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Problem Definition

Let G be an undirected graph. A subset C of vertices in G is
a vertex cover for G if every edge in G has atleast one end in
C. The (parametrized) VERTEX COVER problem is for each
given instance (G, k), where G is a graph and k > 0 is an
integer (the parameter), to determine whether the graph G
has a vertex cover of at most k vertices.

The VERTEX COVER problem is one of the six “ba-
sic” NP-complete problems according to Garey and John-
son [4]. Therefore, the problem cannot be solved in
polynomial time unless P = NP. However, the NP-
completeness of the problem does not obviate the need
for solving it because of its fundamental importance and
wide applications. One approach was initiated based on
the observation that in many applications, the parameter
k is small. Therefore, by taking the advantages of this fact,
one may be able to solve this NP-complete problem effec-
tively and practically for instances with a small parameter.
More specifically, algorithms of running time of the form
f(k)p(n) have been studied for VERTEX COVER, where
p(n) is a low-degree polynomial of the number n = |G| of
vertices in G and f(k) is a function independent of .

There has been an impressive sequence of improved
algorithms for the VERTEX COVER problem. A number of
new techniques have been developed during this research,
including kernelization, folding, and refined branch-and-
search. In particular, the kernelization method is the
study of polynomial time algorithms that can signifi-
cantly reduce the instance size for VERTEX COVER. The
following are some concepts related to the kernelization
method:

Definition 1 Two instances (G, k) and (G’, k) of VERTEX
COVER are equivalent if the graph G has a vertex cover of
size < k if and only if the graph G’ has a vertex cover of
size < k’.

Definition 2 A kernelization algorithm for the VER-
TEX COVER problem takes an instance (G,k) of VER-
TEX COVER as input and produces an equivalent instance
(G', k) for the problem, such that |G| < |G|and k" < k.
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The kernelization method has been used extensively in
conjunction with other techniques in the development of
algorithms for the VERTEX COVER problem. Two major
issues in the study of kernelization method are (1) effec-
tive reductions of instance size; and (2) the efficiency of
kernelization algorithms.

Key Results

A number of kernelization techniques are discussed and
studied in the current paper.

Preprocessing Based on Vertex Degrees

Let (G, k) be an instance of VERTEX COVER. Let v be a ver-
tex of degree larger than k in G. If a vertex cover C does not
include v, then C must contain all neighbors of v, which
implies that C contains more than k vertices. Therefore, in
order to find a vertex cover of no more than k vertices, one
must include v in the vertex cover, and recursively look for
a vertex cover of k — 1 vertices in the remaining graph.

The following fact was observed on vertices of degree
less than 3.

Theorem 1 There is a linear time kernelization algorithm
that on each instance (G, k) of VERTEX COVER, where the
graph G contains a vertex of degree less than 3, produces
an equivalent instance (G', k') such that |G| < |G| and/or
k<k.

Therefore, vertices of high degree (i.e., degree > k) and
low degree (i.e., degree < 3) can always be handled effi-
ciently before any more time-consuming process.

Nemhauser-Trotter Theorem

Let G be a graph with vertices v, v,, .. ., v,. Consider the
following integer programming problem:

(IP) Minimize

Subjectto  x; +x; > 1

X; € {0, 1},

X1 +Xp+--+ Xy
for each edge [v;,v;] in G

1<i<n

It is easy to see that there is a one-to-one correspondence
between the set of feasible solutions to (IP) and the set of
vertex covers of the graph G. A natural LP-relaxation (LP)
of the problem (IP) is to replace the restrictions x; € {0, 1}
with x; > 0 for all i. Note that the resulting linear pro-
gramming problem (LP) now can be solved in polynomial
time.

Let 0 = {xV,...,x%} be an optimal solution to the
linear programming problem (LP). The vertices in the

graph G can be partitioned into three disjoint parts accord-
ing to o:

Ip={v; | x) < 0.5},

Co ={v; | x; > 0.5}, and

Vo ={vi | x; = 0.5}

o

o

The following nice property of the above vertex partition
of the graph G was first observed by Nemhauser and Trot-
ter [5].

