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» Decision Tree

I
Cannot-Link Constraint

A pairwise constraint between two items indicating that
they should be placed into different clusters in the final
partition.

I candidate-Elimination
Algorithm

Mitchell’s, (1982,1997) candidate-elimination algorithm
performs a bidirectional search in the »hypothesis
space. It maintains a set, S, of most specific hypotheses
that are consistent with the training data and a set, G,
of most general hypotheses consistent with the training
data. These two sets form two boundaries on the version
space. See »-Learning as Search.
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Definition

Cascade-Correlation (often abbreviated as “Cascor”
or “CC”) is a Psupervised learning algorithm for
»artificial neural networks. It is related to the »back-
propagation algorithm (“backprop”). CC differs from
backprop in that a CC network begins with no hidden
units, and then adds units one-by-one, as needed during
learning.

Each new hidden unit is trained to correlate with
residual error in the network built so far. When it is
added to the network, the new unit is frozen, in the
sense that its input weights are fixed. The hidden units
form a cascade: each new unit receives weighted input
from all the original network inputs and from the output
of every previously created hidden unit. This cascad-
ing creates a network that is as deep as the number
of hidden units. Stated another way, the CC algorithm
is capable of efficiently creating complex, higher-order
nonlinear basis functions — the hidden units - which are
then combined to form the desired outputs.

The result is an algorithm that learns complex
input/output mappings very fast compared to backprop,
and that builds a multi-layer network structure that is
customized for the problem at hand.

Motivation and Background
Cascade-Correlation was designed (Fahlman & Lebiere,
1990) to address two well-known problems with
the popular back-propagation algorithm (“backprop”).
First, a backprop user has to guess what network struc-
ture - the number of hidden layers and the number of
units in each layer — would be best for a given learning
problem. If the network is too small or too shallow, it
won't solve the problem,; if it is too large or too deep,
training is very slow, and the network is prone to over-
fitting the training data. Because there is no reliable way
to choose a good structure before training begins, most
backprop users have to train many different structures
before finding one that is well-matched to the task.
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Second, even if a backprop user manages to choose a
good network structure, training is generally very slow.
That is particularly true in networks with many hidden
units or with more than one hidden layer. One cause
of slow learning in backprop is the use of a uniform
learning-rate parameter for updating network weights.
This problem was addressed with the Quickprop algo-
rithm (Fahlman, 1988), an approximation to Newton’s
method that adapts the learning rate for each weight
parameter depending on the first two derivatives of
the local error surface. Quickprop improved learning
speed, sometimes dramatically, butlearning was still too
slow in large or deep networks.

Another cause of slow learning in backprop is the
“herd effect” (Fahlman & Lebiere, 1990). If the solution
to a network problem requires, say, 30 hidden units,
each of these units must be trained to do a different
job - that is, to compute a different nonlinear basis
function. Each hidden unit starts with a different and
randomly chosen set of input weights; but if the units
are all trained at once, they all see the same error sig-
nal. There is no central authority telling each unit to do
a separate job, so they tend to drift toward the same part
of parameter space, forming a herd that moves around
together. Eventually, the units may drift apart and begin
to differentiate, but there is nothing to compel this, so
the process is slow and unreliable. Usually, in selecting
an initial topology for a backprop net, it is necessary to
include many extra hidden units to increase the odds
that each job will be done by some unit.

CC addresses this problem by introducing and
training hidden units one by one. Each hidden unit
sees a strong, clear error gradient, not confused by the
simultaneous movement of other hidden units. A new
hidden unit can thus move quickly and decisively to a
position in parameter space where it can perform a use-
ful function, reducing the residual error. One by one,
cascor-hidden units take up distinct jobs, instead of
milling about together competing to do the same job.

Structure of Learning System

The CC architecture is illustrated in Fig. 1. It begins
with some inputs and one or more output units, but
no hidden units. The numbers of inputs and outputs
are dictated by the problem. As in backprop, the output

units generally have a sigmoid activation function, but
could alternatively have a linear activation function.
Every input is connected to every output unit by a con-
nection with an adjustable weight. There is also a bias
input, permanently set to +1.

Hidden units are added to the network one by one.
Each new hidden unit receives a weighted connection
from each of the networks original inputs and also
from every existing hidden unit. Each new unit there-
fore adds a new single-unit layer to the network. This
makes it possible to create high-order nonlinear feature
detectors, customized for the problem at hand.

As noted, learning begins without hidden units. The
direct input-output connections are trained as well as
possible over the entire set of training examples, using
Quickprop. At some point, this training approaches an
asymptote. When no significant error reduction has
occurred after a certain number of training cycles, this
output phase is terminated and there is a shift to input
phase to recruit a new hidden unit, using the unit-
creation algorithm to be described. The new unit is
added to the net, its input weights are frozen, and all the
output weights are once again trained using Quickprop.
This cycle repeats until the error is acceptably small,
in the sense that all network outputs for all training
patterns are within a specified threshold of their target
values.

To create a new hidden unit, input phase begins
with several candidate units that receive trainable input
connections from all of the network inputs and from
all existing hidden units. The outputs of these candi-
dates are not yet connected to the network. There are a
number of passes over the examples of the training set,
adjusting the candidate units input weights after each
pass. The goal of these adjustments, using Quickprop,
is to maximize the correlation between each candidate’s
output and the residual error.

When these correlation measures show no further
significant improvement, input phase stops, the best-
correlating candidate’s input weights are frozen, and
that unit is installed in the network. The remaining can-
didates are discarded and the algorithm then retrains
the output weights, making use of this new feature as
well as all the old ones. As the new unit’s output corre-
lates well with some component of the residual error, its
output weights can be quickly adjusted to reduce that
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Cascade-Correlation. Figure 1. The Cascade-Correlation (CC) architecture, as new hidden units are added. Black circles
are frozen connection weights, white circles are weights trained during output-training phase. The vertical lines sum

all incoming activation
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component. So after adding each new hidden unit, the
network’s residual error should be smaller than before.

Using several candidates, each with differently-
initialized input weights, greatly reduces the chances of
installing a bad hidden unit that gets the network stuck
in a local optimum far from the global optimum value.
All candidates receive the same input signals and see the
same residual error for each training pattern. Because
they do not interact with one another or affect the net-
work during training, these candidates can be trained
in parallel. In a pool of four to eight candidates, there
are almost always several high-quality candidates with
nearly equal correlation values.

Hidden units continue to be recruited until net-
work error reaches an acceptable level, or until cross-
validation signals a stop. Because only a single layer
of weights is adjusted at a time, rather than back-
propagating an error signal through several layers of
shifting units, CC training proceeds very quickly.

CC is designed to produce a network just large enough
to solve the problem, and to do so much faster than
backprop and related algorithms. In many reported
cases that require hidden units, CC learns the desired
behavior 10-100 times faster than standard backprop
(Fahlman & Lebiere, 1990). One striking example of
this is the two-spirals problem, an artificial benchmark
designed to be very difficult for neural networks with
sigmoid units. At the time CC was developed, the best
known backprop solutions for two-spirals required a
network with three hidden layers of five units each. CC
typically solves this problem with 12 hidden units, and
has found solutions with as few as nine hidden units.
In terms of runtime, CC training was about 50 times
faster than standard backprop and 23 times faster than
Quickprop used within a static network.

Flat Cascade-Correlation In standard CC, each new
hidden unit receives inputs from every existing unit, so
the net becomes one level deeper every time a unit is
added. This is a powerful mechanism, creating increas-
ingly complex feature detectors as the network learns.
But sometimes this added depth is not required for the
problem, creating a very deep network that performs no
better than a shallow one. The resulting network might

have more weights than are required for the problem,
raising concern about over-fitting. Another concern
was that the cascaded non-linearity of CC might also
compromise generalization. To address these concerns,
a flat variant of cascor adds new recruited units onto a
single layer (i.e., cascaded connections are eliminated),
limiting the depth of the network and eliminating all
cascaded weights between hidden units.

Comparison of flat to standard CC on gen-
eralization in particular learning problems yielded
inconsistent results, but a more problem-neutral,
student-teacher approach found no generalization dif-
ferences between flat and standard versions of CC
(Dandurand, Berthiaume, & Shultz, 2007). Here, flat
and standard student CC networks learned the input-
output mappings of other, randomly initialized flat and
standard CC teacher networks, where task complex-
ity was systematically manipulated. Both standard and
flat CC student networks learned and generalized well
on problems of varying complexity. In low-complexity
tasks, there were no significant performance differ-
ences between flat and standard CC student networks.
For high-complexity tasks, flat CC student networks
required fewer connection weights and learned with
less computational cost than did standard CC student
networks.

Sibling-Descendant Cascade-Correlation (SDCC) SDCC
(Baluja & Fahlman, 1994) provides a more general solu-
tion to the problem of network depth. In the candidate
pool there are two kinds of candidate units: descendant
units that receive inputs from all existing hidden units,
and sibling units that receive the same inputs as the
deepest hidden units in the current net. When the time
comes to choose a winning candidate, the candidate
with the best correlation wins, but there is a slight pref-
erence for sibling units. So unless a descendant unit is
clearly superior, a sibling unit will be recruited, making
the active network larger, but not deeper. In problems
where standard CC produces a network with 15 or 20
hidden units and an equal number of layers, SDCC
often produces a network with only two or three hidden
layers.

Recurrent Cascade-Correlation (RCC) Standard CC pro-
duces a network that maps its current inputs to outputs.
The network has no memory of recent inputs, so this
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architecture is not able to learn to recognize a sequence
of inputs. In the RCC algorithm, each candidate and
hidden unit takes the same inputs as in standard CC, but
it also takes an additional input: the unit’s own previous
output, delayed by one time interval (Fahlman, 1991).
The weight on this time-delayed input is trained by the
same algorithm as all the other inputs.

This delayed loop gives RCC networks a way of
remembering past inputs and internal states, so they
can learn to recognize sequences of input patterns. In
effect, the architecture builds a finite-state machine tai-
lored specifically to recognize the pattern sequences in
the training set. For example, an RCC net learned to
recognize characters in Morse code.

Knowledge-Based Cascade-Correlation (KBCC) KBCC is
a variant that can recruit previously-learned networks
or indeed any differentiable function, in competition
with single hidden units (Shultz & Rivest, 2001; Shultz,
Rivest, Egri, Thivierge, & Dandurand, 2007). The recruit
is the candidate whose output correlates best with resid-
ual network error, just as in ordinary CC. The candidate
pool usually has a number of randomly initialized sig-
moid units and a number of candidate source networks,
i.e., networks previously trained on other tasks. The
input weights to multiple copies of the source networks
are usually randomly initialized to improve optimiza-
tion. Of these copies, one is typically connected with
an identity matrix with oft-diagonal zeros, to enable
quick learning of the target task when exact knowledge
is available. A hypothetical KBCC network is shown in
Fig. 2.

Software Most CC algorithms are available in a variety
of formats and languages, including:

CASCOR: Lisp and C implementations of Cascade-
correlation
http://www.cs.cmu.edu/afs/cs/project/ai-repository/
ai/areas/neural/systems/cascor/0.html

Free Lisp and C implementations of cascade-
correlation.

Cascade Neural Network Simulator
http://www.cs.cmu.edu/~sef/sefSoft.htm

A public domain C program that implements

-

Outputs

Inputs '—

Cascade-Correlation. Figure 2. Hypothetical knowledge-
based cascade-correlation (KBCC) network that has
recruited a source network and then a sigmoid unit, each
installed on a separate layer. The dashed line represents
a single connection weight, thin solid lines represent
weight vectors, and thick solid lines represent weight
matrices

plus experimental versions of cascade 2 and recur-
rent cascade 2.

LNSC Cascade-correlation Simulator Applet
http://www.psych.mcgill.ca/perpg/fac/shultz/cdp/
Insc_applet.htm

A Java applet allowing direct comparisons of
cascade-correlation and back-propagation algorithms
on some benchmark problems, also permitting entry
of text-edited custom training and test patterns.
LNSC Java Code Library

http://www.Insclab.org/

Free compiled Java versions of BP, CC, SDCC,
and KBCC neural-network software, along with a
tutorial

Applications

Partly because of its ability to grow its own networks
and build new learning on top of existing knowledge,
CC has been used to simulate many phenomena in cog-
nitive development. These characteristics embody the
constructivism that developmental psychologists often
discussed but did not formulate precisely. Simulations
are typically evaluated by how well they capture the
various psychological phenomena that characterize a

cascade-correlation and recurrent cascade-correlation, particular domain.
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The balance-scale task involves presenting a child
with a rigid beam balanced on a fulcrum with pegs
spaced at equal intervals to the left and right of the ful-
crum. A number of identical weights are placed on a
peg on the left side and a peg on the right side, and
the child is asked to predict which side will descend
when the beam is released from its moorings. CC net-
works passed through the stages observed with children
and captured the so-called torque-difference effect, the
tendency to do better on problems with large absolute
torque differences than on problems with small torque
differences (Shultz, Mareschal, & Schmidt, 1994; Shultz
and Takane, 2007).

The conservation task presents a child with two
quantities of objects that the child judges to be equal and
then transforms one set in a way that either changes that
relationship or conserves it. CC networks captured four
important conservation regularities (Shultz, 1998):

1. A shift from nonconservation to conservation
beliefs

2. A sudden spurt in performance during acquisition

3. Emergence of correct conservation judgments for
small quantities before larger quantities

4. Young children’s choice of the longer row as having
more items than the shorter row

Analysis of network solutions at various points in devel-
opment revealed a gradual shift from perceptual (how
the sets of items look) to cognitive (whether or not the
transformation changed a quantity) solutions, similar to
what had been found with children.

The seriation task requires a child to order a dis-
ordered collection of sticks of different lengths. CC
networks passed through the four stages seen in chil-
dren (total failure, partial sort, trial-and-error sort, and
systematic sort) and captured the tendency for sets
with smaller differences to be more difficult to sort
(Mareschal & Shultz, 1999). Analysis of network solu-
tions revealed early success at the short end of the series
that was gradually extended to the longer end, as in
children.

The transitivity problem typically also employs
sticks of different length. Here the child is trained on
all pairs of sticks that are adjacent in length and then
is asked to infer the relative length of untrained pairs.
Five psychological regularities were captured when CC

networks were trained to compare the relative sizes of
adjacent pairs (Shultz & Vogel, 2004):

1. Learning short or long adjacent pairs before adja-
cent pairs of medium length.

2. Faster inferences with pairs farther apart in length
than with pairs close together in length, an effect
that diminished with age. A constraint-satisfaction
network module simulated reaction times by input-
ting the output of a CC network and settling over
time cycles into a low-energy solution that satisfied
the constraints supplied by connection weights and
inputs, effectively cleaning up the output of the CC
network.

3. Faster inferences with pairs containing the shortest
or longest stick.

4. Faster inferences when the expression used in the
question (e.g., shorter) is compatible with an end
stick (e.g., the shortest stick) in the compared
pair than when the question term (e.g., shorter)
is incompatible with an end stick (e.g., the longest
stick) in the compared pair.

5. Older children learned adjacent pairs faster and
made inference comparisons faster and more accu-

rately than did young children.

The computational bases for these effects were revealed
by examining the pattern of connection weights within
the CC network module. The pattern of these weights
formed a cubic shape, symmetrical for the two sticks
being compared, in which discrimination was better at
the ends of the array than in the middle and became
sharper with deeper learning.

Another task calls for integration of cues for moving
objects, governed by the equation velocity = distance/
time. Children were presented with information on two
of those quantities and asked to infer the third. Three
stages involved first using the quantity that varied pos-
itively with the quantity to be inferred, second adding
or subtracting the known quantities, and finally multi-
plying or dividing the known quantities. Already docu-
mented stages were captured and others were correctly
predicted by CC networks (Buckingham & Shultz,
2000).

Semantic rules for deictic personal pronouns specify
that me refers to the person using the pronoun and you
refers to the person who is being addressed. Although
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most children acquire these pronouns without notable
errors, a few reverse these pronouns, persistently call-
ing themselves you and the mother me. Such reversals
in children are produced by lack of opportunity to over-
hear these pronouns used by other people, where the
shifting reference can be observed. CC networks cov-
ered these phenomena and generated predictions for
effective therapy to correct reversal errors (Oshima-
Takane, Takane, & Shultz, 1999).

Discrimination shift learning tasks repeatedly present
pairs of stimuli with mutually exclusive attributes on
several binary dimensions, such as color, shape, and
position, and a child learns to select the correct stimulus
in each pair, e.g., square. Feedback is given and learn-
ing continues until the child reaches a success criterion,
e.g., 8/10 correct. Then reward contingencies shift, usu-
ally without warning. A reversal shift stays within the
initially relevant dimension, e.g., from square to cir-
cle. A nonreversal shift is to another dimension, such
as from square to blue. There are related tasks that use
new stimulus values in the shift phase. These are called
intradimensional shifts if the shift remains within the
initial dimension, e.g., square to triangle, or extradimen-
sional if there is a change to another dimension, e.g.,
from square to yellow. The optional shift task presents
only two stimulus pairs in the shift phase, making it
ambiguous whether the shift is a reversal or nonreversal
shift. The pattern of subsequent choices allows determi-
nation of whether the child interprets this as a reversal
or a nonreversal shift.

Age differences in the large literature on these shifts
indicate that older children learn a reversal shift faster
than a nonreversal shift, learn an intradimensional shift
faster than an extradimensional shift, make a reversal
shift in the optional task, and are initially impaired on
unchanged pairs during a nonreversal shift. Younger
children learn reversal and nonreversal shifts equally
fast, learn an intra-dimensional shift faster than an
extra-dimensional shift, make a nonreversal shift in the
optional task, and are unimpaired on unchanged pairs
during a nonreversal shift. These findings were simu-
lated by CC networks (Sirois & Shultz, 1998), which
also generated predictions that were later confirmed.

When infants repeatedly experience stimuli from a
particular class, their attention decreases, but it recovers
to stimuli from a different class. This familiarize-and-
test paradigm is responsible for most of the discoveries

of infant psychological abilities. CC networks simulated
findings on infant attention to syntactic patterns in an
artificial language (Shultz & Bale, 2006) and age differ-
ences in infant categorization of visual stimuli (Shultz &
Cohen, 2004), and generated several predictions, some
of which were tested and confirmed.

Because of SDCC'’s ability to create a variety of network
topologies, it is beginning to be used in psychology
simulations: infant learning of word-stress patterns
in artificial languages (Shultz & Bale, 2006), sylla-
ble boundaries (Shultz & Bale, 2006), visual concepts
(Shultz, 2006), and false-belief tasks; learning the struc-
ture of mathematical groups (Schlimm & Shultz, 2009);
replication of the results of the CC simulation of
conservation acquisition (Shultz, 2006); and concept
acquisition.

CC and SDCC networks capture developmental
stages by growing in computational power and by being
sensitive to statistical patterns in the training envi-
ronment (Shultz, 2003). The importance of growth
was demonstrated by comparisons with static back-
prop networks, designed with the same final topology
as successful CC networks, that learn only by adjust-
ing connection weights (Shultz, 2006). Coupled with
the variety of successful SDCC topologies, this suggests
that the constructive process is more important than
precise network topologies. Capturing stages is chal-
lenging because the system has to not only succeed on
the task but also make the same mistakes on the road to
success that children do. CC and SDCC arguably pro-
duced the best data coverage of any models applied to
the foregoing phenomena. Both static and constructive
networks capture various perceptual effects by virtue
of their sensitivity to quantitative variation in stimulus
inputs (Shultz, 2003).

Comparison of the two algorithms in psychologi-
cal modeling indicates that SDCC provides the same
functionality as CC but with fewer connection weights
and shallower and more variable network topologies
(Shultz, 2006).

KBCC also has potential for simulating psychological
development, but it has so far been applied mainly
to toy and engineering problems. Exploration of a
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variety of toy problems was important in understand-
ing the behavior of this complex algorithm. Some
toy problems involved learning about two-dimensional
geometric shapes under various transformations such
as translation, rotation, and size changes, as well as
compositions of complex shapes from simpler shapes
(Shultz & Rivest, 2001). Networks had to learn to distin-
guish points within a target shape from points outside
the shape. Learning time without relevant knowledge
was up to 16 times longer than with relevant knowl-
edge on these problems. There was a strong tendency
to recruit relevant knowledge whenever it was available.
Direct comparison revealed that KBCC learned spa-
tial translation problems faster than Multitask Learning
networks did.

Parity problems require a network to activate an out-
put unit only when an odd number of binary inputs
are activated. When parity-4 networks were included in
the candidate source pool, KBCClearned parity-8 prob-
lems (with eight binary inputs) faster and with fewer
recruits than did CC networks. Parity-4 networks were
recruited by these KBCC target networks whenever
available.

KBCC also learned complex chessboard shapes
from knowledge of simpler chessboards. As with parity,
networks used simpler previous knowledge to compose
a solution to a more complex problem and learning was
speeded accordingly.

In a more realistic vein, KBCC networks recruit-
ing knowledge of vowels from one sort of speaker (e.g.,
adult females) learned to recognize vowels spoken by
other sets of speakers (e.g., children and adult males)
faster than did knowledge-free networks.

KBCC learned an efficient algorithm for detect-
ing prime numbers by recruiting previously-learned
knowledge of divisibility (Shultz et al., 2007). This well-
known detection algorithm tests the primality of an
integer n by checking if » is divisible by any integers
between 2 and the integer part of \/n. Starting with
small primes is efficient because the smaller the prime
divisor, the more composites are detected in a fixed
range of integers. The candidate pool contained net-
works that had learned whether an integer could be
divided by each of a range of integers, e.g., a divide-
by-2 network, a divide-by-3 network, etc., up to a divisor
of 20. KBCC target networks trained on 306 randomly-
selected integers from 21 to 360 recruited only source

networks involving prime divisors below the square
root of 360, in order from small to large divisors.
KBCC avoided recruiting single hidden units, source
networks with composite divisors, any divisors greater
than the square root of 360 even if prime, and divisor
networks with randomized connection weights. KBCC
never recruited a divide-by-2 source network because
it instead learned to check the last binary digit of n to
determine if n was odd or even, an effective shortcut to
dividing by 2. Such KBCC networks learned the train-
ing patterns in about one third the time required by
knowledge-free networks, with fewer recruits on fewer
network layers, and they generalized almost perfectly
to novel test integers. In contrast, even after mastering
the training patterns, CC networks generalized less well
than automatic guessing that the integer was compos-
ite, which was true for 81% of integers in this range.
As predicted by the simulation, adults testing primality
also used mainly prime divisors below \/n and ordered
divisors from small to large.

This work underscores the possibility of neural-
network approaches to compositionality because KBCC
effectively composed a solution to prime-number detec-
tion by recruiting and organizing previously learned
parts of the problem, in the form of divisibility net-
works.

Future Directions

One new trend is to inject symbolic rules or func-
tions into KBCC source networks. This is similar to
KBANN, but more flexible because a KBCC target net-
work decides whether and how to recruit these func-
tions. This provides one method of integrating symbolic
and neural computation and allows for simulation of the
effects of direct instruction.

Cross References
» Artificial Neural Networks
» Backpropagation
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Synonyms
CBR; Experience-based reasoning; Lessons-learned
systems; Memory-based learning

Definition

Case-based reasoning solves problems by retrieving
similar, previously solved problems and reusing their
solutions. Experiences are memorized as cases in a case
base. Each experience is learned as a problem or situa-
tion together with its corresponding solution or action.
The experience need not record how the solution was
reached, simply that the solution was used for the prob-
lem. The case base acts as a memory, and remembering
is achieved using similarity-based retrieval and reuse of
the retrieved solutions. Newly solved problems may be
retained in the case base and so the memory is able to
grow as problem-solving occurs.
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Motivation and Background

Case-based reasoning (CBR) is inspired by memory-
based human problem-solving in which instances of
earlier problem-solving are remembered and applied
to solve new problems. For example, in Case Law, the
decisions in trials are based on legal precedents from
previous trials. In this way specific experiences are
memorized, and remembered and reused when appro-
priate (Leake, 1996). This contrasts with rule-based or
theory-based problem-solving in which knowledge of
how to solve a problem is applied. A doctor diagnosing
a patient’s symptoms may apply knowledge about how
diseases manifest themselves, or she may remember a
previous patient who demonstrated similar symptoms.
Schank’s »dynamic memory model was highly influen-
tial in early CBR systems (Kolodner, 1993; Riesbeck &
Schank, 1989). Its emphasis on the use of specific experi-
ences to underpin problem-solving and enable learning
is replicated in CBR.

The fundamental assumption of CBR is that Similar
problems have similar solutions. For example, a patient
with similar symptoms will have the same diagnosis,
the price of a house with similar accommodation and
location will be similar, the design for a kitchen with a
similar shape and size can be reused, a journey plan for a
nearby destination is similar to the earlier trip. A related
assumption is that the world is a regular place, and what
holds true today will probably hold true tomorrow. A
further assumption relevant to memory is that situa-
tions repeat, because if they do not, there is no point
in remembering them!

CBR is an example of »Lazy Learning because
there is no learned model to apply to solve new prob-
lems. Instead, the generalization needed to solve unseen
problems happens when a new problem is presented
and the similarity-based retrieval identifies relevant
previous experiences. The lack of a learned model and
the reliance on stored experiences mean that CBR is
particularly relevant in domains which are ill-defined,
not well understood, or where no underlying theory is
available.

Structure of the Learning System

Figure 1 shows the structure of a CBR system (Aamodt
& Plaza, 1994). A case base of Previous Cases is the
primary knowledge source in a CBR system, with

Problem

Case Base Retrieved

Case

Learned
Case

Previous
Cases

RETAIN

Tested/
Repaired
Case

Solved
Case

Confirmed
Solution

Suggested
Solution

Case-Based Reasoning. Figure 1. CBR system (adapted
from Aamodt and Plaza (1994))

additional knowledge being used to identify similar
cases in the RETRIEVE stage, and to REUSE and
REVISE the Retrieved Case. A CBR system learns as it
solves new problems when a Learned Case is created
from the New Case and its Confirmed Solution, and
RETAINed as a new case in the case base.

Case knowledge is the primary source of knowledge in
a CBR system. However, case knowledge is only one
of four knowledge containers identified by Richter and
Aamodt (2005).

e Vocabulary: The representation language used to
describe the cases captures the concepts involved in
the problem-solving.

o Similarity Knowledge: The similarity measure defines
how the distances between cases are computed so
that the nearest neighbors are identified for retrieval.

e Adaptation Knowledge: Reusing solutions from
retrieved cases may require some adaptation to
enable them to fit the new problem.

o Case Base: The stored cases capture the previous
problem-solving experiences.
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The content of each knowledge container is not fixed
and knowledge in one container can compensate for
a lack of knowledge in another. It is easy to see that
a more sophisticated knowledge representation could
be less demanding on the content of the case base.
Similarly, vocabulary can make similarity assessment
during retrieval easier, or a more complete case base
could reduce the demands on adaptation during reuse.
Further knowledge containers (e.g., maintenance) are
proposed by others.

Cases may be represented as simple feature vectors
containing nominal or numeric values. A case capturing
a whisky tasting experience might contain features such
as sweetness, color, nose, palate, and the »classification
as the distillery where it was made.

amber [full | medium-dry | Dalmore

More structured representations can use frame-
based or object-oriented cases. The choice of represen-
tation depends on the complexity of the experiences
being remembered and is influenced by how similar-
ity should be determined. Hierarchical case representa-
tions allow cases to be remembered at different levels of
abstraction, and retrieval and reuse may occur at these
different levels (Bergmann & Wilke, 1996).

In »classification, the case base can be considered to
contain exemplars of problem-solving. Aha et al’s (1991)
family of instance-based learning algorithms IBI, IB2
and IB3 apply increasingly informed selection methods
to determine whether a classification experience should
become part of the case base. IBI simply remembers all
experiences, IB2 stores an experience only if it would
be wrongly solved by the existing stored experiences,
and IB3 keeps a score for the reuse of each experience
and discards those whose classification success is poor.
This notion of exemplar confirms a CBR case base as
a source of knowledge; it contains only those experi-
ences that are believed to be useful for problem-solving.
A similar view is taken for non-classification domains;
for example, the case base contains useful designs that
can be used for re-design, and plans for re-planning.

One of the advantages of CBR is that a case base
is composed of independent cases that each captures
some local problem-solving knowledge that has been
experienced. Therefore, the “knowledge acquisition

bottleneck” of many rule-based and model-based sys-
tems is reduced for CBR. However, the Other Knowl-
edge Containers provide additional knowledge acquisi-
tion demands that may lessen the advantage of CBR for
some domains.

Aamodt and Plaza (1994) propose a four-stage CBR
cycle for problem-solving and learning (Fig. 1). It is
commonly referred to as the “Four REs” or “R*” cycle
to recognize the following stages.

e RETRIEVE: The cases that are most similar to
the New Case defined by the description of the
new problem are identified and retrieved from the
case base. The RETRIEVE stage uses the similarity
knowledge container in addition to the case base.

e REUSE: The solutions in the Retrieved (most simi-
lar) Cases are reused to build a Suggested Solution
to create the Solved Case from the New Case. The
REUSE stage may use the adaptation knowledge
container to refine the retrieved solutions.

e REVISE: The Suggested Solution in the Solved Case
is evaluated for correctness and is repaired if nec-
essary to provide the Confirmed Solution in the
Tested/Repaired Case. The REVISE stage may be
achieved manually or may use adaptation knowl-
edge, but it should be noted that a revision to a
Suggested Solution is likely to be a less demanding
task than solving the problem from scratch.

e RETAIN: The Repaired Case may be retained in the
case base as a newly Learned Case if it is likely to be
useful for future problem-solving. Thus the primary
knowledge source for CBR may be added to dur-
ing problem-solving and is an evolving, self-adaptive
collection of problem-solving experiences.

CBR retrieval compares the problem part of the new
case with each of the cases in the case base to establish
the distance between the new case and the stored cases.
The cases closest to the new case are retrieved for reuse.
Retrieval is a major focus of Lépez de Mdntaras et al’s
(2005) review of research contributions related to the
CBR cycle.

Similarity- and distance-based neighborhoods are
commonly used interchangeably when discussing CBR




150

Case-Based Reasoning

retrieval. Similarity and distance are inverses: the simi-
larity is highest when the distance is close to 0, and the
similarity is 0 when the distance is large. Several func-
tions may be applied to define a suitable relationship
between a distance d and a similarity s, including the
following simple versions:

Linear: s =1—d (for normalized d)

Inverse: s = % (ford +0).

It is common to establish the distance between each
pair of feature values and then to use a distance met-
ric, often Euclidean or »Manhattan distance (see also
> Similarity Measure), to calculate the distance between
the feature vectors for the New and Retrieved Cases. The
distance between two numeric feature values v and w for
a feature F is normally taken to be the distance between
the normalized values:

[v-w]

d VW)= —"""—
( ) Fmax_Fmin

where F,, 4./ Fpin are the maximum/minimum values of
the feature F.

For nominal values v and w the simplest approach is
to apply a binary distance function:

0 ifv=w
d(v,w) =
1 otherwise

For ordered nominal values a more fine-grained dis-
tance may be appropriate. The distance between the
ith value v; and the jth value v; in the ordered values
V1, V2,...,V, may use the separation in the ordering to
define the distance:

i
d(Vi,Vj) = ‘n_]1|

Extending this to arbitrary nominal values, a dis-
tance matrix D may define the distance between each
pair of nominal values by assigning the distance d(v;, v;)
to dl]

Returning to the whisky-tasting example, suppose
Sweetness and Peatiness score values 0-10, Color takes
ordered values {pale, straw, gold, honey, amber}, Palate
uses binary distance, and Nose is defined by the follow-
ing distance matrix.

