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Definition
Abduction is a form of reasoning, sometimes described

as “deduction in reverse,” whereby given a rule that

“A follows from B” and the observed result of “A” we

infer the condition “B” of the rule. More generally,

given a theory, T, modeling a domain of interest and

an observation, “A,” we infer a hypothesis “B” such that

the observation follows deductively from T augmented

with “B.” We think of “B” as a possible explanation

for the observation according to the given theory that

contains our rule. �is new information and its conse-

quences (or rami�cations) according to the given theory

can be considered as the result of a (or part of a) learn-

ing process based on the given theory and driven by the

observations that are explained by abduction. Abduc-

tion can be combinedwith7induction in di�erent ways
to enhance this learning process.

Motivation and Background
Abduction is, along with induction, a synthetic form

of reasoning whereby it generates, in its explanations,

new information not hitherto contained in the cur-

rent theory with which the reasoning is performed.

As such, it has a natural relation to learning, and in

particular to knowledge intensive learning, where the

new information generated aims to complete, at least

partially, the current knowledge (or model) of the prob-

lem domain as described in the given theory.

Early uses of abduction in the context of machine

learning concentrated on how abduction can be used

as a theory revision operator for identifying where

the current theory could be revised in order to

accommodate the new learning data. �is includes

the work of Michalski (), Ourston and Mooney

(), and Ade, Malfait, and Raedt (). Another

early link of abduction to learning was given by

the 7explanation based learning method (DeJong &
Mooney, ), where the abductive explanations of

the learning data (training examples) are generalized to

all cases.

Following this, it was realized (Flach & Kakas,

) that the role of abduction in learning could

be strengthened by linking it to induction, culmi-

nating in a hybrid integrated approach to learning

where abduction and induction are tightly integrated

to provide powerful learning frameworks such as the

ones of Progol . (Muggleton & Bryant, ) and

HAIL (Ray, Broda, & Russo, ). On the other

hand, from the point of view of abduction as “infer-

ence to the best explanation” (Josephson & Josephson,

) the link with induction provides a way to distin-

guish between di�erent explanations and to select those

explanations that give a better inductive generalization

result.

A recent application of abduction, on its own or

in combination with induction, is in Systems Biol-

ogy where we try to model biological processes and

pathways at di�erent levels. �is challenging domain

provides an important development test-bed for these

methods of knowledge intensive learning (see e.g., King

et al., ; Papatheodorou, Kakas, & Sergot, ; Ray,

Antoniades, Kakas, & Demetriades, ; Tamaddoni-

Nezhad, Kakas, Muggleton, & Pazos, ; Zupan et al.,

).
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 A Abduction

Structure of the Learning Task
Abduction contributes to the learning task by �rst

explaining, and thus rationalizing, the training data

according to a given and current model of the domain

to be learned.�ese abductive explanations either form

on their own the result of learning or they feed into a

subsequent phase to generate the �nal result of learning.

Abduction in Artificial Intelligence

Abduction as studied in the area of Arti�cial Intelli-

gence and the perspective of learning is mainly de�ned

in a logic-based approach (Other approaches to abduc-

tion include the set covering approach See, e.g., Reggia

() or case-based explanation, e.g., Leake ().) as

follows.

Given a set of sentences T (a theory or model),

and a sentence O (observation), the abductive task is

the problem of �nding a set of sentences H (abductive

explanation for O) such that:

. T ∪H ⊧ O,

. T ∪H is consistent,

where ⊧ denotes the deductive entailment relation of
the formal logic used in the representation of our theory

and consistency refers also to the corresponding notion

in this logic. �e particular choice of this underlying

formal framework of logic is in general a matter that

depends on the problem or phenomena that we are try-

ing tomodel. Inmany cases, this is based on7�rst order
predicate calculus, as, for example, in the approach of

theory completion inMuggleton andBryant (). But

other logics can be used, e.g., the nonmonotonic logics

of default logic or logic programming with negation as

failure when the modeling of our problem requires this

level of expressivity.

�is basic formalization as it stands, does not fully

capture the explanatory nature of the abductive expla-

nation H in the sense that it necessarily conveys some

reason why the observations hold. It would, for exam-

ple, allow an observationO to be explained by itself or in

terms of some other observations rather than in terms

of some “deeper” reason for which the observationmust

hold according to the theory T. Also, as the above

speci�cation stands, the observation can be abductively

explained by generating inH somenew (general) theory

completely unrelated to the given theory T. In this case,

H does not account for the observationsO according to

the given theory T and in this sense it may not be con-

sidered as an explanation for O relative to T. For these

reasons, in order to specify a “level” at which the expla-

nations are required and to understand these relative to

the given general theory about the domain of interest,

the members of an explanation are normally restricted

to belong to a special preassigned, domain-speci�c class

of sentences called abducible.

Hence abduction, is typically applied on a model, T,

in which we can separate two disjoint sets of predicates:

the observable predicates and the abducible (or open)

predicates.�e basic assumption then is that our model

T has reached a su�cient level of comprehension of the

domain such that all the incompleteness of the model

can be isolated (under some working hypotheses) in

its abducible predicates. �e observable predicates are

assumed to be completely de�ned (in T) in terms of the

abducible predicates and other background auxiliary

predicates; any incompleteness in their representation

comes from the incompleteness in the abducible predi-

cates. In practice, the empirical observations that drive

the learning task are described using the observable

predicates. Observations are represented by formulae

that refer only to the observable predicates (and possi-

bly some background auxiliary predicates) typically by

ground atomic facts on these observable predicates.�e

abducible predicates describe underlying (theoretical)

relations in our model that are not observable directly

but can, through the model T, bring about observable

information.

�e assumptions on the abducible predicates used

for building up the explanations may be subject to

restrictions that are expressed through integrity con-

straints. �ese represent additional knowledge that we

have on our domain expressing general properties of the

domain that remain valid no matter how the theory is

to be extended in the process of abduction and associ-

ated learning.�erefore, in general, an abductive theory

is a triple, denoted by ⟨T,A, IC⟩, where T is the back-
ground theory, A is a set of abducible predicates, and

IC is a set of integrity constraints. �en, in the de�ni-

tion of an abductive explanation given above, one more

requirement is added:

. T ∪H satis�es IC.
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A�e satisfaction of integrity constraints can be formally

understood in several ways (see Kakas, Kowalski, &

Toni,  and references therein). Note that the

integrity constraints reduce the number of explanations

for a set of observations �ltering out those explana-

tions that do not satisfy them. Based on this notion

of abductive explanation a credulous form of abduc-

tive entailment is de�ned. Given an abductive theory,

T = ⟨T,A, IC⟩, and an observation O then, O is abduc-
tively entailed by T, denoted by T ⊧A O, if there exists

an abductive explanation of O in T.

�is notion of abductive entailment can then form

the basis of a coverage relation for learning in the face

of incomplete information.

Abductive Concept Learning

Abduction allows us to reason in the face of incomplete

information. As such when we have learning problems

where the background data on the training examples

is incomplete the use of abduction can enhance the

learning capabilities.

Abductive concept learning (ACL) (Kakas&Riguzzi,

) is a learning framework that allows us to learn

from incomplete information and to later be able to clas-

sify new cases that again could be incompletely speci-

�ed. Under ACL, we learn abductive theories, ⟨T,A, IC⟩
with abduction playing a central role in the covering

relation of the learning problem.�e abductive theories

learned in ACL contain both rules, in T, for the con-

cept(s) to be learned as well as general clauses acting as

integrity constraints in IC.

Practical problems that can be addressed with ACL:

() concept learning from incomplete background data

where some of the background predicates are incom-

pletely speci�ed and () concept learning from incom-

plete background data together with given integrity

constraints that provide some information on the

incompleteness of the data. �e treatment of incom-

pleteness through abduction is integrated within the

learning process. �is allows the possibility of learning

more compact theories that can alleviate the problem

of over �tting due to the incompleteness in the data.

A speci�c subcase of these two problems and important

third application problem of ACL is that of () multi-

ple predicate learning, where each predicate is required

to be learned from the incomplete data for the other

predicates. Here the abductive reasoning can be used to

suitably connect and integrate the learning of the dif-

ferent predicates. �is can help to overcome some of

the nonlocality di�culties of multiple predicate learn-

ing, such as order-dependence and global consistency

of the learned theory.

ACL is de�ned as an extension of7Inductive Logic
Programming (ILP)where both the background knowl-

edge and the learned theory are abductive theories. �e

central formal de�nition of ACL is given as follows

where examples are atomic ground facts on the target

predicate(s) to be learned.

De�nition  (Abductive Concept Learning)
Given

● A set of positive examples E+

● A set of negative examples E−

● An abductive theory T = ⟨P,A, I⟩ as background the-

ory

● An hypothesis space T = ⟨P ,I⟩ consisting of a space
of possible programs P and a space of possible con-

straints I

Find
A set of rules P′ ∈ P and a set of constraints I′ ∈ I such

that the new abductive theory T′ = ⟨P ∪ P′,A, I ∪ I′⟩
satis�es the following conditions

● T′ ⊧A E+

● ∀e− ∈ E−, T′ ⊭A e−

where E+ stands for the conjunction of all positive

examples.

An individual example e is said to be covered by a

theoryT′ ifT′ ⊧A e. In e�ect, this de�nition replaces the

deductive entailment as the example coverage relation

in the ILP problem with abductive entailment to de�ne

the ACL learning problem.

�e fact that the conjunction of positive exam-

ples must be covered means that, for every positive

example, there must exist an abductive explanation and

the explanations for all the positive examples must be

consistent with each other. For negative examples, it is

required that no abductive explanation exists for any of

them. ACL can be illustrated as follows.
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Example  Suppose we want to learn the concept

father. Let the background theory be T = ⟨P,A,∅⟩where:
P = {parent(john,mary),male(john),
parent(david, steve),
parent(kathy, ellen), female(kathy)},
A = {male, female}.

Let the training examples be:

E+ = {father(john,mary), father(david, steve)},
E− = {father(kathy, ellen), father(john, steve)}.

In this case, a possible hypotheses T′ = ⟨P ∪ P′,A, I′⟩
learned by ACL would consist of

P′ = {father(X,Y) ← parent(X,Y),male(X)},
I′ = {←male(X), female(X)}.

�is hypothesis satis�es the de�nition of ACL because:

. T′ ⊧A father(john,mary), father(david, steve)
with ∆ = {male(david)}.

. T′ ⊭A father(kathy, ellen),
as the only possible explanation for this goal, namely

{male(kathy)} is made inconsistent by the learned

integrity constraint in I′.

. T′ ⊭A father(john, steve),
as this has no possible abductive explanations.

Hence, despite the fact that the background theory

is incomplete (in its abducible predicates), ACL can �nd

an appropriate solution to the learning problem by suit-

ably extending the background theory with abducible

assumptions. Note that the learned theory without the

integrity constraint would not satisfy the de�nition of

ACL, because there would exist an abductive explana-

tion for the negative example father(kathy, ellen), namely

∆− = {male(kathy)}. �is explanation is prohibited in

the complete theory by the learned constraint together

with the fact female(kathy).

�e algorithm and learning system for ACL is based

on a decomposition of this problem into two sub-

problems: () learning the rules in P′ together with

appropriate explanations for the training examples and

() learning integrity constraints driven by the expla-

nations generated in the �rst part. �is decomposition

allows ACL to be developed by combining the two IPL

settings of explanatory (predictive) learning and con-

�rmatory (descriptive) learning. In fact, the �rst sub-

problem can be seen as a problem of learning from

entailment, while the second subproblem as a problem

of learning from interpretations.

Abduction and Induction

�e utility of abduction in learning can be enhanced

signi�cantly when this is integrated with induction.

Several approaches for synthesizing abduction and

induction in learning have been developed, e.g., Ade

and Denecker (), Muggleton and Bryant (),

Yamamoto (), and Flach and Kakas (). �ese

approaches aim to develop techniques for knowledge

intensive learning with complex background theo-

ries. One problem to be faced by purely inductive

techniques, is that the training data on which the

inductive process operates, o�en contain gaps and

inconsistencies. �e general idea is that abductive rea-

soning can feed information into the inductive pro-

cess by using the background theory for inserting new

hypotheses and removing inconsistent data. Stated dif-

ferently, abductive inference is used to complete the

training data with hypotheses about missing or incon-

sistent data that explain the example or training data,

using the background theory. �is process gives alter-

native possibilities for assimilating and generalizing

this data.

Induction is a form of synthetic reasoning that typ-

ically generates knowledge in the form of new gen-

eral rules that can provide, either directly, or indirectly

through the current theory T that they extend, new

interrelationships between the predicates of our theory

that can include, unlike abduction, the observable

predicates and even in some cases new predicates.

�e inductive hypothesis thus introduces new, hith-

erto unknown, links between the relations that we

are studying thus allowing new predictions on the

observable predicates that would not have been possi-

ble before from the original theory under any abductive

explanation.

An inductive hypothesis, H, extends, like in abduc-

tion, the existing theory T to a new theory T′=T ∪ H,

but now H provides new links between observables

and nonobservables that was missing or incomplete

in the original theory T. �is is particularly evident

from the fact that induction can be performed even

with an empty given theory T, using just the set

of observations. �e observations specify incomplete

(usually extensional) knowledge about the observable
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Apredicates, which we try to generalize into new knowl-

edge. In contrast, the generalizing e�ect of abduc-

tion, if at all present, is much more limited. With the

given current theory T, that abduction always needs to

refer to, we implicitly restrict the generalizing power

of abduction as we require that the basic model of our

domain remains that of T. Induction has a stronger

and genuinely new generalizing e�ect on the observ-

able predicates than abduction. While the purpose of

abduction is to extend the theory with an explanation

and then reason with it, thus enabling the generalizing

potential of the given theory T, in induction the pur-

pose is to extend the given theory to a new theory, which

can provide new possible observable consequences.

�is complementarity of abduction and induc-

tion – abduction providing explanations from the the-

ory while induction generalizes to form new parts of

the theory – suggests a basis for their integration within

the context of theory formation and theory develop-

ment. A cycle of integration of abduction and induc-

tion (Flach & Kakas, ) emerges that is suitable for

the task of incremental modeling (Fig. ). Abduction

is used to transform (and in some sense normalize)

the observations to information on the abducible pred-

icates. �en, induction takes this as input and tries

to generalize this information to general rules for the

abducible predicates now treating these as observable

predicates for its own purposes. �e cycle can then

be repeated by adding the learned information on the

abducibles back in themodel as newpartial information

T

T ′

O ′

O

T∪H O AbductionInduction

Abduction. Figure . The cycle of abductive and induc-

tive knowledge development. The cycle is governed by

the “equation” T ∪ H ⊧ O, where T is the current theory,

O the observations triggering theory development, andH

the new knowledge generated. On the left-hand side we

have induction, its output feeding into the theory T for

later use by abduction on the right; the abductive output

in turn feeds into the observational data O′ for later use

by induction, and so on

on the incomplete abducible predicates. �is will a�ect

the abductive explanations of new observations to be

used again in a subsequent phase of induction. Hence,

through this cycle of integration the abductive explana-

tions of the observations are added to the theory, not in

the (simple) form in which they have been generated,

but in a generalized formgiven by a process of induction

on these.

A simple example, adapted from Ray et al. (),

that illustrates this cycle of integration of abduction and

induction is as follows. Suppose that our current model,

T, contains the following rule and background facts:

sad(X) ← tired(X), poor(X),

tired(oli), tired(ale), tired(kr),

academic(oli), academic(ale), academic(kr),

student(oli), lecturer(ale), lecturer(kr),

where the only observable predicate is sad/.
Given the observations O={sad(ale), sad(kr), not

sad(oli)} can we improve our model? �e incomplete-
ness of our model resides in the predicate poor. �is

is the only abducible predicate in our model. Using

abduction we can explain the observations O via the

explanation:

E = {poor(ale), poor(kr), not poor(oli)}.

Subsequently, treating this explanation as training data

for inductive generalizationwe can generalize this to get

the rule:

poor(X) ← lecturer(X)

thus (partially) de�ning the abducible predicate poor

when we extend our theory with this rule.

�is combination of abduction and induction has

recently been studied and deployed in several ways

within the context of ILP. In particular, inverse entail-

ment (Muggleton and Bryant, ) can be seen as a

particular case of integration of abductive inference for

constructing a “bottom” clause and inductive inference

to generalize it.�is is realized in Progol . and applied

to several problems including the discovery of the

function of genes in a network of metabolic pathways

(King et al., ), and more recently to the study of
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inhibition in metabolic networks (Tamaddoni-Nezhad,

Chaleil, Kakas,&Muggleton, ; Tamaddoni-Nezhad

et al., ). In Moyle (), an ILP system called

ALECTO, integrates a phase of extraction-case abduc-

tion to transform each case of a training example to

an abductive hypothesis with a phase of induction that

generalizes these abductive hypotheses. It has been used

to learn robot navigation control programs by complet-

ing the speci�c domain knowledge required, within a

general theory of planning that the robot uses for its

navigation (Moyle, ).

�e development of these initial frameworks that

realize the cycle of integration of abduction and induc-

tion prompted the study of the problem of completeness

for �nding any hypotheses H that satis�es the basic

task of �nding a consistent hypothesis H such that

T ∪ H ⊧ O for a given theory T, and observations O.

Progol was found to be incomplete (Yamamoto, )

and several new frameworks of integration of abduction

and induction have been proposed such as SOLDR (Ito

& Yamamoto, ), CF-induction (Inoue, ), and

HAIL (Ray et al., ). In particular, HAIL has demon-

strated that one of the main reasons for the incom-

pleteness of Progol is that in its cycle of integration of

abduction and induction, it uses a very restricted form

of abduction. Li�ing some of these restrictions, through

the employment of methods from abductive logic pro-

gramming (Kakas et al., ), has allowed HAIL to

solve awider class of problems.HAILhas been extended

to a framework, called XHAIL (Ray, ), for learn-

ing nonmonotonic ILP, allowing it to be applied to learn

Event Calculus theories for action description (Alra-

jeh, Ray, Russo, & Uchitel, ) and complex scienti�c

theories for systems biology (Ray & Bryant, ).

Applications of this integration of abduction and

induction and the cycle of knowledge development can

be found in the recent proceedings of the Abduction

and Induction in Arti�cial Intelligence workshops in

 (Flach & Kakas, ) and  (Ray, Flach, &

Kakas, ).

Abduction in Systems Biology

Abduction has found a rich �eld of application in the

domain of systems biology and the declarative model-

ing of computational biology. In a project called, Robot

scientist (King et al., ), Progol . was used to

generate abductive hypotheses about the function of

genes. Similarly, learning the function of genes using

abduction has been studied in GenePath (Zupan et al.,

) where experimental genetic data is explained

in order to facilitate the analysis of genetic networks.

Also in Papatheodorou et al. () abduction is used

to learn gene interactions and genetic pathways from

microarray experimental data. Abduction and its inte-

gration with induction has been used in the study

of inhibitory e�ect of toxins in metabolic networks

(Tamaddoni-Nezhad et al., , ) taking into

account also the temporal variation that the inhibitory

e�ect can have. Another bioinformatics application of

abduction (Ray et al., ) concerns the modeling of

human immunode�ciency virus (HIV) drug resistance

and using this in order to assist medical practition-

ers in the selection of antiretroviral drugs for patients

infected with HIV. Also, the recently developed frame-

works of XHAIL and CF-induction have been applied

to several problems in systems biology, see e.g., Ray

(), Ray and Bryant (), and Doncescu, Inoue,

and Yamamoto (), respectively.
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Absolute Error Loss

7Mean Absolute Error

Accuracy

Definition
Accuracy refers to a measure of the degree to which the

predictions of a 7model match the reality being mod-
eled. �e term accuracy is o�en applied in the context

of 7classi�cation models. In this context, accuracy =
P(λ(X) = Y), where XY is a7joint distribution and the
classi�cation model λ is a function X → Y . Sometimes,

this quantity is expressed as a percentage rather than a

value between . and ..

�e accuracy of a model is o�en assessed or esti-

mated by applying it to test data for which the 7labels
(Y values) are known. �e accuracy of a classi�er on

test data may be calculated as number of correctly clas-

si�ed objects/total number of objects. Alternatively, a

smoothing functionmay be applied, such as a7Laplace
estimate or an7m-estimate.



 A ACO

Accuracy is directly related to7error rate, such that
accuracy = . − error rate (or when expressed as a per-

centage, accuracy =  − error rate).

Cross References
7Confusion Matrix
7Resubstitution Accuracy

ACO

7Ant Colony Optimization

Actions

In a 7Markov decision process, actions are the avail-
able choices for the decision-maker at any given decision

epoch, in any given state.

Active Learning

David Cohn

Mountain View, CA, USA

Definition
�e term Active Learning is generally used to refer

to a learning problem or system where the learner

has some role in determining on what data it will be

trained. �is is in contrast to Passive Learning, where

the learner is simply presented with a 7training set
over which it has no control. Active learning is o�en

used in settingswhere obtaining7labeled data is expen-
sive or time-consuming; by sequentially identifying

which examples are most likely to be useful, an active

learner can sometimes achieve good performance,

using far less 7training data than would otherwise be
required.

Structure of Learning System
In many machine learning problems, the training data

are treated as a �xed and given part of the prob-

lem de�nition. In practice, however, the training data

are o�en not �xed beforehand. Rather, the learner

has an opportunity to play a role in deciding what

data will be acquired for training. �is process is usu-

ally referred to as “active learning,” recognizing that

the learner is an active participant in the training

process.

�e typical goal in active learning is to select train-

ing examples that best enable the learner to minimize

its loss on future test cases. �ere are many theo-

retical and practical results demonstrating that, when

applied properly, active learning can greatly reduce the

number of training examples, and even the compu-

tational e�ort required for a learner to achieve good

generalization.

A toy example that is o�en used to illustrate the

utility of active learning is that of learning a thresh-

old function over a one-dimensional interval. Given

+/− labels forN points drawn uniformly over the inter-
val, the expected error between the true value of the

threshold and any learner’s best guess is bounded by

O(/N). Given the opportunity to sequentially select
the position of points to be labeled, however, a learner

can pursue a binary search strategy, obtaining a best

guess that is within O(/N) of the true threshold
value.

�is toy example illustrates the sequential nature of

example selection that is a component of most (but not

all) active learning strategies: the learner makes use of

initial information to discard parts of the solution space,

and to focus future data acquisition on distinguishing

parts that are still viable.

Related Problems
�e term “active learning” is usually applied in super-

vised learning settings, though there are many related

problems in other branches of machine learning and

beyond. �e “exploration” component of the “explo-

ration/exploitation” strategy in reinforcement learning

is one such example. �e learner must take actions

to gain information, and must decide what actions

will give him/her the information that will best min-

imize future loss. A number of �elds of Operations

Research predate and parallel machine learning work

on active learning, including Decision �eory (North,

), Value of Information Computation, Bandit prob-

lems (Robbins, ), and Optimal Experiment Design

(Fedorov, ; Box & Draper, ).
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AActive Learning Scenarios
When active learning is used for classi�cation or regres-

sion, there are three common settings: constructive

active learning, pool-based active learning, and stream-

based active learning (also called selective sampling).

Constructive Active Learning

In constructive active learning, the learner is allowed

to propose arbitrary points in the input space as exam-

ples to be labeled. While this in theory gives the learner

the most power to explore, it is o�en not practical.

One obstacle is the observation that most learning sys-

tems train on only a reduced representation of the

instances they are presentedwith: text classi�ers on bags

of words (rather than fully-structured text) and speech

recognizers on formants (rather than raw audio).While

a learning system may be able to identify what pat-

tern of formants would be most informative to label,

there is no reliable way to generate audio that a human

could recognize (and label) from the desired formants

alone.

Pool-Based Active Learning

Pool-based active learning (McCallum & Nigam, )

is popular in domains such as text classi�cation and

speech recognition where unlabeled data are plentiful

and cheap, but labels are expensive and slow to acquire.

In pool-based active learning, the learner may not pro-

pose arbitrary points to label, but instead has access to a

set of unlabeled examples, and is allowed to select which

of them to request labels for.

A special case of pool-based learning is transductive

active learning, where the test distribution is exactly the

set of unlabeled examples. �e goal then is to sequen-

tially select and label a small number of examples that

will best allow predicting the labels of those points that

remain unlabeled.

A theme that is common to both constructive and

pool-based active learning is the principle of sequen-

tial experimentation. Information gained from early

queries allows the learner to focus its search on portions

of the domain that are most likely to give it additional

information on subsequent queries.