Theorem 2 (Nemhauser-Trotter) Let G[V,] be the sub-
graph of G induced by the vertex set V. Then (1) every
vertex cover of G[Vy] contains at least | Vy|/2 vertices; and
(2) every minimum vertex cover of G[Vy] plus the vertex set
Cy makes a minimum vertex cover of the graph G.

Let k be any integer, and let G’ = G[Vp] and k' = k — | Cp|.
As first noted in [3], by Theorem 2, the instances (G, k)
and (G, k') are equivalent, and |G'| < 2k’ is a necessary
condition for the graph G’ to have a vertex cover of size
K. This observation gives the following kernelization re-
sult.

Theorem 3 There is a polynomial-time algorithm that for
a given instance (G, k) for the VERTEX COVER problem,
constructs an equivalent instance (G', k') such that k' < k
and |G'| < 2K’

A faster Nemhauser-Trotter Construction

Theorem 3 suggests a polynomial-time kernelization algo-
rithm for VERTEX COVER. The algorithm is involved in
solving the linear programming problem (LP) and parti-
tioning the graph vertices into the sets I, Cp, and V. Solv-
ing the linear programming problem (LP) can be done in
polynomial time but is kind of costly in particular when
the input graph G is dense. Alternatively, Nemhauser and

Trotter [5] suggested the following algorithm without us-

ing linear programming. Let G be the input graph with

vertex set {vi,...,V,}.

1. construct a bipartite graph B with vertex set {v, ...,
vﬁ, vf, e vﬁ} such that [viL, vf] is an edge in B if and
only if [v;, v;] is an edge in G;

2. find a minimum vertex cover Cg for B;

3. Iy = {v; | if neither v¥ nor v} isin Cp};

Cy = {vi | ifboth v} and v? arein Cp};
Vy ={vi | ifexactly one of v/ and VIR isin Cg}

It can be proved [5] (see also [2]) that Theorem 2 still

holds true when the sets Cy and V) in the theorem are re-

placed by the sets C, and V), respectively, constructed in
the above algorithm.
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The advantage of this approach is that the sets Cjj and
Vy can be constructed in time O(m /n) because the mini-
mum vertex cover Cp for the bipartite graph B can be con-
structed via a maximum matching of B, which can be con-
structed in time O(m /) using Dinic’s maximum flow al-
gorithm, which is in general faster than solving the linear
programming problem (LP).

Crown Reduction

For a set S of vertices in a graph G, denote by N(S) the set of
vertices that are not in S but adjacent to some vertices in S.
A crown in a graph G is a pair (I, H) of subsets of vertices
in G satisfying the following conditions: (1) I # @ is an
independent set,and H = N(I); and (2) there is a matching

M on the edges connecting I and H such that all vertices

in H are matched in M.

It is quite easy to see that for a given crown (I, H),
there is a minimum vertex cover that includes all vertices
in H and excludes all vertices in I. Let G’ be the graph
obtained by removing all vertices in I and H from G.
Then, the instances (G, k) and (G', k') are equivalent,
where k' = k — |H|. Therefore, identification of crowns in
a graph provides an effective way for kernelization.

Let G be the input graph. The following algorithm is
proposed.

1. construct a maximal matching M, in G; let O be the set
of vertices unmatched in My;

2. construct a maximum matching M, of the edges be-
tween O and N(O); i = 0; let I be the set of vertices
in O that are unmatched in My;

3. repeatuntil I; = I,y {H; = N(I;); Ii+1 = I; U N, (H;);
i=1i+1;}; (where Ny, (H;) is the set of vertices in O
that match the vertices in H; in the matching M,)

4. I =1I;; H=N(I;); output (I, H).

Theorem 4 (1) if the set Iy is not empty, then the above
algorithm constructs a crown (I, H); (2) if both |M;| and
| M| are bounded by k, and Iy = @, then the graph G has at
most 3k vertices.