Distances |peat fresh soft full
peat 0 0.3 1 05
fresh 0.3 0 0.5 0.7
soft 1 0.5 0 03
full 0.5 07 03 0

Dalmore whisky above can be compared with
Laphroaig and The Macallan as follows:

amber | peat | medium-dry | Laphroaig

7 4 gold |full |big-body The Macallan

The Manhattan distances are:
d(Dalmore,Laphroaig) = 0.4+ 0.5+ 0+ 0.5+ 0 = 1.4;

d(Dalmore,The Macallan) =01+ 0.1+ 05+0+1=17

Taking all the whisky features with equal importance,
Dalmore is more similar to Laphroaig than to The
Macallan.

In situations where the relative importance of fea-
tures should be taken into account, a weighted version
of the distance function should be used; for example, the
weighted Manhattan distance between two normalized
vectors X = (x1,%2,...%,) and 'y = (y1,¥2,...y,) with
weight w; for the ith feature is

Z?: Wi | Xi—=Yi
dxy) - o]
i=1 Wi

In the example above if Peatiness has weight 4 and
the other features have weight 1 then the weighted Man-
hattan distances are:

d(Dalmore,Laphroaig) = (0.4 +4 x 0.5+ 0
+0.5+0)/8 = 0.36;

d(Dalmore,The Macallan) = (0.1+4 x 0.1+ 0.5

+0+1)/8 = 0.25.

Therefore, emphasizing the distinctive Peatiness fea-
ture, Dalmore is more similar to The Macallan than to
Laphroaig.
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The similarity knowledge container contains knowl-
edge to calculate similarities. For simple feature vectors
a weighted sum of distances is often sufficient, and the
weights are similarity knowledge. However, even our
whisky tasting domain had additional similarity knowl-
edge containing the distance matrix for the Nose fea-
ture. Structured cases require methods to calculate the
similarity of two cases from the similarities of compo-
nents. CBR may use very knowledge-intensive methods
to decide similarity for the retrieval stage. Ease of reuse
or revision may even be incorporated as part of the
assessment of similarity. Similarity knowledge may also
define how »missing values are handled: the feature
may be ignored, the similarity may be maximally pes-
simistic, or a default or average value may be used to
calculate the distance.

A CBR case base may be indexed to avoid similarity
matching being applied to all the cases in the case base.
One approach uses kd trees to partition the case base
according to hyper-planes. »Decision Tree algorithms
may be used to build the kd tree by using the cases as
training data, partitioning the cases according to the
chosen decision nodes, and storing the cases in the
appropriate leaf nodes. Retrieval first traverses the deci-
sion tree to select the cases in a leaf node, and similarity
matching is applied to only this partition. Case Retrieval
Nets are designed to speed up retrieval by applying
spreading activation to select relevant cases. In Case
Retrieval Nets the feature value nodes are linked via
similarity to each other and to cases. Indexes can speed
up retrieval but they also pre-select cases according to
some criteria that may differ from similarity.

Reuse may be as simple as copying the solution from the
Retrieved Case. If k nearest neighbors are retrieved then
a vote of the classes predicted in the retrieved cases may
be used for »classification, or the average of retrieved
values for Pregression. A weighted vote or weighted
average of the retrieved solutions can take account of
the nearness of the retrieved cases in the calculation.
For more complex solutions, such as designs or plans,
the amalgamation of the solutions from the Retrieved
Cases may be more knowledge intensive.

If the New Case and the Retrieved Case are differ-
ent in a significant way then it may be that the solu-
tion from the Retrieved Case should be adapted before

being proposed as a Suggested Solution. Adaptation is
designed to recognize significant differences between
the New and Retrieved Cases and to take account of
these by adapting the solution in the Retrieved Case.

In classification domains, it is likely that all classes
are represented in the case base. However, different
problem features may alter the classification and so
adaptation may correct for a lack of cases. In construc-
tive problem-solving like design and planning, however,
it is unlikely that all solutions (designs, plans, etc.) will
be represented in the case base. Therefore, a retrieved
case suggests an initial design or plan, and adaptation
alters it to reflect novel feature values.

There are three main types of adaptation that may be
used as part of the reuse step, to refine the solution in the
Retrieved Case to match better the new problem, or as
part of the revise stage to repair the Suggested Solution
in the Solved Case.

o Substitution: Replace parts of the retrieved solu-
tion. In Hammond’s (1990) CHEF system to plan
Szechuan recipes, the substitution of ingredients
enables the requirements of the new menu to be
achieved. For example, the beef and broccoli in
a retrieved recipe is substituted with chicken and
snowpeas.

e Transformation: Add, change, or remove parts of the
retrieved solution. CHEF adds a skinning step to the
retrieved recipe that is needed for chicken but not
for beef.

o Generative Adaptation: Replay the method used to
derive the retrieved solution. Thus the retrieved
solution is not adapted but a new solution is gener-
ated from reusing the retrieved method for the new
circumstances. This approach is similar to reasoning
by analogy.

CHEEF also had a clear REVISE stage where the Sug-
gested Solution recipe was tested in simulation and any
faults were identified, explained, and repaired. In one
recipe a strawberry soufflé was too liquid. CHEF has a
set of Thematic Organization Packets (TOPs) that are
templates for repairs for different types of explained fail-
ures. (TOPs continue the experience template theme
of »dynamic memory model MOPs.) One repair for
the soufflé is to drain the strawberry pulp and this
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transformation adaptation is one REVISE operation
that could be applied.

The adaptation knowledge container is an important
source of knowledge for some CBR systems, particularly
for design and planning, where refining an initial design
or plan is expected. Acquiring adaptation knowledge
can be onerous. The CHEF examples above indicate
that the knowledge must store refinements to the solu-
tions initially proposed from the retrieved cases. Learn-
ing adaptation knowledge from the implicit refinement
information captured in the case base has been effec-
tive for substitution adaptation in component-based
design (Craw, Wiratunga, & Rowe, 2006).

Retention of new cases during problem-solving is an
important advantage of CBR systems. However, it is
not always advantageous to retain all new cases. The
» Utility Problem - that the computational benefit from
additional knowledge must not outweigh the cost of
applying it — in CBR refers to cases and the added cost of
retrieval. The case base must be kept “lean and mean,’
and so new cases are not retained automatically, and
cases that are no longer useful are removed. New cases
should be retained if they add to the competence of
the CBR system by providing problem-solving capabil-
ity in an area of the problem space that is currently
sparse. Conversely, existing cases should be reviewed for
the role they play and forgetting cases is an important
maintenance task. Existing cases may contain outdated
experiences and so should be removed, or they may be
superseded by new cases.

Case base maintenance manages the contents of
the case base to achieve high competence. Competence
depends on the domain and may involve

o quality of solution;

e user confidence in solution; or

o efficiency of solution prediction (e.g., speed-up
learning).

Case base maintenance systems commonly assume
that the case base contains a representative sample of the
problem-solving experiences. They exploit this by using
a leave-one-out approach where repeatedly for each
case in the case base, the one extracted case is used as
anew case to be solved, and the remaining cases become

the case base. This enables the problem-solving compe-
tence of the cases in the case base to be estimated using
the extracted cases as representative new cases to be
solved. Smyth & McKenna’s (2001) competence model
uses this approach to identify competence groups of
cases with similar problem-solving ability. This model
is used to underpin maintenance algorithms to priori-
tize cases for deletion and to identify areas where new
cases might be added. There are several trade-offs to be
managed by case base maintenance algorithms: larger
case bases contain more experiences but take longer
for retrieval; smaller case bases are likely to lack some
key problem-solving ability; cases whose solution is
markedly different from their nearest neighbors may be
noisy or may be an important outlier.

myCBR (mycbr-project.net) and jCOLIBRI (www.
sourceforge.net) are open source CBR tools. Both
provide state-of-the-art CBR functionality, and jCol-
ibri also incorporates a range of facilities for tex-
tual CBR. Several commercial CBR tools are avail-
able including Empolis: Information Access Suite
(www.attensity.com), (www.
servigistics.com), and ISoft’s ReCall (www.alice-soft.

Kaidara’s  Advisor

com).

Several successful deployed applications of CBR are
described in Cheetham and Watson (2005), including
Lockheed’s CLAVIER for designing layouts for auto-
clave ovens, Compaq’s SMART help-desk system, Boe-
ing’s CASSIOPEE for trouble-shooting aircraft engines
and General Electric’s FormTool for plastic color match-
ing (Cheetham, 2005). The development of the INRECA
methodology for engineering CBR systems was based
on a range of industrial applications (Bergmann et al.,
2003).

The wide range of CBR applications is demonstrated
by the following list of application types.

o Classification — Medical diagnosis systems use
patient records as a source of reusable experiences.
Examples include SHRINK for psychiatry, CASEY
for cardiac disease, ICONS for antibiotic therapy for
intensive care, and BOLERO for pneumonia. Other
diagnostic systems include failure prediction of rails
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for Dutch railways from ultrasonic NDT, and fail-
ure analysis of semiconductors at National Semicon-
ductor. Classification systems include PROTOS for
audiologic disorders.

o Design - Architectural design was a popular early
domain: CYCLOPS, ARCHIE, FABEL, and CADsyn
are all early case-based design systems. Other design
applications include CADET and KRITIK for engi-
neering design, JULIA for recipes, chemical formu-
lation for tyre rubber and pharmaceutical products,
Déja Vu for plant control software.

e Planning - PRODIGY is a general purpose
planner that uses analogical reasoning to adapt
retrieved plans. Other planning applications include
PARIS (Bergmann & Wilke, 1996) for manufactur-
ing planning in mechanical engineering, HICAP for
evacuation planning, planning for forest fire man-
agement, mission planning for US navy, and route
planning for DaimlerChrysler cars.

o Conversational CBR -  Conversational systems
extract the problem specification from the user
through an interactive case-based dialogue and sug-
gest solutions that match the partial specification.
Examples include help-desk support, CaseAdvisor
and CBR Strategist for fault diagnosis, and Wasabi,
Sermo and ShowMe product recommender systems.

o Personalization - Personalized compilations of
news, stories, music tracks, TV listings reuse pre-
vious experiences of the individual or others who
have similar tastes. Other forms of personalized sys-
tems using CBR include route and travel planning,
SPAM filtering and email management, and ClixS-
mart Navigator for mobile devices.

o Textual CBR -
were an important early application domain for tex-
tual CBR. Examples include HYPO (Ashley & Riss-
land, 1988), CATO, GREBE, and SMILE. Question
answering was another fruitful text-based domain:
FAQ-Finder and FAI1Q. More recently, textual CBR
is used for decision support systems based on textual
reports; for example, SOPHIA.

Legal decision support systems

Future Directions

The drivers for Ubiquitous Computing — wireless com-
munication and small devices - also affect future devel-
opments in CBR. The local, independent knowledge of

case bases make them ideal to collect experiences, and
to deliver experience-based knowledge for reuse.

Textual CBR systems are becoming increasingly
important for extracting and representing knowledge
captured in textual documents. This is particularly
influenced by the availability of electronic documents
and the Web as an information source.

Cross References
»Explanation-Based Learning
»Instance-Based Learning
»Lazy Learning

» Nearest Neighbor
»Similarity Metrics
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Synonyms

Qualitative attribute

Categorical attributes are attributes whose values can
be placed into distinct categories. See »Attribute and
» Measurement Scales.

[ . .
Categorical Data Clustering

PERIKLIS ANDRITSOS!, PANAYIOTIS TSAPARAS?
IToronto, ON, Canada
2Mountain View, CA, USA

Synonyms
Clustering of nonnumerical data; Grouping

Definition

Data clustering is informally defined as the problem
of partitioning a set of objects into groups, such that
the objects in the same group are similar, while the
objects in different groups are dissimilar. Categorical
data clustering refers to the case where the data objects
are defined over P-categorical attributes. A categorical
attribute is an attribute whose domain is a set of dis-
crete values that are not inherently comparable. That is,
there is no single ordering or inherent distance func-
tion for the categorical values, and there is no mapping
from categorical to numerical values that is semantically
meaningful.

Motivation and Background
Clustering is a problem of great practical importance
that has been the focus of substantial research in several

domains for decades. As storage capacities grow, we
have at hand larger amounts of data available for analy-
sis and mining. Clustering plays an instrumental role in
this process. This trend has created a surge of research
activity in devising new clustering algorithms that can
handle large amounts of data and produce results of
high quality.

In data clustering, we want to partition objects
into groups such that similar objects are grouped
together while dissimilar objects are grouped separately.
This objective assumes that there is some well-defined
notion of similarity, or distance, between data objects,
and a way to decide if a group of objects is a homoge-
neous cluster. Most of the clustering algorithms in the
literature focus on data sets where objects are defined
over numerical attributes. In such cases, the similarity
(or dissimilarity) of objects and the quality of a clus-
ter can be defined using well-studied measures that are
derived from geometric analogies. These definitions rely
on the semantics of the data values themselves. For
example, the values $100,000 and $110,000 are more
similar than $100,000 and $50,000, and intuitively more
similar than $10,000 and $1. The existence of a distance
measure allows us to define a quality measure for a clus-
tering such as the mean square distance between each
point and the representative of its cluster. Clustering
then becomes the problem of grouping together points
such that the quality measure is optimized.

However, there are many data sets where the data
objects are defined over attributes, which are neither
numerical nor inherently comparable in any way. We
term such data sets categorical, since they represent
values of certain categories. As a concrete example,
consider the toy data set in Table 1 that stores infor-
mation about movies. For the purpose of exposition,
a movie is characterized by the attributes “director;,”
“actor/actress,” and “genre” In this setting, it is not
immediately obvious what the distance, or similarity,
is between the values “Coppola” and “Scorsese,” or the
movies “Vertigo” and “Harvey”

There are plenty of examples of categorical data:
product data, where products are defined over attributes
such as brand, model, or color; census data, where
information about individuals includes attributes such
as marital status, education, and occupation; ecological
data where plants and animals can be described with
attributes such as shape of petals or type of habitat.
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Categorical Data Clustering. Table1 An instance of a
movie database

t: (Godfather Il) |Coppola De Niro Crime

t; (Good fellas) [Scorsese De Niro Crime

t; (Vertigo) Hitchcock |Stewart Thriller
ts (N by NW) Hitchcock |Grant Thriller
t; (Bishop's wife) |Koster Grant Comedy
ts (Harvey) Koster Stewart Comedy

There is a plethora of such data sets, and there is always
a need for clustering and analyzing them.

The lack of an inherent distance or similarity mea-
sure between categorical data objects, makes categorical
data clustering a challenging problem. The challenge
lies in defining a quality measure for categorical data
clustering that captures the human intuition of what
it means for categorical data objects to be similar. In
the next sections, we present an overview of the differ-
ent efforts at addressing this problem and the resulting
clustering algorithms.

Structure of the Learning System

We first describe the outline for a generic data clustering
system, not necessarily of categorical data. In the next
section we focus on categorical data specific challenges.

Data clustering is not a one-step process. In one of
the seminal texts on Cluster Analysis, Jain and Dubes
divide the clustering process into the following stages
(Jain & Dubes, 1988):

Data collection: Includes the careful extraction of
relevant data objects from the underlying data sources.
In our context, data objects are distinguished by their
individual values for a set of attributes.

Initial screening: Refers to the massaging of data after
its extraction from the source or sources. This stage
is closely related to the process of data cleaning in
databases (Jarke, Lenzerini, Vassiliou, & Vassiliadis,
1999).

Representation: Includes the proper preparation of
the data in order to become suitable for the clustering
algorithm. In this step, the similarity measure is chosen,

and the characteristics and dimensionality of the data
are examined.

Clustering tendency: Checks whether the data at
hand has a natural tendency to cluster or not. This stage
is often ignored, especially for large data sets.

Clustering strategy: Involves the careful choice of
clustering algorithm and initial parameters, if any.

Validation: Validation is often based on manual
examination and visual techniques. However, as the
amount of data and its dimensionality grow, we may
have no means to compare the results with preconceived
ideas or other clusterings.

Interpretation: This stage includes the combination
of clustering results with other analyses of the data (e.g.,
classification), in order to draw conclusions and suggest
further analysis.

In this chapter, we are interested in problems relat-
ing to Representation and Clustering Strategy. These lie
in the heart of the data clustering problem, and there
has been considerable research effort in these areas
within the Data Mining and Machine Learning commu-
nities. More specifically, we consider the following two
subproblems.

Formal formulation of the clustering problem: In
order to devise algorithms for clustering, we need to
mathematically formulate the intuition captured in the
informal definition of the clustering problem that sim-
ilar objects should be grouped together and dissimilar
objects should be grouped separately. The problem for-
mulation typically requires at least one of the following:

e A measure of similarity or distance between two data
objects.

e A measure of similarity or distance between a data
object and a cluster of objects. This is often defined
by defining a representative for a cluster as a (new)
data object and comparing the data object with the
representative.

o A measure of the quality of a cluster of data objects.

The result of the formulation step is to define a clus-
tering optimization criterion that guides the grouping
of the objects into clusters.

When the data is defined over numerical attributes,
these measures are defined using geometric analogies.
For example, if each object is a point in the Euclidean
space, then the distance between two points can be
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defined as the Euclidean distance, and the represen-
tative of a cluster as the mean Euclidean vector. The
quality of a cluster can be defined with respect to the
“variance” of the cluster, that is, the sum of squares
of the distances between each object and the mean of
the cluster. The optimization criterion then becomes to
minimize the variance over all clusters of the clustering.

The clustering algorithm: Once we have a mathe-
matical formulation of the clustering problem, we need
an algorithm that will find the optimal clustering in
an efficient manner. In most cases, finding the opti-
mal solution is an NP-hard problem efficient heuristics
or approximation algorithms are considered. There is
a large literature on this subject that approaches the
problem from different angles.

There exist a large number of different clustering
techniques and algorithms. We now selectively describe
some broad classes of clustering algorithms and prob-
lems. A thorough categorization of clustering tech-
niques can be found in Han and Kamber (2001), where
different clustering problems, paradigms, and tech-
niques are discussed.

Hierarchical clustering algorithms: This is a popular
clustering technique, since it is easy to implement, and
it lends itself well to visualization and interpretation.
Hierarchical algorithms create a hierarchical decom-
position of the objects. They are either agglomerative
(bottom-up) or divisive (top-down). Agglomerative algo-
rithms start with each object being a separate cluster
itself, and successively merge groups according to a dis-
tance measure. Divisive algorithms follow the opposite
strategy. They start with one group of all objects and
successively split groups into smaller ones, until each
object falls into one cluster, or as desired. The hierar-
chical dendrogram produced is often in itself the output
of the algorithm, since it can be used for visualizing the
data. Most of the times, both approaches suffer from the
fact that once a merge or a split is committed, it cannot
be undone or refined.

Partitional clustering algorithms: »Partitional clus-
tering algorithms define a clustering optimization
criterion and then seek the partition that optimizes
this criterion. Exhaustive search over all partitions is
infeasible, since even for few data objects the num-
ber of possible partitions is huge. Partitional clustering
algorithms often start with an initial, usually random,
partition and proceed with its refinement by locally

improving the optimization criterion. The majority of
such algorithms could be considered as greedy-like
algorithms. They suffer from the fact that they can easily
get stuck to local optima.

Spectral clustering algorithms: Spectral algorithms
view the data set to be clustered as a two dimensional
matrix of data objects and attributes. The entries in
the matrix may be the raw values or some normalized
form of these values. The principal eigenvectors of the
matrix have been shown to capture the main clusters in
the data. There is a rich literature on different types of
spectral algorithms.

Graph clustering: »Graph clustering defines a range
of clustering problems, where the distinctive character-
istic is that the input data is represented as a graph. The
nodes of the graph are the data objects, and the (possi-
bly weighted) edges capture the similarity or distance
between the data objects. The data may come natu-
rally in the form of a graph (e.g., a social network),
or the graph may be derived in some way from the
data (e.g., link two products if they appear together in
a transaction). Some of the techniques we described
above are directly applicable to graph data. We can also
use techniques from graph theory for finding a good
clustering.

In the clustering paradigm we outlined, a step of fun-
damental importance is to formally formulate the clus-
tering problem, by defining a clustering optimization
criterion. As we detailed above, for this step we need
a measure of distance or similarity between the data
objects, or a measure of cluster quality for a group of
data objects. For categorical data there exists no inher-
ent ordering or distance measure, and no natural geo-
metric analogies we can explore, causing the clustering
paradigm to break down. Research efforts on categorical
data clustering have focused on addressing this problem
by imposing distance measures on the categorical data
and defining clustering quality criteria. We now outline
some of these approaches.

Overlap-Based Similarity Measures A simple and intu-
itive method for comparing two categorical data objects
is based on counting the overlap between the categorical
values of the objects. The higher the overlap, the more
similar the two objects are. This intuition leads to the
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use of well-known measures such as the (generalized)
Hamming distance (Jain & Dubes, 1988), which mea-
sures the number of attributes that take different values
between two tuples, or the Jaccard similarity measure,
which is defined as the intersection over the union of the
values in the two tuples. In the example of Table 1, tuples
t; (Godfather II) and t, (Good fellas) have Hamming
distance 1 and Jaccard coefficient 1/2.

Two algorithms that make use of overlap-based
measures are k-modes (Huang, 1998), and RObust Clus-
tering using linKs (ROCK) (Guha, Rastogi, & Shim,
1999). The k-modes algorithm is a partitional algorithm
inspired by the k-means algorithm, a well-known clus-
tering algorithm for numerical data. The representative
of a categorical data cluster is defined to be a data
object where each attribute takes the mode emphasize
the mode value of an attribute is the most frequent value
for that attribute in the cluster.

The ROCK algorithm makes use of the Jaccard coef-
ficient to define links between data objects. The data is
then represented in the form of a graph, and the prob-
lem becomes essentially a graph clustering problem.
Given two clusters of categorical data, ROCK measures
the similarity of two clusters by comparing their aggre-
gate interconnectivity against a user-specified model,
thus avoiding the problem of defining a cluster repre-
sentative.

Context-Based Similarity Measures One way to define
relationships between categorical values is by compar-
ing the context in which they appear. For two categorical
attribute values we define the context as the values of
the remaining attributes with which they co-occur in
the data set. The more similar these two contexts are,
the more similar the attribute values are. For exam-
ple, in Table 1, Scorsese and Coppola are close since
they appear in exactly the same context (“De Niro’,
“Crime”), while Scorsese and Hitchcock are far since
their contexts are completely disjoint. Defining a dis-
tance between value contexts can be done using over-
lap similarity measures (Das & Mannila, 2000) or by
using information-theoretic measures, i.e., comparing
the distributions defined by the two contexts (Andrit-
sos, Tsaparas, Miller, Kenneth, & Sevcik, 2004). Once
we have the relationships between the values we can use
standard clustering techniques for solving the clustering
problem.

There are various algorithms that make use of the
idea that similar values should appear in similar con-
texts in order to cluster categorical data. The Clustering
cAteCorigal daTa Using Summaries (CACTUS) algo-
rithm (Ganti, Gehrke, & Ramakrishnan, 1999) creates
groups of attribute values based on the similarity of their
context. It then uses a hierarchical greedy algorithm for
grouping tuples and attributes.

In a slightly different fashion, the STIRR algo-
rithm (Sieving Through Iterated Relational Reinforce-
ment) [GKR98] uses the idea that similar tuples should
contain co-occurring values and similar values should
appear in tuples with high overlap. This idea is imple-
mented via a dynamical system, inspired by Informa-
tion Retrieval techniques (Kleinberg Jon, 1999). When
the dynamical system is linear, the algorithm is similar
to spectral clustering algorithms.

CLICKS (Zaki, Peters, Assent, & Seidl, 2005) is
an algorithm that is similar to STIRR. Rather than a
measure of similarity/distance, it uses a graph-theoretic
approach to find k disjoint sets of vertices in a graph
constructed for a particular data set. One special char-
acteristic of this algorithm is that it discovers clusters in
a subset of the underlying set of attributes.

Information-Theoretic Clustering Criteria The informa-
tion content in a data set can be quantified through the
well-studied notions of entropy and mutual information
(Cover & Thomas, 1991). Entropy measures the uncer-
tainty in predicting the values of the data when drawn
from the data distribution. If we view each tuple, or
cluster of tuples, as a distribution over the categorical
values, then we can define the conditional entropy of the
attribute values given a set of tuples, as the uncertainty
of predicting the values in this set of tuples. If we have
a single tuple, then the entropy is zero, since we can
accurately predict the values. For tuple t; we know the
director, the actor, and the genre with full certainty. As
we group tuples together the uncertainty (and entropy)
increases. Grouping together tuples t; and t, creates
uncertainty about the director attribute, while grouping
t; and t; creates uncertainty about all attributes. Hence
the latter grouping has higher entropy than the former.
Information-theoretic criteria for clustering aim at gen-
erating clusters with low entropy, since this would imply
that the clusters are homogeneous, and there is little
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information loss as a result of the clustering. This for-
mulation allows for defining the distance between sets
of tuples, using entropy-based distance measures such
as the Jensen-Shannon divergence (Cover & Thomas,
1991). The Jensen-Shannon divergence captures the
informational distances in categorical data, in a sim-
ilar way that Euclidean distance captures geometric
distances inherent in numerical data.

Two algorithms that make use of this idea are
COOLCAT (Barbara, Couto, & Li, 2002) and LIMBO
(scaLable InforMation Bottleneck) [ATMRO04]. COOL-
CAT is a partitional algorithm that performs a local
search for finding the partition with k clusters with
the lowest entropy. LIMBO works by constructing a
summary of the data set that preserves as much infor-
mation about the data as possible and then produces a
hierarchical clustering of the summary. It is a scalable
algorithm that can be used in both static and streaming
environments.

A related approach is adopted by the COBWEB
algorithm (Fisher, 1987; Gluck & Corter, 1985), a divi-
sive hierarchical algorithm that optimizes the category
utility measure, which measures how well particular
values can be predicted given the clustering as opposed
to having them in the original data set unclustered.

Categorical Clustering as Clustering Aggregation A dif-
ferent approach to the categorical data clustering prob-
lem is to view it as a clustering aggregation problem.
Given a collection of clusterings of the data objects,
the clustering aggregation problem looks for the sin-
gle clustering that agrees as much as possible with the
input clusterings. The problem of clustering aggrega-
tion has been shown to be equivalent to categorical
data clustering (Gionis, Mannila, & Tsaparas, 2007),
where each categorical attribute defines a clustering of
the data objects, grouping all the objects with the same
value together. For example, in Table 1, the attribute
“genre” defines three clusters: the Crime cluster, the
Thriller cluster, and the Comedy cluster. Similarly, the
attribute “actor” defines three clusters, and the attribute
“director” defines four clusters.

Various definitions have been considered in the
literature for the notion of agreement between the
output clustering and the input clusterings. One
definition looks at all pairs of objects, and defines a

disagreement between two clusterings if one clustering
places the two objects in the same cluster, while the
other places them in different clusters; an agreement
is defined otherwise. The clustering criterion is then
to minimize the number of disagreements (or maxi-
mize the number of agreements). Other definitions are
also possible, which make use of information-theoretic
measures, or mappings between the clusters of the two
clusterings. There is a variety of algorithms for finding
the best aggregate cluster, many of which have also been
studied theoretically.
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Definition

The main task in causal inference is predicting the
outcome of an intervention. For example, a treatment
assigned by a doctor that will change the patient’s heart
condition is an intervention. Predicting the change in
the patient’s condition is a causal inference task. In gen-
eral, an intervention is an action taken by an external
agent that changes the original values, or the probabil-
ity distributions, of some of the variables in the system.
Besides predicting outcomes of actions, causal inference

is also concerned with explanation: identifying which
were the causes of a particular event that happened in
the past.

Motivation and Background

Many problems in machine learning are prediction
problems. Given a feature vector X, the task is to provide
an estimate of some output vector Y, or its conditional
probability distribution P(Y|X). This typically assumes
that the distribution of Y given X during learning is the
same distribution at prediction time. There are many
scenarios where this is not the case.

Epidemiology and several medical sciences provide
counterexamples. Consider two seemingly straightfor-
ward learning problems. In the first example, one is
given epidemiological data where smokers are clearly
more propense than nonsmokers to develop lung can-
cer. Can I use this data to learn that smoking causes
cancer? In the second example, consider a group of
patients suffering from a type of artery disease. In this
group, those that receive a bypass surgery are likely to
survive longer than those that receive a particular set of
drugs with no surgery.

There is no fundamental problem on using such
datasets to predict the probability of a smoker develop-
ing lung cancer, or the life expectancy of someone who
went through surgery. Yet, the data does not necessar-
ily tell you if smoking is a cause of lung cancer, or that
nationwide the government should promote surgery as
the treatment of choice for that particular heart disease.
What is going on?

There are reasons to be initially suspicious of such
claims. This is well-known in statistics as the expres-
sion “association is not causation” (Wasserman, 2004,
p- 253). The data-generating mechanism for our out-
come Y (“developing lung cancer,” “getting cured from
artery disease”) given the relevant inputs X (“smok-
ing habit,” “having a surgery”) might change under an
intervention for reasons such as follows.

In the smoking example, the reality might be that
there are several hidden common causes that are respon-
sible for the observed association. A genetic factor, for
instance: the possibility that there is a class of genotypes
on which people are more likely to pick up smoking
and develop lung cancer, without any direct causal con-
nection between the two variables. In the artery disease
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example, surgery might not be the best choice to be
made by a doctor. It might have been the case that so
far patients in better shape were more daring in choos-
ing, by themselves, the surgery treatment. This selection
bias will favor surgery over drug treatment, since from
the outset the patients that are most likely to improve
take that treatment.

When treatment is enforced by an external agent
(the doctor), such selection bias disappears, and the
resulting P(Y|X) will not be the same. One way of
learning this relationship is through randomized trials
(Rosenbaum, 2002). The simplest case consists on flip-
ping a coin for each patient on the training set. Each
face of the coin corresponds to a possible treatment,
and assignment is done accordingly. Since assignment
does not depend on any hidden common cause or
selection bias, this provides a basis for learning causal
effects. Machine learning and statistical techniques can
be applied directly in this case (e.g., »logistic regres-
sion). Data analysis performed with a randomized trial
is sometimes called an interventional study.

The smoking case is more complicated: a direct inter-
vention is not possible, since it is not acceptable to force
someone to smoke or not to smoke. The inquiry asks
only for a hypothetical intervention, that is, if someone
is forced to smoke, will his or her chances of developing
lung cancer increase? Such an intervention will not take
place, but this still has obvious implications in public
policy. This is the heart of the matter in issues such as
deciding on raising tobacco taxes, or forbidding smok-
ing in public places. However, data that measures this
interventional data-generation mechanism will never
be available for ethical reasons. The question has to
be addressed through an observational study, that is, a
study for causal predictions without interventional data.

Observational studies arise not only under the
impossibility of performing interventions, but also in
the case where performing interventions is too expen-
sive or time consuming. In this case, observational
studies, or a combination of observational and interven-
tional studies, can provide extra information to guide
an experimental analysis (Cooper & Yoo, 1999; Eaton &
Murphy, 2007; Eberhardt, Glymour, & Scheines, 2005;
Sachs, Prez, Peer, Lauffenburger, & Nolan, 2005). The
use of observational data, or the combination of several
interventional datasets, is where the greatest contribu-
tions of machine learning to causal inference rest.