Stream-Based Active Learning

Stream-based active learning resembles pool-based

learning in many ways, except that the learner only has

access to the unlabeled instances as a stream; when an

instance arrives, the learner must decide whether to ask

for its label or let it go.

Other Forms of Active Learning

By virtue of the broad de�nition of active learning, there

is no real limit on the possible settings for framing it.

Angluin’s early work on learning regular sets (Angluin,

) employed a “counterexample” oracle: the learner

would propose a solution, and the oracle would either

declare it correct, or divulge a counterexample – an

instance on which the proposed and true solutions dis-

agreed. Jin and Si () describe a Bayesian method

for selecting informative items to recommend when

learning a collaborative �ltering model, and Steck and

Jaakkola () describe a method best described as

unsupervised active learning to build Bayesian networks

in large domains.

While most active learning work assumes that the

cost of obtaining a label is independent of the instance

to be labeled, there are many scenarios where this is not

the case. A mobile robot taking surface measurements

must �rst travel to the point it wishes to sample, mak-

ing distant points more expensive than nearby ones.

In some cases, the cost of a query (e.g., the di�culty

of traveling to a remote point to sample it) may not

even be known until it is made, requiring the learner

to learn a model of that as well. In these situations,

the sequential nature of active learning is greatly accen-

tuated, and a learner faces the additional challenges

of planning under uncertainty (see “Greedy vs. Batch

Active Learning,” below).

Common Active Learning Strategies
. Version space partitioning. �e earliest practical

active learning work (Ru� & Dietterich, ;

Mitchell, ) explicitly relied on 7version space
partitioning. �ese approaches tried to select

examples on which there was maximal disagree-

ment between hypotheses in the current version

space. When such examples were labeled, they

would invalidate as large a portion of the version

space as possible. A limitation of explicit version

space approaches is that, in underconstrained

domains, a learner may waste its e�ort di�erenti-

ating portions of the version space that have little
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e�ect on the classi�er’s predictions, and thus on its

error.

. Query by Committee (Seung, Opper, & Sompolin-

sky ). In query by committee, the experimenter

trains an ensemble of models, either by selecting

randomized starting points (e.g., in the case of a

neural network) or by bootstrapping the training

set. Candidate examples are scored based on dis-

agreement among the ensemble models – examples

with high disagreement indicate areas in the sam-

ple space that are underdetermined by the train-

ing data, and therefore potentially valuable to label.

Models in the ensemble may be looked at as sam-

ples from the version space; picking exampleswhere

these models disagree is a way of splitting the ver-

sion space.

. Uncertainty sampling (Lewis & Gail, ). Uncer-

tainty sampling is a heuristic form of statistical

active learning. Rather than sampling di�erent

points in the version space by training multiple

learners, the learner itself maintains an explicit

model of uncertainty over its input space. It then

selects for labeling those examples on which it

is least con�dent. In classi�cation and regres-

sion problems, uncertainty contributes directly to

expected loss (as the variance component of the

“error = bias + variance” decomposition), so that

gathering examples where the learner has greatest

uncertainty is o�en an e�ective loss-minimization

heuristic. �is approach has also been found

e�ective for non-probabilistic models, by simply

selecting examples that lie near the current deci-

sion boundary. For some learners, such as support

vector machines, this heuristic can be shown to be

an approximate partitioning of the learner’s version

space (Tong & Koller, ).

. Loss minimization (Cohn, Ghahramani, & Jordan,

). Uncertainty sampling can stumble when

parts of the learner’s domain are inherently noisy.

It may be that, regardless of the number of

samples labeled in some neighborhood, it will

remain impossible to accurately predict these. In

these cases, it would be desirable to not only

model the learner’s uncertainty over arbitrary

parts of its domain, but also to model what

e�ect labeling any future example is expected

to have on that uncertainty. For some learning

algorithms it is feasible to explicitly compute

such estimates (e.g., for locally-weighted regres-

sion and mixture models, these estimates may

be computed in closed form). It is, therefore,

practical to select examples that directly minimize

the expected loss to the learner, as discussed below

under “Statistical Active Learning.”

Statistical Active Learning
Uncertainty sampling and direct loss minimization are

two examples of statistical active learning. Both rely on

the learner’s ability to statistically model its own uncer-

tainty. When learning with a statistical model, such as

a linear regressor or a mixture of Gaussians (Dasgupta,

), the objective is usually to �nd model parameters

that minimize some form of expected loss. When active

learning is applied to such models, it is natural to also

select training data so as to minimize that same objec-

tive. As statistical models usually give us estimates on

the probability of (as yet) unknown values, it is o�en

straightforward to turn this machinery upon itself to

assist in the active learning process (Cohn et al., ).

�e process is usually as follows:

. Begin by requesting labels for a small random sub-

sample of the examples x, x, K, xnx and �t our

model to the labeled data.

. For any x in our domain, a statistical model lets us

estimate both the conditional expectation ŷ(x) and
σ 
ŷ(x), the variance of that expectation. We estimate

our current loss by drawing a new randomsample of

unlabeled data, and computing the averaged σ 
ŷ(x).

. We now consider a candidate point x̃, and ask what

reduction in loss we would obtain if we had labeled

it ỹ. If we knew its label with certainty, we could sim-

ply add the point to the training set, retrain, and

compute the new expected loss. While we do not

know the true ỹ, we could, in theory, compute the

new expected loss for every possible ỹ and average

those losses, weighting them by our model’s esti-

mate of p(ỹ∣x̃). In practice, this is normally unfea-
sible; however, for some statistical models, such as

locally-weighted regression and mixtures of Gaus-

sians, we can compute the distribution of p(ỹ∣x̃) and
its e�ect on σ 

ŷ(x) in closed form (Cohn et al., ).
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A. Given the ability to estimate the expected e�ect of

obtaining label ỹ for candidate x̃, we repeat this

computation for a sample ofMcandidates, and then

request a label for the candidate with the largest

expected decrease in loss.We add the newly-labeled

example to our training set, retrain, and begin look-

ing at candidate points to add on the next iteration.

The Need for Reference Distributions
Step () above illustrates a complication that is unique to

active learning approaches. Traditional “passive” learn-

ing usually relies on the assumption that the distribu-

tion over which the learner will be tested is the same as

the one fromwhich the training datawere drawn.When

the learner is allowed to select its own training data, it

still needs some formof access to the distribution of data

onwhich it will be tested. A pool-based or stream-based

learner can use the pool or streamas a proxy for that dis-

tribution, but if the learner is allowed (or required) to

construct its own examples, it risks wasting all its e�ort

on resolving portions of the solution space that are of

no interest to the problem at hand.

A Detailed Example: Statistical Active
Learning with LOESS
LOESS (Cleveland, Devlin, & Gross, ) is a sim-

ple form of locally-weighted regression using a kernel

function. When asked to predict the unknown output

y corresponding to a given input x, LOESS computes a

7linear regression over known (x, y) pairs, in which it
gives pair (xi, yi) weight according to the proximity of xi
to x. We will write this weighting as a kernel function,

K(xi, x), or simplify it to ki when there is no chance of
confusion.

In the active learning setting, we will assume that

we have a large supply of unlabeled examples drawn

from the test distribution, along with labels for a small

number of them. We wish to label a small num-

ber more so as to minimize the mean squared error

(MSE) of our model. MSE can be decomposed into

two terms: squared 7bias and variance. If we make the
(inaccurate but simplifying) assumption that LOESS

is approximately unbiased for the problem at hand,

minimizingMSE reduces to minimizing the variance of

our estimates.

Given n labeled pairs, and a prediction to make

for input x, LOESS computes the following covariance

statistics around x:

µx =
∑i kixi

n
, σ x =

∑i ki (xi − µx)

n
,

σxy =
∑i ki (xi − µx) (yi − µy)

n

µy =
∑i kiyi

n
, σ y =

∑i ki (yi − µy)


n
,

σ y∣x = σ y −
σxy

σ x

We can combine these to express the conditional

expectation of y (our estimate) and its variance as:

ŷ = µy +
σxy

σ x
(x − µx),

σ ŷ =
σ 
y∣x

n
(∑

i

ki +
(x − µx)

σ x
∑
i

ki
(xi − µx)

σ x
) .

Our proxy for model error is the variance of our pre-

diction, integrated over the test distribution ⟨σ ŷ ⟩. As we
have assumed a pool-based setting in which we have a

large number of unlabeled examples from that distribu-

tion, we can simply compute the above variance over a

sample from the pool, and use the resulting average as

our estimate.

To perform statistical active learning, we want to

compute how our estimated variance will change if

we add an (as yet unknown) label ỹ for an arbitrary x̃.

We will write this new expected variance as ⟨σ̃ ŷ ⟩. While
we do not know what value ỹ will take, our model gives

us an estimated mean ŷ(x̃) and variance σ 
ŷ(x̃) for the

value, as above. We can add this “distributed” y value

to LOESS just as though it were a discrete one, and

compute the resulting expectation ⟨σ̃ ŷ ⟩ in closed form.
De�ning k̃ as K(x̃, x), we write:

⟨σ̃ ŷ ⟩ =
⟨σ̃ 

y∣x⟩
(n + k̃)

(∑
i

ki + k̃ + (x − µ̃x)
σ̃ x

× (∑
i

ki
(xi − µ̃x)

σ̃ x
+ k̃

(x̃ − µ̃x)
σ̃ x

)) ,
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where the component expectations are computed as

follows:

⟨σ̃ y∣x⟩ = ⟨σ̃ y ⟩ −
⟨σ̃ xy⟩

σ̃ x
,

⟨σ̃ y ⟩ =
nσ y

n + k̃
+
nk̃(σ 

y∣x̃ + (ŷ(x̃) − µy))
(n + k̃)

,

µ̃x =
nµx + k̃x̃

n + k̃
,

⟨σ̃xy⟩ =
nσxy

n + k̃
+
nk̃(x̃ − µx)(ŷ(x̃) − µy)

(n + k̃)
,

σ̃ x =
nσ x

n + k̃
+ nk̃(x̃ − µx)

(n + k̃)
,

⟨σ̃ xy⟩ = ⟨σ̃xy⟩
 +

nk̃σ 
y∣x̃(x̃ − µx)

(n + k̃)
.

Greedy Versus Batch Active Learning
It is also worth pointing out that virtually all active

learning work relies on greedy strategies – the learner

estimates what single example best achieves its objec-

tive, requests that one, retrains, and repeats. In theory,

it is possible to plan some number of queries ahead,

asking what point is best to label now, given that N-

more labeling opportunities remain. While such strate-

gies have been explored inOperations Research for very

small problem domains, their computational require-

ments make this approach unfeasible for problems of

the size typically encountered in machine learning.

�ere are cases where retraining the learner a�er

every new label would be prohibitively expensive, or

where access to labels is limited by the number of iter-

ations as well as by the total number of labels (e.g.,

for a �nite number of clinical trials). In this case, the

learner may select a set of examples to be labeled on

each iteration. �is batch approach, however, is only

useful if the learner is able to identify a set of exam-

ples whose expected contributions are non-redundant,

which substantially complicates the process.
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Aregression function, the learner may itself supply a set

of data points at which to measure response values, in

the hope of reducing the variance of its estimate. Such

problems have been studied formany decades under the

rubric of experimental design (Cherno�, ; Fedorov,

). More recently, there has been substantial interest

within the machine learning community in the spe-

ci�c task of actively learning binary classi�ers.�is task

presents several fundamental statistical and algorithmic

challenges, and an understanding of its mathematical

underpinnings is only gradually emerging. �is brief

survey will describe some of the progress that has been

made so far.

Learning from Labeled and Unlabeled Data
In the machine learning literature, the task of learning

a classi�er has traditionally been studied in the frame-

work of supervised learning.�is paradigm assumes that

there is a training set consisting of data points x (from

some set X ) and their labels y (from some set Y), and
the goal is to learn a function f : X → Y that will
accurately predict the labels of data points arising in the

future. Over the past  years, tremendous progress has

beenmade in resolvingmany of the basic questions sur-

rounding thismodel, such as “howmany training points

are needed to learn an accurate classi�er?”

Although this framework is now fairly well under-

stood, it is a poor �t for many modern learning tasks

because of its assumption that all training points auto-

matically come labeled. In practice, it is frequently the

case that the raw, abundant, easily obtained form of data

is unlabeled, whereas labels must be explicitly procured

and are expensive. In such situations, the reality is that

the learner starts with a large pool of unlabeled points

and must then strategically decide which ones it wants

labeled: how best to spend its limited budget.

Example: Speech recognition. When building a speech

recognizer, the unlabeled training data consists of raw

speech samples, which are very easy to collect: just walk

around with a microphone. For all practical purposes,

an unlimited quantity of such samples can be obtained.

On the other hand, the “label” for each speech sam-

ple is a segmentation into its constituent phonemes,

and producing even one such label requires substan-

tial human time and attention. Over the past decades,

research labs and the government have expended an

enormous amount of money, time, and e�ort on creat-

ing labeled datasets of English speech. �is investment

has paid o�, but our ambitions are inevitably moving

past what these datasets can provide: wewould now like,

for instance, to create recognizers for other languages,

or for English in speci�c contexts. Is there some way to

avoid more painstaking years of data labeling, to some-

how leverage the easy availability of raw speech so as to

signi�cantly reduce the number of labels needed? �is

is the hope of active learning.

Some early results on active learning were in the

membership querymodel, where the data is assumed to

be separable (that is, some hypothesis h perfectly classi-

�es all points) and the learner is allowed to query the

label of any point in the input space X (rather than
being constrained to a prespeci�ed unlabeled set), with

the goal of eventually returning the perfect hypothe-

sis h∗. �ere is a signi�cant body of beautiful theo-

retical work in this model (Angluin, ), but early

experiments ran into some telling di�culties. One study

(Baum& Lang, ) found that when training a neural

network for handwritten digit recognition, the queries

synthesized by the learner were such bizarre and unnat-

ural images that they were impossible for a human to

classify. In such contexts, the membership query model

is of limited practical value; nonetheless, many of the

insights obtained from this model carry over to other

settings (Hanneke, a).

We will �x as our standard model one in which the

learner is given a source of unlabeled data, rather than

being able to generate these points himself. Each point

has an associated label, but the label is initially hidden,

and there is a cost for revealing it. �e hope is that an

accurate classi�er can be found by querying just a few

labels, much fewer than would be required by regular

supervised learning.

How can the learner decide which labels to probe?

One option is to select the query points at random, but

it is not hard to show that this yields the same label

complexity as supervised learning. A better idea is to

choose the query points adaptively: for instance, start

by querying some random data points to get a rough

sense of where the decision boundary lies, and then

gradually re�ne the estimate of the boundary by specif-

ically querying points in its immediate vicinity. In other
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words, ask for the labels of data points whose par-

ticular positioning makes them especially informative.

Such strategies certainly sound good, but can they be

�eshed out into practical algorithms?And if so, do these

algorithms work well in the sense of producing good

classi�ers with fewer labels than would be required by

supervised learning?

On account of the enormous practical importance of

active learning, there are a wide range of algorithms and

techniques already available, most of which resemble

the aggressive, adaptive sampling strategy just outlined,

andmany of which show promise in experimental stud-

ies. However, a big problem with this kind of sampling

is that very quickly the set of labeled points no longer

re�ects the underlying data distribution. �is makes

it hard to show that the classi�ers learned have good

statistical properties (for instance, that they converge

to an optimal classi�er in the limit of in�nitely many

labels). �is survey will only discuss methods that have

proofs of statistical well-foundedness, and whose label

complexity can be explicitly analyzed.

Motivating Examples
Wewill start by looking at a few examples that illustrate

the enormous potential of active learning and that also

make it clear why analyses of this new model require

concepts and intuitions that are fundamentally di�er-

ent from those that have already been developed for

supervised learning.

Example: Thresholds on the Line

Suppose the data lie on the real line, and the available

classi�ers are simple thresholding functions,H = {hw :
w ∈ R}:

hw(x) =
⎧⎪⎪⎨⎪⎪⎩

+ if x ≥ w

− if x < w

Tomake things precise, let us denote the (unknown)

underlying distribution on the data (X,Y) ∈ R ×
{+,−} byP, and let us suppose that we want a hypoth-
esis h ∈ H whose error with respect to P, namely
errP(h) = P(h(X) ≠ Y), is at most some є. How many
labels do we need?

In supervised learning, such issues are well under-

stood. �e standard machinery of sample complexity

(using VC theory) tells us that if the data are separa-

ble – that is, if they can be perfectly classi�ed by some

hypothesis inH – then we need approximately /є ran-
dom labeled examples fromP, and it is enough to return
any classi�er consistent with them.

Now suppose we instead draw /є unlabeled sam-

ples from P. If we lay these points down on the line,
their hidden labels are a sequence of −s followed by a
sequence of +s, and the goal is to discover the point
w at which the transition occurs. �is can be accom-

plished with a simple binary search which asks for just

log /є labels: �rst ask for the label of the median point;
if it is +, move to the th percentile point, otherwise
move to the th percentile point; and so on. �us, for

this hypothesis class, active learning gives an exponen-

tial improvement in the number of labels needed, from

/є to just log /є. For instance, if supervised learning
requires a million labels, active learning requires just

log ,, ≈ , literally!
It is a tantalizing possibility that even for more

complicated hypothesis classes H, a sort of general-
ized binary search is possible. A natural next step is to

consider linear separators in two dimensions.

Example: Linear Separators in R

Let H be the hypothesis class of linear separators in
R, and suppose the data is distributed according to
some density supported on the perimeter of the unit

circle. It turns out that the positive results of the one-

dimensional case do not generalize: there are some tar-

get hypotheses inH for which Ω(/є) labels are needed
to �nd a classi�er with error rate less than є, no matter

what active learning scheme is used.

To see this, consider the following possible target

hypotheses (Fig. ):

● h: all points are positive.

● hi ( ≤ i ≤ /є): all points are positive except for a
small slice Bi of probability mass є.

�e slices Bi are explicitly chosen to be disjoint, with

the result that Ω(/є) labels are needed to distinguish
between these hypotheses. For instance, suppose nature

chooses a target hypothesis at random from among the

hi,  ≤ i ≤ /є.�en, to identify this target with probabil-
ity at least /, it is necessary to query points in at least
(about) half the Bis.
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Active Learning Theory. Figure . P is supported on the

circumference of a circle. Each Bi is an arc of probability

mass є

�us for these particular target hypotheses, active

learning o�ers little improvement in sample com-

plexity over regular supervised learning. What about

other target hypotheses in H, for instance those in
which the positive and negative regions are more

evenly balanced? It is quite easy (Dasgupta, )

to devise an active learning scheme which asks for

O(min{/i(h), /є}) + O(log /є) labels, where i(h) =
min{positive mass of h, negative mass of h}. �us even
within this simple hypothesis class, the label complexity

can run anywhere from O(log /є) to Ω(/є), depend-
ing on the speci�c target hypothesis!

Example: An Overabundance of Unlabeled Data

In our two previous examples, the amount of unlabeled

data needed was O(/є), exactly the usual sample com-
plexity of supervised learning. But it is sometimes help-

ful to have signi�cantly more unlabeled data than this.

In Dasgupta (), a distribution P is described for
which if the amount of unlabeled data is small (below

any prespeci�ed threshold), then the number of labels

needed to learn the target linear separator is Ω(/є);
whereas if the amount of unlabeled data is much larger,

then onlyO(log /є) labels are needed.�is is a situation
where most of the data distribution is fairly uninfor-

mative while a miniscule fraction is highly informative.

A lot of unlabeled data is needed in order to get even a

few of the informative points.

The Sample Complexity of Active Learning
Wewill think of the unlabeled points x, . . . , xn as being

drawn i.i.d. from an underlying distribution PX on X
(namely, the marginal of the distribution P on X × Y),
either all at once (a pool) or one at a time (a stream).

�e learner is only allowed to query the labels of points

in the pool/stream; that is, it is restricted to “natu-

rally occurring” data points rather than synthetic ones

(Fig. ). It returns a hypothesis h ∈ H whose quality is
measured by its error rate, errP(h).
In regular supervised learning, it is well known that

if the VC dimension ofH is d, then the number of labels
that will with high probability ensure errP(h) ≤ є is

roughly O(d/є) if the data is separable and O(d/є)
otherwise (Haussler, ); various logarithmic terms

are omitted here. For active learning, it is clear from

the examples above that the VC dimension alone does

not adequately characterize label complexity. Is there a

di�erent combinatorial parameter that does?

Generic Results for Separable Data

For separable data, it is possible to give upper and lower

bounds on label complexity in terms of a special param-

eter known as the splitting index (Dasgupta, ). �is

is merely an existence result: the algorithm needed to

realize the upper bound is intractable because it involves

explicitly maintaining an є-cover (a coarse approxima-

tion) of the hypothesis class, and the size of this cover

is in general exponential in the VC dimension. Nev-

ertheless, it does give us an idea of the kinds of label

complexity we can hope to achieve.

Example. Suppose the hypothesis class consists of inter-

vals on the real line: X = R and H = {ha,b : a, b ∈ R},
where ha,b(x) = (a ≤ x ≤ b). Using the splitting
index, the label complexity of active learning is seen to

be Θ̃(min{/PX([a, b]), /є} + log /є) when the target
hypothesis is ha,b (Dasgupta, ).Here the Θ̃ notation

is used to suppress logarithmic terms.

Example. SupposeX = Rd andH consists of linear sep-
arators through the origin. If PX is the uniform distri-

bution on the unit sphere, the number of labels needed

to learn a hypothesis of error ≤ є is just Θ̃(d log /є),
exponentially smaller than the Õ(d/є) label complex-
ity of supervised learning. If PX is not the uniform

distribution but is everywhere within a multiplicative
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Pool-based active learning

Get a set of unlabeled points U ⊂ X
Repeat until satisfied:
Pick some x ∈ U to label

Return a hypothesis h ∈ H

Stream-based active learning

Repeat for t = , , , . . .:
Choose a hypothesis ht ∈ H
Receive an unlabeled point x ∈ X
Decide whether to query its label

Active Learning Theory. Figure . Models of pool- and stream-based active learning. The data are draws from an under-

lying distribution PX , and hypotheses h are evaluated by errP(h). If we want to get this error below є, how many labels

are needed, as a function of є?

factor λ >  of it, then the label complexity becomes
Õ((d log /є) log λ), provided the amount of unlabeled
data is increased by a factor of λ (Dasgupta, ).

�ese results are very encouraging, but the question

of an e�cient active learning algorithm remains open.

We now consider two approaches.

Mildly Selective Sampling

�e label complexity results mentioned above are based

on querying maximally informative points. A less

aggressive strategy is to be mildly selective, to query all

points except those that are quite clearly uninformative.

�is is the idea behind one of the earliest generic active

learning schemes (Cohn, Atlas, & Ladner, ). Data

points x, x, . . . arrive in a stream, and for each one the

learner makes a spot decision about whether or not to

request a label. When xt arrives, the learner behaves as

follows.

● Determine whether both possible labelings, (xt ,+)
and (xt ,−), are consistent with the labeled examples
seen so far.

● If so, ask for the label yt . Otherwise set yt to be the

unique consistent label.

Fortunately, the check required for the �rst step can be

performed e�ciently by making two calls to a super-

vised learner. �us this is a very simple and elegant

active learning scheme, although as one might expect,

it is suboptimal in its label complexity (Balcan et al.,

). Interestingly, there is a parameter called the dis-

agreement coe�cient that characterizes the label com-

plexity of this scheme and also of some other mildly

selective learners (Friedman, ; Hanneke, b).

In practice, the biggest limitation of the algorithm

above is that it assumes the data are separable. Recent

results have shown how to remove this assumption

(Balcan, Beygelzimer,&Langford, ;Dasgupta et al.,

) and to accommodate classi�cation loss functions

other than −  loss (Beygelzimer et al., ). Variants
of the disagreement coe�cient continue to character-

ize label complexity in the agnostic setting (Beygelzimer

et al., ; Dasgupta et al., ).

A Bayesian Model

�e query by committee algorithm (Seung, Opper, &

Sompolinsky, ) is based on a Bayesian view of active

learning. �e learner starts with a prior distribution on

the hypothesis space, and is then exposed to a stream of

unlabeled data. Upon receiving xt , the learner performs

the following steps.

● Draw two hypotheses h,h′ at random from the pos-

terior overH.
● If h(xt) ≠ h′(xt) then ask for the label of xt and
update the posterior accordingly.