According to Theorem 4, the above algorithm on an in-
stance (G, k) of VERTEX COVER either (1) finds a match-
ing of size larger than k — which implies that there is no
vertex cover of k vertices in the graph G; or (2) constructs
a crown (I, H) — which will reduce the size of the instance;
or (3) in case neither of (1) and (2) holds true, concludes
that the graph G contains at most 3k vertices. Therefore,
repeatedly applying the algorithm either derives a direct
solution to the given instance, or constructs an equivalent
instance (G, k') with k' < k and |G'| < 3K’

Applications

The research of the current paper was directly motivated
by authors’ research in bioinformatics. It is shown that for
many computational biological problems, such as the con-
struction of phylogenetic trees, phenotype identification,
and analysis of microarray data, preprocessing based on
the kernelization techniques has been very effective.

Experimental Results

Experimental results are given for handling graphs ob-
tained from the study of phylogenetic trees based on pro-
tein domains, and from the analysis of microarray data.
The results show that in most cases the best way to ker-
nelize is to start handling vertices of high and low de-
grees (i. e., vertices of degree larger than k or smaller than
3) before attempting any of the other kernelization tech-
niques. Sometimes, kernelization based on Nemhauser-
Trotter Theorem can solve the problem without any fur-
ther branching. It is also observed that sometimes partic-
ularly on dense graphs, kernelization techniques based on
Nembhauser-Trotter Theorem are kind of time-consuming
but do not reduce the instance size by much. On the other
hand, the techniques based on high-degree vertices and
crown reduction seem to work better.

Data Sets

The experiments were performed on graphs obtained
based on data from NCBI and SWISS-PROT, well known
open-source repositories of biological data.
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Problem Definition

The VERTEX COVER problem is one of the six “basic” NP-
complete problems according to Garey and Johnson [7].
Therefore, the problem cannot be solved in polynomial
time unless P = NP. However, the NP-completeness of the
problem does not obviate the need for solving it because of
its fundamental importance and wide applications.

One approach is to develop parameterized algorithms
for the problem, with the computational complexity of the
algorithms being measured in terms of both input size and
a parameter value. This approach was initiated based on
the observation that in many applications, the instances of
the problem are associated with a small parameter. There-
fore, by taking the advantages of the small parameters, one
may be able to solve this NP-complete problem effectively
and practically.

The problem is formally defined as follows. Let G be an
(undirected) graph. A subset C of vertices in G is a vertex
cover for G if every edge in G has at least one end in C.
An instance of the (parameterized) VERTEX COVER prob-
lem consists of a pair (G, k), where G is a graph and k is
an integer (the parameter), which is to determine whether
the graph G has a vertex cover of k vertices. The goal
is to develop parameterized algorithms of running time
O(f (k)p(n)) for the VERTEX COVER problem, where p(n)
is a lower-degree polynomial of the input size n, and f (k)
is the non-polynomial part that is a function of the param-
eter k but independent of the input size n. It would be ex-
pected that the non-polynomial function f(k) is as small
as possible. Such an algorithm would become “practically
effective” when the parameter value k is small. It should be
pointed out that unless an unlikely consequence occurs in
complexity theory, the function f (k) is at least an exponen-
tial function of the parameter k [8].

Key Results

A number of techniques have been proposed in the de-
velopment of parameterized algorithms for the VERTEX
COVER problem.

Kernelization

Suppose (G, k) is an instance for the VERTEX COVER prob-
lem, where G is a graph and k is the parameter. The ker-
nelization operation applies a polynomial time prepro-
cessing on the instance (G, k) to construct another in-
stance (G, k'), where G’ is a smaller graph (the kernel) and
k" < k, such that G’ has a vertex cover of k’ vertices if and
only if G has a vertex cover of k vertices. Based on a clas-
sical result by Nemhauser and Trotter [9], the following
kernelization result was derived.

Theorem 1 There is an algorithm of running time
O(kn + k3) that for a given instance (G, k) for the VERTEX
COVER problem, constructs another instance (G, k') for the
problem, where the graph G' contains at most 2k’ vertices
and k' < k, such that the graph G has a vertex cover of k
vertices if and only if the graph G’ has a vertex cover of k'
vertices.

Therefore, kernelization provides an efficient preprocess-
ing for the VERTEX COVER problem, which allows one to
concentrate on graphs of small size (i. e., graphs whose size
is only related to k).

