O(4kkn4)
and by Spillner [18] to O(2kkn3). Yet other fixed-
parameter algorithms have also been proposed by
Grantson, Borgelt, and Levcopoulos [7,8]. The cur-
rently best time complexity was given by Knauer
and Spillner [13] and it is O(2c

p
k log k k3/2n3) where

c = (2 +
p
2)/(
p
3 �
p
2) < 11.

The Minimum Convex Partition Problem:
Given n points in the Euclidean plane, the problem
asks to find a partition of the convex hull of the points
into the minimum number of convex regions having
some of the points as vertices.
Grantson and Levcopoulos [9] gave an algorithm run-
ning in O(k6k�5216kn) time. Later, Spillner [19] im-
proved the time complexity to O(2kk3n3).

The MinimumWeight Convex Partition Problem:
Given n points in the Euclidean plane, the problem
asks to find a convex partition of the points with min-
imum total length.
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Grantson [5] gave an algorithm running in
O(k6k�5216kn) time. Later, Spillner [19] improved
the time complexity to O(2kk3n3).

The Crossing Free Spanning Tree Problem: Given an
n-vertex geometric graph (i. e., a graph drawn on the
Euclidean plane where every edge is a straight line seg-
ment connecting two distinct points), the problem asks
to determine whether it has a spanning tree without
any crossing of the edges. Jansen and Woeginger [11]
proved this problem is NP-hard.
Knauer and Spillner [12] gave algorithms running in
O(175kk2n3) time and O(233

p
k log k k2n3) time.

The method proposed by Knauer and Spillner [12] can
be adopted to the TSP as well. According to their re-
sult, the currently best time complexity for the TSP is
2O(
p

k log k)poly(n).

Open Problems

Currently, no lower bound result for the time complexity
seems to be known. For example, is it possible to prove
under a reasonable complexity-theoretic assumption the
impossibility for the existence of an algorithm running in
2O(
p

k)poly(n) for the TSP?
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Traveling Salesperson Problem
� Traveling Sales Person with Few Inner Points

Tree Agreement
�Maximum Agreement Subtree (of 2 Binary Trees)

Tree Alignment
�Maximum Agreement Subtree (of 3 or More Trees)
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ProblemDefinition

Trees are a fundamental structure in computing. They are
used in almost every aspect of modeling and representa-
tion for explicit computation like searching for keys,main-
taining directories, and representations of parsing or exe-
cution traces—to name just a few. One of the latest uses
of trees is XML, the de facto format for data storage, inte-
gration, and exchange over the Internet (see http://www.
w3.org/XML/). Explicit storage of trees, with one pointer
per child as well as other auxiliary information (e. g. la-
bel), is often taken as given but can account for the dom-
inant storage cost. Just to have an idea, a simple tree en-
coding needs at least 16 bytes per tree node: one pointer to
the auxiliary information (e. g. node label) plus three node
pointers to the parent, the first child, and the next sibling.
This large space occupancy may even prevent the process-
ing of medium size trees, e. g. XML documents. This entry
surveys the best known storage solutions for unlabeled and
labeled trees that are space efficient and support fast nav-
igational and search operations over the tree structure. In
the literature, they are referred to as succinct/compressed
tree indexing solutions.

Notation and Basic Facts

The information-theoretic storage cost for any item of
a universe U can be derived via a simple counting argu-
ment: at least log jUj bits are needed to distinguish any two
items ofU.1 Now, letT be a rooted tree of arbitrary degree
and shape, and consider the following threemain classes of
trees:

Ordinal Trees. T is unlabeled and its children are left-to-
right ordered. The number of ordinal trees on t nodes

is Ct =
�
c2t
t

�
/(t + 1) which induces a lower bound of

2t �	(log t) bits.
Cardinal k-ary Trees T is labeled on its edges with sym-

bols drawn from the alphabet ˙ = f1; : : : ; kg. Any
node has degree at most k because the edges out-
going from each node have distinct labels. Typi-
cal examples of cardinal trees are the binary tree
(k = 2), the (uncompacted) tree and the Patricia tree.
The number of k-ary cardinal trees on t nodes is

Ck
t =

�
kt + 1

t

�
/(kt + 1) which induces a lower bound

of t(log k + log e) bits, when k is a slowly-growing
function of t.

(Multi-)Labeled Trees. T is an ordinal tree, labeled on
its nodes with symbols drawn from the alphabet ˙ .
In the case of multi-labeled trees, every node has
at least one symbol as its label. The same symbols
may repeat among sibling nodes, so that the degree
of each node is unbounded, and the same labeled-
subpath may occur many times in T , anchored any-
where. The information-theoretic lower bound on the
storage complexity of this class of trees on t nodes
comes easily from the decoupling of the tree structure
and the storage of tree labels. For labeled trees it is
logCt + t log j˙ j = t(log j˙ j + 2)�	(log t) bits.

The following query operations should be supported
over T :

Basic Navigational Queries. They ask for the parent of
node u, the ith child of u, the degree of u. These op-
erations may be restricted to some label c 2 ˙ , if T is
labeled.

Sophisticated Navigational Queries. They ask for the jth
level-ancestor of u, the depth of u, the subtree size of u,
the lowest common ancestor of a pair of nodes, the ith
node according to some node ordering over T , possi-
bly restricted to some label c 2 ˙ (ifT is labeled). For
even more operations see [2,11].

1Throughout the entry, all logarithms are taken to the base 2, and
it is assumed 0 log 0 = 0.

http://www.w3.org/XML/
http://www.w3.org/XML/
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Subpath Query. Given a labeled subpath˘ , it asks for the
(number occ of) nodes of T that immediately descend
from ˘ . Every subpath occurrence may be anchored
anywhere in the tree (i. e. not necessarily in its root).

The elementary solution to the tree indexing problem con-
sists of encoding the tree T via a mixture of pointers and
arrays, thus taking a total of 	(t log t) bits. This supports
basic navigational queries in constant time, but it is not
space efficient and requires the whole visit of the tree to
implement the subpath query or the more sophisticated
navigational queries. Here the goal is to design tree stor-
age schemes that are either succinct, namely “close to the
information-theoretic lower bound” mentioned before, or
compressed in that they achieve “entropy-bounded stor-
age.” Furthermore, these storage schemes do not require
the whole visit of the tree for most navigational opera-
tions. Thus, succinct/compressed tree indexing solutions
are distinct from simply compressing the input, and then
uncompressing it later on at query time.

In this entry, it is assumed that t � j˙ j and the Ran-
dom Access Machine (RAM) with word size 	(lg t) is
taken as the model of computation. This way, one can per-
form various arithmetic and bit-wise boolean operations
on single words in constant time.

Key Results

The notion of succinct data structures was introduced
by Jacobson [10] in a seminal work over 18 years ago.
He presented a storage scheme for ordinal trees using
2t + o(t) bits and supporting basic navigational queries in
O(log log t) time (i. e. parent, first child and next sibling
of a node). Later, Munro and Raman [13] closed the is-
sue for ordinal trees on basic navigational queries and the
subtree-size query by achieving constant query-time and
2t + o(t) bits of storage. Their storage scheme is called Bal-
anced Parenthesis (BP).2 Subsequently, Benoit et al. [3]
proposed a storage scheme called Depth-First Unary De-
gree Sequence (shortly, DFUDS) that still uses 2t + o(t) bits
but performsmore navigational queries like ith child, child
rank, and node degree in constant time. Geary et al. [8]
gave another representation still taking optimal space that
extends DFUDS’s operations to the level-ancestor query.

Although these three representations achieve the op-
timal space occupancy, none of them supports every ex-
isting operation in constant time: e. g. BP does not sup-

2Some papers [Chiang et al., ACM-SIAM SODA ‘01; Sadakane,
ISAAC ’01;Munro et al., J.ALG ‘01; Munro and Rao, ICALP ’04] have
extended BP to support in constant time other sophisticated naviga-
tional queries like LCA, node degree, rank/select on leaves and num-
ber of leaves in a subtree, level-ancestor and level-successor.

port ith child and child rank, DFUDS and Geary et al.’s
representation do not support LCA. Recently, Jansson et
al. [11] extended the DFUDS storage scheme in two di-
rections: (1) they showed how to implement in constant
time all navigational queries above;3 (2) they showed how
to compress the new tree storage scheme up to H*(T ),
which denotes the entropy of the distribution of node de-
grees in T .

Theorem 1 ([Jansson et al. 2007]) For any rooted tree T
with t nodes, there exists a tree indexing scheme that uses
tH�(T ) + O(t(log log t)2/ log t) bits and supports all navi-
gational queries in constant time.

This improves the standard tree pointer-based representa-
tion, since it needs no more thanH*(T ) bits per node and
does not compromise the performance of sophisticated
navigational queries. Since it is H*(T ) � 2, this solution
is also never worse than BP or DFUDS, but its improve-
ment may be significant! This result can be extended to
achieve the kth order entropy of the DFUDS sequence, by
adopting any compressed-storage scheme for strings (see
e. g. [7] and references therein).

Benoit et al. [3] extended the use of DFUDS to cardinal
trees, and proposed a tree indexing scheme whose space
occupancy is close to the information-theoretic lower
bound and supports various navigational queries in con-
stant time. Raman et al. [15] improved the space by using
a different approach (based on storing the tree as a set of
edges) thus proving the following:

Theorem 2 ([Raman et al. 2002]) For any k-ary cardi-
nal tree T with t nodes, there exists a tree indexing scheme
that uses logCk

t + o(t) + O(log log k) bits and supports in
constant time the following operations: finding the parent,
the degree, the ordinal position among its siblings, the child
with label c, the ith child of a node.

The subtree size operation cannot be supported efficiently
using this representation, so [3] should be resorted to in
case this operation is a primary concern.

Despite this flurry of activity, the fundamental prob-
lem of indexing labeled trees succinctly has remained
mostly unsolved. In fact, the succinct encoding for or-
dered trees mentioned above might be replicated j˙ j
times (one per possible symbol of˙), and then the divide-
and-conquer approach of [8] might be applied to reduce
the final space occupancy. However, the final space bound

3The BP representation and the one of Geary et al. [8] have been
recently extended to support further operations—like depth/height
of a node, next node in the same level, rank/select over various node
orders—still in constant time and 2t+o(t) bits (see [9] and references
therein).



966 T Tree Compression and Indexing

would be 2t + t log j˙ j + O(tj˙ j(log log log t)/(log log t))
bits, which is nonetheless far from the information-
theoretic storage bound even for moderately large ˙ . On
the other hand, if subpath queries are of primary concern
(e. g. XML), one can use the approach of [12] which con-
sists of a variant of the suffix-tree data structure prop-
erly designed to index all T ’s labeled paths. Subpath
queries can be supported in O(j˘ j log j˙ j + occ) time,
but the required space would be still 	(t log t) bits (with
large hidden constants due to the use of suffix trees). Re-
cently, some papers [1,2,5] addressed this problem in its
whole generality by either dealing simultaneously with
subpath and basic navigational queries [5], or by consid-
ering multi-labeled trees and a larger set of navigational
operations [1,2].

The tree-indexing scheme of [5] is based on a trans-
form of the labeled tree T , denoted xbw[T ], which lin-
earizes it into two coordinated arrays hSlast;S˛i: the for-
mer capturing the tree structure and the latter keeping
a permutation of the labels of T . xbw[T ] has the opti-
mal (up to lower-order terms) size of 2t + t log j˙ j bits
and can be built and inverted in optimal linear time. In
designing the XBW-Transform, the authors were inspired
by the elegant Burrows–Wheeler transform for strings [4].
The power of xbw[T ] relies on the fact that it allows one to
transform compression and indexing problems on labeled
trees into easier problems over strings. Namely, the follow-
ing two string-search primitives are key tools for indexing
xbw[T ]: rankc(S; i) returns the number of occurrences of
the symbol c in the string prefix S[1; i], and selectc(S; j)
returns the position of the jth occurrence of the symbol c in
string S. The literature offers many time/space efficient
solutions for these primitives that could be used as
a black-box for the compressed indexing of xbw[T ] (see
e. g. [2,14] and references therein).