Background Observational Interventional
knowledge data data
Causal model Causal query

Structure of the Learning System

In order to use observational data, a causal inference
system needs a way of linking the state of the world
under an intervention to the natural state of the world.
The natural state is defined as the one to which no
external intervention is applied. In the most general for-
mulation, this link between the natural state and the
manipulated world is defined for interventions in any
subset of variables in the system.

A common language for expressing the relationship
between the different states of the world is a causal
graph, as explained in more detail in the next section.
A causal model is composed of the graph and a proba-
bility distribution that factorizes according to the graph,
as in a standard »graphical model. The only difference
between a standard graphical model and a causal graph-
ical model is that in the latter extra assumptions are
made. The graphical model can be seen as a way of
encoding such assumptions.

The combination of assumptions, observational, and
interventional data generates such a causal graphical
model. In the related problem of reinforcement learn-
ing, the agent has to maximize a specific utility function
and typically has full control on which interventions
(actions) can be performed. Here we will focus on the
unsupervised problem of learning a causal model for a
fixed input of observational and interventional data.

Because only some (or no) interventional data might
be available, the learning system might not be able to
answer some causal queries. That is, the system will not
provide an answer for some prediction tasks.

Languages and Assumptions for Causal Inference Direc-
ted acyclic graphs (DAGs) are a popular language
in machine learning to encode qualitative statements
about causal relationships. A DAG is composed of a
set of vertices and a set of directed edges. The notions
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of parents, children, ancestors, and descendants are the
usual ones found in graphical modeling literature.

In terms of causal statements, a directed edge A — B
states that A is a direct cause of B: that is, different inter-
ventions on A will result in different distributions for B,
even if we intervene on all other variables. The assump-
tion that A is a cause of B is not used in noncausal
»graphical models.

A causal DAG G satisfies the causal Markov con-
dition if and only if a vertex is independent of all of
its nondescendants given its direct causes (parents). In
Fig. 1(a), A is independent of D, E, and F given its par-
ents, B and C. It may or may not be independent of G
given B and C.

The causal Markov condition implies several other
conditional independence statements. For instance, in
Fig. 1(a) we have that H is independent of F given A.
Yet, this is not a statement about the parents of any
vertex. Pearl’s d-separation criterion (Pearl, 2000) is a
sound and complete way of reading off independencies,
out of a DAG, which are entailed by the causal Markov
condition. We assume that the joint probability distri-
bution over the vertice variables is Markov with respect
to the graph, that is, any independence statement that is
encoded by the graph should imply the corresponding
independence in the distribution.

The local modularity given by the causal Markov condi-
tion leads to a natural notion of intervention. Random
variable V, represented by a particular vertex in the
graph, is following a local mechanism: its direct causes
determine the distribution of V before its direct effects
are generated. The role of an intervention is to override
the natural local mechanism. An external agent substi-
tutes the natural P(V|Parents(V)) by a new distribu-
tion Ppjan (V|Parents(V)) while keeping the rest of the
model unchanged (“Man” here stands for a particular
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manipulation). The notion of intervening by changing a
single local mechanism is sometimes known as an ideal
intervention. Other general types of interventions can
be defined (Eaton & Murphy, 2007), but the most com-
mon frameworks for calculating causal effects rely on
this notion.

A common type of intervention is the point mass
intervention, which happens when V is set to some
constant v. This can be represented graphically by “wip-
ing out” all edges into V. Figure 1(b) represents the
resulting graph in (a) under a point manipulation of A.
Notice that A is now d-separated from its direct causes
under this regime. It is also probabilistically indepen-
dent, since A is now constant. This allows for a graphical
machinery that can read off independencies out of a
manipulated graph (i.e., the one with removed edges).
It is the idea of representing the natural state of the
world with a single causal graph, and allowing for mod-
ifications in this graph according to the intervention of
choice, that links the different regimes obtained under
different interventions.

For the general case where a particular variable
V is set to a new distribution, a manipulation node
is added as an extra parent of V: this represents
that an external agent is acting over that particu-
lar variable (Dawid, 2002; Pearl, 2000; Spirtes, Gly-
mour, & Scheines, 2000), as illustrated in Fig. 1(c).
P(V|Parents(V)) under intervention I is some new
distribution Pyy,, (V|Parents(V),I).

The notion of independence is a key aspect of proba-
bilistic graphical models, where it allows for efficient
computation of marginal probabilities. In causal graph-
ical models, it also fulfills another important role: inde-
pendencies indicate that the effect of some interventions
can be estimated using observational data.
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Causallty. Figure 1. (a) A causal DAG. (b) Structure of the causal graph under some intervention that sets the value of
A to a constant. (c) Structure of the causal graph under some intervention that changes the distribution of A
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Causality. Figure 2. (a) X and Y have a hidden common
cause H. (b) Y is dependent on the intervention node /
given X, but conditioning on Z and marginalizing it out
will allow us to eliminate the “back-door” path that links
X and Y through the hidden common cause H

We will illustrate this concept with a simple exam-
ple. One of the key difficulties in calculating a causal
effect is unmeasured confounding, that is, hidden com-
mon causes. Consider Fig. 2(a), where X is a direct cause
of Y, H is a hidden common cause of both and I is an
intervention vertex. Without extra assumptions, there is
no way of estimating the effect of X on Y using a training
set that is sampled from the observed marginal P(X, Y).
This is more easily seen in the case where the model
is multivariate Gaussian with zero mean. In this case,
each variable is a linear combination of its parents with
standard Gaussian additive noise

X

aH +ex

= bX+cH+ey

where H is also a standard normal random variable.
The manipulated distribution Py, (Y|X,I), where I is
a point intervention setting X = x, is a Gaussian distri-
bution with mean b- x. Value x is given by construction,
but one needs to learn the unknown value b.

One can verify that the covariance of X and Y in the
natural state is given by a + bc. Observational data, that
is, data sampled from P(X,Y), can be used to estimate
the covariance of X and Y in the natural state, but from
that it is not possible to infer the value of b: there are too
many degrees of freedom.

However, there are several cases where the probabil-
ity of Y given some intervention on X can be estimated
with observational data and a given causal graph. Con-
sider the graph in Fig. 2(b). The problem again is to
learn the distribution of Y given X under regime I,
that is, P(Y|X,I). It can be read from the graph that

I and Y are not independent given X, which means
P(Y|X,I) # P(Y|X). How can someone then estimate
P(Y|X,I) if no data for this process has been collected?
The answer lies on reducing the ‘causal query” to a
“probabilistic query” where the dependence on I disap-
pears (and, hence, the necessity of having data measured
under the I intervention). This is done by relying on the
assumptions encoded by the graph:

P(Y|X,I)=Y,P(Y|X,1,z)P(Z = 2|X,1)
(Z is discrete in this example)
=Y, P(Y|X,2)P(Z = 2|X,I)
(Y and I are independent given Z)
o< Y, P(Y|X,2)P(X|z,I)P(Z = 2|I)

(By Bayes’ rule)

= ¥, P(Y|X,2)P(X|z,)P(Z = 2)

(Z and I are marginally independent)

In the last line, we have P(Y|X, Z) and P(Z), which can
be estimated with observational data, since no interven-
tion variable I appears on the expression. P(X|Z,I) is set
by the external agent: its value is known by construc-
tion. This means that the causal distribution P(Y|X,I)
can be learned even in this case where X and Y share a
hidden common cause H.

There are several notations for denoting an interven-
tional distribution such as P(Y|X,I). One of the earliest
was that of Spirtes et al. (2000), who used the notation

P(Y]set X = x) o)

to represent the distribution under an intervention I
that fixed the value of X to some constant x. Pearl (2000)
uses the operator do with a similar meaning.

P(Y|do(X =x)) 2

Pearl’s do-calculus is essentially a set of operations
for reducing a probability distribution that is a function
of some intervention to a probability distribution that
does not refer to any intervention. All reductions are
conditioned on the independencies encoded in a given
causal graph. This is in the same spirit of the example
presented above.
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The advantage of such notations is that, for point
interventions, they lead to simple yet effective trans-
formations (or to a report that no transformation is
possible). Spirtes et al. (2000) and Pearl (2000) provide
a detailed account of such prediction tools. By mak-
ing a clear distinction between P(Y|X) (X under the
natural state) and P(Y|do(X)) (X under some interven-
tion), much of the confusion that conflates causal and
noncausal predictions disappears.

It is important to stress that methods such as
the do-calculus are nonparametric, in the sense that
they rely on conditional independence constraints only.
More powerful reductions are possible if one is willing
to provide extra information, such as assuming linear-
ity of causal effects. For such cases, other parametric
constraints can be exploited (Pearl, 2000; Spirtes et al.,
2000).

In all of the previous section, we assumed that a causal
graph was available. Since background knowledge is
often limited, learning such graph structures becomes
an important task. However, this cannot be accom-
plished without extra assumptions. To see why, consider
again the example in Fig. 2(a): if a + bc = 0, it fol-
lows that the X and Y are independent in the natural
state. However, Y is not causally independent of X (if
b + 0): P(Y|do(X = x;)) and P(Y|do(X = x;)) will
be two different Gaussians with means b - x; and b - x5,
respectively.

This example demonstrates that an independence
constraint that is testable by observational data does
not warrant causal independence, at least based on the
causal Markov condition only. However, an indepen-
dence constraint that arises from particular identities
such as a + bc = 0 is not stable, in the sense that it
does not follow from the qualitative causal relations
entailed by the Markov condition: a change in any of
the parameter values will destroy such a constraint.

The artificiality of unstable independencies moti-
vates an extra assumption: the faithfulness condition
(Spirtes et al., 2000), also known as the stability condi-
tion (Pearl, 2000). We say that a distribution P is faithful
to a causal graph G if P is Markov with respect to G,
and if each conditional independence in P corresponds
to some d-separation in G. That is, on top of the causal
Markov condition we assume that all independencies in
P are entailed by the causal graph G.

The faithfulness condition allows us to reconstruct
classes of causal graphs from observational data. In the
simplest case, observing that X and Y are independent
entails that there is no causal connection between X
and Y. Consequently, P(Y|do(X)) = P(Y|X) = P(Y).
No interventional data was necessary to arrive at this
conclusion, given the faithfulness condition.

In general, the solution is undetermined: more than
one causal graph will be compatible with a set of
observable independence constraints. Consider a sim-
ple example, where data is generated by a causal model
with a causal graph given as in Fig. 3(a). This graph
entails some independencies: for instance, that X and Z
are independent given W, or that X and Y are not inde-
pendent given any subset of { W, Z}. However, several
other graphs entail the same conditional independen-
cies. The graph in Fig. 3(b) is one example. The learning
task is then discovering an equivalence class of graphs,
not necessarily a particular graph. This is in contrast
with the problem of learning the structure of noncausal
graphical models: the fact that there are other struc-
tures compatible with the data is not important in this
case, since we will not use such graphical models to
predict the effect of some hypothetical intervention. An
equivalence class might not be enough information to
reduce a desired causal query to a probabilistic query,
but it might require much less prior knowledge than
specifying a full causal graph.

Assume for now that no hidden common causes
exist in this domain. In particular, the graphical object
in Fig. 3(c) is a representation of the equivalence class
of graphs that are compatible with the independencies
encoded in Fig. 3(a) (Pearl, 2000; Spirtes et al., 2000).
All members of the equivalence class will have the same

W) W)
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Causality. Figure 3. (a) A particular causal graph which
entails a few independence constraints, such as X and Z
being independent given W. (b) A different causal graph
that entails exactly the same independence constraints
as (a). (c) A representation for all graphs that entail the
same conditional independencies as (a) and (b)
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skeleton of this representation, that is, the same adja-
cencies. An undirected edge indicates that there are two
members in the equivalence class where directionality
of this particular edge goes in opposite directions. Some
different directions are illustrated in Fig. 3(b). One can
verify from the properties of d-separation that if an
expert or an experiment indicates that X — W should
be directed as X — W, then the edge W - Z is compelled
to be directed as W — Z: the direction W < Zisincom-
patible with the simultaneous findings that X and Z are
independent given W, and that X causes W.

More can be discovered if more independence con-
straintsexist. InFig.4(a), Xisnotacauseof Y. Ifweassume
no hidden common causes exist in this domain, then no
other causal graph is compatible with the independence
constraints of Fig. 4(a): the equivalence class is this graph
only. However, the assumption of no hidden common
causes is strong and undesirable. For instance, the graph
in Fig. 4(b), where H; and H, are hidden, is in the same
equivalenceclassof(a). Yet,thegraphinFig.4(a) indicates
that P(W|do(X)) = P(W|X), which can be arbitrarily
different from the real P(W|do(X)) if Fig. 4(b) is the real
graph. Some equivalence class representations, such as
the Partial Ancestral Graph representation (Spirtesetal.,
2000), are robust to hidden common causes: in Fig. 4(c),
an edge that has a circle as endpoint indicates that is not
known if there is a causal path into both, for example, X
and W (which would be the case for a hidden common
cause of X and W). The arrow into W does indicate that
W cannot be a cause of X. A fully directed edge such as
W — Zindicates total information: Wisa causeof Z, Zis
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Causality. Figure 4. (a) A particular causal graph with no
other member on its equivalence class (assuming there
are no hidden common causes). (b) Graph under the pres-
ence of two hidden common causes H; and H,. (c) A repre-
sentation for all graphs that entail the same conditional
independencies as (a), without assuming the nonexis-
tence of hidden common causes

nota cause of W,and W and Z have no hidden common
causes.

Given equivalence class representations and back-
ground knowledge, different types of algorithms explore
independence constraints to learn an equivalence class.
It is typically assumed that the true graph is acyclic. The
basic structure is to evaluate how well a set of condi-
tional independence hypotheses are supported by the
data. Depending on which constraints are judged to
hold in the population, we keep, delete, or orient edges
accordingly. Some algorithms, such as the PC algorithm
(Spirtes et al., 2000), test a single independence hypoth-
esis at a time, and assemble the individual outcomes in
the end into an equivalence class representation. Other
algorithms such as the GES algorithm (Chickering,
2002; Meek, 1997) start from a prior distribution for
graphs and parameters, and proceed to compare the
marginal likelihood of members of different equiva-
lence classes (which can be seen as a Bayesian joint test
of independence hypotheses). In the end, this reduces to
a search for the maximum a posteriori equivalence class
estimator. Both PC and GES have consistency proper-
ties: in the limit of infinite data, they return the right
equivalence class under the faithfulness assumption.
However, both PC and GES, and most causal discovery
algorithms, assume that there are no hidden common
causes in the domain. The fast causal inference (FCI)
algorithm of Spirtes et al. (2000) is able to generate
equivalence class representations as in Fig. 4(c). As in
the PC algorithm, this is done by testing a single inde-
pendence hypothesis at a time, and therefore is not
very robust given small samples. A GES-like algorithm
with the consistency properties of FCI is not currently
known. An algorithm that allows for cyclic networks is
discussed by Richardson (1996). More details of the fun-
damentals of structure learning algorithms are given by
Scheines (1997).

Our examples relied on conditional independence
constraints. In this case, the equivalence class is known
as the Markov equivalence class. Markov equivalence
classes are “nonparametric,” in the sense that they do
not refer to any particular probability family. In practice,
this advantage is limited by our ability on evaluating
independence hypotheses within flexible probability
families. Another shortcoming of Markov equivalence
classes is that they might be poorly informative if few
independence constraints exist in the population. This
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will happen, for instance, if a single hidden variable is a
common cause of all observed variables. If one is will-
ing to incorporate further assumptions, such as linearity
of causal relationships, parametric constraints can be
used to define other types of equivalence classes that are
more discriminative than the Markov equivalence class.
Silva, Scheines, Glymour, & Spirtes (2006) describe how
some rank constraints in the covariance matrix of the
observed variables can be used to learn the structure of
linear models, even if no independence constraints are
observable.

Evaluating the success of a structure learning algo-
rithm is difficult, since ultimately it depends on inter-
ventional data. A promising area of application is
molecular biology, where the large number of vari-
ables makes the use of graphical models a promising
venue for decomposing complex biological systems,
and for combining multiple sources of observational
and interventional data. Sachs et al. (2005) describe a
potential application, with further analysis discussed by
Eaton and Murphy (2007). Other applications are dis-
cussed in the volume edited by Glymour and Cooper
(1999).

Confidence Intervals Several causal learning algorithms
suchasthe PCand FCl algorithms (Spirtesetal.,2000) are
consistent, in the sense that they can recover the correct
equivalence class given the faithfulness assumption and
an infinite amount of data. Although point estimates of
causal effectsareimportant,itisalsoimportantto provide
confidence intervals. Bayesian confidence intervals are
readily available by having priors over parameters and
graphs. »Markov chain Monte Carlo algorithms, how-
ever, might be problematic due to the high-dimensional
and discrete graph space. A practical algorithm thatrelies
onaprior over orderings of variables (such that fora given
ordering, a graph is not allowed to have vertex X as an
ancestor of Y if Y antecedes X in the ordering) is given
by Friedman and Koller (2003).

Such methods do not necessarily guarantee good
frequentist properties. As a matter of fact, it has been
shown that no such method can exist given the faith-
fulness assumption only (Robins, Scheines, Spirtes,
& Wasserman, 2003). An intuitive explanation is as
follows: consider the model such as the one in Fig. 2(a).
For any given sample size, there is at least one model
such that the associations due to the paths X <« H - Y

and X — Y nearly cancel each other (faithfulness is still
preserved), making the covariance of X and Y statisti-
cally undistinguishable from zero. In order to achieve
uniform consistency, causal inference algorithms will
need assumptions stronger than faithfulness. Zhangand
Spirtes (2003) provide some directions.

A closely related language for representing causal mod-
els is the potential outcomes framework popularized by
Rubin (2004). In this case, random variables for a same
variable Y are defined for each possible state of the inter-
vened variable X. Notice that, by definition, only one of
the possible Y outcomes can be observed for any specific
data point. This model is popular in statistics literature
as a type of missing data model. The relation between
potential outcomes and graphical models is discussed
by Pearl (2000).

A case where potential outcomes become more
clearly motivated is in causal explanation. In this setup,
the model is asked for the probability that a particular
event in time was the cause of a particular outcome.
This is often cast as a counterfactual question: had A
been false, would B still have happened? Questions in
History and law are of this type: the legal responsibil-
ity of an airplane manufacturer in an accident depends
on technical malfunction being an actual cause of the
accident. Ultimately, such issues of causal explanation,
actual causation and other counterfactual answers, are
untestable. Although machine learning can be a useful
tool to derive the consequences of assumptions com-
bined with data about other events of the same type,
in general the answers will not be robust to changes
in the assumptions, and the proper assumptions ulti-
mately cannot be selected with the available data. Some
advances in generating explanations with causal models
are described by Halpern and Pearl (2005).

Cross References
» Graphical Models
» Learning Graphical Models

Recommended Reading

Chickering, D. (2002). Optimal structure identification with greedy
search. Journal of Machine Learning Research, 3, 507-554.

Cooper, G., & Yoo, C. (1999). Causal discovery from a mixture of
experimental and observational data. In Uncertainty in Artifi-
cial Intelligence (UAI).




166

CBR

Dawid, A. P. (2002). Influence diagrams for causal modelling and
inference. International Statistical Review, 70, 161-189.

Eaton, D., & Murphy, K. (2007). Exact Bayesian structure learn-
ing from uncertain interventions. In Artificial Intelligence and
Statistics (AISTATS).

Eberhardt, F., Glymour, C., & Scheines, R. (2005). On the number of
experiments sufficient and in the worst case necessary to iden-
tify all causal relations among N variables. In Uncertainty in
Artificial Intelligence (UAI) (pp. 178-184).

Friedman, N., & Koller, D. (2003). Being Bayesian about net-
work structure: A Bayesian approach to structure discovery in
Bayesian networks. Machine Learning, 50, 95-126.

Glymour, C., & Cooper, G. (1999). Computation, causation and
discovery. Cambridge, MA: MIT Press.

Halpern, J., & Pearl, J. (2005). Causes and explanations: A structural-
model approach. Part II: Explanations. British Journal for the
Philosophy of Science, 56, 889-911.

Meek, C. (1997). Graphical models: Selecting causal and statistical
models. PhD thesis, Carnegie Mellon University.

Pearl, J. (2000). Causality: Models, reasoning and inference.
Cambridge: Cambridge University Press.

Richardson, T. (1996). A discovery algorithm for directed cyclic
graphs. In Proceedings of 12th conference on Uncertainty in
Artificial Intelligence.

Robins, J., Scheines, R., Spirtes, P., & Wasserman, L. (2003). Uniform
consistency in causal inference. Biometrika, 90, 491-515.

Rosenbaum, P. (2002). Observational studies. New York: Springer.

Rubin, D. (2004). Direct and indirect causal effects via potential
outcomes. Scandinavian Journal of Statistics, 31, 161-170.

Sachs, K., Prez, O., Peer, D., Lauffenburger, D., & Nolan, G. (2005).
Causal protein-signaling networks derived from multiparame-
ter single-cell data. Science, 308, 523-529.

Scheines, R. (1997). An introduction to causal inference. In
V. McKim & S. Turner (Eds.), Causality in Crisis? (pp.
185-200).

Silva, R., Scheines, R., Glymour, C., & Spirtes, P. (2006). Learning
the structure of linear latent variable models. Journal of Machine
Learning Research, 7,191-246.

Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction
and search. Cambridge, MA: Cambridge University Press.

Wasserman, L. (2004). All of statistics. New York: Springer.

Zhang, J., & Spirtes, P. (2003). Strong faithfulness and uniform
consistency in causal inference. In Uncertainty in Artificial
Intelligence.

' CBR

> Case-Based Reasoning

"'cc

» Cascade-Correlation

! Certainty Equivalence Principle

» Internal Model Control

|
Characteristic

» Attribute

| City Block Distance

» Manhattan Distance

|
Class

CHRIS DRUMMOND
National Research Council of Canada

Synonyms
Category; Class; Collection; Kind; Set; Sort; Type

Definition

A class is a collection of things that might reasonably be
grouped together. Classes that we commonly encounter
have simple names so, as humans, we can easily refer to
them. The class of dogs, for example, allows me to say
“my dog ate my newspaper” without having to describe
a particular dog, or indeed, a particular newspaper. In
machine learning, the name of the class is called the
class label. Exactly what it means to belong to a class, or
category, is a complex philosophical question but often
we think of a class in terms of the common properties
of its members. We think particularly of those proper-
ties which seperate them from other things which are in
many ways similar, e.g., cats mieow and dogs bow-wow.
We would be unlikely to form a class from a random
collection of things, as they would share no common
properties. Knowing something belonged to such a col-
lection would be of no particular benefit. Although
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many every day classes will have simple names, we may
construct them however we like, e.g., “The things I like
to eat for breakfast on a Saturday morning” As there is
no simple name for such a collection, in machine learn-
ing we would typically refer to it as the positive class, and
all occurences of it are positive examples; the negative
class would be everything else.

Motivation and Background

The idea of a class is important in learning. If we dis-
cover something belongs to a class, we suddenly know
quite a lot about it even if we have not encountered
that particular example before. In machine learning,
our use of the term accords closely with the math-
ematical definition of a class, as a collection of sets
unambiguously defined by a property that all its mem-
bers share. It also accords with the idea of equivalence
classes, which group similar things. Sets have an inten-
sion, the description of what it means to be a member,
and an extension, things that belong to the set, use-
tul properties of a class in machine learning. Class is
also a term used extensively in knowledge bases to
denote an important relationship between groups, of
sub-class and super class. Learning is often viewed as
a way of solving the knowledge acquisition bottleneck
(Buchanan et al., 1983) in knowledge bases and the use
of the term class in machine learning highlights this
connection.

Recommended Reading

Buchanan, B., Barstow, D., Bechtel, R., Bennett, J., Clancey, W,
Kulikowski, C., et al. (1983) Constructing an expert system. In
F. Hayes-Roth, D.A. Waterman, & D.B. Lenat (Eds.), Building
expert systems (pp. 127-167). Reading, MA: Addison-Wesley.
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Definition

Data are said to suffer the Class Imbalance Problem
when the class distributions are highly imbalanced. In
this context, many P classification learning algorithms

have low »predictive accuracy for the infrequent class.
> Cost-sensitive learning is a common approach to
solve this problem.

Motivation and Background

Class imbalanced datasets occur in many real-world
applications where the class distributions of data are
highly imbalanced. For the two-class case, without loss
of generality, one assumes that the minority or rare class
is the positive class, and the majority class is the negative
class. Often the minority class is very infrequent, such as
1% of the dataset. If one applies most traditional (cost-
insensitive) classifiers on the dataset, they are likely to
predict everything as negative (the majority class). This
was often regarded as a problem in learning from highly
imbalanced datasets.

However, Provost (2000) describes two fundamen-
tal assumptions that are often made by traditional cost-
insensitive classifiers. The first is that the goal of the
classifiers is to maximize the accuracy (or minimize the
error rate); the second is that the class distribution of
the training and test datasets is the same. Under these
two assumptions, predicting everything as negative for
a highly imbalanced dataset is often the right thing to
do. Drummond and Holte (2000) show that it is usu-
ally very difficult to outperform this simple classifier in
this situation.

Thus, the imbalanced class problem becomes mean-
ingful only if one or both of the two assumptions above
are not true; that is, if the cost of different types of
error (false positive and false negative in the binary clas-
sification) is not the same, or if the class distribution
in the test data is different from that of the training
data. The first case can be dealt with effectively using
methods in cost-sensitive meta-learning (see »Cost-
sensitive learning).

In the case when the misclassification cost is not
equal, it is usually more expensive to misclassify a
minority (positive) example into the majority (nega-
tive) class, than a majority example into the minority
class (otherwise it is more plausible to predict every-
thing as negative). That is, FNcost > FPcost. Thus, given
the values of FNcost and FPcost, a variety of cost-
sensitive meta-learning methods can be, and have been,
used to solve the class imbalance problem (Japkow-
icz & Stephen, 2002; Ling & Li, 1998). If the values of
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FNcost and FPcost are not unknown explicitly, FNcost
and FPcost can be assigned to be proportional to the
number of positive and negative training cases (Japkow-
icz & Stephen, 2002).

In case the class distributions of training and test
datasets are different (e.g., if the training data is highly
imbalanced but the test data is more balanced), an obvi-
ous approach is to sample the training data such that its
class distribution is the same as the test data. This can be
achieved by oversampling (creating multiple copies of
examples of) the minority class and/or undersampling
(selecting a subset of) the majority class (Provost, 2000).

Note that sometimes the number of examples of
the minority class is too small for classifiers to learn
adequately. This is the problem of insufficient (small)
training data and different from that of imbalanced
datasets.

Recommended Reading

Drummond, C., & Holte, R. (2000). Exploiting the cost
(in)sensitivity of decision tree splitting criteria. In Pro-
ceedings of the seventeenth international conference on machine
learning (pp. 239-246).

Drummond, C., & Holte, R. (2005). Severe class imbalance: Why bet-
ter algorithms aren’t the answer. In Proceedings of the sixteenth
European conference of machine learning, LNAI (Vol. 3720,
pp. 539-546).

Japkowicz, N., & Stephen, S. (2002). The class imbalance prob-
lem: A systematic study. Intelligent Data Analysis, 6(5),
429-450.

Ling, C. X., & Li, C. (1998). Data mining for direct marketing -
Specific problems and solutions. In Proceedings of fourth inter-
national conference on Knowledge Discovery and Data Mining
(KDD-98) (pp. 73-79).
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Synonyms
Categorization; Generalization; Identification; Induc-
tion; Recognition

Definition

In common usage, the word classification means to put
things into categories, group them together in some use-
ful way. If we are screening for a disease, we would
group people into those with the disease and those with-
out. We, as humans, usually do this because things in
a group, called a »class in machine learning, share
common characteristics. If we know the class of some-
thing, we know a lot about it. In machine learning, the
term classification is most commonly associated with
a particular type of learning where examples of one or
more Pclasses, labeled with the name of the class, are
given to the learning algorithm. The algorithm produces
a classifier which maps the properties of these exam-
ples, normally expressed as P-attribute-value pairs, to
the class labels. A new example whose class is unknown
is classified when it is given a class label by the clas-
sifier based on its properties. In machine learning, we
use the word classification because we call the group-
ing of things a class. We should note, however, that
other fields use different terms. In philosophy and statis-
tics, the term categorization is more commonly used. In
many areas, in fact, classification often refers to what is
called »clustering in machines learning.

Motivation and Background

Classification is a common, and important, human
activity. Knowing something’s class allows us to pre-
dict many of its properties and so act appropriately.
Telling other people its class allows them to do the same,
making for efficient communication. This emphasizes
two commonly held views of the objectives of learn-
ing. First, it is a means of »generalization, to predict
accurately the values for previously unseen examples.
Second, it is a means of compression, to make transmis-
sion or communication more efficient. Classification is
certainly not a new idea and has been studied for some
considerable time. From the days of the early Greek
philosophers such as Socrates, we had the idea of cat-
egorization. There are essential properties of things that
make them what they are. It embodies the idea that
there are natural kinds, ways of grouping things, that
are inherent in the world. A major goal of learning,
therefore, is recognizing natural kinds, establishing the
necessary and sufficient conditions for belonging to a
category. This “classical” view of categorization, most
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often attributed to Aristotle, is now strongly disputed.
The main competitor is prototype theory; things are
categorized by their similarity to a prototypical exam-
ple (Lakoft, 1987), either real or imagined. There is also
much debate in psychology (Ashby & Maddox, 2005),
where many argue that there is no single method of
categorization used by humans.

As much of the inspiration for machine learning
originated in how humans learn, it is unsurprising
that our algorithms reflect these distinctions. »Nearest
neighbor algorithms would seem to have much in com-
mon with prototype theory. These have been part of
pattern recognition for some time (Cover & Hart, 1967)
and have become popular in machine learning, more
recently, as Pinstance-based learners (Aha, Kiber, &
Albert, 1991). In machine learning, we measure the dis-
tance to one or more members of a concept rather a
specially constructed prototype. So, this type of learn-
ing is perhaps more a case of the exemplar learning
found in the psychological literature, where multiple
examples represent a category. The closest we have
to prototype learning occurs in clustering, a type of
»unsupervised learning, rather than classification. For
example, in »k-means clustering group membership is
determined by closeness to a central value.

In the early days of machine learning, our
algorithms (Mitchell, 1977; Winston, 1975) had much
in common with the classical theory of categorization
in philosophy and psychology. It was assumed that the
data were consistent, there were no examples with the
same attribute values but belonging to different classes.
It was quickly realized that, even if the properties where
necessary and sufficient to capture the class, there was
often noise in the attribute and perhaps the class val-
ues. So, complete consistency was seldom attainable in
practice. New »-classification algorithms were designed,
which could tolerate some noise, such as »decision
trees (Breiman, Friedman, Olshen, & Stone, 1984; Quin-
lan, 1986, 1993) and rule-based learners (see »Rule
Learning) (Clark & Niblett, 1989; Holte, 1993; Michalski,
1983).

Structure of the Learning System

Whether one uses instance-based learning, rule-based
learning, decision trees, or indeed any other classification
algorithm, the end result is the division of the input

space into regions belonging to a single class. The
input space is defined by the Cartesian product of the
attributes, all possible combinations of possible values.

