
Wait-Free Synchronization W 1015

W

Wait-Free Consensus
� Asynchronous Consensus Impossibility

Wait-Free Registers
� Registers

Wait-Free Renaming
� Renaming
� Topology Approach in Distributed Computing

Wait-Free Shared Variables
� Registers

Wait-Free Synchronization
1991; Herlihy

MARK MOIR
Sun Microsystems Laboratories, Burlington, MA, USA

ProblemDefinition

The traditional use of locking to maintain consistency
of shared data in concurrent programs has a number of
disadvantages related to software engineering, robustness,
performance, and scalability. As a result, a great deal of
research effort has gone into nonblocking synchronization
mechanisms over the last few decades.

Herlihy’s seminal paper Wait-Free Synchroniza-
tion [12] studied the problem of implementing concur-
rent data structures in a wait-free manner, i. e., so that
every operation on the data structure completes in a finite
number of steps by the invoking thread, regardless of how

fast or slow other threads run and even if some or all of
them halt permanently. Implementations based on locks
are not wait-free because, while one thread holds a lock,
others can take an unbounded number of steps waiting
to acquire the lock. Thus, by requiring implementations
to be wait-free, some of the disadvantages of locks may
potentially be eliminated.

The first part of Herlihy’s paper examined the power of
different synchronization primitives for wait-free compu-
tation. He defined the consensus number of a given prim-
itive as the maximum number of threads for which we
can solve wait-free consensus using that primitive (to-
gether with read-write registers). The consensus problem
requires participating threads to agree on a value (e. g., true
or false) amongst values proposed by the threads. The abil-
ity to solve this problem is a key indicator of the power of
synchronization primitives because it is central to many
natural problems in concurrent computing. For example,
in a software transactional memory system, threads must
agree that a particular transaction either committed or
aborted.

Herlihy established a hierarchy of synchronization
primitives according to their consensus number. He
showed (i) that the consensus number of read-write regis-
ters is 1 (so wait-free consensus cannot be solved for even
two threads), (ii) that the consensus number of stacks and
FIFO queues is 2, and (iii) that there are so-called universal
primitives, which have consensus number 1. Common
examples include compare-and-swap (CAS) and the
load-linked/store-conditional (LL/SC) pair.

There are a number of papers which examineHerlihy’s
hierarchy inmore detail. These show that seeminglyminor
variations in the model or in the semantics of primitives
can have a surprising effect on results. Most of this work is
primarily of theoretical interest. The key practical point to
take away fromHerlihy’s hierarchy is that we need univer-
sal primitives to support effective wait-free synchroniza-
tion in general. Recognizing this fact, all modern shared-
memory multiprocessors provide some form of universal
primitive.

1016 W Wait-Free Synchronization

Herlihy additionally showed that a solution to consen-
sus can be used to implement any shared object in a wait-
free manner, and thus that any universal primitive suffices
for this purpose. He demonstrated this idea using a so-
called universal construction, which takes sequential code
for an object and creates a wait-free implementation of
the object using consensus to resolve races between con-
current operations. Despite the important practical rami-
fications of this result, the universal construction itself was
quite impractical. The basic idea was to build a list of op-
erations, using consensus to determine the order of oper-
ations, and to allow threads to iterate over the list apply-
ing the operations in order to determine the current state
of the object. The construction required O(N3) space to
ensure enough operations are retained to allow the cur-
rent state to be determined. It was also very slow, requir-
ing many threads to recompute the same information, and
thus preventing parallelism between operations in addi-
tion.

Later, Herlihy [13] presented a more concrete uni-
versal construction based on the LL/SC instruction pair.
This construction required N + 1 copies of the object for
N threads and still did not admit any parallelism; thus
it was also not practical. Despite this, work following on
from Herlihy’s has brought us to the point today that we
can support practical programming models that provide
nonblocking implementations of arbitrary shared objects.
The remainder of this chapter discusses the state of non-
blocking synchronization today, and mentions some his-
tory along the way.

Weaker Nonblocking Progress Conditions

Various researchers, including us, have had some success
attempting to overcome the disadvantages of Herlihy’s
wait-free constructions. However, the results remain im-
practical due to excessive overhead and overly complicated
algorithms. In fact, there are still no nontrivial wait-free
shared objects in widespread practical use, either imple-
mented directly or using universal constructions.

The biggest advances towards practicality have come
from considering weaker progress conditions. While the-
oreticians worked on wait-free implementations, more
pragmatic researchers sought lock-free implementations
of shared objects. A lock-free implementation guarantees
that, after a finite number of steps of any operation, some
operation completes. In contrast to wait-free algorithms,
it is in principle possible for one operation of a lock-free
data structure to be continually starved by others. How-
ever, this rarely occurs in practice, especially because con-
tention control techniques such as exponential backoff [1]

are often used to reduce contention when it occurs, which
makes repeated interference evenmore unlikely. Thus, the
lack of a strong progress guarantee like wait-freedom has
often been found to be acceptable in practice.

The observation that weaker nonblocking progress
conditions allow simpler and more practical algorithms
led Herlihy et al. [15] to define an even weaker condi-
tion: An obstruction-free algorithm does not guarantee
that an operation completes unless it eventually encoun-
ters no more interference from other operations. In our
experience, obstruction-free algorithms are easier to de-
sign, simpler, and faster in the common uncontended case
than lock-free algorithms. The price paid for these bene-
fits is that obstruction-free algorithms can “livelock”, with
two or more operations repeatedly interfering with each
other forever. This is not merely a theoretical concern: it
has been observed to occur in practice [16]. Fortunately,
it is usually straightforward to eliminate livelock in prac-
tice through contention control mechanisms that control
and manipulate when operations are executed to avoid re-
peated interference.

The obstruction-free approach to synchronization is
thus to design simple and efficient algorithms for the
weak obstruction-free progress condition, and to integrate
orthogonal contention control mechanisms to facilitate
progress when necessary. By largely separating the difficult
issues of correctness and progress, we significantly ease
the task of designing effective nonblocking implementa-
tions: the algorithms are not complicated by tightly cou-
pledmechanisms for achieving lock-freedom, and it is easy
to modify and experiment with contention control mech-
anisms because they are separate from the algorithm and
do not affect its correctness. We have found this approach
to be very powerful.

Transactional Memory

The severe difficulty of designing and verifying correct
nonblocking data structures has led researchers to inves-
tigate the use of tools to produce them, rather than de-
signing them directly. In particular, transactional mem-
ory ([5,17,23]) has emerged as a promising direction.
Transactional memory allows programmers to express
sections of code that should be executed atomically, and
the transactional memory system (implemented in hard-
ware, software, or a combination of the two) is responsi-
ble for managing interactions between concurrent trans-
actions to ensure this atomicity. Here we concentrate on
software transactional memory (STM).

The progress guarantee made by a concurrent data
structure implemented using STM depends on the STM

Wait-Free Synchronization W 1017

implementation. It is possible to characterize the progress
conditions of transactional memory implementations in
terms of a system of threads in which each operation on
a shared data structure is executed by repeatedly attempt-
ing to apply it using a transaction until an attempt suc-
cessfully commits. In this context, say the transactional
memory implementation is obstruction-free if it guaran-
tees that, if a thread repeatedly executes transactions and
eventually encounters no more interference from other
threads, then it eventually successfully commits a trans-
action.

Key Results

This section briefly discusses some of the most rele-
vant results concerning nonblocking synchronization, and
obstruction-free synchronization in particular.

While progress towards practicality was made with
lock-free implementations of shared objects as well as
lock-free STM systems, this progress was slow because
simultaneously ensuring correctness and lock-freedom
proved difficult. Before the introduction of obstruction-
freedom, the lock-free STMs still had some severe disad-
vantages such as the need to declare and initialize all mem-
ory to be accessed by transactions in advance, the need for
transactions to know in advance which memory locations
they will access, unacceptable constraints on the layout of
such memory, etc.

In addition to the work on tools such as STM for build-
ing nonblocking data structures, there has been a consid-
erable amount of work on direct implementations. While
this work has not yielded any practical wait-free algo-
rithms, a handful of practical lock-free implementations
for simple data structures such as queues and stacks have
been achieved [21,24]. There are also a few slightly more
ambitious implementations in the literature that are ar-
guably practical, but the algorithms are complicated and
subtle, many are incorrect, and almost none has a formal
proof. Proofs for such algorithms are challenging, and mi-
nor changes to the algorithm require the proofs to be re-
done.

The next section, discusses some of the results that
have been achieved by applying the obstruction-free ap-
proach. The remainder of this section, briefly discusses
a few results related to the approach itself.

An important practical aspect of using an obstruction-
free algorithm is how contention is managed when it
arises. In introducing obstruction-freedom, Herlihy et
al. [15] explained that contention control is necessary
to facilitate progress in the face of contention because
obstruction-free algorithms do not directly make any

progress guarantee in this case. However, they did not di-
rectly address how contention control mechanisms could
be used in practice.

Subsequently, Herlihy et al. [16] presented a dynamic
STM system (see next section) that provides an interface
for a modular contention manager, allowing for experi-
mentation with alternative contention managers. Scherer
and Scott [22] experimentedwith a number of alternatives,
and found that the best contention manager depends on
the workload. Guerraoui et al. [9] described an implemen-
tation that supports changing contention managers on the
fly in response to changing workload conditions.

All of the contention managers discussed in the above-
mentioned papers are ad hoc contention managers based
on intuition; no analysis is given of what guarantees (if
any) are made by the contention managers. Guerraoui
et al. [10] made a first step towards a formal analysis of
contention managers by showing that their Greedy con-
tention manager guarantees that every transaction even-
tually completes. However, using the Greedy contention
manager results in a blocking algorithm, so their proof
necessarily assumes that threads do not fail while execut-
ing transactions.

Fich et al. [7] showed that any obstruction-free algo-
rithm can be automatically transformed into one that is
practicallywait-free in any real system. “Practically” is said
because the wait-free progress guarantee depends on par-
tial synchrony that exists in any real system, but the trans-
formed algorithm is not technically wait-free, because this
term is defined in the context of a fully asynchronous sys-
tem. Nonetheless, an algorithm achieved by applying the
transformation of Fich et al. to an obstruction-free algo-
rithm does guarantee progress to non-failed transactions,
even if other transactions fail.

Work on incorporating contention management tech-
niques into obstruction-free algorithms has mostly been
done in the context of STM, so the contention man-
ager can be called directly from the STM implementation.
Thus, the programmer using the STM need not be con-
cerned with how contention management is integrated,
but this does not address how contention management is
integrated into direct implementations of obstruction-free
data structures.

One option is for the programmer to manually insert
calls to a contention manager, but this approach is tedious
and error prone. Guerraoui et al. [11] suggested a version
of this approach in which the contention manager is ab-
stracted out as a failure detector. They also explored what
progress guarantees can bemade by what failure detectors.

Attiya et al. [4] and Aguilera et al. [2] suggested chang-
ing the semantics of the data structure’s operations so

1018 W Wait-Free Synchronization

that they can return a special value in case of contention,
thus allowing contention management to be done outside
the data structure implementation. These approaches still
leave a burden on the programmer to ensure that these
special values are always returned by an operation that
cannot complete due to contention, and that the correct
special value is returned according to the prescribed se-
mantics.

Another option is to use system support to ensure that
contention management calls are made frequently enough
to ensure progress. This support could be in the form of
compiled-in calls, runtime support, signals sent upon ex-
piration of a timer, etc. But all of these approaches have
disadvantages such as not being applicable in general pur-
pose environments, not being portable, etc.

Given that it remains challenging to design and ver-
ify direct obstruction-free implementations of shared data
structures, and that there are disadvantages to the vari-
ous proposals for integrating contention control mecha-
nisms into them, using tools such as STMs with built-in
contention management interfaces is the most convenient
way to build nonblocking data structures.