Theorem 3 ([Ferragina et al. 2005]) Consider a tree T
consisting of t nodes labeled with symbols drawn from al-
phabet ˙ . There exists a compressed tree-indexing scheme
that achieves the following performance:
� If j˙ j = O(polylog(t)), the index takes at most

tH0(S˛) + 2t + o(t) bits, supports basic navigational
queries in constant time and (counting) subpath queries
in O(j˘ j) time.

� For any alphabet˙ , the index takes less than tHk(S˛)+
2t + o(t log j˙ j)) bits, but label-based navigational
queries and (counting) subpath queries are slowed down
by a factor o((log log j˙ j)3).

Here Hk(s) is the kth order empirical entropy of string s,
with Hk(s) � Hk�1(s) for any k > 0.

Since Hk(S˛) � H0(S˛) � log j˙ j, the indexing of
xbw[T ] takes at most as much space as its plain repre-
sentation, up to lower order terms, but with the additional
feature of being able to navigate and search T efficiently.
This is indeed a sort of pointerless representation of the la-
beled treeT with additional search functionalities (see [5]
for details).

If sophisticated navigational queries over labeled trees
are a primary concern, and subpath queries are not neces-
sary, then the approach of Barbay et al. [1,2] should be fol-
lowed. They proposed the novel concept of succinct index,
which is different from the concept of succinct/compressed
encoding implemented by all the above solutions. A suc-
cinct index does not touch the data to be indexed, it just
accesses the data via basic operations offered by the un-
derlying abstract data type (ADT), and requires asymp-
totically less space than the information-theoretic lower
bound on the storage of the data itself. The authors re-
duce the problem of indexing labeled trees to the one of
indexing ordinal trees and strings; and the problem of in-
dexing multi-labeled trees to the one of indexing ordinal
trees and binary relations. Then, they provide succinct in-
dexes for strings and binary relations. In order to present
their result, the following definitions are needed. Let m be
the total number of symbols in T , tc be the number of
nodes labeled c in T , and let �c be the maximum num-
ber of labels c in any rooted path of T (called the recursiv-
ity of c). Define � as the average recursivity of T , namely
� = (1/m)

P
c2˙ (tc�c).

Theorem 4 ([Barbay et al. 2007]) Consider a treeT con-
sisting of t nodes (multi-)labeled with possibly many sym-
bols drawn from alphabet ˙ . Let m be the total number
of symbols in T , and assume that the underlying ADT for
T offers basic navigational queries in constant time and
retrieves the ith label of a node in time f . There is a suc-
cinct index for T using m(log � + o(log(j˙ j�))) bits that
supports for a given node u the following operations (where
L = log log j˙ j log log log j˙ j):
� Every c-descendant or c-child of u can be retrieved in

O(L ( f + log log j˙ j)) time.
� The set A of c-ancestors of u can be retrieved in

O(L( f +log log j˙ j)+jAj(log log �c+log log log j˙ j( f +
log log j˙ j))) time.

Applications

As trees are ubiquitous in many applications, this section
concentrates just on two examples that, in their simplicity,
highlight the flexibility and power of succinct/compressed
tree indexes.
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The first example regards suffix trees, which are a cru-
cial algorithmic block of many string processing applica-
tions—ranging from bioinformatics to data mining, from
data compression to search engines. Standard implemen-
tations of suffix trees take at least 80 bits per node. The
compressed suffix tree of a string S[1; s] consists of three
components: the tree topology, the string depths stored
into the internal suffix-tree nodes, and the suffix pointers
stored in the suffix-tree leaves (also called suffix array of
S). The succinct tree representation of [11] can be used to
encode the suffix-tree topology and the string depths tak-
ing 4s + o(s) bits (assuming w.l.o.g. that j˙ j = 2). The suf-
fix array can be compressed up to the kth order entropy
of S via any solution surveyed in [14]. The overall result is
never worse than 80 bits per node, but can be significantly
better for highly compressible strings.

The second example refers to the XML format which is
often modeled as a labeled tree. The succinct/compressed
indexes in [1,2,5] are theoretical in flavor but turn out to
be relevant for practical XML processing systems. As an
example, [6] has published some initial encouraging ex-
perimental results that highlight the impact of the XBW-
Transform on real XML datasets. The authors show that
a proper adaptation of the XBW-Transform allows one to
compress XML data up to state-of-the-art XML-conscious
compressors, and to provide access to its content, navigate
up and down the XML tree structure, and search for simple
path expressions and substrings in a few milliseconds over
MBs of XML data, by uncompressing only a tiny fraction
of them at each operation. Previous solutions took several
seconds per operation!

Open Problems

For a complete set of open problems and further directions
of research, the interested reader is referred to the recom-
mended readings. Here two main problems, which natu-
rally derive from the discussion above, are commented.

Motivated by XML applications, one may like to extend
the subpath search operation to the efficient search for all
leaves ofT whose labels contain a substring ˇ and that de-
scend from a given subpath ˘ . The term “efficient” here
means in time proportional to j˘ j and to the number of
retrieved occurrences, but independent as much as possi-
ble of T ’s size in the worst case. Currently, this search op-
eration is possible only for the leaves which are immediate
descendants of ˘ , and even for this setting, the solution
proposed in [6] is not optimal.

There are two main encodings for trees which lead to
the results above: ordinal tree representation (BP, DFUDS
or the representation of Geary et al. [8]) and XBW. The

former is at the base of solutions for sophisticated naviga-
tional operations, and the latter is at the base of solutions
for sophisticated subpath searches. Is it possible to devise
one unique transform for the labeled tree T which com-
bines the best of the two worlds and is still compressible?

Experimental Results

See http://cs.fit.edu/~mmahoney/compression/text.html
and at the paper [6] for numerous experiments on XML
datasets.

Data Sets

See http://cs.fit.edu/~mmahoney/compression/text.html
and the references in [6].

URL to Code

Paper [6] contains a list of software tools for compression
and indexing of XML data.
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ProblemDefinition

The treewidth of graphs is defined in terms of tree decom-
positions. A tree decomposition of a graph G = (V ; E) is
a pair (fXi ji 2 Ig; T = (I; F)) with fXi ji 2 Ig a collection
of subsets of V , called bags, and T a tree, such that
�
S

i2I Xi = V .
� For all fv;wg 2 E, there is an i 2 I with v;w 2 Xi .
� For all v 2 V , the set fi 2 Ijv 2 Xig induces a con-

nected subtree of T.

Treewidth of Graphs, Figure 1
A graph and a tree decomposition of width 2

The width of a tree decomposition is maxi2I jXi j � 1, and
the treewidth of a graph G is the minimum width of a tree
decomposition of G.

An alternative definition is in terms of chordal graphs.
A graph G = (V ; E) is chordal, if and only if each cycle of
length at least 4 has a chord, i. e., an edge between two
vertices that are not successive on the cycle. A graph G
has treewidth at most k, if and only if G is a subgraph of
a chordal graphH that has maximum clique size at most k.

A third alternative definition is in terms of orderings
of the vertices. Let 
 be a permutation (called elimination
scheme in this context) of the vertices of G = (V ; E). Re-
peat the following step for i = 1; : : : ; jV j: take vertex 
(i),
turn the set of its neighbors into a clique, and then re-
move v. The width of 
 is the maximum over all vertices
of its degree when it was eliminated. The treewidth of G
equals the minimum width over all elimination schemes.

In the treewidth problem, the given input is an undi-
rected graph G = (V ; E), assumed to be given in its adja-
cency list representation, and a positive integer k < jV j.
The problem is to decide if G has treewidth at most k, and
if so, to give a tree decomposition of G of width at most k.

Key Results

Theorem 1 (Arnborg et al. [1]) The problem, given
a graph G and an integer k, is to decide if the treewidth of G
of at most k is nondeterministic polynomial-time (NP) com-
plete.

For many applications of treewidth and tree decomposi-
tions, the case where k is assumed to be a fixed constant
is very relevant. Arnborg et al. [1] gave in 1987 an algo-
rithm that solves this problem in O(nk+2) time. A number
of faster algorithms for the problem with k fixed have been
found; see, e. g., [6] for an overview.

Theorem 2 (Bodlaender [4]) For each fixed k, there is an
algorithm, that given a graph G = (V ; E) and an integer k,
decides if the treewidth of G is at most k, and if so, that finds
a tree decomposition of width at most k in O(n) time.
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This result of Theorem 2 is of theoretical importance only:
in a practical setting, the algorithm appears to be much
too slow owing to the large constant factor, hidden in the
O-notation. For treewidth 1, the problem is equivalent to
recognizing trees. Efficient algorithms based on a small set
of reduction rules exist for treewidth 2 and 3 [2].

Two often-used heuristics for treewidth are the min-
imum fill-in and minimum degree heuristic. In the min-
imum degree heuristic, a vertex v of minimum degree is
chosen. The graph G0, obtained by making the neighbor-
hood of v a clique and then removing v and its incident
edges, is built. Recursively, a chordal supergraph H0 of G0

is made with the heuristic. Then, a chordal supergraph H
of G is obtained, by adding v and its incident edges from G
to H0. The minimum fill-in heuristic works similarly, but
now a vertex is selected such that the number of edges that
is added to make the neighborhood of v a clique is as small
as possible.

Theorem 3 (Fomin et al. [9]) There is an algorithm that,
given a graph G = (V ; E), determines the treewidth of G
and finds a tree decomposition of G of minimum width that
uses O(1:8899n) time.

Bouchitté and Todinca [8] showed that the treewidth can
be computed in polynomial time for graphs that have
a polynomial number of minimal separators. This implies
polynomial-time algorithms for several classes of graphs,
e. g., permutation graphs, weakly triangulated graphs.

Applications

One of the main applications of treewidth and tree de-
composition is that many problems that are intractable
(e. g., NP-hard) on arbitrary graphs become polynomial
time or linear time solvable when restricted to graphs of
bounded treewidth. The problems where this technique
can be applied include many of the classic graph and net-
work problems, like Hamiltonian circuit, Steiner tree, ver-
tex cover, independent set, and graph coloring, but it can
also be applied to many other problems. It is also used in
the algorithm by Lauritzen and Spiegelhalter [11] to solve
the inference problem on probabilistic (“Bayesian”, or “be-
lief”) networks. Such algorithms typically have the follow-
ing form. First, a tree decomposition of bounded width is
found, and then a dynamic programming algorithm is run
that uses this tree decomposition. Often, the running time
of this dynamic programming algorithm is exponential in
the width of the tree decomposition that is used, and thus
one wants to have a tree decomposition whose width is as
small as possible.

There are also general characterizations of classes of
problems that are solvable in linear time on graphs of
bounded treewidth. Most notable is the class of problems
that can be formulated in monadic second order logic and
extensions of these.

Treewidth has been used in the context of several ap-
plications or theoretical studies, including graph minor
theory, data bases, constraint satisfaction, frequency as-
signment, compiler optimization, and electrical networks.

Open Problems

There are polynomial-time approximation algorithms for
treewidth that guarantee a width ofO(k

p
log k) for graphs

of treewidth k, but it is an open question whether there is
a polynomial-time approximation algorithm for treewidth
with a constant quality ratio. Another long-standing open
problem is whether there is a polynomial-time algorithm
to compute the treewidth of planar graphs.

Also open is to find an algorithm for the case where the
bound on the treewidth k is fixed and whose running time
as a function on n is polynomial, and as a function on k
improves significantly on the algorithm of Theorem 2.

The base of the exponent of the running time of the
algorithm of Theorem 3 can possibly be improved.

Experimental Results

Many algorithms (upper-bound heuristics, lower-bound
heuristics, exact algorithms, and preprocessing methods)
for treewidth have been proposed and experimentally eval-
uated. An overview of many of such results is given in [7].
A variant of the algorithm by Arnborg et al. [1] was imple-
mented by Shoikhet and Geiger [15]. Röhrig [14] has ex-
perimentally evaluated the linear-time algorithm of Bod-
laender [4], and established that it is not practical, even for
small values of k. Theminimum degree and minimum fill-
in heuristics are frequently used [10].