�is algorithm queries points that substantially shrink

the posterior, while at the same time taking account

of the data distribution. Various theoretical guaran-

tees have been shown for it (Freund, Seung, Shamir, &

Tishby, ); in particular, in the case of linear separa-

tors with a uniform data distribution, it achieves a label

complexity of O(d log /є), the best possible.
Sampling from the posterior over the hypothesis

class is, in general, computationally prohibitive. How-

ever, for linear separators with a uniform prior, it can be

implemented e�ciently using random walks on convex

bodies (Gilad-Bachrach, Navot, & Tishby, ).
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AOther Work

In this survey, I have touched mostly on active learning

results of the greatest generality, those that apply to arbi-

trary hypothesis classes. �ere is also a signi�cant body

of more specialized results.

● E�cient active learning algorithms for speci�c

hypothesis classes.

�is includes an online learning algorithm for lin-

ear separators that only queries some of the points

and yet achieves similar regret bounds to algo-

rithms that query all the points (Cesa-Bianchi,

Gentile, & Zaniboni, ). �e label complexity of

this method is yet to be characterized.

● Algorithms and label bounds for linear separators

under the uniform data distribution.

�is particular setting has been amenable to mathe-

matical analysis. For separable data, it turns out that a

variantof theperceptronalgorithmachieves theopti-

malO(d log /є) labelcomplexity(Dasgupta,Kalai,&
Monteleoni,).Asimplealgorithmisalsoavailable

for the agnostic setting (Balcan et al., ).

Conclusion
�e theoretical frontier of active learning is mostly an

unexplored wilderness. Except for a few speci�c cases,

we donot have a clear sense of howmuch active learning

can reduce label complexity: whether by just a constant

factor, or polynomially, or exponentially. �e funda-

mental statistical and algorithmic challenges involved,

together with the huge practical importance of the �eld,

make active learning a particularly rewarding terrain for

investigation.
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Adaboost

Adaboost is an 7ensemble learning technique, and the
most well-known of the 7Boosting family of algo-
rithms. �e algorithm trains models sequentially, with

a new model trained at each round. At the end of each

round, mis-classi�ed examples are identi�ed and have

their emphasis increased in a new training set which is

then fed back into the start of the next round, and a new

model is trained. �e idea is that subsequent models
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should be able to compensate for errors made by earlier

models. See7ensemble learning for full details.

Adaptive Control Processes

7Bayesian Reinforcement Learning

Adaptive Real-Time Dynamic
Programming

Andrew G. Barto

University of Massachusetts, Amherst, MA, USA

Synonyms
ARTDP

Definition
Adaptive Real-Time Dynamic Programming (ARTDP)

is an algorithm that allows an agent to improve its

behavior while interacting over time with an incom-

pletely known dynamic environment. It can also be

viewed as a heuristic search algorithm for �nding short-

est paths in incompletely known stochastic domains.

ARTDP is based on 7Dynamic Programming (DP),
but unlike conventional DP, which consists of o�-line

algorithms, ARTDP is an on-line algorithm because it

uses agent behavior to guide its computation. ARTDP

is adaptive because it does not need a complete

and accurate model of the environment but learns a

model from data collected during agent-environment

interaction. When a good model is available, 7Real-
Time Dynamic Programming (RTDP) is applica-

ble, which is ARTDP without the model-learning

component.

Motivation and Background
RTDP combines strengths of heuristic search and DP.

Like heuristic search – and unlike conventional DP – it

does not have to evaluate the entire state space in order

to produce an optimal solution. Like DP – and unlike

most heuristic search algorithms – it is applicable to

nondeterministic problems. Additionally, RTDP’s per-

formance as an7anytime algorithm is better than con-
ventional DP and heuristic search algorithms. ARTDP

extends these strengths to problems for which a good

model is not initially available.

In arti�cial intelligence, control engineering, and

operations research, many problems require �nding a

policy (or control rule) that determines how an agent

(or controller) should generate actions in response to

the states of its environment (the controlled system).

When a “cost” or a “reward” is associated with each

step of the agent’s behavior, policies can be compared

according to howmuch cost or reward they are expected

to accumulate over time.

�e usual formulation for problems like this in the

discrete-time case is the 7Markov Decision Process
(MDP). �e objective is to �nd a policy that minimizes

(maximizes) a measure of the total cost (reward) over

time, assuming that the agent–environment interaction

can begin in any of the possible states. In other cases,

there is a designated set of “start states” that is much

smaller than the entire state set (e.g., the initial board

con�guration in a board game). In these cases, any given

policy only has to be de�ned for the set of states that

can be reached from the starting states when the agent

is using that policy.�e rest of the states will never arise

when that policy is being followed, so the policy does

not need to specify what the agent should do in those

states.

ARTDP and RTDP exploit situations where the set

of states reachable from the start states is a small subset

of the entire state space. �ey can dramatically reduce

the amount of computation needed to determine an

optimal policy for the relevant states as compared with

the amount of computation that a conventional DP

algorithmwould require to determine an optimal policy

for all the states. �ese algorithms do this by focussing

computation around simulated behavioral experiences

(if there is a model available capable of simulating these

experiences), or around real behavioral experiences (if

no model is available).

RTDP and ARTDP were introduced by Barto,

Bradtke, and Singh (). �e starting point was the

novel observation by Bradtke that Korf ’s Learning

Real-Time A* heuristic search algorithm (Korf, )
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Ais closely related to DP. RTDP generalizes Learning

Real-Time A* to stochastic problems. ARTDP is also

closely related to Sutton’s Dyna system (Sutton, )

and Jalali and Ferguson’s () Transient DP.�eoreti-

cal analysis relies on the theory of Asnychronous DP as

described by Bertsekas and Tsitsiklis ().

ARTDP and RTDP are 7model-based reinforce-
ment learning algorithms, so called because they

take advantage of an environment model, unlike

7model-free reinforcement learning algorithms such as
7Q-Learning and7Sarsa.

Structure of Learning System
Backup Operations

A basic step of many DP and RL algorithms is a backup

operation. �is is an operation that updates a current

estimate of the cost of an MDP’s state. (We use the cost

formulation instead of reward to be consistent with the

original presentation of the algorithms. In the case of

rewards, this would be called the value of a state and

we would maximize instead of minimize.) Suppose X is

the set of MDP states. For each state x ∈ X, f (x), the
cost of state x, gives a measure (which varies with dif-

ferent MDP formulations) of the total cost the agent is

expected to incur over the future if it starts in x. If fk(x)
and fk+(x), respectively, denote the estimate of f (x)
before and a�er a backup, a typical backup operation

applied to x looks like this:

fk+(x) = mina∈A[cx(a) + ∑
y∈X

pxy(a)fk(y)],

where A is the set of possible agent actions, cx(a) is the
immediate cost the agent incurs for performing action

a in state x, and pxy(a) is the probability that the envi-
ronment makes a transition from state x to state y as a

result of the agent’s action a. �is backup operation is

associated with theDP algorithm known as7value iter-
ation. It is also the backup operation used by RTDP and

ARTDP.

Conventional DP algorithms consist of successive

“sweeps” of the state set. Each sweep consists of applying

a backup operation to each state. Sweeps continue until

the algorithm converges to a solution. Asynchronous

DP, which underlies RTDP and ARTDP, does not use

systematic sweeps. States can be chosen in any way

whatsoever, and as long as backups continue to be

applied to all states (and some other conditions are sat-

is�ed), the algorithmwill converge. RTDP is an instance

of asynchronous DP in which the states chosen for

backups are determined by the agent’s behavior.

�e backup operation above ismodel-based because

it uses known rewards and transition probabilities, and

the values of all the states appear on the right-hand-side

of the equation. In contrast, a sample backup uses the

value of just one sample successor state. RTDP and

ARTDP are like RL algorithms in that they rely on

real or simulated behavioral experience, but unlike

many (but not all) RL algorithms, they use full backups

like DP.

Off-Line Versus On-Line

AconventionalDP algorithm typically executes o�-line.

When applied to �nding an optimal policy for an MDP,

this means that the DP algorithm executes to com-

pletion before its result (an optimal policy) is used to

control the agent’s behavior. �e sweeps of DP sequen-

tially “visit” the states of the MDP, performing a backup

operation on each state. But it is important not to con-

fuse these visits with the behaving agent’s visits to states:

the agent is not yet behaving while the o�-line DP com-

putation is being done. Hence, the agent’s behavior has

no in�uence on the DP computation. �e same is true

for o�-line asynchronous DP.

RTDP is an on-line, or “real-time,” algorithm. It is

an asynchronous DP computation that executes con-

currently with the agent’s behavior so that the agent’s

behavior can in�uence the DP computation. Further,

the concurrently executing DP computation can in�u-

ence the agent’s behavior. �e agent’s visits to states

directs the “visits” to states made by the concurrent

asynchronous DP computation. At the same time, the

action performed by the agent is the action speci�ed by

the policy corresponding to the latest results of the DP

computation: it is the “greedy” actionwith respect to the

current estimate of the cost function.

Asynchronous
Dynamic Programming

Computation
Behaving Agent

Specify
actions

Specify states
to backup 

In the simplest version of RTDP, when a state is vis-

ited by the agent, the DP computation performs the
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model-based backup operation given above on that

same state. In general, for each step of the agent’s behav-

ior, RTDP can apply the backup operation to each of an

arbitrary set of states, provided that the agent’s current

state is included. For example, at each step of behavior,

a limited-horizon look-ahead search can be conducted

from the agent’s current state, with the backup opera-

tion applied to each of the states generated in the search.

Essentially, RTDP is an asynchronous DP computation

with the computational e�ort focused along simulated

or actual behavioral trajectories.

Learning A Model

ARTDP is the same as RTDP except that () an

environment model is updated using any on-line

model-learning, or system identi�cation, method, ()

the current environment model is used in performing

the RTDP backup operations, and () the agent has

to perform exploratory actions occasionally instead of

always greedy actions as in RTDP.�is last step is essen-

tial to ensure that the environment model eventually

converges to the correct model. If the state and action

sets are �nite, the simplest way to learn a model is to

keep counts of the number of times each transition

occurs for each action and convert these frequencies

to probabilities, thus forming the maximum-likelihood

model.

Summary of Theoretical Results

When RTDP and ARTDP are applied to stochastic opti-

mal path problems, one can prove that under certain

conditions they converge to optimal policies without

the need to apply backup operations to all the states.

Indeed, is some problems, only a small fraction of the

states need to be visited. A stochastic optimal path prob-

lem is an MDP with a nonempty set of start states and a

nonempty set of goal states. Each transition until a goal

state is reached has a nonnegative immediate cost, and

once the agent reaches a goal state, it stays there and

therea�er incurs zero cost. Each episode of agent expe-

rience begins with a start state. An optimal policy is one

that minimizes the cost of every state, i.e., minimizes

f (x) for all states x. Under some relatively mild condi-
tions, every optimal policy is guaranteed to eventually

reach a goal state.

A state x is relevant if a start state s and an opti-

mal policy exist such that x can be reached from s

when the agent uses that policy. If we could somehow

know which states are relevant, we could restrict DP to

just these states and obtain an optimal policy. But this

is not possible because knowing which states are rele-

vant requires knowledge of optimal policies, which is

what one is seeking. However, under certain conditions,

without requiring repeated visits to all the irrelevant

states, RTDP produces a policy that is optimal for all

the relevant states. �e conditions are that () the ini-

tial cost of every goal state is zero, () there exists at

least one policy that guarantees that a goal state will be

reached with probability one from any start state, () all

immediate costs for transitions from non-goal states are

strictly positive, and () none of the initial costs are

larger than the actual costs.�is result is proved inBarto

et al. () by combining aspects of Korf ’s () proof

for LRTA* with results for asynchronous DP.

Special Cases and Extensions

A number of special cases and extensions of RTDP have

been developed that improve performance over the

basic version. Some examples are as follows. Bonnet and

Ge�ner’s () Labeled RTDP labels states that have

already been “solved,” allowing faster convergence than

RTDP. Feng, Hansen, and Zilberstein () proposed

Symbolic RTDP, which selects a set of states to update

at each step using symbolicmodel-checking techniques.

�e RTDP convergence theorem still applies because

this is a special case of RTDP. Smith and Simmons

() developed Focused RTDP that maintains a pri-

ority value for each state to better direct search and

produce faster convergence. Hansen and Zilberstein’s

() LAO* uses some of the same ideas as RTDP to

produce a heuristic search algorithm that can �nd solu-

tions with loops to non-deterministic heuristic search

problems. Many other variants are possible. Extending

ARTDP instead of RTDP in all of these ways would pro-

duce analogous algorithms that could be used when a

good model is not available.

Cross References
7Anytime Algorithm
7Approximate Dynamic Programming
7Reinforcement Learning
7System Identi�cation
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Adaptive Resonance Theory

Gail A. Carpenter, Stephen Grossberg

Boston University, Boston, MA, USA

Synonyms
ART

Definition
Adaptive resonance theory, or ART, is both a cognitive

and neural theory of how the brain quickly learns to

categorize, recognize, and predict objects and events in

a changing world, and a set of algorithms that compu-

tationally embody ART principles and that are used in

large-scale engineering and technological applications

wherein fast, stable, and incremental learning about

complex changing environment is needed. ART clari�es

the brain processes from which conscious experiences

emerge. It predicts a functional link between processes

of consciousness, learning, expectation, attention, res-

onance, and synchrony (CLEARS), including the pre-

diction that “all conscious states are resonant states.”

�is connection clari�es how brain dynamics enable

a behaving individual to autonomously adapt in real

time to a rapidly changing world. ART predicts how

top-down attention works and regulates fast stable

learning of recognition categories. In particular, ART

articulates a critical role for “resonant” states in driv-

ing fast stable learning; and thus the name adaptive

resonance. �ese resonant states are bound together,

using top-down attentive feedback in the form of

learned expectations, into coherent representations of

the world. ART hereby clari�es one important sense

in which the brain carries out predictive computa-

tion. ART has explained and successfully predicted

a wide range of behavioral and neurobiological data,

including data about human cognition and the dynam-

ics of spiking laminar cortical networks. ART algo-

rithms have been used in large-scale applications such

as medical database prediction, remote sensing, air-

plane design, and the control of autonomous adaptive

robots.

Motivation and Background
Many current learning algorithms do not emulate

the way in which humans and other animals learn.

�e power of human and animal learning provides

high motivation to discover computational principles

whereby machines can learn with similar capabilities.

Humans and animals experience the world on the

�y, and carry out incremental learning of sequences

of episodes in real time. O�en such learning is

unsupervised, with the world itself as the teacher.

Learning can also proceed with an unpredictable mix-

ture of unsupervised and supervised learning tri-

als. Such learning goes on successfully in a world

that is nonstationary; that is, the rules of which can

change unpredictably through time. Moreover, humans

and animals can learn quickly and stably through

time. A single important experience can be remem-

bered for a long time. ART proposes a solution of

this stability–plasticity dilemma (Grossberg, ) by
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showing howbrains learn quickly without forcing catas-

trophic forgetting of already learned, and still success-

ful, memories.

�us, ART autonomously carries out fast, yet sta-

ble, incremental learning under both unsupervised and

supervised learning conditions in response to a complex

nonstationaryworld. In contrast,many current learning

algorithms use batch learning in which all the informa-

tion about the world to be learned is available at a single

time. Other algorithms are not de�ned unless all learn-

ing trials are supervised. Yet other algorithms become

unstable in a nonstationary world, or become unsta-

ble if learning is fast; that is, if an event can be fully

learned on a single learning trial. ART overcomes these

problems.

Somemachine learning algorithms are feed-forward

clustering algorithms that undergo catastrophic forget-

ting in a nonstationary world. �e ART solution of the

stability–plasticity dilemma depends upon feedback,

or top-down, expectations that are matched against

bottom-up data and thereby focus attention upon

critical feature patterns. A good enough match leads to

resonance and fast learning. A big enough mismatch

leads to hypothesis testing or memory search that dis-

covers and learns a more predictive category. �us,

ART is a self-organizing expert system that avoids the

brittleness of traditional expert systems.

�e world is �lled with uncertainty, so probability

concepts seem relevant to understanding how brains

learn about uncertain data. �is fact has led some

machine learning practitioners to assume that brains

obey Bayesian laws. However, the Bayes rule is so gen-

eral that it can accommodate any system in nature.

Additional computational principles and mechanisms

must augment Bayes to distinguish a brain from, say, a

hydrogen atom or storm. Moreover, probabilistic mod-

els o�en use nonlocal computations. ART shows how

the brain embodies a novel kind of real-time probability

theory, hypothesis testing, prediction, and decision-

making, the local computations of which adapt to a

nonstationary world. �ese ART principles and mech-

anisms go beyond Bayesian analysis, and are embodied

parsimoniously in the laminar circuits of cerebral cor-

tex. Indeed, the cortex embodies a new kind of lam-

inar computing that reconciles the best properties of

feedforward and feedback processing, digital and ana-

log processing, and data-driven bottom-up processing

combined with hypothesis-driven top-down processing

(Grossberg, ).

Structure of Learning System
How CLEARS Mechanisms Interact

Humans are intentional beings who learn expecta-

tions about the world and make predictions about

what is about to happen. Humans are also attentional

beingswho focus processing resources upon a restricted

amount of incoming information at any time. Why

are we both intentional and attentional beings, and

are these two types of processes related? �e stability–

plasticity dilemma and its solution using resonant states

provide a unifying framework for understanding these

issues.

To clarify the role of sensory or cognitive expec-

tations, and of how a resonant state is activated, sup-

pose you were asked to “�nd the yellow ball as quickly

as possible, and you will win a $, prize.” Acti-

vating an expectation of a “yellow ball” enables its

more rapid detection, and with a more energetic neu-

ral response. Sensory and cognitive top-down expecta-

tions hereby lead to excitatory matching with consistent

bottom-up data. Mismatch between top-down expecta-

tions and bottom-up data can suppress the mismatched

part of the bottom-up data, to focus attention upon the

matched, or expected, part of the bottom-up data.

Excitatory matching and attentional focusing on

bottom-up data using top-down expectations generates

resonant brain states: When there is a good enough

match between bottom-up and top-down signal pat-

terns between two or more levels of processing, their

positive feedback signals amplify and prolong their

mutual activation, leading to a resonant state. Ampli-

�cation and prolongation of activity triggers learning

in the more slowly varying adaptive weights that con-

trol the signal �ow along pathways from cell to cell.

Resonance hereby provides a global context-sensitive

indicator that the system is processing data worthy of

learning, hence the name adaptive resonance theory.

In summary, ART predicts a link between themech-

anisms which enable us to learn quickly and stably

about a changing world, and the mechanisms that

enable us to learn expectations about such a world,

test hypotheses about it, and focus attention upon

information that we �nd interesting. ART clari�es this

link by asserting that to solve the stability–plasticity



Adaptive Resonance Theory A 

Adilemma, only resonant states can drive rapid new

learning.

It is just a step from here to propose that those expe-

riences which can attract our attention and guide our

future lives by being learned are also among the ones

that are conscious. Support for this additional assertion

derives from the many modeling studies whose simula-

tions of behavioral and brain data using resonant states

map onto properties of conscious experiences in those

experiments.

�e type of learning within the sensory and cog-

nitive domain that ART mechanizes is match learning:

Match learning occurs only if a good enough match

occurs between bottom-up information and a learned

top-down expectation that is read out by an active

recognition category, or code. When such an approxi-

mate match occurs, previously learned knowledge can

be re�ned. Match learning raises the concern about

what happens if a match is not good enough? How does

such a model escape perseveration on already learned

representations?

If novel information cannot form a good enough

match with the expectations that are read-out by pre-

viously learned recognition categories, then a memory

search or hypothesis testing is triggered, which leads

to selection and learning of a new recognition cate-

gory, rather than catastrophic forgetting of an old one.

Figure  illustrates how this happens in an ART model;

it is discussed in great detail below. In contrast, learn-

ing within spatial andmotor processes is proposed to be

mismatch learning that continuously updates sensory-

motor maps or the gains of sensory-motor commands.

As a result, we can stably learn what is happening in a

changing world, thereby solving the stability–plasticity

dilemma,while adaptively updating our representations

of where objects are and how to act upon them using

bodies whose parameters change continuously through

time. Brain systems that use inhibitory matching and

mismatch learning cannot generate resonances; hence,

their representations are not conscious.

Complementary Computing in the Brain: Resonance

and Reset

It has been mathematically proved that match learn-

ing within an ART model leads to stable memories in

response to arbitrary list of events to be learned (e.g.,

Carpenter & Grossberg, ). However, match learn-

ing also has a serious potential weakness: If you can only

learn when there is a good match between bottom-up

data and learned top-down expectations, then how do

you ever learn anything that you do not already know?

ARTproposes that this problem is solved by the brain by

using an interaction between complementary processes

of resonance and reset, which are predicted to control

properties of attention andmemory search, respectively.

�ese complementary processes help our brains to bal-

ance between the complementary demands of process-

ing the familiar and the unfamiliar, the expected and the

unexpected.

Organization of the brain into complementary pro-

cesses is predicted to be a general principle of brain

design that is not just found in ART (Grossberg, ).

A complementary process can individually compute

some properties well, but cannot, by itself, process

other complementary properties. In thinking intuitively

about complementary properties, one can imagine puz-

zle pieces �tting together. Both pieces are needed

to �nish the puzzle. Complementary brain processes

are more dynamic than any such analogy: Pairs of

complementary processes interact to form emergent

properties which overcome their complementary de�-

ciencies to compute complete information with which

to represent or control some aspect of intelligent

behavior.

�e resonance process in the complementary pair

of resonance and reset is predicted to take place in

the What cortical stream, notably in the inferotempo-

ral and prefrontal cortex. Here top-down expectations

are matched against bottom-up inputs. When a top-

down expectation achieves a good enough match with

bottom-up data, this match process focuses attention

upon those feature clusters in the bottom-up input that

are expected. If the expectation is close enough to the

input pattern, then a state of resonance develops as the

attentional focus takes hold.

Figure  illustrates these ART ideas in a simple

two-level example. Here, a bottom-up input pattern,

or vector, I activates a pattern X of activity across the
feature detectors of the �rst level F. For example, a

visual scene may be represented by the features com-

prising its boundary and surface representations. �is

feature pattern represents the relative importance of dif-

ferent features in the inputs pattern I. In Fig. a, the
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Adaptive Resonance Theory. Figure . Search for a recognition code within an ART learning circuit: (a) The input pat-

tern I is instated across the feature detectors at level F as a short term memory (STM) activity pattern X. Input I also

nonspecifically activates the orienting system with a gain that is called vigilance (ρ); that is, all the input pathways con-

verge with gain ρ onto the orienting system and try to activate it. STM pattern X is represented by the hatched pattern

across F. Pattern X both inhibits the orienting system and generates the output pattern S. Pattern S is multiplied by

learned adaptive weights, also called long term memory (LTM) traces. These LTM-gated signals are added at Fcells,

or nodes, to form the input pattern T , which activates the STM pattern Y across the recognition categories coded at

level F. (b) Pattern Y generates the top-down output patternU which is multiplied by top-down LTM traces and added

at F nodes to form a prototypepatternV that encodes the learned expectation of the active F nodes. Such a prototype

represents the set of commonly shared features in all the input patterns capable of activating Y. If V mismatches I at F,

then a new STM activity pattern X∗ is selected at F. X∗ is represented by the hatched pattern. It consists of the features

of I that are confirmed by V. Mismatched features are inhibited. The inactivated nodes corresponding to unconfirmed

features of X are unhatched. The reduction in total STM activity which occurs when X is transformed into X∗ causes

a decrease in the total inhibitionfrom F to the orienting system. (c) If inhibition decreases sufficiently, the orienting

system releases a nonspecific arousal wave to F; that is, a wave of activation that equally activates all F nodes. This

wave instantiates the intuition that “novel events are arousing.” This arousal wave resets the STM pattern Y at F by

inhibiting Y. (d) After Y is inhibited, its top-down prototype signal is eliminated, and X can be reinstated at F. The prior

reset event maintains inhibition of Y during the search cycle. As a result, X can activate a different STM pattern Y at F.

If the top-down prototype due to this new Y pattern also mismatches I at F, then the search for an appropriate F code

continues until a more appropriate F representation is selected. Such a search cycle represents a type of nonstationary

hypothesis testing. When search ends, an attentive resonance develops and learning of the attended data is initiated

(adapted with permission from Carpenter and Grossberg ()). The distributed ART architecture supports fast stable

learning with arbitrarily distributed F codes (Carpenter, )
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Apattern peaks represent more activated feature detector

cells, and the troughs, less-activated feature detectors.