Folding

Suppose vis a degree-2 vertex in a graph G with two neigh-
bors u and w such that 4 and w are not adjacent to each
other. Construct a new graph G’ as follows: remove the
vertices v, u, and w and introduce a new vertex v, that is
adjacent to all remaining neighbors of the vertices # and w
in G. The graph G is said being obtained from the graph
G by folding the vertex v. The following result was derived.

Theorem 2 Let G’ be a graph obtained by folding a degree-
2 vertex v in a graph G, where the two neighbors of v are not
adjacent to each other. Then the graph G has a vertex cover
of k vertices if and only if the graph G' has a vertex cover of
k — 1 vertices.

An folding operation allows one to decrease the value of
the parameter k without branching. Therefore, folding op-
erations are regarded as very efficient in the development
of exponential time algorithms for the VERTEX COVER
problem. Recently, the folding operation has be general-
ized to apply to a set of more than one vertex in a graph [6].
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Branch and Search

A main technique is the branch and search method that has
been extensively used in the development of algorithms
for the VERTEX COVER problem (and for many other NP-
hard problems). The method can be described as follows.
Let (G, k) be an instance of the VERTEX COVER problem.
Suppose that somehow a collection {Cj, ..., Cp} of vertex
subsets in the graph G is identified, where for each i, the
subset C; has ¢; vertices, such that if the graph G contains
a vertex cover of k vertices, then at least for one C; of the
vertex subsets in the collection, there is a vertex cover of k
vertices for G that contains all vertices in C;. Then a col-
lection of (smaller) instances (Gj, k;) can be constructed,
where 1 < i <b,k; = k—c;, and G; is obtained from G
by removing all vertices in C;. Note that the original graph
G has a vertex cover of k vertices if and only if for one
(Gi, ki) of the smaller instances the graph G; has a ver-
tex cover of k; vertices. Therefore, now the process can be
branched into b sub-processes, each on a smaller instance
(Gi, ki) recursively searches for a vertex cover of k; vertices
in the graph G;.

Let T(k) be the number of leaves in the search tree for
the above branch and search process on the instance (G, k),
then the above branch operation gives the following recur-
rence relation:

T(k)=Tk —c1)+ T(k—c2) +--+ T(k —cp)

To solve this recurrence relation, let T(k) = x¥ so that the
above recurrence relation becomes

k

xk = xhma g ke g gk

It can be proved [3] that the above polynomial equation
has a unique root x¢ larger than 1. From this, one gets
T(k) = x(’)‘ , which, up to a polynomial factor, gives an up-
per bound on the running time of the branch and search
process on the instance (G, k).

The simplest case is that a vertex v of degree d > 0 in
the graph G is picked. Let w1, ..., w, be the neighbors of v.
Then either v is contained in a vertex cover C of k vertices,
or, if v is not contained in C, then all neighbors wy, ..., wy
of v must be contained in C. Therefore, one obtains a col-
lection of two subsets C; = {v}and C; = {wy,...,wy}, on
which the branch and search process can be applied.

The efficiency of a branch and search operation de-
pends on how effectively one can identify the collection
of the vertex subsets. Intuitively, the larger the sizes of the
vertex subsets, the more efficient is the operation. Much ef-
fort has been made in the development of VERTEX COVER
algorithms to achieve larger vertex subsets. Improvements
on the size of the vertex subsets have been involved with

very complicated and tedious analysis and enumerations
of combinatorial structures of graphs. The current pa-
per [3] achieved a collection of two subsets C; and C, of
sizes ¢; = 1 and ¢, = 6, respectively, and other collections
of vertex subsets that are at least as good as this (the tech-
niques of kernelization and vertex folding played impor-
tant roles in achieving these collections). This gives the fol-
lowing algorithm for the VERTEX COVER problem.

Theorem 3 The VERTEX COVER problem can be solved in
time O(kn + 1.2852%).

Very recently, a further improvement over Theorem 3 has
been achieved that gives an algorithm of running time
O(kn + 1.2738%) for the VERTEX COVER problem [4].