As a simple example, Fig. 1 shows two classes +
and -, each a random sample of a normal distribution.
The attributes are X and Y of real type. The values for
each attribute range from +oco. The figure shows a cou-
ple of alternative ways that the space may be divided into
regions. The bold dark lines, construct regions using
lines that are parallel to the axes. New examples that
have Y less than 1and X less than 1.5 with be classified as
+, all others classified as —. Decision trees and rules form
this type of boundary. A »linear discriminant function,
such as the bold dashed line, would divide the space into
half-spaces, with new examples below the line being
classified as + and those above as —. Instance-based
learning will also divide the space into regions but the
boundary is implicit. Classification occurs by choosing
the class of the majority of the nearest neighbors to a
new example. To make the boundary explicit, we could
mark the regions where an example would be classified
as + and those classified as —. We would end up with
regions bounded by polygons.

What differs among the algorithms is the shape of
the regions, and how and when they are chosen. Some-
times the regions are implicit as in lazy learners (see
»Lazy Learning) (Aha, 1997), where the boundaries
are not decided until a new example is being classified.
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Sometimes the regions are determined by decision
theory as in generative classifiers (see »Generative
Learners) (Rubinstein & Hastie, 1997), which model the
full joint distribution of the classes. For all classifiers
though, the input space is effectively partitioned into
regions representing a single class.

Applications

One of the reasons that classification is an important
part of machine learning is that it has proved to be a very
useful technique for solving practical problems. Classi-
fication has been used to help scientists in the explo-
ration, and comprehension, of their particular domains
of interest. It has also been used to help solve signifi-
cant industrial problems. Over the years a number of
authors have stressed the importance of applications to
machine learning and listed many successful examples
(Brachman, Khabaza, Kloesgen, Piatetsky-Shapiro, &
Simoudis, 1996; Langley & Simon, 1995; Michie, 1982).
There have also been workshops on applications
(Aha & Riddle, 1995; Engels, Evans, Herrmann, &
Verdenius, 1997; Kodratoff, 1994) at major machine
learning conferences and a special issue of Machine
Learning (Kohavi & Provost, 1998), one of the main
journals in the field. There are now conferences that
are highly focused on applications. Collocated with
major artificial intelligence conferences is the Innova-
tive Applications of Artificial Intelligence conference.
Since 1989, this conference has highlighted practical
applications of machine learning, including classifica-
tion (Schorr & Rappaport, 1989). In addition, there
are now at least two major knowledge discovery and
»data mining conferences (Fayyad & Uthurusamy,
1995; Komorowski & Zytkow, 1997) with a strong focus
on applications.

Future Directions

In machine learning, there are already a large num-
ber of different classification algorithms, yet new ones
still appear. It seems unlikely that there is an end in
sight. The “no free lunch theory” (Wolpert & Macready,
1997) indicates that there will never be a single best
algorithm, better than all others in terms of predictive
power. However, apart from their predictive perfor-
mance, each classifier has its own attractive properties
which are important to different groups of people. So,

new algorithms are still of value. Further, even if we
are solely concerned about performance, it may be use-
ful to have many different algorithms, all with their
own biases (see »Inductive Bias). They may be com-
bined together to form an ensemble classifier (Caruana,
Niculescu-Mizil, Crew, & Ksikes, 2004), which outper-
forms single classifiers of one type (see »Ensemble
Learning).

Limitations

Classification has been critical part of machine research
for some time. There is a concern that the emphasis
on classification, and more generally on »supervised
learning, is too strong. Certainly much of human learn-
ing does not use, or require, labels supplied by an expert.
Arguably, unsupervised learning should play a more
central role in machine learning research. Although
classification does require a label, it does necessarily
need an expert to provide labeled examples. Many suc-
cessful applications rely on finding some, easily identi-
fiable, property which stands in for the class.
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Classification Algorithms

There is a very large number of classification algo-
rithms, including »decision trees, P-instance-based
learners, »support vector machines, »rule-based learn-
ers, Pneural networks, »Bayesian networks. There also
ways of combining them into »ensemble classifiers
such as »-boosting, »-bagging, »stacking, and »forests
of trees.

To delve deeper into classifiers and their role in
machine learning, a number of books are reccommended
covering machine learning (Bishop, 2007; Mitchell,
1997; Witten & Frank, 2005) and artificial intelli-
gence (Russell & Norvig, 2003) in general. Seminal
papers on classifiers can be found in collections of
papers on machine learning (Dietterich & Shavlik, 1990;
Kodratoft & Michalski, 1990; Michalski, Carbonell, &
Mitchell, 1983, 1986).
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Synonyms
Genetics-based machine learning; Learning classifier
systems

Definition

Classifier systems are rule-based systems that com-
bine W»temporal difference learning or Psupervised
learning with a genetic algorithm to solve classifica-
tion and Preinforcement learning problems. Classifier
systems come in two flavors: Michigan classifier sys-
tems, which are designed for online learning, but can
also tackle offline problems; and Pittsburgh classifier
systems, which can only be applied to offline learning.

In Michigan classifier systems (Holland, 1976),
learning is viewed as an online adaptation process to
an unknown environment that represents the problem
and provides feedback in terms of a numerical reward.
Michigan classifier systems maintain a single candidate
solution consisting of a set of rules, or a population of
classifiers. Michigan systems apply (1) temporal differ-
ence learning to distribute the incoming reward to the
classifiers that are accountable for it; and (2) a genetic
algorithm to select, recombine, and mutate individual
classifiers so as to improve their contribution to the
current solution.

In contrast, in Pittsburgh classifier systems (Smith,
1980), learning is viewed as an offline optimization pro-
cess in which a genetic algorithm alone is applied to
search for the best solution to a given problem. In addi-
tion, Pittsburgh classifier systems maintain not one, but
a set of candidate solutions. While in the Michigan
classifier system each individual classifier represents a
part of the overall solution, in the Pittsburgh system
each individual is a complete candidate solution (itself
consisting of a set of classifiers). The fitness of each Pitts-
burgh individual is computed offline by testing it on a
representative sample of problem instances. The indi-
viduals compete among themselves through selection,
while crossover and mutation recombine solutions to
search for better solutions.

Motivation and Background

Machine learning is usually viewed as a search process
in which a solution space is explored until an appropri-
ate solution to the target problem is found (Mitchell,
1982) (see PLearning as Search). Machine learning
methods are characterized by the way they represent
solutions (e.g., using Pdecision trees, rules), by the
way they evaluate solutions (e.g., classification accuracy,
information gain) and by the way they explore the solu-
tion space (e.g., using a »-general-to-specific strategy or
a Pspecific-to-general strategy).

Classifier systems are methods of genetics-based
machine learning introduced by Holland, the father of
»genetic algorithms. They made their first appearance
in Holland (1976) where the first diagram of a clas-
sifier system, labeled “cognitive system,” was shown.
Subsequently, they were described in detail in the paper
“Cognitive Systems based on Adaptive Algorithms”
(Holland and Reitman, 1978). Classifier systems are
characterized by a rule-based representation of solu-
tions and a genetics-based exploration of the solution
space. While other »rule learning methods, such as
CN2 (Clark & Niblett, 1989) and FOIL (Quinlan &
Cameron-Jones, 1995), generate one rule at a time fol-
lowing a sequential covering strategy (see »Covering
Algorithm), classifier systems work on one or more
solutions at once, and they explore the solution space by
applying the principles of natural selection and genetics.

In classifier systems (Holland, 1976; Holland and
Reitman, 1978; Wilson, 1995), machine learning is mod-
eled as an online adaptation process to an unknown
environment, which provides feedback in terms of a
numerical reward. A classifier system perceives the
environment through its detectors and, based on its
sensations, it selects an action to be performed in the
environment through its effectors. Depending on the
efficacy of its actions, the environment may eventu-
ally reward the system. A classifier system learns by
trying to maximize the amount of reward it receives
from the environment. To pursue such a goal, it main-
tains a set (a population) of condition-action-prediction
rules, called classifiers, which represents the current
solution. Each classifier’s condition identifies some part
of the problem domain; the classifier’s action repre-
sents a decision on the subproblem identified by its
condition; and the classifier’s prediction, or strength,
estimates the value of the action in terms of future
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rewards on that subproblem. Two separate components,
credit assignment and rule discovery, act on the popu-
lation with different goals. »Credit assignment, imple-
mented either by methods of temporal difference or
supervised learning, exploits the incoming reward to
estimate the action values in each subproblem so as
to identify the best classifiers in the population. At
the same time, rule discovery, usually implemented by
a genetic algorithm, selects, recombines, and mutates
the classifiers in the population to improve the current
solution.

Classifier systems were initially conceived as model-
ing tools. Given a real system with unknown underlying
dynamics, for instance a financial market, a classifier
system would be used to generate a behavior that
matched the real system. The evolved rules would pro-
vide a plausible, human readable model of the unknown
system - a way to look inside the box. Subsequently,
with the developments in the area of machine learn-
ing and the rise of reinforcement learning, classifier
systems have been more and more often studied and
presented as alternatives to other machine learning
methods. Wilson’s XCS (1995), the most successful clas-
sifier system to date, has proven to be both a valid
alternative to other reinforcement learning approaches
and an effective approach to classification and data min-
ing (Bull, 2004; Bull & Kovacs, 2005; Lanzi, Stolzmann,
& Wilson, 2000).

Kenneth de Jong and his students (de Jong, 1988;
Smith, 1980, 1983) took a different perspective on
genetics-based machine learning and modeled learn-
ing as an optimization process rather than an adaptation
process as done in Holland (1976). In this case, the solu-
tion space is explored by applying a genetic algorithm
to a population of individuals each representing a com-
plete candidate solution - that is, a set of rules (or a
production system, de Jong, 1988; Smith, 1980). At each
cycle, a critic is applied to each individual (to each set
of rules) to obtain a performance measure that is then
used by the genetic algorithm to guide the exploration
of the solution space. The individuals in the population
compete among themselves through selection, while
crossover and mutation recombine solutions to search
for better ones.

The approaches of Holland (Holland, 1976; Hol-
land and Reitman, 1978) and de Jong (de Jong, 1988;
Smith, 1980, 1983) have been extended and improved

in several ways (see Lanzi et al. (2000) for a review).
The models of classifier systems that are inspired by
the work of Holland (1976) at the University of Michi-
gan are usually called Michigan classifier systems; the
ones that are inspired by Smith (1980, 1983) and de Jong
(1988) at the University of Pittsburgh are usually termed
Pittsburgh classifier systems — or briefly, Pitt classifier
systems.

Pittsburgh classifier systems separate the evaluation
of candidate solutions, performed by an external critic,
from the genetic search. As they evaluate candidate
solutions as a whole, Pittsburgh classifier systems can
easily identify and emphasize sequentially cooperat-
ing classifiers, which is particularly helpful in problems
involving partial observability. In contrast, in Michigan
classifier systems the credit assignment is focused, due
to identification of the actual classifiers that produce the
reward, so learning is much faster but sequentially coop-
erating classifiers are more difficult to spot. As Pitts-
burgh classifier systems apply the genetic algorithm to a
set of solutions, they only work offline, whereas Michi-
gan classifier systems work online, although they can
also tackle offline problems. Finally, the design of Pitts-
burgh classifier systems involves decisions as to how an
entire solution should be represented and how solutions
should be recombined - a task which can be daunting.
In contrast, the design of Michigan classifier systems
involves simpler decisions about how a rule should be
represented and how two rules should be recombined.
Accordingly, while the representation of solutions and
its related issues play a key role in Pittsburgh mod-
els, Michigan models easily work with several types of
representations (Lanzi, 2001; Lanzi & Perrucci, 1999;
Mellor, 2005).

Structure of the Learning System

Michigan and Pittsburgh classifier systems were both
inspired by the work of Holland on the broadcast
language (Holland, 1975). However, their structures
reflect two different ways to model machine learn-
ing: as an adaptation process in the case of Michi-
gan classifier systems; and as an optimization prob-
lem, in the case of Pittsburgh classifier systems. Thus,
the two models, originating from the same idea (Hol-
land’s broadcast language), have radically different
structures.
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Michigan Classifier Systems

Holland’s classifier systems define a general paradigm
for genetics-based machine learning. The description
in Holland and Reitman (1978) provides a list of prin-
ciples for online learning through adaptation. Over
the years, such principles have guided researchers who
developed several models of Michigan classifier sys-
tems (Butz, 2002; Wilson, 1994, 1995, 2002) and applied
them to a large variety of domains (Bull, 2004; Lanzi &
Riolo, 2003; Lanzi et al., 2000). These models extended
and improved Holland’s original ideas, but kept all
the ingredients of the original recipe: a population of
classifiers, which represents the current system knowl-
edge; a performance component, which is responsi-
ble for the short-term behavior of the system; a credit
assignment (or reinforcement) component, which dis-
tributes the incoming reward among the classifiers; and
a rule discovery component, which applies a genetic
algorithm to the classifiers to improve the current
knowledge.

Knowledge Representation

In Michigan classifier systems, knowledge is repre-
sented by a population of classifiers. Each classifier is
usually defined by four main parameters: the condition,
which identifies some part of the problem domain; the
action, which represents a decision on the subproblem
identified by its condition; the prediction or strength,
which estimates the amount of reward that the system
will receive if its action is performed; and finally, the fit-
ness, which estimates how good the classifier is in terms
of problem solution.

The knowledge representation of Michigan classi-
fier systems is extremely flexible. Each one of the four
classifier components can be tailored to fit the need of
a particular application, without modifying the main
structure of the system. In problems involving binary
inputs, classifier conditions can be simply represented
using strings defined over the alphabet {0, 1, #}, as done
in Holland and Reitman (1978), Goldberg (1989), and
Wilson (1995). In problems involving real inputs, con-
ditions can be represented as disjunctions of intervals,
similar to the ones produced by other rule learning
methods (Clark & Niblett, 1989) Conditions can also
be represented as general-purpose symbolic expressions

(Lanzi, 2001; Lanzi & Perrucci, 1999) or first-order
logic expressions (Mellor, 2005). Classifier actions are
typically encoded by a set of symbols (either binary
strings or simple labels), but continuous real-valued
actions are also available (Wilson, 2007). Classifier pre-
diction (or strength) is usually encoded by a parame-
ter (Goldberg, 1989; Holland & Reitman, 1978; Wilson,
1995). However, classifier prediction can also be com-
puted using a parameterized function (Wilson, 2002),
which results in solutions represented as an ensem-
ble of local approximators - similar to the ones pro-
duced in generalized reinforcement learning (Sutton &
Barto, 1998).

Performance Component

A simplified structure of Michigan classifier systems
is shown in Fig. 1. We refer the reader to Goldberg
(1989) and Holland and Reitman (1978) for a detailed
description of the original model and to Butz (2002)
and Wilson (1994, 1995, 2001) for descriptions of recent
classifier system models.

A classifier system learns through trial and error
interactions with an unknown environment. The sys-
tem and the environment interact continually. At each
time step, the classifier system perceives the envi-
ronment through its detectors; it builds a match set
containing all the classifiers in the population whose
condition matches the current sensory input. The match
set typically contains classifiers that advocate contrast-
ing actions; accordingly, the classifier system evaluates
each action in the match set, and selects an action to
be performed balancing exploration and exploitation.
The selected action is sent to the effectors to be exe-
cuted in the environment; depending on the effect that
the action has in the environment, the system receives a
scalar reward.

Credit Assignment

The credit assignment component (also called reinforce-
ment component, Wilson 1995) distributes the incom-
ing reward to the classifiers that are accountable for it.
In Holland and Reitman (1978), credit assignment is
implemented by Holland’s bucket brigade algorithm
(Holland, 1986), which was partially inspired by the
credit allocation mechanism used by Samuel in his
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Classifier Systems. Figure 1. Simplified structure of a Michigan classifier system. The system perceives the environment
through its detectors and (1) it builds the match set containing the classifiers in the population that match the current
sensory inputs; then (2) all the actions in the match set are evaluated, and (3) an action is selected to be performed in

the environment through the effectors

pioneering work on learning checkers-playing pro-
grams (Samuel, 1959).

In the early years, classifier systems and the bucket
brigade algorithm were confined to the evolutionary
computation community. The rise of reinforcement
learning increased the connection between classifier
systems and temporal difference learning (Sutton, 1988;
Sutton & Barto, 1998): in particular, Sutton (1988)
showed that the bucket brigade algorithm is a kind
of temporal difference learning, and similar connec-
tions were also made in Watkins (1989) and Dorigo
and Bersini (1994). Later, the connection between
classifier systems and reinforcement learning became
tighter with the introduction of Wilson’s XCS (1995),
in which credit assignment is implemented by a mod-
ification of Watkins Q-learning (Watkins, 1989). As
a consequence, in recent years, classifier systems are
often presented as methods of reinforcement learn-
ing with genetics-based generalization (Bull & Kovacs,
2005).

Rule Discovery Component

The rule discovery component is usually implemented
by a genetic algorithm that selects classifiers in the
population with probability proportional to their fit-
ness; it copies the selected classifiers and applies genetic
operators (usually crossover and mutation) to the off-
spring classifiers; the new classifiers are inserted in the
population, while other classifiers are deleted to keep
the population size constant.

Classifiers selection plays a central role in rule dis-
covery. Classifier selection depends on the definition
of classifier fitness and on the subset of classifiers con-
sidered during the selection process. In Holland and
Reitman (1978), classifier fitness coincides with clas-
sifier prediction, while selection is applied to all the
classifiers in the population. This approach results in
a pressure toward classifiers predicting high returns,
but typically tends to produce overly general solutions.
To avoid such solutions, Wilson (1995) introduced the
XCS classifier system in which accuracy-based fitness is
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coupled with a niched genetic algorithm. This approach
results in a pressure toward accurate maximally gen-
eral classifiers, and has made XCS the most successful
classifier system to date.

Pittsburgh Classifier Systems

The idea underlying the development of Pittsburgh clas-
sifier systems was to show that interesting behaviors
could be evolved using a simpler model than the one
proposed by Holland with Michigan classifier systems
(Holland, 1976; Holland & Reitman, 1978).

In Pittsburgh classifier systems, each individual is a
set of rules that encodes an entire candidate solution;
each rule has a fixed length, but each rule set (each indi-
vidual) usually contains a variable number of rules. The
genetic operators, crossover and mutation, are tailored
to the rule-based, variable-length representation. The
individuals in the population compete among them-
selves, following the selection-recombination-mutation
cycle that is typical of genetic algorithms (Goldberg,
1989; Holland, 1975). While in Michigan classifier sys-
tems individuals in the population (the single rules)
cooperate, in Pittsburgh classifier systems there is no
cooperation among individuals (the rule sets), so that
the genetic algorithm operation is simpler for Pitts-
burgh models. However, as Pittsburgh classifier systems
explore a much larger search space, they usually require
more computational resources than Michigan classifier
systems.

The pseudo-code of a Pittsburgh classifier system is
shown in Fig. 2. At first, the individuals in the popu-
lation are randomly initialized (line 2). At time ¢, the

individuals are evaluated by an external critic, which
returns a performance measure that the genetic algo-
rithm exploits to compute the fitness of individuals
(lines 3 and 10). Following this, selection (line 6),
recombination, and mutation (line 7) are applied to
the individuals in the population - as done in a typ-
ical genetic algorithm. The process stops when a ter-
mination criterion is met (line 4), usually when an
appropriate solution is found.

The design of Pittsburgh classifier systems follows
the typical steps of genetic algorithm design, which
means deciding how a rule set should be represented,
what genetic operators should be applied, and how
the fitness of a set of rules should be calculated. In
addition, Pittsburgh classifier systems need to address
the bloat phenomenon (Tackett, 1994) that arises with
any variable-sized representation, like the rule sets
evolved by Pittsburgh classifier systems. Bloat can be
defined as the growth of individuals without an actual
fitness improvement. In Pittsburgh classifier systems,
bloat increases the size of candidate solutions by adding
useless rules to individuals, and it is typically limited
by introducing a parsimony pressure that discourages
large rule sets (Bassett & de Jong, 2000). Alterna-
tively, Pittsburgh classifier systems can be combined
with multi-objective optimization, so as to separate the
maximization of the rule set performance and the min-
imization of the rule set size.

Examples of Pittsburgh classifier systems include
SAMUEL (Grefenstette, Ramsey, & Schultz, 1990), the
Genetic Algorithm Batch-Incremental Concept Learner
(GABIL) (de Jong & Spears, 1991), GIL (Janikow, 1993),
GALE (Llora, 2002), and GAssist (Bacardit, 2004).

1. t =0

2. Initialize the population P(t)

3. Evaluate the rules sets in P (t)

4. While the termination condition is not satisfied
5. Begin

6. Select the rule sets in P(t) and generate Ps(t)
7. Recombine and mutate the rule sets in Ps(t)
8. P(t+l) := Ps(t)

9. t = t+1

10. Evaluate the rules sets in P(t)

11. End

Classifier Systems. Figure 2. Pseudo-code of a Pittsburgh classifier system
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Applications

Classifier systems have been applied to a large vari-
ety of domains, including computational economics
(e.g., Arthur, Holland, LeBaron, Palmer, & Talyer,
1996), autonomous robotics (e.g., Dorigo & Colom-
betti, 1998), classification (e.g., Barry, Holmes, & Llora,
2004), fighter aircraft maneuvering (Bull, 2004; Smith,
Dike, Mehra, Ravichandran, & El-Fallah, 2000), and
many others. Reviews of classifier system applications
are available in Lanzi et al. (2000), Lanzi and Riolo
(2003), and Bull (2004).

Programs and Data
The major sources of information about classifier sys-
tems are the LCSWeb maintained by Alwyn Barry,
which can be reached through, and www.learning-
classifier-systems.org_maintained by Xavier Llora.
Several implementations of classifier systems are
freely available online. The first standard implemen-
tation of Holland’s classifier system in Pascal was
described in Goldberg (1989), and it is available at
http://www.illigal.org/; a C version of the same imple-
mentation, developed by Robert E. Smith, is available
at  http://www.etsimo.uniovi.es/ftp/pub/EC/CFS/src/.
Another implementation of an extension of Holland’s
classifier system in C by Rick L. Riolo is avail-
able at http://www.cscs.umich.edu/Software/Contents.
html. Implementations of Wilson’s XCS (1995) are dis-
tributed by Alwyn Barry at the LCSWeb, by Martin
V. Butz (at www.illigal.org), and by Pier Luca Lanzi
(at xcslib.sf.net). Among the implementations of Pitts-
burgh classifier systems, the Samuel system is avail-
able from Alan C. Schultz at http://www.nrl.navy.mil/;
Xavier Llora distributes GALE (Genetic and Artificial
Life Environment) a fine-grained parallel genetic algo-
rithm for data mining at www.illigal.org/xllora.

Cross References
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Clause

A clause is alogical rule in a »logic program. Formally,
a clause is a disjunction of (possibly negated) literals,
such as

grandfather(x,y) v —father(x,z) v —~parent(z, y).

In the logic programming language »Prolog this clause

is written as

grandfather (X,Y) :- father(X,2),
parent (Z,7Y) .

The part to the left of : — (“if”) is the head of the clause,
and the right part is its body. Informally, the clause
asserts the truth of the head given the truth of the body.
A clause with exactly one literal in the head is called
a Horn clause or definite clause; logic programs mostly
consist of definite clauses. A clause without a body is
also called a fact; a clause without a head is also called
a denial, or a query in a proof by refutation. The clause
without head or body is called the empty clause: it signi-
fies inconsistency or falsehood and is denoted O. Given
a set of clauses, the resolution inference rule can be used
to deduce logical consequences and answer queries (see
» First-Order Logic).

In machine learning, clauses can be used to express
classification rules for structured individuals. For exam-
ple, the following definite clause classifies a molecular
compound as carcinogenic if it contains a hydrogen
atom with charge above a certain threshold.
carcinogenic (M) :- atom(M,Al),
element (Al,h),
charge (Al,C1),
geqg(Cl,0.168).
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! Clause Learning

In »speedup learning, clause learning is a »deductive
learning technique used for the purpose of »-intelligent
backtracking in satisfiability solvers. The approach ana-
lyzes failures at backtracking points and derives clauses
that must be satisfied by the solution. The clauses are
added to the set of clauses from the original satisfiabil-
ity problem and serve to prune new search nodes that
violate them.

! Click-Through Rate (CTR)

CTR measures the success of a ranking of search results,
or advertisement placing. Given the number of impres-
sions, the number of times a web result or ad has been
displayed, and the number of clicks, the number of users
who clicked on the result/advertisement, CTR is the
number of clicks divided by the number of impressions.

|
Clonal Selection

The clonal selection theory (CST) is the theory used
to explain the basic response of the adaptive immune
system to an antigenic stimulus. It establishes the idea
that only those cells capable of recognizing an antigenic
stimulus will proliferate, thus being selected against
those that do not. Clonal selection operates on both
T-cells and B-cells. When antibodies on a B-cell bind
with an antigen, the B-cell becomes activated and begins
to proliferate. New B-cell clones are produced that are
an exact copy of the parent B-cell, but then they undergo
somatic hypermutation and produce antibodies that are
specific to the invading antigen. The B-cells, in addition
to proliferating or differentiating into plasma cells, can
differentiate into long-lived B memory cells. Plasma cells
produce large amounts of antibody which will attach

themselves to the antigen and act as a type of tag for
T-cells to pick up on and remove from the system. This
whole process is known as affinity maturation. This pro-
cess forms the basis of many artificial immune system
algorithms such as AIRS and aiNET.

[
Closest Point

> Nearest Neighbor

| Cluster Editing

The Cluster Editing problem is almost equivalent to
Correlation Clustering on complete instances. The idea
is to obtain a graph that consists only of cliques.
Although Cluster Deletion requires us to delete the
smallest number of edges to obtain such a graph, in
Cluster Editing we are permitted to add as well as
remove edges. The final variant is Cluster Completion
in which edges can only be added: each of these prob-
lems can be restricted to building a specified number of
cliques.

|
Cluster Ensembles

Cluster ensembles are an unsupervised Pensemble
learning method. The principle is to create multiple dif-
ferent clusterings of a dataset, possibly using different
algorithms, then aggregate the opinions of the different
clusterings into an ensemble result. The final ensemble
clustering should be in theory more reliable than the
individual clusterings.

[ .. .
Cluster Optimization

»Evolutionary Clustering
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[ .
Clustering

Clustering is a type of »-unsupervised learning in which
the goal is to partition a set of »examples into groups
called clusters. Intuitively, the examples within a clus-
ter are more similar to each other than to examples
from other clusters. In order to measure the similar-
ity between examples, clustering algorithms use various
distortion or »distance measures. There are two major
types clustering approaches: generative and discrimi-
native. The former assumes a parametric form of the
data and tries to find the model parameters that max-
imize the probability that the data was generated by
the chosen model. The latter represents graph-theoretic
approaches that compute a similarity matrix defined
over the input data.
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Clustering from Data Streams

JoAo GAMA
University of Porto, Porto, Portugal

Definition

» Clustering is the process of grouping objects into dif-
ferent groups, such that the common properties of data
in each subset is high, and between different subsets is
low. The data stream clustering problem is defined as
to maintain a consistent good clustering of the sequence
observed so far, using a small amount of memory and
time. The issues are imposed by the continuous arriv-
ing data points, and the need to analyze them in real
time. These characteristics require incremental clus-
tering, maintaining cluster structures that evolve over
time. Moreover, the data stream may evolve over time
and new clusters might appear, others disappear reflect-
ing the dynamics of the stream.

Main Techniques
Major clustering approaches in data stream cluster anal-
ysis include:

e Partitioning algorithms: construct a partition of a
set of objects into k clusters, that minimize some
objective function (e.g., the sum of squares distances
to the centroid representative). Examples include
k-means (Farnstrom, Lewis, & Elkan, 2000), and
k-medoids (Guha, Meyerson, Mishra, Motwani, &
O’Callaghan, 2003)

e Microclustering algorithms: divide the clustering
process into two phases, where the first phase is
online and summarizes the data stream in local
models (microclusters) and the second phase gen-
erates a global cluster model from the micro-
clusters. Examples of these algorithms include
BIRCH (Zhang, Ramakrishnan, & Livny, 1996) and
CluStream (Aggarwal, Han, Wang, & Yu, 2003)

Basic Concepts

A powerful idea in clustering from data streams is the
concept of cluster feature, CF. A cluster feature, or micro-
cluster, is a compact representation of a set of points.
A CF structure is a triple (N, LS, SS), used to store the
sufficient statistics of a set of points:



Clustering from Data Streams

181

e N is the number of data points

e LS is a vector, of the same dimension of data points,
that store the linear sum of the N points

e SSisa vector, of the same dimension of data points,
that store the square sum of the N points

The properties of cluster features are:

o Incrementality
If a point x is added to the cluster, the sufficient
statistics are updated as follows:

LSA <~ LSA + X,

S84 < SSu + x%,
Ny < Ny +1.

o Additivity
If A; and A; are disjoint sets, merging them is equal
to the sum of their parts. The additive property
allows us to merge subclusters incrementally.

LSc < LSy + LS5,
SSc < SS4 + SSp,
NC <« NA +NB.

A CF entry has sufficient information to calculate
the norms

n
Ly =) |xa, — x5,
i=1
n
Ly = | D (xa, — x5,)?
i=1

and basic measures to characterize a cluster.

o Centroid, defined as the gravity center of the cluster:

- LS
X0=—.
N

e Radius, defined as the average distance from mem-
ber points to the centroid:

Roy/ 2= X0)2
N

Partitioning Clustering

k-means is the most widely used clustering algorithm.
It constructs a partition of a set of objects into k clus-
ters that minimize some objective function, usually a
squared error function, which imply round-shape clus-
ters. The input parameter k is fixed and must be given
in advance that limits its real applicability to streaming
and evolving data.

Farnstrom et al. (2000) proposed a single pass
k-means algorithm. The main idea is to use a buffer
where points of the dataset are kept compressed. The
data stream is processed in blocks. All available space
on the buffer is filled with points from the stream. Using
these points, find k centers such that the sum of dis-
tances from data points to their closest center is mini-
mized. Only the k centroids (representing the clustering
results) are retained, with the corresponding k cluster
features. In the following iterations, the buffer is initial-
ized with the k-centroids, found in previous iteration,
weighted by the k cluster features, and incoming data
points from the stream. The Very Fast k-means (VFKM)
algorithm (Domingos & Hulten, 2001) uses the Hoeffd-
ing bound to determine the number of examples needed
in each step of a k-means algorithm. VFKM runs as a
sequence of k-means runs, with increasing number of
examples until the Hoeffding bound is satisfied.

Guha et al. (2003) present an analytical study on
k-median clustering data streams. The proposed algo-
rithm makes a single pass over the data stream and uses
small space. It requires O(nk) time and O(ne) space
where k is the number of centers, # is the number of
points, and € < 1. They have proved that any k-median
algorithm that achieves a constant factor approximation
cannot achieve a better run time than O(nk).

Micro Clustering

The idea of dividing the clustering process into two lay-
ers, where the first layer generates local models (micro-
clusters) and the second layer generates global models
from thelocal ones, is a powerful idea that has been used
elsewhere.