�is feature pattern sends signals S through an adap-

tive �lter to the second level F at which a compressed

representation Y (also called a recognition category, or

a symbol) is activated in response to the distributed

input T. Input T is computed by multiplying the sig-

nal vector S by a matrix of adaptive weights that can be

altered through learning. �e representation Y is com-

pressed by competitive interactions across F that allow

only a small subset of its most strongly activated cells

to remain active in response to T. �e pattern Y in the

�gure indicates that a small number of category cells

may be activated to di�erent degrees. �ese category

cells, in turn, send top-down signals U to F. �e vec-

tor U is converted into the top-down expectation V by

being multiplied by another matrix of adaptive weights.

WhenV is received byF, amatching process takes place

between the input vector I andVwhich selects that sub-
set X* of F features that were “expected” by the active

F category Y. �e set of these selected features is the

emerging “attentional focus.”

Binding Distributed Feature Patterns and Symbols

During Conscious Resonances

If the top-down expectation is close enough to the

bottom-up input pattern, then the pattern X∗ of

attended features reactivates the category Y which, in

turn, reactivates X∗. �e network hereby locks into a

resonant state through a positive feedback loop that

dynamically links, or binds, the attended features across

X∗ with their category, or symbol, Y.

Resonance itself embodies another type of comple-

mentary processing. Indeed, there seem to be comple-

mentary processes both within and between cortical

processing streams (Grossberg, ). �is particu-

lar complementary relation occurs between distributed

feature patterns and the compressed categories, or sym-

bols, that selectively code them:

Individual features at F have no meaning on their

own, just like the pixels in a picture are meaningless

one-by-one. �e category, or symbol, in F is sensitive

to the global patterning of these features, and can selec-

tively �re in response to this pattern. But it cannot rep-

resent the “contents” of the experience, including their

conscious qualia, due to the very fact that a category is a

compressed or “symbolic” representation. Practitioners

of arti�cial intelligence have claimed that neuralmodels

can process distributed features, but not symbolic rep-

resentations.�is is not, of course, true in the brain. Nor

is it true in ART.

Resonance between these two types of informa-

tion converts the pattern of attended features into a

coherent context-sensitive state that is linked to its

category through feedback. �is coherent state, which

binds together distributed features and symbolic cate-

gories, can enter consciousness while it binds together

spatially distributed features into either a stable equi-

librium or a synchronous oscillation. �e original

ART article (Grossberg, ) predicted the existence

of such synchronous oscillations, which were there

described in terms of their mathematical properties as

“order-preserving limit cycles.” See Carpenter, Gross-

berg, Markuzon, Reynolds & Rosen () and Gross-

berg & Versace () for reviews of con�rmed ART

predictions, including predictions about synchronous

oscillations.

Resonance Links Intentional and Attentional

Information Processing to Learning

In ART, the resonant state, rather than bottom-up acti-

vation, is predicted to drive learning. �is state persists

long enough, and at a high enough activity level, to

activate the slower learning processes in the adaptive

weights that guide the �ow of signals between bottom-

up and top-down pathways between levels F and F
in Fig. . �is viewpoint helps to explain how adaptive

weights that were changed through previous learning

can regulate the brain’s present information processing,

without learning about the signals that they are cur-

rently processing unless they can initiate a resonant

state. �rough resonance as a mediating event, one

can understand from a deeper mechanistic view why

humans are intentional beings who are continually pre-

dicting what may next occur, and why we tend to learn

about the events to which we pay attention.

More recent versions of ART, notably the synchro-

nous matching ART (SMART) model (Grossberg &

Versace, ) show how a match may lead to fast

gamma oscillations that facilitate spike-timing depen-

dent plasticity (STDP), whereas mismatch can lead

to slower beta oscillations that lower the probability

that mismatched events can be learned by a STDP

learning law.



 A Adaptive Resonance Theory

Complementary Attentional and Orienting Systems

Control Resonance Versus Reset

A su�ciently bad mismatch between an active top-

down expectation and a bottom-up input, say because

the input represents an unfamiliar type of experience,

can drive amemory search. Such amismatch within the

attentional system is proposed to activate a complemen-

tary orienting system, which is sensitive to unexpected

and unfamiliar events. ART suggests that this orienting

system includes the nonspeci�c thalamus and the hip-

pocampal system. See Grossberg & Versace () for

a summary of data supporting this prediction. Output

signals from the orienting system rapidly reset the

recognition category that has been reading out the

poorly matching top-down expectation (Figs. b and c).

�e cause of the mismatch is hereby removed, thereby

freeing the system to activate a di�erent recognition cat-

egory (Fig. d). �e reset event hereby triggers memory

search, or hypothesis testing, which automatically leads

to the selection of a recognition category that can better

match the input.

If no such recognition category exists, say because

the bottom-up input represents a truly novel experi-

ence, then the search process automatically activates an

as yet uncommitted population of cells, with which to

learn about the novel information. In order for a top-

down expectation to match a newly discovered recog-

nition category, its top-down adaptive weights initially

have large values, which are pruned by the learning of a

particular expectation.

�is learning process works well under both unsu-

pervised and supervised conditions (Carpenter et al.,

). Unsupervised learningmeans that the system can

learn how to categorize novel input patternswithout any

external feedback. Supervised learning uses predictive

errors to let the system know whether it has catego-

rized the information correctly. Supervision can force

a search for new categories that may be culturally deter-

mined, and are not based on feature similarity alone. For

example, separating the letters E and F that are of sim-

ilar features into separate recognition categories is cul-

turally determined. Such error-based feedback enables

variants of E and F to learn their own category and

top-down expectation, or prototype. �e complemen-

tary, but interacting, processes of attentive-learning and

orienting-search together realize a type of error cor-

rection through hypothesis testing that can build an

ever-growing, self-re�ning internalmodel of a changing

world.

Controlling the Content of Conscious Experiences:

Exemplars and Prototypes

What combinations of features or other information are

bound together into conscious object or event repre-

sentations? One view is that exemplars or individual

experiences are learned because humans can have very

speci�c memories. For example, we can all recognize

the particular faces of our friends. On the other hand,

storing every remembered experience as exemplars can

lead to a combinatorial explosion of memory, as well as

to unmanageable problems of memory retrieval. A pos-

sible way out is suggested by the fact that humans can

learn prototypes which represent general properties of

the environment (Posner & Keele, ). For example,

we can recognize that everyone has a face. But then how

do we learn speci�c episodic memories? ART provides

an answer that overcomes the problems faced by earlier

models.

ART prototypes are not merely averages of the

exemplars that are classi�ed by a category, as is typically

assumed in classical prototype models. Rather, they

are the actively selected critical feature patterns upon

which the top-down expectations of the category focus

attention. In addition, the generality of the information

that is codes by these critical feature patterns is con-

trolled by a gain control process, called vigilance control,

which can be in�uenced by environmental feedback or

internal volition (Carpenter & Grossberg, ). Low

vigilance permits the learning of general categories with

abstract prototypes. High vigilance forces a memory

search to occur for a new category when even small

mismatches exist between an exemplar and the cate-

gory that it activates. As a result, in the limit of high

vigilance, the category prototype may encode an indi-

vidual exemplar.

Vigilance is computed within the orienting system

of an ART model (Fig. b–d). It is here that bottom-up

excitation from all the active features in an input pat-

tern I is compared with inhibition from all the active

features in a distributed feature representation across F.

If the ratio of the total activity across the active features

in F (i.e., the “matched” features) to the total activity of

all the features in I is less than a vigilance parameter ρ

(Fig. b), then a reset wave is activated (Fig. c), which
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Acan drive the search for another category to classify the

exemplar. In other words, the vigilance parameter con-

trols how bad amatch can be tolerated before search for

a new category is initiated. If the vigilance parameter is

low, then many exemplars can in�uence the learning of

a shared prototype, by chipping away at the features that

are not shared with all the exemplars. If the vigilance

parameter is high, then even a small di�erence between

a new exemplar and a known prototype (e.g., F vs. E)

can drive the search for a new category with which to

represent F.

One way to control vigilance is by a process ofmatch

tracking. Here a predictive error (e.g., D is predicted in

response to F), the vigilance parameter increases until

it is just higher than the ratio of active features in F to

total features in I. In other words, vigilance “tracks” the

degree of match between input exemplar and matched

prototype. �is is the minimal level of vigilance that

can trigger a reset wave and thus a memory search

for a new category. Match tracking realizes a minimax

learning rule that conjointlymaximizes category gener-

ality while itminimizes predictive error. In other words,

match tracking uses the leastmemory resources that can

prevent errors from being made.

Because vigilance can vary across learning trials,

recognition categories capable of encoding widely dif-

fering degrees of generalization or abstraction can be

learned by a single ART system. Low vigilance leads to

broad generalization and abstract prototypes. High vig-

ilance leads to narrow generalization and to prototypes

that represent fewer input exemplars, even a single

exemplar. �us a single ART system may be used, say,

to learn abstract prototypes with which to recognize

abstract categories of faces and dogs, as well as “exem-

plar prototypes” with which to recognize individual

views of faces and dogs. ARTmodels hereby try to learn

the most general category that is consistent with the

data.�is tendency can, for example, lead to the type of

overgeneralization that is seen in young children until

further learning leads to category re�nement.

Memory Consolidation and the Emergence of Rules:

Direct Access to Globally Best Match

As sequences of inputs are practiced over learning

trials, the search process eventually converges upon

stable categories. It has been mathematically proved

(Carpenter & Grossberg, ) that familiar inputs

directly access the category whose prototype provides

the best match globally, while unfamiliar inputs engage

the orienting subsystem to trigger memory searches for

better categories until they become familiar. �is pro-

cess continues until the memory capacity, which can

be chosen arbitrarily large, is fully utilized. �e process

whereby search is automatically disengaged is a form

of memory consolidation that emerges from network

interactions. Emergent consolidation does not preclude

structural consolidation at individual cells, since the

ampli�ed and prolonged activities that subserve a res-

onance may be a trigger for learning-dependent cellu-

lar processes, such as protein synthesis and transmitter

production.

It has also been shown that the adaptive weights

which are learned by some ART models can, at any

stage of learning, be translated into fuzzy IF-THEN

rules (Carpenter et al., ). �us the ART model is a

self-organizing rule-discovering production system as

well as a neural network. �ese examples show that the

claims of some cognitive scientists and AI practition-

ers that neural network models cannot learn rule-based

behaviors are as incorrect as the claims that neural

models cannot learn symbols.

How the Laminar Circuits of Cerebral Cortex Embody

ART Mechanisms

More recent versions of ART have shown how predicted

ARTmechanismsmay be embodiedwithin known lam-

inar microcircuits of the cerebral cortex. �ese include

the family of LAMINARTmodels (Fig. ; see Raizada &

Grossberg, ) and the synchronous matching ART,

or SMART, model (Fig. ; see Grossberg & Versace,

). SMART, in particular, predicts how a top-down

match may lead to fast gamma oscillations that facili-

tate spike-timing dependent plasticity (STDP), whereas

a mismatch can lead to slower beta oscillations that

prevent learning by a STDP learning law. At least three

neurophysiological labs have recently reported data

consistent with the SMART prediction.

Review of ART and ARTMAP Algorithms

From Winner-Take-All to Distributed Coding As noted

above, ART networks serve both as models of human

cognitive information processing (Carpenter, ;
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Adaptive Resonance Theory. Figure . LAMINART circuit clarifies how known cortical connections within and across

cortical layers join the layer →  and layer / circuits to form a laminar circuit model for the interblobs and pale stripe

regions of cortical areas V and V. Inhibitory interneurons are shown filled-in black. (a) The LGN provides bottom-up

activation to layer  via two routes. First, it makes a strong connection directly into layer . Second, LGN axons send

collaterals into layer , and thereby also activate layer  via the  →  on-center off-surround path. The combined

effect of the bottom-up LGN pathways is to stimulate layer  via an on-center off-surround, which provides divisive

contrast normalization (Grossberg, ) of layer  cell responses. (b)Folded feedback carries attentional signals from

higher cortex into layer  of V, via the modulatory →  path. Corticocortical feedback axons tend preferentially to

originate in layer  of the higher area and to terminate in layer  of the lower cortex, where they can excite the apical

dendrites of layer  pyramidal cells whose axons send collaterals into layer . The triangle in the figure represents such

a layer  pyramidal cell. Several other routes through which feedback can pass into V layer  exist. Having arrived in

layer , the feedback is then “folded” back up into the feedforward stream by passing through the  →  on-center

off-surround path (Bullier, Hup’e, James, & Girard, ). (c)Connecting the  →  on-centeroff-surround to the layer

/ grouping circuit: like-oriented layer  simple cells with opposite contrast polarities compete (not shown) before

generating half-wave rectified outputs that converge onto layer / complex cells in the column above them. Just like

attentional signals from higher cortex, as shown in (b), groupings that form within layer / also send activation into

the folded feedback path, to enhance their own positions in layer  beneath them via the  →  on-center, and to

suppress input to other groupings via the →  off-surround. There exist direct layer /→  connections in macaque

V, as well as indirect routes via layer . (d) Top-down corticogeniculate feedback from V layer  to LGN also has an on-

center off-surround anatomy, similar to the →  path. The on-center feedback selectively enhances LGN cells that are

consistent with the activation that they cause (Sillito, Jones, Gerstein, & West, ), and the off-surround contributes

to length-sensitive (endstopped) responses that facilitate grouping perpendicular to line ends. (e) The entire V/V

circuit: V repeats the laminar pattern of V circuitry, but at a larger spatial scale. In particular, the horizontal layer /

connections have a longer range in V, allowing above-threshold perceptual groupings between more widely spaced
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AGrossberg, , ) and as neural systems for

technology transfer (Caudell, Smith, Escobedo, &

Anderson, ; Parsons & Carpenter, ). Design

principles derived from scienti�c analyses and design

constraints imposed by targeted applications have

jointly guided the development of many variants

of the basic networks, including fuzzy ARTMAP

(Carpenter et al., ), ART-EMAP, ARTMAP-IC, and

Gaussian ARTMAP. Early ARTMAP systems, including

fuzzy ARTMAP, employ winner-take-all (WTA) coding,

whereby each input activates a single category node

during both training and testing. When a node is �rst

activated during training, it is mapped to its designated

output class.

Starting with ART-EMAP, subsequent systems have

used distributed coding during testing, which typ-

ically improves predictive accuracy, while avoiding

the computational problems inherent in the use of

distributed code representations during training. In

order to address these problems, distributed ARTMAP

(Carpenter, ; Carpenter,Milenova, &Noeske, )

introduced a new network con�guration, in addition to

new learning laws.

Comparative analysis of the performance of

ARTMAP systems on a variety of benchmark prob-

lems has led to the identi�cation of a default ARTMAP

network, which features simplicity of design and

robust performance in many application domains.

Default ARTMAP employs winner-take-all coding

during training and distributed coding during test-

ing within a distributed ARTMAP network archi-

tecture. With winner-take-all coding during testing,

default ARTMAP reduces to a version of fuzzy

ARTMAP.

Complement Coding: Learning both Absent and Present

Features ART and ARTMAP employ a preprocess-

ing step called complement coding (Fig. ), which

models the nervous system’s ubiquitous use of the

computational design known as opponent processing.

Balancing an entity against its opponent, as in agonist–

antagonist muscle pairs, allows a system to act upon

relative quantities, even as absolute magnitudes may

vary unpredictably. In ART systems, complement cod-

ing is analogous to retinal ON-cells and OFF-cells.

When the learning system is presented with a set of

input features a ≡ (a...ai...aM), complement coding
doubles the number of input components, presenting

to the network both the original feature vector and its

complement.

Complement coding allows an ART system to

encode within its critical feature patterns of memory

features that are consistently absent on an equal basis

with features that are consistently present. Features that

are sometimes absent and sometimes present when a

given category is learning are regarded as uninforma-

tive with respect to that category. Since its introduc-

tion, complement coding has been a standard element

of ART and ARTMAP networks, where it plays multi-

ple computational roles, including input normalization.

However, this device is not particular toART, and could,

in principle, be used to preprocess the inputs to any type

of system.

To implement complement coding, component

activities ai of a feature vector a are scaled; thus,  ≤
ai ≤ . For each feature i, the ON activity ai deter-

mines the complementary OFF activity ( − ai). Both
ai and ( − ai) are represented in the M-dimensional
system input vector A = (a ∣ ac ) (Fig. ). Subse-
quent network computations then operate in this M-

dimensional input space. In particular, learned weight

vectors wJ are M-dimensional.

ARTMAP Search and Match Tracking in Fuzzy ARTMAP

As illustrated by Fig. , the ART matching process

triggers either learning or a parallel memory search.

If search ends at an established code, the memory

inducing stimuli to form. V layer / projects up to V layers  and , just as LGN projects to layers  an  of V. Higher

cortical areas send feedback into V which ultimately reaches layer , just as V feedback acts on layer  of V. Feedback

paths from higher cortical areas straight into V (not shown) can complement and enhance feedback from V into V.

Top-down attention can also modulate layer / pyramidal cells directly by activating both the pyramidal cells and

inhibitory interneurons in that layer. The inhibition tends to balance the excitation, leading to a modulatory effect.

These top-down attentional pathways tend to synapse in layer , as shown in Fig. b. Their synapses on apical dendrites

in layer  are not shown, for simplicity. (Reprinted with permission from Raizada & Grossberg ())
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Adaptive Resonance Theory. Figure . SMART model overview. A first-order and higher-order cortical area are linked

by corticocortical and corticothalamocortical connections. The thalamus is subdivided into specific first-order, second-

order, nonspecific, and thalamic reticular nucleus (TRN). The thalamic matrix (one cell population shown as an open

ring) provides priming to layer , where layer  pyramidal cell apical dendrites terminate. The specific thalamus

relays sensory information (first-order thalamus) or lower-order cortical information (second-order thalamus) to the

respective cortical areas via plastic connections. The nonspecific thalamic nucleus receives convergent BU input and

inhibition from the TRN, and projects to layer  of the laminar cortical circuit, where it regulates reset and search in

the cortical circuit (see text). Corticocortical feedback connections link layer II of the higher cortical area to layer

 of the lower cortical area, whereas thalamocortical feedback originates in layer II and terminates in the specific

thalamus after synapsing on the TRN. Layer II corticothalamic feedback matches the BU input in the specific thala-

mus. V receives two parallel BU thalamocortical pathways. The LGN→V layer  pathway and the modulatory LGN→V

layer I→ pathway provide divisive contrast normalization of layer  cell responses. The intracortical loop V layer

→/→→I→ pathway (folded feedback) enhances the activity of winning layer / cells at their own positions via

the I→ on-center, and suppresses input to other layer / cells via the I→ off-surround. V also activates the BU

V→V corticocortical pathways (V layer /→V layers I and ) and the BU corticothalamocortical pathways (V layer

→PULV→V layers I and ), where the layer I→ pathway provides divisive contrast normalization to V layer  cells

analogously to V. Corticocortical feedback from V layer II→V layer →I→ also uses the same modulatory I→

pathway. TRN cells of the two thalamic sectors are linked via gap junctions, which provide synchronization of the two

thalamocortical sectors when processing BU stimuli (reprinted with permission from Grossberg & Versace ())

representation may either remain the same or incor-

porate new information from matched portions of the

current input. While this dynamic applies to arbitrarily

distributed activation patterns, the F search and code

for fuzzy ARTMAP (Fig. ) describes a winner-take all

system.

Before ARTMAP makes a class prediction, the

bottom-up input A is matched against the top-down
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A
complement coded input

ON channel

(a1...ai ...am) = a ac = ((1 – ai )...(1 – ai )...(1 – aM ))

OFF channel

feature vector

A = (A1...AM ⏐ AM+1...A2M) = (a ⏐ ac)

a

Adaptive Resonance Theory. Figure . Complement coding transforms an M-dimensional feature vector a into a M-

dimensional system input vector A. A complement-coded system input represents both the degree to which a feature

i is present (ai) and the degree to which that feature is absent ( − ai)
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Adaptive Resonance Theory. Figure . A fuzzy ART search cycle, with a distributed ART network configuration

(Carpenter, ). The ART  search cycle (Carpenter and Grossberg, ) is the same, but allows only binary

inputs and did not originally feature complement coding. The match field F represents the matched activa-

tion pattern x = A ∧ wJ, where ∧ denotes the component-wise minimum, or fuzzy intersection, between the

bottom-up input A and the top-down expectation wJ. If the matched pattern fails to meet the matching crite-

rion, then the active code is reset at F, and the system searches for another code y that better represents the

input. The match/mismatch decision takes place in the ART orienting system. Each active feature in the input

pattern A excites the orienting system with gain equal to the vigilance parameter ρ. Hence, with complement

coding, the total excitatory input is ρ ∣A∣ = ρ
M

∑
i=

Ai =ρM. Active cells in the matched pattern x inhibit the ori-

enting system, leading to a total inhibitory input equal to − ∣x∣ = −
M

∑
i=
xi. If ρ ∣A∣ − ∣x∣ ≤ , then the orient-

ing system remains quiet, allowing resonance and learning to occur. If ρ ∣A∣ − ∣x∣ > , then the reset signal

r = , initiating search for a better matching code
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learned expectation, or critical feature pattern, that is

read out by the active node (Fig. b). �e matching

criterion is set by a vigilance parameter ρ. As noted

above, low vigilance permits the learning of abstract,

prototype-like patterns, while high vigilance requires

the learning of speci�c, exemplar-like patterns. When

a new input arrives, vigilance equals a baseline level ρ̄.

Baseline vigilance is set equal to zero by default, in order

to maximize generalization. Vigilance rises only a�er

the system has made a predictive error. �e internal

control process that determines how far it must rise

in order to correct the error is called match tracking.

As vigilance rises, the network is required to pay more

attention to how well top-down expectations match the

current bottom-up input.

Match tracking (Fig. ) forces an ARTMAP system

not only to reset its mistakes, but to learn from them.

With match tracking and fast learning, each ARTMAP

network passes the next input test, which requires that,

match tracking
dr

= –(r – r–)+ΓRr c

dt

match
A

A

A
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x
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+
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R = 1
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Adaptive Resonance Theory. Figure . ARTMAP match

tracking. When an active node J meets the matching

criterion (ρ ∣A∣ − ∣x∣ ≤ ), the reset signal r =  and

the node makes an prediction. If the predicted output

is incorrect, the feedback signal R = . While R = rc = ,

r increases rapidly. As soon as ρ > ∣x∣
∣A∣ , r switches to ,

which both halts the increase of r and resets the active

F node. From one chosen node to the next, r decays to

slightly below ∣x∣
∣A∣ (MT–). On the time scale of learning r

returns to ρ̄

if a training input were re-presented immediately a�er

a learning trial, it would directly activate the cor-

rect output class, with no predictive errors or search.

Match tracking thus simultaneously implements the

design goals of maximizing generalization and mini-

mizing predictive error, without requiring the choice of

a �xedmatching criterion. ARTMAPmemories thereby

include both broad and speci�c pattern classes, with the

latter typically formed as exceptions to themore general

“rules” de�ned by the former. ARTMAP learning typi-

cally produces a wide variety of such mixtures, whose

exact composition depends upon the order of training

exemplar presentation.

Unless they have already activated all their coding

nodes, ARTMAP systems contain a reserve of nodes

that have never been activated, with weights at their

initial values. �ese uncommitted nodes compete with

the previously active committed nodes, and an uncom-

mitted node is chosen over poorly matched committed

nodes. An ARTMAP design constraint speci�es that

an active uncommitted node should not reset itself.

Weights initially begin with wiJ = . �us, when the
active node J is uncommitted, x = A ∧ wJ = A at the
match �eld. �en, ρ ∣A∣ − ∣x∣ = ρ ∣A∣ − ∣A∣ = (ρ − ) ∣A∣.
�us ρ ∣A∣ − ∣x∣ ≤  and an uncommitted node does not
trigger a reset, provided ρ ≤ .

ART Geometry Fuzzy ART long-term memories are

visualized as hyper-rectangles, called category boxes.