Applications

The study of parameterized algorithms for the VERTEX
COVER problem was motivated by ETH Ziirich’s DAR-
WIN project in computational biology and computational
biochemistry (see, e.g. [10,11],). A number of computa-
tional problems in the project, such as multiple sequence
alignments [10] and biological conflict resolving [11], can
be formulated into the VERTEX COVER problem in which
the parameter value is in general not larger than 100.
Therefore, an algorithm of running time O(kn + 1.2852F)
for the problem becomes very effective and practical in
solving these problems.

The parameterized algorithm given in Theorem 3 has
also induced a faster algorithm for another important NP-
hard problem, the MAXIMUM INDEPENDENT SET prob-
lem on sparse graphs [3].

Open Problems

The main open problem in this line of research is how
far one can go along this direction. More specifically, how
small the constant ¢ > 1 can be for the VERTEX COVER
problem to have an algorithm of running time O(ckn°(")?
With further more careful analysis on graph combinatorial
structures, it seems possible to slightly improve the cur-
rent best upper bound [4] for the problem. Some new tech-
niques developed more recently [6] also seem very promis-
ing to improve the upper bound. On the other hand, it is
known that the constant ¢ cannot be arbitrarily close to 1
unless certain unlikely consequence occurs in complexity
theory [8].

Experimental Results

A number of research groups have implemented some of
the ideas of the algorithm in Theorem 3 or its variations,
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including the Parallel Bioinformatics project in Carleton
University [2], the High Performance Computing project
in University of Tennessee [1], and the DARWIN project
in ETH Ziirich [10,11]. As reported in [5], these imple-
mentations showed that this algorithm and the related
techniques are “quite practical” for the VERTEX COVER
problem with parameter value k up to around 400.
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Problem Definition

The whole process of designing, analyzing, implement-
ing, tuning, debugging and experimentally evaluating al-
gorithms can be referred to as Algorithm Engineering. Al-
gorithm Engineering views algorithmics also as an engi-
neering discipline rather than a purely mathematical dis-
cipline. Implementing algorithms and engineering algo-
rithmic codes is a key step for the transfer of algorithmic
technology, which often requires a high-level of expertise,
to different and broader communities, and for its effective
deployment in industry and real applications.

Experiments can help measure practical indicators,
such as implementation constant factors, real-life bottle-
necks, locality of references, cache effects and communi-
cation complexity, that may be extremely difficult to pre-
dict theoretically. Unfortunately, as in any empirical sci-
ence, it may be sometimes difficult to draw general con-
clusions about algorithms from experiments. To this aim,
some researchers have proposed accurate and comprehen-
sive guidelines on different aspects of the empirical evalu-
ation of algorithms maturated from their own experience
in the field (see, for example [1,15,16,20]). The interested
reader may find in [18] an annotated bibliography of ex-
perimental algorithmics sources addressing methodology,
tools and techniques.

The process of implementing, debugging, testing, en-
gineering and experimentally analyzing algorithmic codes
is a complex and delicate task, fraught with many diffi-
culties and pitfalls. In this context, traditional low-level
textual debuggers or industrial-strength development en-
vironments can be of little help for algorithm engineers,
who are mainly interested in high-level algorithmic ideas
rather than in the language and platform-dependent de-
tails of actual implementations. Algorithm visualization
environments provide tools for abstracting irrelevant pro-
gram details and for conveying into still or animated im-
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ages the high-level algorithmic behavior of a piece of soft-
ware.

Among the tools useful in algorithm engineering, vi-
sualization systems exploit interactive graphics to en-
hance the development, presentation, and understanding
of computer programs [27]. Thanks to the capability of
conveying a large amount of information in a compact
form that is easily perceivable by a human observer, visual-
ization systems can help developers gain insight about al-
gorithms, test implementation weaknesses, and tune suit-
able heuristics for improving the practical performances of
algorithmic codes. Some examples of this kind of usage are
described in [12].

Key Results

Systems for algorithm visualization have matured signif-
icantly since the rise of modern computer graphic inter-
faces and dozens of algorithm visualization systems have
been developed in the last two decades [2,3,4,5,6,8,9,10,
13,17,25,26,29]. For a comprehensive survey the interested
reader can be referred to [11,27] and to the references
therein. The remainder of this entry discusses the features
of algorithm visualization systems that appear to be most
appealing for their deployment in algorithm engineering.

