Undirected Feedback Vertex Set

995

Undirected Feedback Vertex Set

2005; Dehne, Fellows, Langston, Rosamond,
Stevens

2005; Guo, Gramm, Hiiffner, Niedermeier,
Wernicke

JIONG GUO!
Department of Mathematics and Computer Science,
University of Jena, Jena, Germany

Keywords and Synonyms

Odd cycle transversal

Problem Definition

The UNDIRECTED FEEDBACK VERTEX SET (UFVS) prob-
lem is defined as follows:

Input: An undirected graph G = (V, E) and an inte-
gerk > 0.

Task: Find a feedback vertex set F C V with |F| < k
such that each cycle in G contains at least one vertex
from F. (The removal of all vertices in F from G re-
sults in a forest.)

Karp [11] showed that UFVS is NP-complete. Lund
and Yannakakis [12] proved that there exists some con-
stant € > 0 such that it is NP-hard to approximate the op-
timization version of UFVS to within a factor of 1 + €.
The best-known polynomial-time approximation algo-
rithm for UFVS has a factor of 2 [1,4]. There is a simple
and elegant randomized algorithm due to Becker et al. [3]
which solves UFVS in O(c-4%-kn) time on an n-vertex and
m-edge graph by finding a feedback vertex set of size k with
probability at least 1 — (1 — 4_k)”4k for an arbitrary con-
stant c. An exact algorithm for UFVS with a running time

!Supported by the Deutsche Forschungsgemeinschaft, Emmy
Noether research group PIAF (fixed-parameter algorithms), NI 369/4

of O(1.7548") was recently found by Fomin et al. [9]. In
the context of parameterized complexity [8,13], Bodlaen-
der [5] and Downey and Fellows [7] were the first to show
that the problem is fixed-parameter tractable, i. e., that the
combinatorial explosion when solving it can be confined
to the parameter k. The currently best fixed-parameter al-
gorithm for UFV'S runs in O(c*-mn) for a constant ¢ [6,10]
(see [6] for the so far best running time analysis leading to
a constant ¢ = 10.567). This algorithm is the subject of this
entry.

Key Results

The O(cF-mn)-time algorithm for the UNDIRECTED FEED-

BACK VERTEX SET is based on the so-called “iterative

compression” technique, which was introduced by Reed et

al. [14]. The central observation of this technique is quite
simple but fruitful: To derive a fixed-parameter algorithm
for a minimization problem, it suffices to give a fixed-

parameter “compression routine” that, given a size-(k + 1)

solution, either proves that there is no size-k solution or

constructs one. Starting with a trivial instance and iter-
atively applying this compression routine a linear num-
ber of rounds to larger instances, one obtains a fixed-
parameter algorithm of the problem. The main challenge
of applying this technique to UFVS lies in showing that
there is a fixed-parameter compression routine.

The compression routine from [6,10] works as follows:

1 Consider all possible partitions (X,Y) of the size-
(k + 1) feedback vertex set F with |X| < k under the
assumption that set X is entirely contained in the new
size-k feedback vertex set Fand Y N F' = @

2 For each partition (X, Y), if the vertices in Y induce cy-
cles, then answer “no” for this partition; otherwise, re-
move the vertices in X. Moreover, apply the following
data reduction rules to the remaining graph:

e Remove degree-1 vertices.

o If there is a degree-2 vertex v with two neighbors v,
and v,, where v; ¢ Y or v, ¢ Y, then remove v and
connect v; and v;. If this creates two parallel edges

Unified Energy-Efficient Unicast and Broadcast Topology Control

between v; and v,, then remove the vertex of v;
and v, that is not in Y and add it to any feedback
vertex set for the reduced instance.
Finally, exhaustively examine every vertex set S with
size at most k — |X| of the reduced graph as to
whether S can be added to X to form a feedback ver-
tex set of the input graph. If there is one such vertex set,
then output it together with X as the new size-k feed-
back vertex set.
The correctness of the compression routine follows from
its brute-force nature and the easy to prove correctness of
the two data reduction rules. The more involved part is to
show that the compression routine runs in O(ck-m) time:
There are 2k+1 partitions of F into the above sets (X, Y)
and one can show that, for each partition, the reduced
graph after performing the data reduction rules has at
most d-k vertices for a constant d; otherwise, there is no
size-k feedback vertex set for this partition. This then gives
the O(ck-m)—running time. For more details on the proof
of the d-k-size bound see [6,10].