�e weight vector wJ is interpreted geometrically as a

box RJ whose ON-channel corner uJ and OFF-channel

corner vJ are, in the format of the complement-coded
input vector, de�ned by (uJ ∣ vCJ ) ≡ wJ (Fig. ). For

fuzzy ARTwith the choice-by-di�erence F → F signal

functionTJ , an input a activates the node J of the closest
category box RJ , according to the L (city-block) met-

ric. In case of a tie, as when a lies in more than one box,
the node with the smallest RJ is chosen, where ∣RJ ∣ is
de�ned as the sum of the edge lengths

M

∑
i=

∣viJ − uiJ ∣.�e
chosen node J will reset if ∣RJ ⊕ a∣ > M ( − ρ), where
RJ ⊕ a is the smallest box enclosing both RJ and a. Oth-
erwise, RJ expands toward RJ ⊕ a during learning. With
fast learning, RnewJ = RoldJ ⊕ a.
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A
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Adaptive Resonance Theory. Figure . Fuzzy ART geom-

etry. The weight of a category node J is represented

in complement-coding form as wJ = (uJ ∣ vC
J ), and the

M-dimensional vectors uJ and vJ define the corners of

the category box RJ. When M = , the size of RJ equals its

width plus its height. During learning, RJ expands toward

RJ⊕a, defined as the smallest box enclosing bothRJ and a.

Node J will reset before learning if ∣RJ ⊕ a∣ > M ( − ρ)

Biasing Against Previously Active Category Nodes and

Previously Attended Features During Attentive Memory

Search Activity x at theART�eld F continuously com-
putes the match between the �eld’s bottom-up and top-

down input patterns. A reset signal r shuts o� the active

F node J when x fails to meet the matching criterion
determined by the value of the vigilance parameter ρ.

Reset alone does not, however, trigger a search for a dif-

ferent F node: unless the prior activation has le� an

enduring trace within the F-to-F subsystem, the net-

work will simply reactivate the same node as before.

As modeled in ART , biasing the bottom-up input

to the coding �eld F to favor the previously inactive

nodes implements search by allowing the network to

activate a new node in response to a reset signal. �e

ART searchmechanismde�nes amedium-termmem-

ory (MTM) in the F-to-F adaptive �lter which biases

the system against re-choosing a node that had just pro-

duced a reset. A presynaptic interpretation of this bias

is transmitter depletion, or habituation (Fig. ).

Medium-term memory in all ART models allows

the network to shi� attention among learned categories

at the coding �eldF during search.�enew biasedART

network (Carpenter & Gaddam, ) introduces a sec-

ond medium-termmemory that shi�s attention among

input features, as well as categories, during search.

Self-Organizing Rule Discovery �is foundation of com-

putational principles and mechanisms has enabled the

ART 3 search mechanism

reset

r = 1
ρ|A| - |x| > 0

+ ρ|A| 

ρ

x = A ^ wj
- |x|

|A|

J

F2

F0

F1

Y

A

a

a

ac

Adaptive Resonance Theory. Figure . ART  search imp-

lements a medium-term memory within the F-to-F

pathways, which biases the system against choosing a

category node that had just produced a reset

development of an ART information fusion system

that is capable of incrementally learning a cognitive

hierarchy of rules in response to probabilistic, incom-

plete, and even contradictory data that are collected by

multiple observers (Carpenter, Martens, & Ogas, ).
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Adaptive System

7Complexity in Adaptive Systems

Agent

In computer science, the term “agent” usually denotes

a so�ware abstraction of a real entity which is capable

of acting with a certain degree of autonomy. For exam-

ple, in arti�cial societies, agents are so�ware abstrac-

tions of real people, interacting in an arti�cal, simulated

environment. Various authors have proposed di�erent

de�nitions of agents. Most of them would agree on the

following set of agent properties:

● Persistence: Code is not executed on demand but

runs continuously and decides autonomously when

it should perform some activity.

● Social ability: Agents are able to interact with other

agents.

● Reactivity: Agents perceive the environment and are

able to react.

● Proactivity: Agents exhibit goal-directed behavior

and can take the initiative.

Agent-Based Computational Models

7Arti�cial Societies

Agent-Based Modeling and
Simulation

7Arti�cial Societies

Agent-Based Simulation Models

7Arti�cial Societies

AIS

7Arti�cial Immune Systems

Algorithm Evaluation

Geoffrey I. Webb

Monash University, Victoria, Australia

Definition
Algorithm evaluation is the process of assessing a prop-

erty or properties of an algorithm.

Motivation and Background
It is o�en valuable to assess the e�cacy of an algo-

rithm. Inmany cases, such assessment is relative, that is,
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Aevaluating which of several alternative algorithms is

best suited to a speci�c application.

Processes and Techniques
Many learning algorithms have been proposed. In order

to understand the relative merits of these alternatives, it

is necessary to evaluate them. �e primary approaches

to evaluation can be characterized as either theoreti-

cal or experimental. �eoretical evaluation uses formal

methods to infer properties of the algorithm, such as its

computational complexity (Papadimitriou, ), and

also employs the tools of7computational learning the-
ory to assess learning theoretic properties. Experimen-

tal evaluation applies the algorithm to learning tasks to

study its performance in practice.

�ere are many di�erent types of property that

may be relevant to assess depending upon the intended

application. �ese include algorithmic properties, such

as time and space complexity. �ese algorithmic prop-

erties are o�en assessed separately with respect to per-

formance when learning a7model, that is, at7training
time, and performance when applying a learned model,

that is, at7test time.
Other types of property that are o�en studied are the

properties of the models that are learned (see 7model
evaluation). Strictly speaking, such properties should

be assessed with respect to a speci�c application or

class of applications. However, much machine learning

research includes experimental studies in which algo-

rithms are compared using a set of data sets with little

or no consideration given to what class of applications

those data sets might represent. It is dangerous to draw

general conclusions about relative performance on any

application from relative performance on this sample

of some unknown class of applications. Such experi-

mental evaluation has become known disparagingly as

a bake-o� .

An approach to experimental evaluation that may

be less subject to the limitations of bake-o�s is the use

of experimental evaluation to assess a learning algo-

rithm’s 7bias and variance pro�le. Bias and variance
measure properties of an algorithm’s propensities in

learningmodels rather than directly being properties of

the models that are learned. Hence, they may provide

more general insights into the relative characteristics

of alternative algorithms than do assessments of the

performance of learned models on a �nite number of

applications. One example of such use of bias–variance

analysis is found in Webb ().

Techniques for experimental algorithm evaluation

include 7bootstrap sampling, 7cross-validation, and
7holdout evaluation.

Cross References
7Computational Learning�eory
7Model Evaluation

Recommended Reading
Hastie, T., Tibshirani, R., & Friedman, J. H. (). The elements of

statistical learning. New York: Springer.

Mitchell, T. M. (). Machine learning. New York: McGraw-Hill.

Papadimitriou, C. H. (). Computational complexity. Reading,

MA: Addison-Wesley.

Webb, G. I. (). MultiBoosting: A technique for combining

boosting and wagging. Machine Learning, (), –.

Witten, I. H., & Frank, E. (). Data mining: Practical machine

learning tools and techniques (nd ed.). San Francisco: Morgan

Kaufmann.

Analogical Reasoning

7Instance-Based Learning

Analysis of Text

7Text Mining

Analytical Learning

7Deductive Learning
7Explanation-Based Learning

Ant Colony Optimization

Marco Dorigo, Mauro Birattari

Université Libre de Bruxelles, Brussels, Belgium

Synonyms
ACO

Definition
Ant colony optimization (ACO) is a population-based

metaheuristic for the solution of di�cult combinatorial
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optimization problems. In ACO, each individual of the

population is an arti�cial agent that builds incremen-

tally and stochastically a solution to the considered

problem. Agents build solutions by moving on a graph-

based representation of the problem. At each step their

moves de�ne which solution components are added to

the solution under construction. A probabilistic model

is associated with the graph and is used to bias the

agents’ choices. �e probabilistic model is updated on-

line by the agents so as to increase the probability that

future agents will build good solutions.

Motivation and Background
Ant colony optimization is so called because of its

original inspiration: the foraging behavior of some ant

species. In particular, in Beckers, Deneubourg, and

Goss () it was demonstrated experimentally that

ants are able to �nd the shortest path between their

nest and a food source by collectively exploiting the

pheromone they deposit on the ground while walk-

ing. Similar to real ants, ACO’s arti�cial agents, also

called arti�cial ants, deposit arti�cial pheromone on the

graph of the problem they are solving. �e amount of

pheromone each arti�cial ant deposits is proportional

to the quality of the solution the arti�cial ant has built.

�ese arti�cial pheromones are used to implement a

probabilisticmodel that is exploited by the arti�cial ants

to make decisions during their solution construction

activity.

Structure of the Optimization System
Let us consider aminimization problem (S , f ), whereS
is the set of feasible solutions, and f is the objective func-

tion, which assigns to each solution s ∈ S a cost value
f (s). �e goal is to �nd an optimal solution s∗, that is, a
feasible solution ofminimum cost.�e set of all optimal

solutions is denoted by S∗.
Ant colony optimization attempts to solve this

minimization problem by repeating the following two

steps:

● Candidate solutions are constructed using a param-

eterized probabilistic model, that is, a parameterized

probability distribution over the solution space.

● �e candidate solutions are used to modify the

model in a way that is intended to bias future sam-

pling toward low cost solutions.

The Ant Colony Optimization Probabilistic Model

We assume that the combinatorial optimization prob-

lem (S , f ) is mapped on a problem that can be charac-
terized by the following list of items:

● A�nite set C ={c, c, . . . , cNC
} of components, where

NC is the number of components.

● A�nite setX of states of the problem, where a state is
a sequence x = ⟨ci, cj, . . . , ck, . . . ⟩ over the elements
of C. �e length of a sequence x, that is, the number
of components in the sequence, is expressed by ∣x∣.
�e maximum length of a sequence is bounded by a

positive constant n < +∞.
● A set of (candidate) solutions S , which is a subset of
X (i.e., S ⊆ X ).

● A set of feasible states X̃ , with X̃ ⊆ X , de�ned via a
set of constraints Ω.

● A nonempty set S∗ of optimal solutions, with
S∗ ⊆ X̃ and S∗ ⊆S .

Given the above formulation (Note that, because

this formulation is always possible, ACO can in prin-

ciple be applied to any combinatorial optimization

problem.) arti�cial ants build candidate solutions by

performing randomized walks on the completely con-

nected, weighted graph G = (C,L,T ), where the
vertices are the components C, the set L fully con-
nects the components C, and T is a vector of so-called
pheromone trails τ. Pheromone trails can be associ-

ated with components, connections, or both. Here we

assume that the pheromone trails are associated with

connections, so that τ(i, j) is the pheromone associ-
ated with the connection between components i and

j. It is straightforward to extend the algorithm to the

other cases. �e graph G is called the construction

graph.

To construct candidate solutions, each arti�cial ant

is �rst put on a randomly chosen vertex of the graph.

It then performs a randomized walk by moving at each

step from vertex to vertex on the graph in such a way

that the next vertex is chosen stochastically according

to the strength of the pheromone currently on the arcs.
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AWhilemoving from one node to another of the graphG,
constraints Ωmay be used to prevent ants frombuilding

infeasible solutions. Formally, the solution construction

behavior of a generic ant can be described as follows:

ant_solution_construction

● For each ant:

– Select a start node c according to some problem

dependent criterion.

– Set k =  and xk = ⟨c⟩.
● While xk = ⟨c, c, . . . , ck⟩ ∈ X̃ , xk ∉ S , and the set Jxk
of components that can be appended to xk is not

empty, select the next node (component) ck+ ran-

domly according to:

PT (ck+ = c∣xk)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(ck ,c)(τ(ck, c))
∑(ck ,y)∈Jxk F(ck ,y)(τ(ck, y))

if (ck, c)∈ Jxk ,

 otherwise,

()

where a connection (ck, y) belongs to Jxk if and only
if the sequence xk+ = ⟨c, c, . . . , ck, y⟩ satis�es the
constraints Ω (that is, xk+ ∈ X̃ ) and F(i, j)(z) is
somemonotonic function – a common choice being

zα η(i, j)β , where α, β > , and η(i, j)’s are heuristic
values measuring the desirability of adding compo-

nent j a�er i. If at some stage xk ∉ S and Jxk = ∅, that
is, the construction process has reached a dead-end,

the current state xk is discarded. However, this sit-

uation may be prevented by allowing arti�cial ants

to build infeasible solutions as well. In such a case,

an infeasibility penalty term is usually added to the

cost function. Nevertheless, inmost of the settings in

whichACOhas been applied, the dead-end situation

does not occur.

For certain problems, one may �nd it useful to use

a more general scheme, where F depends on the

pheromone values of several “related” connections

rather than just a single one. Moreover, instead of

the random-proportional rule above, di�erent selection

schemes, such as the pseudo-random-proportional rule

(Dorigo & Gambardella, ), may be used.

The Ant Colony Optimization Pheromone Update

Many di�erent schemes for pheromone update have

been proposed within the ACO framework. For an

extensive overview, see Dorigo and Stützle ().Most

pheromone updates can be described using the follow-

ing generic scheme:

Generic_ACO_Update

● ∀s ∈ Ŝt ,∀(i, j) ∈ s : τ(i, j) ← τ(i, j)+Qf (s∣S, . . . , St),
● ∀(i, j) : τ(i, j) ← ( − ρ) ⋅ τ(i, j),

where Si is the sample in the ith iteration, ρ, ≤ ρ < ,
is the evaporation rate, and Qf (s∣S, . . . , St) is some
“quality function,” which is typically required to be non-

increasing with respect to f and is de�ned over the

“reference set” Ŝt .

Di�erent ACO algorithms may use di�erent quality

functions and reference sets. For example, in the very

�rstACOalgorithm–Ant System (Dorigo,Maniezzo,&

Colorni, , ) – the quality function is simply

/f (s) and the reference set Ŝt = St . In a subsequently

proposed scheme, called iteration best update (Dorigo

& Gambardella, ), the reference set is a singleton

containing the best solution within St (if there are sev-

eral iteration-best solutions, one of them is chosen ran-

domly). For the global-best update (Dorigo et al., ;

Stützle &Hoos, ), the reference set contains the best

among all the iteration-best solutions (and if there are

more than one global-best solution, the earliest one is

chosen). In Dorigo et al. () an elitist strategy was

introduced, in which the update is a combination of the

previous two.

In case a good lower bound on the optimal solu-

tion cost is available, one may use the following quality

function (Maniezzo, ):

Qf (s∣S, . . . , St) = τ ( −
f (s) − LB
f̄ − LB

) = τ
f̄ − f (s)
f̄ − LB

,

()

where f̄ is the average of the costs of the last k solutions

and LB is the lower bound on the optimal solution cost.

With this quality function, the solutions are evaluated

by comparing their cost to the average cost of the other

recent solutions, rather than by using the absolute cost

values. In addition, the quality function is automatically

scaled based on the proximity of the average cost to the

lower bound.
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A pheromone update that slightly di�ers from the

generic update described above was used in ant colony

system (ACS) (Dorigo & Gambardella, ). �ere the

pheromone is evaporated by the ants online during

the solution construction, hence only the pheromone

involved in the construction evaporates.

Another modi�cation of the generic update was

introduced in MAX–MIN Ant System (Stützle &

Hoos, , ), which uses maximum and mini-

mum pheromone trail limits. With this modi�cation,

the probability of generating any particular solution is

kept above some positive threshold. �is helps to pre-

vent search stagnation and premature convergence to

suboptimal solutions.

Cross References
7Swarm Intelligence

Recommended Reading
Beckers, R., Deneubourg, J. L., & Goss, S. (). Trails and U-turns

in the selection of the shortest path by the ant Lasius Niger.

Journal of Theoretical Biology, , –.

Dorigo, M., & Gambardella, L. M. (). Ant colony system: A co-

operative learning approach to the traveling salesman problem.

IEEE Transactions on Evolutionary Computation, (), –.

Dorigo, M., Maniezzo, V., & Colorni, A. (). Positive feedback

as a search strategy. Technical Report -, Dipartimento di

Elettronica, Politecnico di Milano, Milan, Italy.

Dorigo M., Maniezzo V., & Colorni A. (). Ant system: Optimiza-

tion by a colony of cooperating agents. IEEE Transactions on

Systems, Man, and Cybernetics – Part B, (), –.

Dorigo, M., & Stützle, T. (). Ant colony optimization. Cam-

bridge, MA: MIT Press.

Maniezzo, V. (). Exact and approximate nondeterministic

tree-search procedures for the quadratic assignment problem.

INFORMS Journal on Computing, (), –.

Stützle, T., & Hoos, H. H. (). TheMAX–MIN ant system and

local search for the traveling salesman problem. In Proceed-

ings of the  Congress on Evolutionary Computation – CEC’

(pp. –). Piscataway, NJ: IEEE Press.

Stützle, T., & Hoos, H. H. ().MAX–MIN ant system. Future

Generation Computer Systems, (), –, .

Anytime Algorithm

An anytime algorithm is an algorithm whose out-

put increases in quality gradually with increased

running time. �is is in contrast to algorithms that

produce no output at all until they produce full-quality

output a�er a su�ciently long execution time.An exam-

ple of an algorithm with good anytime performance

is 7Adaptive Real-Time Dynamic Programming

(ARTDP).

AODE

7Averaged One-Dependence Estimators

Apprenticeship Learning

7Behavioral Cloning

Approximate Dynamic
Programming

7Value Function Approximation

Apriori Algorithm

Hannu Toivonen

University of Helsinki, Helsinki, Finland

Definition
Apriori algorithm (Agrawal, Mannila, Srikant, Toivo-

nen,&Verkamo, ) is a7dataminingmethodwhich
outputs all 7frequent itemsets and 7association rules
from given data.

Input: set I of items, multiset D of subsets of I , fre-
quency threshold min_ fr, and con�dence threshold

min_conf.

Output: all frequent itemsets and all valid association

rules inD.
Method:

: level := ; frequent_sets := ∅;
: candidate_sets := {{i} ∣ i ∈ I};
: while candidate_sets ≠ ∅
.: scan dataD to compute frequencies of all sets in can-
didate_sets;

.: frequent_sets := frequent_sets ∪ {C ∈ candi-
date_sets ∣ frequency(C) ≥ min_ fr};
. level := level + ;
.: candidate_sets := {A ⊂ I ∣ ∣A∣ = level and B ∈
frequent_sets for all B ⊂ A, ∣B∣ = level − };
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A: output frequent_sets;

: for each F ∈ frequent_sets
.: for each E ⊂ F,E ≠ ∅,E ≠ F

..: if frequency(F)/frequency(E) ≥ min_conf then

output association rule E → (F / E)

�e algorithm �nds frequent itemsets (lines -) by

a breadth-�rst, general-to-speci�c search. It generates

and tests candidate itemsets in batches, to reduce the

overhead of database access. �e search starts with the

most general itemset patterns, the singletons, as can-

didate patterns (line ). �e algorithm then iteratively

computes the frequencies of candidates (line .) and

saves those that are frequent (line .). �e crux of

the algorithm is in the candidate generation (line .):

on the next level, those itemsets are pruned that have

an infrequent subset. Obviously, such itemsets cannot

be frequent. �is allows Apriori to �nd all frequent

itemset without spending too much time on infrequent

itemsets. See7frequent pattern and7constraint-based
mining for more details and extensions.

Finally, the algorithm tests all frequent association

rules and outputs those that are also con�dent (lines

-..).

Cross References
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7Basket Analysis
7Constraint-Based Mining
7Frequent Itemset
7Frequent Pattern
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Area Under Curve

Synonyms
AUC

Definition
�e area under curve (AUC) statistic is an empirical

measure of classi�cation performance based on the area

under an ROC curve. It evaluates the performance of a

scoring classi�er on a test set, but ignores the magni-

tude of the scores and only takes their rank order into

account. AUC is expressed on a scale of  to , where

 means that all negatives are ranked before all posi-

tives, and  means that all positives are ranked before

all negatives. See7ROC Analysis.

AQ

7Rule Learning

ARL

7Average-Reward Reinforcement Learning

ART

7Adaptive Resonance�eory

ARTDP

7Adaptive Real-Time Dynamic Programming

Artificial Immune Systems

Jon Timmis

University of York, Heslington, North Yorkshire, UK

Synonyms
AIS; Immune computing; Immune-inspired computing;

Immunocomputing; Immunological computation

Definition
Arti�cial immune systems (AIS) have emerged as a

computational intelligence approach that shows great

promise. Inspired by the complexity of the immune

system, computer scientists and engineers have created

systems that in some way mimic or capture certain

computationally appealing properties of the immune

system, with the aim of buildingmore robust and adapt-

able solutions. AIS have been de�ned by de Castro and

Timmis () as:
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▸ adaptive systems, inspired by theoretical immunology

and observed immune functions, principle and models,

which are applied to problem solving

AIS are not limited to machine learning systems, there

are a wide variety of other areas in which AIS are devel-

oped such as optimization, scheduling, fault tolerance,

and robotics (Hart&Timmis, ).Within the context

ofmachine learning, both supervised and unsupervised

approaches have been developed. Immune-inspired

learning approaches typically develop a memory set of

detectors that are capable of classifying unseen data

items (in the case of supervised learning) or a memory

set of detectors that represent clusters within the data

(in the case of unsupervised learning). Both static and

dynamic learning systems have been developed.

Motivation and Background
�e immune system is a complex system that under-

takes a myriad of tasks. �e abilities of the immune

system have helped to inspire computer scientists to

build systems that mimic, in some way, various prop-

erties of the immune system.�is �eld of research, AIS,

has seen the application of immune-inspired algorithms

to a wide variety of areas.

�e origin of AIS has its roots in the early theoret-

ical immunology work of Farmer, Perelson, and Varela

(Farmer, Packard, & Perelson, ; Varela, Coutinho,

Dupire, & Vaz, ). �ese works investigated a num-

ber of theoretical 7immune network models proposed
to describe the maintenance of immune memory in

the absence of antigen. While controversial from an

immunological perspective, these models began to give

rise to an interest from the computing community. �e

most in�uential people at crossing the divide between

computing and immunology in the early days were

Bersini and Forrest. It is fair to say that some of the

early work by Bersini () was very well rooted in

immunology, and this is also true of the early work

by Forrest (). It was these works that formed the

basis of a solid foundation for the area of AIS. In the

case of Bersini, he concentrated on the immune net-

work theory, examining how the immune systemmain-

tained its memory and how one might build models

and algorithms mimicking that property. With regard

to Forrest, her work was focused on computer security

(in particular, network intrusion detection) and formed

the basis of a great deal of further research by the com-

munity on the application of immune-inspired tech-

niques to computer security.

At about the same time as Forrest was undertak-

ing her work, other researchers began to investigate the

nature of learning in the immune system and how that

might by used to create machine learning algorithms

(Cook & Hunt, ). �ey had the idea that it might

be possible to exploit the mechanisms of the immune

system (in particular, the immune network) in learn-

ing systems, so they set about doing a proof of concept

(Cook & Hunt, ). Initial results were very encour-

aging, and they built on their success by applying the

immune ideas to the classi�cation of DNA sequences as

either promoter or nonpromoter classes: this work was

generalized in Timmis and Neal ().

Similar work was carried out by de Castro and

Von Zuben (), who developed algorithms for

use in function optimization and data clustering.

Work in dynamic unsupervised machine learning algo-

rithms was also undertaken, meeting with success in

works such as Neal (). In the supervised learning

domain, very little happened until the work byWatkins

() (later expanded in Watkins, ) developed an

immune-based classi�er known as AIRS, and in the

dynamic supervised domain, with the work in Secker,

Freitas, and Timmis () being one of a number of

successes.

Structure of the Learning System
In an attempt to create a common basis for AIS, the

work in de Castro and Timmis () proposed the idea

of a framework for engineering AIS. �ey argued that

the case for such a framework as the existence of similar

frameworks in other biologically inspired approaches,

such as 7arti�cial neural networks (ANNs) and evolu-
tionary algorithms (EAs), has helped considerably with

the understanding and construction of such systems.

For example, de Castro and Timmis () consider a

set of arti�cial neurons, which can be arranged together

to form an ANN. In order to acquire knowledge, these

neural networks undergo an adaptive process, known as

learning or training, which alters (some of) the param-

eters within the network. �erefore, they argued that

in a simpli�ed form, a framework to design an ANN is
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Acomposed of a set of arti�cial neurons, a pattern of inter-

connection for these neurons, and a learning algorithm.