Data Sets

A collection of test graphs and results for many of the algo-
rithms on these graphs can be found in the TreewidthLIB
collection [16].
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ProblemDefinition

This problem is concerned with designing truthful (dom-
inant strategy) mechanisms for problems where each
agent’s private information is expressed by a single pos-
itive real number. The goal of the mechanisms is to al-
locate loads placed on the agents, and an agent’s private
information is the cost she incurs per unit load. Archer
and Tardos [4] give an exact characterization for the al-
gorithms that can be used to design truthful mechanisms
for such load-balancing problems using appropriate side
payments. The characterization shows that the allocated
load must be monotonic in the cost (decreasing when the
cost on an agent increases, fixing the costs of the others).
Thus, truthful mechanisms are characterized by a condi-
tion on the allocation rule and on payments that ensures
voluntary participation can be calculated using the given
characterization.

The characterization is used to design polynomial-
time truthful mechanisms for several problems in com-
binatorial optimization to which the celebrated Vick-
rey-Clarke-Groves (VCG) mechanism does not apply.
For scheduling related parallel machines to minimize
makespan (QkCmax), Archer and Tardos [4] presented
a 3-approximation mechanism based on randomized
rounding of the optimal fractional solution. This mech-
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anism is truthful only in expectation (a weaker notion
of truthfulness in which truthful bidding maximizes the
agent’s expected utility). Archer [3] improved it to a ran-
domized 2-approximation truthful mechanism. Andel-
man et al. [2] provided a deterministic truthful mechanism
that is 5-approximation. Kovács improved it to 3-approx-
imation in [9], and to 2.8-approximation in [10] (Kovács
also gave other results for two special cases). Andelman et
al. [2] also presented a deterministic fully polynomial time
approximation scheme (FPTAS) for scheduling on a fixed
number of machines, as well as a suitable payment scheme
that yields a deterministic truthful mechanism.Archer and
Tardos [4] presented results for goals other than mini-
mizing the makespan. They presented a truthful mecha-
nism for Qk

P
Cj (scheduling related machines to mini-

mize the sum of completion times), and showed that for
Qk

P
wjCj (minimizing the weighted sum of completion

times) 2/
p
3 is the best approximation ratio achievable by

a truthful mechanism.
This family of problems belongs to the field of algo-

rithmic mechanism design, initiated in the seminal paper
of Nisan and Ronen [12]. Nisan and Ronen considered
makespan minimization for scheduling on unrelated ma-
chines and proved upper and lower bounds (note that for
unrelated machines agents have more than one parame-
ter).Mu’alem and Schapira [11] presented improved lower
bounds. The problem of scheduling on related machines
to minimize the makespan has been considered in other
papers. Auletta et al. [5] and Ambrosio and Auletta [1]
presented truthful mechanisms for several nondetermin-
istic polynomial-time hard restrictions of this problem.
Nisan and Ronen [12] also introduced a model in which
the mechanism is allowed to observe the machines’ ac-
tual processing time and compute the payments after-
wards (in such a model the machines essentially cannot
claim to be faster than they are). Auletta et al. [6] pre-
sented additional results for this model. In particular, they
showed that it is possible to overcome the lower bound
of 2/
p
3 for Qk

P
wjCj (minimizing the weighted sum

of completion times) and provided a polynomial-time
(1 + �)-approximation truthful mechanism (with verifica-
tion) when the number of machines (m) is constant.

TheMechanism Design Framework

Let I be the set of agents. Each agent i 2 I has some private
value (type) consisting of a single parameter ti 2 < that
describes the agent, and which only i knows. Everything
else is public knowledge. Each agent will report a bid bi to
the mechanism. Let t denote the vector of true values, and
b the vector of bids.

There is some set of outcomes O, and given the bids b
the mechanism’s output algorithm computes an outcome
o(b) 2 O. For any types t, the mechanism aims to choose
an outcome o 2 O that minimizes some function g(o; t).
Yet, given the bids b the mechanism can only choose the
outcome as a function of the bids (o = o(b)) and has no
knowledge of the true types t. To overcome the problem
that the mechanism knows only the bids b, the mechanism
is designed to be truthful (using payments), that is, in such
a mechanism it is a dominant strategy for the agents to
reveal their true types (b = t). For such mechanisms min-
imizing g(o; t) is done by assuming that the bids are the
true types (and this is justified by the fact that truth-telling
is a dominant strategy).

In the framework discussed here we assume that out-
come o(b) will assign some amount of load or work
wi(o(b)) to each agent i, and given o(b) and ti, agent
i incurs some monetary cost, costi (ti ; o(b)) = tiwi(o(b)).
Thus, agent i’s private data ti measure her cost per unit
work.

Each agent i attempts to maximize her utility (profit),
ui (ti ; b) = Pi (b) � costi (ti ; o(b)), where Pi(b) is the pay-
ment to agent i.

Let b�i denote the vector of bids, not including agent
i, and let b = (b�i ; bi ). Truth-telling is a dominant strat-
egy for agent i if bidding ti always maximizes her util-
ity, regardless of what the other agents bid. That is,
ui (ti ; (b�i ; ti )) � ui (ti ; (b�i ; bi )) for all b�i and bi.

A mechanism M consists of the pair M = (o(�); P(�)),
where o(�) is the output function and P(�) is the pay-
ment scheme, i. e., the vector of payment functions Pi (�).
An output function admits a truthful payment scheme if
there exist payments P(�) such that for the mechanism
M = (o(�); P(�)), truth-telling is a dominant strategy for
each agent. A mechanism that admits a truthful payment
scheme is truthful.

Mechanism M satisfies the voluntary participation
condition if agents who bid truthfully never incur a net
loss, i. e., ui (ti ; (b�i ; ti )) � 0 for all agents i, true values ti,
and other agents’ bids b�i .

Definition 1 With the other agents’ bids b�i fixed, the
work curve for agent i iswi(b�i ; bi ), considered as a single-
variable function of bi. The output function o is decreasing
if each of the associated work curves is decreasing (i. e.,
wi(b�i ; bi ) is a decreasing function of bi, for all i and b�i ).

Scheduling on Related Machines

There are n jobs and m machines. The jobs represent
amounts of work p1 � p2 � � � � � pn , and let p denote the
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set of jobs. Machine i runs at some speed si, so it must
spend p j/si units of time processing each job j assigned
to it. The input to an algorithm is b, the (reported) speed
of the machines, and the output is o(b), an assignment
of jobs to machines. The load on machine i for outcome
o(b) is wi(b) =

P
p j , where the sum runs over jobs j as-

signed to i. Each machine incurs a cost proportional to
the time it spends processing its jobs. The cost of ma-
chine i is costi (ti ; o(b)) = tiwi(o(b)), where ti = 1/si and
wi(b) is the total load assigned to i when the speeds are
b. Let Cj denote the completion time of job j. One can
consider the following goals for scheduling related parallel
machines:
� Minimizing the makespan (QkCmax), the mechanism’s

goal is to minimize the completion time of the last job
on the last machine, i. e., g(o; t) = Cmax = maxi ti �
wi(b).

� Minimize the sum of completion times (Qk
P

Cj), i. e.
g(o; t) = Qk

P
Cj =

P
j C j .

� Minimize the weighted sum of completion times
(Qk

P
wjCj), i. e., g(o; t) = Qk

P
wjCj =

P
j w jCj ,

where wj is the weight of job j.
An algorithm is a c-approximation algorithm with respect
to g, if for every instance (p, t) it outputs an outcome of
cost at most c � g(o(t); t). A c-approximation mechanism
is one whose output algorithm is a c-approximation. Note
that if themechanism is truthful the approximation is with
respect to the true speeds. A polynomial-time approxima-
tion scheme (PTAS) is a family of algorithms such that
for every � > 0 there exists a (1 + �)-approximation algo-
rithm. If the running time is also polynomial in 1/�, the
family of algorithms is a FPTAS.

Key Results

The following two theorems hold for the mechanism de-
sign framework as defined in Sect. Problem Definition.

Theorem 1 ([4]) The output function o(b) admits a truth-
ful payment scheme if and only if it is decreasing. In this
case, the mechanism is truthful if and only if the payments
Pi (b�i ; bi ) are of the form

hi (b�i ) + biwi(b�i ; bi ) �
Z bi

0
wi(b�i ; u)du ;

where the hi are arbitrary functions.

Theorem 2 ([4]) A decreasing output function admits
a truthful payment scheme satisfying voluntary participa-
tion if and only if

R1
0 wi (b�i ; u)du <1 for all i; b�i . In

this case, the payments can be defined by

Pi (b�i ; bi ) = biwi (b�i ; bi ) +
Z 1
bi

wi(b�i ; u)du :

Theorem 3 ([4]) There is a truthful mechanism (not poly-
nomial time) that outputs an optimal solution for QkCmax
and satisfies voluntary participation.

Theorem 4 For the problem of minimizing the makespan
(QkCmax):
� There is a polynomial-time randomized algorithm that

deterministically yields a 2-approximation, and admits
a truthful payment scheme that creates a mechanism
that is truthful in expectation and satisfies voluntary
participation [3] .

� There is a polynomial-time deterministic 2.8-approx-
imation algorithm that admits a truthful payment
scheme that creates a mechanism that satisfies voluntary
participation [10].

� There is a deterministic FPTAS for scheduling on a fixed
number of machines that admits a truthful payment
scheme that creates a mechanism that satisfies voluntary
participation [2].

Theorem 5 ([4]) There is a truthful polynomial-time
mechanism that outputs an optimal solution for Qk

P
Cj

and satisfies voluntary participation.

Theorem 6 ([4]) No truthful mechanism for Qk
P

wjCj
can achieve an approximation ratio better than 2/

p
3, even

on instances with just two jobs and two machines.

Applications

Archer and Tardos [4] applied the characterization of
truthful mechanisms to problems other than scheduling.
They presented results for the uncapacitated facility loca-
tion problem as well as the maximum-flow problem.

Kis and Kapolnai [8] considered the problem of
scheduling of groups of identical jobs on related machines
with sequence-independent setup times (Qjuj ; p jk =
p jkCmax). They provided a truthful, polynomial-time, ran-
domized mechanism for the batch-scheduling problem
with a deterministic approximation guarantee of 4 to the
minimalmakespan, based on the characterization of truth-
ful mechanisms presented above.

Open Problems

Considering scheduling on related machines to mini-
mize the makespan, Hochbaum and Shmoys [7] presented
a PTAS for this problem, but it is not monotonic. Is there
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a truthful PTAS for this problem when the number of ma-
chines is not fixed? It is still an open problem whether
such a mechanism exists or not. Finding such a mech-
anism would be an interesting result. Proving a lower
bound that shows that such a mechanism does not exist
would be even more interesting as it will show that there
is a “cost of truthfulness” for this computational problem.
A gap between the best approximation algorithm and the
best monotonic algorithm (which creates a truthful mech-
anism), if it exists for this problem, would be a major step
in improving our understanding of the combined effect of
computational and incentive constraints.
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ProblemDefinition

Several mechanisms [1,3,5,9], which essentially all belong
to the VCG mechanism family, have been proposed in the
literature to prevent the selfish behavior of unicast rout-
ing in a wireless network. In these mechanisms, the least
cost path, which maximizes the social efficiency, is used
for routing. Wang, Li, and Wang [8] studied the truth-
ful multicast routing protocol for a selfish wireless net-
work, in which selfish wireless terminals will follow their
own interests. The multicast routing protocol is composed
of two components: (1) the tree structure that connects
the sources and receivers, and (2) the payment to the re-
lay nodes in this tree. Multicast poses a unique challenge
in designing strategyproof mechanisms due to the rea-
son that (1) a VCG mechanism uses an output that max-
imizes the social efficiency; (2) it is NP-hard to find the
tree structure with theminimum cost, which in turnmaxi-
mizes the social efficiency. A range of multicast structures,
such as the least cost path tree (LCPT), the pruning min-
imum spanning tree (PMST), virtual minimum spanning
tree (VMST), and Steiner tree, were proposed to replace
the optimal multicast tree. In [8], Wang et al. showed how
payment schemes can be designed for existing multicast
tree structures so that rational selfish wireless terminals
will follow the protocols for their own interests.