Given as input a graph G with vertex set {v1,...,v,},
the fixed-parameter algorithm from [6,10] solves UFVS
by iteratively considering the subgraphs G; := G[{vy,...,
vi}]. For i = 1, the optimal feedback vertex set is empty.
For i > 1, assume that an optimal feedback vertex set X;
for G; is known. Obviously, X; U {v;;1} is a solution set
for Gj;1. Using the compression routine, the algorithm
can in O(ck-m) time either determine that X; U {v;,1} is
an optimal feedback vertex set for Gj.i, or, if not, com-
pute an optimal feedback vertex set for Gj,;. For i = n, we
thus have computed an optimal feedback vertex set for G
in O(ck-mn) time.

Theorem 1 UNDIRECTED FEEDBACK VERTEX SET can
be solved in O(ck-mn) time for a constant c.

Applications

The UNDIRECTED FEEDBACK VERTEX SET is of funda-
mental importance in combinatorial optimization. One
typical application, for example, appears in the context of
combinatorial circuit design [1]. For applications in the ar-
eas of constraint satisfaction problems and Bayesian infer-
ence, see Bar-Yehuda et al. [2].

Open Problems

It is open to explore the practical performance of the de-
scribed algorithm. Another research direction is to im-
prove the running time bound given in Theorem 1. Fi-
nally, it remains a long-standing open problem whether
the FEEDBACK VERTEX SET on directed graphs is fixed-

parameter tractable. The answer to this question would
represent a significant breakthrough in the field.

Recommended Reading

1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm
for the undirected feedback vertex set problem. SIAM J. Dis-
cret. Math. 3(2), 289-297 (1999)

2. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation
algorithms for the feedback vertex set problem with applica-
tions to constraint satisfaction and Bayesian inference. SIAM
J. Comput. 27(4), 942-959 (1998)

3. Becker, A, Bar-Yehuda, R., Geiger, D.: Randomized algorithms
for the Loop Cutset problem. J. Artif. Intell. Res. 12, 219-234
(2000)

4. Becker, A., Geiger, D.: Approximation algorithms for the Loop
Cutset problem. In: Proc. 10th Conference on Uncertainty in Ar-
tificial Intelligence, pp. 60-68. Morgan Kaufman, San Fransisco
(1994)

5. Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comp. Sci.
5(1), 59-68 (1994)

6. Dehne, F., Fellows, M.R, Langston, M.A, Rosamond, F.
Stevens, K.: An 0(2°Kn3) FPT algorithm for the undirected
feedback vertex set problem. In: Proc. 11th COCOON. LNCS,
vol. 3595, pp. 859-869. Springer, Berlin (2005). Long version to
appear in: J. Discret. Algorithms

7. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and
completeness. Congres. Numerant. 87, 161-187 (1992)

8. Downey, R.G., Fellows, M.R. Parameterized Complexity.
Springer, Heidelberg (1999)

9. Fomin, F.V., Gaspers, S., Pyatkin, A.V.: Finding a minimum feed-
back vertex set in time O(1.7548"). In: Proc. 2th IWPEC. LNCS,
vol. 4196, pp. 184-191. Springer, Berlin (2006)

10. Guo, J., Gramm, J., Huffner, F., Niedermeier, R., Wernicke, S.:
Compression-based fixed-parameter algorithms for Feedback
Vertex Set and Edge Bipartization. J. Comp. Syst. Sci. 72(8),
1386-1396 (2006)

11. Karp, R. Reducibility among combinatorial problems. In:
Miller, R., Thatcher, J. (eds.) Complexity of Computer Compu-
tations, pp. 85-103. Plenum Press, New York (1972)

12. Lund, C,, Yannakakis, M.: The approximation of maximum sub-
graph problems. In: Proc. 20th ICALP. LNCS, vol. 700, pp. 40-51.
Springer, Berlin (1993)

13. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Ox-
ford University Press, Oxford (2006)

14. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals.
Oper. Res. Lett. 32(4), 299-301 (2004)

|
Unified Energy-Efficient Unicast

and Broadcast Topology Control

» Degree-Bounded Planar Spanner with Low Weight

|
University Admissions Problem

» Hospitals/Residents Problem

Utilitarian Mechanism Design for Single-Minded Agents

|
Using Visualization in the Empirical

Assessment of Algorithms

» Visualization Techniques for Algorithm Engineering

|
Utilitarian Mechanism Design
for Single-Minded Agents
2005; Briest, Krysta, Vocking

PIOTR KRYSTA'!, BERTHOLD VOCKING?