Similarly, they argued that in evolutionary algorithms,

there is a set of arti�cial chromosomes representing a

population of individuals that iteratively su�er a process

of reproduction, genetic variation, and selection. As a

result of this process, a population of evolved arti�cial

individuals arises. A framework, in this case, would cor-

respond to the genetic representation of the individuals

of the population, plus the procedures for reproduc-

tion, genetic variation, and selection. �erefore, they

proposed that a framework to design a biologically

inspired algorithm requires, at least, the following basic

elements:

● A representation for the components of the system

● A set of mechanisms to evaluate the interaction of

individuals with the environment and each other.

�e environment is usually stimulated by a set of

input stimuli, one or more �tness function(s), or

other means

● Procedures of adaptation that govern the dynam-

ics of the system, i.e., how its behavior varies

over time

�is framework can be thought of as a layered

approach such as the speci�c framework for engi-

neering AIS of de Castro and Timmis () shown

in Fig. . �is framework follows the three basic

elements for designing a biologically inspired algo-

rithm just described, where the set of mechanisms for

evaluation are the a�nity measures and the procedures

of adaptation are the immune algorithms. In order to

build a system such as an AIS, one typically requires

an application domain or target function. From this

basis, the way in which the components of the sys-

tem will be represented is considered. For example, the

representation of network tra�c may well be di�erent

from the representation of a real-time embedded sys-

tem. In AIS, the way in which something is represented

is known as shape space. �ere are many kinds of shape

space, such as Hamming, real valued, and so on, each of

which carries it own bias and should be selected with

care (Freitas & Timmis, ). Once the representa-

tion has been chosen, one or more a�nity measures

are used to quantify the interactions of the elements of

the system. �ere are many possible a�nity measures

(which are partially dependent upon the representation

adopted), such as Hamming and Euclidean distance

metrics. Again, each of these has its own bias, and the

a�nity function must be selected with great care, as it

can a�ect the overall performance (and ultimately the

result) of the system (Freitas & Timmis, ).

Supervised Immune-Inspired Learning

�e arti�cial immune recognition system (AIRS)

algorithm was introduced as one of the �rst immune-

inspired supervised learning algorithms and has

subsequently gone through a period of study and

re�nement (Watkins, ). To use classi�cations

from de Castro and Timmis (), for the proce-

dures of adaptation, AIRS is a, 7clonal selection type
of immune-inspired algorithm. �e representation

and a�nity layers of the system are standard in

Artificial Immune Systems. Figure . AIS layered framework adapted from de Castro and Timmis ()
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that any number of representations such as binary,

real values, etc., can be used with the appropriate

a�nity function. AIRS has its origin in two other

immune-inspired algorithms: CLONALG (CLONAL

Selection alGorithm) and Arti�cial Immune NEt-

work (AINE) (de Castro and Timmis, ). AIRS

resembles CLONALG in the sense that both the

algorithms are concerned with developing a set of

memory cells that give a representation of the learned

environment.

AIRS is concerned with the development of a set

of memory cells that can encapsulate the training data.

�is is done in a two-stage process of �rst evolving

a candidate memory cell and then determining if this

candidate cell should be added to the overall pool of

memory cells. �e learning process can be outlined as

follows:

. For each pattern to be recognized, do

(a) Compare a training instance with all memory

cells of the same class and �nd thememory cell

with the best a�nity for the training instance.

�is is referred to as a memory cell mcmatch.

(b) Clone and mutate mcmatch in proportion to its

a�nity to create a pool of abstract B-cells.

(c) Calculate the a�nity of each B-cell with the

training instance.

(d) Allocate resources to each B-cell based on its

a�nity.

(e) Remove the weakest B-cells until the number

of resources returns to a preset limit.

(f) If the average a�nity of the surviving B-cells

is above a certain level, continue to step (g).

Else, clone and mutate these surviving B-cells

based on their a�nity and return to step (c).

(g) Choose the best B-cell as a candidate memory

cell (mccand).

(h) If the a�nity of mccand for the training

instance is better than the a�nity of mcmatch,

then add mccand to the memory cell pool.

If, in addition to this, the a�nity between

mccand and mcmatch is within a certain thresh-

old, then remove mcmatch from the memory

cell pool.

. Repeat from step (a) until all training instances

have been presented.

Once this training routine is complete, AIRS clas-

si�es the instances using k-nearest neighbor with the

developed set of memory cells.

Unsupervised Immune-Inspired Learning

�e arti�cial immune network (aiNET) algorithm was

introduced as one of the �rst immune-inspired unsu-

pervised learning algorithms and has subsequently

gone through a period of study and re�nement (de

Castro & Von Zuben, ). To use classi�cations

from de Castro and Timmis (), for the proce-

dures of adaptation, aiNET is an immune network type

of immune-inspired algorithm. �e representation and

a�nity layers of the system are standard (the same as

in AIRS). aiNET has its origin in another immune-

inspired algorithms: CLONALG (the same forerunner

to AIRS), and resembles CLONALG in the sense that

both algorithms (again) are concerned with developing

a set of memory cells that give a representation of the

learnt environment. However, within aiNET there is no

error feedback into the learning process. �e learning

process can be outlined as follows:

. Randomly initialize a population P

. For each pattern to be recognized, do

(a) Calculate the a�nity of each B-cell (b) in the

network for an instance of the pattern being

learnt

(b) Select a number of elements from P into a

clonal pool C

(c) Mutate each element of C proportional to

a�nity to the pattern being learnt (the higher

the a�nity, the less mutation applied)

(d) Select the highest a�nity members of C to

remain in the set C and remove the remaining

elements

(e) Calculate the a�nity between allmembers ofC

and remove elements in C that have an a�nity

below a certain threshold (user de�ned)

(f) Combine the elements of C with the set P

(g) Introduce a random number of randomly cre-

ated elements into P to maintain diversity

. Repeat from (a) until stopping criteria is met

Once this training routine is complete, theminimum-

spanning tree algorithm is applied to the network to

extract the clusters from within the network.
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Artificial Life

Arti�cial Life is an interdisciplinary research area trying

to reveal and understand the principles and organiza-

tion of living systems. Its main goal is to arti�cially

synthesize life-like behavior from scratch in computers

or other arti�cial media. Important topics in arti�cial

life include the origin of life, growth and develop-

ment, evolutionary and ecological dynamics, adaptive

autonomous robots, emergence and self-organization,

social organization, and cultural evolution.

Artificial Neural Networks

(ANNs) is a computational model based on biologi-

cal neural networks. It consists of an interconnected

group of arti�cial neurons and processes information

using a connectionist approach to computation. Inmost

cases an ANN is an adaptive system that changes its

structure based on external or internal information

that �ows through the network during the learning

phase.

Cross References
7Adaptive Resonance�eory
7Backpropagation
7Biological Learning: Synaptic Plasticity, Hebb Rule
and Spike Timing Dependent Plasticity

7Boltzmann Machines
7Cascade Correlation
7Competitive Learning
7Deep Belief Networks
7Evolving Neural Networks
7Hypothesis Language
7Neural Network Topology
7Neuroevolution
7Radial Basis Function Networks
7Reservoir Computing
7Self-Organizing Maps
7Simple Recurrent Networks
7Weights

Artificial Societies

Jürgen Branke

University of Warwick, Coventry, UK

Synonyms
Agent-based computational models; Agent-based

modeling and simulation; Agent-based simulation

models
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Definition
An arti�cial society is an agent-based, computer-

implemented simulation model of a society or group

of people, usually restricted to their interaction in a

particular situation. Arti�cial societies are used in eco-

nomics and social sciences to explain, understand, and

analyze socioeconomic phenomena. �ey provide sci-

entists with a fully controllable virtual laboratory to

test hypotheses and observe complex system behavior

emerging as result of the 7agents’ interaction. �ey
allow formalizing and testing social theories by using

computer code, and make it possible to use experi-

mental methods with social phenomena, or at least

with their computer representations, on a large scale.

Because the designer is free to choose any desired

7agent behavior as long as it can be implemented,
research based on arti�cial societies is not restricted

by assumptions typical in classical economics, such as

homogeneity and full rationality of agents. Overall, arti-

�cial societies have added an all new dimension to

research in economics and social sciences and have

resulted in a new research �eld called “agent-based

computational economics.”

Arti�cial societies should be distinguished from vir-

tual worlds and7arti�cial life.�e term virtual world is
usually used for virtual environments to interact with,

as, e.g., in computer games. In arti�cial life, the goal

is more to learn about biological principles, under-

stand how life could emerge, and create life within a

computer.

Motivation and Background
Classical economics can be roughly divided into

analytical and empirical approaches. �e former uses

deduction to derive theorems from assumptions.

�ereby, analytical models usually include a num-

ber of simplifying assumptions in order to keep the

model tractable, the most typical being full rationality

and homogeneity of agents. Also, analytical economics

is o�en limited to equilibrium calculations. Classical

empirical economics collects data from the real world,

and derives patterns and regularities inductively. In

recent years, the tremendous increase in available com-

putational power gave rise to a new branch of eco-

nomics and sociologywhich uses simulation of arti�cial

societies as a tool to generate new insights.

Arti�cial societies are agent-based, computer-

implemented simulation models of real societies or a

group of people in a speci�c situation. �ey are built

from the bottom up, by specifying the behavior of

the agents in di�erent situations. �e simulation then

reveals the emerging global behavior of the system,

and thus provides a link between micro-level behavior

of the agents and macro-level characteristics of the

system. Using simulation, researchers can now carry

out social experiments under fully controlled and

reproducible laboratory conditions, trying out di�erent

con�gurations and observing the consequences.

Like deduction, simulation models are based on a

set of clearly speci�ed assumptions as written down

in a computer program. �is is then used to generate

data, from which regularities and patterns are derived

inductively. As such, research based on arti�cial soci-

eties stands somewhere between the classical analytical

and empirical social sciences.

One of the main advantages of arti�cial societies

is that they allow to consider very complex scenarios

where agents are heterogeneous, boundedly rational, or

have the ability to learn. Also, they allow to observe

evolution over time, instead of just the equilibrium.

Arti�cial societies can be used for many purposes,

e.g.:

. Veri�cation: Test a hypothesis or theory by examin-

ing its validity in relevant, clearly de�ned scenarios.

. Explanation: Construct an arti�cial society which

shows the same behavior as the real society. �en

analyze themodel to explain the emergent behavior.

. Prediction: Run a model of an existing society into

the future. Also, feed the model with di�erent input

parameters and use the result as a prediction onhow

the society would react.

. Optimization: Test di�erent strategies in the sim-

ulation environment, trying to �nd a best possible

strategy.

. Existence proof: Demonstrate that a speci�c sim-

ulation model is able to generate a certain global

behavior.

. Discovery: Play around with parameter settings,

discovering new interdependencies and gaining

new insights.

. Training and education: Use simulation as demon-

strator.



Artificial Societies A 

AStructure of the Learning System
Using arti�cial societies requires the usual steps in

model building and experimental science, including

. Developing a conceptual model

. Building the simulation model

. Veri�cation (making sure the model is correct)

. Validation (making sure the model is suitable to

answer the posed questions)

. Simulation and analysis using an appropriate exper-

imental design.

Arti�cial society is an interdisciplinary research area

involving, among others, computer science, psychology,

economics, sociology, and biology.

Important Aspects

�e modeling, simulation, and analysis process des-

cribed in the previous section is rather complex and

only remotely connected to machine learning. �us,

instead of a detailed description of all steps, the follow-

ing focuses on aspects particularly interesting from a

machine learning point of view.

Modeling Learning

One of the main advantages of arti�cial societies is

that they can account for boundedly rational and learn-

ing agents. For that, one has to specify (in form of a

program) exactly how agents decide and learn.

In principle, all the learning algorithms developed in

machine learning could be used, and many have been

used successfully, including 7reinforcement learning,
7arti�cial neural networks, and 7evolutionary algo-
rithms. However, note that the choice of a learning

algorithm is not determined by its learning speed and

e�ciency (as usual in machine learning), but by how

well it re�ects human learning in the considered sce-

nario, at least if the goal is to construct an arti�cial

society which allows conclusions to be transferred to

the real world. As a consequence,many learningmodels

used in arti�cial societies are motivated by psychology.

�e idea of themost suitablemodel depends on the sim-

ulation context, e.g., on whether the simulated learning

process is conscious or nonconscious, or on the time

and e�ort an individual may be expected to spend on

a particular decision.

Besides individual learning (i.e., learning from

own past experience), arti�cial societies usually feature

social learning (where one agent learns by observing

others), and cultural learning (e.g., the evolution of

norms). While the latter simply emerges from the inter-

action of the agents, the former has to be modeled

explicitly. Several di�erent models for learning in arti�-

cial societies are discussed in Brenner ().

One popular learning paradigm which can be used

as a model for individual as well as social learning

are 7evolutionary algorithms (EAs). Several studies
suggest that EAs are indeed an appropriate model for

learning in arti�cial societies, either based on compar-

isons of simulations with human subject experiments or

based on comparisons with other learning mechanisms

such as reinforcement learning (Du�y, ). As EAs

are successful search strategies, they seem particularly

suitable if the space of possible actions or strategies is

very large.

If used tomodel individual learning, each agent uses

a separate EA to search for a better personal solution.

In this case, the EA population represents the di�er-

ent alternative actions or strategies that an agent con-

siders. �e genetic operators crossover and mutation

are clearly related to two major ingredients of human

innovation: combination and variation. Crossover can

be seen as deriving a new concept by combining two

known concepts, and mutation corresponds to a small

variation of an existing concept. So, the agent, in some

sense, creatively tries out new possibilities. Selection,

which favors the best solutions found so far, models the

learning part. A solution’s quality is usually assessed by

evaluating it in a simulation assuming all other agents

keep their behavior.

For modeling social learning, EAs can be used in

two di�erent ways. In both cases, the population rep-

resents the actions or strategies of the di�erent agents

in the population. From this it follows that the popu-

lation size corresponds to the number of agents in the

simulation. Fitness values are calculated by running the

simulation and observing how the di�erent agents per-

form. Crossover is now seen as a model for information

exchange, or imitation, among agents. Mutation, as in

the individual learning case, is seen as a small variation

of an existing concept.

�e �rst social learning model simply uses a stan-

dard EA, i.e., selection chooses agents to “reproduce,”
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and the resulting new agent strategy replaces an old

strategy in the population. While allowing to use stan-

dard EA libraries, this approach does not provide

a direct link between agents in the simulation and

individuals in the EA population. In the second social

learning model, each agent directly corresponds to an

individual in the EA. In every iteration, each agent cre-

ates and tests a new strategy as follows. First, it selects a

“donor” individual, with preference to successful indi-

viduals.�en it performs a crossover of its own strategy

and the donor’s strategy, andmutates the result.�is can

be regarded as an agent observing other agents, and par-

tially adopting the strategies of successful other agents.

�en, the resulting new strategy is tested in a “thought

experiment,” by testing whether the agent would be bet-

ter o� with the new strategy compared with its current

strategy, assuming all other agents keep their behavior.

If the new strategy performs better, it replaces the cur-

rent strategy in the next iteration. Otherwise, the new

strategy is discarded and the agent again uses its old

strategy in the next iteration. �e testing of new strate-

gies against their parents has been termed election oper-

ator in Arifovic (), and makes sure that some very

bad and obviously implausible agent strategies never

enter the arti�cial society.

Examples

One of the �rst forerunners of arti�cial societies

was Schelling’s segregation model, . In this study,

Schelling placed some arti�cial agents of two di�erent

colors on a simple grid. Each agent follows a simple

rule: if less than a given percentage of agents in the

neighborhood had the same color, the agent moves to

a random free spot. Otherwise, it stays. As the simula-

tion shows, in this model, segregation of agent colors

could be observed even if every individual agent was

satis�ed to live in a neighborhood with only % of

its neighbors being of the same color. �us, with this

simple model, Schelling demonstrated that segregation

of races in suburbs can occur even if each individual

would be happy to live in a diverse neighborhood. Note

that the simulations were actually not implemented on

a computer but carried out by moving coins on a grid

by hand.

Other milestones in arti�cial societies are cer-

tainly the work by Epstein and Axtell on their “sug-

arscape” model (Epstein & Axtell, ), and the Santa

Fe arti�cial stock market (Arthur, Holland, LeBaron,

Palmer, & Taylor, ). In the former, agents popu-

late a simple grid world, with sugar growing as the

only resource. �e agents need the sugar for sur-

vival, and can move around to collect it. Axtell and

Epstein have shown that even with agents following

some very simple rules, the emerging behavior of the

overall system can be quite complex and similar in

many aspects to observations in the real world, e.g.,

showing a similar wealth distribution or population

trajectories.

�e latter is a simple model of a stock market with

only a single stock and a risk-free �xed-interest alter-

native. �is model has subsequently been re�ned and

studied by many researchers. One remarkable result of

the �rst model was to demonstrate that technical trad-

ing can actually be a viable strategy, something widely

accepted in practice, but which classical analytical eco-

nomics struggled to explain.

One of the most sophisticated arti�cial societies is

perhaps the model of the Anasazi tribe, who le� their

dwellings in the Long House Valley in northeastern

Arizona for so far unknown reasons around  BC

(Axtell et al., ). By building an arti�cial society of

this tribe and the natural surroundings (climate etc.),

it was possible to replicate macro behavior which is

known to have occurred and provide a possible expla-

nation for the sudden move.

�e NewTies project (Gilbert et al., ) has a dif-

ferent and quite ambitious focus: it constructs arti�cial

societies with the hope of an emerging arti�cial lan-

guage and culture, which then might be studied to help

explain how language and culture formed in human

societies.

Software Systems

Agent-based simulations can be facilitated by using

specialized so�ware libraries such as Ascape, Netlogo,

Repast, StarLogo, Mason, and Swarm. A comparison of

di�erent libraries can be found in Railsback, Lytinen,

and Jackson ().

Applications
Arti�cial societies have many practical applications,

from rather simple simulation models to very com-

plex economic decision problems, examples include



Association Rule A 

Atra�c simulation, market design, evaluation of vaccina-

tion programs, evacuation plans, or supermarket layout

optimization. See, e.g., Bonabeau () for a discus-

sion of several such applications.

Future Directions, Challenges
�e science on arti�cial societies is still at its infancy,

but the �eld is burgeoning and has already produced

some remarkable results. Major challenges lie in the

model building, calibration, and validation of the arti-

�cial society simulation model. Despite several agent-

based modeling toolkits available, there is a lot to be

gained by making them more �exible, intuitive, and

user-friendly, allowing to construct complex models

simply by selecting and combining provided building

blocks of agent behavior. 7Behavioral Cloning may
be a suitable machine learning approach to generate

representative agent models.
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Assertion

In 7Minimum Message Length, the code or language
shared between sender and receiver that is used to

describe the model.

Association Rule
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Definition
Association rules (Agrawal, Imieliński, & Swami, )

can be extracted from data sets where each example
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consists of a set of items. An association rule has the

form X → Y , where X and Y are 7itemsets, and the
interpretation is that if set X occurs in an example, then

set Y is also likely to occur in the example.

Each association rule is usually associated with

two statistics measured from the given data set. �e

frequency or support of a ruleX → Y , denoted fr(X→Y),
is the number (or alternatively the relative frequency)

of examples in which X ∪ Y occurs. Its con�dence, in

turn, is the observed conditional probability P(Y ∣ X) =
fr(X ∪ Y)/fr(X).

�e7Apriori algorithm (Agrawal,Mannila, Srikant,
Toivonen & Verkamo, ) �nds all association rules,

between any sets X and Y , which exceed user-speci�ed

support and con�dence thresholds. In association rule

mining, unlike in most other learning tasks, the result

thus is a set of rules concerning di�erent subsets of the

feature space.

Association rules were originally motivated by

supermarket 7basket analysis, but as a domain inde-
pendent technique they have found applications in

numerous �elds. Association rule mining is part of the

larger �eld of 7frequent itemset or 7frequent pattern
mining.
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Associative Reinforcement Learning
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Synonyms
Associative bandit problem; Bandit problem with side

information; Bandit problem with side observations;

One-step reinforcement learning

Definition
�e associative reinforcement-learning problem is a spe-

ci�c instance of the 7reinforcement learning problem

whose solution requires generalization and exploration

but not temporal credit assignment. In associative rein-

forcement learning, an action (also called an arm) must

be chosen from a �xed set of actions during succes-

sive timesteps and from this choice a real-valued reward

or payo� results. On each timestep, an input vector is

provided that along with the action determines, o�en

probabilistically, the reward. �e goal is to maximize

the expected long-term reward over a �nite or in�nite

horizon. It is typically assumed that the action choices

do not a�ect the sequence of input vectors. However,

even if this assumption is not asserted, learning algo-

rithms are not required to infer or model the relation-

ship between input vectors from one timestep to the

next. Requiring a learning algorithm to discover and

reason about this underlying process results in the full

reinforcement learning problem.

Motivation and Background
�e problem of associative reinforcement learning may

be viewed as connecting the problems of 7supervised
learning or 7classi�cation, which is more speci�c, and
reinforcement learning, which ismore general. Its study

is motivated by real-world applications such as choos-

ing which internet advertisements to display based on

information about the user or choosing which stock to

buy based on current information related to themarket.

Both problems are distinguished from supervised learn-

ing by the absence of labeled training examples to learn

from. For instance, in the advertisement problem, the

learner is never told which ads would have resulted in

the greatest expected reward (in this problem, reward is
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Adetermined bywhether an ad is clicked onor not). In the

stock problem, the best choice is never revealed since

the choice itself a�ects the future price of the stocks and

therefore the payo�.

The Learning Setting
�e learning problem consists of the following core

objects:

● An input space X , which is a set of objects (o�en a
subset of the n-dimension Euclidean space Rn).

● A set of actions or armsA, which is o�en a �nite set
of size k.

● A distributionD overX . In some cases,D is allowed
to be time-dependent and may be denoted Dt on

timestep t for t = , , . . ..

A learning sequence proceeds as follows. During

each timestep t = , , . . ., an input vector xt ∈ X is
is drawn according to the distribution D and is pro-

vided to the algorithm. �e algorithm selects an aarm

at at ∈ A. �is choice may be stochastic and depend
on all previous inputs and rewards observed by the

algorithm as well as all previous action choices made

by the algorithm for timesteps t = , , . . .. �en, the
learner receives a payo� rt generated according to some

unknown stochastic process that depends only on the xt
and at . �e informal goal is to maximize the expected

long-term payo�. Let π : X → A be any policy that
maps input vectors to actions. Let

Vπ(T) := E [
T

∑
i=

ri ∣ ai = π(xi) for i = , , . . . ,T] ()

denotes the expected total reward over T steps obtained

by choosing arms according to policy π. �e expecta-

tion is taken over any randomness in the generation of

input vectors xi and rewards ri. �e expected regret of a

learning algorithmwith respect to policy π is de�ned as

Vπ(T)−E[∑T
i= ri] the expected di�erence between the

return from following policy π and the actual obtained

return.

Power of Side Information

Wang, Kulkarni, and Poor () studied the associa-

tive reinforcement learning problem from a statistical

viewpoint. �ey considered the setting with two action

and analyzed the expected inferior sampling time, which

is the number of times that the lesser action, in terms

of expected reward, is selected. �e function map-

ping input vectors to conditional reward distributions

belongs to a known parameterized class of functions,

with the true parameters being unknown. �ey show

that, under some mild conditions, an algorithm can

achieve �nite expected inferior sampling time. �is

demonstrates the power provided by the input vec-

tors (also called side observations or side information),

because such a result is not possible in the stan-

dardmulti-armed bandit problem, which corresponds to

the associative reinforcement-learning problem with-

out input vectors xi. Intuitively, this type of result is

possible when the side information can be used to infer

the payo� function of the optimal action.

Linear Payoff Functions

In its most general setting, the associative reinforce-

ment learning problem is intractable. Oneway to rectify

this problem is to assume that the payo� function is

described by a linear system. For instance, Abe and

Long () and Auer () consider a model where

during each timestep t, there is a vector zt,i associ-

ated with each arm i. �e expected payo� of pulling

arm i on this timestep is given by θTzt,i where θ is an

unknown parameter vector and θT denotes the trans-

pose of f . �is framework maps to the framework

described above by taking xt = (zt,, zt,, . . . , zt,k). �ey
assume a time-dependent distribution D and focus on

obtaining bounds on the regret against the optimal

policy. Assuming that all rewards lie in the interval

[, ], the worst possible regret of any learning algo-
rithm is linear. When considering only the number

of timesteps T, Auer () shows that a regret (with

respect to the optimal policy) of O(
√
T ln(T)) can be

obtained.