Applications

The obstruction-free approach to nonblocking synchro-
nization was introduced by Herlihy et al. [15], who used
it to design a double-ended queue (deque) based on the
widely available CAS instruction. All previous nonblock-
ing deques either require exotic synchronization instruc-
tions such as double-compare-and-swap (DCAS),
or have the disadvantage that operations at opposite ends
of the queue always interfere with each other.

Herlihy et al. [16] introduced Dynamic STM (DSTM),
the first STM that is dynamic in the following two senses:
new objects can be allocated on the fly and subsequently
accessed by transactions, and transactions do not need to
know in advance what objects will be accessed. These two
advantages made DSTM much more useful than previous
STMs for programming dynamic data structures. As a re-
sult, nonblocking implementations of sophisticated shared
data structures such as balanced search trees, skip lists, dy-
namic hash tables, etc. were suddenly possible.

The obstruction-free approach played a key role in
the development of both of the results mentioned above:
Herlihy et al. [16] could concentrate on the function-
ality and correctness of DSTM without worrying about
how to achieve stronger progress guarantees such as lock-
freedom.

The introduction of DSTM and of the obstruction-free
approach have led to numerous improvements and varia-

tions by a number of research groups, and most of these
have similarly followed the obstruction-free approach.
However, Harris and Fraser [8] presented a dynamic STM
called OSTM with similar advantages to DSTM, but it
is lock-free. Experiments conducted at the University of
Rochester [20] showed that DSTM outperformed OSTM
by an order of magnitude on some workloads, but that
OSTM outperformed DSTM by a factor of 2 on others.
These differences are probably due to various design de-
cisions that are (mostly) orthogonal to the progress condi-
tion, so it is not clear what we can conclude about how the
choice of progress condition affects performance in this
case.

Perhaps a more direct comparison can be made be-
tween another pair of algorithms, again an obstruction-
free one by Herlihy et al. [14] and a similar but lock-free
one by Harris and Fraser [8]. These algorithms, invented
independently of each other, implement MCAS (CAS gen-
eralized to access M independently chosen memory loca-
tions). The two algorithms are very similar, and a close
comparison revealed that the only real differences between
themwere due to Harris and Fraser’s desire to have a lock-
free implementation. As a result of this, their algorithm
is somewhat more complicated, and also requires a min-
imum of 3M + 1 CAS operations, whereas the algorithm
of Herlihy et al. [14] requires only 2M + 1. The authors
are unaware of any direct performance comparison of
these algorithms, but they believe the obstruction-free one
would outperform the lock-free one, particularly in the ab-
sence of conflicting MCAS operations.

Open Questions

Because transactional memory research has grown out
of research into nonblocking data structures, it was long
considered mandatory for STM implementations to sup-
port the development of nonblocking data structures. Re-
cently, however, a number of researchers have observed
that at least the software engineering benefits of transac-
tional memory can be delivered even by a blocking STM.
There are ongoing debates whether STM needs to be non-
blocking and whether there is a fundamental cost to being
nonblocking.

While we agree that blocking STMs are considerably
easier to design, and that in many cases a blocking STM is
acceptable, this is not always true. Consider, for example,
an interrupt handler that shares data with the interrupted
thread. The interrupted thread will not run again until the
interrupt handler completes, so it is critical that the inter-
rupted thread does not block the interrupt handler. Thus,
if using STM is desired to simplify the code for accessing

Wait-Free Synchronization W 1019

this shared data, the STM must be nonblocking. The au-
thors are therefore motivated to continue research aimed
at improving nonblocking STMs and to understand what
fundamental gap, if any, exists between blocking and non-
blocking STMs.

Progress in improving the common-case performance
of nonblocking STMs continues [19], and the authors see
no reason to believe that nonblocking STMs should not be
very competitive with blocking STMs in the common case,
i. e., until the system decides that one transaction should
not wait for another that is delayed (an option that is not
available with blocking STMs).

It is conjectured that indeed a separation between
blocking and nonblocking STMs can be proved accord-
ing to some measure, but that this will not imply signif-
icant performance differences in the common case. In-
deed results of Attiya et al. [3] show a separation be-
tween obstruction-free and blocking algorithms according
to a measure that counts the number of distinct base ob-
jects accessed by the implementation plus the number of
“memory stalls”, which measure how often the implemen-
tation can encounter contention for a variable from an-
other thread. While this result is interesting, it is not clear
that it is useful for deciding whether to implement block-
ing or obstruction-free objects, because the measure does
not account for the time spent waiting by blocking imple-
mentations, and thus is biased in their favor. For now, re-
main optimistic that STMs can be made to be nonblocking
without paying a severe performance price in the common
case.

Another interesting question, which is open as far as
the authors know, is whether there is a fundamental cost to
implementing stronger nonblocking progress conditions
versus obstruction-freedom. Again, they conjecture that
there is. It is known that there is a fundamental differ-
ence between obstruction-freedom and lock-freedom in
systems that support only reads and writes: It is possible
to solve obstruction-free consensus but not lock-free con-
sensus in this model [15]. While this is a fascinating obser-
vation, it is mostly irrelevant from a practical standpoint
as all modern shared memory multiprocessors support
stronger synchronization primitives such as CAS, with
which it is easy to solve consensus, even wait-free. The in-
teresting question therefore is whether there is a funda-
mental cost to being lock-free as opposed to obstruction-
free in real systems.

To have a real impact on design directions, such results
need to address common case performance, or some other
measure (perhaps space) that is relevant to everyday use.
Many lower bound results establish a separation in worst-
case time complexity, which does not necessarily have a di-

rect impact on design decisions, because the worst case
may be very rare. So far, efforts to establish a separation
according to potentially useful measures have only led to
stronger results than we had conjectured were possible. In
the authors first attempt [18], they tried to establish a sep-
aration in the number of CAS instructions needed in the
absence of contention to solve consensus, but found that
this was not a very useful measure, as were able to come
up with a wait-free implementation that avoids CAS in the
absence of contention. The second attempt [6] was to es-
tablish a separation according to the obstruction-free step
complexity measure, which counts the maximum number
of steps to complete an operation once the operation en-
counters no more contention. They knew we could imple-
ment obstruction-free DCAS with constant obstruction-
free step complexity, and attempt to prove this impossible
for lock-free DCAS, but achieved such an algorithm. These
experiences suggest that, in addition to their direct advan-
tages, obstruction-free algorithms may provide a useful
stepping stone to algorithms with stronger progress prop-
erties.

Finally, while a number of contention managers have
proved effective for various workloads, it is an open ques-
tion whether a single contention manager can adapt to
be competitive with the best on all workloads, and how
close it can come to making optimal contention manage-
ment decisions. Experience to date suggests that this will
be very challenging to achieve. Therefore, as in any sys-
tem, the first priority should be avoiding contention in the
first place. Fortunately, transactional memory has the po-
tential to make this much easier than in lock-based pro-
gramming models, because it offers the benefits of fine-
grained synchronization without the programming com-
plexity that accompanies fine-grained locking schemes.

Cross References

� Concurrent Programming, Mutual Exclusion
� Linearizability

Recommended Reading

1. Agarwal, A., Cherian, M.: Adaptive backoff synchronization
techniques. In: Proceedings of the 16th Annual International
Symposium on Computer Architecture, pp. 396–406. ACM
Press, New York (1989)

2. Aguilera, M.K., Frolund, S., Hadzilacos, V., Horn, S.L., Toueg, S.:
Brief announcement: Abortable and query-abortable objects.
In: Proc. 20th Annual International Symposium on Distributed
Computing, 2006

3. Attiya, H., Guerraoui, R., Hendler, D., Kouznetsov, P.: Synchro-
nizing without locks is inherently expensive. In: PODC ’06: Pro-
ceedings of the twenty-fifth Annual ACM Symposium on Prin-

1020 W Warehouse Location

ciples of Distributed Computing, New York, USA, pp. 300–307.
ACM Press (2006)

4. Attiya, H., Guerraoui, R., Kouznetsov, P.: Computing with reads
and writes in the absence of step contention. In: Proc. 19th
Annual International Symposium on Distributed Computing,
2005

5. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nuss-
baum, D.: Hybrid transactional memory. In: Proc. 12th Sym-
posium on Architectural Support for Programming Languages
and Operating Systems, 2006

6. Fich, F., Luchangco, V., Moir, M., Shavit, N.: Brief announce-
ment: Obstruction-free step complexity: Lock-free DCAS as an
example. In: Proc. 19th Annual International Symposium on
Distributed Computing, 2005

7. Fich, F., Luchangco, V., Moir, M., Shavit, N.: Obstruction-free al-
gorithms can be practically wait-free. In: Proc. 19th Annual In-
ternational Symposium on Distributed Computing, 2005

8. Fraser, K., Harris, T.: Concurrent programming without locks.
http://www.cl.cam.ac.uk/netos/papers/
2004-cpwl-submission.pdf (2004)

9. Guerraoui, R., Herlihy, M., Pochon, B.: Polymorphic contention
management. In: Proc. 19th Annual International Symposium
on Distributed Computing, 2005

10. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of trans-
actional contentionmanagers. In: Proc. 24th Annual ACMSym-
posiumon Principles of DistributedComputing, 2005, pp. 258–
264

11. Guerraoui, R., Kapalka, M., Kouznetsov, P.: The weakest failure
detector to boost obstruction freedom. In: Proc. 20th Annual
International Symposium on Distributed Computing, 2006

12. Herlihy, M.: Wait-free synchronization. ACM Trans. Program.
Lang. Syst. 13(1), 124–149 (1991)

13. Herlihy, M.: A methodology for implementing highly concur-
rent data objects. ACM Trans. Program. Lang. Syst. 15(5), 745–
770 (1993)

14. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free mech-
anism for atomic update of multiple non-contiguous loca-
tions in shared memory. US Patent Application 20040034673
(2002)

15. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchro-
nization: Double-ended queues as an example. In: Proceedings
of the 23rd International Conference on Distributed Comput-
ing Systems, 2003

16. Herlihy, M., Luchangco, V., Moir, M., Scherer III., W.: Soft-
ware transactionalmemory for supporting dynamic-sized data
structures. In: Proc. 22th Annual ACMSymposiumon Principles
of Distributed Computing, 2003, pp. 92–101

17. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural
support for lock-free data structures. In: Proc. 20th Annual
International Symposium on Computer Architecture, 1993,
pp. 289–300

18. Luchangco, V., Moir, M., Shavit, N.: On the uncontended com-
plexity of consensus. In: Proc. 17th Annual International Sym-
posium on Distributed Computing, 2005

19. Marathe, V.J., Moir, M.: Toward high performance nonblock-
ing software transactionalmemory. In: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of paral-
lel programming. pp. 227–236, ACM, New York, USA (2008)

20. Marathe, V., Scherer, W., Scott, M.: Adaptive software transac-
tional memory. In: Proc. 19th Annual International Symposium
on Distributed Computing, 2005

21. Michael, M., Scott, M.: Nonblocking algorithms and preemp-
tion-safe locking on multiprogrammed shared memory mul-
tiprocessors. J. Parall. Distrib. Comput. 51(1), 1–26 (1998)

22. Scherer, W., Scott, M.: Advanced contention management for
dynamic software transactional memory. In: Proc. 24th An-
nual ACM Symposium on Principles of Distributed Computing,
2005

23. Shavit, N., Touitou, D.: Software transactional memory. Distrib.
Comput., Special Issue 10, 99–116 (1997)

24. Treiber, R.: Systems programming: Coping with parallelism.
Technical Report RJ5118, IBM Almaden Research Center (1986)

Warehouse Location
� Facility Location
� Local Search for K-medians and Facility Location

Weighted BipartiteMatching
� Assignment Problem

Weighted Caching
� Online Paging and Caching

Weighted Connected Dominating Set
2005; Wang, Wang, Li

YU WANG1, WEIZHAO WANG2, XIANG-YANG LI3
1 Department of Computer Science, University
of North Carolina at Charlotte, Charlotte, NC, USA

2 Google Inc., Irvine, CA, USA
3 Department of Computer Science,
Illinois Institue of Technology,
Chicago, IL, USA

Keywords and Synonyms

Minimum weighted connected dominating set

ProblemDefinition

This problem is concerned with a weighted version of
the classical minimum connected dominating set prob-
lem. This problem has numerous motivations includ-
ing wireless networks and distributed systems. Previous
work [1,2,4,5,6,14] in wireless networks focuses on design-
ing efficient distributed algorithms to construct the con-
nected dominating set which can be used as the virtual

http://www.cl.cam.ac.uk/netos/papers/2004-cpwl-submission.pdf
http://www.cl.cam.ac.uk/netos/papers/2004-cpwl-submission.pdf

Weighted Connected Dominating Set W 1021

backbone for the network. Most of the proposed meth-
ods try to minimize the number of nodes in the backbone
(i. e., the number of clusterheads). However, in many ap-
plications, minimizing the size of the backbone is not suf-
ficient. For example, in wireless networks different wire-
less nodes may have different costs for serving as a cluster-
head, due to device differences, power capacities, and in-
formation loads to be processed. Thus, by assuming each
node has a cost to being in the backbone, there is a need to
study distributed algorithms for weighted backbone for-
mation. Centralized algorithms to construct a weighted
connected dominating set with minimum weight have
been studied [3,7,9]. Recently, the work of Wang, Wang,
and Li [12,13] proposes an efficient distributed method to
construct a weighted backbone with low cost. They proved
that the total cost of the constructed backbone is within
a small constant factor of the optimum when either the
nodes’ costs are smooth (i. e. the maximum ratio of costs
of adjacent nodes is bounded) or the network maximum
node degree is bounded. To the best knowledge of the en-
try authors, this work is the first to consider this weighted
version of minimum connected dominating set problem
and provide a distributed approximation algorithm.