! Department of Computer Science, University of
Liverpool, Liverpool, UK

2 Department of Computer Science, RWTH Aachen
University, Aachen, Germany

Keywords and Synonyms

Forward (combinatorial, multi-unit) auction

Problem Definition

This problem deals with the design of efficiently com-
putable incentive compatible, or truthful, mechanisms for
combinatorial optimization problems with selfish one-
parameter agents and a single seller. The focus is on ap-
proximation algorithms for NP-hard mechanism design
problems. These algorithms need to satisfy certain mono-
tonicity properties to ensure truthfulness.

A one parameter agent is an agent who as her private
data has some resource as well as a valuation, i. e., the max-
imum amount of money she is willing to pay for this re-
source. Sometimes, however, the resource is assumed to
be known to the mechanism. The scenario where a sin-
gle seller offers these resources to the agents is primarily
considered. Typically, the seller aims at maximizing the
social welfare or her revenue. The work by Briest, Krysta
and Vocking [6] will mostly be considered, but also other
existing models and results will be surveyed.

Utilitarian Mechanism Design

A famous example of mechanism design problems is given
by combinatorial auctions (CAs), in which a single seller,
auctioneer, wants to sell a collection of goods to poten-
tial buyers. A wider class of problems is encompassed
by a utilitarian mechanism design (maximization) prob-
lem IT defined by a finite set of objects A, a set of feasi-
ble outputs Oy € A" and a set of n agents. Each agent
declares a set of objects S; € A and a valuation func-
tionv; : P(A) x A" — R by which she values all possible
outputs. Given a vector S = (Sy,...,S,) of declarations

one is interested in output 0* € Oy maximizing the social
welfare, i.e., 0* € argmax, ¢, Z;’Zl vi(S;, 0). In CAs, an
object a corresponds to a subset of goods. Each agent de-
clares all the subsets she is interested in and the prices she
would be willing to pay. An output specifies the sets to be
allocated to the agents.

Here, a limited type of agents called single-minded
is considered, introduced by Lehmann et al. [10]. Let
R< € A? be a reflexive and transitive relation on A,
such that there exists a special object & € A with @ < a
for any a € A to model the situation in which some
agent does not contribute to the solution at all. For
a,be A (a,b) e R< will be denoted by a <b. The
single-minded agent i declares a single object a; and is fully
defined by her type (a;, v;), with a; € A and v; > 0. The
valuation function introduced earlier reduces to

vi, ifa; <o;

vi(ai,0) =
o 0, else.

Agent i is called known if object a; is known to the
mechanism [11]. Here, mostly unknown agents will be
considered. Intuitively, each a; corresponds to an ob-
ject agent i offers to contribute to the solution, v; de-
scribes her valuation of any output o that indeed selects
a;. In CAs, relation R< is set inclusion: an agent inter-
ested in set S will is also satisfied by §' with S C §'.
For ease of notation let (a,v) = ((a1,v1),...,(an,vn))s
(a—i,v—i) = ((a1,v1).....(aim1, vie1), (@i1, Vier), - oo
(an.vn)) and ((a;i, vi). (a—i. v—)) = (a.v).

Mechanism

A mechanism M = (A, p) consists of an algorithm A
computing a solution A(a,v) € O and an n-tuple
pla,v) = (pi(a,v),...,pn(a,v)) € R} of payments col-
lected from the agents. If a; < A(a,v);, agent i is se-
lected, and let S(A(a,v)) = {ila; < A(a,v);} be the set
of selected agents. Agent i’s type is her private knowl-
edge. Thus, the types declared by agents may not
match their true types. To reflect this, let (af,v}) re-
fer to agent i’s true type and (a;,v;) be the declared
type. Given an output o € Opy, the utility of agent i is
ui(a,v) =vi(a¥,o0) — pi(a,v). Each agent’s goal is to max-
imize her utility. To achieve this, she will try to ma-
nipulate the mechanism by declaring a false type if this
could result in higher utility. A mechanism is called truth-
ful, or incentive compatible, if no agent i can gain by
lying about her type, i.e., given declarations (a_;, v—;),
ui((af,v¥), (a—i,v—i)) = ui((a;, v;), (a—;,v—;)) for any

(ai,vi) #(aF.v}).