PAC Associative Reinforcement Learning

�e previously mentioned works analyze the growth

rate of the regret of a learning algorithm with respect to

the optimal policy. Another way to approach the prob-

lem is to allow the learner some number of timesteps of

exploration. A�er the exploration trials, the algorithm

is required to output a policy. More speci�cally, given

inputs  < є <  and  < δ < , the algorithm is
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required to output an є-optimal policy with probability

at least  − δ. �is type of analysis is based on the work

by Valiant (), and learning algorithms satisfying

the above condition are termed probably approximately

correct (PAC).

Motivated by the work of Kaelbling (), Fiechter

() developed a PAC algorithm when the true pay-

o� function can be described by a decision list over the

action and input vector. Building on both works, Strehl,

Mesterharm, Littman, and Hirsh () showed that

a class of associative reinforcement learning problems

can be solved e�ciently, in a PAC sense, when given a

learning algorithm for e�ciently solving classi�cation

problems.
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Synonyms
Characteristic; Feature; Property; Trait

Definition
Attributes are properties of things, ways that we, as

humans, might describe them. If we were talking about

the appearance of our friends, we might describe one of

them as “sex female,” “hair brown,” “height  �  in.” Lin-

guistically, this is rather terse, but this very terseness has

the advantage of limiting ambiguity. �e attributes are

sex, hair color, andheight. For each friend,we could give

the appropriate values to go along with each attribute,

some examples are shown in Table . Attribute-value

pairs are a standard way of describing things within

the machine learning community. Traditionally, values

have come in one of three types: binary, sex has two val-

ues; nominal, hair color has many values; real, height

has an ordered set of values. Ideally, the attribute-value

pairs are su�cient to describe some things accurately

and to tell them apart from others. What might be

described is very varied, so the attributes themselves

will vary widely.

Motivation and Background
For machine learning to be successful, we need a lan-

guage to describe everyday things that is su�ciently

powerful to capture the similarities and di�erences

between them and yet is computationally easy to man-

age. �e idea that a su�cient number of attribute-value

Attribute. Table  Some friends

Sex Hair color Height

Male Black  ft  in.

Female Brown  ft  in.

Female Blond  ft  in.

Male Brown  ft  in.
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Apairs would meet this requirement is an intuitive one.

It has also been studied extensively in philosophy and

psychology, as a way that humans represent thingsmen-

tally. In the early days of arti�cial intelligence research,

the frame (Minsky, ) became a common way of

representing knowledge.We have, in many ways, inher-

ited this representation, attribute-value pairs sharing

much in common with the labeled slots for values used

in frames. In addition, the data formany practical prob-

lems comes in this form. Popular methods of storing

and manipulating data such as relational databases,

and less formal structures such as spread sheets, have

columns as attributes and cells as values. So, attribute-

value pairs are a ubiquitous way of representing

data.

Future Directions
�e notion of an attribute-value pair is so well

entrenched in machine learning that it is di�cult to

perceive what might replace it. As, in many practical

applications, the data comes in this form, this repre-

sentation will undoubtedly be around for some time.

One change that is occurring is the growing complex-

ity of attribute-values. Traditionally, we have used the

simple value types, binary, nominal, and real, discussed

earlier. But to e�ectively describe many things, we need

to extend this simple language and use more complex

values. For example, in 7data mining applied to mul-
timedia, more new complex representations abound.

Sound and video streams, images, and various proper-

ties of them, are just a few examples (Cord et al., ;

Simo� & Djeraba, ).

Perhaps, the most signi�cant change is away

from attributes, albeit with complex values, to struc-

tural forms where the relationship between things is

included. As Quinlan () states “Data may concern

objects or observations with arbitrarily complex struc-

ture that cannot be captured by the values of a prede-

termined set of attributes.” �ere is a large and growing

community of researchers in7relational learning. �is
is evidenced by the number, and growing frequency,

of recent workshops at the International Conference

for Machine Learning (Cord et al., ; De Raedt

& Kramer, ; Dietterich, Getoor, & Murphy, ;

Fern, Getoor, & Milch, ).

Limitations
In philosophy there is the idea of essence, the properties

an objectmust have to bewhat it is. Inmachine learning,

particularly in practical applications, we get what we are

given and have little control in the choice of attributes

and their range of values. If domain experts have chosen

the attributes, we might hope that they are properties

that can be readily ascertained and are relevant to the

task at the hand. For example, when describing one

of our friends, we would not say Fred is the one with

the spleen. It is not only di�cult to observe, it is also

poor at discriminating between people. Data are col-

lected for many reasons. In medical applications, all

sorts of attribute-values would be collected on patients.

Most are unlikely to be important to the current task.

An important part of learning is 7feature extraction,
determiningwhich attributes are necessary for learning.

Whether or not attribute-value pairs are an essen-

tial representation for the type of learning required in

the development, and functioning, of intelligent agents,

remains to be seen. Attribute-values readily capture

symbolic information, typically at the level of words

that humans naturally use. But if our agents need to

move around in their environment, recognizing what

they encounter, we might need a di�erent nonlin-

guistic representation. Certainly, other representations

based on a much �ner granularity of features, and

more holistic in nature, have been central to areas such

as 7neural networks for some time. In research into
7dynamic systems, attractors in a sensor space might
be more realistic that attribute-values (See chapter on

7Classi�cation).

Recommended Reading
Cord, M., Dahyot, R., Cunningham, P., & Sziranyi, T. (Eds.). ().

Workshop on machine learning techniques for processing mul-

timedia content. In Proceedings of the twenty-second interna-

tional conference on machine learning.

De Raedt, L., & Kramer, S. (Eds.). (). In Proceedings of the sev-

enteenth international conference on machine learning. Work-

shop on attribute-value and relational learning: Crossing the

boundaries, Stanford University, Palo Alto, CA.

Dietterich, T., Getoor, L., &Murphy, K. (Eds.). (). In Proceedings

of the twenty-first international conference on machine learning.

Workshop on statistical relational learning and its connections

to other fields.

Fern, A., Getoor, L., & Milch, B. (Eds.). (). In Proceedings of

the twenty-fourth international conference on machine learning.

Workshop on open problems in statistical relational learning.
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Minsky, M. (). A framework for representing knowledge. Tech-

nical report, Massachusetts Institute of Technology, Cambridge,
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Quinlan, J. R. (). Learning first-order definitions of functions.
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sixth international conference on knowledge discovery and data

mining. Workshop on multimedia data mining.

Attribute Selection

7Feature Selection

Attribute-Value Learning

Attribute-value learning refers to any learning task in

which the each 7Instance is described by the values
of some �nite set of attributes (see 7Attribute). Each
of these instances is o�en represented as a vector of

attribute values, each position in the vector correspond-

ing to a unique attribute.

AUC

7Area Under Curve

Autonomous Helicopter Flight Using
Reinforcement Learning

Adam Coates, Pieter Abbeel, Andrew Y. Ng

Stanford University, Stanford, CA, USA
University of California, Berkeley, CA, USA
Stanford University, Stanford, CA, USA

Definition
Helicopter �ight is a highly challenging control prob-

lem. While it is possible to obtain controllers for simple

maneuvers (like hovering) by traditional manual design

procedures, this approach is tedious and typically

requires many hours of adjustments and �ight testing,

even for an experienced control engineer. For complex

maneuvers, such as aerobatic routines, this approach

is likely infeasible. In contrast, 7reinforcement learn-
ing (RL) algorithms enable faster and more automated

design of controllers. Model-based RL algorithms have

been used successfully for autonomous helicopter �ight

for hovering, forward �ight and, using apprenticeship

learning methods for expert-level aerobatics. In model-

based RL, �rst one builds a model of the helicopter

dynamics and speci�es the task using a reward func-

tion. �en, given the model and the reward function,

the RL algorithm �nds a controller that maximizes the

expected sum of rewards accumulated over time.

Motivation and Background
Autonomous helicopter �ight represents a challenging

control problem and is widely regarded as being signi�-

cantly harder than control of �xed-wing aircra�. (See,

e.g., Leishman, (); Seddon, ()). At the same

time, helicopters provide unique capabilities such as in-

place hover, vertical takeo� and landing, and low-speed

maneuvering. �ese capabilities make helicopter con-

trol an important research problem for many practical

applications.

Building autonomous �ight controllers for heli-

copters, however, is far from trivial. When done

by hand, it can require many hours of tuning by

experts with extensive prior knowledge about heli-

copter dynamics. Meanwhile, the automated develop-

ment of helicopter controllers has been a major success

story for RL methods. Controllers built using RL algo-

rithms have established state-of-the-art performance

for both basic �ight maneuvers, such as hovering and

forward �ight (Bagnell & Schneider, ; Ng, Kim,

Jordan, & Sastry, ), as well as being among the

only successful methods for advanced aerobatic stunts.

Autonomous helicopter aerobatics has been success-

fully tackled using the innovation of “apprenticeship

learning,” where the algorithm learns by watching a

humandemonstrator (Abbeel&Ng, ).�esemeth-

ods have enabled autonomous helicopters to �y aero-

batics as well as an expert human pilot, and o�en even

better (Coates, Abbeel, & Ng, ).

Developing autonomous �ight controllers for heli-

copters is challenging for a number of reasons:

. Helicopters haveunstable, high-dimensional, asym-

metric,noisy,nonlinear,non-minimumphasedynam-

ics. As a consequence, all successful helicopter �ight



Autonomous Helicopter Flight Using Reinforcement Learning A 

Acontrollers (to date) have many parameters. Con-

trollers with – gains are not atypical. Hand

engineering the right setting for each of the parame-

ters is di�cult and time consuming, especially since

their e�ects on performance are o�en highly cou-

pled through thehelicopter’s complicateddynamics.

Moreover, the unstable dynamics, especially in the

low-speed �ight regime, complicates �ight testing.

. Helicopters are underactuated: their position and

orientation is representable using six parameters,

but they have only four control inputs. �us heli-

copter control requires signi�cant planning and

making trade-o�s between errors in orientation and

errors in desired position.

. Helicopters have highly complex dynamics: Even

though we describe the helicopter as having a

twelve dimensional state (position, velocity, orien-

tation, and angular velocity), the true dynamics are

signi�cantly more complicated. To determine the

precise e�ects of the inputs, one would have to con-

sider the air�ow in a large volume around the heli-

copter, as well as the parasitic coupling between the

di�erent inputs, the engine performance, and the

non-rigidity of the rotor blades. Highly accurate

simulators are thus di�cult to create, and con-

trollers developed in simulationmust be su�ciently

robust that they generalize to the real helicopter in

spite of the simulator’s imperfections.

. Sensing capabilities are o�en poor: For small

remotely controlled (RC) helicopters, sensing is

limited because the on-board sensors must deal

with a large amount of vibration caused by the heli-

copter blades rotating at about Hz, as well as

higher frequency noise from the engine. Although

noise at these frequencies (which are well above the

roughly Hz at which the helicopter dynamics can

be modeled reasonably) might be easily removed

by low pass �ltering, this introduces latency and

damping e�ects that are detrimental to control per-

formance. As a consequence, helicopter �ight con-

trollers have to be robust to noise and/or latency in

the state estimates to work well in practice.

Typical Hardware Setup
A typical autonomous helicopter has several basic sen-

sors on board. An Inertial Measurement Unit (IMU)

measures angular rates and linear accelerations for each

of the helicopter’s three axes. A -axis magnetometer

senses the direction of the Earth’smagnetic �eld, similar

to a magnetic compass (Fig. ).

Attitude-only sensing, as provided by the inertial

and magnetic sensors, is insu�cient for precise, stable

hovering, and slow-speed maneuvers. �ese maneu-

vers require that the helicopter maintain relatively

tight control over its position error, and hence high-

quality position sensing is needed. GPS is o�en used to

determine helicopter position (with carrier-phase GPS

units achieving sub-decimeter accuracy), but vision-

based solutions have also been employed (Abbeel,

Coates, Quigley, & Ng, ; Coates et al., ;

Saripalli, Montgomery, & Sukhatme, ).

Vibration adds errors to the sensor measurements

and may damage the sensors themselves, hence signi�-

cant e�ort may be required to mount the sensors on the

airframe (Dunbabin, Brosnan, Roberts, &Corke, ).

Provided there is no aliasing, sensor errors added by

Autonomous Helicopter Flight Using Reinforcement Learning. Figure . (a) Stanford University’s instrumented XCell

Tempest autonomous helicopter. (b) A Bergen Industrial Twin autonomous helicopter with sensors and on-board

computer
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vibration can be removed by using a digital �lter on the

measurements (though, again, one must be careful to

avoid adding too much latency).

Sensor data from the aircra� sensors is used to

estimate the state of the helicopter for use by the con-

trol algorithm. �is is usually done with an extended

Kalman �lter (EKF). A unimodal distribution (as com-

puted by the EKF) su�ces to represent the uncertainty

in the state estimates and it is common practice to use

the mode of the distribution as the state estimate for

feedback control. In general the accuracy obtained with

this method is su�ciently high that one can treat the

state as fully observed.

Most autonomous helicopters have an on-board

computer that runs the EKF and the control algo-

rithm (Gavrilets, Martinos, Mettler, & Feron, a;

La Civita, Papageorgiou, Messner, & Kanade, ; Ng

et al., ). However, it is also possible to use ground-

based computers by sending sensor data by wireless

to the ground, and then transmitting control signals

back to the helicopter through the pilot’s RC transmit-

ter (Abbeel et al., ; Coates et al., ).

Helicopter State and Controls
�e helicopter state s is de�ned by its position

(px, py, pz), orientation (which could be expressed using

a unit quaternion q), velocity (vx, vy, vz) and angular

velocity (ωx,ωy,ωz).

�e helicopter is controlled via a -dimensional

action space:

. u and u: �e lateral (le�-right) and longitudinal

(front-back) cyclic pitch controls (together referred

to as the “cyclic” controls) cause the helicopter to

roll le� or right, and pitch forward or backward,

respectively.

. u: �e tail rotor pitch control a�ects tail rotor

thrust, and can be used to yaw (turn) the helicopter

about its vertical axis. In analogy to airplane con-

trol, the tail rotor control is commonly referred to

as “rudder.”

. u: �e collective pitch control (o�en referred to

simply as “collective”), increases and decreases the

pitch of the main rotor blades, thus increasing

or decreasing the vertical thrust produced as the

blades sweep through the air.

By using the cyclic and rudder controls, the pilot can

rotate the helicopter into any orientation. �is allows

the pilot to direct the thrust of the main rotor in any

particular direction, and thus �y in any direction, by

rotating the helicopter appropriately.

Helicopter Flight as an RL Problem
Formulation

A RL problem can be described by a tuple (S,A,T,H,
s(),R), which is referred to as a 7Markov decision
process (MDP). Here S is the set of states;A is the set of
actions or inputs; T is the dynamics model, which is a

set of probability distributions {Pt
su} (Pt

su(s′∣s,u) is the
probability of being in state s′ at time t + , given the
state and action at time t are s and u); H is the horizon

or number of time steps of interest; s() ∈ S is the initial
state; R : S ×A → R is the reward function.
A policy π =(µ, µ, . . . , µH) is a tuple of map-

pings from states S to actions A, one mapping for
each time t = , . . . ,H. �e expected sum of rewards
when acting according to a policy π is given by:

U(π) = E[∑H
t =  R(s(t),u(t))∣π].�e optimal policy π∗

for an MDP (S,A,T,H, s(),R) is the policy that max-
imizes the expected sum of rewards. In particular, the

optimal policy is given by: π∗ = argmaxπ U(π).
�e common approach to �nding a good policy

for autonomous helicopter �ight proceeds in two steps:

First one collects data frommanual helicopter �ights to

build a model (One could also build a helicopter model

by directlymeasuring physical parameters such asmass,

rotor span, etc. However, even when this approach is

pursued, one o�en resorts to collecting �ight data to

complete the model.). �en one solves the MDP com-

prised of the model and some chosen reward function.

Although the controller obtained, in principle, is only

optimal for the learned simulator model, it has been

shown in various settings that optimal controllers per-

form well even when the model has some inaccuracies

(see, e.g., Anderson & Moore, ()).

Modeling

One way to create a helicopter model is to use direct

knowledge of aerodynamics to derive an explicit math-

ematical model. �is model will depends on a num-

ber of parameters that are particular to the helicopter
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Abeing �own. Many of the parameters may be mea-

sured directly (e.g., mass, rotational inertia), while oth-

ers must be estimated from �ight experiments. �is

approach has been used successfully on several systems

(see, e.g., (Gavrilets,Martinos,Mettler, & Feron, b;

Gavrilets, Mettler, & Feron, ; La Civita, )).

However, substantial expert aerodynamics knowledge

is required for this modeling approach. Moreover, these

models tend to cover only a limited fraction of the �ight

envelope.

Alternatively, one can learn a model of the dynam-

ics directly from �ight data, with only limited a priori

knowledge of the helicopter’s dynamics. Data is usually

collected from a series of manually controlled �ights.

�ese �ights involve the human sweeping the control

sticks back and forth at varying frequencies to cover as

much of the �ight envelope as possible, while record-

ing the helicopter’s state and the pilot inputs at each

instant.

Given a corpus of �ight data, various di�erent learn-

ing algorithms can be used to learn the underlying

model of the helicopter dynamics.

If one is only interested in a single �ight regime,

one could learn a linear model that maps from the

current state and action to the next state. Such a model

can be easily estimated using7linear regression (While
the methods presented here emphasize time-domain

estimation, frequency domain estimation is also pos-

sible for the special case of estimating linear models

(Tischler & Cau�man, ).). Linear models are

restricted to small �ight regimes (e.g., hover or inverted

hover) and do not immediately generalize to full-

envelope �ight. To cover a broader �ight regime, non

parametric algorithms such as locally-weighted linear

regression have been used (Bagnell & Schneider, ;

Ng et al., ). Non parametric models that map from

current state and action to next state can, in princi-

ple, cover the entire �ight regime. Unfortunately, one

must collect large amounts of data to obtain an accu-

rate model and the models are o�en quite slow to

evaluate.

An alternative way to increase the expressiveness of

the model, without resorting to non parametric meth-

ods, is to consider a time-varying model where the

dynamics are explicitly allowed to depend on time. One

can then proceed to compute simpler (say, linear) para-

metric models for each choice of the time parameter.

�is method is e�ective when learning a model spe-

ci�c to a trajectory whose dynamics are repeatable but

vary as the aircra� travels along the trajectory. Since

this method can also require a great deal of data (simi-

lar to nonparametric methods) in practice, it is helpful

to begin with a non-time-varying parametric model �t

from a large amount of data, and then augment it with

a time-varying component that has fewer parameters

(Abbeel, Quigley, & Ng, ; Coates et al., ).

One can also take advantage of symmetry in the

helicopter dynamics to reduce the amount of data

needed to �t a parametric model. In Abbeel, Ganap-

athi, andNg () observe that – in a coordinate frame

attached to the helicopter – the helicopter dynamics

are essentially the same for any orientation (or posi-

tion) once the e�ect of gravity is removed. �ey learn

a model that predicts (angular and linear) accelera-

tions – except for the e�ects of gravity – in the helicopter

frame as a function of the inputs and the (angu-

lar and linear) velocity in the helicopter frame. �is

leads to a lower-dimensional learning problem, which

requires signi�cantly less data. To simulate the heli-

copter dynamics over time, the predicted accelerations

augmented with the e�ects of gravity are integrated

over time to obtain velocity, angular rates, position, and

orientation.

Abbeel et al. () used this approach to learn a

helicopter model that was later used for autonomous

aerobatic helicopter �ight maneuvers covering a large

part of the �ight envelope. Signi�cantly less data is

required to learn a model using the gravity-free param-

eterization compared to a parameterization that directly

predicts the next state as a function of current state

and actions (as was used in Bagnell and Schneider

(), Ng et al. ()). Abbeel et al. evaluate their

model by checking its simulation accuracy over longer

time scales than just a one-step acceleration predic-

tion. Such an evaluation criterionmapsmore directly to

the reinforcement learning objective of maximizing the

expected sum of rewards accumulated over time (see

also Abbeel & Ng, (b)).

�e models considered above are deterministic.

�is normally would allow us to drop the expectation

when evaluating a policy according to E[∑H
t =  R(s(t),

u(t))∣π]. However, it is common to add stochasticity
to account for unmodeled e�ects. Abbeel et al. ()

and Ng et al. () include additive process noise in
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their models. Bagnell and Schneider () go further,

learning a distribution over models. �eir policy must

then perform well, on expectation, for a (deterministic)

model selected randomly from the distribution.

Control Problem Solution Methods

Given a model of the helicopter, we now seek a pol-

icy π that maximizes the expected sum of rewards

U(π) = E[∑H
t =  R(s(t),u(t))∣π] achieved when acting

according to the policy π.

Policy Search General policy search algorithms can be

employed to search for optimal policies for the MDP

based on the learned model. Given a policy π, we can

directly try to optimize the objective U(π). Unfortu-
nately,U(π) is an expectation over a complicated distri-
butionmaking it impractical to evaluate the expectation

exactly in general.

One solution is to approximate the expectation

U(π) by Monte Carlo sampling: under certain bound-
edness assumptions the empirical average of the sum

of rewards accumulated over time will give a good

estimate Û(π) of the expectationU(π). Naively Apply-
ing Monte Carlo sampling to accurately compute, e.g.,

the local gradient from the di�erence in function value

at nearby points, requires very large amounts of samples

due to the stochasticity in the function evaluation.

To get around this hurdle, the PEGASUS algo-

rithm (Ng & Jordan, ) can be used to convert the

stochastic optimization problem into a deterministic

one. When evaluating by averaging over n simulations,

PEGASUS initially �xes n random seeds. For each pol-

icy evaluation, the same n random seeds are used so

that the simulator is now deterministic. In particular,

multiple evaluations of the same policy will result in

the same computed reward. A search algorithm can

then be applied to the deterministic problem to �nd an

optimum.

�e PEGASUS algorithm coupled with a simple

local policy search was used by Ng et al. () to

develop a policy for their autonomous helicopter

that successfully sustains inverted hover. Bagnell and

Schneider () proceed similarly, but use the “amoeba”

search algorithm (Nelder & Mead, ) for policy

search.

Because of the searching involved, the policy class

must generally have low dimension. Nonetheless, it is

o�en possible to �nd good policies within these policy

classes.�e policy class of Ng et al. (), for instance,

is a decoupled, linear PD controller with a sparse depen-

dence on the state variables (For instance, the linear

controller for the pitch axis is parametrized as u =
c(px−p∗x )+c(vx−v∗x )+cθ, which has just three param-
eters while the entire state is nine dimensional. Here, p⋅,

v⋅, and p∗⋅ , v
∗
⋅ , respectively, are the actual and desired

position and velocity. θ denotes the pitch angle.). �e

sparsity reduces the policy class to just nine parame-

ters. In Bagnell and Schneider (), two-layer neural

network structures are usedwith a similar sparse depen-

dence on the state variables. Two neural networks with

�ve parameters each are learned for the cyclic controls.

Differential Dynamic Programming Abbeel et al. ()

use di�erential dynamic programming (DDP) for the

task of aerobatic trajectory following. DDP (Jacobson

& Mayne, ) works by iteratively approximating the

MDP as linear quadratic regulator (LQR) problems.�e

LQR control problem is a special class of MDPs, for

which the optimal policy can be computed e�ciently.

In LQR the set of states is given by S = Rn, the set of

actions/inputs is given by A = Rp, and the dynamics

model is given by:

s(t + ) = A(t)s(t) + B(t)u(t) +w(t),

where for all t = , . . . ,H we have that A(t) ∈ Rn×n,

B(t) ∈ Rn×p and w(t) is a mean zero random variable
(with �nite variance). �e reward for being in state s(t)
and taking action u(t) is given by:

−s(t)⊺Q(t)s(t) − u(t)⊺R(t)u(t).

Here Q(t),R(t) are positive semi-de�nite matrices
which parameterize the reward function. It is well-

known that the optimal policy for the LQR control

problem is a linear feedback controller which can be

e�ciently computed using dynamic programming (see,

e.g., Anderson & Moore, (), for details on linear

quadratic methods.)

DDP approximately solves general continuous state-

space MDPs by iterating the following two steps until

convergence:

. Compute a linear approximation to the nonlin-

ear dynamics and a quadratic approximation to
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Athe reward function around the trajectory obtained

when executing the current policy in simulation.

. Compute the optimal policy for the LQR problem

obtained in Step  and set the current policy equal

to the optimal policy for the LQR problem.

During the �rst iteration, the linearizations are per-

formed around the target trajectory for the maneuver,

since an initial policy is not available.