Notations

A communication graph G = (V ; E) over a set V of wire-
less nodes has an edge uv between nodes u and v if
and only if u and v can communicate directly with each
other, i. e., inside the transmission region of each other.
Let dG(u) be the degree of node u in a graph G and �
be the maximum node degree of all wireless nodes (i. e.
� = maxu2V dG (u)). Each wireless node u has a cost c(u)
of being in the backbone. Let ı = maxi j2E c(i)/c(j), where
ij is the edge between nodes i and j, E is the set of com-
munication links in the wireless network G, and the maxi-
mumoperation is taken on all pairs of adjacent nodes i and
j in G. In other words, ı is the maximum ratio of costs of
two adjacent nodes and can be called the cost smoothness of
the network. When ı is bounded by some small constant,
the node costs are smooth. When the transmission region
of every wireless node is modeled by a unit disk centered at
itself, the communication graph is often called a unit disk
graph, denoted by UDG(V). Such networks are also called
homogeneous networks.

A subset S of V is a dominating set if each node in
V is either in S or is adjacent to some node in S. Nodes
from S are called dominators, while nodes not in S are
called dominatees. A subset B of V is a connected dom-
inating set (CDS) if B is a dominating set and B in-
duces a connected subgraph. Consequently, the nodes in

B can communicate with each other without using nodes
in V � B. A dominating set with minimum cardinality
is called minimum dominating set (MDS). A CDS with
minimum cardinality is the minimum connected domi-
nating set (MCDS). In the weighted version, assume that
each node u has a cost c(u). Then a CDS B is called
weighted connected dominating set (WCDS). A subset B
of V is a minimum weighted connected dominating set
(MWCDS) if B is a WCDS with minimum total cost. It
is well-known that finding either the minimum connected
dominating set or the minimum weighted connected dom-
inating set is a NP-hard problem even when G is a unit
disk graph. The work of Wang et al. studies efficient
approximation algorithms to construct a low-cost back-
bone which can approximate the MWCDS problem well.
For a given communication graph G = (V ; E;C) where
V is the set of nodes, E is the edge set, and C is the set of
weights for edges, the corresponding minimum weighted
connected dominating set problem is as follows.

Problem 1 (Minimum Weighted Connected Dominat-
ing Set)
INPUT: The weighted communication graph G = (V ; E;C).
OUTPUT: A subset A of V is a minimum weighted con-
nected dominating set, i. e., (1) A is a dominating set; (2) A
induces a connected subgraph; (3) the total cost of A is min-
imum.

Another related problem is independent set problem.
A subset of nodes in a graph G is an independent set if
for any pair of nodes, there is no edge between them. It
is a maximal independent set if no more nodes can be
added to it to generate a larger independent set. Clearly,
any maximal independent set is a dominating set. It is
a maximum independent set (MIS) if no other indepen-
dent set has more nodes. The independence number, de-
noted as ˛(G), of a graph G is the size of the MIS of G.
The k-local independence number, denoted by ˛[k](G), is
defined as ˛[k](G) = maxu2V ˛(Gk (u)). Here, Gk(u) is the
induced graph of G on k-hop neighbors of u (denoted
by Nk(u)), i. e., Gk(u) is defined on Nk(u), and contains
all edges in G with both end-points in Nk(u). It is well-
known that for a unit disk graph, ˛[1](UDG) � 5 [2] and
˛[2](UDG) � 18 [11].

Key Results

Since finding the minimum weighted connected dominat-
ing set (MWCDS) is NP-hard, centralized approximation
algorithms for MWCDS have been studied [3,7,9]. In [9],
Klein and Ravi proposed an approximation algorithm for
the node-weighted Steiner tree problem. Their algorithm

1022 W Weighted Connected Dominating Set

can be generalized to compute a O(log�) approxima-
tion for MWCDS. Guha and Khuller [7] also studied the
approximation algorithms for node-weighted Steiner tree
problem and MWCDS. They developed an algorithm for
MWCDS with an approximation factor of (1:35 + �) log�
for any fixed � > 0. Recently, Ambuhl et al. [3] provided
a constant approximation algorithm for MWCDS under
UDGmodel. Their approximation ratio is bounded by 89.
All these algorithms are centralized algorithms, while the
applications in wireless ad hoc networks prefer distributed
solutions for MWCDS.

In [12,13], Wang et al. proposed a distributed algo-
rithm that constructs a weighted connected dominat-
ing set for a wireless ad hoc network G. Their method
has two phases: the first phase (clustering phase, Al-
gorithm 1 in [12,13]) is to find a set of wireless nodes
as the dominators (clusterheads) and the second phase
(Algorithm 2 in [12,13]) is to find a set of nodes,
called connectors, to connect these dominators to form
the final backbone. Wang et al. proved that the to-
tal cost of the constructed backbone is no more than
min(˛[2](G) log(� + 1); (˛[1](G) � 1)ı + 1) + 2˛[1](G)
times of the optimum solution.

Algorithm 1 first constructs a maximal independent
set (MIS) using classical greedymethod with the node cost
as the selection criterion. For each node v in MIS, it then
runs a local greedy set cover method on the local neigh-
borhood N2(v) to find some nodes (GRDYv) to cover all
one-hop neighbors of v. If GRDYv has a total cost smaller
than v, then it uses GRDYv to replace v, which further re-
duces the cost of MIS. The following theorem of the total
cost of this selected set is proved in [12,13].

Theorem 1 For a network modeled by a graph G, Algo-
rithm 1 (in [12,13]) constructs a dominating set whose total
cost is nomore thanmin(˛[2](G) log(�+1); (˛[1](G)�1)ı+
1) times of the optimum.

Algorithm 2 finds some connectors among all the domina-
tees to connect the dominators into a backbone (CDS). It
forms a CDS by finding connectors to connect any pair of
dominators u and v if they are connected in the original
graph G with at most 3 hops. A distributed algorithm to
build a MST then is performed on the CDS. The follow-
ing theorem of the total cost of these connectors is proved
in [12,13].

Theorem 2 The connectors selected by Algorithm 2
(in [12,13]) have a total cost no more than 2 � ˛[1](G) times
of the optimum for networks modeled by G.

Combining Theorem 1 and Theorem 2, the following the-
orem is the main contributions of the work of Wang et al..

Theorem 3 For any communication graph G, Algorithm 1
and Algorithm 2 construct a weighted connected dominat-
ing set whose total cost is no more than

min(˛[2](G) log(� + 1); (˛[1](G) � 1)ı + 1) + 2˛[1](G)

times of the optimum.

Notice that, for homogeneous wireless networks modeled
by UDG, it implies that the constructed backbone has
a cost no more than min(18 log(� + 1); 4ı + 1) + 10 times
of the optimum. The advantage of the constructed back-
bone is that the total cost is small compared with the opti-
mum when either the costs of wireless nodes are smooth,
i. e., two neighboring nodes’ costs differ by a small con-
stant factor, or the maximum node degree is low.

In term of time complexity, the most time-consuming
step in the proposed distributed algorithm is building the
MST. In [10], Kuhn et al. gave a lower bound on the dis-
tributed time complexity of any distributed algorithm that
wants to compute a minimum dominating set in a graph.
Essentially, they proved that even for the unconnected
and unweighted case, any distributed approximation al-
gorithm with poly-logarithmic approximation guarantee
for the problem has to have a time-complexity of at least
˝(log�/ log log�).

Applications

The proposed distributed algorithms for MWCDS can be
used in ad hoc networks or distributed system to form
a low-cost network backbone for communication applica-
tion. The cost used as the input of the algorithms could
be a generic cost, defined by various practical applications.
It may represent the fitness or priority of each node to be
a clusterhead. The lower cost means the higher priority.
In practice, the cost could represent the power consump-
tion rate of the node if a backbone with small power con-
sumption is needed; the robustness of the node if fault-
tolerant backbone is needed; or a function of its security
level if a secure backbone is needed; or a combined weight
function to integrate various metrics such as traffic load,
signal overhead, battery level, and coverage. Therefore,
by defining different costs, the proposed low-cost back-
bone formation algorithms can be used in various prac-
tical applications. Beside forming the backbone for rout-
ing, the weighted clustering algorithm (Algorithm 1) can
also be used in other applications, such as selecting the
mobile agents to perform intrusion detection in ad hoc
networks [8] (to achieve more robust and power efficient
agent selection), or select the rendezvous points to collect
and store data in sensor networks [15] (to achieve the en-
ergy efficiency and storage balancing).

Weighted Popular Matchings W 1023

Open Problems

Anumber of problems related to the work ofWang,Wang,
and Li [12,13] remain open. The proposed method as-
sumes that the nodes are almost-static in a reasonable pe-
riod of time. However, in some network applications, the
network could be highly dynamic (both the topology or
the cost could change). Therefore, after the generation of
the weighted backbone, the dynamic maintenance of the
backbone is also an important issue. It is still unknown
how to update the topology efficiently while preserving the
approximation quality.

In [12,13], the following assumptions on wireless net-
work model is used: omni-directional antenna, single
transmission received by all nodes within the vicinity of
the transmitter. The MWCDS problem will become much
more complicated if some of these assumptions are re-
laxed.

Experimental Results

In [12,13], simulations on random networks are con-
ducted to evaluate the performances of the proposed
weighted backbone and several backbones built by previ-
ous methods. The simulation results confirm the theoreti-
cal results.