Consider a communication network G = (V ; E; c),
where V = fv1; � � � ; vng is the set of communication
terminals, E = fe1; e2; � � � ; emg is the set of links, and
c is the cost vector of all agents. Here agents are termi-
nals in a node weighted network and are links in a link
weighted network. Given a set of sources and receivers
Q = fq0; q1; q2; � � � ; qr�1g � V , the multicast problem is
to find a tree T � G spanning all terminalsQ. For simplic-
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ity, assume that s = q0 is the sender of a multicast session
if it exists. All terminals or links are required to declare
a cost of relaying the message. Let d be the declared costs
of all nodes, i. e., agent i declared a cost di. On the basis
of the declared cost profile d, a multicast tree needs to be
constructed and the payment pk(d) for each agent k needs
to be decided. The utility of an agent is its payment re-
ceived, minus its cost if it is selected in the multicast tree.
Instead of reinventing the wheels, Wang et al. still used the
previously proposed structures for multicast as the output
of their mechanism. Given a multicast tree, they studied
the design of strategyproof payment schemes based on this
tree.

Notations

Given a network H, !(H) denotes the total cost of all
agents in this network. If the cost of any agent i (link ei
or node vi) is changed to c0i, the new network is denoted
as G0 = (V ; E; cji c0i ), or simply cji c0i . If one agent i is re-
moved from the network, it is denoted as cji1. For the
simplicity of notation, the cost vector c is used to denote
the network G = (V ; E; c) if no confusion is caused. For
a given source s and a given destination qi, LCP(s; qi ; c)
represents the shortest path between s and qi when the cost
of the network is represented by vector c. jLCP(s; qi ; d)j
denotes the total cost of the least cost path LCP(s; qi ; d).
The notation of several multicast trees is summarized as
follows.
1. Link Weighted Multicast Tree
� LCPT: The union of all least cost paths from the

source to receivers is called the least cost path tree,
denoted by LCPT(d).

� PMST: First construct the minimum spanning tree
MST(G) on the graph G. Take the tree MST(G)
rooted at sender s, prune all subtrees that do not
contain a receiver. The final structure is called the
Pruning Minimum Spanning Tree (PMST).

� LST: The Link Weighted Steiner Tree (LST) can
be constructed by the algorithm proposed by Taka-
hashi and Matsuyama [6].

2. Node Weighted Multicast Tree
� VMST: First construct a virtual graph using all re-

ceivers plus the sources as the vertices and the cost
of LCP as the link weight. Then compute the min-
imum spanning tree on the virtual graph, which is
called virtual minimum spanning tree (VMST). Fi-
nally, choose all terminals on the VMST as the relay
terminals.

� NST: The node weighted Steiner tree (NST) can be
constructed by the algorithm proposed by [4].

Key Results

If the LCPT tree is used as the multicast tree, Wang et al.
proved the following theorem.

Theorem 1 The VCG mechanism combined with LCPT is
not truthful.

Because of the failure of the VCG mechanism, they de-
signed their non-VGC mechanism for the LCPT-based
multicast routing as follows.

1: For each receiver qi 6= s, computes the least cost
path from the source s to qi , and compute a pay-
ment pik(d) to every link ek on the LCP(s; qi ; d) us-
ing the scheme for unicast

pik(d) = dk + jLCP(s; qi ; djk1)j� jLCP(s; qi ; d)j:

2: The final payment to link ek 2 LCPT is then
pk(d) = max

qi2Q
pik(d): (1)

The payment to each link not on LCPT is simply 0.

Truthful Multicast, Algorithm 1
Non-VCG mechanism for LCPT

Theorem 2 Payment (defined in Eq. (1)) based on LCPT
is truthful and it is minimum among all truthful payments
based on LCPT.

More generally, Wang et al. [8] proved the following theo-
rem.

Theorem 3 The VCG mechanism combined with either
one of the LCPT, PMST, LST, VMST, NST is not truthful.

1: Apply VCG mechanism on the MST. The payment
for edge ek 2 PMST(d) is

pk(d) = !(MST(djk1))�!(MST(d)) + dk : (2)

2: For every edge ek 62 PMST(d), its payment is 0.

Truthful Multicast, Algorithm 1
Non-VCG mechanism for PMST

Because of this negative result, they designed their non-
VCG mechanisms for all multicast structures they stud-
ied: LCPT, PMST, LST, VMST, NST. For example, Algo-
rithm 2 is the algorithm for PMST. For other algorithms,
please refer to [8].

Regarding all their non-VGC mechanisms, they
proved the following theorem.
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Theorem 4 The non-VCG mechanisms designed for the
multicast structures LCPT, PMST, LST, VMST, NST are
not only truthful, but also achieve the minimum payment
among all truthful mechanisms.

Applications

In wireless ad hoc networks, it is commonly assumed that,
each terminal contributes its local resources to forward the
data for other terminals to serve the common good, and
benefits from resources contributed by other terminals to
route its packets in return. On the basis of such a funda-
mental design philosophy, wireless ad hoc networks pro-
vide appealing features such as enhanced system robust-
ness, high service availability and scalability. However, the
critical observation that individual users who own these
wireless devices are generally selfish and non-cooperative
may severely undermine the expected performances of
the wireless networks. Therefore, providing incentives to
wireless terminals is a must to encourage contribution and
thus maintains the robustness and availability of wireless
networking systems. On the other hand, to support a com-
munication among a group of users, multicast is more ef-
ficient than unicast or broadcast, as it can transmit pack-
ets to destinations using fewer network resources, thus
increasing the social efficiency. Thus, most results of the
work ofWang et al. can apply to multicast routing in wire-
less networks in which nodes are selfish. It not only guar-
antees that multicast routing behaves normally but also
achieves good social efficiency for both the receivers and
relay terminals.

Open Problems

There are several unsolved challenges left as future work
in [8]. Some of these challenges are listed below.
� How to design algorithms that can compute these pay-

ments in asymptotically optimum time complexities is
presently unknown.

� Wang et al. [8] only studied the tree-based structures
for multicast. Practically, mesh-based structures may
be more needed for wireless networks to improve the
fault tolerance of the multicast. It is unknown whether
a strategyproof multicast mechanism can be designed
for some mesh-based structures used for multicast.

� All of the tree construction and payment calculations
in [8] are performed in a centralized way, it would be
interesting to design some distributed algorithms for
them.

� In the work by Wang et al. [8] it was assumed that the
receivers will always relay the data packets for other re-
ceivers for free, the source node of the multicast will

pay the relay nodes to compensate their cost, and the
source node will not charge the receivers for getting the
data. As a possible future work, the budget balance of
the source node needs to be considered if the receivers
have to pay the source node for getting the data.

� Fairness of payment sharing needs to be considered in
a case where the receivers share the total payments to
all relay nodes on the multicast structure. Notice that
this is different from the cost-sharing studied in [2], in
which they assumed a fixed multicast tree, and the link
cost is publicly known; in that work they showed how
to share the total link cost among receivers.

� Another important task is to study how to implement
the protocols proposed in [8] in a distributed manner.
Notice that, in [3,9], distributed methods have been de-
veloped for a truthful unicast using some cryptography
primitives.
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ProblemDefinition

An instance of the curve reconstruction problem is a finite
set of sample points V in the plane, which are assumed to
be taken from an unknown planar curve � . The task is to
construct a geometric graph G on V such that two points
inV are connected by an edge inG if and only if the points
are adjacent on � . The curve � may consist of one or more
connected components, and each of them may be closed
or open (with endpoints), and may be smooth everywhere
(tangent defined at every point) or not.

Many heuristic approaches have been proposed to
solve this problem. This work continues a line of recon-
struction algorithms with guaranteed performance, i. e. al-
gorithms which probably solve the reconstruction prob-
lem under certain assumptions of � and V . Previous
proposed solutions with guaranteed performances were
mostly local: a subgraph of the complete geometric graph
defined by the points is considered (in most cases the De-
launay edges), and then filtered using a local criteria into
a subgraph that will constitute the reconstruction. Thus,
most of these algorithms fail to enforce that the solution
have the global property of being a path/tour or collec-
tion of paths/tours and so usually require a dense sampling
to work properly and have difficulty handling nonsmooth
curves. See [6,7,8] for surveys of these algorithms.

This work concentrates on a solution approach based
on the traveling salesman problem (TSP). Recall that a trav-
eling salesman path (tour) for a set V of points is a path
(cycle) passing through all points in V . An optimal travel-
ing salesmanpath (tour) is a traveling salesmanpath (tour)
of shortest length. The first question is under which con-
ditions for � and V a traveling salesman path (tour) is
a correct reconstruction. Since the construction of an opti-
mal traveling salesman path (tour) is anNP-hard problem,

a second question is whether for the specific instances un-
der consideration, an efficient algorithm is possible.

A previous work of Giesen [9] gave a first weak an-
swer to the first question: For every benign semiregu-
lar closed curve � , there exists an � > 0 with the fol-
lowing property: If V is a finite sample set from � so
that for every x 2 � there is a p 2 V with kpvk � �,
then the optimal traveling salesman tour is a polygonal
reconstruction of � . For a curve � : [0; 1]! R2, its left
and right tangents at � (t0), are defined as the limits of
the ratio j� (t2) � � (t1)j / jt2 � t1j as (t1; t2) converges to
(t0; t0) from the right (t0 < t1 < t2) and from the right
(t1 < t2 < t0) respectively. A curve is semiregular if both
tangents exist at every points and regular if the tangents
exist and coincide at every point. The turning angle of
� at p is the angle between the left and right tangents at
a points p. A semiregular curve is benign if the turning an-
gle is less than 
 .

To investigate the TSP-based solution of the recon-
struction problem, this work considers its integer linear
programming (ILP) formulation and the corresponding
linear programming (LP) relaxation. The motivation is
that a successful method for solving the TSP is to use
a branch-and-cut algorithm based on the LP-relaxation.
See Chapter 7 in [5]. For a path with endpoints a and b,
the formulation is based on variables xu;v 2 f0; 1g for each
pair u, v inV (indicating whether the edge uv is in the path
(xuv = 1) or not (xuv = 0) and consists of the following ob-
jective function and constraints (xuu = 0 for all u 2 V):

minimize
X
u;v2V

kuvk � xuv

subject to
X
v2V

xuv = 2 for all u 2 V n fa; bg

X
v2V

xuv = 1 for u 2 fa; bg

X
u;v2V 0

xuv �
ˇ̌
V 0
ˇ̌
� 1 for V 0 
 V , V 0 ¤ ;

xuv 2 f0; 1g for all u; v 2 V .

Here kuvk denotes the Euclidean distance between u and
v and so the objective function is the total length of the se-
lected edges. This is called the subtour-ILP for the TSP with
specified endpoints. The equality constraints are called the
degree constraints, the inequality ones are called subtour
elimination constraints and the last ones are called the inte-
grality constraints. If the degree and integrality constraints
hold, the corresponding graph could include disconnected
cycles (subtours), hence the need for the subtour elimina-
tion constraints. The relaxed LP is obtained by replacing



TSP-Based Curve Reconstruction T 977

TSP-Based Curve Reconstruction, Figure 1
Sample data and its reconstruction

the integrality constraints by the constraints 0 � xuv � 1
and is called the subtour-LP for the TSP with specified end-
points. There is a polynomial time algorithm that given
a candidate solution returns a violated constraint if it ex-
ists: the degree constraints are trivial to check and the sub-
tour elimination constraints are checked using a min cut
algorithm (if a; b are joined by an edge and all edge capac-
ities are made equal to one, then a violated subtour con-
straint corresponds to a cut smaller than two). This means
that the subtour-LP for the TSP with specified endpoints
can potentially be solved in polynomial time in the bit size
of the input description, using the ellipsoid method [10].