�is method is used to perform autonomous �ips,

rolls, and “funnels” (high-speed sideways �ight in a

circle) in Abbeel et al. () and autonomous autoro-

tation (Autorotation is an emergency maneuver that

allows a skilled pilot to glide a helicopter to a safe land-

ing in the event of an engine failure or tail-rotor failure.)

in Abbeel, Coates, Hunter, and Ng (), Fig. .

While DDP computes a solution to the non-linear

optimization problem, it relies on the accuracy of the

non-linearmodel to correctly predict the trajectory that

will be �own by the helicopter. �is prediction is used

in Step  above to linearize the dynamics. In practice,

the helicopter will o�en not follow the predicted trajec-

tory closely (due to stochasticity and modeling errors),

and thus the linearization will become a highly inaccu-

rate approximation of the non-linearmodel. A common

solution to this, applied by Coates et al. (), is to

compute the DDP solution online, linearizing around

a trajectory that begins at the current helicopter state.

�is ensures that the model is always linearized around

a trajectory near the helicopter’s actual �ight path.

Apprenticeship Learning and Inverse RL In computing a

policy for an MDP, simply �nding a solution (using any

method) that performs well in simulation may not be

enough. One may need to adjust both the model and

reward function based on the results of �ight testing.

Modeling error may result in controllers that �y per-

fectly in simulation but perform poorly or fail entirely

in reality. Because helicopter dynamics are di�cult to

model exactly, this problem is fairly common. Mean-

while, a poor reward function can result in a controller

that is not robust to modeling errors or unpredicted

perturbations (e.g., it may use large control inputs that

are unsafe in practice). If a human “expert” is available

to demonstrate the maneuver, this demonstration �ight

can be leveraged to obtain a better model and reward

function.

�e reward function encodes both the trajectory

that the helicopter should follow, aswell as the trade-o�s

between di�erent types of errors. If the desired trajec-

tory is infeasible (either in the non-linear simulation or

in reality), this results in a signi�cantly more di�cult

control problem. Also, if the trade-o�s are not speci�ed

correctly, the helicopter may be unable to compensate

for signi�cant deviations from the desired trajectory.

For instance, a typical reward function for hovering

implicitly speci�es a trade-o� between position error

and orientation error (it is possible to reduce one error,

but usually at the cost of increasing the other). If this

trade-o� is incorrectly chosen, the controller may be

pushed o� course bywind (if it tries too hard to keep the

helicopter level) or, conversely, may tilt the helicopter

to an unsafe attitude while trying to correct for a large

position error.

We can use demonstrations from an expert pilot to

recover both a good choice for the desired trajectory as

well as good choices of reward weights for errors rela-

tive to this trajectory. In apprenticeship learning, we are

given a set of N recorded state and control sequences,

Autonomous Helicopter Flight Using Reinforcement Learning. Figure . Snapshots of an autonomous helicopter

performing in-place flips and rolls



 A Autonomous Helicopter Flight Using Reinforcement Learning

{sk(t),uk(t)}Ht =  for k = , . . . ,N, from demonstra-

tion �ights by an expert pilot. Coates et al. () note

that these demonstrations may be sub-optimal but are

o�en sub-optimal in di�erent ways. �ey suggest that a

large number of expert demonstrations may implicitly

encode the optimal trajectory and propose a genera-

tive model that explains the expert demonstrations as

stochastic instantiations of an “ideal” trajectory. �is is

the desired trajectory that the expert has in mind but

is unable to demonstrate exactly. Using an Expectation-

Maximization (Dempster, Laird, & Rubin, ) algo-

rithm, they infer the desired trajectory and use this as

the target trajectory in their reward function.

A good choice of reward weights (for errors rela-

tive to the desired trajectory) can be recovered using

inverse reinforcement learning (Abbeel & Ng, ;

Ng & Russell, ). Suppose the reward function

is written as a linear combination of features as fol-

lows: R(s,u) = cϕ(s,u) + cϕ(s,u) + ⋯. For a
single recorded demonstration, {s(t),u(t)}Ht=, the
pilot’s accumulated reward corresponding to each fea-

ture can be computed as ciϕ
∗
i = ci∑H

t= ϕi(s(t),u(t)). If
the pilot out-performs the autonomous �ight controller

with respect to a particular feature ϕi, this indicates

that the pilot’s own “reward function” places a higher

value on that feature, and hence its weight ci should

be increased. Using this procedure, a good choice of

reward function that makes trade-o�s similar to that of

a human pilot can be recovered. �is method has been

used to guide the choice of reward for many maneuvers

during �ight testing (Abbeel et al., , ; Coates

et al., ).

In addition to learning a better reward function

from pilot demonstration, one can also use the pilot

demonstration to improve the model directly and

attempt to reduce modeling error. Coates et al. (),

for instance, use errors observed in expert demonstra-

tions to jointly infer an improved dynamicsmodel along

with the desired trajectory. Abbeel et al. (), how-

ever, have proposed the following alternating proce-

dure that is broadly applicable (see also Abbeel and Ng

(a) for details):

. Collect data from a human pilot �ying the desired

maneuvers with the helicopter. Learn a model from

the data.

. Find a controller that works in simulation based on

the current model.

. Test the controller on the helicopter. If it works, we

are done. Otherwise, use the data from the test �ight

to learn a new (improved) model and go back to

Step .

�is procedure has similarities with model-based RL

and with the common approach in control to �rst

perform system identi�cation and then �nd a controller

using the resulting model. However, the key insight

from Abbeel and Ng (a) is that this procedure

is guaranteed to converge to expert performance in a

polynomial number of iterations. �e authors report

needing at most three iterations in practice. Impor-

tantly, unlike the E family of algorithms (Kearns &

Singh, ), this procedure does not require explicit

exploration policies. One only needs to test controllers

that try to �y as well as possible (according to the

current choice of dynamics model) (Indeed, the E-

family of algorithms (Kearns & Singh, ) and its

extensions (Brafman & Tennenholtz, ; Kakade,

Kearns, & Langford, ; Kearns & Koller, ) pro-

ceed by generating “exploration” policies, which try

to visit inaccurately modeled parts of the state space.

Unfortunately, such exploration policies do not even

try to �y the helicopter well, and thus would almost

invariably lead to crashes.).

�e apprenticeship learning algorithms described

above have been used to �y the most advanced

autonomous maneuvers to date. �e apprenticeship

learning algorithm of Coates et al. (), for exam-

ple, has been used to attain expert level performance on

challenging aerobatic maneuvers as well as entire air-

shows composed ofmanymaneuvers in rapid sequence.

�ese maneuvers include in-place �ips and rolls, tic-

tocs (“Tic-toc” is a maneuver where the helicopter

pitches forward and backward with its nose pointed

toward the sky (resembling an inverted clock pen-

dulum).), and chaos (“Chaos” is a maneuver where

the helicopter �ips in-place but does so while con-

tinuously pirouetting at a high rate. Visually, the

helicopter body appears to tumble chaotically while

nevertheless remaining in roughly the same position.)

(see Fig. ).�ese maneuvers are considered among the

most challenging possible and can only be performed
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Autonomous Helicopter Flight Using Reinforcement Learning. Figure . Snapshot sequence of an autonomous heli-

copter flying a “chaos” maneuver using apprenticeship learning methods. Beginning from top-left and proceeding

left-to-right, top-to-bottom, the helicopter performs a flip while pirouetting counter-clockwise about its vertical axis.

(This maneuver has been demonstrated continuously for as long as  cycles like the one shown here)

Autonomous Helicopter Flight Using Reinforcement Learning. Figure . Super-imposed sequence of images of auto-

nomous autorotation landings (from Abbeel et al. ())

by advanced human pilots. In fact, Coates et al. ()

show that their learned controller performance can

even exceed the performance of the expert pilot provid-

ing the demonstrations, putting many of the maneuvers

on par with professional pilots (Fig. ).

A similar approach has been used in Abbeel et al.

() to perform the �rst successful autonomous

autorotations. �eir aircra� has performed more than

 autonomous landings successfully without engine

power.

Not only do apprenticeship methods achieve state-

of-the-art performance, but they are among the fastest

learning methods available, as they obviate the need

for arduous hand tuning by engineers. Coates et al.

(), for instance, report that entire airshows can be

created from scratch with just  h of work. �is is in

stark contrast to previous approaches that may have

required hours or even days of tuning for relatively

simple maneuvers.

Conclusion
Helicopter control is a challenging control problem and

has recently seen major successes with the applica-

tion of learning algorithms. �is Chapter has shown

how each step of the control design process can be

automated using machine learning algorithms for sys-

tem identi�cation and reinforcment learning algo-

rithms for control. It has also shown how apprentice-

ship learning algorithms can be employed to achieve
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expert-level performance on challenging aerobatic

maneuvers when an expert pilot can provide demon-

strations. Autonomous helicopters with control systems

developed using these methods are now capable of

�ying advanced aerobatic maneuvers (including �ips,

rolls, tic-tocs, chaos, and auto-rotation) at the level of

expert human pilots.
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Synonyms
AODE

Definition
Averaged one-dependence estimators is a 7semi-
naive Bayesian Learning method. It performs clas-

si�cation by aggregating the predictions of multi-

ple one-dependence classi�ers in which all attributes

depend on the same single parent attribute as well as

the class.

Classification with AODE
An e�ective approach to accommodating violations

of naive Bayes’ attribute independence assumption is

to allow an attribute to depend on other non-class

attributes. To maintain e�ciency it can be desirable to

utilize one-dependence classi�ers, such as 7Tree Aug-
mented Naive Bayes (TAN), in which each attribute

depends upon the class and at most one other attribute.

However, most approaches to learning with one-

dependence classi�ers perform model selection, a pro-

cess that usually imposes substantial computational

overheads and substantially increases variance relative

to naive Bayes.

AODE avoids model selection by averaging the pre-

dictions of multiple one-dependence classi�ers. In each

one-dependence classi�er, an attribute is selected as

the parent of all the other attributes. �is attribute is

called the SuperParent and this type of one-dependence

classi�er is called a SuperParent one-dependence esti-

mator (SPODE). Only those SPODEs with SuperParent

xi where the value of xi occurs at least m times are

used for predicting a class label y for the test instance

x = ⟨x, . . . , xn⟩. For any attribute value xi,

P(y, x) = P(y, xi)P(x ∣ y, xi).

�is equality holds for every xi. �erefore,

P(y, x) =
∑≤i≤n∧F(xi)≥m P(y, xi)P(x ∣ y, xi)

∣{ ≤ i ≤ n ∧ F(xi) ≥ m}∣ , ()

where F(xi) is the frequency of attribute value xi in
the training sample. Utilizing () and the assumption

that attributes are independent given the class and

the SuperParent xi, AODE predicts the class for x by
selecting

argmax
y

∑
≤i≤n∧F(xi)≥m

P̂(y, xi) ∏
≤j≤n,j≠i

P̂(xj ∣ y, xi). ()

It averages over estimates of the terms in (), rather than

the true values, which has the e�ect of reducing the

variance of these estimates.

Figure  shows a Markov network representation of

an example AODE.

As AODE makes a weaker attribute conditional

independence assumption than naive Bayes while still

avoiding model selection, it has substantially lower

7bias with a very small increase in7variance. A num-
ber of studies (Webb, Boughton, & Wang, ; Zheng

& Webb, ) have demonstrated that it o�en has

considerably lower zero-one loss than naive Bayes

with moderate time complexity. For comparisons with

other semi-naive techniques, see7semi-naive Bayesian
learning. One study (Webb, Boughton, & Wang, )

found AODE to provide classi�cation accuracy com-

petitive to a state-of-the-art discriminative algorithm,

boosted decision trees.

When a new instance is available, like naive Bayes,

AODE only needs to update the probability esti-

mates. �erefore, it is also suited to incremental

learning.
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Averaged One-Dependence Estimators. Figure . A Markov network representation of the SPODEs that comprise an

example AODE
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Synonyms
ARL; Average-cost neuro-dynamic programming;

Average-cost optimization; Average-payo� reinforce-

ment learning

Definition
Average-reward reinforcement learning (ARL) refers to

learning policies that optimize the average reward per

time step by continually taking actions and observing

the outcomes including the next state and the immedi-

ate reward.

Motivation and Background
7Reinforcement learning (RL) is the study of programs
that improve their performance at some task by receiv-

ing rewards and punishments from the environment

(Sutton & Barto, ). RL has been quite successful

in automatic learning of good procedures for complex

tasks such as playing Backgammon and scheduling ele-

vators (Crites & Barto, ; Tesauro, ). In episodic

domains in which there is a natural termination con-

dition such as the end of the game in Backgammon,

the obvious performance measure to optimize is the

expected total reward per episode. But some domains

such as elevator scheduling are recurrent, i.e., do not

have a natural termination condition. In such cases,

total expected reward can be in�nite, and we need a

di�erent optimization criterion.

In the discounted optimization framework, in each

time step, the value of the reward is multiplied by a dis-

count factor γ < , so that the total discounted reward
is always �nite. However, in many domains, there is no

natural interpretation for the discount factor γ. A natu-

ral performancemeasure to optimize in such domains is

the average reward received per time step. Although one

could use a discount factor which is close to  to approx-

imate average-reward optimization, an approach that

directly optimizes the average reward avoids this addi-

tional parameter and o�en leads to faster convergence

in practice.

�ere is signi�cant theory behind average-reward

optimization based on 7Markov decision processes
(MDPs) (Puterman, ). An MDP is described by a

-tuple ⟨S,A,P, r⟩, where S is a discrete set of states and
A is a discrete set of actions. P is a conditional proba-

bility distribution over the next states, given the current

state and action, and r gives the immediate reward for

a given state and action. A policy π is a mapping from

states to actions. Each policy π induces a Markov pro-

cess over some set of states. In ergodic MDPs, every

policy π forms a single closed set of states, and the aver-

age reward per time step of π in the limit of in�nite
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Ahorizon is independent of the starting state. We call it

the “gain” of the policy π, denoted by ρ(π), and consider
the problem of �nding a “gain-optimal policy,” π∗, that

maximizes ρ(π).
Even though the gain ρ(π) of a policy π is indepen-

dent of the starting state s, the total expected reward in

time t is not. It can be denoted by ρ(π)t + h(s), where
h(s) is a state-dependent bias term. It is the bias values
of states that determinewhich states and actions are pre-

ferred, and need to be learned for optimal performance.

�e following theorem gives the Bellman equation for

the bias values of states.

�eorem  For ergodic MDPs, there exist a scalar ρ

and a real-valued bias function h over S that satisfy the

recurrence relation

∀s ∈ S, h(s) = max
a∈A

{r(s, a) + ∑
s′∈S

P(s′∣s, a)h(s′)} − ρ.

()

Further, the gain-optimal policy µ∗ attains the above

maximum for each state s, and ρ is its gain.

Note that any one solution to () yields an in�nite

number of solutions by adding the same constant to all

h-values. However, all these sets of h-values will result

in the same set of optimal policies µ∗, since the opti-

mal action in a state is determined only by the relative

di�erences between the values of h.
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Average-Reward Reinforcement Learning. Figure . A

simple Markov decision process (MDP) that illustrates

the Bellman equation

For example, in Fig. , the agent has to select between

the actions good-move and bad-move in state . If it
stays in state , it gets an average reward of . If it stays in

state , it gets an average reward of −. For this domain,
ρ =  for the optimal policy of choosing good-move
in state . If we arbitrarily set h() to , then h() = ,
h() = , and h() =  satisfy the recurrence relations in
(). For example, the di�erence between h() and h()
is , which equals the di�erence between the immediate

reward for the optimal action in state  and the optimal

average reward .

Given the probability model P and the immediate

rewards r, the above equations can be solved byWhite’s

relative value iteration method by setting the h-value of

an arbitrarily chosen reference state to  and using syn-

chronous successive approximation (Bertsekas, ).

�ere is also a policy iteration approach to determine

the optimal policy starting with some arbitrary pol-

icy, solving for its values using the value iteration, and

updating the policy using one step look-ahead search.

�e above iteration is repeated until the policy con-

verges (Puterman, ).

Model-Based Learning
If the probabilities and the immediate rewards are

not known, the system needs to learn them before

applying the above methods. A model-based approach

called H-learning interleaves model learning with Bell-

man backups of the value function (Tadepalli & Ok,

). �is is an average-reward version of 7adaptive
real-time dynamic programming (Barto, Bradtke, &

Singh, ). �e models are learned by collecting

samples of state-action-next-state triples ⟨s, a, s′⟩ and
computing P(s′∣s, a) using the maximum likelihood

estimation. It then employs the “certainty equivalence

principle” by using the current estimates as the true

value while updating the h-value of the current state

s according to the following update equation derived

from the Bellman equation.

h(s) ← max
a∈A

{r(s, a) + ∑
s′∈S

P(s′∣s, a)h(s′)} − ρ. ()

One complication in ARL is the estimation of

the average reward ρ in the update equations dur-

ing learning. One could use the current estimate

of the long-term average reward, but it is distorted



 A Average-Reward Reinforcement Learning

by the exploratory actions that the agent needs to

take to learn about the unexplored parts of the state

space. Without the exploratory actions, ARL meth-

ods converge to a suboptimal policy. To take this into

account, we have from (), in any state s and a non-

exploratory action a that maximizes the right-hand

side, ρ = r(s, a)−h(s)+ ∑s′∈S P(s′∣S, a)h(s′). Hence, ρ

is estimated by cumulatively averaging r − h(s) + h(s′),
whenever a greedy action a is executed in state s result-

ing in state s′ and immediate reward r. ρ is updated

using the following equation where α is the learning

rate.

ρ ← ρ + α(r − h(s) + h(s′)). ()

One issue with model-based learning is that the

models require too much space and time to learn as

tables. In many cases, actions can be represented much

more compactly. For example, Tadepalli and Ok ()

uses dynamic Bayesian networks to represent and learn

action models, resulting in signi�cant savings in space

and time for learning the models.

Model-Free Learning
One of the disadvantages of the model-based meth-

ods is the need to explicitly represent and learn action

models.�is is completely avoided inmodel-free meth-

ods such as 7Q-learning by learning value functions
over state–action pairs. Schwartz’s R-learning is an

adaptation of Q-learning, which is a discounted rein-

forcement learningmethod, to optimize average reward

(Schwartz, ).

�e state–action value R(s, a) can be de�ned as the
expected long-term advantage of executing action a in

state s and from then on following the optimal average-

reward policy. It can be de�ned using the bias values h

and the optimal average reward ρ as follows.

R(s, a) = r(s, a) + ∑
s′∈S

P(s′∣s, a)h(s′) − ρ. ()

�e main di�erence with Q-values is that instead

of discounting the expected total reward from the next

state, we subtract the average reward ρ in each time step,

which is the constant penalty for using up a time step.

�e h value of any state s can now be de�ned using the

following equation.

h(s′) = max
u

R(s′,u). ()

Initially all theR-values are set to .When action a is

executed in state s, the value of R(s, a) is updated using
the update equation

R(s, a) ← ( − β)R(s, a) + β(r + h(s′) − ρ), ()

where β is the learning rate, r is the immediate reward

received, s′ is the next state, and ρ is the estimate

of the average reward of the current greedy policy.

In any state s, the greedy action a maximizes the

value R(s, a); so R-learning does not need to explic-
itly learn the immediate reward function r(s, a) or the
action models P(s′∣s, a), since it does not use them
either for the action selection or for updating the

R-values.

Both model-free and model-based ARL methods

have been evaluated in several experimental domains

(Mahadevan, ; Tadepalli &Ok, ).When there is

a compact representation formodels and can be learned

quickly, themodel-basedmethod seems to performbet-

ter. It also has the advantage of fewer number of tunable

parameters. However, model-free methods are more

convenient to implement especially if the models are

hard to learn or represent.

Scaling Average-Reward Reinforcement
Learning
Just as for discounted reinforcement learning, scaling

issues are paramount for ARL. Since the number of

states is exponential to the number of relevant state

variables, a table-based approach does not scale well.

�e problem is compounded in multi-agent domains

where the number of joint actions is exponential in

the number of agents. Several function approximation

approaches, such as linear functions, multi-layer per-

ceptrons (Marbach, Mihatsch, & Tsitsiklis, ), local

7linear regression (Tadepalli & Ok, ), and tile cod-
ing (Proper & Tadepalli, ) were tried with varying

degrees of success.

7Hierarchical reinforcement learning based on the
MAXQ framework was also explored in the average-

reward setting and was shown to lead to signi�cantly

faster convergence. In MAXQ framework, we have a

directed acyclic graph, where each node represents a

task and stores the value function for that task. Usually,

the value function for subtasks depends on fewer state

variables than the overall value function and hence can
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Abe more compactly represented. �e relevant variables

for each subtask are �xed by the designer of the hier-

archy, which makes it much easier to learn the value

functions. One potential problem with the hierarchical

approach is the loss due to the hierarchical constraint

on the policy. Despite this limitation, bothmodel-based

(Seri & Tadepalli, ) and model-free approaches

(Ghavamzadeh & Mahadevan, ) were shown to

yield optimal policies in some domains that satisfy the

assumptions of these methods.

Applications
A temporal di�erence method for average reward

based on TD() was used to solve a call admis-

sion control and routing problem (Marbach et al.,

). On a modestly sized network of  nodes,

it was shown that the average-reward TD() outper-

forms the discounted version because it required more

careful tuning of its parameters. Similar results were

obtained in other domains such as automatic guided

vehicle routing (Ghavamzadeh & Mahadevan, )

and transfer line optimization (Wang & Mahadevan,

).

Convergence Analysis
Unlike their discounted counterparts, both R-Learning

and H-Learning lack convergence guarantees. �is is

because due to the lack of discounting, the updates

can no longer be thought of as contraction mappings,

and hence the standard theory of stochastic approx-

imation does not apply. Simultaneous update of the

average reward ρ and the value functions makes the

analysis of these algorithms much more complicated.

However, some ARL algorithms have been proved con-

vergent in the limit using analysis based on ordinary

di�erential equations (ODE) (Abounadi, Bertsekas, &

Borkar, ). �e main idea is to turn to ordinary

di�erential equations that are closely tracked by the

update equations and use two time-scale analysis to

show convergence. In addition to the standard assump-

tions of stochastic approximation theory, the two time-

scale analysis requires that ρ is updated at amuch slower

time scale than the value function.

�e previous convergence results are based on the

limit of in�nite exploration. One of themany challenges

in reinforcement learning is that of e�cient exploration

of the MDP to learn the dynamics and the rewards.

�ere aremodel-based algorithms that guarantee learn-

ing an approximately optimal average-reward policy in

time polynomial in the numbers of states and actions

of the MDP and its mixing time. �ese algorithms

work by alternating between learning the action mod-

els of the MDP by taking actions in the environ-

ment, and solving the learned MDP using o�ine value

iteration.

In the “Explicit Explore and Exploit” or E algo-

rithm, the agent explicitly decides between exploiting

the known part of the MDP and optimally trying to

reach the unknown part of the MDP (exploration)

(Kearns & Singh, ). During exploration, it uses

the idea of “balanced wandering,” where the least exe-

cuted action in the current state is preferred until all

actions are executed a certain number of times. In con-

trast, the R-Max algorithm implicitly chooses between

exploration and exploitation by using the principle of

“optimism under uncertainty” (Brafman&Tennenholtz,

). �e idea here is to initialize the model parame-

ters optimistically so that all unexplored actions in all

states are assumed to reach a �ctitious state that yields

maximum possible reward from then on regardless of

which action is taken.�eoptimistic initialization of the

model parameters automatically encourages the agent

to execute unexplored actions, until the truemodels and

values of more states and actions are gradually revealed

to the agent. It has been shown that with a probability

at least  − δ, both E and R-MAX learn approximately

correct models whose optimal policies have an average

reward є-close to the true optimal in time polynomial

in the numbers of states and actions, the mixing time of

the MDP, 
є
, and 

δ
.

Unfortunately the convergence results do not apply

when there is function approximation involved. In the

presence of linear function approximation, the average-

reward version of temporal di�erence learning, which

learns a state-based value function for a �xed policy, is

shown to converge in the limit (Tsitsiklis & Van Roy,

). �e transient behavior of this algorithm is simi-

lar to that of the corresponding discounted TD-learning

with an appropriately scaled constant basis function

(Van Roy & Tsitsiklis, ). As in the discounted

case, development of provably convergent optimal pol-

icy learning algorithms with function approximation is

a challenging open problem.
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