Cross References

� Connected Dominating Set

Recommended Reading
1. Alzoubi, K., Wan, P.-J., Frieder, O.: New distributed algorithm

for connected dominating set in wireless ad hoc networks. In:
Proceedings of IEEE 35th Hawaii International Conference on
System Sciences (HICSS-35), Hawaii, 7–10 January 2002

2. Alzoubi, K., Li, X.-Y., Wang, Y., Wan, P.-J., Frieder, O.: Geomet-
ric spanners for wireless ad hoc networks. IEEE Trans. Parallel
Distrib. Process. 14, 408–421 (2003)

3. Ambuhl, C., Erlebach, T., Mihalak, M., Nunkesser, M.: Constant-
factor approximation for minimum-weight (connected) domi-
nating sets in unit disk graphs. In: Proceedings of the 9th Inter-
national Workshop on Approximation Algorithms for Combi-
natorial Optimization Problems (APPROX 2006), Barcelona, 28–
30 August 2006, LNCS, vol. 4110, pp. 3–14. Springer, Berlin Hei-
delberg (2006)

4. Bao, L., Garcia�Aceves, J.J.: Topology management in ad hoc
networks. In: Proceedings of the 4th ACM international sympo-
siumonMobile adhoc networking& computing, Annapolis, 1–
3 June 2003, pp. 129–140. ACM Press, New York (2003)

5. Chatterjee, M., Das, S., Turgut, D.: WCA: A weighted cluster-
ing algorithm for mobile ad hoc networks. J. Clust. Comput. 5,
193–204 (2002)

6. Das, B., Bharghavan, V.: Routing in ad-hoc networks usingmin-
imum connected dominating sets. In: Proceedings of IEEE In-

ternational Conference on on Communications (ICC’97), vol. 1,
pp. 376–380. Montreal, 8–12 June 1997

7. Guhaa, S., Khuller, S.: Improved methods for approximating
node weighted Steiner trees and connected dominating sets.
Inf. Comput. 150, 57–74 (1999)

8. Kachirski, O., Guha, R.: Intrusion detection usingmobile agents
in wireless ad hoc networks. In: Proceedings of IEEE Workshop
on Knowledge Media Networking, Kyoto, 10–12 July 2002

9. Klein, P., Ravi, R.: A nearly best-possible approximation algo-
rithm for node-weighted Steiner trees. J. Algorithms 19, 104–
115 (1995)

10. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be com-
puted locally! In: Proceedings of the 23rd ACM Symposium
on the Principles of Distributed Computing (PODC), St. John’s,
July (2004)

11. Li, X.-Y., Wan, P.-J.: Theoretically good distributed CDMA/OVSF
code assignment for wireless ad hoc networks. In: Proceedings
of 11th Internatioanl Computing and Combinatorics Confer-
ence (COCOON), Kunming, 16–19 August 2005

12. Wang, Y., Wang,W., Li, X.-Y.: Efficient distributed low-cost back-
bone formation for wireless networks. In: Proceedings of 6th
ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc 2005), Urbana-Champaign, 25–27
May 2005

13. Wang, Y., Wang,W., Li, X.-Y.: Efficient distributed low cost back-
bone formation for wireless networks. IEEE Trans. Parallel Dis-
trib. Syst. 17, 681–693 (2006)

14. Wu, J., Li, H.: A dominating-set-based routing scheme in ad hoc
wireless networks. The special issue on Wirel. Netw. Telecom-
mun. Systems J. 3, 63–84 (2001)

15. Zheng, R., He, G., Gupta, I., Sha, L.: Time idexing in sensor net-
works. In: Proceedings of 1st IEEE International Conference on
Mobile Ad-hoc and Sensor Systems (MASS), Fort Lauderdale,
24–27 October 2004

Weighted Popular Matchings
2006; Mestre

JULIÁN MESTRE
Department of Computer Science, University
of Maryland, College Park, MD, USA

ProblemDefinition

Consider the problem of matching a set of individuals X
to a set of items Y where each individual has a weight and
a personal preference over the items. The objective is to
construct amatchingM that is stable in the sense that there
is no matching M0 such that the weighted majority vote
will chooseM0 overM.

More formally, a bipartite graph (X;Y ; E), a weight
w(x) 2 R+ for each individual x 2 X, and a rank function
r : E ! f1; : : : ; jY jg encoding the individual preferences
are given. For every applicant x and items y1; y2 2 Y say
applicant x prefers y1 over y2 if r(x; y1) < r(x; y2), and
x is indifferent between y1 and y2 if r(x; y1) = r(x; y2).

1024 W Weighted Random Sampling

The preference lists are said to be strictly ordered if appli-
cants are never indifferent between two items, otherwise
the preference lists are said to contain ties.

LetM andM0 be twomatchings. An applicant x prefers
M over M0 if x prefers the item he/she gets in M over the
item he/she gets inM0. AmatchingM ismore popular than
M0 if the applicants that preferM overM0 outweigh those
that prefer M0 over M. Finally, a matching M is weighted
popular if there is no matchingM0 more popular thanM.

In the weighted popular matching problem it is nec-
essary to determine if a given instance admits a popu-
lar matching, and if so, to produce one. In the maximum
weighted popular matching problem it is necessary to find
a popularmatching ofmaximumcardinality, provided one
exists.

Abraham et al. [2] gave the first polynomial time al-
gorithms for the special case of these problems where
the weights are uniform. Later, Mestre [8] introduced the
weighted variant and developed polynomial time algo-
rithms for it.

Key Results

Theorem 1 The weighted popular matching and max-
imum weighted popular matching problems on in-
stances with strictly ordered preferences can be solved in
O(jXj + jEj) time.

Theorem 2 The weighted popular matching and max-
imum weighted popular matching problems on instances
with arbitrary preferences can be solved in O(minfk

p
jXj;

jXjgjEj) time.

Both results rely on an alternative easy-to-compute char-
acterization of weighted popular matchings called well-
formed matchings. It can be shown that every popular
matching is well-formed. While in unweighted instances
every well-formedmatching is popular [2], in weighted in-
stances there may be well-formed matchings that are not
popular. These non-popular well-formed matchings can
be weeded out by pruning certain bad edges that cannot
be part of any popular matching. In other words, the in-
stance can be pruned so that a matching is popular if and
only if it is well-formed and is contained in the pruned in-
stance [8].

Applications

Many real-life problems can be modeled using one-sided
preferences. For example, the assignment of graduates to
training positions [5], families to government-subsidized
housing [10], students to projects [9], and Internet rental

markets [1] such as Netflix where subscribers are assigned
DVDs.

Furthermore, the weighted framework allows one to
model the naturally occurring situation in which some
subset of users has priority over the rest. For example, an
Internet rental site may offer a “premium” subscription
plan and promise priority over “regular” subscribers.

Cross References

� Ranked Matching
� Stable Marriage

Recommended Reading
1. Abraham, D.J., Chen, N., Kumar, V., Mirrokni, V.: Assignment

problems in rental markets. In: Proceedings of the 2nd Work-
shop on Internet and Network Economics, Patras, December
15–17 2006

2. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular
matchings. In: Proceedings of the 16th Annual ACM-SIAMSym-
posium on Discrete Algorithms (SODA), pp. 424–432 (2005)

3. Abraham, D.J., Kavitha, T.: Dynamicmatchingmarkets and vot-
ing paths. In: Proceedings of the 10th ScandinavianWorkshop
on Algorithm Theory (SWAT), pp. 65–76, Riga, July 6–8 2006

4. Gardenfors, P.: Match making: assignments based on bilateral
preferences. Behav. Sci. 20, 166–173 (1975)

5. Hylland, A., Zeeckhauser, R.: The efficent allocation of individ-
uals to positions. J. Polit. Econ. 87(2), 293–314 (1979)

6. Mahdian, M.: Random popular matchings. In: Proceedings
of the 7th ACM Conference on Electronic Commerce (EC),
pp. 238–242 Venice, July 10–14 2006

7. Manlove, D., Sng, C.: Popular matchings in the capacitated
house allocation problem. In: Proceedings of the 14th Annual
European SymposiumonAlgorithms (ESA), pp. 492–503 (2006)

8. Mestre, J.: Weighted popular matchings. In: Proceedings of the
16th International Colloquium on Automata, Languages, and
Programming (ICALP), pp. 715–726 (2006)

9. Proll, L.G.: A simple method of assigning projects to students.
Oper. Res. Q. 23(23), 195–201 (1972)

10. Yuan, Y.: Residence exchange wanted: a stable residence ex-
change problem. Eur. J. Oper. Res. 90, 536–546 (1996)

Weighted Random Sampling
2005; Efraimidis, Spirakis

PAVLOS EFRAIMIDIS1, PAUL SPIRAKIS2
1 Department of Electrical and Computer Engineering,
Democritus University of Thrace, Xanthi, Greece

2 Department of Computer Engineering
and Informatics, Research and Academic Computer
Technology Institute, Patras University, Patras, Greece

Keywords and Synonyms

Random number generation; Sampling

Weighted Random Sampling W 1025

ProblemDefinition

The problem of random sampling without replacement
(RS) calls for the selection ofm distinct random items out
of a population of size n. If all items have the same prob-
ability to be selected, the problem is known as uniform
RS. Uniform random sampling in one pass is discussed
in [1,6,11]. Reservoir-type uniform sampling algorithms
over data streams are discussed in [12]. A parallel uniform
random sampling algorithm is given in [10]. In weighted
random sampling (WRS) the items are weighted and the
probability of each item to be selected is determined by its
relative weight. WRS can be defined with the following al-
gorithm D:

Algorithm D, a definition of WRS

Input: A population V of n weighted items
Output: A set S with a WRS of sizem
1: For k = 1 tom do
2: Let pi (k) = wi /

P
s j2V�S wj be the probability of

item vi to be selected in round k
3: Randomly select an item vi 2 V � S and insert it

into S
4: End-For

Problem 1 (WRS)
INPUT: A population V of n weighted items.
OUTPUT: A set S with a weighted random sample.

The most important algorithms for WRS are the Alias
Method, Partial Sum Trees and the Acceptance/Rejection
method (see [9] for a summary of WRS algorithms). None
of these algorithms is appropriate for one-pass WRS. In this
work, an algorithm for WRS is presented. The algorithm
is simple, very flexible, and solves the WRS problem over
data streams. Furthermore, the algorithm admits parallel
or distributed implementation. To the best knowledge of
the entry authors, this is the first algorithm for WRS over
data streams and for WRS in parallel or distributed set-
tings.

Definitions

One-pass WRS is the problem of generating a weighted
random sample in one-pass over a population. If addition-
ally the population size is initially unknown (e. g. a data
streams), the random sample can be generated with reser-
voir sampling algorithms. These algorithms keep an aux-
iliary storage, the reservoir, with all items that are candi-
dates for the final sample.

Notation and Assumptions

The item weights are initially unknown, strictly positive
reals. The population size is n, the size of the random sam-
ple is m and the weight of item vi is wi. The function ran-
dom(L,H) generates a uniform random number in (L,H).
X denotes a random variable. Infinite precision arithmetic
is assumed. Unless otherwise specified, all sampling prob-
lems are without replacement. Depending on the context,
WRS is used to denote a weighted random sample or the
operation of weighted random sampling.

Key Results

All the results with their proofs can be found in [4].
The crux of the WRS approach of this work is given

with the following algorithm A:

Algorithm A

Input: A population V of n weighted items
Output: AWRS of sizem
1: For each vi 2 V , ui = random(0; 1) and ki = u(1/wi)

i
2: Select the m items with the largest keys ki as a WRS

Theorem 1 Algorithm A generates a WRS.

A reservoir-type adaptation of algorithmA is the following
algorithm A-Res:

Algorithm A with a Reservoir (A-Res)

Input: A population V of n weighted items
Output: A reservoir R with a WRS of sizem
1: The firstm items of V are inserted into R
2: For each item vi 2 R: Calculate a key ki = u(1/wi)

i ,
where ui = random(0; 1)

3: Repeat Steps 4–7 for i = m + 1; m + 2; : : : ; n
4: The smallest key in R is the current threshold T
5: For item vi: Calculate a key ki = u(1/wi)

i , where
ui = random(0; 1)

6: If the key ki is larger than T, then:
7: The item with the minimum key in R is

replaced by item vi

Algorithm A-Res performs the calculations required by
algorithm A and hence by Theorem 1 A-Res generates
a WRS. The number of reservoir operations for algorithm
A-Res is given by the following Proposition:

Theorem 2 If A-Res is applied on n weighted items, where
the weights wi > 0 are independent random variables with
a common continuous distribution, then the expected num-
ber of reservoir insertions (without the initial m insertions)

1026 W Weighted Random Sampling

is:
nX

i=m+1

P [item i is inserted into S] =
nX

i=m+1

m
i

= O
�
m � log

� n
m

��
:

Let Sw be the sum of the weights of the items that will be
skipped by A-Res until a new item enters the reservoir. If
Tw is the current threshold to enter the reservoir, then Sw
is a continuous random variable that follows an exponen-
tial distribution. Instead of generating a key for every item,
it is possible to generate random jumps that correspond to
the sum Sw. Similar techniques have been applied for uni-
form random sampling (see for example [3]). The follow-
ing algorithm A-ExpJ is an exponential jumps-type adap-
tation of algorithm A:

Algorithm A with exponential jumps (A-ExpJ)

Input: A population V of n weighted items
Output: A reservoir R with a WRS of sizem
1: The firstm items of V are inserted into R
2: For each item vi 2 R: Calculate a key ki = u(1/wi)

i ,
where ui = random(0; 1)

3: The threshold Tw is the minimum key of R
4: Repeat Steps 5–10 until the population is exhausted
5: Let r = random(0; 1) and Xw = log(r)/ log(Tw)
6: From the current item vc skip items until item vi,

such that:
7: wc + wc+1 + � � � + wi�1 < Xw

� wc + wc+1 + � � � + wi�1 + wi
8: The item in R with theminimum key is replaced by

item vi
9: Let tw = Twwi , r2 = random(tw ; 1) and vi’s key:

ki = r2(1/wi)

10: The new threshold Tw is the new minimum key
of R

Theorem 3 Algorithm A-ExpJ generates a WRS.