Critical Issues

From the viewpoint of the algorithm developer, it is desir-
able to rely on systems that offer visualizations at a high
level of abstraction. Namely, one would be more interested
in visualizing the behavior of a complex data structure,
such as a graph, than in obtaining a particular value of
a given pointer.

Fast prototyping of visualizations is another funda-
mental issue: algorithm designers should be allowed to
create visualization from the source code at hand with lit-
tle effort and without heavy modifications. At this aim,
reusability of visualization code could be of substantial
help in speeding up the time required to produce a run-
ning animation.

One of the most important aspects of algorithm engi-
neering is the development of libraries. It is thus quite nat-
ural to try to interface visualization tools to algorithmic
software libraries: libraries should offer default visualiza-
tions of algorithms and data structures that can be refined
and customized by developers for specific purposes.

Software visualization tools should be able to animate
not just “toy programs”, but significantly complex algorith-
mic codes, and to test their behavior on large data sets. Un-
fortunately, even those systems well suited for large infor-

mation spaces often lack advanced navigation techniques
and methods to alleviate the screen bottleneck. Finding
a solution to this kind of limitations is nowadays a chal-
lenge.

Advanced debuggers take little advantage of sophis-
ticated graphical displays, even in commercial software
development environments. Nevertheless, software visual-
ization tools may be very beneficial in addressing problems
such as finding memory leaks, understanding anomalous
program behavior, and studying performance. In particu-
lar, environments that provide interpreted execution may
more easily integrate advanced facilities in support to de-
bugging and performance monitoring, and many recent
systems attempt at exploring this research direction.

Techniques

One crucial aspect in visualizing the dynamic behavior of
a running program is the way it is conveyed into graphic
abstractions. There are two main approaches to bind visu-
alizations to code: the event-driven and the state-mapping
approach.

Event-Driven Visualization A natural approach to al-
gorithm animation consists of annotating the algorithmic
code with calls to visualization routines. The first step con-
sists of identifying the relevant actions performed by the
algorithm that are interesting for visualization purposes.
Such relevant actions are usually referred to as interesting
events. As an example, in a sorting algorithm the swap of
two items can be considered an interesting event. The sec-
ond step consists of associating each interesting event with
a modification of a graphical scene. Animation scenes can
be specified by setting up suitable visualization procedures
that drive the graphic system according to the actual pa-
rameters generated by the particular event. Alternatively,
these visualization procedures may simply log the events
in a file for a post-mortem visualization. The calls to the vi-
sualization routines are usually obtained by annotating the
original algorithmic code at the points where the interest-
ing events take place. This can be done either by hand or
by means of specialized editors. Examples of toolkits based
on the event-driven approach are Polka [28] and GeoWin,
a C++ data type that can be easily interfaced with algo-
rithmic software libraries of great importance in algorithm
engineering such as CGAL [14] and LEDA [19].

State Mapping Visualization Algorithm visualization
systems based on state mapping rely on the assumption
that observing how the variables change provides clues to
the actions performed by the algorithm. The focus is on



1010

Visualization Techniques for Algorithm Engineering

capturing and monitoring the data modifications rather
than on processing the interesting events issued by the an-
notated algorithmic code. For this reason they are also re-
ferred to as “data driven” visualization systems. Conven-
tional debuggers can be viewed as data driven systems,
since they provide direct feedback of variable modifica-
tions. The main advantage of this approach over the event-
driven technique is that a much greater ignorance of the
code is allowed: indeed, only the interpretation of the vari-
ables has to be known to animate a program. On the other
hand, focusing only on data modification may sometimes
limit customization possibilities making it difficult to re-
alize animations that would be natural to express with in-
teresting events. Examples of tools based on the state map-
ping approach are Pavane [23,25], which marked the first
paradigm shift in algorithm visualization since the intro-
duction of interesting events, and Leonardo [10] an inte-
grated environment for developing, visualizing, and exe-
cuting C programs.

A comprehensive discussion of other techniques used
in algorithm visualization appears in [7,21,22,24,27].