Key Results

The main results of this paper are that, given a sample set
V with a; b 2 V from a benign semiregular open curve �
with endpoints a, b and satisfying certain sampling condi-
tion [it], then
� the optimal traveling salesman path on V with end-

points a; b is a polygonal reconstruction of � from V ,
� the subtour-LP for traveling salesman paths has an op-

timal integral solution which is unique.
This means that, under the sampling conditions, the
subtour-LP solution provides a TSP solution and also sug-
gests a reconstruction algorithm: solve the subtour-LP
and, if the solution is integral, output it. If the input sat-
isfies the sampling condition, then the solution will be
integral and the result is indeed a polygonal reconstruc-
tion. Two algorithms are proposed to solve the subtour-
LP. First, using the simplex method and the cutting plane
framework: it starts with an LP consisting of only the de-
gree constraints and in each iteration solves the current LP

and checks whether that solution satisfies all the subtour
elimination constraints (using a min cut algorithm) and, if
not, adds a violated constraint to the current LP. This algo-
rithm has a potentially exponential running time. Second,
using a similar approach but with the ellipsoid method.
This can be implemented so that the running time is poly-
nomial in the bit size of the input points. This requires jus-
tification for using approximate point coordinates and dis-
tances.

The main tool in deriving these results is the connec-
tion between the subtour-LP and the so-called Held–Karp
bound. The line of argument is as follows:
� Let c(u; v) = kuvk and � : V ! R be a potential func-

tion. The corresponding modified distance function c�
is defined by c�(u; v) = c(u; v) � �(u) � �(v).

� For any traveling salesman path T with endpoints a, b,

c�(T) = c(T) � 2
X
v2V

�(v) + �(a) + �(b);

and so an optimal traveling salesman path with end-
points a; b for c� is also optimal for c.

� Let C� be the cost of a minimum spanning tree MST�
under c�, then since a traveling salesman path is
a spanning tree, the optimal traveling salesman T0 sat-
isfiesC� � c�(T0) = c(T0)�2

P
v2V �(v)+�(a)+�(b),

and so

max
�

 
C� + 2

X
v2V

�(v) � �(a) � �(b)

!
� c(T0) :

The term on the left is the so called Held–Karp bound.
� Now, if for a particular �, MST� is a path with end-

points a; b, then MST� is in fact an optimal traveling
salesman path with endpoints a; b, and the Held–Karp
bound matches c(T0).

� The Held–Karp bound is equal to the optimal objective
value of the subtour-LP. This follows by relaxation of
the degree constraints in a Lagrangian fashion (see [5])
and gives an effective way to compute the Held-Karp
bound: solve the subtour-LP.

� Finally, a potential function � is constructed for � so
that, for an appropriately dense sample set V , MST�
is unique and is a polygonal reconstruction with end-
points a, b. This then implies that solving the subtour-
LP will produce a correct polygonal reconstruction.

Note that the potential function � enters the picture only
as an analysis tool. It is not needed by the algorithm. The
authors extend this work to the case of open curves with-
out specified endpoints and of closed curves using varia-
tions of the ILP formulation and a more restricted sam-
pling condition. They also extend it to the case of a col-
lection of closed curves. The latter requires preprocessing
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that partitions points into groups that are expected to form
individual curves. Then each subgroup is processed with
the subtour-LP approach and then the quality of the result
assessed and then that partition may be updated.

Finite Precision

The above results are obtained assuming exact represen-
tation of point samples and the distances between them,
so claiming a polynomial time algorithm is not immediate
as the running time of the ellipsoid method is polynomial
in the bit size of the input. The authors extend the results
to the case in which points and the distances between them
are known only approximately and from this they can con-
clude the polynomial running time.

Relation to Local Feature Size

The defined potential function � is related to the so called
local feature size function f used in the theory of smooth
curve reconstruction, where f (p) is defined as the distance
from p to themedial axis of the curve � . In this paper,�(p)
is defined as d(p)/3 where d(p) is the size of the largest
neighborhood of p so that � in that neighborhood does
not deviate significantly from a flat segment of curve. This
paper shows f (p) < 3d(p). In fact,�(p) amounts to a gen-
eralization of the local feature size to nonsmooth curves
(for a corner point p, �(p) is proportional to the size of
the largest neighborhood of p such that � inside does not
deviate significantly from a corner point with two nearly
flat legs incident to it, and for points near the corner, � is
defined as an appropriate interpolation of the two defini-
tions), and is in fact similar to definitions proposed else-
where.

Applications

The curve reconstruction problem appears in applied ar-
eas such as cartography. For example, to determine level
sets, features, object contours, etc. from samples. Admit-
tedly, these applications usually may require the ability to
handle very sparse sampling and noise. The 3D version
of the problem is very important in areas such as indus-
trial manufacturing, medical imaging, and computer ani-
mation. The 2D problem is often seen as a simpler (toy)
problem to test algorithmic approaches.

Open Problems

A TSP-based solution when the curve � is a collection of
curves, not all closed, is not given in this paper. A solution
similar to that for closed curves (partitioning and then ap-
plication of subtour-LP for each) seems feasible for gen-

eral collections, but some technicalities need to be solved.
More interesting is the study of corresponding reconstruc-
tion approaches for surfaces in 3D.

Experimental Results

The companion paper [2] presents results of experiments
comparing the TSP-based approach to several (local) De-
launay filtering algorithms. The TSP implementation uses
the simplex method and the cutting plane framework
(with a potentially exponential running time algorithm).
The experiments show that the TSP-based approach has
a better performance, allowing for much sparser samples
than the others. This is to be expected given the global
nature of the TSP-based solution. On the other hand, the
speed of the TSP-based solution is reported to be compet-
itive when compared to the speed of the others, despite its
potentially bad worst-case behavior.

Data Sets

None reported. Experiments in [2] were performed with
a simple reproducible curve based on a sinusoidal with
varying number of periods and samples.

URL to Code

The code of the TSP-based solution as well as the
other solutions considered in the companion paper [2]
are available from: http://www.mpi-inf.mpg.de/~althaus/
LEP:Curve-Reconstruction/curve.html
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ProblemDefinition

This entry is concerned with designing and building in-
dexes of a two-dimensional matrix, which is basically the
generalization of indexes of a string, the suffix tree [12]
and the suffix array [11], to a two-dimensional matrix.
This problem was first introduced by Gonnet [7]. Infor-
mally, a two-dimensional analog of the suffix tree is a tree
data structure storing all submatrices of an n � m ma-
trix, n � m. The submatrix tree [2] is an incarnation of

such indexes. Unfortunately, building such indexes re-
quires˝(nm2) time [2]. Therefore, much of the attention
paid has been restricted to square matrices and submatri-
ces, the important special case in which much better re-
sults are available.

For square matrices, the Lsuffix tree and its array form,
storing all square submatrices of an n � n matrix, have
been proposed [3,9,10]. Moreover, the general framework
for these index families is also introduced [4,5]. Motivated
by LZ1-type image compression [14], the on-line case, i.e,
the matrix is given one row or column at a time, has been
also considered. These data structures can be built in time
close to n2. Building these data structures is a nontrivial ex-
tension of the algorithms for the standard suffix tree and
suffix array. Generally, a tree data structure and its array
form of this type for square matrices are referred to as the
two-dimensional suffix tree and the two-dimensional suffix
array, which are the main concerns of this entry.

Notations

Let A be an n � n matrix with entries defined over a fi-
nite alphabet ˙ . A[i::k; j::l] denotes the submatrix of
A with corners (i, j), (k, j), (i, l), and (k, l). When i = k
or j = l , one of the repeated indexes is omitted. For
1 � i; j � n, the suffix A(i, j) of A is the largest square
submatrix of A that starts at position (i, j) in A. That is,
A(i; j) = A[i::i + k; j:: j + k] where k = n �max(i; j). Let
$i be a special symbol not in˙ such that $i is lexicograph-
ically smaller than any other character in ˙ . Assume that
$i is lexicographically smaller than $j for i < j. For nota-
tional convenience, assume that the last entries of the ith
row and column are $i. It makes all suffixes distinct. See
Fig. 1a and b for an example.

Let L˙ =
S1

i=1˙
2i�1. The strings of L˙ are referred

to as Lcharacters, and each of them is considered as an
atomic item. L˙ is called the alphabet of Lcharacters. Two
Lcharacters are equal if and only if they are equal as strings
over ˙ . Moreover, given two Lcharacters La and Lb of
equal length, La is lexicographically smaller than or equal
to Lb if and only if the string corresponding to La is lex-
icographically smaller than or equal to that correspond-
ing to Lb. A chunk is the concatenation of Lcharacters
with the following restriction: an Lcharacter in ˙2i�1 can
precede only one in ˙2(i+1)�1 and succeed only one in
˙2(i�1)�1. An Lstring is a chunk such that the first Lchar-
acter is in˙ .

For dealing with matrices as strings, a linear represen-
tation of squarematrices is needed.Given A[1::n; 1::n], di-
vide A into n L-shaped characters. Let a(i) be the concate-
nation of row A[i; 1::i � 1] and column A[1::i; i]. Then



980 T Two-Dimensional Pattern Indexing

a(i) can be regarded as an Lcharacter. The linearized string
of matrix A, called the Lstring of matrix A, is the con-
catenation of Lcharacters a(1); : : : ; a(n). See Fig. 1c for
an example. Slightly different linearizations have been
used [9,10,13], but they are essentially the same in the as-
pect of two-dimensional functionality.

Two-Dimensional Suffix Trees

The suffix tree of matrix A is a compacted trie over the
alphabet L˙ that represents Lstrings corresponding to all
suffixes of A. Formally, the two-dimensional suffix tree of
matrix A is a rooted tree that satisfies the following condi-
tions (see Fig. 1d for an example):
1. Each edge is labeled with a chunk.
2. There is no internal node of outdegree one.
3. Chunks assigned to sibling edges start with different

Lcharacters, which are of the same length as strings
in˙�.

4. The concatenation of the chunks labeling the edges on
the path from the root to a leaf gives the Lstring of ex-
actly one suffix of A, say A(i, j). It is said that this leaf is
associated with A(i, j).

5. There is exactly one leaf associated with each suffix.

Two-Dimensional Pattern Indexing, Figure 1
a Amatrix A, b the suffix A(2;1) and Lcharacters composing A(2;1), c the Lstring of A(2;1), d the suffix tree of A, and e the suffix array
of A (omitting the suffixes started with $i)

Conditions 4 and 5 mean that there is a one-to-one corre-
spondence between the leaves of the tree and the suffixes
of A (which are all distinct because $i is unique).

Problem 1 (Construction of 2D suffix tree)
INPUT: An n � n matrix A.
OUTPUT: A two-dimensional suffix tree storing all square
submatrices of A.

On-Line Suffix Trees

Assume that A is read on-line in row major order (col-
umn major order can be considered similarly). Let At =
A[1::t; 1::n] and rowt = A[t; 1::n]. At time t � 1, nothing
but At�1 is known about A. At time t, rowt is read and so
At is known. After time t, the on-line suffix tree of A is
storing all suffixes of At . Note that Condition 4 may not
be satisfied during the on-line construction of the suffix
tree. A leaf may be associated with more than one suffix,
because the suffixes of At are not all distinct.

Problem 2 (On-line construction of 2D suffix tree)
INPUT: A sequence of rows of n � n matrix A, row1;

row2; : : : ; rown.
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OUTPUT: A two-dimensional suffix tree storing all square
submatrices of At after reading rowt.

Two-Dimensional Suffix Arrays
The two-dimensional suffix array of matrix A is basically
a sorted list of all Lstrings corresponding to suffixes of A.
Formally, the kth element of the array has the start po-
sition (i, j) if and only if the Lstring of A(i, j) is the kth
smallest one among the Lstrings of all suffixes of A. See
Fig. 1e for an example. The two-dimensional suffix array
is also coupled with additional information tables, called
Llcp and Rlcp, to enhance its performance like the stan-
dard suffix array. The two-dimensional suffix array can be
constructed from the two-dimensional suffix tree in linear
time.
Problem 3 (Construction of 2D suffix array)
INPUT: An n � n matrix A.
OUTPUT: The two-dimensional suffix array storing all
square submatrices of A.

Submatrix Trees
The submatrix tree is a tree data structure storing all sub-
matrices. This entry just gives a result on submatrix trees.
See [2] for details.
Problem 4 (Construction of a submatrix tree)
INPUT: An n � m matrix B, n � m.
OUTPUT: The submatrix tree and its array form storing all
submatrices of B.