The number of exponential jumps of A-ExpJ is given by
Proposition 2. Hence algorithm A-ExpJ reduces the num-
ber of random variates that have to be generated from
O(n) (for A-Res) toO(m log(n/m)). Since generating high-
quality random variates can be a costly operation this is
a significant improvement for the complexity of the sam-
pling algorithm.

Applications

Random sampling is a fundamental problem in com-
puter science with applications in many fields includ-
ing databases (see [5,9] and the references therein), data

mining, and approximation algorithms and randomized
algorithms [7]. Consequently, algorithm A for WRS is
a general tool that can find applications in the de-
sign of randomized algorithms. For example, algorithm
A can be used within approximation algorithms for the k-
Median [7].

The reservoir based versions of algorithm A, A-Res
and A-ExpJ, have very small requirements for auxiliary
storage space (m keys organized as a heap) and during
the sampling process their reservoir continuously con-
tains a weighted random sample that is valid for the al-
ready processed data. This makes the algorithms applica-
ble to the emerging area of algorithms for processing data
streams([2,8]).

Algorithms A-Res and A-ExpJ can be used for
weighted random sampling with replacement from data
streams. In particular, it is possible to generate a weighted
random sample with replacement of size k with A-Res or
A-ExpJ, by running concurrently, in one pass, k instances
of A-Res or A-ExpJ respectively. Each algorithm instance
must be executed with a trivial reservoir of size 1. At the
end, the union of all reservoirs is aWRS with replacement.

URL to Code

The algorithms presented in this work are easy to im-
plement. An experimental implementation in Java can be
found at: http://utopia.duth.gr/~pefraimi/projects/WRS/
index.html

Cross References

� Online Paging and Caching
� Randomization in Distributed Computing

Recommended Reading

1. Ahrens, J.H., Dieter, U.: Sequential random sampling. ACM
Trans. Math. Softw. 11, 157–169 (1985)

2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Mod-
els and issues in data stream systems. In: Proceedings of the
twenty-first ACMSIGMOD-SIGACT-SIGART symposiumon Prin-
ciples of database systems, pp. 1–16. ACM Press (2002)

3. Devroye, L.: Non-uniform Random Variate Generation.
Springer, New York (1986)

4. Efraimidis, P., Spirakis, P.: Weighted Random Sampling with
a reservoir. Inf. Process. Lett. J. 97(5), 181–185 (2006)

5. Jermaine, C., Pol, A., Arumugam, S.: Online maintenance of
very large random samples. In: SIGMOD ’04: Proceedings of the
2004 ACM SIGMOD international conference on Management
of data, New York, pp. 299–310. ACM Press (2004)

6. Knuth, D.: The Art of Computer Programming, vol. 2 : Seminu-
merical Algorithms, 2nd edn. Addison-Wesley Publishing Com-
pany, Reading (1981)

http://utopia.duth.gr/~pefraimi/projects/WRS/index.html
http://utopia.duth.gr/~pefraimi/projects/WRS/index.html

Well Separated Pair Decomposition W 1027

7. Lin, J.-H., Vitter, J.: �-approximations with minimum packing
constraint violation. In: 24th ACM STOC, pp. 771–782 (1992)

8. Muthukrishnan, S.: Data streams: Algorithms and applications.
Found. Trends Theor. Comput. Sci. 1, pp.1–126 (2005)

9. Olken, F.: Random Sampling from Databases. Ph. D. thesis, De-
partment of Computer Science, University of California, Berke-
ley (1993)

10. Rajan, V., Ghosh, R., Gupta, P.: An efficient parallel algorithm for
random sampling. Inf. Process. Lett. 30, 265–268 (1989)

11. Vitter, J.: Faster methods for random sampling. Commun. ACM
27, 703–718 (1984)

12. Vitter, J.: Random sampling with a reservoir. ACM Trans. Math.
Softw. 11, 37–57 (1985)

Well Separated Pair Decomposition
2003; Gao, Zhang

JIE GAO1, LI ZHANG2

1 Department of Computer Science,
Stony Brook University, Stony Brook, NY, USA

2 HP Labs, Palo Alto, CA, USA

Keywords and Synonyms

Proximity algorithms for growth-restricted metrics

ProblemDefinition

Well-separated pair decomposition, introduced by Calla-
han and Kosaraju [3], has found numerous applications
in solving proximity problems for points in the Euclidean
space. A pair of point sets (A, B) is c-well-separated if the
distance between A and B is at least c times the diame-
ters of both A and B. A well-separated pair decomposition
of a point set consists of a set of well-separated pairs that
“cover” all the pairs of distinct points, i. e., any two distinct
points belong to the different sets of some pair. Callahan
and Kosaraju [3] showed that for any point set in a Eu-
clidean space and for any constant c � 1, there always ex-
ists a c-well-separated pair decomposition (c-WSPD) with
linearly many pairs. This fact has been very useful for ob-
taining nearly linear time algorithms for many problems,
such as computing k-nearest neighbors, N-body potential
fields, geometric spanners, approximate minimum span-
ning trees, etc.Well-separated pair decomposition has also
been shown to be very useful for obtaining efficient dy-
namic, parallel, and external memory algorithms.

The definition of well-separated pair decomposition
can be naturally extended to any metric space. However,
a general metric space may not admit a well-separated
pair decomposition with a subquadratic size. Indeed, even

for the metric induced by a star tree with unit weight
on each edge,1 any well-separated pair decomposition re-
quires quadratically many pairs. This makes the well-sep-
arated pair decomposition useless for such a metric. How-
ever, it has been shown that for the unit disk graph metric,
there do exist well-separated pair decompositions with al-
most linear size, and therefore many proximity problems
under the unit disk graph metric can be solved efficiently.

Unit-Disk Graphs [4]

Denote by d(�; �) the Euclidean metric. For a set of points S
in the plane, the unit-disk graph I(S) = (S; E) is defined
to be the weighted graph where an edge e = (p; q) is in
the graph if d(p; q) � 1, and the weight of e is d(p; q).
Likewise, one can define the unit-ball graph for points in
higher dimensions.

Unit-disk graphs have been used extensively to model
the communication or influence between objects [9,12]
and have been studied in many different contexts [4,10].
For an example, wireless ad hoc networks can be mod-
eled by unit-disk graphs [6], as two wireless nodes can di-
rectly communicate with each other only if they are within
a certain distance. In unsupervised learning, for a dense
sampling of points from some unknown manifold, the
length of the shortest path on the unit-ball graph is a good
approximation of the geodesic distance on the underly-
ing (unknown) manifold if the radius is chosen appropri-
ately [14,5]. By using well-separated pair decomposition,
one can encode the all-pairs distances approximately by
a compact data structure that supports approximate dis-
tance queries in O(1) time.

Metric Space

Suppose that (S;
) is a metric space where S is a set of
elements and
 the distance function defined on S � S.
For any subset S1
 S, the diameter D�(S1) (or D(S1)
when
 is clear from the context) of S is defined to be
maxs1;s22S1
(s1; s2). The distance
(S1; S2) between two
sets S1; S2
 S is defined to be mins12S1;s22S2
(s1; s2).

Well-Separated Pair Decomposition

For a metric space (S;
), two nonempty subsets S1; S2

S are called c-well-separated if
(S1; S2) � c �max(D� (S1);
D� (S2)).

Following the definition in [3], for any two sets A and
B, a set of pairs P = fP1; P2; : : : ; Pmg, where Pi = (Ai ; Bi),
is called a pair decomposition of (A,B) (or of A if A = B) if

1A metric induced by a graph (with positive edge weights) is the
shortest-path distance metric of the graph.

1028 W Well Separated Pair Decomposition

� For all the i’s, Ai
 A, and Bi
 B.
� Ai \ Bi = ;.
� For any two elements a 2 A and b 2 B, there exists

a unique i such that a 2 Ai , and b 2 Bi . Call (a, b) is
covered by the pair (Ai ; Bi).

If in addition, every pair in P is c-well-separated, P is
called a c-well-separated pair decomposition (or c-WSPD
for short). Clearly, anymetric space admits a c-WSPDwith
quadratic size by using the trivial family that contains all
the pairwise elements.

Key Results

In [7], it was shown that for themetric induced by the unit-
disk graph on n points and for any constant c � 1, there
does exist a c-WSPD with O(n log n) pairs, and such a de-
composition can be computed in O(n log n) time. It was
also shown that the bounds can be extended to higher di-
mensions. The following theorems state the key results for
two and higher dimensions.

Theorem 1 For any set S of n points in the plane and any
c � 1, there exists a c-WSPD P of S under the unit disk
graph metric where P contains O(c4n log n) pairs and can
be computed in O(c4n log n) time.

Theorem 2 For any set S of n points in IRk , for k � 3, and
for any constant c � 1, there exists a c-WSPD P of S under
the unit ball graphmetric whereP contains O(n2�2/k) pairs
and can be constructed in O(n4/3 polylog n) time for k = 3
and in O(n2�2/k) time for k � 4.

The difficulty in obtaining a well-separated pair decompo-
sition for the unit disk graph metric is that two points that
are close in space are not necessarily close under the graph
metric. The above bounds are first shown for the point
set with constant-bounded density, i. e., a point set where
any unit disk covers only a constant number of points in
the set. The upper bound on the number of pairs is ob-
tained by using a packing argument similar to the one used
in [8].

For a point set with unbounded density, one applies
a clustering technique similar to the one used in [6] to
the point set and obtains a set of “clusterheads” with
a bounded density. Then the result for bounded density
is applied to those clusterheads. Finally, the well-sepa-
rated pair decomposition is obtained by combining the
well-separated pair decomposition for the bounded den-
sity point sets and for the Euclidean metric. The number
of pairs is dominated by the number of pairs constructed
for a constant density set, which is in turn dominated by
the bound given by the packing argument. It has been

shown that the bounds on the number of pairs is tight for
k � 3.

Applications

For a pair of well-separated sets, the distance between
two points from different sets can be approximated by
the “distance” between the two sets or the distance be-
tween any pair of points in different sets. In other words,
a well-separated pair decomposition can be thought of as
a compressed representation to approximate the 	(n2)
pairwise distances. Many problems that require the pair-
wise distances to be checked can therefore be approxi-
mately solved by examining those distances between the
well-separated pairs of sets. When the size of the well-
separated pair decomposition is subquadratic, it often
results in more efficient algorithms than examining all
the pairwise distances. Indeed, this is the intuition be-
hind many applications of the geometric well-separated
pair decomposition. By using the same intuition, one
can apply the well-separated pair decomposition in sev-
eral proximity problems under the unit disk graph met-
ric.

Suppose that (S, d) is a metric space. Let S1
 S. Con-
sider the following natural proximity problems.
� Furthest neighbor, diameter, center. The furthest

neighbor of p 2 S1 is the point in S1 that maximizes the
distance to p. Related problems include computing the
diameter, the maximum pairwise shortest distance for
points in S1, and the center, the point that minimizes
the maximum distance to all the other points.