998

Utilitarian Mechanism Design for Single-Minded Agents

V := max; v;, Best := (@, ...,0), best := 0;
, [og(1 —&)~'n] + 1 do
k= |log(V)] — j
if wk(A’;T(a, v)) > best then
Best := A];T(a, v); best := wk(A];T(a, v));

Algorithm A];T: Algorithm A%’ TAS
1 o= #; 1
2 fori=1,...,ndo 2 forj=0,...
3 v} := min{v;, 2K*1}; 3
4 vil=log - vi]; 4
5 return A(a,v"); 5

6 return Best;

Utilitarian Mechanism Design for Single-Minded Agents, Figure 1

A monotone FPTAS for utilitarian problem IT and single-minded agents

Monotonicity

A sufficient condition for truthfulness of approximate
mechanisms for single-minded CAs was first given by
Lehmann et al. [10]. Their results can be adopted for the
considered scenario. An algorithm A is monotone with
respect to R< if

i€ S(A((a;,vi), (a=i,v—y)))
= i€ S(A((a},v}), (a—i, v—)))

for any a; < a; and v§ > v,. Intuitively, one requires that
a winning declaration (a;, v;) remains winning if an ob-
ject a’, smaller according to R<, and a higher valuation v/
are declared. If declarations (a—;, v—;) are fixed and object
a; declared by i, algorithm A defines a critical value 6,
i.e., the minimum valuation v; that makes (a;, v;) win-
ning, i.e., i € S(A((a;,v;), (a—;,v—;))) for any v; > OiA
and i ¢ S(A((ai, vi), (a—;,v—;))) for any v; < 9;4. The
critical value payment scheme p* associated with A is de-
fined by p?(a, V) = GiA, if i € S(A(a,v)), and p‘?(a, v) =0,
otherwise. The critical value for any fixed agent i can be
computed, e.g., by performing binary search on interval
[0, vi] and repeatedly running algorithm A to check if i
is selected. Also, mechanism My = (A, pA) is normalized,
i. e., agents that are not selected pay 0. Algorithm A is ex-
act, if for declarations (a, v), A(a,v); = a; or A(a,v); = @
for all i. In analogy to [10] one obtains the following.

Theorem 1 Let A be a monotone and exact algorithm
for some utilitarian problem I1 and single-minded agents.
Then mechanism My = (A, p*) is truthful.

Additional definitions

In the unsplittable flow problem (UFP), an undirected
graph G = (V,E), |E| = m, |V| = n, with edge capacities
b, e € E, and a set K of k > 1 commodities described
by terminal pairs (s;, t;) € V x V and a demand d; and
a value ¢; are given. One assumes that max; d; < min, b,

d; € 10,1] foreachie K={1,...,k},and b, > 1 for all
e € E. Let B=min,{b,}. A feasible solution is a subset
K’ C K and a single flow s;-f;-path for each i € K’, such
that the demands of K’ can simultaneously and unsplit-
tably be routed along the paths and the capacities are not
exceeded. The goal in UFP, called B-bounded UFP, is to
maximize the total value of the commodities in K’. A gen-
eralization is allocating bandwidth for multicast com-
munication, where commodity is a set of terminals that
should be connected by a multicast tree.

Key Results
Monotone approximation schemes

Let IT be a given utilitarian (maximization) problem.
Given declarations (a, v), let Opt(a, v) denote an optimal
solution to IT on this instance and w(Opt(a, v)) the cor-
responding social welfare. Assuming that Ay is a pseu-
dopolynomial exact algorithm for /T an algorithm A’}Y and
monotone FPTAS for I7 is defined in Fig. 1.