Key Results

Theorem 1 (Kim and Park 1999 [10], Cole and Hariha-
ran 2000 [1]) Given an n � n matrix A over an integer
alphabet, one can construct the two-dimensional suffix tree
in O(n2) time.
Kim and Park’s result is a deterministic algorithm, Cole
and Hariharan’s result is a randomized one. For an arbi-
trary alphabet, one needs first to sort it and then to apply
the theorem above.

Theorem 2 (Na et al. 2005 [13]) Given an n � n matrix
A, one can construct on-line the two-dimensional suffix tree
of A in O(n2 log n) time.

Theorem 3 (Kim et al. 2003 [9]) Given an n � n matrix
A, one can construct the two-dimensional suffix array of
A in O(n2 log n) time without constructing the two-dimen-
sional suffix tree.

Theorem 4 (Giancarlo 1993 [2]) Given an n � m ma-
trix B, one can construct the submatrix tree of B in
O(nm2 log(nm)) time.

Applications
Two-dimensional indexes can be used for many pattern-
matching problems of two-dimensional applications such
as low-level image processing, image compression, visual
data bases, and so on [3,6]. Given an n � n text matrix and
an m � m pattern matrix over an alphabet ˙ , the two-di-
mensional pattern retrieval problem, which is a basic pat-
tern matching problem, is to find all occurrences of the
pattern in the text. The two-dimensional suffix tree and
array of the text can be queried in O(m2 log j˙ j + occ)
time and O(m2 + log n + occ) time, respectively, where occ
is the number of occurrences of the pattern in the text.
This problem can be easily extended to a set of texts. These
queries have the same procedure and performance as those
of indexes for strings. On-line construction of the two-di-
mensional suffix tree can be applied to LZ-1-type image
compression [6].

Open Problems
The main open problems on two-dimensional indexes are
to construct indexes in optimal time. The linear-time con-
struction algorithm for two-dimensional suffix trees is al-
ready known [10]. The on-line construction algorithm due
to [13] is optimal for unbounded alphabets, but not for in-
teger or constant alphabets. Another open problem is to
construct two-dimensional suffix arrays directly in linear
time.

Experimental Results
An experiment that compares construction algorithms of
two-dimensional suffix trees and suffix arrays was pre-
sented in [8]. Giancarlo’s algorithm [2] and Kim et al.’s
algorithm [8] were implemented for two-dimensional suf-
fix trees and suffix arrays, respectively. Random matrices
of sizes 200 � 200 
 800 � 800 and alphabets of sizes 2, 4,
16 were used for input data. According to experimental re-
sults, the construction of two-dimensional suffix arrays is
ten-times faster and five-times more space-efficient than
that of two-dimensional suffix trees.
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ProblemDefinition

Definition 1 LetT be a two-dimensional n � n array over
some alphabet˙ .
1. The unit pixels array for T (T1X) consists of n2 unit

squares, called pixels in the real plane <2. The corners
of the pixel T[i; j] are (i � 1; j� 1); (i; j� 1); (i � 1; j);
and (i; j). Hence the pixels of T form a regular n � n
array that covers the area between (0; 0); (n; 0); (0; n);
and (n; n). Point (0; 0) is the origin of the unit pixel
array. The center of each pixel is the geometric center
point of its square location. Each pixel T[i; j] is identi-
fied with the value from˙ that the original array T had
in that position. Say that the pixel has a color or a char-
acter from ˙ . See Fig. 1 for an example of the grid and
pixel centers of a 7 � 7 array.

2. Let r 2 <; r � 1. The r-ary pixels array for T (TrX) con-
sists of n2 r-squares, each of dimension r � r whose ori-
gin is (0; 0) and covers the area between (0; 0); (nr; 0);
(0; nr); and (nr; nr). The corners of the pixel T[i; j]
are ((i � 1)r; ( j � 1)r); (ir; ( j � 1)r); ((i � 1)r; jr); and
(ir; jr). The center of each pixel is the geometric center
point of its square location.

Two-Dimensional Scaled Pattern Matching, Figure 1
The grid and pixel centers of a unit pixel array for a 7 � 7 array
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Two-Dimensional Scaled Pattern Matching, Figure 2
An original image, scaled by 1.3 and scaled by 2, using the geometric model definition of scaling

Notation: Let r 2 <. [r] denotes the rounding of r, i. e.

[r] =

(
brc if r � brc < :5;
dre otherwise:

Definition 2 Let T be an n � n text array, P be an m � m
pattern array over alphabet ˙ , and let r 2 <; 1 � r � n

m .
Say that there is an occurrence of P scaled to r at text loca-
tion (i; j) if the following conditions hold:

Let T1X be the unit pixels array of T and PrX be the r-
ary pixel arrays of P. Translate PrX onto T1X in a manner
that the origin of PrX coincides with location (i � 1; j � 1)
of T1X . Every center of a pixel in T1X which is within the
area covered by (i � 1; j � 1); (i � 1; j � 1 + mr); (i � 1 +
mr; j � 1) and (i � 1 +mr; j � 1 + mr) has the same color
as the r-square of PrX in which it falls.

The colors of the centers of the pixels in T1X which are
within the area covered by (i � 1; j � 1); (i � 1; j � 1 +
mr); (i�1+mr; j�1) and (i � 1 + mr; j � 1 + mr) define
a [mr] � [mr] array over˙ . This array is denoted by Ps(r)

and called P scaled to r.

The above definition is the one provided in the geomet-
ric model, pioneered by Landau and Vishkin [15], and
Fredriksson and Ukkonen [14]. Prior to the advent of the
geometric model, the only discrete definition of scaling
was to natural scales, as defined by Amir, Landau and
Vishkin [10]:

Definition 3 Let P[m � m] be a two-dimensional matrix
over alphabet˙ (not necessarily bounded). Then P scaled
by s (Ps) is the sm � smmatrix where every symbol P[i; j]
of P is replaced by a s � s matrix whose elements all equal
the symbol in P[i; j]. More precisely,

Ps[i; j] = P[d
i
s
e; d

j
s
e] :

Say that pattern P[m � m] occurs (or an occurrence
of P starts) at location (k; l) of the text T if for any
i 2 f1; : : : ;mg and j 2 f1; : : : ;mg, T[k + i�1; l + j�1] =
P[i; j].

The two dimensional pattern matching problem with
natural scales is defined as follows.
INPUT: Pattern matrix P[i; j] i = 1; : : :m; j = 1; : : : ;m
and Text matrix T[i; j] i = 1; : : : ; n; j = 1; : : : ; n where
n > m.
OUTPUT: all locations in T where an occurrence of P
scaled by s (an s-occurrence) starts, for any s = 1; : : : ; b nm c.

The natural scales definition cannot answer normal ev-
eryday occurrences such as an image scaled to, say, 1.3.
This led to the geometric model. The geometric model
is a discrete adaptation, without smoothing, of scaling as
used in computer graphics. The definition is pleasing in
a “real-world” sense. Figure 2 shows “lenna” scaled to non-
discrete scales by the geometric model definition. The re-
sults look natural.

It is possible, of course, to consider a one dimensional
version of scaling, or scaling in strings. Both above defi-
nitions apply for one dimensional scaling where the text
and pattern are taken to be matrices having a single row.
The interest in one dimensional scaling lies because of two
reasons: (1) There is a faster algorithm for one dimen-
sional scaling in the geometric model than the restriction
of the two dimensional scaling algorithm to one dimen-
sion. (2) Historically, before the geometric model was de-
fined, there was an attempt [3] to define real scaling on
strings as follows.

Definition 4 Denote the string aa � � � a, where a is re-
peated r times, by ar . The one dimensional floor real scaled
matching problem is the following.
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INPUT: A pattern P = ar11 ar22 : : : a
r j
j , of lengthm, and a text

T of length n.
OUTPUT: All locations in the text where the substring
ac11 abr2kc2 : : : abr j�1kcj�1 ac jj appears, where c1 � br1kc and
c j � br j kc.

This definition indeed handles real scaling but has a signif-
icant weakness in that a string of lengthm scaled to r may
be significantly shorter than mr. For this reason the def-
inition could not be generalized to two dimensions. The
geometric model does not suffer from these deficiencies.

Key Results

The first results in scaled natural matching dealt with fixed
finite-sized alphabets.

Theorem 1 (Amir, Landau, and Vishkin 1992 [10])
There exists an O(jTj log j˙ j) worst-case time solution to
the two dimensional pattern matching problem with natu-
ral scales, for fixed finite alphabet˙ .

The main idea behind the algorithm is analyzing the text
with the aid of power columns. Those are the text columns
appearing m � 1 columns apart, where P is anm � m pat-
tern. This dependence on the pattern size make the power
columns useless where a dictionary of different sized pat-
terns is involved. A significantly simpler algorithmwith an
additional advantage of being alphabet-independentwas
presented in [6].

Theorem 2 (Amir and Calinescu 2000 [6]) There exists
an O(|T|) worst-case time solution to the two dimensional
pattern matching problem with natural scales.

The alphabet independent time complexity of this algo-
rithm was achieved by developing a scaling-invariant “sig-
nature” of the pattern. This idea was further developed to
scaled dictionary matching.

Theorem 3 (Amir andCalinescu 2000 [6]) Given a static
dictionary of square pattern matrices. It is possible in
O(jDj log k) preprocessing, where |D| is the total dictionary
size and k is the number of patterns in the dictionary, and
O(jTj log k) text scanning time, for input text T, to find all
occurrences of dictionary patterns in the text in all natural
scales.

This is identical to the time at [8], the best non-scaled
matching algorithm for a static dictionary of square pat-
terns. It is somewhat surprising that scaling does not
add to the complexity of single matching nor dictionary
matching.

The first algorithm to solve the scaled matching prob-
lem for real scales, was a one dimensional real scaling al-
gorithm using Definition 4.

Theorem 4 (Amir, Butman, and Lewenstein 1998 [3])
There exists an O(|T|) worst-case time solution to the one
dimensional floor real scaled matching problem.

The first algorithm to solve the two dimensional scaled
matching problem for real scales in the geometric model
is the following.

Theorem 5 (Amir, Butman, Lewenstein, and Porat
2003 [4]) Given an n � n text and m � m pattern. It is
possible to find all pattern occurrences in all real scales in
time O(nm3 + n2m logm) and space O(nm3 + n2).

The above result was improved.

Theorem 6 (Amir and Chencinski 2006 [7]) Given an
n � n text and m � m pattern. It is possible to find all pat-
tern occurrences in all real scales in time O(n2m) and space
O(n2).

This algorithm achieves its time by exploiting geometric
characteristics of nested scales occurrences and a sophisti-
cated use of dueling [1,16].

The assumption in both above algorithms is that the
scaled occurrence of the pattern starts at the top left corner
of some pixel.

It turns out that one can achieve faster times in the one
dimensional real scaled matching problem, even in the ge-
ometric model.

Theorem 7 (Amir, Butman, Lewenstein, Porat, and Tsur
2004 [5]) Given a text string T of length n and a pat-
tern string P of length m, there exists an O(n logm +
m
p
nm logm) worst-case time solution to the one dimen-

sional pattern matching problem with real scales in the geo-
metric model.

Applications

The problem of finding approximate occurrences of a tem-
plate in an image is a central one in digital libraries and
web searching. The current algorithms to solve this prob-
lem use methods of computer vision and computational
geometry. Theymodel the image in another space and seek
a solution there. A deterministic worst-case algorithm in
pixel-level images does not yet exist. Yet, such an algo-
rithm could be useful, especially in raw data that has not
been modeled, e. g. movies. The work described here ad-
vances another step toward this goal from the scaling point
of view.
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Open Problems

Finding all scaled occurrences without fixing the scaled
pattern start at the top left corner of the text pixel would
be important from a practical point of view. The final goal
is an integration of scaling with rotation [2,11,12,13] and
local errors (edit distance) [9].