� Nearest neighbor, closest pair. The nearest neighbor
of p 2 S1 is the point in S1 with the minimum distance
to p. Related problems include computing the closest
pair, the pair with the minimum shortest distance, and
the bichromatic closest pair, the pair that minimizes the
distance between points from two different sets.

� Median. The median of S is the point in S that min-
imizes the average (or total) distance to all the other
points.

� Stretch factor. For a graph G defined on S, its stretch
factor with respect to the unit disk graph metric is de-
fined to be the maximum ratio
G (p; q)/
(p; q), where

G ;
 are the distances induced by G and by the unit-
disk graph, respectively.

All the above problems can be solved or approximated ef-
ficiently for points in the Euclidean space. However, for
the metric induced by a graph, even for planar graphs,
very little is known besides solving the expensive all-pairs
shortest-path problem. For computing the diameter, there
is a simple linear-time method that achieves a 2-approx-

Well Separated Pair Decomposition W 1029

imation2 and a 4/3-approximate algorithm with running
time O(m

p
n log n + n2 log n), for a graph with n vertices

andm edges, by Aingworth et al. [1].
By using the well-separated pair decomposition, Gao

and Zhang [7] showed that one can obtain better approx-
imation algorithms for the above proximity problems for
the unit disk graph metric. Specifically, one can obtain al-
most linear-time algorithms for computing the 2.42-ap-
proximation and O(n

p
n log n/"3) time algorithms for

computing the (1 + ")-approximation for any " > 0. In ad-
dition, the well-separated pair decomposition can be used
to obtain an O(n log n/"4) space distance oracle so that any
(1 + ") distance query in the unit-disk graph can be an-
swered in O(1) time.

The bottleneck of the above algorithms turns out to
be computing the approximation of the shortest path dis-
tances between O(n log n) pairs. The algorithm in [7]
only constructs well-separated pair decompositions with-
out computing a good approximation of the distances.
The approximation ratio and the running time are dom-
inated by that of the approximation algorithms used to
estimate the distance between each pair in the well-sep-
arated pair decomposition. Once the distance estimation
has been made, the rest of the computation only takes al-
most linear time.

For a general graph, it is unknown whether O(n log n)
pairs shortest-path distances can be computed signifi-
cantly faster than all-pairs shortest-path distances. For
a planar graph, one can compute the O(n log n) pairs
shortest-path distances in O(n

p
n log n) time by using

separators with O(
p
n) size [2]. This method extends to

the unit-disk graph with constant bounded density since
such graphs enjoy a separator property similar to that of
planar graphs [13]. As for approximation, Thorup [15]
recently discovered an algorithm for planar graphs that
can answer any (1 + ")-shortest-distance query in O(1/")
time after almost linear time preprocessing. Unfortu-
nately, Thorup’s algorithm uses balanced shortest-path
separators in planar graphs which do not obviously extend
to the unit-disk graphs. On the other hand, it is known
that there does exist a planar 2.42-spanner for a unit-
disk graph [11]. By applying Thorup’s algorithm to that
planar spanner, one can compute the 2.42-approximate
shortest-path distance for O(n log n) pairs in almost lin-
ear time.

2Select an arbitrary node v and compute the shortest-path tree
rooted at v. Suppose that the furthest node from v is distance D away.
Then the diameter of the graph is no longer than 2D, by triangle in-
equality.

Open Problems

The most notable open problem is the gap between˝(n)
and O(n log n) on the number of pairs needed in the
plane. Also, the time bound for (1 + ")-approximation is
still about eO(npn) due to the lack of efficient methods
for computing the (1 + ")-approximate shortest path dis-
tances between O(n) pairs of points. Any improvement
to the algorithm for that problem will immediately lead
to improvement to all the (1 + ")-approximate algorithms
presented in this chapter.

Cross References

� Applications of Geometric Spanner Networks
� Separators in Graphs
� Sparse Graph Spanners
�Well Separated Pair Decomposition for Unit–Disk

Graph

Recommended Reading
1. Aingworth, D., Chekuri, C., Motwani, R.: Fast estimation of di-

ameter and shortest paths (without matrix multiplication). In:
Proc. 7th ACM-SIAM Symposium on Discrete Algorithms, 1996,
pp. 547–553

2. Arikati, S.R., Chen, D.Z., Chew, L.P., Das, G., Smid, M.H.M., Zaro-
liagis, C.D: Planar spanners and approximate shortest path
queries among obstacles in the plane. In: Díaz, J., Serna, M.
(eds.) Proc. of 4th Annual European SymposiumonAlgorithms,
1996, pp. 514–528

3. Callahan, P.B., Kosaraju, S. R.: A decomposition of multidimen-
sional point sets with applications to k-nearest-neighbors and
n-body potential fields. J. ACM 42, 67–90 (1995)

4. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Dis-
cret. Math. 86, 165–177 (1990)

5. Fischl, B., Sereno, M., Dale, A.: Cortical surface-based analysis
II: Inflation, flattening, and a surface-based coordinate system.
NeuroImage 9, 195–207 (1999)

6. Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geomet-
ric spanners for routing in mobile networks. IEEE J. Sel. Areas
Commun. Wirel. Ad Hoc Netw. (J-SAC), 23(1), 174–185 (2005)

7. Gao, J., Zhang, L.: Well-separated pair decomposition for the
unit-disk graph metric and its applications. In: Proc. of 35th
ACM Symposium on Theory of Computing (STOC’03), 2003,
pp. 483–492

8. Guibas, L., Ngyuen, A., Russel, D., Zhang, L.: Collision detection
for deforming necklaces. In: Proc. 18th ACM Symposium on
Computational Geometry, 2002, pp. 33–42

9. Hale, W. K.: Frequency assignment: Theory and applications.
Proc. IEEE. 68(12), 1497–1513 (1980)

10. H.B.H. III, Marathe, M.V., Radhakrishnan, V., Ravi, S.S.,
Rosenkrantz, D.J., Stearns, R.E.: NC-approximation schemes
for NP- and PSPACE-hard problems for geometric graphs.
J. Algorithms 26(2), 238–274 (1998)

11. Li, X.Y., Calinescu, G., Wan, P.J.: Distributed Construction of
a Planar Spanner and Routing for Ad Hoc Wireless Networks.
In: IEEE INFOCOM 2002, New York, NY, 23–27 June 2002

1030 W Well Separated Pair Decomposition for Unit–Disk Graph

12. Mead, C.A., Conway, L.: Introduction to VLSI Systems. Addison-
Wesley, (1980)

13. Miller, G.L., Teng, S.H., Vavasis, S.A.: An unified geometric ap-
proach to graph separators. In: Proc. 32nd Annu. IEEE Sympos.
Found. Comput. Sci. 1991, pp. 538–547

14. Tenenbaum, J., de Silva, V., Langford, J.: A global geomet-
ric framework for nonlinear dimensionality reduction. Science
290, 22 (2000)

15. Thorup, M.: Compact oracles for reachability and approximate
distances in planar digraphs. In: Proc. 42nd IEEE Symposiumon
Foundations of Computer Science, 2001, pp. 242–251

Well Separated Pair Decomposition
for Unit–Disk Graph
1995; Callahan, Kosaraju

ROLF KLEIN
Institute of Computer Science, University of Bonn,
Bonn, Germany

Keywords and Synonyms

Clustering

ProblemDefinition

Notations

Given a finite point set A in Rd, its bounding box R(A) is
the d-dimensional hyper-rectangle [a1; b1]� [a2; b2]� : : :
� [ad ; bd] that contains A and has minimum extension in
each dimension.

Two point sets A, B are said to be well-separated with
respect to a separation parameter s> 0 if there exist a real
number r> 0 and two d-dimensional spheres CA and CB
of radius r each, such that the following properties are ful-
filled.
1. CA \ CB = ;
2. CA contains the bounding box R(A) of A
3. CB contains the bounding box R(B) of B
4. jCACB j � s � r.
Here jCACB j denotes the smallest Euclidean distance be-
tween two points of CA and CB, respectively. An example
is depicted in Fig. 1. Given the bounding boxes R(A), R(B),
it takes time only O(d) to test if A and B are well-separated
with respect to s.

Two points of the same set, A or B, have a Euclidean
distance at most 2/s times the distance any pair (a; b) 2
A � B can have. Also, any two such pairs (a; b); (a0; b0)
differ in their distances ja � bj; ja0 � b0j by a factor of at
most 1 + 4/s.

Given a set S of n points in Rd, a well-separated pair
decomposition of S with respect to separation parameter s
is a sequence (A1; B1); (A2; B2); : : : ; (Am ; Bm) where
1. Ai ; Bi � S, for i = 1 : : :m
2. Ai and Bi are well-separated with respect to s, for i =

1 : : :m
3. for all points a; b 2 S; a 6= b, there exists a unique index

i in 1 : : :m such that a 2 Ai and b 2 Bi , or b 2 Ai and
a 2 Bi hold

Obviously, each set S = fs1; : : : ; sng possesses a well-sepa-
rated pair decomposition. One can simply use all singleton
pairs (fsig; fs jg) where i < j. The question is if decom-
positions consisting of fewer than O(n2) many pairs exist,
and how to construct them efficiently.

Key Results

In fact, the following result has been shown by Callahan
and Kosaraju [1,2].

Theorem 1 Given a set S of n points in Rd and a sep-
aration parameter s, there exists a well-separated pair
decomposition of S with respect to s, that consists of
O(sd dd/2n) many pairs (Ai ; Bi). It can be constructed in
time O(dn log n + sd dd/2+1n).

Thus, if dimension d and separation parameter s are
fixed – which is the case in many applications – then the
number of pairs is in O(n), and the decomposition can be
computed in time O(n log n).

The main tool in constructing the well-separated pair
decomposition is the split tree T(S) of S. The root, r, of
T(S) contains the bounding box R(S) of S. Its two child
nodes are obtained by cutting through the middle of the
longest dimension of R(S), using an orthogonal hyper-
plane. It splits S into two subsets Sa ; Sb , whose bounding
boxes R(Sa) and R(Sb) are stored at the two children a and
b of root r. This process continues until only one point
of S remains in each subset. These singleton sets form the
leaves of T(S). Clearly, the split tree T(S) contains O(n)
many nodes. It need not be balanced, but it can be con-
structed in time O(dn log n).

A well-separated pair decomposition of S, with respect
to a given separation parameter s, can now be obtained
from T(S) in the following way. For each internal node of
T(S) with children v and w the following recursive pro-
cedure FindPairs(v,w) is called. If Sv and Sw are well-sep-
arated then the pair (Sv ; Sw) is reported. Otherwise, one
may assume that the longest dimension of R(Sv) exceeds in
length the longest dimension of R(Sw), and that vl ; vr are
the child nodes of v in T(S). Then, FindPairs(vl ;w) and
FindPairs(vr ;w) are invoked.

Well Separated Pair Decomposition for Unit–Disk Graph W 1031

Well Separated Pair Decomposition for Unit–Disk Graph, Figure 1
The sets A, B are well-separated with respect to s

The total number of procedure calls is bounded by
the number of well-separated pairs reported, which can be
shown to be in O(sd dd/2n) by a packing argument. How-
ever, the total size of all sets Ai ; Bi in the decomposition is
in general quadratic in n.

Applications

From now on the dimension d is assumed to be a constant.
The well-separated pair decomposition can be used in ef-
ficiently solving proximity problems for points inRd.

Theorem 2 Let S be a set of n points in Rd. Then a closest
pair in S can be found in optimal time O(n log n).

Indeed, let q 2 S be a nearest neighbor of p 2 S. One can
construct a well-separated pair decomposition with sepa-
ration parameter s> 2 in time O(n log n), and let (Ai ; Bi)
be the pair where p 2 Ai and q 2 Bi . If there were another
point p0 of S in Ai, one would obtain jpp0j � 2/s � jpqj <
jpqj, which is impossible. Hence, Ai is a singleton set. If
(p; q) is a closest pair in S then Bi must be singleton, too.
Therefore, a closest pair can be found by inspecting all sin-
gleton pairs among the O(n) many pairs of the well-sepa-
rated pair decomposition.