Theorem 2 Let I1 be a utilitarian mechanism de-
sign problem among single-minded agents, Ap mono-
tone pseudopolynomial algorithm for IT with running
time poly(n,V), where V = max; v;, and assume that
V < w(Opt(a,v)) for declaration (a,v). Then AIID-}JTAS is
a monotone FPTAS for IT.

Theorem 2 can also be applied to minimization problems.
Section “Applications” describes how these approximation
schemes can be used for forward multi-unit auctions and
job scheduling with deadlines.

Truthful primal-dual mechanisms

For an instance G = (V, E) of UFP defined above, let S;
be the set of all s;-f;-paths in G, and S = Uik:1 S;. Given
S € Si, let gs(e) =d; if e € S, and gg(e) = 0 otherwise.

Utilitarian Mechanism Design for Single-Minded Agents

Algorithm Greedy-1:
1 T::@;K:={19'~'7k};

2 foralle € Edo y, := 1/b,;
3 repeat
4 forall i € Kdo S; = argmin {}_,cs ye | S € Si}s
g Ci]
5 jr=argmaxy ——— | i € K
d; Zees,- Ve
6 T =T U{S;;5 K:=K\{j}
7 foralle € Sj do y. := y. - (eB_lm)qsf(e)/(b“_l);
8 until) ,cpbeye > e ImorK =0;
9 return7.

Utilitarian Mechanism Design for Single-Minded Agents, Figure 2

Truthful mechanism for network (multicast) routing. e & 2.718 is Euler number.

UFP is the following integer linear program (ILP)

>

SES;

k
max E Ci-
i=1

s.t. Z qs(e)xs <b, Ve€ckE
S:S€S,e€$

)

Y oxs <1 Vie{l....k} (3)

SEeS;

xs €{0,1} VSeS. (4)

The linear programming (LP) relaxation is the same linear
program with constraints (4) replaced with xg > 0 for all
S € S. The corresponding dual linear program is

k
min Zbeye +Zzi
1

e€E i=

(5)

st zity qs(e)ye = ci Vie{l.....k}¥Se€S; (6)

e€S

zi,ye >0 Vie{l,...,k} Ve€E. 7)

Based on these LPs, Fig. 2 specifies a primal-dual mecha-
nism for routing, called Greedy-1. Greedy-1 ensures feasi-
bility by using y.’s: if an added set exceeded the capacity b,
of some e € E, then this would imply the stopping condi-
tion already in the previous iteration. Using the weak du-
ality of LPs the following result can be shown.

Theorem 3 Greedy-1 outputs a feasible solution, and it
isa (EL_BI(m)1/(3_1))—approximation algorithm if there is

a polynomial time algorithm that finds a y -approximate set
S;in line 4.

In case of UFP y = 1, as the shortest s;-t;-path computa-
tion finds set S; in line 4 of Greedy-1. For multicast rout-
ing, this problem corresponds to the NP-hard Steiner tree
problem, for which one can take y = 1.55. Greedy-1 can
easily be shown to be monotone in demands and valua-
tions as required in Theorem 1. Thus it implies a truth-
ful mechanism for allocating network resources. The com-
modities correspond to bidders, the terminal nodes of bid-
ders are known, but the bidders might lie about their de-
mands and valuations. In the multicast routing the set of
terminals for each bidder is known but the demands and
valuations are unknown.

Corollary 1 Given any € >0, B> 1+¢, Greedy-1 is
a truthful O(m"B=V)-approximation mechanism for UFP
(unicast routing) as well as for the multicast routing prob-
lem, where the demands and valuations of the bidders are
unknown.

When B is large, §2(log m), then the approximation fac-
tor in Corollary 1 becomes constant. Azar et al. [4] pre-
sented further results in case of large B. Awerbuch et al. [3]
gave randomized online truthful mechanisms for uni-
and multicast routing, obtaining an expected O(log(um))-
approximation if B = §2(log m), where is the ratio of the
largest to smallest valuation. Their approximation holds
in fact with respect to the revenue of the auctioneer, but
they assume that the demands are known to the mecha-
nism. Bartal et al. [5] give a truthful O(B - (m/0)VB=2)_
approximation mechanism for UFP with unknown valua-
tions and demands, where 6 = min;{d;}.