Applications

There are several applications of visualization in algorithm
engineering, such as testing and debugging of algorithm
implementations, visual inspection of complex data struc-
tures, identification of performance bottlenecks, and code
optimization. Some examples of uses of visualization in al-
gorithm engineering are described in [12].

Open Problems

There are many challenges that the area of algorithm visu-
alization is currently facing. First of all, the real power of
an algorithm visualization system should be in the hands
of the final user, possibly inexperienced, rather than of
a professional programmer or of the developer of the tool.
For instance, instructors may greatly benefit from fast and
easy methods for tailoring animations to their specific ed-
ucational needs, while they might be discouraged from us-
ing systems that are difficult to install or heavily dependent
on particular software/hardware platforms. In addition to
being easy to use, a software visualization tool should be
able to animate significantly complex algorithmic codes
without requiring a lot of effort. This seems particularly
important for future development of visual debuggers. Fi-
nally, visualizing the execution of algorithms on large data
sets seems worthy of further investigation. Currently, even
systems designed for large information spaces often lack
advanced navigation techniques and methods to alleviate

the screen bottleneck, such as changes of resolution and
scale, selectivity, and elision of information.
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Problem Definition

This problem is concerned with scheduling jobs with as
little energy as possible by adjusting the processor speed
wisely. This problem is motivated by dynamic voltage scal-
ing (DVS) (or speed scaling) technique, which enables
a processor to operate at a range of voltages and frequen-
cies. Since energy consumption is at least a quadratic func-
tion of the supply voltage (hence CPU frequency/speed), it
saves energy to execute jobs as slowly as possible while still
satisfying all timing constraints. The associated schedul-
ing problem is referred to as min-energy DVS schedul-
ing. Previous work showed that min-energy DVS sched-
ule can be computed in cubic time. The work of Li and
Yao [7] considers the discrete model where the proces-
sor can only choose its speed from a finite speed set.
This work designs an O(dnlogn) two-phase algorithm
to compute the min-energy DVS schedule for the dis-
crete model (d represents the number of speeds) and also
proves a lower bound of £2(nlogn) for the computation
complexity.

Notations and Definitions

In variable voltage scheduling model, there are two impor-

tant sets:

1. Set] (job set) consists of 2 jobs: ji, ja, ... ju. Eachjob ji
has three parameters as its information: a; representing
the arrival time of ji, by representing the deadline of ji
and Ry, representing the total CPU cycles required by j.
The parameters satisfy 0 < a; < by < L.

2. Set SD (speed set) consists of the possible speeds that
can be used by the processor. According to the property
of 8D, the scheduling model is divided into the follow-
ing two categories,

Continuous Model: The set SD is the set of positive real
numbers.

Discrete Model: The set SD consists of d positive values:
S] >8> ...>84.

A schedule S consists of the following two functions: s(t)

which specifies the processor speed at time ¢ and job(t)
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which specifies the job executed at time ¢. Both functions
are piecewise constant with finitely many discontinuities.

A feasible schedule must give each job its required
number of cycles between arrival time and deadline, there-
fore satisfying the property: ffkk s(t)8(k, job(t))dt = Ry,
where §(i, j) = 1if i = jand 6(i, j) = 0 otherwise.

EDF principle defines an ordering on the jobs accord-
ing to their deadlines. At any time ¢, among jobs ji that are
available for execution, that is, jj satisfying t € [ak, by)
and ji not yet finished by ¢, it is the job with minimum by
that will be executed during [¢, t + €].

The power P, or energy consumed per unit of time,
is a convex function of the processor speed. The energy
consumption of a schedule S = (s(t), job(t)) is defined as
E(S) = [ P(s(t))dt.

A schedule is called an optimal schedule if its energy
consumption is the minimum possible among all the fea-
sible schedules. Note that for the Continuous Model, opti-
mal schedule uses the same speed for the same job.

The work of Li and Yao considers the problem of com-
puting an optimal schedule for the Discrete Model under
the following assumptions.

Assumptions

1. Single Processor: At any time ¢, only one job can be
executed.

2. Preemptive: Any job can be interrupted during its exe-
cution.

3. Non-Precedence: There is no precedence relationship
between any pair of jobs.

4. Offline: The processor knows the information of all the
jobs at time 0.

This problem is called Min-Energy Discrete Dynamic
Voltage Scaling (MEDDVYS).