Cross References
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�Multidimensional String Matching
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ProblemDefinition
The problem is concerned with finding large constrained
patterns in sets of 2-intervals. Given a single-stranded
RNA molecule, a sequence of contiguous bases of the
molecule can be represented as an interval on a single line,
and a possible pairing between two disjoint sequences can
be represented as a 2-interval, which is merely the union
of two disjoint intervals. Derived from arc-annotated se-
quences, 2-interval representation considers thus only the
bonds between the bases and the pattern of the bonds, such
as hairpin structures, knots and pseudoknots. Amaximum
cardinality disjoint subset of a candidate set of 2-intervals
restricted to certain prespecified geometrical constraints
can provide a useful valid approximation for RNA sec-
ondary structure determination.

The geometric properties of 2-intervals provide a pos-
sible guide for understanding the computational complex-
ity of finding structured patterns in RNA sequences. Us-
ing a model to represent nonsequential information allows
us to vary restrictions on the complexity of the pattern
structure. Indeed, two disjoint 2-intervals, i. e., two 2-in-
tervals that do not intersect in any point, can be in prece-
dence order (<), be allowed to nest (@) or be allowed to
cross (G). Furthermore, the set of 2-intervals and the pat-
tern can have different restrictions, e. g., all intervals have
the same length or all the intervals are disjoint. These dif-
ferent combinations of restrictions alter the computational
complexity of the problems, and need to be examined sep-
arately. This examination produces efficient algorithms for
more restrictive structured patterns, and hardness results
for those that are less restrictive.

Notations
Let I = [a; b] be an interval on the line. Write start(I) = a
and end(I) = b. A 2-interval is the union of two dis-
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joint intervals defined over a single line and is denoted
by D = (I; J); I is completely to the left of J. Write
left(D) = I and right(D) = J. Two 2-intervals D1 = (I1; J1)
and D2 = (I2; J2) are said to be disjoint (or noninter-
secting) if both 2-intervals share no common point, i. e.,
(I1 [ J1) \ (I2 [ J2) = ;. For such disjoint pairs of 2-in-
tervals, three natural binary relations, denoted<, @ andG,
are of special interest:
� D1 < D2 (D1 precedes D2); if I1 < J1 < I2 < J2,
� D1 @ D2 (D1 is nested in D2); if I2 < I1 < J1 < J2,

and
� D1GD2 (D1 crosses D2); if I1 < I2 < J1 < J2.
A pair of 2-intervals D1 and D2 is said to be R-compa-
rable for some R 2 f<;@;Gg, if either D1RD2 or D2RD1.
Note that any two disjoint 2-intervals are R-comparable
for some R 2 f<;@;Gg. A set of disjoint 2-intervals D is
said to be R-comparable for someR 
 f<;@;Gg,R ¤ ;,
if any pair of distinct 2-intervals inD is R-comparable for
some R 2 R. The nonempty subset R is called a model
forD.

The 2-interval-pattern problem asks one to find in
a set of 2-intervals a largest subset of pairwise compati-
ble 2-intervals. In the present context, compatibility de-
notes the fact that any two 2-intervals in the solution are
(1) nonintersecting and (2) satisfy some prespecified ge-
ometrical constraints. The 2-interval-pattern problem is
formally defined as follows:

Problem 1 (2-interval-pattern)
INPUT: A set of 2-intervalsD and a modelR 
 f<;@;Gg.
SOLUTION: AR-comparable subsetD0 
 D.
MEASURE: The size of the solution, i. e., jD0j.
According to the above definition, any solution for the 2-
interval-pattern problem for some model R 
 f<;@;Gg
corresponds to an RNA structure constrained by R.
For example, a solution for the 2-interval-pattern
problem for the R = f<;@g model corresponds to
a pseudoknot-free structure (a pseudoknot in an RNA se-
quence S = s1; s2; : : : ; sn is composed of two interleav-
ing nucleotide pairings (si ; s j) and (si 0 ; s j0 ) such that
i < i0 < j < j0).

Some additional definitions are needed for further al-
gorithmic analysis. Let D be a set of 2-intervals. The
width (respectively height, depth) is the size of a maximum
cardinality f<g-comparable (respectively f@g-compara-
ble, fGg-comparable) subsetD0 
 D. The interleaving dis-
tance of a 2-interval Di 2 D is defined to be the distance
between the two intervals of Di, i. e., start(right(Di)) �
end(left(Di)). The total interleaving distance of the set
of 2-intervals D, written L(D), is the sum of all inter-
leaving distances, i. e., L(D) =

P
Di2D start(right(Di )) �

end(left(Di)). The interesting coordinates of D are de-
fined to be the set X(D) =

S
Di2Dfend(left(Di));

start(right(Di ))g. The density of D, written d(D), is the
maximum number of 2-intervals inD over a single point.
Formally, d(D) = maxx2X(D)fD 2 D : end(left(D) � x
< start(right(D))g.

Constraints

The structure of the set of all (simple) intervals involved
in a set of 2-intervals D turns out to be of particular im-
portance for algorithmic analysis of the 2-interval-pattern
problem. The interval ground set of D, denoted I(D),
is the set of all intervals involved in D, i. e., I(D) =
fleft(Di) : Di 2 Dg [ fright < (Di) : Di 2 Dg. In [7,20],
four types of interval ground sets were introduced.
1. Unlimited: no restriction on the structure.
2. Balanced: each 2-interval Di 2 D is composed of two

intervals having the same length, i. e., jleft(Di )j =
jright(Di )j.

3. Unit: the interval ground set I(D) is solely composed
of unit length intervals.

4. Disjoint: no two distinct intervals in the interval ground
set I(D) intersect.
Observe that a unit 2-interval set is balanced, while the

converse is not necessarily true. Furthermore, for most ap-
plications, one may assume that a disjoint 2-interval set is
unit. Observe that in this latter case, a set of 2-intervals re-
duces to a graphG = (V ; E) equipped with a numbering of
its vertices from 1 to jV j, and hence the 2-interval-pattern
problem for disjoint interval ground sets reduces to find-
ing a constrained maximum matching in a linear graph.
Considering additional restrictions such as:
� Bounding the width, the height or the depth of either

the input set of 2-intervals or the solution subset
� Bounding the interleaving distances
is also of interest for practical applications.

Key Results

The different combinations of the models and interval
ground sets alter the computational complexity of the 2-
interval-pattern problem. The main results are summa-
rized in Tables 1 (time complexity and hardness) and 2
(approximation for hard instances).

Theorem 1 The 2-interval-pattern problem is approx-
imable (APX) hard for models R = f<;@;Gg and R =
f@;Gg, and is nondeterministic polynomial-time (NP) com-
plete – in its natural decision version – for modelR = f<;G
g, even when restricted to unit interval ground sets.
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Two-Interval Pattern Problems, Table 1
Complexity of the 2-interval-pattern problem for all combina-
tions of models and interval ground sets. For the polynomial-
time cases, n = jDj, L = L(D) and d = d(D)

ModelR Interval ground set I(D)
Unlimited, Balanced, Unit Disjoint

f<;@;Gg APX-hard [1] O(n
p
n) [15]

f<;Gg NP-complete [3] unknown
f@;Gg APX-hard [19] O(n log n + L) [8]
f<;@g O(n log n + nd) [8]
f<g O(n log n) [19]
f@g O(n log n) [3]
fGg O(n log n + L) [8]

Notice here that the 2-interval-pattern problem for model
R = f<;Gg is not APX-hard. Two hard cases of the 2-
interval-pattern turn out to be polynomial-time-solvable
when restricted to disjoint-interval ground sets.

Theorem 2 The 2-interval-pattern problem for a disjoint-
interval ground set is solvable in
� O(n

p
n) time for modelR = f<;@;Gg (trivial reduction

to the standard maximum matching problem)
� O(n log n + L) time for modelR = f@;Gg

The complexity of the 2-interval-pattern problem for
modelR = f<;Gg and a disjoint-interval ground set is still
unknown. Three cases of the 2-interval-pattern problem
are polynomial-time-solvable, regardless of the structure
of the interval ground sets.

Theorem 3 The 2-interval-pattern problem is solvable in
� O(n log n + nd) time for modelR = f<;@g
� O(n log n) time for modelsR = f<g andR = f@g
� O(n log n + L) time for modelR = fGg

One may now turn to approximating hard instances of
the 2-interval-pattern problem. Surprisingly enough, no
significant differences (in terms of approximation guar-
antees) have yet been found for the 2-interval-pattern
problem between the model R = f<;@;Gg and the model
R = f@;Gg (the approximation algorithms are, however,
different).

Theorem 4 The 2-interval-pattern problem for model
R = f<;@;Gg or modelR = f@;Gg is approximable within
ratio
� 4 for unlimited-interval ground sets, and
� 2 + � for unit-interval ground sets.
The 2-interval-pattern problem for modelR = f<;Gg is ap-
proximable within ratio 1 + 1/�, � � 2 for all models.

A practical 3-approximation algorithm for model
R = f<;@;Gg (resp. R = f@;Gg) and unit interval ground
set that runs in O(n lg n) (resp. O(n2 lg n)) time has
been proposed in [1] (resp. [7]). For model R = f<;Gg,
a more practical 2-approximation algorithm that runs
in O(n3 lg n) time has been proposed in [10]. Notice
that Theorem 4 holds true for the weighted version of
the 2-interval-pattern problem [7] except for models
R = f<;@;Gg andR = f@;Gg and unit interval ground set
where the best approximation ratio is 2:5 + � [5].

Applications

Sets of 2-intervals can be used for modeling stems in RNA
structures [20,21], determining DNA sequence similari-
ties [13] or scheduling jobs that are given as groups of non-
intersecting segments in the real line [1,9]. In all these ap-
plications, one is concerned with finding a maximum car-
dinality subset of nonintersecting 2-intervals. Some other
classical combinatorial problems are also of interest [5].
Also, considering sets of t-intervals (each element is the
union of at most t disjoint intervals) and their correspond-
ing intersection graph has proved to be useful.

It is computationally challenging to predict RNA
structures including pseudoknots [14]. Practical ap-
proaches to cope with intractability are either to restrict
the class of pseudoknots under consideration [18] or to
use heuristics [6,17,19]. The general problem of establish-
ing a general representation of structured patterns, i. e.,
macroscopic describers of RNA structures, was considered
in [20]. Sets of 2-intervals provide such a natural geomet-
ric description.

Constructing a relevant 2-interval set from a RNA se-
quence is relatively easy: stable stems are selected, usu-
ally according to a simplified thermodynamic model with-
out accounting for loop energy [2,16,19,20,21]. Predicting
a reliable RNA structure next reduces to finding a max-
imum subset of nonconflicting 2-intervals, i. e., a subset
of disjoint 2-intervals. Considering in addition a model
R 
 f<;@;Gg allows us to vary restrictions on the com-
plexity of the pattern structure. In [21], the treewidth of
the intersection graph of the set of 2-intervals is consid-
ered for speeding up the computation.

For sets of 2-intervals involved in practical applica-
tions, restrictions on the interval ground set are needed.
Unit interval ground sets were considered in [7]. Of partic-
ular importance in the context of molecular biology (RNA
structures and DNA sequence similarities) are balanced
interval ground sets, where each 2-interval is composed of
two equally length intervals.
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Two-Interval Pattern Problems, Table 2
Performance ratios for hard instances of the 2-interval-pattern problem. LP stands for Linear Programming and N/A stands for Not
Applicable

ModelR Interval ground set I(D)
Unlimited Balanced Unit Disjoint

f<;@;Gg 4 LP [1] 4
O(n lgn) [7]

2 + �
O(n2 + nO(log 1/�)) [13]

N/A

f@;Gg 4 LP [7] 4
O(n2 lg n) [7]

2 + �
O(n2 + nO(log 1/�)) [13]

N/A

f<;Gg 1 + 1/� O(n2�+3); � � 2 [14]

Open Problems

A number of problems related to the 2-interval-pattern
problem remain open. First, improving the approxima-
tion ratios for the various flavors of the 2-interval-pattern
problem is of particular importance. For example, the exis-
tence of a fast approximation algorithm with good perfor-
mance guarantee for the 2-interval-pattern problem for
model R = f<;@;Gg remains an apparently challenging
open problem. A related open research area is concerned
with balanced-interval ground sets. In particular, no ev-
idence has shown yet that the 2-interval-pattern prob-
lem becomes easier to approximate for balanced-interval
ground sets. This question is of special importance in the
context of RNA structures where most 2-intervals are bal-
anced.