Greedy-1 can be modified to give truthful mecha-
nisms for multi-unit CAs among unknown single-mined

1000

Utilitarian Mechanism Design for Single-Minded Agents

Algorithm Greedy-2:

1 T :=0;
2 foralle € Udo y, := 1/b,;
3 repeat
cs
4 SE argmax{ S 4 SES\’T},
5 T =T U{S})
6 forall e € S do y, := y, - (ePm)1s(e)Vbe;
7 until) o beye > efm;
8 returnT.

Utilitarian Mechanism Design for Single-Minded Agents, Figure 3

Truthful mechanism for multi-unit CAs among unknown single-minded bidders. For CAs without multisets: gs(e) € {0, 1} for each

eeUSeS.

bidders.! Archer et al. [2] used randomized rounding
to obtain a truthful mechanism for multi-unit CAs, but
only in a probabilistic sense and only for known bidders.
Multi-unit CA among single-minded bidders is a special
case of ILP (1)-(4), where |S;| =1 for each i € K, and
qs(e) € {0,1} foreache € U, S € S (Eis U in CAs). A bid
of bidder i € K is (a;,v;) = (S,cs), S € S;, and cs = ¢; is
the valuation. The relation R< is C. Algorithm Greedy-2
in Fig. 3 is exact and monotone for CAs with unknown
single-minded bidders, as needed in Theorem 1.

Theorem 4 Algorithm Greedy-2 is a truthful O(m%)—ap—
proximation mechanism for multi-unit CAs among un-
known single-minded bidders.

Bartal et al. [5] presented a truthful mechanism for this
problem among unknown single-minded bidders which
is O(B - m”(B_Z))—approximate. (It works in fact for more
general bidders.)

Applications

Applications of the techniques described above are pre-
sented and a short survey of other results.

Applications of monotone approximation schemes

In a forward multi-unit auction a single auctioneer wants
to sell m identical items to n possible buyers (bidders).
Each single-minded bidder specifies the number of items
she is interested in and a price she is willing to pay. El-
ements in the introduced notation correspond to the re-
quested and allocated numbers of items. Relation R< de-

In the case of unknown single-minded bidders, the bidders have
as private data not only their valuations (as in the case of known
single-minded bidders) but also the sets they demand.

scribes that bidder i requesting ¢g; items will be satis-
fied also by any larger number of items. Mu’alem and
Nisan [11] give a 2-approximate monotone algorithm for
this problem. Theorem 2 gives a monotone FPTAS for
multi-unit auctions among unknown single-minded bid-
ders. This FPTAS is truthful with respect to agents where
both the number of items and price are private.

In job scheduling with deadlines (JSD), each agent i
has a job with running time t;, deadline d; and a price
v; she is willing to pay if her job is processed by dead-
line d;. Element g; is defined as a; = (¢;, d;). Output for
agent i is a time slot for processing i’s job. For two el-
ements a; = (t;,d;) and a = (t;,d}) one has a; < a] if
ti <t and d; > d.. Theorem 2 leads to a monotone FP-
TAS, which, however, is not exact (see Theorem 1) with
respect to deadlines, and so it is a truthful mechanism
only if the deadlines are known. The techniques of The-
orem 2 apply also to minimization mechanism design
problems with a single buyer, such as reverse multi-unit
auctions, scheduling to minimize tardiness, constrained
shortest path and minimum spanning tree problems [6].

Applications of the primal dual algorithms

The applications of the primal dual algorithms are com-
binatorial auctions and auctions for unicast and multicast
routing. As these applications are tied very much to the al-
gorithms, they have already been presented in Sect. “Key
Results”.

Survey of other results

First truthful mechanisms for single-minded CAs were
designed by Lehmann et al. [10], where they introduced
the concept of single-minded agents, identified the role
of monotonicity, and used greedy algorithms to design

Utilitarian Mechanism Design for Single-Minded Agents

1001

truthful mechanisms. Better approximation ratios of these
greedy mechanisms were proved by Krysta [9] with the
help of LP duality. A tool-box of techniques for designing
truthful mechanisms for CAs was given by Mu’alem and
Nisan [11].

The previous section presented a monotone FPTAS
for job scheduling with deadlines where jobs are selfish
agents and the seller offers the agents the facilities to pro-
cess their jobs. Such scenarios when jobs are selfish agents
to be scheduled on (possibly selfish) machines have been
investigated further by Andelman and Mansour [1], see
also references therein.