With more effort, the following generalization can
been shown.

Theorem 3 Let S be a set of n points in Rd, and let k � n.
Then for each p 2 S its k nearest neighbors in S can be
computed in total time O(n log n + nk). In particular, for
each point in S can a nearest neighbor in S be computed in
optimal time O(n log n).

In dimension d = 2 one would typically use the Voronoi
diagram for solving these problems. But as the complex-
ity of the Voronoi diagram of n points can be as large
as nbd/2c, the well-separated pair decomposition is much
more convenient to use in higher dimensions.

A major application of the well-separated pair decom-
position is the construction of good spanners for a given
point set S. A spanner of S of dilation t is a geometric net-
work N with vertex set S such that, for any two vertices
p; q 2 S, the Euclidean length of a shortest path connect-
ing p and q in N is at most t times the Euclidean distance
jpqj.

Theorem 4 Let S be a set of n points in Rd, and let t>1.
Then a spanner of S of dilation t containing O(sd n) edges
can be constructed in time O (sdn+n log n), where s = 4(t+
1)(t � 1).

Indeed, if one edge (ai, bi) is chosen from each pair (Ai, Bi)
of a well-separated pair decomposition of S with respect
to s, these edges form a t-spanner of S, as can be shown by
induction on the rank of each pair (p; q) 2 S2 in the list of
all such pairs, sorted by distance.

Since spanners have many interesting applications of
their own, several articles of this encyclopedia are devoted
to this topic.

Open Problems

An important open question is which metric spaces admit
well-separated pair decompositions. It is easy to see that
the packing arguments used in the Euclidean case carry
over to the case of convex distance functions in Rd . More
generally, Talwar [6] has shown how to compute well-sep-
arated pair decompositions for point sets of bounded as-
pect ratio in metric spaces of bounded doubling dimen-
sion.

On the other hand, for the metric induced by a disk
graph in R2, a quadratic number of pairs may be neces-
sary in the well-separated pair decomposition. (In a disk
graph, each point p 2 S is center of a disk Dp of radius rp.
Two points p; q are connected by an edge if and only if
Dp \ Dq 6= ;. The metric is defined by Euclidean short-

1032 W Whole Genome Assemble

est path length in the resulting graph. If this graph is a star
with rays of identical length, a well-separated pair decom-
position with respect to s> 4 must consist of singleton
pairs.) Even for a unit disk graph, ˝(n2�2/d) many pairs
may be necessary for points in Rd , as Gao and Zhang [4]
have shown.

Cross References

� Applications of Geometric Spanner Networks
� Geometric Spanners
� Planar Geometric Spanners

Recommended Reading
1. Callahan, P.: Dealing with Higher Dimensions: The Well-Sepa-

rated Pair Decomposition and Its Applications. Ph. D. Thesis, The
Johns Hopkins University, USA (1995)

2. Callahan, P.B., Kosaraju, S.R.: A Decomposition of Multidimen-
sional Point Sets with Applications to k-Nearest Neighbors and
n-Body Potential Fields. J. ACM 42(1), 67–90 (1995)

3. Eppstein, D.: Spanning Trees and Spanners. In: Sack, J.R., Urrutia,
J. (eds.) Handbook of Computational Geometry, pp. 425–461. El-
sevier, Amsterdam (1999)

4. Ghao, J., Zhang, L.: Well-Separated Pair Decomposition for the
Unit Disk Graph Metric and its Applications. SIAM J. Comput.
35(1), 151–169 (2005)

5. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cam-
bridge University Press, New York (2007)

6. Talwar, K.: Bypassing the Embedding: Approximation Schemes
and Compact Representations for Low Dimensional Metrics. In:
Proceedings of the thirty-sixth Annual ACMSymposium on The-
ory of Computing (STOC’04), pp. 281–290 (2004)

Whole Genome Assemble
�Multiplex PCR for Gap Closing (Whole-genome

Assembly)

Wireless Networks
� Broadcasting in Geometric Radio Networks
� Deterministic Broadcasting in Radio Networks
� Randomized Gossiping in Radio Networks

Wire Sizing
1999; Chu, Wong

CHRIS CHU
Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA, USA

Keywords and Synonyms

Wire tapering

ProblemDefinition

The problem is about minimizing the delay of an intercon-
nect wire in a Very Large Scale Integration (VLSI) circuit
by changing (i. e., sizing) the width of the wire. The de-
lay of interconnect wire has become a dominant factor in
determining VLSI circuit performance for advanced VLSI
technology. Wire sizing has been shown to be an effective
technique to minimize the interconnect delay. The work
of Chu and Wong [5] shows that the wire sizing prob-
lem can be transformed into a convex quadratic program.
This quadratic programming approach is very efficient
and can be naturally extended to simultaneously consider
buffer insertion, which is another popular interconnect
delay minimization technique. Previous approaches apply
either a dynamic programming approach [13], which is
computationally more expensive, or an iterative greedy ap-
proach [2,7], which is hard to combine with buffer inser-
tion.

The wire sizing problem is formulated as follows and
is illustrated in Fig. 1. Consider a wire of length L. The
wire is connecting a driver with driver resistance RD to
a load with load capacitance CL. In addition, there is
a set H = fh1; : : : ; hng of n wire widths allowed by the
fabrication technology. Assume h1 > � � � > hn . The wire
sizing problem is to determine the wire width function
f (x) : [0; L]! H so that the delay for a signal to travel
from the driver through the wire to the load is minimized.

Wire Sizing, Figure 1
Illustration of the wire sizing problem

Wire Sizing, Figure 2
The model of a wire segment of length l andwidth h by a �-type
RC circuit

Wire Sizing W 1033

As in most previous works on wire sizing, the work
of Chu and Wong uses the Elmore delay model to com-
pute the delay. The Elmore delay model is a delay model
for RC circuits (i. e., circuits consisting of resistors and ca-
pacitors). The Elmore delay for a signal path is equal to
the sum of the delays associated with all resistors along
the path, where the delay associated with each resistor is
equal to its resistance times its total downstream capaci-
tance. For a wire segment of length l and width h, its re-
sistance is r0 l/h and its capacitance is c(h)l, where r0 is the
wire sheet resistance and c(h) is the unit length wire capac-
itance. c(h) is an increasing function in practice. The wire
segment can be modeled as a
-type RC circuit as shown
in Fig. 2.

Key Results

Lemma 1 The optimal wire width function f (x) is a mono-
tonically decreasing function.

Lemma 1 above can be used to greatly simplify the wire
sizing problem. It implies that an optimally-sized wire can
be divided into n segments such that the width of ith seg-
ment is hi. The length of each segment is to be determined.
The simplified problem is illustrated in Fig. 3.

Lemma 2 For the wire in Fig. 3, the Elmore delay is

D =
1
2
lT˚ l + �T l + RDCL

where

˚ =

0
BBBB@

c(h1)r0/h1 c(h2)r0/h1 c(h3)r0/h1 � � � c(hn)r0/h1
c(h2)r0/h1 c(h2)r0/h2 c(h3)r0/h2 � � � c(hn)r0/h2
c(h3)r0/h1 c(h3)r0/h2 c(h3)r0/h3 � � � c(hn)r0/h3

:
:
:

:
:
:

:
:
:

: : :
:
:
:

c(hn)r0/h1 c(hn)r0/h2 c(hn)r0/h3 � � � c(hn)r0/hn

1
CCCCA

� =

0
BBBBB@

RDc(h1) + CLr0/h1
RDc(h2) + CLr0/h2
RDc(h3) + CLr0/h3

:::

RDc(hn) + CLr0/hn

1
CCCCCA

and l =

0
BBBBB@

l1
l2
l3
:::

ln

1
CCCCCA
:

So the wire sizing problem can be written as the fol-
lowing quadratic program:

WS : minimize 1
2 l

T˚ l + �T l
subject to l1 + � � � + ln = L

li � 0 for 1 � i � n :

Quadratic programming is NP-hard in general. In or-
der to solveWS efficiently, some properties of the Hessian
matrix ˚ are explored.

Wire Sizing, Figure 3
Illustration of the simplified wire sizing problem

Definition 1 (Symmetric Decomposable Matrix) Let
Q = (qi j) be an n � n symmetric matrix. If for some ˛ =
(˛1; : : : ; ˛n)T and v = (v1; : : : ; vn)T such that 0 < ˛1 <

� � � < ˛n , qi j = qji = ˛i vi v j for i� j, then Q is called
a symmetric decomposable matrix. Let Q be denoted as
SDM(˛; v).

Lemma 3 If Q is symmetric decomposable, then Q is posi-
tive definite.

Lemma 4 ˚ inWS is symmetric decomposable.

Lemma 3 and Lemma 4 imply that the Hessian matrix
˚ ofWS is positive definite. Hence, the problemWS is
a convex quadratic program and is solvable in polynomial
time [12].

The work of Chu and Wong proposes to solve WS
by active set method. The active set method transforms
a problem with some inequality constraints into a se-
quence of problems with only equality constraints. The
method stops when the solution of the transformed prob-
lem satisfies both the feasibility and optimality condi-
tions of the original problem. For the problem WS,
the active set method keeps track of an active set A
in each iteration. The method sets l j = 0 for all j 2A
and ignores the constraints l j � 0 for all j 62A. If
f j1; : : : ; jrg = f1; : : : ; ng �A, then WS is transformed
into the following equality-constrained wire sizing prob-
lem:

ECWS : minimize 1
2 l

T
A˚A lA + �T

A lA
subject to � A lA = L

where lA = (l j1 ; : : : ; l jr)T, � A = (1 1 � � � 1), �A =
(RDc(hj1)+CLr0/hj1 ; : : : ; RDc(hjr)+CLr0/hjr)T, and˚A
is the symmetric decomposable matrix corresponding to
A (i. e., ˚A = SDM(˛A; vA) with ˛A = (r0/c(hj1)hj1 ;

: : : ; r0/c(hjr)hjr)T and vA = (c(hj1); : : : ; c(hjr))T).

Lemma 5 The solution of ECWS is:

�A = �(� A˚�1A � T
A)�1(� A˚�1A �A + L)

lA = �˚�1A � T
A�A �˚�1A �A :

1034 W Wire Sizing

Lemma 6 If Q is symmetric decomposable, then Q�1 is
tridiagonal. In particular, if Q = SDM(˛; v), then Q�1 =
(�i j) where �i i = 1/(˛i � ˛i�1)v2i + 1/(˛i+1 � ˛i)v2i ,
�i;i+1 = �i+1;i = �1/(˛i+1 � ˛i)vi vi+1 for 1 � i � n � 1,
�nn = 1/(˛n � ˛n�1)v2n, and �i j = 0 otherwise.

By Lemma 5 and Lemma 6, ECWS can be solved in O(n)
time. To solveWS, in practice, the active set method takes
less than n iterations and hence the total runtime is O(n2).
Note that unlike previous works, the runtime of this con-
vex quadratic programming approach is independent of
the wire length L.

Applications

The wire sizing technique is commonly applied to mini-
mize the wire delay and hence to improve the performance
of VLSI circuits. As there are typically millions of wires in
modern VLSI circuits, and each wire may be sized many
many times in order to explore different architecture, logic
design and layout during the design process, it is very im-
portant for wire sizing algorithms to be very efficient.

Another popular technique for delay minimization of
slow signals is to insert buffers (or called repeaters) to
strengthen and accelerate the signals. The work of Chu
and Wong can be naturally extended to simultaneously
handle buffer insertion. It is shown in [4] that the delay
minimization problem for a wire by simultaneous buffer
insertion and wire sizing can also be formulated as a con-
vex quadratic program and be solved by active set method.
The runtime is onlym times more than that of wire sizing,
wherem is the number of buffers inserted.m is typically 5
or less in practice.