Problem 1 (MEDDVS;j, sp) INPUT: Integer n, Set | = {j,
J2eevvs juyand SD = {s1, 82, ..., S4}. jk = {ak, bk, Rx}.

OUTPUT: Feasible schedule S = (s(t), job(t)) that min-
imizes E(S).

Kwon and Kim [6] proved that the optimal schedule for
the Discrete Model can be obtained by first calculating the
optimal schedule for the Continuous Model and then in-
dividually adjusting the speed of each job appropriately to
adjacent levels in set SD. The time complexity is O(n?).

Key Results

The work of Li and Yao finds a direct approach for solving
the MEDDVS problem without first computing the opti-
mal schedule for the continuous model.

Definition 1 An s-schedule for J is a schedule which con-
forms to the EDF principle and uses constant speed s in
executing any job of J.

Lemma 1 The s-schedule for ] can be computed in

O(nlog n) time.

Definition 2 Given a job set J and any speed s, let J=*
and J=° denote the subset of ] consisting of jobs whose
executing speeds are > s and < s, respectively, in the opti-
mal schedule for J in the Continuous Model. The partition
(J=S, J=%) is referred to as the s-partition of J.

By extracting information from the s-schedule, a partition
algorithm is designed to prove the following lemma:

Lemma 2 The s-partition of ] can be computed in
O(nlogn) time.

By applying s-partition to J using all the d speeds in SD
consecutively, one can obtain d subsets Ji, >, ..., Jg of |
where jobs in the same subset J; use the same two speeds
s; and s;4; in the optimal schedule for the Discrete Model
(441 = 0).

Lemma 3 Optimal schedule for job set J; using speeds s;
and siy1 can be computed in O(nlog n) time.

Combining the above three lemmas together, the main
theorem follows:

Theorem 4 The min-energy discrete DVS schedule can be
computed in O(dnlog n) time.

A lower bound to compute the optimal schedule for the
Discrete Model under the algebraic decision tree model is
also shown by Li and Yao.

Theorem 5 Any deterministic algorithm for computing
min-energy discrete DVS schedule with d > 2 voltage levels
requires §2(nlog n) time for n jobs.

Applications

Currently, dynamic voltage scaling technique is being used
by the world’s largest chip companies, e. g., Intel’s Speed-
Step technology and AMD’s PowerNow technology. Al-
though the scheduling algorithms being used are mostly
online algorithms, offline algorithms can still find their
places in real applications. Furthermore, the techniques
developed in the work of Li and Yao for the computation
of optimal schedules may have potential applications in
other areas.

People also study energy efficient scheduling problems
for other kind of job sets. Yun and Kim [10] proved that
it is NP-hard to compute the optimal schedule for jobs
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with priorities and gave an FPTAS for that problem. Ay-
din et al. [1] considered energy efficient scheduling for
real time periodic jobs and gave an O(n? log n) schedul-
ing algorithm. Chen et al. [4] studied the weakly discrete
model for non-preemptive jobs where speed is not allowed
to change during the execution of one job. They proved the
NP-hardness to compute the optimal schedule.

Another important application for this work is to help
investigating scheduling model with more hardware re-
strictions (Burd and Brodersen [3] explained various de-
sign issues that may happen in dynamic voltage scaling).
Besides the single processor model, people are also inter-
ested in the multiprocessor model [11].

Open Problems

A number of problems related to the work of Li and Yao
remain open. In the Discrete Model, Li and Yao’s algo-
rithm for computing the optimal schedule requires time
O(dnlog n). There is a gap between this and the currently
known lower bound £2(nlogn). Closing this gap when
considering d as an variable is an open problem.

Another open research area is the computation of the
optimal schedule for the Continuous Model. Li, Yao and
Yao [8] obtained an O(n? log n) algorithm for computing
the optimal schedule. The bottleneck for the logn factor
is in the computation of s-schedules. Reducing the time
complexity for computing s-schedules is an open problem.
It is also possible to look for other methods to deal with the
Continuous Model.
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