So far social welfare was mostly assumed as the ob-
jective, but for a seller probably more important is to
maximize her revenue. This objective turns out to be
much harder to enforce in mechanism design. Such truth-
ful (in probabilistic sense) mechanisms were obtained for
auctioning unlimited supply goods among one-parameter
agents [7,8]. Another approach to maximizing seller’s rev-
enue is known as optimal auction design [12]. A seller
wants to auction a single good among agents and each
agent has a private value for winning the good. One
assumes that the seller knows a joint distribution of
those values and wants to maximize her expected rev-
enue [13,14].

Cross References

Mechanisms that approximately maximize revenue for
unlimited-supply goods as of Goldberg, Hartline and
Wright 8 are presented in entry » Competitive Auction.

Recommended Reading

1. Andelman, N., Mansour, Y.: A sufficient condition for truthful-
ness with single parameter agents. In: Proc. 8th ACM Confer-
ence on Electronic Commerce (EC),Ann, Arbor, Michigan, June
(2006)

2. Archer, A, Papadimitriou, C.H., Talwar, K., Tardos, E.: An approx-
imate truthful mechanism for combinatorial auctions with sin-

gle parameter agents. In: Proc. 14th Ann. ACM-SIAM Symp. on
Discrete Algorithms (SODA), pp. 205-214. Baltimore, Maryland
(2003)

. Awerbuch, B,, Azar, Y., Meyerson, A.: Reducing truth-telling on-

line mechanisms to online optimization. In: Proc. 35th Ann.
ACM. Symp. on Theory of Comput. (STOC), San Diego, Califor-
nia (2003)

. Azar, Y., Gamzuy, |, Gutner, S.: Truthful unsplittable flow for

large capacity networks. In: Proc. 19th Ann. ACM Symp. on Par-
allelism in Algorithms and Architectures (SPAA), pp. 320-329
(2007)

. Bartal, Y., Gonen, R, Nisan, N.: Incentive compatible multi

unit combinatorial auctions. In: Proceedings of the 9th con-
ference on Theoretical aspects of rationality and knowledge
(TARK), pp. 72-87. ACM Press (2003). http://doi.acm.org/10.
1145/846241.846250

. Briest, P., Krysta, P., Vocking, B.: Approximation techniques for

utilitarian mechanism design. In: Proc. 37th Ann. ACM. Symp.
on Theory of Comput. (STOC), pp. 39-48 (2005)

. Fiat, A, Goldberg, A.V., Hartline, J.D., Karlin, A.R.: Competitive

generalized auctions. In: Proc. 34th Ann. ACM. Symp. on The-
ory of Comput. (STOC), pp. 72-81 (2002)

. Goldberg, A.V., Hartline, J.D., Wright, A.: Competitive auctions

and digital goods. In: Proc. 12th Ann. ACM-SIAM Symp. on Dis-
crete Algorithms (SODA), pp. 735-744 (2001)

. Krysta, P.: Greedy approximation via duality for packing, com-

binatorial auctions and routing. In: Proc. 30th Int. Confer-
ence on Mathematical Foundations of Comput. Sci. (MFCS).
Lecture Notes in Computer Science, vol. 3618, pp. 615-627
(2005)

. Lehmann, D.J., O'Callaghan, L.I., Shoham, Y.: Truth revelation

in approximately efficient combinatorial auctions. In: Proc. 1st
ACM Conference on Electronic Commerce (EC), pp. 96-102
(1999)

. Mu’alem, A, Nisan, N.: Truthful approximation mechanisms for

restricted combinatorial auctions. In: Proc. 18th Nat. Conf. Arti-
ficial Intelligence, pp. 379-384. AAAI (2002)

. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6,

58-73(1981)

. Ronen, A.: On approximating optimal auctions (extended ab-

stract). In: Proc. 3rd ACM Conference on Electronic Commerce
(EC), pp. 11-17 (2001)

. Ronen, A, Saberi, A.: On the hardness of optimal auctions. In:

Proc. 43rd Ann. IEEE Symp. on Foundations of Comput. Sci.
(FOCS), pp. 396-405 (2002)

http://doi.acm.org/10.1145/846241.846250
http://doi.acm.org/10.1145/846241.846250

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