The BIRCH system (Zhang et al., 1996) builds a hier-
archical structure of data, the CF-tree, where each node
contains a set of cluster features. These CF’s contain the
sufficient statistics describing a set of points in the data
set, and all information of the cluster features below in
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the tree. The system requires two user defined param-
eters: B the branch factor or the maximum number
of entries in each non-leaf node; and T the maximum
diameter (or radius) of any CF in a leaf node. The max-
imum diameter T defines the examples that can be
absorbed by a CF. Increasing T, more examples can be
absorbed by a micro-cluster and smaller CF-Trees are
generated (Fig. 1).

When an example is available, it traverses down the
current tree from the root it finds the appropriate leaf.
At each non-leaf node, the example follow the closest-
CF path, with respect to norms L; or L. If the closest-CF
in the leaf cannot absorb the example, make a new
CF entry. If there is no room for new leaf, split the par-
ent node. A leaf node might be expanded due to the
constraints imposed by B and T. The process consists
of taking the two farthest CFs and creates two new leaf
nodes. When traversing backup the CFs are updated.

The CluStream Algorithm (Aggarwal et al., 2003) is
an extension of the BIRCH system designed for data
streams. Here, the CFs include temporal information:
the time-stamp of an example is treated as a feature. CFs
are initialized offline, using a standard k-means, with a
large value for k. For each incoming data point, the dis-
tance to the centroids of existing CFs are computed. The
data point is absorbed by an existing CF if the distance
to the centroid falls within the maximum boundary of
the CE. The maximum boundary is defined as a factor
t of the radius deviation of the CF; otherwise, the data
point starts a new micro-cluster.

CluStream can generate approximate clusters for
any user defined time granularity. This is achieved by
storing the CFT at regular time intervals, referred to as
snapshots. Suppose the user wants to find clusters in
the stream based on a history of length A, the off-line

CF;

CFp | CF,

Root node

I

Noon-root node
CF1 CI:2 CFb
I/I /1 \\I
CF; CF4 CF;
CFy CFs Leaf nodes CF,
CF4
CFy

Clustering from Data Streams. Figure 1. The clustering feature tree in BIRCH. B is the maximum number of CFsin a level

of the tree

1 Year
12 Months
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31 days

1Hour
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1 Day
24 Hours
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t

Natural tilted time window

Clustering from Data Streams. Figure 2. The figure presents a natural tilted time window. The most recent data is stored
with high-detail, older data is stored in a compressed way. The degree of detail decreases with time
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component can analyze the snapshots stored at the
snapshots f, the current time, and (¢ — k) by using the
addictive property of CFT. An important problem is
when to store the snapshots of the current set of micro-
clusters. For example, the natural time frame (Fig. 2)
stores snapshots each quarter, four quarters are aggre-
gated in hours, 24 h are aggregated in days, etc. The
aggregation level is domain-dependent and explores the
addictive property of CFT.

Promising research lines are tracking change in clus-
ters. Spiliopoulou, Ntoutsi, Theodoridis, and Schult
(2006) present system MONIC, for detecting and track-
ing change in clusters. MONIC assumes that a cluster is
an object in a geometric space. It encompasses changes
that involve more than one cluster, allowing for insights
on cluster change in the whole clustering. The tran-
sition tracking mechanism is based on the degree of
overlapping between the two clusters. The concept of
overlap between two clusters, X and Y, is defined as the
normed number of common records weighted with the
age of the records. Assume that cluster X was obtained
at time #; and cluster Y at time #,. The degree of over-
lapping between the two clusters is given by: overlap
(X,Y) = Saexoy age(a, )/ ex age(.t2). The degree
of overlapping allows inferring properties of the under-
lying data stream. Cluster transition at a given time
point is a change in a cluster discovered at an ear-
lier timepoint. MONIC considers transitions as Internal
and external transitions, that reflect the dynamics of the
stream. Examples of cluster transitions include: the clus-
ter survives, the cluster is absorbed; a cluster disappears;
a new cluster emerges (Fig. 2).
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Synonyms
Coevolution; Coevolutionary computation

Definition

Coevolutionary learning is a form of evolutionary
learning (see »Evolutionary Algorithms) in which the
fitness evaluation is based on interactions between
individuals. Since the evaluation of an individual is
dependent on interactions with other evolving entities,
changes in the set of entities used for evaluation can
affect an individual’s ranking in a population. In this
sense, coevolutionary fitness is subjective, while fitness
in traditional evolutionary learning systems typically
uses an objective performance measure.

Motivation and Background

Ideally, coevolutionary learning systems focus on rele-
vant areas of a search space by making adaptive changes
between interacting, concurrently evolving parts. This
can be particularly helpful when problem spaces are
very large - infinite search spaces in particular. Addi-
tionally, coevolution is useful when applied to problems
when no intrinsic objective measure exists. The interac-
tive nature of evaluation makes them natural methods
to consider for problems such as the search for game-
playing strategies (Fogel, 2001). Finally, some coevolu-
tionary systems appear natural for search spaces which
contain certain kinds of complex structures (Potter,
1997; Stanley, 2004), since search on smaller compo-
nents in a larger structure can be emphasized. In fact,
there is reason to believe that coevolutionary systems
may be well suited for uncovering complex structures
within a problem (Bucci & Pollack, 2002).

Still, the dynamics of coevolutionary learning can
be quite complex, and a number of pathologies often
plague naive users. Indeed, because of the subjective
nature of coevolution, it can be easy to apply a par-
ticular coevolutionary learning system without a clear

understanding of what kind of solution one expects a
coevolutionary algorithm to produce. Recent theoreti-
cal analysis suggests that a clear concept of solution and
a careful implementation of an evaluation process con-
sistent with this concept can produce a coevolutionary
system capable of addressing many problems (de Jong
& Pollack, 2004; Ficici, 2004; Panait, 2006; Wiegand,
2003). Accordingly, a great deal of research in this area
focuses on evaluation and progress measurement.

Structure of Learning System

Coevolutionary learning systems work in much the
same way that an evolutionary learning system works:
individuals encode some aspect of potential solutions
to a problem, those representatives are altered during
search using genetic-like operators such as mutation
and crossover, and the search is directed by select-
ing better individuals as determined by some kind of
fitness assessment. These heuristic methods gradually
refine solutions by repeatedly cycling through such
steps, using the ideas of heredity and survival of the
fittest to produce new generations of individuals, with
increased quality of solution. Just as in traditional evo-
lutionary computation, there are many choices available
to the engineer in designing such systems. The reader is
referred to the chapters relating to evolutionary learning
for more details.

However, there are some fundamental differences
between traditional evolution and coevolution. In
coevolution, measuring fitness requires evaluating the
interaction between multiple individuals. Interacting
individuals may reside in the same population or in
different populations; the interactive nature of coevo-
lution evokes notions of cooperation and competition
in entirely new ways; the choices regarding how to
best conduct evaluation of these interactions for the
purposes of selection are particularly important; and
there are unique coevolutionary issues surrounding
representation. In addition, because of its interactive
nature, the dynamics of coevolution can lead to some
well-known pathological behaviors, and particularly
careful attention to implementation choices to avoid
such conditions is generally necessary.

Coevolution can typically be broadly classified as to
whether interacting individuals reside in different pop-
ulations or in the same population.



Coevolutionary Learning

185

In the case of multipopulation coevolution, mea-
suring fitness requires evaluating how individuals in
one population interact with individuals in another.
For example, individuals in each population may rep-
resent potential strategies for particular players of a
game, they may represent roles in a larger ecosystem
(e.g., predators and prey), or they may represent com-
ponents that are fitted into a composite assembly with
other component then applied to a problem. Though
individuals in different populations interact for the pur-
poses of evaluation, they are typically otherwise inde-
pendent of one another in the coevolutionary search
process.

In single population coevolution, an individual in
the population is evaluated based on his or her inter-
action with other individuals in the same population.
Such individuals may again represent potential strate-
gies in a game, but evaluation may require them to
trade off roles as to which player they represent in that
game. Here, individuals interact not only for evalua-
tion, but also implicitly compete with one another as
resources used in the coevolutionary search process
itself.

There is some controversy in the field as to whether
this latter type qualifies as “coevolution.” Evolution-
ary biologists often define coevolution exclusively in
terms of multiple populations; however, in biologi-
cal systems, fitness is always subjective, while the vast
majority of computational approaches to evolutionary
learning involve objective fitness assessment — and this
subjective/objective fitness distinction creates a useful
classification.

To be sure, there are fundamental differences
between how single population and multipopulation
learning systems behave (Ficici, 2004). Still, single
population systems that employ subjective fitness
assessment behave a lot more like multipopulation
coevolutionary systems than like objective fitness based
evolution. Moreover, historically, the field has used the
term coevolution whenever fitness assessment is based
on interactions between individuals, and a large amount
of that research has involved systems with only one
population.

The terms cooperative and competitive have been used to
describe aspects of coevolution learning in at least three
ways.

First and less commonly, these adjectives can
describe qualitatively observed behaviors of poten-
tial solutions in coevolutionary systems, the results of
some evolutionary process (e.g., “tit-for-tat” strategies,
Axelrod, 1984).

Second, problems are sometimes considered to be
inherently competitive or cooperative. Indeed, game
theory provides some guidance for making such dis-
tinctions. However, since in many kinds of problems
little may be known about the actual structure of the
payoft functions involved, we may not actually be able
to classify the problem as definitively competitive or
cooperative.

The final and by far most common use of the term
is to distinguish algorithms themselves. Cooperative
algorithms are those in which interacting individuals
succeed or fail together, while competitive algorithms
are those in which individuals succeed at the expense of
other individuals.

Because of the ambiguity of the terms, some
researchers advocate abandoning them altogether,
instead focusing distinguishing terminology on the
form a potential solution takes. For example, using the
term »compositional coevolution to describe an algo-
rithm designed to return a solution composed of mul-
tiple individuals (e.g., a multiagent team) and using the
term P-test-based coevolution to describe an algorithm
designed to return an individual who performs well
against an adaptive set of tests (e.g., sorting network).
This latter pair of terms is a slightly different, though
probably more useful distinction than the cooperative
and competitive terms.

Still, it is instructive to survey the algorithms based
on how they have been historically classified.

Examples of competitive coevolutionary learning
include simultaneously learning sorting networks and
challenging data sets in a predator-prey type relation-
ship (Hillis, 1991). Here, individuals in one population
representing potential sorting networks are awarded a
fitness score based on how well they sort opponent
data sets from the other population. Individuals in the
second population represent potential data sets whose
fitness is based on how well they distinguish opponent
sorting networks.

Competitive coevolution has also been applied to
learning game-playing strategies (Fogel, 2001; Rosin &
Belew, 1996). Additionally, competition has played a
vital part in the attempts to coevolve complex agent
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behaviors (Sims, 1994). Finally, competitive approaches
have been applied to a variety of more traditional
machine learning problems, for example, learning clas-
sifiers in one population and challenging subsets of
exemplars in the other (Paredis, 1994).

Potter developed a relatively general framework for
cooperative coevolutionary learning, applying it first to
static function optimization and later to neural network
learning (Potter, 1997). Here, each population contains
individuals representing a portion of the network, and
evolution of these components occurs almost indepen-
dently, in tandem with one another, interacting only
to be assembled into a complete network in order to
obtain fitness. The decomposition of the network can
be static and a priori, or dynamic in the sense that com-
ponents may be added or removed during the learning
process.

Moriarty et al. take a different, somewhat more
adaptive approach to cooperative coevolution of neu-
ral networks (Moriarty & Miikkulainen, 1997). In this
case, one population represents potential network plans,
while a second is used to acquire node information.
Plans are evaluated based on how well they solve a
problem with their collaborating nodes, and the nodes
receive a share of this fitness. Thus, a node is rewarded
for participating more with successful plans, and thus
receives fitness only indirectly.

Choices surrounding how interacting individuals in
coevolutionary systems are evaluated for the purposes
of selection are perhaps the most important choices fac-
ing an engineer employing these methods. Designing
the evaluation method involves a variety of practical
choices, as well as a broader eye to the ultimate purpose
of the algorithm itself.

Practical concerns in evaluation include determin-
ing the number of individuals with whom to interact,
how those individuals will be chosen for the interaction,
and how the selection will operate on the results of mul-
tiple interactions (Wiegand, 2003). For example, one
might determine the fitness of an individual by pairing
him or her with all other individuals in the other pop-
ulations (or the same population for single population
approaches) and taking the average or maximum value

of such evaluations as the fitness assessment. Alterna-
tively, one may simply use the single best individual as
determined by a previous generation of the algorithm,
or a combination of those approaches. Random pairings
between individuals is also common. This idea can be
extended to use tournament evaluation where success-
tul individuals from pairwise interactions are promoted
and further paired, assigning fitness based on how far an
individual progresses in the tournament. Many of these
methods have been evaluated empirically on a variety of
types of problems (Angeline & Pollack, 1993; Bull, 1997;
Wiegand, 2003).

However, the designing of the evaluation method
also speaks to the broader issue of how to best
implement the desired P»solution concept, (a crite-
rion specifying which locations in the search space
are solutions and which are not) (Ficici, 2004). The
key to successful application of coevolutionary learn-
ing is to first elicit a clear and precise solution con-
cept and then design an algorithm (an evaluation
method in particular) that implements such a concept
explicitly.

A successful coevolutionary learner capable of
achieving reliable progress toward a particular solution
concept often makes use of an archive of individuals and
an update rule for that archive that insists the distance
to a particular solution concept decrease with every
change to the archive. For example, if one is interested
in finding game strategies that satisfy Nash equilibrium
constraints, one might consider comparing new indi-
viduals to an archive of potential individual strategies
found so far that together represent a potential Nash
mixed strategy (Ficici, 2004). Alternatively, if one is
interested in maximizing the sum of an individual’s out-
comes over all tests, one may likewise employ an archive
of discovered tests that candidate solutions are able to
solve (de Jong, 2004).

It is useful to note that many coevolutionary
learning problems are multiobjective in nature. That
is, »underlying objectives may exist in such prob-
lems, each creating a different ranking for individuals
depending on the set of tests being considered during
evaluation (Bucci & Pollack, 2002). The set of all possi-
ble underlying objectives (were it known) is sufficient to
determine the outcomes on all possible tests. A careful
understanding of this can yield approaches that create
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ideal and minimal evaluation sets for such problems (de
Jong & Pollack, 2004).

By acknowledging the link between multiobjective
optimization and coevolutionary learning, a variety of
evaluation and selection methods based on notions of
multiobjective optimization have been employed. For
example, there are selection methods that use Pareto
dominance between candidate solutions and their tests
as their basis of comparison (Ficici, 2004). Addition-
ally, such methods can be combined with archive-based
approaches to ensure monotonicity of progress toward a
Pareto dominance solution concept (de Jong & Pollack,
2004).

Perhaps the core representational question in coevolu-
tion is the role that an individual plays. In test-based
coevolution, an individual typically represents a poten-
tial solution to the problem or a test for a potential
solution, whereas in compositional coevolution indi-
viduals typically represent a candidate component for
a composite or ensemble solution.

Even in test-based approaches, the true solution to
the problem may be expressed as a population of indi-
viduals, rather than a single individual. The population
may represent a mixed strategy while individuals rep-
resent potential pure strategies for a game. Engineers
using such approaches should be clear of the form of the
final solution produced by the algorithm, and that this
form is consistent with the prescribed solution concept.

In compositional approaches, the key issues tend
to surround about how the problem is decomposed.
In some algorithms, this decomposition is performed
a priori, having different populations represent explicit
components of the problem (Potter, 1997). In other
approaches, the decomposition is intended to be some-
what more dynamic (Moriarty & Miikkulainen, 1997;
Potter, 1997). Still more recent approaches seek to har-
ness the potential of compositional coevolutionary sys-
tems to search open-ended representational spaces by
gradually complexifying the representational space dur-
ing the search (Stanley, 2004).

In addition, a variety of coevolutionary systems
have successfully dealt with some inherent patholo-
gies by representing populations in spatial topologies,

and restricting selection and interaction using geo-
metric constraints defined by those topologies (Pagie,
1999). Typically, these systems involve overlaying multi-
ple grids of individuals, applying selection within some
neighborhood in a given grid, and evaluating interac-
tions between individuals in different grids using a simi-
lar type of cross-population neighborhood. The benefits
of these systems are in part due to their ability to natu-
rally regulate loss of diversity and spread of interaction
information by explicit control over the size and shape
of these neighborhoods.

Perhaps the most commonly cited pathology is the so-
called loss of gradient problem, in which one population
comes to severely dominate the others, thus creating a
situation in which individuals cannot be distinguished
from one another. The populations become disengaged
and evolutionary progress may stall or drift (Watson &
Pollack, 2001). Disengagement most commonly occurs
when distinguishing individuals are lost in the evolu-
tionary process ( forgetting), and the solution to this
problem typically involves somehow retaining poten-
tially informative, though possibly inferior quality indi-
viduals (e.g., archives).

Intransitivities in the reward system can cause some
coevolutionary systems to exhibit cycling dynamics
(Watson & Pollack, 2001), where reciprocal changes
force the system to orbit some part of a potential search
space. The remedy to this problem often involves creat-
ing coevolutionary systems that change in response to
traits in several other populations. Mechanisms intro-
duced to produce such effects include competitive fitness
sharing (Rosin & Belew, 1996).

Another challenging problem occurs when indi-
viduals in a coevolutionary systems overspecialize on
one underlying objective at the expense of other nec-
essary objectives (Watson & Pollack, 2001). In fact,
overspecialization can be seen as a form of disengage-
ment on some subset of underlying objectives, and
likewise the repair to this problem often involves retain-
ing individuals capable of making distinctions in as
many underlying objectives as possible (Bucci & Pol-
lack, 2003).
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Finally, certain kinds of compositional coevolution-
ary learning algorithms can be prone to relative over-
generalization, a pathology in which components that
perform reasonably well in a variety of composite solu-
tions are favored over those that are part of an optimal
solution (Wiegand, 2003). In this case, it is typically
possible to bias the evaluation process toward optimal
values by evaluating an individual in a variety of com-
posite assemblies and assigning the best objective value
found as the fitness (Panait, 2006).

In addition to pathological behaviors in coevolu-
tion, the subjective nature of these learning systems
creates difficulty in measuring progress. Since fitness is
subjective, it is impossible to determine whether these
relative measures indicate progress or stagnation when
the measurement values do not change much. With-
out engaging some kind of external or objective mea-
sure, it is difficult to understand what the system is
really doing. Obviously, if an objective measure exists
then it can be employed directly to measure progress
(Watson & Pollack, 2001).

A variety of measurement methodologies have been
employed when objective measurement is not possible.
One method is to compare current individuals against
all ancestral opponents (Cliff & Miller, 1995). Another
predator/prey based method holds master tournaments
between all the best predators and all the best prey
found during the search (Nolfi & Floreano, 1998).
A similar approach suggests maintaining the best indi-
viduals from each generation in each population in a
hall of fame for comparison purposes (Rosin & Belew,
1996). Still other approaches seek to record the points
during the coevolutionary search in which a new dom-
inant individual was found (Stanley, 2004). A more
recent approach advises looking at the population dif-
ferential, examining all the information from ances-
tral generations rather than simply selecting a biased
subset (Bader-Natal & Pollack, 2005). Conversely, an
alternative idea is to consider how well the dynamics
of the best individuals in different populations reflect
the fundamental best response curves defined by the
problem (Popovici, 2006).

With a clear solution concept, an appropriate evalu-
ation mechanism implementing that concept, and prac-
tical progress measures in place, coevolution can be an
effective and versatile machine learning tool.
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! Collaborative Filtering

Collaborative Filtering (CF) refers to a class of tech-
niques used in that recommend items to users that
other users with similar tastes have liked in the past. CF
methods are commonly sub-divided into neighborhood-
based and model-based approaches. In neighborhood-
based approaches, a subset of users are chosen based on
their similarity to the active user, and a weighted combi-
nation of their ratings is used to produce predictions for
this user. In contrast, model-based approaches assume
an underlying structure to users’ rating behavior, and
induce predictive models based on the past ratings of
all users.
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Synonyms
Tterative classification; Link-based classification

Definition

Many real-world »classification problems can be best
described as a set of objects interconnected via links
to form a network structure. The links in the network
denote relationships among the instances such that the
class labels of the instances are often correlated. Thus,
knowledge of the correct label for one instance improves
our knowledge about the correct assignments to the
other instances it connects to. The goal of collective
classification is to jointly determine the correct label
assignments of all the objects in the network.

Motivation and Background

Traditionally, a major focus of machine learning is to
solve classification problems: given a corpus of docu-
ments, classify each according to its topic label; given
a collection of e-mails, determine which are spam;
given a sentence, determine the part-of-speech tag for
each word; given a hand-written document, determine
the characters, etc. However, much of the work in
machine learning makes an independent and identically
distributed (IID) assumption, and focuses on predict-
ing the class label of each instance in isolation. In many
cases, however, the class labels whose values need to be
determined can benefit if we know the correct assign-
ments to related class labels. For example, it is easier to
predict the topic of a webpage if we know the topics of
the webpages that link to it, the chance of a particular
word being a verb increases if we know that the previ-
ous word in the sentence is a noun, knowing the rest
of the characters in a word can make it easier to iden-
tify an unknown character, etc. In the last decade, many
researchers have proposed techniques that attempt to
classify samples in a joint or collective manner instead
of treating each sample in isolation, and reported signif-
icant gains in classification accuracy.
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Theory/Solution

Collective classification is a combinatorial optimiza-
tion problem, in which we are given a set of nodes,
V = {vj,...,vs}, and a neighborhood function N/,
where N; ¢ V\{v;}, which describes the underlying
network structure. Each node in V is a random vari-
able that can take a value from an appropriate domain,
L = {hL,...,13}. V is further divided into two sets of
nodes: X, the nodes for which we know the correct
values (observed variables) and, )/, the nodes whose
values need to be determined. Our task is to label the
nodes y; € ) with one of a small number of predefined
labels in L.

Even though it is only in the last decade that collec-
tive classification has entered the collective conscience
of machine learning researchers, the general idea can be
traced further back (Besag, 1986). As a result, a num-
ber of approaches have been proposed. The various
approaches to collective classification differ in the kinds
of information they aim to exploit to arrive at the correct
classification, and their mathematical underpinnings.
We discuss each in turn.

Relational Classification

Traditional classification concentrates on using the
observed attributes of the instance to be classified.
Relational classification (Slattery & Craven, 1998)
attempts to go a step further by classifying the instance
using not only the instance’s own attributes but also
the instance’s neighbors’ attributes. For example, in a
hypertext classification domain where we want to clas-
sify webpages, not only would we use the webpage’s own
words but we would also look at the webpages link-
ing to this webpage using hyperlinks and their words to
arrive at the correct class label. Results obtained using
relational classification have been mixed. For exam-
ple, even though there have been reports of classifica-
tion accuracy gains using such techniques, in certain
cases, these techniques can harm classification accuracy
(Chakrabarti, Dom, & Indyk, 1998).

Iterative Collective Classification with
Neighborhood Labels

A second approach to collective classification is to use
the class labels assigned to the neighbor instead of using
the neighbor’s observed attributes. For example, going

back to our hypertext classification example, instead of
using the linking webpage’s words we would, in this
case, use its assigned labels to classify the current web-
page. Chakrabarti et al. (1998) illustrated the use of this
approach and reported impressive classification accu-
racy gains. Neville and Jensen (2000) further developed
the approach, and referred to the approach as iterative
classification, and studied the conditions under which
it improved classification performance (Jensen, Neville,
& Gallagher, 2004). Techniques for feature construc-
tion from the neighboring labels were developed and
studied (Lu & Getoor, 2003), along with methods that
make use of only the label information (Macskassy &
Provost, 2007), as well as a variety of strategies for when
to commit the class labels (McDowell, Gupta, & Aha,
2007).

Algorithm 1 depicts pseudo-code for a simple ver-
sion of the Iterative Classification Algorithm (ICA). The
basic premise behind ICA is extremely simple. Con-
sider a node Y; € ) whose value we need to deter-
mine and suppose we know the values of all the other
nodes in its neighborhood N; (note that \V; can contain
both observed and unobserved variables). Then, ICA
assumes that we are given a local classifier f that takes
the values of NV; as arguments and returns a label value
for Y; from the class label set £. For local classifiers f
that do not return a class label but a goodness/likelihood
value given a set of attribute values and a label, we

Algorithm 1 Iterative classification algorithm
Iterative Classification Algorithm (ICA)

for each node Y; € } do {bootstrapping}
{compute label using only observed nodes in N;}
compute d; using only X N N;
yi < f(d;)
end for
repeat {iterative classification}
generate ordering O over nodes in )
for each node Y; € O do
{compute new estimate of y;}
compute d; using current assignments to N;
yi < f(ai)

end for

until all class labels have stabilized or a threshold
number of iterations have elapsed
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simply choose the label that corresponds to the max-
imum goodness/likelihood value; in other words, we
replace f with argmax,_. f. This makes the local classi-
fier f extremely flexible and we can use anything ranging
from a decision tree to a Psupport vector machine
(SVM). Unfortunately, it is rare in practice that we know
all values in V;, which is why we need to repeat the pro-
cess iteratively, in each iteration, labeling each Y; using
the current best estimates of \V; and the local classifier
f> and continuing to do so until the assignments to the
labels stabilize.

Most local classifiers are defined as functions whose
argument consists of a fixed-length vector of attribute
values. A common approach to circumvent such a
situation is to use an aggregation operator such as
count, mode, or prop, which measures the proportion
of neighbors with a given label. In Algorithm 1, we
use d; to denote the vector encoding the values in N;
obtained after aggregation. Note that in the first ICA
iteration, all labels y; are undefined and to initialize
them we simply apply the local classifier to the observed
attributes in the neighborhood of Y;, this is referred to
as “bootstrapping” in Algorithm 1.

Researchers in collective classification (Macskassy &
Provost, 2007; McDowell et al., 2007; Neville & Jensen,
2000) have extended the simple algorithm described
above, and developed a version of Gibbs sampling that
is easy to implement and faster than traditional Gibbs
sampling approaches. The basic idea behind this algo-
rithm is to assume, just like in the case of ICA, that we
have access to a local classifier f that can sample for
the best label estimate for Y; given all the values for
the nodes in ;. We keep doing this repeatedly for a
fixed number of iterations (a period known as “burn-
in”). After that, not only do we sample for labels for each
Y; € YV but we also maintain count statistics as to how
many times we sampled label [ for node Y;. After col-
lecting a predefined number of such samples we output
the best label assignment for node Y; by choosing the
label that was assigned the maximum number of times
to Y; while collecting samples.

One of the benefits of both variants of ICA is
fairly simple to make use of any local classifier. Some
of the classifiers used included the following: naive
Bayes (Chakrabarti et al., 1998; Neville & Jensen, 2000),
»logistic regression (Lu & Getoor, 2003), »decision
trees, (Jensen et al., 2004) and weighted-vote relational

neighbor (Macskassy & Provost, 2007). There is some
evidence to indicate that discriminately trained local
classifiers such as logistic regression tend to produce
higher accuracies than others; this is consistent with
results in other areas.

Other aspects of ICA that have been the subject of
investigation include the ordering strategy to determine
in which order to visit the nodes to relabel in each ICA
iteration. There is some evidence to suggest that ICA is
fairly robust to a number of simple ordering strategies
such as random ordering, visiting nodes in ascending
order of diversity of its neighborhood class labels, and
labeling nodes in descending order of label confidences
(Getoor, 2005). However, there is also some evidence
that certain modifications to the basic ICA procedure
tend to produce improved classification accuracies. For
example, both (Neville & Jensen, 2000) and (McDowell
et al., 2007) propose a strategy where only a subset
of the unobserved variables are utilized as inputs for
feature construction. More specifically, in each itera-
tion, they choose the top-k most confident predicted
labels and use only those unobserved variables in the
following iteration’s predictions, thus ignoring the less
confident predicted labels. In each subsequent itera-
tion they increase the value of k so that in the last
iteration all nodes are used for prediction. McDowell
et al. report that such a “cautious” approach leads to
improved accuracies.

Collective Classification with Graphical
Models

In addition to the approaches described above, which
essentially focus on local representations and propaga-
tion methods, another approach to collective classifica-
tion is by first representing the problem with a high-
level global »graphical model and then using learning
and inference techniques for the graphical modeling
approach to arrive at the correct classifications. These
proposals include the use of both directed »graphical
models (Getoor, Segal, Taskar, & Koller, 2001) and undi-
rected graphical models (Lafferty, McCallum, & Pereira,
2001; Taskar, Abbeel, & Koller, 2002). See W statistical
relational learning and Getoor and Taskar (2007) for a
survey of various graphical models that are suitable for
collective classification. In general, these techniques can
use both neighborhood labels and observed attributes
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of neighbors. On the other hand, due to their general-
ity, these techniques also tend to be less efficient than
the iterative collective classification techniques.

One common way of defining such a global model
uses a pairwise Markov random field (pairwise MRF)
(Taskar et al., 2002). Let G = (V,E) denote a graph
of random variables as before where V' consists of two
types of random variables, the unobserved variables, )/,
which need to be assigned domain values from label
set £, and observed variables X whose values we know
(see »Graphical Models). Let ¥ denote a set of clique
potentials. ¥ contains three distinct types of functions:

e ForeachY; € ), y; € ¥isamapping y; : L - Ry,
where R is the set of nonnegative real numbers.

e Foreach (Y;,X;) € E, y;j € ¥ is a mapping y;; : L —
8‘20.

o Foreach (Y;,Y;) € E, y;; € ¥ is a mapping y;; : £ x
L - 9‘20.

Let x denote the values assigned to all the observed
variables in V and let x; denote the value assigned
to X;. Similarly, let y denote any assignment to all
the unobserved variables in V and let y; denote a
value assigned to Y;. For brevity of notation we will
denote by ¢; the clique potential obtained by computing
¢i(vi) = vi(i) M(v.x)ee ¥ii(yi). We are now in a
position to define a pairwise MRE.

Definition 1 A pairwise Markov random field (MRF)
is given by a pair (G, V) where G is a graph and ¥ is a
set of clique potentials with ¢; and y;; as defined above.
Given an assignment y to all the unobserved variables ),
the pairwise MRF is associated with the probability distri-
bution P(y[x) = 555 My,cy $i(vi) T (v, v))ee ¥ii (0o 37)
where x denotes the observed values of X and Z(x) =

2y [yey ¢ oh) H(Y,-,Y,-)eE Yij (}’f)’]l)

Given a pairwise MRE, it is conceptually simple to
extract the best assignments to each unobserved vari-
able in the network. For example, we may adopt the
criterion that the best label value for Y; is simply the
one corresponding to the highest marginal probabil-
ity obtained by summing over all other variables from
the probability distribution associated with the pair-
wise MRE. Computationally, however, this is difficult
to achieve since computing one marginal probability

requires summing over an exponentially large number
of terms, which is why we need approximate inference
algorithms. Hence, approximate inference algorithms
are typically employed, the two most common being
loopy belief propagation (LBP) and mean-field relaxation
labeling.