A number of important question are still open for
model R = f<;Gg. First, it is still unknown whether the
2-interval-pattern problem for disjoint-interval ground
sets and model R = f<;Gg is polynomial-time-solvable.
Observe that this problem trivially reduces to the fol-
lowing graph problem: Given a graph G = (V ; E) with
V = f1; 2; : : : ; ng, find a maximum cardinality matching
M 
 E such that for any two distinct edges fi; jg and
fk; lg ofM, i < j, k < l and i < k, either j < k or j < l .
Another open question concerns the approximation of the
2-interval-pattern problem for balanced interval ground
set. Is this special case better approximable than the gen-
eral case?

A last direction of research is concerned with the pa-
rameterized complexity of the 2-interval-pattern prob-
lem. For example, it is not known whether the 2-interval-
pattern problem for models R = f<;@;Gg, R = f@;Gg or
R = f<;Gg is fixed-parameter-tractable when parameter-
ized by the size of the solution. Also, investigating the pa-
rameterized complexity for parameters such as the max-
imum number of pairwise crossing intervals in the input
set or the treewidth of the corresponding intersection 2-in-
terval graph, which are expected to be relatively small for
most practical applications, is of particular interest.
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ProblemDefinition

Summary

Find a minimal sum-of-products expression for a Boolean
function.

Two-Level Boolean Minimization, Table 1
Equivalent representations with different implementation com-
plexities

Expression Meaning in english Boolean logic
identity

a^ b_ a ^ b not a and not b or not a and b
Distributivity
Complements

Boundedness

a^
�
b_ b

�
not a and either not b or b

a^ True not a and True

a not a

Extended Definition

Consider a Boolean algebra with two elements: False or
True. A Boolean function f (y1; y2; � � � ; yn) of n Boolean
input variables specifies an output value for each combi-
nation of input variable values. It is possible to represent
the same function with a number of different expressions.
For example, the first and last expressions in Table 1 corre-
spond to this function. Assuming access to complemented
input variables, straight-forward implementations of these
expressions would require two and gates and an or gate for
a ^ b _ a ^ b and only a wire for a. Although the imple-
mentation efficiency depends on target technology, in gen-
eral terser expressions enable greater efficiency. Boolean
minimization is the task of deriving the tersest expression
for a function. Elegant and optimal algorithms exist for
solving the variant of this problem in which the expression
is limited to two levels, i. e., a layer of and gates followed
by a single or gate or a layer of or gates followed by a single
and gate.

Key Results

This survey will start by introducing the Karnaugh Map
visualization technique, which will be used to assist in
the subsequent explanation of the Quine–McCluskey algo-
rithm for two-level Boolean minimization. This algorithm
is optimal for its constrained problem variant. It is one of
the fundamental algorithms in the field of computer-aided
design and forms the basis or inspiration for many solu-
tions to more general variants of the Boolean minimiza-
tion problem.

KarnaughMaps

Karnaugh Maps [4] provide a method of visualizing adja-
cency in Boolean space. A KarnaughMap is a projection of
an n-dimensional hypercube onto two-dimensional sur-
face such that adjacent points in the hypercube remain ad-
jacent in the two-dimensional projection. Figure 1 illus-
trates Karnaugh Maps of 1, 2, 3, and 4 variables: a, b, c,
and d.
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Two-Level Boolean Minimization, Figure 1
Boolean function spaces from one to four dimensions and their corresponding KarnaughMaps

Two-Level Boolean Minimization, Figure 2
(i) KarnaughMap of function f (a; b; c;d), (ii) elementary implicants, (iii) second-order implicants, (iv) prime implicants, and (v) a min-
imal cover

A literal is a single appearance of a complemented or
uncomplemented input variable in a Boolean expression.
A product term or implicant is the Boolean product, or
and, of one or more literals. Every implicant corresponds
to a repeated balanced bisection of Boolean space, or of the

corresponding Karnaugh Map, i. e., an implicant is a rect-
angle in a KarnaughMap with widthm and height nwhere
m = 2 j and n = 2k for arbitrary non-negative integers j
and k, e.g, the ovals in Fig. 2(ii–v). An elementary impli-
cant is an implicant in which, for each variable of the cor-
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responding function, the variable or its complement ap-
pears, e. g., the circles in Fig. 2(ii). Implicant A covers im-
plicant B if every elementary implicant in B is also in A.

Prime implicants are implicants that are not covered by
any other implicants, e. g., the ovals and circle in Fig. 2(iv).
It is unnecessary to consider anything but prime impli-
cants when seeking a minimal function representation be-
cause, if a non-prime implicants could be used to cover
some set of elementary implicants, there is guaranteed to
exist a prime implicant that covers those elementary impli-
cants and contains fewer literals. One can draw the largest
implicants covering each elementary implicant and cover-
ing no positions for which the function is False, thereby
using Karnaugh Maps to identify prime implicants. One
can then manually seek a compact subset of prime impli-
cants covering all elementary implicants in the function.

This Karnaugh Map based approach is effective for
functions with few inputs, i. e., those with low dimen-
sionality. However, representing and manipulating Kar-
naughMaps for functions of many variables is challenging.
Moreover, the Karnaugh Map method provides no clear
set of rules to follow when selecting a minimal subset of
prime implicants to implement a function.

The Quine–McCluskey Algorithm

The Quine–McCluskey algorithm provides a formal, op-
timal way of solving the two-level Boolean minimiza-
tion problem. W. V. Quine laid the essential theoret-
ical groundwork for optimal two-level logic minimiza-
tion [7,8]. However, E. J. McCluskey first proposed a pre-
cise algorithm to fully automate the process [6].

The Quine–McCluskey method has two phases:
(1) produce all prime implicants and (2) select a minimal
subset of prime implicants covering the function. In the
first phase, the elementary implicants of a function are it-
eratively combined to produce implicants with fewer lit-
erals. Eventually, all prime implicants are thus produced.
In the second phase, a minimal subset of prime implicants
covering the on-set elementary implicants is selected using
unate covering.

The Quine–McCluskey method may be illustrated us-
ing an example. Consider the function indicated by the
Karnaugh Map in Fig. 2(i) and the truth table in Table 2.
For each combination of Boolean input variable values, the
function f (a; b; c; d) is required to output a 0 (False), a 1
(True), or has no requirement. The lack of a requirement
is indicated with an X, or don’t-care symbol.

Expanding implicants as much as possible will ulti-
mately produce the prime implicants. To do this, combine
on-set and don’t-care elementary implicants using the re-

Two-Level Boolean Minimization, Table 2
Truth table of function f (a; b; c;d)

Elementary
implicant
(a; b; c; d)

Function
value
(a; b; c; d)

Elementary
implicant

Function
value

0000 X 1000 0
0001 0 1001 0
0010 1 1010 0
0011 1 1011 1
0100 0 1100 1
0101 0 1101 1
0110 0 1110 X
0111 0 1111 1

Two-Level Boolean Minimization, Table 3
Identifying prime implicants

Number
of ones

Elementary implicant
(a; b; c; d)

Second-order
implicant

Third-order
implicant

0 0000 X 00X0

1 0010 X 001X

2
0011 X
1100 X

X011
110X X
11X0 X

11XX

3
1011 X
1101 X
1110 X

1X11
11X1 X
111X X

4 1111 X

duction theorem (ab _ ab = b) shown in Table 1. The el-
ementary implicants are circled in Fig. 2(ii) and listed in
the second column of Table 3. In this table, 0s indicate
complemented variables and 1s indicate uncomplemented
variables, e. g., 0010 corresponds to abcd. It is necessary
to determine all possible combinations of implicants. It is
impossible to combine non-adjacent implicants, i. e., those
that differ in more than one variable. Therefore, it is not
necessary to consider combining any pair of implicants
with a number of uncomplemented variables differing by
any value other than 1. This fact can be exploited by or-
ganizing the implicants based on the number of ones they
contain, as indicated by the first column in Table 3. All
possible combinations of implicants in adjacent subsets
are considered. For example, consider combining 0010
with 0011, which results in 001X or abc, and also consider
combining 0010 with 1100, which is impossible due to dif-
ferences in more than one variable. Whenever an impli-
cant is successfully merged, it is marked. These marked
implicants are clearly not prime implicants because the
implicants they produced cover them and contain fewer
literals. Note that marked implicants should still be used
for subsequent combinations. The merged implicants in
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Two-Level Boolean Minimization, Table 4
Solving unate covering problem to select minimal cover

Requirements
(elementary implicants)

Resources (prime implicants)
00X0 001X X011 1X11 11XX

0010 X X
0011 X X
1011 X X
1100 X
1101 X
1111 X X

the third column of Table 3 correspond to those depicted
in Fig. 2(iii).

After all combinations of elementary implicants have
been considered, and successful combinations listed in the
third column, this process is repeated on the second-order
merged implicants in the third column, producing the
implicants in the fourth column. Implicants that contain
don’t-care marks in different locations may not be com-
bined. This process is repeated until a column yielding no
combinations is arrived at. The unmarked implicants in
Table 3 are the prime implicants, which correspond to the
implicants depicted in Fig. 2(iv).

After a function’s prime implicants have been identi-
fied, it is necessary to select a minimal subset that cov-
ers the function. The problem can be formulated as unate
covering. As shown in Table 4, label each column of a ta-
ble with a prime implicant; these are resources that may
be used to fulfill the requirements of the function. Label
each row with an elementary implicant from the on-set;
these rows correspond to requirements. Do not add rows
for don’t-cares. Don’t-cares impose no requirements, al-
though they were useful in simplifying prime implicants.
Mark each row–column intersection for which the ele-
mentary implicant corresponding to the row is covered by
the prime implicant corresponding to the column. If a col-
umn is selected, all the rows for which the column con-
tains marks are covered, i. e., those requirements are satis-
fied. The goal is to cover all rows with a minimal-cost sub-
set of columns. McCluskey definedminimal cost as having
a minimal number of prime implicants, with ties broken
by selecting the prime implicants containing the fewest
literals. The most appropriate cost function depends on
the implementation technology. One can also use a sim-
ilar formulation with other cost functions, e. g., minimize
the total number of literals by labeling each column with
a cost corresponding to the number of literals in the cor-
responding prime implicant.

One can use a number of heuristics to accelerate so-
lution of the unate covering problem, e. g., neglect rows

that have a superset of the marks of any other row, for
they will be implicitly covered and neglect columns that
have a subset of the marks of any other column if their
costs are as high, for the other column is at least as use-
ful. One can easily select columns as long as there exists
a row with only one mark because the marked column is
required for a valid solution. However, there exist prob-
lem instances in which each row contains multiple marks.
In the worst case, the best existing algorithms are required
to make tentative decisions, determine the consequences,
then backtrack and evaluate alternative decisions.

The unate covering problem appears in many applica-
tions. It isNP-complete [5], even for the instances arising
during two-level minimization [9]. Its use in the Quine–
McCluskey method predates its categorization as anNP-
complete problem by 16 years. A detailed treatment of this
problem would go well beyond the scope of this entry.
However, Gimpel [3] as well as Coudert and Madre [2]
provide good starting points for further reading.

Some families of logic functions have optimal two-
level representations that grow in size exponentially in the
number of inputs, but have more compact multi-level im-
plementations. These families are frequently encountered
in arithmetic, e. g., a function indicating whether the num-
ber of on inputs is odd. Efficient implementation of such
functions requires manual design or multilevel minimiza-
tion [1].

Applications

Digital computers are composed of precisely two things:
(1) implementations of Boolean logic functions and
(2) memory elements. The Quine–McCluskey method is
used to permit efficient implementation of Boolean logic
functions in a wide range of digital logic devices, includ-
ing computers. The Quine–McCluskey method served as
a starting point or inspiration for most currently-used
logic minimization algorithms. Its direct use is contra-
dicted when functions are not amenable to efficient two-
level implementation, e. g., many arithmetic functions.
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