About one third of all nets in a typical VLSI circuit are
multi-pin nets (i. e., nets with a tree structure to deliver
a signal from a source to several sinks). It is important to
minimize the delay of multi-pin nets. Thework of Chu and
Wong can also be applied to optimize multi-pin nets. The
extension is described in Mo and Chu [14]. The idea is to
integrate the quadratic programming approach into a dy-
namic programming framework. Each branch of the net
is solved as a convex quadratic program while the overall
tree structure is handled by dynamic programming.

Open Problems

After more than a decade of active research, the wire
sizing problem by itself is now considered a well-
solved problem. Some important solutions are [1,2,3,4,5,6,
7,8,9,10,11,13,14,15]. The major remaining challenge is to
simultaneously apply wire sizing with other interconnect
optimization techniques to improve circuit performance.

Wire sizing, buffer insertion and gate sizing are three most
commonly used interconnect optimization techniques. It
has been demonstrated that better performance can be
achieved by simultaneously applying these three tech-
niques than applying them sequentially. One very practical
problem is to perform simultaneous wire sizing, buffer in-
sertion and gate sizing to a combinational circuit such that
the delay of all input-to-output paths are less than a given
target and the total wire/buffer/gate resource usage is min-
imized.

Cross References

� Circuit Retiming
� Circuit Retiming: An Incremental Approach
� Gate Sizing

Recommended Reading
1. Chen, C.-P., Chen, Y.-P., Wong, D.F.: Optimal wire-sizing for-

mula under the Elmore delaymodel. In: Proc. ACM/IEEEDesign
Automation Conf., pp. 487–490 ACM, New York (1996)

2. Chen, C.-P., Wong, D.F.: A fast algorithm for optimal wire-sizing
under Elmore delay model. In: Proc. IEEE ISCAS, vol. 4, pp. 412–
415 IEEE Press, Piscataway (1996)

3. Chen, C.-P., Wong, D.F.: Optimal wire-sizing functionwith fring-
ing capacitance consideration. In: Proc. ACM/IEEE Design Au-
tomation Conf., pp. 604–607 ACM, New York (1997)

4. Chu, C.C.N., Wong, D.F.: Greedy wire-sizing is linear time. IEEE
Trans. Comput. Des. 18(4), 398–405 (1999)

5. Chu, C.C.N., Wong, D.F.: A quadratic programming approach
to simultaneous buffer insertion/sizing and wire sizing. IEEE
Trans. Comput. Des. 18(6), 787–798 (1999)

6. Cong, J., He, L.: Optimal wiresizing for interconnects with mul-
tiple sources. ACM Trans. Des. Autom. Electron. Syst. 1(4) 568–
574 (1996)

7. Cong, J., Leung, K.-S.: Optimal wiresizing under the distributed
Elmore delay model. IEEE Trans. Comput. Des. 14(3), 321–336
(1995)

8. Fishburn., J.P.: Shaping a VLSI wire to minimize Elmore delay.
In: Proc. European Design and Test Conference pp. 244–251.
IEEE Compute Society, Washington D.C. (1997)

9. Fishburn, J.P., Schevon, C.A.: Shaping a distributed-RC line to
minimize Elmore delay. IEEE Trans. Circuits Syst.-I: Fundam.
Theory Appl. 42(12), 1020–1022 (1995)

10. Gao, Y., Wong, D.F.: Wire-sizing for delay minimization and
ringing control using transmission line model. In: Proc. Conf.
on Design Automation and Test in Europe, pp. 512–516. ACM,
New York (2000)

11. Kay, R., Bucheuv, G., Pileggi, L.: EWA: Efficient Wire-Sizing Al-
gorithm. In: Proc. Intl. Symp. on Physical Design, pp. 178–185.
ACM, New York (1997)

12. Kozlov, M.K., Tarasov, S.P., Khachiyan, L.G.: Polynomial solv-
ability of convex quadratic programming. Sov. Math. Dokl. 20,
1108–1111 (1979)

13. Lillis, J., Cheng, C.-K., Lin, T.-T.: Optimal and efficient buffer in-
sertion and wire sizing. In: Proc. of Custom Integrated Circuits
Conf., pp. 259–262. IEEE Press, Piscataway (1995)

Work-Function Algorithm for k Servers W 1035

14. Mo, Y.-Y., Chu, C.: A hybrid dynamic/quadratic programming
algorithm for interconnect tree optimization. IEEE Trans. Com-
put. Des. 20(5), 680–686 (2001)

15. Sapatnekar, S.S.: RC interconnect optimization under the El-
more delay model. In: Proc. ACM/IEEE Design Automation
Conf., pp. 387–391. ACM, New York (1994)

Work-Function Algorithm
for k Servers
1994; Koutsoupias, Papadimitriou

MAREK CHROBAK
Department of Computer Science at Riverside,
University of California at Riverside,
Riverside, CA, USA

ProblemDefinition

In the k-server problem, the task is to schedule the move-
ment of k servers in a metric space M in response to
a sequence % = r1; r2; : : : ; rn of requests, where ri 2M
for all i. The servers initially occupy some configuration
X0
M. After each request ri is issued, one of the k
serversmustmove to ri. A schedule S specifies which server
moves to each request. The task is to compute a schedule
with minimum cost, where the cost of a schedule is defined
as the total distance traveled by the servers. The example
below shows a schedule for 2 servers on a sequence of re-
quests.

In the offline case, given M, X0, and the complete re-
quest sequence %, the optimal schedule can be computed
in polynomial time [6].

In the online version of the problem the decision as to
which server to move to each request ri must be made be-
fore the next request ri+1 is issued. It is quite easy to see
that in this online scenario it is not possible to guarantee
an optimal schedule. The accuracy of online algorithms
is often measured using competitive analysis. Denote by
costA(%) the cost of the schedule produced by an online k-
server algorithmA on a request sequence %, and let opt(%)
be the cost of an optimal schedule on %. A is called R-
competitive if costA(%) � R � opt(%) + B, where B is a con-
stant that may depend on M and X0. The smallest such R
is called the competitive ratio ofA. Of course, the smaller
the R the better.

The k-server problemwas introduced byManasse,Mc-
Geoch, and Sleator [13,14], who proved that no (deter-
ministic) on-line algorithm can achieve a competitive ra-
tio smaller than k, in any metric space with at least k + 1
points. They also gave a 2-competitive algorithm for k = 2
and stated what is now known as the k-server conjecture,

Work-Function Algorithm for k Servers, Figure 1
A schedule for 2 servers on a request sequence% = r1; r2; : : : ; r7.
The initial configuration is X0 = fx1; x2g. Server 1 serves
r1; r2; r5; r6, while server 2 serves r3; r4; r7. The cost of this sched-
ule is d(x1; r1)+d(r1; r2)+d(r2; r5)+d(r5; r6)+d(x2; r3)+d(r3; r4)+
d(r4; r7), where d(x, y) denotes the distance between points x, y

which postulates that there exists a k-competitive online
algorithm for all k. Koutsoupias and Papadimitriou [10,11]
(see also [3,8,9]) proved that the work-function algorithm
presented in the next section has competitive ratio at
most 2k � 1, which to date remains the best upper bound
known.

Key Results

The idea of the work-function algorithm is to balance
two greedy strategies when a new request is issued. The
first one is to simply serve the request with the closest
server. The second strategy attempts to follow the opti-
mum schedule. Roughly, from among the k possible new
configurations, this strategy chooses the one where the op-
timum schedule would be at this time, if no more requests
remained to be issued.

To formalize this idea, for each request sequence % and
a k-server configuration X, let!%(X) be the minimum cost
of serving % under the constraint that at the end the server
configuration is X. (Assume that the initial configuration
X0 is fixed.) The function !%(�) is called the work function
after the request sequence %.

AlgorithmWFA

Denote by � the sequence of past requests, and suppose
that the current server configuration is S = fs1; s2; : : : ; skg,
where sj is the location of the jth server. Let r be the
new request. Choose s j 2 S that minimizes the quantity
!� r(S � fs jg [frg) + d(s j ; r), and move server j to r.

Theorem 1 ([10,11]) Algorithm WFA is (2k � 1)-com-
petitive.

Applications

The k-server problem can be viewed as an abstraction of
online problems that arise in emergency crew schedul-

1036 W Work-Function Algorithm for k Servers

ing, caching (or paging) in two-level memory systems,
scheduling of disk heads, and other. Nevertheless, in its
pure abstract form, it is mostly of theoretical interest.

Algorithm WFA can be applied to some generaliza-
tions of the k-server problem. In particular, it is (2n � 1)-
competitive for n-statemetrical task systems,matching the
lower bound [3,4,8]. See [1,3,5] for other applications and
extensions.

Open Problems

Theorem 1 comes tantalizingly close to settling the k-
server conjecture described earlier in this section. In fact,
it has been even conjectured that Algorithm WFA itself is
k-competitive for k servers, but the proof of this conjec-
ture, so far, remains elusive.

For k � 3, k-competitive online k-server algorithms
are known only for some restricted metric spaces, includ-
ing trees [7], metric spaces with up to k + 2 points, and the
Manhattan plane for k = 3 (see [2,6,12]). As the analysis
of Algorithm WFA in the general case appears difficult, it
would of interest to prove its k-competitiveness for some
natural special cases, for example in the plane (with any
reasonable metric) for k � 4 servers.

Very little is known about the competitive ratio of the
k-server problem in the randomized case. In fact, it is not
even known whether a ratio better than 2 can be achieved
for k = 2.

Cross References

� Algorithm DC-Tree for k Servers on Trees
� Deterministic Searching on the Line
� Generalized Two-Server Problem
�Metrical Task Systems

� Online Paging and Caching
� Paging

Recommended Reading
1. Anderson, E.J., Hildrum, K., Karlin, A.R., Rasala, A., Saks, M.: On

list update and work function algorithms. Theor. Comput. Sci.
287, 393–418 (2002)

2. Bein, W., Chrobak, M., Larmore, L.L.: The 3-server problem in
the plane. Theor. Comput. Sci. 287, 387–391 (2002)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive
Analysis. Cambridge University Press, Cambridge (1998)

4. Borodin, A., Linial, N., Saks, M.: An optimal online algorithm for
metrical task systems. In: Proc. 19th Symp. Theory of Comput-
ing (STOC), ACM, pp. 373–382 (1987)

5. Burley,W.R.: Traversing layeredgraphs using thework function
algorithm. J. Algorithms 20, 479–511 (1996)

6. Chrobak, M., Karloff, H., Payne, T.H., Vishwanathan, S.: New re-
sults on server problems. SIAM J. Discret. Math. 4, 172–181
(1991)

7. Chrobak, M., Larmore, L.L.: An optimal online algorithm for k
servers on trees. SIAM J. Comput. 20, 144–148 (1991)

8. Chrobak, M., Larmore, L.L.: Metrical task systems, the server
problem, and the work function algorithm. In: Fiat, A., Woeg-
inger, G.J. (eds.) Online Algorithms: The State of the Art,
pp. 74–94. Springer, London (1998)

9. Koutsoupias, E.: Weak adversaries for the k-server problem. In:
Proc. 40th Symp. Foundations of Computer Science (FOCS),
IEEE, pp. 444–449 (1999)

10. Koutsoupias, E., Papadimitriou, C.: On the k-server conjec-
ture. In: Proc. 26th Symp. Theory of Computing (STOC), ACM,
pp. 507–511 (1994)

11. Koutsoupias, E., Papadimitriou, C.: On the k-server conjecture.
J. ACM 42, 971–983 (1995)

12. Koutsoupias, E., Papadimitriou, C.: The 2-evader problem. Inf.
Proc. Lett. 57, 249–252 (1996)

13. Manasse, M., McGeoch, L.A., Sleator, D.: Competitive algo-
rithms for online problems. In: Proc. 20th Symp. Theory of
Computing (STOC), ACM, pp. 322–333 (1988)

14. Manasse, M., McGeoch, L.A., Sleator, D.: Competitive algo-
rithms for server problems. J. Algorithms 11, 208–230 (1990)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