Applications

Due to its general applicability, collective classifica-
tion has been applied to a number of real-world prob-
lems. Foremost in this list is document classification.
Chakrabarti et al. (1998) was one of the first to apply
collective classification to corpora of patents linked
via hyperlinks and reported that considering attributes
of neighboring documents actually hurts classification
performance. Slattery and Craven (1998) also consid-
ered the problem of document classification by con-
structing features from neighboring documents using
an Pinductive logic programming rule learner. Yang,
Slattery, & Ghani (2002) conducted an in-depth inves-
tigation over multiple datasets commonly used for
document classification experiments and identified dif-
ferent patterns. Other applications of collective classi-
fication include object labeling in images (Hummel &
Zucker, 1983), analysis of spatial statistics (Besag, 1986),
iterative decoding (Berrou, Glavieux, & Thitimajshima,
1993), part-of-speech tagging (Lafferty et al., 2001),
classification of hypertext documents using hyperlinks
(Taskar et al., 2002), link prediction (Getoor, Friedman,
Koller, & Taskar, 2002; Taskar, Wong, Abbeel, & Koller,
2003), optical character recognition (Taskar, Guestrin,
& Koller, 2003), entity resolution in sensor networks
(Chen, Wainwright, Cetin, & Willsky, 2003), predict-
ing disulphide bonds in protein molecules (Taskar,
Chatalbashev, Koller, & Guestrin, 2005), segmentation
of 3D scan data (Anguelov et al., 2005), and classifica-
tion of e-mail speech acts (Carvalho & Cohen, 2005).
Recently, there have also been attempts to extend col-
lective classification techniques to the semi-supervised
learning scenario (Lu & Getoor, 2003b; Macskassy,
2007; Xu, Wilkinson, Southey, & Schuurmans, 2006).

Cross References

»Decision Trees

»Inductive Logic Programming
» Learning From Structured Data
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Comparable Corpus

! Comparable Corpus

A comparable corpus (pl. corpora) is a document col-
lection composed of two or more disjoint subsets, each
written in a different language, such that documents in
each subset are on a same topic as the documents in the
others. The prototypical example of a comparable cor-
pora is a collection of newspaper article written in dif-
ferent languages and reporting about the same events:
while they will not be, strictly speaking, the translation
of one another, they will share most of the semantic con-
tent. Some methods for »cross-language text mining
rely, totally or partially, on the statistical properties of
comparable corpora.
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! Competitive Learning

Competitive learning is an Partificial neural network
learning process where different neurons or processing
elements compete on who is allowed to learn to repre-
sent the current input. In its purest form competitive
learning is in the so-called winner-take-all networks
where only the neuron that best represents the input is
allowed to learn. Since all neurons learn to better repre-
sent the kinds of inputs they already are good at repre-
senting, they become specialized to represent different
kinds of inputs. For vector-valued inputs and represen-
tations, the input becomes quantized to the unit having
the closest representation (model), and the representa-
tions are adapted to minimize the representation error
using stochastic gradient descent.

Competitive learning networks have been studied
as models of how receptive fields and feature detectors,
such as orientation-selective visual neurons, develop
in neural networks. The same process is at work in

online »K-means clustering, and variants of it in »Self-
Organizing Maps (SOM) and the EM algorithm of mix-
ture models.
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! Complexity in Adaptive Systems

Jun HE
Aberystwyth University, Wales, UK

Synonyms
Adaptive system; Complex adaptive system

Definition

An »adaptive system, or complex adaptive system, is a
special case of complex systems, which is able to adapt
its behavior according to changes in its environment or
in parts of the system itself. In this way, the system can
improve its performance through a continuing interac-
tion with its environment. The concept of »complexity
in an adaptive system is used to analyze the interactive
relationship between the system and its environment,
which can be classified into two types: »-internal com-
plexity for model complexity, and »external complexity
for data complexity. The internal complexity is defined
by the amount of input, information, or energy that
the system receives from its environment. The external
complexity refers to the complexity of how the system
represents these inputs through its internal process.

Motivation and Background

Adaptive systems range from natural systems to arti-
ficial systems (Holland, 1992, 1995; Waldrop, 1992).
Examples of natural systems include ant colonies,
ecosystem, the brain, neural network and immune
system, cell and developing embryo; examples of arti-
ficial systems include stock market, social system, man-
ufacturing businesses, and human social group-based
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endeavor in a cultural and social system such as polit-
ical parties or communities. All these systems have a
common feature: they can adapt to their environment.

An adaptive system is adaptive in that way it has
the capacity to change its internal structure for adapt-
ing the environment. It is complex in the sense that
it is interactive with its environment. The interaction
between an adaptive system and its environment is
dynamic and nonlinear. Complexity emerges from the
interaction between the system and environment, the
elements of the system, where the emergent macro-
scopic patterns are more complex than the sum of the
these low-level (microscopic) elements encompassed in
the system. Understanding the evolution and develop-
ment of adaptive systems still faces many mathematical
challenges (Levin, 2003).

The concepts of external and internal complexities
are used to analyze the relation between an adaptive sys-
tem and its environment. The description given below
is based on Jiirgen Jost’s (2004) work, which introduced
these two concepts and applied the theoretical frame-
work to the construction of learning models, e.g., to
design neural network architectures. In the following,
the concepts are mainly applied to analyze the inter-
action between the system and its environment. The
interaction among individual elements of the system is
less discussed however, the concepts can be explored in
that situation too.

Theory

The environment of an adaptive system is more complex
than the system itself and its changes cannot be com-
pletely predictable for the system. However, the changes
of the environment are not purely random and noisy;
there exist regularities in the environment. An adaptive
system can recognize these regularities, and depend-
ing on these regularities the system will express them
through its internal process in order to adapt to the
environment.

The input that an adaptive system receives or
extracts from its environment usually includes two
parts: one is the part with regularities; and another is
that appears random to the system. The part of regular-
ities is useful and meaningful. An adaptive system will
represent these regularities by internal processes. But

the part of random input is useless, and even at the worst
it will be detrimental for an adaptive system. However, it
will depend on the adaptive system’s internal model of
the external environment for how to determine which
part of input is meaningful and regular, and which part
is random and devoid of meaning and structure.

An adaptive system will translate the external reg-
ularities into its internal ones, and only the regularities
are useful to the system. The system tries to extract as
many regularities as possible, and to represent these
regularities as efficiently as possible in order to make
optimal use of its capacity.

The notions of external complexity and internal
complexity are used to investigate these two comple-
mentary aspects conceptually and quantitatively. In
terms of these notions, an adaptive system aims to
increase its external complexity and reduce its internal
complexity.

The two processes operate on their own time scale
but are intricately linked and mutually dependent on
each other. For example, the internal complexity will
be only reduced if the external complexity is fixed.
Under fixed inputs received from the external environ-
ment, an adaptive system can represent these inputs
systems more efficiently and optimize its internal struc-
ture. If the external complexity is increased, e.g., if
additional new input is required to handle by the
system, then it is necessary to increase its internal
complexity.

The increase of internal complexity may occur
through the creation of redundancy in the existing
adaptive system, e.g., to duplicate some internal struc-
tures, and then enable the system to handle more exter-
nal input. Once the input is fixed, the adaptive system
then will represent the input as efficiently as possible
and reduce the internal input. The decrease of internal
complexity can be achieved through discarding some
input as meaningless and irrelevant, e.g., leaving some
regularities out for the purpose.

Since the inputs relevant to the systems are those
which can be reflected in the internal model, the exter-
nal complexity is not equivalent to the amount of raw
data received from the environment. In fact, it is only
relevant to the inputs which can be processed in the
internal model, or observations in some adaptive sys-
tems. Thus the external complexity ultimately is decided
by the internal model constructed by the system.
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External complexity means data complexity, which is
used to measure the amount of input received from the
environment for the system to handle and process. Such
a complexity can be measured by entropy in the term of
information theory.

Internal complexity is model complexity, which is
used to measure the complexity of a model for repre-
senting the input or information received by the system.

The aim of the adaptive system is to obtain an effi-
cient model as simple as possible, with the capacity to
handle as much input as possible. On one hand, the
adaptive system will try to maximize its external com-
plexity and then to adapt to its environment in a max-
imal way; on the other hand, to minimize its internal
complexity and then to construct a model to process the
input in a most efficient way.

These two aims sometimes seem conflicting, but
such a conflict can be avoided when these two processes
operate on different time scales. If given a model, the
system will organize the input data and try to increase its
ability to deal with the input from its environment, and
then increase its external complexity. If given the input,
conversely, it tries to simplify its model which represents
that input and thus to decrease the internal complexity.
The meaning of the input is relevant to the time scale
under investigation. On a short time scale, for example,
the input may consist of individual signals, but on a long
time scale, it will be a sequence of signals which satisfies
a probability distribution. A good internal model tries
to express regularities in the input sequence, rather than
several individual signals. And the decrease of internal
complexity will happen on this time scale.

A formal definition of the internal and exter-
nal complexities concepts is based on the concept of
entropy from statistical mechanics and information
theory. Given a model 6, the system can model data as
with X(0) = (Xi,...,Xx), which is assumed to have
an internal probability distribution P(X(6)) so that
entropy can be computed. The external complexity is
defined by

k
= 2_P(Xi(6)) log, P(Xi(6))- M

An adaptive system tries to maximize the above
external complexity.

The probability distribution P(X(8)) is for quanti-
fying the information value of the data X(6). The value

of information can be described in other approaches,
e.g., the length of the representation of the data in the
internal code of the system (Rissanen, 1989). In this case,
the optimal coding is a consequence of the minimiza-
tion of internal complexity, and then the length of the
representation of data X;(6) behaves like log, P(X(0))
(Rissanen, 1989).

On a short time scale, for a given model 8, the sys-
tem tries to increase the amount of meaningful input
information X(6). On a long time scale, when the input
is given, e.g., when the system has gathered a set of
inputs on a time scale with a stationary probability dis-
tribution of input patterns E, then the model should
be improved to handle the input as efficiently as pos-
sible and reduce the complexity of the model. This
complexity, or internal complexity, is defined by

k
- > P(E;|0)log, P(8;]0) —log, P(0), (2)
i=1

with respect to the model 6.

If Rissanen’s (1989) »minimum description length
principle is applied to the above formula, then the opti-
mal model will satisfy the variation problem

main(—log2 P(E]6)-log, P(0)). (3)

Here in the above minimization problem, there are
two objectives to minimize. The first term is to mea-
sure how efficiently the model represents or encodes the
data; and the second one is to measure how complicated
the model is. In computer science, this latter term corre-
sponds to the length of the program required to encode
the model.

The concepts of external and internal complexities
can be applied into a system divided into subsystems.
In this case, some internal part of the original whole
system will become external to a subsystem. Thus the
internal input of a subsystem consists of original exter-
nal input and also input from the rest of the system, i.e.,
other subsystems.

Application: Learning

The discussion of these two concepts, external and
internal complexities, can be put into the background
oflearning. In statistical learning theory (Vapnik, 1998),
the criterion for evaluating a learning process is the
expected prediction error of future data by the model
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based on training data set with partial and incom-
plete information. The task is to construct a probability
distribution drawn from an a-priori specific class for
representing the distribution underlying the input data
received. Usually, if a higher error is produced by a
model on the training data, then a higher error will be
expected on the future data. The error will depend on
two factors: one is the accuracy of the model on the
training data set, another is the simplicity of the model
itself. The description of the data set can be split into
two parts, the regular part, which is useful in construct-
ing the model; and the random part, which is a noise to
the model.

The learning process fits very well into the theory
framework of internal and external complexities. If the
model is too complicated, it will bring the risk of over-
fitting the training data. In this case, some spurious
or putative regularity is incorporated into the model,
which will not appear in the future data. The model
should be constrained within some model class with
bounded complexity. This complexity in this context of
statistical learning theory is measured by the Vapnik-
Chervonenkis dimension (see »VC Dimension) (Vap-
nik, 1998). Under the simplest form of statistical learn-
ing theory, the system aims at finding a representa-
tion with smallest error in a class with given complex-
ity constraints; and then the model should minimize
the expected error on future data and also over-fitting
error.

The two concepts of over-fitting and leaving out reg-
ularities can be distinguished in the following sense. The
former is caused by the noise in the data, i.e., the ran-
dom part of the data, and this leads to putative regulari-
ties, which will not appear in the future data. The latter,
leaving out regularities, means that the system can forgo
some part of regularities in the data, or it is possible
to make data compression. Thus, leaving out regulari-
ties can be used to simplify the model and reduce the
internal complexity. However, a problem is still wait-
ing for answer here, that is, what regularities in the data
set are useful for data compression and also meaningful
for future prediction; and what parts are random to the
model.

The internal complexity is the model complexity. If
the internal complexity is chosen too small, then the
model does not have enough capacity to represent all
the important features of the data set. If the internal
complexity is too large, on the other hand, then the

model does not represent the data efficiently. The inter-
nal complexity is preferably minimized under appropri-
ate constraints on the adequacy of the representation
of data. This is consistent with Rissanen’s principle of
Minimum Description Length (Rissanen, 1989) to rep-
resent a given data set in the most efficient way. Thus a
good model is both to simplify the model itself and to
represent the data efficiently.

The external complexity is the data complexity
which should be large to represent the input accu-
rately. This is related to Jaynes’ principle of maximizing
the ignorance (Jaynes, 1957), where a model for repre-
senting data should have the maximal possible entropy
under the constraint that all regularities can be repro-
duced. In this way, putative regularities could be elim-
inated in the model. However, this principle should be
applied with some conditions as argued by Gell-Mann
and Lloyd (1996); it cannot eliminate the essential reg-
ularities in the data, and an overlying complex model
should be avoided.

For some learning system, only a selection of data
is gathered and observed by the system. Thus a mid-
dle term, observation, is added between model and
data. The concept of observation refers to the extrac-
tion of value of some specific quantity from a given
data or data pool. What a system can observe depends
on its internal structure and its general model of the
environment. The system does not have direct access
to the raw data, but through constructing a model of
the environment solely on the basis of the values of its
observation.

For such kind of learning system, Jaynes’ princi-
ple (Jaynes, 1957) is still applicable for increasing the
external complexity. For the given observation made on
a data set, the maximum entropy representation should
be selected. However, this principle is still subject to
the modification of Gell-Mann and Lloyd (1996) to a
principle where the model should not lose the essential
regularities observed in the data.

By contrast, the observations should be selected to
reduce the internal complexity. Given a model, if the
observation can be made on a given data set, then these
observations should be selected so as to minimize the
resulting entropy of the model, with the purpose of
minimizing the uncertainty left about the data. Thus it
leads to reduce the complexity.

In most of the cases, the environment is dynamic,
i.e,, the data set itself can be varied, then the external
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complexity should be maximized again. Thus the obser-
vation should be chosen for maximal information gain
extracted from the data to increase the external com-
plexity. Jaynes” principle (Jaynes, 1957) can be applied
as the same as in previous discussion. But on a longer
time scale, when the inputs reach some stationary dis-
tribution, the model should be simplified to reduce its
internal complexity.
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Definition

In »inductive inference, the complexity of learning
can be measured in various ways: by the number of
hypotheses issued in the worst case until the correct
hypothesis is found; by the number of data items to be
consumed or to be memorized in order to learn in the
worst case; by the Turing degree of oracles needed to
learn the class under a certain criterion; by the intrinsic
complexity which is - like the Turing degrees in recur-
sion theory — a way to measure the complexity of classes
by using reducibilities between them.

Detail

We refer the reader to the article »Inductive Infer-
ence for basic definitions in inductive inference and the
notations used below. Let N denote the set of nat-
ural numbers. Let ¢o, ¢1,..
able programming system (Rogers, 1967). Let W; =
domain(g;).

. denote a fixed accept-

Mind Changes and Anomalies
The first measure of complexity of learning can be con-
sidered as the number of mind changes needed before
the learner converges to its final hypothesis in the TxtEx
model of learning. The number of mind changes by a
learner M on a text T can be counted as card ({m : ?
M(T[m]) + M(T[m+1])}). Alearner M TxtEx,, learns
a class £ of languages iff M TxtEx learns £ and for all
L € L, for all texts T for L, M makes at most » mind
changes on T. TxtEx,, is defined as the collection of lan-
guage classes which can be TxtEx,, identified (see Case
& Smith (1983) for details).

Consider the class of languages £, ={L:card(L)
<n}. It can be shown that £,,; € TxtEx,,; — TxtEx,,.

Now consider anomalous learning. A class C is
TxtExj-learnable iff there is a learner, which makes at
most b mind changes (where b = * denotes that the
number of mind changes is finite on each text for a
language in the class, but not necessarily bounded by
a constant) and whose final hypothesis is allowed to
make up to a errors (where a = »* denotes finitely
many errors). For these learning criteria, we get a two-
dimensional hierarchy on what can be learnt. Let C,, =
{f : @p0) =" f}. For a total function f, let Ly =
{{x,f(x)) : x € N}, where (-,-) denotes a computable
pairing function: a bijective mapping from N x N to
N. Let Lc = {Ls : f € C}. Then, one can show that
Le,,, € TxtEx)" — TxtEx". Similarly, if we consider the
class S, = {f : card({m : f(m) # f(m +1)}) < n}, then
one can show that Ls, ., € TxtEx",, — TxtEx (we refer
the reader to Case and Smith (1983) for a proof of the
above).

Data and Time Complexity

Wiehagen (1986) considered the complexity of number
of data needed for learning. Regarding time complex-
ity, one should note the result by Pitt (1989) that any
TxtEx-learnable class of languages can be TxtEx-learnt
by a learner that has time complexity (with respect to
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the size of the input) bounded by a linear function. This
result is achieved by a delaying trick, where the learner
just repeats its old hypothesis unless it has enough time
to compute its later hypothesis. This seriously effects
what one can say about time complexity of learning.
One proposal made by Daley and Smith (1986) is to
consider the total time used by the learner until its
sequence of hypotheses converges, resulting in a possi-
bly more reasonable measure of time in the complexity
of learning.

Iterative and Memory-Bounded Learning
Another measure of complexity of learning can be con-
sidered when one restricts how much past data alearner
can remember. Wiehagen introduced the concept of
iterative learning in which the learner cannot remem-
ber any past data. Its new hypothesis is based only on
its previous conjecture and the new datum it receives.
In other words, there exists a recursive function F such
that M(T[n +1]) = F(M(T[n]), T(n)), for all texts T
and for all n. Here, M(T[0]) is some fixed value, say the
symbol ‘> which is used by the learner to denote the
absence of a reasonable conjecture. It can be shown that
being iterative restricts the learning capacity of learn-
ers. For example, let L, = {2x : x € N} and let £ =
{LJu{{Su{2n+1}}:neN,Sc L, and max(S) < n};
then £ can be shown to be TxtEx-learnable but not
iteratively learnable.

Memory-bounded learning (see Lange & Zeug-
mann, 1996) is an extension of memory-limited learn-
ing, where the learner is allowed to memorize upto
some fixed number of elements seen in the past. Thus, M
is an m-memory-bounded learner if there exists a func-
tion mem and two computable functions mF and F such
that, for all texts T and all n:

~ mem(T70]) = ¢

- M(T[n+1]) = F(M(T[n]), mem(T[n]), T(n+1));

- mem(T[n + 1]) = mF(M(T[n]), mem(T[n]),
T(n+1));

- mem(T[n+1]) —mem(T[n]) c{T(n+1)};

- card(mem(T[n])) < m.

It can be shown that the criteria of inference based on
TxtEx-learning by m-memory-bounded learners form
a proper hierarchy.

- If QM(T[n]),T(n)) =

Besides memorizing some past elements seen,
another way to address this issue is by giving feed-
back to the learner (see Case, Jain, Lange, & Zeugmann,
1999) on whether some element has appeared in the past
data. A feedback learner is an iterative learner, which
is additionally allowed to query whether certain ele-
ments appeared in earlier data. An n-feedback learner
is allowed to make # such queries at each stage (when
it receives the new input datum). Thus, M is an m-
feedback learner if there exist computable functions Q
and a F such that, for all texts T and all n:

- Q(M(T[n]), T(n)) is defined and is a set of m

elements;
(x1,%25...,%m) then

M(T[n +1]) = F(M(T[n]), T(n), 31,2, -->¥m)s
where y; = 1iff x; € ctnt(T[n]).

Again, it can be shown that allowing more feed-
back gives greater learning power, and thus one can
get a hierarchy based on the amount of feedback
allowed.

Complexity of Final Hypothesis

Another possibility on complexity of learning is to
consider the complexity or size of the final grammar
output by the learner. Freivalds (1975) considered the
case when the final program/grammar output by the
learner is minimal: that is, there is no smaller index
that accepts/generates the same language. He showed
that this severely restricts the learning capacity of learn-
ers. Not only that, the learning capacity depends on
the acceptable programming system chosen, unlike
the case for most other criteria of learning such as
TxtEx or TxtBc, which are independent of the accept-
able programming system chosen. In particular, there
are acceptable programming systems in which only
classes containing finitely many infinite languages can
be learnt using minimal final grammars (see Freivalds,
1975; Jain and Sharma, 1993). Chen (1982) considered a
modification of such a paradigm where one considers
convergence to nearly minimal grammars rather than
minimal. That is, instead of requiring that the final
grammars are minimal, one requires that they are
within a recursive function 4 of minimal. Here & may
depend on the class being learnt. Chen showed that this
allows one to have the criteria of minimal learnability
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to be independent of the acceptable programming sys-
tem chosen. However, one can show that some simple
classes are not minimally learnable. An example of such
a class is the class £ which is derived from C = {f :
vV x [f(x) = 0]}, the class of all functions which are
almost everywhere 0.

Intrinsic Complexity
Another way to consider complexity of learning is to
consider relative complexity in a way similar to how one
considers Turing reductions in computability theory.
Such a notion is called intrinsic complexity of the class.
This was first considered by Freivalds et al. (1995) for
function learning. Jain and Sharma (1996) considered
it for language learning, and the following discussion is
from there.

An enumeration operator (see Rogers, 1967), ®, is an
algorithmic mapping from SEQ into SEQ such that the
following two conditions are satisfied:

- forallo, 7€ SEQ,if 6 € 7, then ®(0) € O(7);
- forall texts T, lim,_,o |@(T[n])| = co.

By extension, we think of ® as also mapping texts to
texts such that ®(T) = U, ®(T[n]). Furthermore,
we define O(L) = {ctnt(®(T)) : TisatextforL}.
Intuitively, ®(L) denotes the set of languages to whose
texts © maps texts of L. The reader should note the
overloading of this notation because the type of the
argument to ® could be a sequence, a text or a
language.

One says that a sequence of grammars go, g, ... is
an acceptable TxtEx-sequence for L if the sequence of
grammars converges to a grammar for L.

L1 <yeak L iff there are two operators ® and ¥
such that for all L € £, for all texts T for L, ®(T)
is a text for some L' € £, such that if g, g, ..
acceptable TxtEx-sequence for L’ then ¥(go,g,...) is
an acceptable TxtEx-sequence for L.

Note that different texts for the same language L
may be mapped by © to texts for different languages
in £, above. If we require that different texts for L are
mapped to texts for the same language L’ in £, then we
get a stronger notion of reduction called strong reduc-
tion: £y <sprong L2 iff L1 <year £2 and for all L € £y,
©®(L) contains only one language, where @ is as in the
definition for <.« reduction.

. is an

It can be shown that FIN is a complete class for
TxtEx-identification with respect to <., reduction
(see Jain & Sharma, 1996). Interestingly it was shown
that the class of pattern languages (Angluin, 1980), the
class SD = {L : Wyyin(r) = L} and the class COINIT =
{{x:x>n} : n e N} areall equivalent under <,o,. Let
code be a bijective mapping from non-negative ratio-
nal numbers to natural numbers. Then, one can show
that the class RINIT = {{code(x) : 0 < x < r,xis
a rational number} : 0 < r < 1, r is a rational num-
ber } is <rong complete for TxtEx (see Jain, Kinber, &
Wiehagen, 2001).

Interestingly every finite directed acyclic graph can
be embedded into the <,,,, degree structure (Jain &
Sharma, 1997). On the other hand the degree structure
is non-dense in the sense that there exist classes £; and
L, such that £; <srong £, but for any class £ such that
L1 <strong £ <strong L2, either Ly Zgrong L 01 L Zgirong
L. Similar result holds for <,..x reducibility (see Jain
& Sharma, 1997).

Interesting connections between learning of ele-
mentary formal systems (Shinohara, 1994), intrinsic
complexity and ordinal mind changes (Freivalds &
Smith, 1993) were shown in (Jain & Sharma, 1997).

Learning Using Oracles

Another method to measure complexity of learning
is to see how powerful an oracle (given to the learn-
ing machine) has to be to make a class learnable. It
can be shown that an oracle A permits to explanato-
rily learn the class of all recursive functions iff A is
high (Adleman & Blum, 1991). Furthermore, an ora-
cle is trivial, that is, does not give additional learning
power for explanatory learning of function classes iff
the oracle has 1-generic Turing degree and is Turing
reducible to the halting problem (Slaman & Solovay,
1991). The picture is a bit different in the general case of
learning languages. For every oracle A there is an ora-
cle B and a class, which is TxtEx-learnable using the
oracle B but not using the oracle A (Jain & Sharma,
1993). Note that there are also classes of languages like
Gold’s class of all finite languages plus the set of natural
numbers which are not TxtEx-learnable using any ora-
cle. Furthermore, for oracles above the halting problem,
TxtEx-learning and TxtBc-learning using these oracles
coincide.
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[ .. .
Compositional Coevolution

Synonyms
Cooperative coevolution

Definition

A coevolutionary system constructed to learn compos-
ite solutions in which individuals represent different
candidate components and must be evaluated together
with other individuals in order to form a complete
solution. Though not precisely the same as cooperative
coevolution, there is a significant overlap.

Cross References
»Coevolutionary Learning

! Computational Complexity of
Learning

SANJAY JAIN, FRANK STEPHAN
National University of Singapore, Singapore, Republic
of Singapore

Definition

Measures of the complexity of learning have been devel-
oped for a number of purposes including »Inductive
Inference, »PAC Learning, and »Query-Based Learn-
ing. The complexity is usually measured by the largest
possible usage of ressources that can occur during the
learning of a member of a class. Depending on the con-
text, one measures the complexity of learning either by a
single number/ordinal for the whole class or by a func-
tion in a parameter n describing the complexity of the
target to be learnt. The actual measure can be the num-
ber of mind changes, the number of queries submitted
to a teacher, the number of wrong conjectures issued,
the number of errors made or the number of exam-
ples processed until learning succeeds. In addition to
this, one can equip the learner with an oracle and deter-
mine the complexity of the oracle needed to perform
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the learning process. Alternatively, in complexity the-
ory, instead of asking for an NP-complete oracle to learn
a certain class, the result can also be turned into the
form “this class is unlearnable unless RP = NP” or some-
thing similar. (Here RP is the class of decision problems
solvable by a randomized polynomial time algorithm
and NP is the class of decision problems solvable by a
nondeterministic polynomial time algorithm and both
algorithms never give “yes” answer for an instance of the
problem with “no” answer.

Detail

In »PAC Learning, one usually asks how many exam-
ples are needed to learn the concept, where the num-
ber of examples needed mainly depends on the Vapnik
Chervonenkis dimension of the class to be learnt, the
error permitted, and the confidence required. Further-
more, for certain classes of finite Vapnik Chervonenkis
dimension, learnability can still fail when the learner is
required to be computable in polynomial time; hence
there is, besides the dimension, also a restriction stem-
ming from the computational complexity of problems
such as the complexity of finding concepts consistent
with all data observed so far.

For »Query-Based Learning, one common crite-
rion to be looked at is the number of queries made
during the learning process. If a class contains 2" differ-
ent {0,1}-valued functions f and one is required to learn
the class using membership-queries, that is, by asking
queries of the form whether f(x) = 0 or f(x) = 1, then
there is a function f on which the learner needs at least
n queries until it knows which of the given functions f
is; for some classes consisting of 2" functions the num-
ber of queries needed can be much worse - as much
as 2" — 1. A well-known result of Angluin is that one
can learn the class of all regular languages with polyno-
mially many equivalence and membership queries mea-
sured with respect to the number of states of the smallest
deterministic finite automaton accepting the language
to be learnt. Further research has been done dealing
with which query algorithms can be implemented by a
polynomial time learner and which need for polynomial
time learning, in addition to the teacher informing on
the target concept, also some oracle supplying informa-
tion that cannot be computed in polynomial time. See
the entry »Query-Based Learning for an overview of
these results.

For »Inductive Inference, most complexity mea-
sures are measures applying to the overall class and not
just a parameterized version. When learning the class
of all sets with up to n elements, the learner might first
issue the conjecture ¢ and then revise (up to n times)
its hypothesis when a new datum is observed; such a
measure is called the mind change complexity of learn-
ing. Mind change complexity has been generalized to
measure the complexity by recursive ordinals or the
notation of these. Furthermore, one can measure the
long term memory of past data observed either by a cer-
tain number of examples remembered or by the number
of bits stored on a tape describing the long-term mem-
ory of the learner. Besides these quantitative notions,
a further frequently studied question is the following:
Which oracles support the learning process in a way that
some classes become learnable using the oracle, but are
unlearnable without using any oracle? An example of
such a type of result is that the class of all recursive func-
tions can be learnt if and only if the learner has access
to a high oracle, that is, an oracle that permits to com-
pute a function which dominates (i.e., grows faster than)
every recursive function. See the entry »Complexity of
Inductive Inference for more information.

! Computational Discovery of
Quantitative Laws

»Equation Discovery

! Concept Drift

CLAUDE SAMMUT!, MICHAEL HARRIES?
""The University of New South Wales,
Sydney, Australia

2 Advanced Products Group, Citrix Labs,
North Ryde, NSW, Australia

Synonyms
Context-sensitive learning; Learning with hidden
context

Definition
Concept drift occurs when the values of hidden vari-
ables change over time. That is, there is some unknown



Concept Drift

203

context for »concept learning and when that context
changes, the learned concept may no longer be valid and
must be updated or relearned.

Motivation and Background

Prediction in real-world domains is complicated by
potentially unstable phenomena that are not known in
advance to the learning system. For example, financial
market behavior can change dramatically with changes
in contract prices, interest rates, inflation rates, bud-
get announcements, and political and world events.
Thus, concept definitions that may have been learned
in one context become invalid in a new context. This
concept drift can be due to changes in context and
is often directly reflected by one or more attributes.
When changes in context are not reflected by any known
attributes they can be said to be hidden. Hidden changes
in context cause problems for any predictive approach
that assumes concept stability.

Structure of the Learning System

Machine learning approaches can be broadly catego-
rized as either »-batch learning or »incremental learn-
ing. Batch systems learn off-line by examining a large
collection of instances en masse and form a single con-
cept. Incremental systems evolve and change a concept
definition as new observations are processed (Schlim-
mer & Granger 1986a; Aha et al., 1991; Koltzer & Maloof,
2003).

The most common approach to learning in domains
with hidden changes in context has been to use an incre-
mental learning approach in which the importance of
older items is progressively decayed. A popular imple-
mentation of this, originally presented in Kubet (1989),
is to use a window of recent instances from which
concept updates are derived. Other examples of this
approach include Widmer and Kubat (1996), Kubat and
Widmer (1995), Kilander and Jansson (1993), and Sal-
ganikoff (1993). Swift adaptation to changes in context
can be achieved by dynamically varying the window
size in response to changes in accuracy and concept
complexity (Widmer & Kubat, 1996).

There are many domains in which the context can
be expected not only to change but for earlier con-
texts to hold again at some time in the future. That is,
contexts can repeat in domains such as financial pre-
diction, dynamic control, and underrepresented data

mining tasks. In these domains, prediction accuracy can
be improved by storing knowledge about past contexts
for reuse. FLORA3 (Widmer & Kubat, 1993) addresses
domains in which contexts recur by storing and retriev-
ing concepts that appear stable as the learner traverses
the series of input data.

In many situations, there is no constraint to learn
incrementally. For example, many organizations main-
tain large data bases of historical data that are suitable
for data mining. These data bases may hold instances
that belong to a number of contexts but do not have this
context explicitly recorded. Many of these data bases
may incorporate time as an essential attribute, for exam-
ple, financial records and stock market price data. Inter-
est in mining datasets of this nature suggests the need
for systems that can learn global concepts and are sen-
sitive to changing and hidden contexts. Systems such as
FLORA3 also imply that an oft-line recognition of stable
concepts can be useful for »on-line prediction.

An alternative to on-line learning for domains with
hidden changes in context is to examine the data en
masse in an attempt to directly identify concepts associ-
ated with stable, hidden contexts. Some potential bene-
fits of such an approach are:

1. Context specific (known as local) concepts could be
used as part of a multiple model on-line predictive
system.

2. Local concepts could be verified by experts, or used
to improve domain understanding.

3. A model of the hidden context could be induced
using context characteristics such as context dura-
tion, order, and stability. The model could also use
existing attributes and domain feedback if available.

4. Stable contexts identified could be used as tar-
get characteristics for selecting additional attributes
from the outside world as part of an iterative data
mining process.

Splice (Harries, Sammut, & Horn, 1998) is a »meta-
learning system that implements a context sensitive
batch learning approach. Splice is designed to identify
intervals with stable hidden context, and to induce and
refine local concepts associated with hidden contexts.

Identifying Context Change
In many domains with hidden changes in context,
time can be used to differentiate hidden contexts. Most
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machine learning approaches to these domains do not
explicitly represent time as they assume that current
context can be captured by focusing on recent examples.
The implication is that hidden context will be reflected
in contiguous intervals of time. For example, an attempt
to build a system to predict changes in the stock market
could produce the following »decision tree:

Year > 2002
Year < 2005
Attribute A =true: Market Rising
Attribute A =false: Market Falling
Year > 2005
Attribute B =true: Market Rising
Attribute B =false: Market Falling

This tree contains embedded knowledge about two
intervals of time: in one of which, 2002-2004, attribute
A is predictive; in the other, 2005 onward, attribute B is
predictive. As time (in this case, year) is a monotonically
increasing attribute, future classification using this deci-
sion tree will only use attribute B. If this domain can be
expected to have recurring hidden context, information
about the prior interval of time could be valuable.

The decision tree in the example above contains
information about changes in context. We define con-
text as:

» Context is any attribute whose values are largely inde-
pendent but tend to be stable over contiguous inter-
vals of another attribute known as the environmental
attribute.

The ability of decision trees to capture context is asso-
ciated with the fact that decision tree algorithms use
a form of context-sensitive feature selection (CSFS).
A number of machine learning algorithms can be
regarded as using CSFS including decision tree algo-
rithms (Quinlan, 1993), »rule induction algorithms
(Clark & Niblett, 1989), and »ILP systems (Quinlan,
1990). All of these systems produce concepts containing
local information about context.

When contiguous intervals of time reflect a hid-
den attribute or context, we call time the environmental
attribute. The environmental attribute is not restricted
to time alone as it could be any ordinal attribute over

which instances of a hidden context are liable to be con-
tiguous. There is also no restriction, in principle, to one
dimension. Some alternatives to time as environmen-
tal attributes are dimensions of space, and space-time
combinations.

Given an environmental attribute, we can utilize
a CSFS machine learning algorithm to gain informa-
tion on likely hidden changes in context. The accuracy
of the change points found will be dependent upon
at least hidden context duration, the number of dif-
ferent contexts, the complexity of each local concept,
and noise.

The CSFS identified context change points can be
expected to contain errors of the following types:

1. »Noise or serial correlation errors. These would
take the form of additional incorrect change points.

2. Errors due to the repetition of tests on time in differ-
ent parts of the concept. These would take the form
of a group of values clustered around the actual
point where the context changed.

3. Errors of omission, change points that are missed
altogether.

The initial set of identified context changes can be
refined by contextual »clustering.

This process combines similar intervals of the
dataset, where the similarity of two intervals is based
upon the degree to which a partial model is accurate on
both intervals.

Recent Advances

With the increasing amount of data being generated
by organizations, recent work on concept drift has
focused on mining from high volume »data streams
Hulten, Spencer, & Domingos, 2001; Wang, Fan, Yu, &
Han, 2003; Koltzer & Maloof, 2003, Mierswa, Wurst,
Klinkenberg, Scholz, & Euler, 2006; Chu & Zaniolo,
2004; Gaber, Zaslavsky, & Krishnaswamy, 2005. Meth-
ods such as Hulten et al’ s, combine decision tree learn-
ing with incremental methods for efficient updates, thus
avoiding relearning large decision trees. Koltzer and
Maloof also use incremental methods combined in an
»ensemble.
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» Ensemble Methods
»Incremental Learning
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Synonyms
Categorization; Classification learning

Definition

The term concept learning is originated in psychology,
where it refers to the human ability to learn categories
for object and to recognize new instances of those cate-
gories. In machine learning, concept is more formally
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defined as “inferring a boolean-valued function from
training examples of its inputs and outputs” (Mitchell,
1997).

Background

Bruner, Goodnow, and Austin (1956) published their
book A Study of Thinking, which became a landmark
in psychology and would later have a major impact on
machine learning. The experiments reported by Bruner,
Goodnow, and Austin were directed toward under-
standing a humanss ability to categorize and how cate-
gories are learned.

» We begin with what seems a paradox. The world
of experience of any normal man is composed of a
tremendous array of discriminably different objects,
events, people, impressions... But were we to uti-
lize fully our capacity for registering the differences in
things and to respond to each event encountered as
unique, we would soon be overwhelmed by the com-
plexity of our environment... The resolution of this
seeming paradox... is achieved by man’s capacity to
categorize. To categorize is to render discriminably dif-
ferent things equivalent, to group objects and events
and people around us into classes... The process of
categorizing involves... an act of invention... If we

have learned the class “house” as a concept, new exem-

plars can be readily recognised. The category becomes

a tool for further use. The learning and utilization of

categories represents one of the most elementary and

general forms of cognition by which man adjusts to his
environment.

The first question that they had to deal with was that
of representation: what is a concept? They assumed
that objects and events could be described by a set
of attributes and were concerned with how inferences
could be drawn from attributes to class membership.
Categories were considered to be of three types: con-
junctive, disjunctive, and relational.

» ...when one learns to categorize a subset of eventsina
certain way, one is doing more than simply learning to
recognise instances encountered. One is also learning a
rule that may be applied to new instances. The concept
or category is basically, this “rule of grouping” and it is

such rules that one constructs in forming and attaining
concepts.

The notion of a rule as an abstract representation of a
concept influenced research in machine learning. For
example, »decision tree learning was used as a means
of creating a cognitive model of concept learning (Hunt,
Martin, & Stone, 1966). This model later inspired Quin-
lan’s development of ID3 (Quinlan, 1983).

Thelearning experience may be in the form of exam-
ples from a trainer or the results of trial and error.
In either case, the program must be able to repre-
sent its observations of the world, and it must also be
able to represent hypotheses about the patterns it may
find in those observations. Thus, we will often refer to
the »observation language and the »hypothesis lan-
guage. The observation language describes the inputs
and outputs of the program and the hypothesis language
describes the internal state of the learning program,
which corresponds to its theory of the concepts or
patterns that exist in the data.

The input to a learning program consists of descrip-
tions of objects from the universe and, in the case of
»supervised learning, an output value associated with
the example. The universe can be an abstract one, such
as the set of all natural numbers, or the universe may
be a subset of the real world. No matter which method
of representation we choose, descriptions of objects in
the real world must ultimately rely on measurements of
some properties of those objects. These may be physical
properties such as size, weight, and color or they may
be defined for objects, for example, the length of time a
person has been employed for the purpose of approv-
ing a loan. The accuracy and reliability of a learned
concept depends on the accuracy and reliability of the
measurements.

A program is limited in the concepts that it can
learn by the representational capabilities of both obser-
vation and hypothesis languages. For example, if an
attribute/value list is used to represent examples for
an induction program, the measurement of certain
attributes and not others clearly places bounds on the
kinds of patterns that the learner can find. The learner
is said to be biased by its observation language (see
»Language Bias). The hypothesis language also places
constraints on what may and may not be learned. For
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example, in the language of attributes and values, rela-
tionships between objects are difficult to represent.
Whereas, a more expressive language, such as first-order
logic, can easily be used to describe relationships.

Unfortunately, representational power comes at a
price. Learning can be viewed as a search through the
space of all sentences in a language for a sentence that
best describes the data. The richer the language, the
larger is the search space. When the search space is
small, it is possible to use “brute force” search methods.
If the search space is very large, additional knowledge is
required to reduce the search.

Rules, Relations, and Background
Knowledge

In the early 1960s, there was no discipline called
“machine learning” Instead, learning was considered to
be part of “pattern recognition,” which had not yet split
from AL One of the main problems addressed at that
time was how to represent patterns so that they could be
recognized easily. Symbolic description languages were
developed to be expressive and learnable.

Banerji (1960, 1962) first devised a language, which
he called a “description list,” which utilized an object’s
attributes to perform pattern recognition. Pennypacker,
a masters student of Banerji at the Case Institute of
Technology, implemented the recognition procedure
and also used Bruner, Goodnow, and Austin’s Conser-
vative Focussing Strategy to learn conjunctive concepts
(Pennypacker, 1963). Bruner, Goodnow, and Austin
describe the strategy as follows:

» ... this strategy may be described as finding a positive
instance to serve as a focus, then making a sequence
of choices each of which alters but one attribute value
[of the focus] and testing to see whether the change
yields a positive or negative instance. Those attributes
of the focus which, when changed, still yield positive
instance are not part of the concept. Those attributes of
the focus that yield negative instances when changed
are features of the concept.

The strategy is only capable of learning conjunctive con-
cepts, that is, the concept description can only consist
of a simple conjunction of tests on attribute values.
Recognizing the limitations of simple attribute/value
representations, Banerji (1964) introduced the use of

predicate logic as a description language. Thus, Banerji
was one of the earliest advocates of what would, many
years later, become Inductive Logic Programming.

In the 1970s, a series of algorithms emerged that
developed concept learning further. Winston's ARCH
program (Winston, 1970) was influential as one of
the first widely known concept learning programs.
Michalski (1973, 1983) devised the Aq family of learn-
ing algorithms that set some of the early benchmarks for
learning programs. Early relational learning programs
were developed by Hayes-Roth (1973), Hayes-Roth and
McDermott (1977), and Vere (1975, 1977).

Banerji emphasized the importance of a description
language that could “grow”” That is, its descriptive power
should increase as new concepts are learned. These con-
cepts become background knowledge for future learn-
ing. A simple example from Banerji (1980) illustrates
the use of background knowledge. There is a language
for describing instances of a concept and another for
describing concepts. Suppose we wish to represent the
binary number, 10, by a left-recursive binary tree of
digits “0” and “1”:

[head : [head: 1; tail : nil]; tail: 0]

“head” and “tail” are the names of attributes. Their val-
ues follow the colon. The concepts of binary digit and
binary number are defined as

xedigit=x=0vx=1
x € num = (tail(x) € digit A head(x) = nil)
v (tail(x) € digit A head(x) € num)

Thus, an object belongs to a particular class or concept
if it satisfies the logical expression in the body of the
description. Note that the concept above is disjunctive.
Predicates in the expression may test the membership
of an object in a previously learned concept and can
express relations between objects. Cohen and Sammut
(1982) devised a learning system based on Banerji’s ideas
of a growing concept description language and this was
further extended by Sammut and Banerji (1986).

Concept Learning and Noise
One of the most severe drawbacks of early concept
learning systems was that they assumed that data sets
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Conditional Random Field

were not noisy. That is, all attribute values and class
labels in the training data are assumed to be correct.
This is unrealistic in most real applications. Thus, con-
cept learning systems began incorporating statistical
measures to minimize the effects of noise and to esti-
mate error rates (Breiman, Friedman, Olshen, & Stone,
1984; Cohen, 1995; Quinlan, 1986, 1993).

Learning to classify objects from training examples
has gone on to become one of the central themes of
machine learning research. As the robustness of classi-
fication systems has increased, they have found many
applications, particularly in data mining but in a broad
range of other areas.

Cross References

»Data Mining

»Decision Tree Learning
»Inductive Logic Programming
»Learning as Search
»Relational Learning

»Rule Learning
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Conditional Random Field

A Conditional Random Field is a form of »Graphical
Model for segmenting and »classifying sequential data.
It is the »discriminative learning counterpart to the
»generative learning Markov Chain model.
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! Confirmation Theory

The branch of philosophy concerned with how (and
indeed whether) evidence can confirm a hypothesis,
even though typically it does not entail it. A distinc-
tion is sometimes drawn between total confirmation:
how well confirmed a hypothesis is, given all avail-
able evidence and weight-of-evidence: the amount of
extra confirmation added to the total confirmation of a
hypothesis by a particular piece of evidence. Confirma-
tion is often measured by the probability of a hypothesis
conditional on evidence.

|
Confusion Matrix

Ka1 MiInG TING
Monash University, Australia

Definition

A confusion matrix summarizes the classification per-
formance of a Pclassifier with respect to some Ptest
data. It is a two-dimensional matrix, indexed in one
dimension by the true class of an object and in the other
by the class that the classifier assigns. Table 1 presents an
example of confusion matrix for a three-class classifica-
tion task, with the classes A, B, and C.

The first row of the matrix indicates that 13 objects
belong to the class A and that 10 are correctly classified
as belonging to A, two misclassified as belonging to B,
and one as belonging to C.

A special case of the confusion matrix is often uti-
lized with two classes, one designated the positive class
and the other the negative class. In this context, the four
cells of the matrix are designated as > true positives (TP),
»false positives (FP), »true negatives (TN), and »false
negatives (FN), as indicated in Table 2.

A number of measures of classification perfor-
mance are defined in terms of these four classification
outcomes.

» Specificity = » True negative rate = TN/(TN + FP)

»Sensitivity = »True positive rate = »Recall = TP/
(TP + EN)

Confusion Matrix. Table1 An example of three-class
confusion matrix

Assigned Class

Actual Class

Confusion Matrix. Table 2 The outcomes of classification
into positive and negative classes

Assigned Class

Positive Negative

Positive

Negative

» Positive predictive value = » Precision = TP/(TP +
FP)
» Negative predictive value = TN/(TN + FN)

! Conjunctive Normal Form

BERNHARD PFAHRINGER
University of Waikato, Hamilton, New Zealand

Conjunctive normal form (CNF) is an important nor-
mal form for propositional logic. A logic formula is in
conjunctive normal form if it is a single conjunction
of disjunctions of (possibly negated) literals. No more
nesting and no other negations are allowed. Examples
are:

a
_‘b

anb

(av-b)a(cvd)
—an(bv-cvd)A(av-d)
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Connection Strength

Any arbitrary formula in propositional logic can be
transformed into conjunctive normal form by applica-
tion of the laws of distribution, De Morgan’s laws, and
by removing double negations. It is important to note
that this process can lead to exponentially larger formu-
las which implies that the process in the worst case runs
in exponential time. An example for this behavior is the
following formula given in »disjunctive normal form
(DNF), which is linear in the number of propositional
variables in this form. When transformed into con-
junctive normal form (CNF), its size is exponentially
larger.

DNE: (610 /\al) \% (612 /\03) V...V (aZ,, /\a2n+1)

CNF: (agvayV...Vay)A(agvav...Vayy)
AoooA(avVasVv...Vay)
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» Weight

' Connections Between Inductive
Inference and Machine Learning

JoHN CASE!, SANJAY JAIN?

"University of Delaware, Newark, USA

*National University of Singapore, Singapore, Republic
of Singapore

Definition
Inductive inference is a theoretical framework to model
learning in the limit. Here we will discuss some results
in inductive inference, which have relevance to machine
learning community.

The mathematical/theoretical area called »Inductive
Inference, is also known as computability theoretic learn-
ing and learning in the limit (Jain, Osherson, Royer, &

Sharma, 1999; Odifreddi, 1999) typically but, as will be
seen below, not always involves a situation depicted in (1)
just below.

In Out
Data dy,d,, d5, ... — M— Programs eg, e;, €, . . . .

)

Let N = the set of nonnegative integers. Strings,
including program strings, computer reals, and other
data structures, inside computers, are finite bit strings
and, hence, can be coded into N. Therefore, mathemati-
cally atleast, it is without loss of mathematical generality
that we sometimes use the data type N where standard
practice would use a different type.

In (1), dy, d1, ds, . . . can be, e.g., the successive values
of a function f : N — N or the elements of a (for-
mal) language L ¢ N in some order; M is a machine;
the e;’s are from some hypothesis space of programs;
and, for M’s successful learning, later e;s exactly or
approximately compute the f or L.

Such learning is off-line: in successful cases, one
comes away with programs for past and future data.
For the related problem of online extrapolation of
next values for a function f, suitable e;’s may be the
values of f(i)’s based on having seen strictly prior
values of f.

Detail
We will discuss the off-line case until we say otherwise.
It is typical in applied machine learning to present to a
learner whatever data one has and to obtain one corre-
sponding program hopefully for predicting these data
and future data. In inductive inference the case where
only one program is output is called one-shot learn-
ing. More typically, in inductive inference, one allows
for mind-changes, i.e., for a succession of output pro-
grams, as one receives successively more input data,
with the later programs hopefully eventually being use-
tul for predictions. Typically, one does not get success
on one’s first conjecture/output program, but rather, one
may achieve success eventually, or, as it is said, in the
limit after some sequence of trial and error. It is help-
ful at this juncture to present a problem for which this
latter approach makes more sense than the one-shot
approach.

We will consider some different criteria of successful
learning of f or L by M. For example, Ex-style criteria
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will require that all but finitely many of the e;’s are syn-
tactically the same and do a reasonable job of computing
the f or L. Bc-style criteria are more relaxed, more pow-
erful, but less useful (Barzding, 1974; Case & Lynes, 1982;
Case & Smith, 1983): they do not require almost all e;’s
be the same syntactically.

Here is a well-known regression technique from,
e.g., (Hildebrand, 1956), for exactly “curve-fitting” poly-
nomials. It is the method involving calculating forward
differences. We express it as a learning machine M, and
illustrate with its being fed an example data sequence
generated by a cubic polynomial

X = 2x% +2x+3. )

See (Hildebrand, 1956), for how to recover the poly-
nomials themselves.

M,, fed a finite data sequence of natural numbers,
first looks for iterated forward differences to become
(apparently) constant, then outputs a rule/program,
which uses the (apparent) constant to extrapolate the
data sequence for any desired prediction. For exam-
ple, were M, given the data sequence in the top row
of Table 1, it would calculate 6 to be the apparent con-
stant after three differencings, so M, then outputs the
following informal rule/program.

» To generate the level 0 sequence, at level 0, start with 3;
at level 1, start with 1; at level 2, start with 2; add
the apparent constant 6 from level 3 to get succes-
sive level 2 data items; add successive level 2 items to
get successive level 1data items; finally, add successive
level Titems to get as many successive level 0 data items
as needed for prediction.

This program, eventually output by M, when its
input the whole top row of Table 1, correctly predicts

Connections Between Inductive Inference and Machine
Learning. Table 1 Example Sequence and Its Iterated
Forward Differences

Sequence: | 3 4 7 18 43
1st Diffs: 1 3 n 25

2nd Diffs: 2 8 14

3rd Diffs: 6 6

the elements of the cubic polynomial, on successive val-
ues in N - the whole sequence 3,4,7,18,43, 88,159, ....
Along the way, though, just after the first data point,
M, thinks the apparent constant is 0; just after the sec-
ond that it is 1; just after the third that it is 2; and only
after more of the data points does it converge for this
cubic polynomial to the apparent (and, on this exam-
ple, actual) constant 6. In general, My, on a polynomial
of degree m, changes its mind up to m times until con-
verging to its final program (of course on f(x) = 2%, M,
never converges, and each level of forward differences is
just the sequence f again.).

Hence, M, above Ex-learns, e.g., the integer poly-
nomials f : N — N, but it does not in general one-shot
learn these polynomials - since the data alone do not
disclose the degree of a generating polynomial.

In this entry we survey some results from inductive
inference but with an eye to topics having something to
say regarding or to applied machine learning. In some
cases, the theoretical results lend mathematical support
to preexisting empirical observations about the efficacy
of known machine learning techniques. In other cases,
the theoretical results provide some, typically abstract,
suggestions for the machine learning practitioner. In
some of these cases, some of the suggestions apparently
pay off in others, intriguingly, we do not know yet.

Multi-Task or Context Sensitive Learning

In empirical, applied machine learning, multitask or
context sensitive learning involves trying to learn Y by
first (de Garis, 1990a, b; Fahlman, 1991; Thrun, 1996;
Thrun & Sullivan, 1996; Tsung & Cottrell, 1989; Waibel,
1989a, b) or simultaneously (Caruana, 1993, 1996; Diet-
terich, Hild, & Bakiri, 1995; Matwin & Kubat, 1996;
Mitchell, Caruana, Freitag, McDermott, & Zabowski,
1994; Pratt, Mostow, & Kamm, 1991; Sejnowski & Rosen-
berg, 1986; Bartlmae, Gutjahr, & Nakhaeizadeh, 1997)
trying to learn also X - even in cases where there may
be no inherent interest in learning X (see also »Transfer
Learning). There is, in many cases, an apparent empiri-
cal advantage in doing this for some X, Y. It can happen
that Y is not apparently or easily learnable by itself, but is
learnable if one learns X first or simultaneously in some
case X itself can be a sequence of tasks Xj, ..., X,,. Here
the X;s may need to be learned sequentially or simulta-
neously to learn Y. For example, to teach a robot to drive
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a car, it is useful to train it also to predict the center of
the road markings (see, e.g., Baluja & Pomerleau, 1995;
Caruana, 1996). For another example: an experimental
system to predict the value of German Daimler stock
performed better when it was modified to track simulta-
neously the German stock-index DAX (Bartlmae et al.,
1997). The value of the Daimler stock here was the pri-
mary or target concept and the value of the DAX - a
related concept - provided useful auxiliary context.

Angluin, Gasarch, and Smith (1989) shows mathe-
matically that, in effect, there are (mathematical) learn-
ing scenarios for which it was provable that Y could
not be learned without learning X first — and, in other
scenarios (Angluin et al., 1989; Kinber, Smith, Velau-
thapillai, & Wiehagen, 1995), Y could not be learned
without simultaneously learning X. These mathemati-
cal results provide a kind of evidence that the empirical
observations as to the apparent usefulness of multitask
or context sensitive learning may not be illusionary,
luck, or a mere accident of happening to use some data
sets but not others.

For illustration, here is a particularly simple theoret-
ical example needing to be learned simultaneously and
similar to examples in Angluin et al. (1989). Let R be
the set of all computable functions mapping N to N. We
use numerical names in N for programs. Let

S={(f.g) e R xR |f(0) is a program for
g A g(0)is a program for f}. (3)

We say (p,q) is a program for (f,g) ¢ R x R iff
pis a program for f and q is a program for g.

Consider a machine M which, if, as in (1), M is
fed do,di, ..., but where each d; is (f(i),g(i)), then
M outputs each e¢; = (g(0),f(0)). Clearly, M one-
shot learns S. It can be easily shown that the compo-
nent f’s and g’s for (f,g) € S are not separately even
Bc-learnable. It is important to note that, perhaps quite
unlike real-world problems, the definition of this exam-
ple S employs a simple self-referential coding trick:
useful programs are coded into values of the functions at
argument zero. A number of inductive inference results
have been proved by means of (sometimes more com-
plicated) self-referential coding tricks (see, e.g., Case,
1994). Barzdin$ indirectly (see Zeugmann, 1986) pro-
vided a kind of informal robustness idea in his attempt
to be rid of such coding tricks in inductive inference.

More formally, Fulk (1990) considered a learnability
result involving a witnessing class C of (tuples of) func-
tions to be robust iff each computable scrambling of C
also witnesses the learnability result (the allowed com-
putable scramblers are the general recursive operators of
(Rogers, 1967), but we omit the formal details herein.)
Example: A simple shift scrambler converting each f to
f', where f'(x) = f(x + 1), would eliminate the cod-
ing tricks just above - since the values of f at argument
zero would be lost in this scrambling. Some inductive
inference results hold robustly and some not (see, e.g.,
Fulk, 1990; Jain, 1999; Jain, Smith, & Wiehagen, 2001;
Jain et al.,, 1999; Case, Jain, Ott, Sharma, & Stephan,
2000). Happily, the S ¢ R x R above (that is, learn-
able, but its components not) can be replaced by a more
complicated class S’ that robustly witnesses the same
result. This is better theoretical evidence that the empir-
ically noticed efficacy of multitask or context sensitive
learning is not just an accident. It is residually impor-
tant to note that (Jain et al., 2001) shows, though, that
the computable scramblers can not get rid of more
sophisticated coding tricks they called topological.
S’ mentioned just above turns out to employ this latter
kind of coding trick. It is hypothesized in (Case et al.,
2000) that nature likely employs some sophisticated
coding tricks itself. For a separate informal argument
about coding tricks of nature, see (Case, 1999). Ott and
Stephan (2002) introduces a finite invariance constraint
on top of robustness. This so-called hyperrobustness
does destroy all coding tricks, and the result about
the theoretical efficacy of multitask or context sensitive
learning is not hyperrobust. However, hyperrobustness,
perhaps, leaves unrealistically sparse structure.

Final note: Machine learning is an engineering
endeavor. However, philosophers of science as well as
practitioners in classical scientific disciplines should
likely be considering the relevance of multitask or con-
text sensitive inductive inference to their endeavors.

Special Cases of Inductive Logic
Programming

In this section we discuss some learning in the limit
results for elementary formal systems (EFSs) (Smullyan,
1961). Essentially, EFSs are programs in a string rewrit-
ing system. It is well known (Arikawa, Shinohara, &
Yamamoto, 1992) that EFSs are essentially (pure) logic
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programs over strings. Hence, the results have possi-
ble relevance for »inductive logic programming (ILP)
(Bratko & Muggleton, 1995; Lavra¢ & Dzeroski, 1994;
Mitchell, 1997; Muggleton & De Raedt, 1994).

First we will discuss some important special cases
based on Angulin’s pattern languages (Angluin, 1980).

A pattern language is (by definition) one generated
by all the positive length substitution instances in a
pattern, such as,

abXYcbbZXa (4)

— where the variables (for substitutions) are depicted
in upper case and the constants/terminals in lower case
and are from, say, the alphabet {a,b,c}. Just below is an
EFS or logic program based on this example pattern.

abXYcbbZXa < . (5)

It must be understood, though, that in (5) and in the
next example EFS below, only positive length strings are
allowed to be substituted for the variables.

Angluin (1980) showed the Ex-learnability of the
class of pattern languages from positive data. For these
results, in the paradigm of (1) above dy,d;, ds, ..
listing or presentation of some formal language L over

.isa

a finite nonempty alphabet and the e;’s are programs
that generate languages. In particular, for Angluin’s M,
for L a pattern language, the e;’s are patterns, and, for
each presentation of L, all but finitely many of the
corresponding e;’s are the same correct pattern for L.

Much work has been done on the learnability
of pattern languages, e.g., Salomaa (1994a, b); Case,
Jain, Kaufmann, Sharma, and Stephan (2001), and on
bounded finite unions thereof, e.g., Shinohara (1993);
Wright (1989); Kilpeldinen, Mannila, and Ukkonen
(1995); Brazma, Ukkonen, and Vilo (1996); Case, Jain,
Lange, and Zeugmann (1999).

Regarding bounded finite unions of pattern lan-
guages: an n-pattern language is the union of the pattern
languages for some n patterns Py, . . ., P,. Each n-pattern
language is also Ex-learnable from positive data (see
Wright (1989)). An EFS or logic program corresponding
to the n-patterns Py,..
sponding n-pattern language is just below.

., P, and generating the corre-

P1<—.

P, «.

Pattern language learning algorithms have been suc-
cessfully applied toward some problems in molecular
biology, see, e.g., Shimozono etal. (1994), Shinohara and
Arikawa (1995).

Lange and Wiehagen (1991) presents an interest-
ing iterative (Wiehagen, 1976) algorithm learning the
class of pattern languages - from positive data only and
with polynomial time constraints. Iterative learners are
Ex-learners for which each output depends only on its
just prior output (if any) and the input data element
currently seen. Their algorithm works in polynomial
time (actually quadratic time) in the length of the lat-
est data item and the previous hypothesis. Furthermore,
the algorithm has a linear set of good examples, in the
sense that if the input data contains these good exam-
ples, then the algorithm already converges to the correct
hypothesis. The number of good examples needed is at
most |P| + 1, where P is a pattern generating the data
do,dy, dy, . .. for the language being learned. This algo-
rithm may be useful in practice due to its fast run time,
and being able to converge quickly, if enough good data
is available early. Furthermore, due to iterativeness, it
does not need to store previous data!

Zeugmann (1998) considers total learning time up
to convergence of the algorithm just discussed in the
just prior paragraph. Note that, for arbitrary presen-
tations, dy,d;,ds, . .
can be unbounded. In the best case it is polynomial in

., of a pattern language, this time

the length of a generating pattern P, where dy, d, d,, . . .
is based on using P to get good examples early - in
fact the time taken in the best case is O(|P|*log(s +
k)), where P is the pattern, s is the alphabet size, and
k is the number of variables in P. Much more inter-
esting is the case of average time taken up to con-
vergence. The probability distribution (called uniform
by Zeugmann) considered is as follows. A variable
X is replaced by a string w with probability W
(e, all strings of length r together have probabil-
ity 277, and the distribution is uniform among strings
of length r). Different variables are replaced indepen-
dently of each other. In this case the average total
time up to convergence is O(25k%s|P|*log.(ks)). The
main thing is that for average case on probabilistic data
(as can be expected in real life, though not necessar-
ily with this kind of uniform distribution), the algo-
rithm converges pretty fast and computations are done
efficiently.
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A number of papers consider Ex-learning of EFSs
(Krishna Rao, 1996; Krishna Rao, 2000, 2004, 2005;
Krishna Rao & Sattar, 1998) including with various
bounds on the number of mind-changes until syntactic
convergence to correct programs (Jain & Sharma, 1997,
2002). The EFSs considered are patterns, n-patterns,
those with a constant bound on the length of clauses,
and some with constant bounds on search trees. The
mind-change bounds are typically more dynamic than
those given by constants: they involve counting down
from finite representations (called notations) for infinite
constructive ordinals. An example of this kind of bound:
one can algorithmically, based on some input parame-
ters, decide how many mind-changes will be allowed.
In other examples, the decision as to how many mind-
changes will be allowed can be algorithmically revised
some constant number of times. It is possible that not
yet created special cases of some of these algorithms
could be made feasible enough for practice.

Learning Drifting Concepts

A drifting concept to be learned is one which is a
moving target (see »Concept Drift). In some machine
learning applications, concept drift must be dealt with
(Bartlett, Ben-David, & Kulkarni, 1996; Blum & Cha-
lasani, 1992; Devaney & Ram, 1994; Freund & Mansour,
1997; Helmbold and Long, 1994; Kubat, 1992; Widmer
& Kubat, 1996; Wrobel, 1994). An inductive inference
contribution is (Case et al., 2001) in which it is shown,
for online extrapolation by computable martingale bet-
ting strategies, upper bounds on the “speed” of the
moving target that permit success at all. Here success
is to make unbounded amounts of “money” betting
on correctness of ones extrapolations. Here is an illus-
trative result from (Case et al., 2001). For the pattern
languages considered in the previous section, only pos-
itive length strings of terminals can be substituted for
a variable in an associated pattern. The (difficult to
learn) pattern languages with erasing are just the lan-
guages obtained by also allowing the substitution of
the empty string for variables in a pattern. For our
example, we restrict the terminal alphabet to be {0,1}.
With each pattern language with erasing L (over this
terminal alphabet) we associate its characteristic func-
tion yr, which is 1 on terminal strings in L and 0
on those not in L. For ¢ denoting the empty string,

and for the terminal strings in length-lexicographical
order, ¢,0,1,00,01,10,11,000,. .., we would input a x;
itself to a potential extrapolating machine as the bit
string, y1(€), x£(0), x£(1), x.(00), x.(01),.... Let £ be
the class of these characteristic functions. Pick a posi-
tive integer constant p. To model drift with permanence
p» we imagine that a potential extrapolator for £ receives
successive bits from a member of £ but keeps switching
to the next bits of another, etc., but it must see at least p
bits in a row of each member of £ it sees before it can see
the next bits of another. p is, then, a speed limit on drift.
The result is that some suitably clever computable mar-
tingale betting strategy is successful at extrapolating £
with drift permanence (speed limit on drift) of p = 7.

Behavioral Cloning

Kummer and Ott (1996); Case, Ott, Sharma, and
Stephan (2002) studied learning in the limit of winning
control strategies for closed computable games. These
games nicely model reactive process-control problems.
Included are such example process-control games as
regulating temperature of a room to be in a desired
interval, forever after no more than some fixed number
of moves between the thermostat and processes disturb-
ing the temperature (Roughly, closed computable games
are those so that one can tell algorithmically when one
has lost. A temperature control game that requires sta-
bility forever after some undetermined finite number of
moves is not a closed computable game. For a more for-
mal treatment, see Cenzer and Remmel (1992); Maler,
Pnueli, and Sifakis (1995); Thomas (1995); Kummer and
Ott (1996)).

In machine learning, there are cases where one
wants to teach a machine some motor skill possessed by
human experts and where these human experts do not
have access to verbalizable knowledge about how they
perform expertly. Piloting an aircraft or expert opera-
tion of a swinging shipyard crane provide examples, and
machine learning employs, in these cases, »behavioral
cloning, which uses direct performance data from the
experts (Bain & Sammut, 1999; Bratko, Urbanci¢, &
Sammut, 1998; Suc, 2003).

Case et al. (2002) studies the effects on learning in
the limit closed computable games where the learning
procedures also had access to the behavioral perfor-
mance (but not the algorithms) of masters/experts at the
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games. For example, it is showed that, in some cases,
there is better performance cloning n + 1 disparate mas-
ters over cloning only n. For a while it was not known
in machine learning how to clone multiple experts even
after Case et al. (2002) was known to some; however,
independently of Case et al., 2002, and later, Dorian
Suc (Suc, 2003) found a way to clone behaviorally more
than one human expert simultaneously (for the free-
swinging shipyard crane problem) - by having more
than one level of feedback control, and he got enhanced
performance from cloning the multiple experts!

Learning To Coordinate

Montagna and Osherson (1999) begins the study of
learning in the limit to coordinate (digital) moves
between at least two agents.

The machines of Montagna and Osherson (1999)
are, in effect, general extrapolating devices (Montagna
& Osherson, 1999; Case et al., 2005). Technically, and
without loss of generality of the results, we restrict the
moves of each coordinator to bits, i.e., zeros and ones.
Coordination is achieved between two coordinators iff
each, reacting to the bit sequence of the other, eventually
(in the limit) matches it bit for bit. Montagna and Osher-
son (1999) gives an example of two people who show up
in a park each day at one of noon (bit 0) or 6pm (bit 1);
each silently watches the other’s past behavior; and each
tries, based on the past behavior of the other, to show
up eventually exactly when the other shows up. If they
manage it, they have learned to coordinate.

A blind coordinator is one that reacts only to the
presence of a bit from another process, not to which bit
the other process has played (Montagna and Osherson,
1999).

In Case et al. (2005) is developed and studied the
notion of probabilistically correct algorithmic coor-
dinators. Next is a sample of theorems to the effect
that just a few random bits can enhance learning to
coordinate.
Theorem1 (Caseetal.,2005) Suppose0 < p < 1. There

exists a class of deterministic algorithmic coordinators
C such that

(1) No deterministic algorithmic coordinator can
coordinate with all of C; and

(2) For k chosen so that 1 — 27F > p» there exists
a blind, probabilistic algorithmic coordinator PM,
such that:

(i) For each member of C, PM can coordinate
with with probability 1 — 27 > p; and

(i) PM is k-memory limited in the sense of
(Osherson, Stob, & Weinstein, 1986, P. 66);
more specifically, PM needs to remember
whether it is outputting one of its first
k bits — which are its only random bits (e.g.,
for p =
suffice.).

a mere k = 8 random bits

255
256

Regarding possible eventual applicability: Maye,
Hsieh, Sugihara, and Brembs (2007) cites finding deter-
ministic chaos but not randomness in the behavior of
animals. Hence, animals may not be exploiting random
bits in learning anything, including to coordinate. How-
ever, one might build artifactual devices to exploit ran-
domness, say, from radioactive decay, including, then,
for enhancing learning to coordinate.

Learning Geometric Clustering

Case, Jain, Martin, Sharma, and Stephen (2006) showed
that learnability in the limit of »clustering, with or
without additional information, depends strongly on
geometric constraints on the shape of the clusters. In
this approach the hypothesis space of possible clusters is
pre-given in each setting. It was hoped to obtain thereby
insight into the difficulty of clustering when the clus-
ters are restricted to preassigned geometrically defined
classes.

This is interestingly complementary to the con-
ceptual clustering approach (see, e.g., Mishra, Ron, &
Swaminathan, 2004; Pitt & Reinke, 1988) where one
restricts the possible clusters to have good “verbal”
descriptions in some language.

Clustering of many of the geometric classes investi-
gated was shown to require information in addition to a
presentation, dy, d, dy, . . ., of the set of points to be clus-
tered. For example, for clusters as convex hulls of finitely
many points in a rational vector space, clustering can
be done - but with the number of clusters as additional
information. Let S consist of all polygons including
their interiors - in the rational two-dimensional plane
without intersections and degenerated angles (Attention
was restricted to spaces of rationals since: 1. computer
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reals are rationals, 2. this avoids the uncountability
of the set of reals, and 3. this avoids dealing with
uncomputable real points.) The class S can be clus-
tered - but with the number of vertices of the polygons
of the clusters involved as additional information.

Correspondingly, then, it was shown that the class
&' containing S together with all such polygons but with
one hole (the nondegenerate differences of two mem-
bers in S) cannot be clustered with the number of ver-
tices as additional information, yet S’ can be clustered
with area as additional information - and this even in
higher dimensions and with any number of holes (Case
et al., 2006).

It remains to be seen if some forms of geometrically
constrained clustering can be usefully complementary
to, say, conceptually/verbally constrained clustering.

Insights for Limitations of Science
We briefly treat below in some problems regarding par-
simonious, refutable, and consistent hypotheses.

It is common wisdom in science that one should
fit parsimonious explanations, hypotheses, or programs
to data. In machine learning, this has been successfully
applied, e.g., (Wallace, 2005; Wallace & Dowe, 1999).

Curiously, though, there are many results in induc-
tive inference in which we see sometimes severe
degradations of learning power caused by demanding
parsimonious predictive programs (see, e.g., Freivalds
(1975); Kinber (1977); Chen (1982); Case, Jain, and
Sharma (1996); Ambainis, Case, Jain, and Suraj (2004)).

It is an interesting problem to resolve the seeming,
likely not actual contradiction between the just prior
two paragraphs.

Popper’s Refutability (Popper, 1962) asserts that
hypotheses in science should be subject to refutation.
Besides the well-known difficulties of Duhem-Quine
(Harding, 1976) of knowing which component hypoth-
esis to throw out when a compound hypothesis badly
fails to make correct predictions, inductive inference
theorems have provided very different difficulties. Case
and Smith (1983) outlines cases of usefully incomplete
(hence wrong) hypothesis that cannot be refuted, and
Case and Suraj (2007) (see also Case, 2007) provides
cases of inductively inferable higher order hypothesis
not totally subject to refutation in cases where ordi-
nary hypotheses subject to full refutation cannot be
inductively inferred.

While Duhem-Quine may impact machine learn-
ing eventually, it remains to be seen about the inductive
inference results of the just prior paragraph.

Requiring »inductive inference procedures always
to output an hypothesis in various senses consistent
with (e.g., not ignoring) the data on which that hypoth-
esis is based seems like mere common sense. How-
ever, from Barzdin$ (1974a); Blum and Blum (1975);
Wiehagen (1976), Case, Jain, Stephan, and Wiehagen
(2004) we see that strict adherence to various con-
sistency principles can severely attenuate the learning
power of inductive inference machines. Furthermore,
interestingly, even when inductive inference is polytime
constrained, we see similar counterintuitive results to
the effect that a kind of consistency can strictly attenuate
learning power (Wiehagen & Zeugmann, 1994).

A machine learning analog might be Breiman’s bag-
ging (Breiman, 1996) and random forests (Breiman,
2001), where data is purposely ignored. However, in
these cases, the purpose of ignoring data is to avoid
overfitting to noise.

It remains to be seen, whether, in applied machine
learning involving cases of practically noiseless data,
one can also obtain some advantage in ignoring some
consistency principles. Again the potential lesson from
inductive inference is abstract and provides only a hint
of something to work out in real machine learning
problems.
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Consensus Clustering

Synonyms
Clustering aggregation; Clustering ensembles

Definition
In CoNseENsus CLUSTERING we are given a set of n
objects V, and a set of m clusterings {C;,Cs,...,Cy}
of the objects in V. The aim is to find a single clustering
C that disagrees least with the input clusterings, that is,
C minimizes

D(C) = Zd(C, Ci),

Ci

for some metric d on clusterings of V. Meila (2003) pro-
posed the principled variation of information metric on
clusterings, but it has been difficult to analyze theoret-
ically. The Mirkin metric is the most widely used, in
which d(C, C") is the number of pairs of objects (u,v)
that are clustered together in C and apart in C’, or vice
versa; it can be calculated in time O(mn).

We can interpret each of the clusterings C; in Con-
SENsUs CLUSTERING as evidence that pairs ought be put
together or separated. That is, w, is the number of C;
in which C;[u] = C;[v] and w,, is the number of C; in
which C;[u] # C;[v]. It is clear that w}, + w;, = m and
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that CONSENSUS CLUSTERING is an instance of CORRE-
LATION CLUSTERING in which the w;,, weights obey the
triangle inequality.

[ . .
Constrained Clustering

Kir1 L. WAGSTAFF
Pasadena, CA, USA

Definition

Constrained clustering is a semisupervised approach to
»clustering data while incorporating domain knowl-
edge in the form of constraints. The constraints are
usually expressed as pairwise statements indicating that
two items must, or cannot, be placed into the same
cluster. Constrained clustering algorithms may enforce
every constraint in the solution, or they may use the
constraints as guidance rather than hard requirements.

Motivation and Background

» Unsupervised learning operates without any domain-
specific guidance or preexisting knowledge. Supervised
learning requires that all training examples be associ-
ated with labels. Yet it is often the case that existing
knowledge for a problem domain fits neither of these
extremes. Semisupervised learning methods fill this gap
by making use of both labeled and unlabeled data. Con-
strained clustering, a form of semisupervised learning,
was developed to extend clustering algorithms to incor-
porate existing domain knowledge, when available. This
knowledge may arise from labeled data or from more
general rules about the concept to be learned.

One of the original motivating applications was
noun phrase coreference resolution, in which noun
phrases in a text must be clustered together to represent
distinct entities (e.g., “Mr. Obama” and “the President”
and “he’, separate from “Sarah Palin” and “she” and “the
Alaska governor”). This problem domain contains sev-
eral natural rules for when noun phrases should (such
as appositive phrases) or should not (such as a mis-
match on gender) be clustered together. These rules can
be translated into a collection of pairwise constraints on
the data to be clustered.

Constrained clustering algorithms have now been
applied to a rich variety of domain areas, including
hyperspectral image analysis, road lane divisions from

GPS data, gene expression microarray analysis, video
object identification, document clustering, and web
search result grouping.

Structure of the Learning System
Constrained clustering arises out of existing work with
unsupervised clustering algorithms. In this description,
we focus on clustering algorithms that seek a partition
of the data into disjoint clusters, using a distance or
similarity measure to place similar items into the same
cluster. Usually, the desired number of clusters, k, is
specified as an input to the algorithm. The most com-
mon clustering algorithms are k-means (MacQueen,
1967) and expectation maximization or EM (Dempster,
Laird, & Rubin, 1977) (Fig. 1).

A constrained clustering algorithm takes the same
inputs as a regular (unsupervised) clustering algorithm
and also accepts a set of pairwise constraints. Each
constraint is a »must-link or »cannot-link constraint.
The must-link constraints form an equivalence rela-
tion, which permits the inference of additional transi-
tively implied must-links as well as additional entailed
cannot-link constraints between items from distinct
must-link cliques. Specifying a significant number of
pairwise constraints might be tedious for large data sets,
so often they may be generated from a manually labeled
subset of the data or from domain-specific rules.

The algorithm may interpret the constraints as hard
constraints that must be satisfied in the output or as
soft preferences that can be violated, if necessary. The
former approach was used in the first constrained clus-
tering algorithms, COP-COBWEB (Wagstaff & Cardie,

Domain
knowledge

y

Constraints

0=0
o+ 0
Input data Output clusters
o © .
®o o Constra!ned
o %o clustering

Constrained Clustering. Figure 1. The constrained clus-
tering algorithm takes in nine items and two pairwise
constraints (one must-link and one cannot-link). The out-
put clusters respect the specified constraints
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2000) and COP-kmeans (Wagstaff, Cardie, Rogers, &
Schroedl, 2001). COP-kmeans accommodates the con-
straints by restricting item assignments to exclude any
constraint violations. If a solution that satisfies the con-
straints is not found, COP-kmeans terminates without
a solution. Later, algorithms such as PCK-means and
MPCK-means (Bilenko, Basu, & Mooney, 2004) per-
mitted the violation of constraints when necessary by
introducing a violation penalty. This is useful when
the constraints may contain noise or internal incon-
sistencies, which are especially relevant in real-world
domains. Constrained versions of other clustering
algorithms such as EM (Shental, Bar-Hillel, Hertz,
& Weinshall, 2004) and spectral clustering (Kam-
var, Klein, & Manning, 2003) also exist. Penalized
probabilistic clustering (PPC) is a modified version
of EM that interprets the constraints as (soft) prob-
abilistic priors on the relationships between items
(Lu & Leen, 2005).

In addition to constraining the assignment of indi-
vidual items, constraints can be used to learn a better
distance metric for the problem at hand (Bar-Hillel,
Hertz, Shental, & Weinshall, 2005; Klein, Kamvar, &
Manning, 2002; Xing, Ng, Jordan, & Russell, 2003).
Must-link constraints hint that the effective distance
between those items should be low, while cannot-
link constraints suggest that their pairwise distance
should be high. Modifying the metric accordingly per-
mits the subsequent application of a regular cluster-
ing algorithm, which need not explicitly work with the
constraints at all. The MPCK-means algorithm fuses
these approaches together, providing both constraint
satisfaction and metric learning simultaneously (Basu,
Bilenko, & Mooney, 2004; Bilenko et al., 2004).

More information about subsequent advances in
constrained clustering algorithms, theory, and novel
applications can be found in a compilation edited by
Basu, Davidson, and Wagstaft (2008).

The MPCK-means algorithm is available in a modified
version of the Weka machine learning toolkit (Java) at
http://www.cs.utexas.edu/users/ml/risc/code/.
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Definition
Constraint-based mining is the research area studying
the development of data mining algorithms that search
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through a pattern or model space restricted by con-
straints. The term is usually used to refer to algorithms
that search for patterns only. The most well-known
instance of constraint-based mining is the mining of
»frequent patterns. Constraints are needed in pattern
mining algorithms to increase the efficiency of the
search and to reduce the number of patterns that are
presented to the user, thus making knowledge discovery
more effective and useful.

Motivation and Background

Constraint-based pattern mining is a generalization
of frequent itemset mining. For an introduction to
frequent itemset mining, see M Frequent Patterns.
A constraint-based mining problem is specified by pro-
viding the following elements:

e A database D, usually consisting of independent
transactions (or instances)

e A phypothesis space £ of patterns

e A constraint q(6, D) expressing criteria that a pat-
tern 6 in the hypothesis space should fulfill on the
database

The general constraint-based mining problem is to find
the set

Th(D, L, q) = {0 € L|q(6,D) = true}.

Alternative problem settings are obtained by making
different choices for D, £ and q. For instance,

o If the database and hypothesis space consist of item-
sets, and the constraint checks if the support of a
pattern exceeds a predefined threshold in data, the
frequent itemset mining problem is obtained (see
»Frequent Patterns)

o If the database and the hypothesis space consist of
graphs or trees instead of itemsets, a graph mining or
a tree mining problem is obtained. For more infor-
mation about these topics, see »Graph Mining and
»Tree Mining

o Additional syntactic constraints can be imposed

An overview of important types of constraints is given
below.

One can generalize the constraint-based mining
problem beyond pattern mining. Also models, such as

»Decision Trees, could be seen as languages of inter-
est. In the broadest sense, topics such as »Constrained
Clustering, »Cost-Sensitive Learning, and even learn-
ing »Support Vector Machines (SVMs) may be seen
as constraint-based mining problems. However, it is
currently not common to categorize these topics as
constraint-based mining; in practice, the term refers to
constraint-based pattern mining.

From the perspective of constraint-based mining,
the knowledge discovery process can be seen as a pro-
cess in which a user repeatedly specifies constraints
for data mining algorithms; the data mining system is
a solver that finds patterns or models that satisfy the
constraints.

This approach to data mining is very similar
to querying relational databases. Whereas relational
databases are usually queried using operations such
as projections, selections, and joins, in the constraint-
based mining framework data is queried to find pat-
terns or models that satisfy constraints that cannot be
expressed in these primitives. A database which sup-
ports constraint-based mining queries, stores patterns
and models, and allows later reuse of patterns and
models, is sometimes also called an inductive database
(Imielinski & Mannila, 1996).

Structure of the Learning System

Frequent pattern mining algorithms can be generalized
along several dimensions.

One way to generalize pattern mining algorithms
is to allow them to deal with arbitrary »coverage rela-
tions, which determine when a pattern matches a trans-
action in the data. In the example of mining itemsets,
the subset relation determines the coverage relation.
The coverage relation is at the basis of constraints such
as minimum support; an alternative coverage relation
would be the superset relation.

From the coverage relation follows a generality rela-
tionship. A pattern 0; is defined to be more specific
than a pattern 6, (denoted by 6, > 6,) if any transac-
tion that is covered by 0, is also covered by 6, (see
» Generalization). In frequent itemset mining, itemset
I, is more general than itemset I, if and only I; € L.

Generalization and coverage relationships can be
used to identify the following types of constraints.
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Monotonic and Anti-Monotonic Constraints An essen-
tial property which is exploited in »frequent pattern
mining, is that all subsets of a frequent pattern are also
frequent. This is a property that can be generalized:

o A constraint is called monotonic if any generalization
of a pattern that satisfies the constraint, also satisfies
the constraint

e A constraint is called anti-monotonic if any special-
ization of a pattern that satisfies the constraint, also
satisfies the constraint

In some publications, the definitions of monotonic and
anti-monotonic are used reversely.

The following are
constraints:

examples of monotonic

e Minimum support

e Syntactic constraints, for instance: a constraint that
requires that patterns specializing a given pattern x
are excluded a constraint requiring patterns to be
small given a definition of pattern size

¢ Disjunctions or conjunctions of monotonic con-
straints

o Negations of anti-monotonic constraints

The following are examples of anti-monotonic

constraints:

e Maximum support

o Syntactic constraints, for instance, a constraint that
requires that patterns generalizing a given pattern x
are excluded

o Disjunctions or conjunctions of anti-monotonic
constraints

o Negations of monotonic constraints

Succinct Constraints Constraints that can be pushed
in the mining process by adapting the pattern space
or data, are called succinct constraints. An example of
a succinct constraint is the monotonic constraint that
an itemset should contain the item A. This constraint
could be dealt with by deleting all transactions that do
not contain A. For any frequent itemset found in the
new dataset, it is now known that the item A can be
added to it.

Convertible Constraints Some constraints that are not
monotonic, can still be convertible monotonic (Pei &

Han, 2002). A constraint is convertible monotonic if
for every pattern 6 one least general generalization
0’ can be identified such that if 6 satisfies the con-
straint, then 6 also satisfies the constraint. An example
of a convertible constraint is a maximum average cost
constraint. Assume that every item in an itemset has
a cost as defined by a function c(i). The constraint
c(I) = ¥y c(i)/|I| < maxcost is not monotonic. How-
ever, for every itemset I with c¢(I) <maxcost, if an item
i is removed with c¢(i) = max;e; ¢(i), an itemset with
c(I - {i}) < ¢(I) < maxcost is obtained.

Maximum average cost has the desirable property
that no access to the data is needed to identify the gen-
eralization that should satisfy the constraints. If it is not
possible to identify the necessary least general general-
ization before accessing the data, the convertible con-
straint is also sometimes called weak (anti-)monotone
(Zhu, Yan, Han, & Yu, 2007).

Boundable Constraints Constraints on non-monotonic
measures for which a monotonic bound exist, are called
boundable. An example of such a constraint is a mini-
mum accuracy constraint in a database with binary class
labels. Assume that every itemset is interpreted as a rule
if I then1else 2 (thus, classlabel 1is predicted if a trans-
action contains itemset I, or class label 2 otherwise; see
»Supervised Descriptive Rule Discovery). A minimum
accuracy constraint can be formalized by the formula
(fr(I,Dy) + |D,| - fr(I,D;))/|D| > minacc, where Dy is
the database containing only the examples labeled with
class label k. It can be derived from this that

fr(I, Dy) > |D|minacc—|D,|+fr(I, D;) > |D|minacc—|D,|.

In other words, if a high accuracy is desirable, a min-
imum number of examples of class 1 is required to be
covered, and a minimum frequency constraint can thus
be derived. Therefore, minimum support can be used as
a bound for minimum accuracy.

The principle of deriving bounds for non-monotonic
measures can be applied widely (Bayardo, Agrawal, &
Gunopulos, 1999; Morishita & Sese, 2000).

Borders If constraints are not restrictive enough, the
number of patterns can be huge. Ignoring statistics
about patterns such as their exact frequency, the set of
patterns can be represented more compactly only by
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listing the patterns in the border(s) (Mannila & Toivo-
nen, 1997), similar to the idea of »version spaces. An
example of a border is the set of maximal frequent
itemsets (see »Frequent Patterns). Borders can be com-
puted for other types of both monotonic and anti-
monotonic constraints as well. There are several compli-
cations compared to the simple frequent pattern mining
setting:

e If there is an anti-monotonic constraint, such as
maximum support, not only is it needed to compute
a border for the most specific elements in the set (S-
Set), but also a border for the least general elements
in the set (G-Set)

e If the formula is a disjunction of conjunctions,
the result of a query becomes a union of version
spaces, which is called a multi-dimensional version
space (see Fig. 1) (De Raedt, Jaeger, Lee, & Man-
nila, 2002); the G-Set of one version space may
be more general than the G-Set of another version
space

Both the S-Set and the G-Set can be represented by list-
ing elements just within the version space (the positive
border), or elements just outside the version space (the
negative border). For instance, the positive border of
the G-Set consists of those patterns which are part of
the version space, and for which no generalizations exist
which are part of the version space.

Similarly, there may exist several representations of
multi-dimensional version spaces; optimizing the rep-
resentation of multi-dimensional version spaces is anal-
ogous to optimizing queries in relational databases (De
Raedt et al., 2002).

Borders form a condensed representations, that
is, they compactly represent the solution space; see
» Frequent Patterns.

Algorithms For many of the constraints specified in
the previous section specialized algorithms have been
developed in combination with specific hypothesis
spaces. It is beyond the scope of this chapter to discuss
all these algorithms; only the most common ideas are
provided here.

The main idea is that » Apriori can easily be updated
to deal with general monotonic constraints in arbi-
trary hypothesis spaces. The concept of a specializa-
tion Prefinement operator is essential to operate on

other hypothesis spaces than itemsets. A specializa-
tion operator p(8) computes a set of specializations in
the hypothesis space for a given input pattern. In pat-
tern mining, this operator should have the following
properties:

o Completeness: every pattern in the hypothesis space
should be reachable by repeated application of the
refinement operator starting from the most general
pattern in the hypothesis space

o Nonredundancy: every pattern in the hypothesis
space should be reachable in only one way start-
ing from the most general pattern in the hypothesis
space

In itemset mining, optimal refinement is usually obta-
ined by first ordering the items (for instance, alpha-
betically, or by frequency), and then adding items
that are higher in the chosen order to a set than the
items already in the set. For instance, for the itemset
{A, C}, the specialization operator returns p({A,C}) =
{{A,C,D},{A,C,E}}, assuming that the domain of
items {A,B,C,D,E} is considered. Other refinement
operators are needed while dealing with other hypoth-
esis spaces, such as in »graph mining.

The search in Apriori proceeds »breadth-first. Each
level, the specialization operator is applied on pat-
terns satisfying the monotonic constraints to gener-
ate candidates for the next level. For every new can-
didate it is checked whether its generalizations sat-
isfy the monotonic constraints. To create a set of
generalizations, a generalization refinement operator
can be used. In frequent itemset mining, usually sin-
gle items are removed from the itemset to generate
generalizations.

More changes are required to deal with anti-
monotonic constraints. A simple way of dealing with
both monotonic and anti-monotonic constraints is to
first compute all patterns that satisfy the monotonic
constraints, and then to prune the patterns that fail to
satisfy the anti-monotonic constraints. More challeng-
ing is to “push” anti-monotonic constraints in the min-
ing process. An observation which is often exploited
is that generalizations of patterns that do not satisfy
the anti-monotonic constraint need not be considered.
Well-known strategies are:
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(a) A 1-dimensional version space

Constraint-Based Mining. Figure 1. Version spaces

e In a breadth-first setting: traverse the lattice in
reverse order for monotonic constraints, after the
patterns have been determined satisfying the anti-
monotonic constraints (De Raedt et al., 2002)

e In a depth-first setting: during the search for pat-
terns, try to guess the largest pattern that can still
be reached, and prune a branch in the search if the
pattern does not satisfy the monotonic constraint on
this pattern (Bucila, Gehrke, Kifer, & White, 2003;
Kifer, Gehrke, Bucila, & White, 2003)

It is beyond the scope of this chapter to discuss how to
deal with other types of constraints; however, it should
be pointed out that not all combinations of constraints
and hypothesis spaces have been studied; it is not obvi-
ous whether all constraints can be pushed usefully in
a pattern search for any hypothesis space, for instance,
when boundable constraints in more complex hypothe-
sis spaces (such as graphs) are involved. Research in this
area is ongoing.

Cross References

» Constrained Clustering
»Frequent Pattern Mining
»Graph Mining

»Tree Mining
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Constructive Induction

Constructive induction is any form of »induction that
generates new descriptors not present in the input data
(Dietterich & Michalski, 1983).
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» Text Mining for Advertising

! Content-Based Filtering

Synonyms
Content-based recommending

Definition

Content-based filtering is prevalent in »Information
Retrieval, where the text and multimedia content of
documents is used to select documents relevant to a
user’s query. In the context this refers to content-based
recommenders, that provide recommendations by com-
paring representations of content describing an item to
representations of content that interests a user.

| -
Content-Based Recommending

» Content-Based Filtering

' Context-Sensitive Learning

»Concept Drift

| . .
Contextual Advertising

> Text Mining for Advertising

| . .
Continual Learning

Synonyms
Life-Long Learning

Definition

A learning system that can continue adding new data
without the need to ever stop or freeze the updating.
Usually continual learning requires incremental and
»online learning as a component, but not every incre-
mental learning system has the ability to achieve contin-
ual learning, i.e., the learning may deterioate after some
time.

Cross References
»Cumulative Learning

I
Continuous Attribute

A continuous attribute can assume all values on the
number line within the value range. See »Attribute and
» Measurement Scales.

' Contrast Set Mining

Definition

Contrast set mining is an area of »supervised descrip-
tive rule induction. The contrast set mining problem
is defined as finding contrast sets, which are conjunc-
tions of attributes and values that differ meaningfully
in their distributions across groups (Bay & Pazzani,
2001). In this context, groups are the properties of
interest.

Recommended Reading

Bay, S.D., & Pazzani, M. J. (2001). Detecting group differences: Min-
ing contrast sets. Data Mining and Knowledge Discovery, 5(3),
213-246.

| . .
Cooperative Coevolution

»Compositional Coevolution

I
Co-Reference Resolution

»Entity Resolution
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Correlation Clustering

ANTHONY WIRTH
The University of Melbourne, Victoria, Australia

Synonyms

Clustering with advice; Clustering with constraints;
Clustering with qualitative information; Clustering
with side information

Definition

In its rawest form, correlation clustering is graph opti-
mization problem. Consider a »clustering C to be a
mapping from the elements to be clustered, V, to the
set {1,...,|V|}, so that u and v are in the same cluster if
and only if C[u] = C[v]. Given a collection of items in
which each pair (1, v) has two weights w;;, and wj,,, we
must find a clustering C that minimizes

Yo Wt D Wi 1)
Clu]=C[v] Clu]#C[v]
or, equivalently, maximizes
Z w,, + Z w,, . (2)
Clul=C[v] Clu]#C[v]

Note that although w}, and wj,, may be thought of as
positive and negative evidence towards coassociation,
the actual weights are nonnegative.

Motivation and Background

The notion of clustering with advice, that is nonmetric-
driven relations between items, had been studied in
other communities (Ferligoj & Batagelj, 1982) prior to
its appearance in theoretical computer science. Tra-
ditional clustering problems, such as k-median and
k-center, assume that there is some type of distance
measure (metric) on the data items, and often specify
the number of clusters that should be formed. In the
clustering with advice framework, however, the num-
ber of clusters to be built need not be specified in
advance: it can be an outcome of the objective func-
tion. Furthermore, instead of, or in addition to, a dis-
tance function, we are given advice as to which pairs of

items are similar. The two weights w},, and w}, corre-
spond to external advice about whether the pair should
be clustered together or separately. Bansal, Blum, and
Chawla (2002) introduced the problem to the theoret-
ical computer science and machine-learning commu-
nities. They were motivated by database consistency
problems, in which the same entity appeared in differ-
ent forms in various databases. Given a collection of
such records from multiple databases, the aim is to clus-
ter together the records that appear to correspond to
the same entity. From this viewpoint, the log odds ratio
from some classifier,

o Pr(same)
& Pr(different) |’

corresponds to a label w,, for the pair. In many appli-
cations only one of the + and — weights for the pair is
nonzero, that is

(W, 0)  forw,, >0

(0,-w,,) forw,, <0.

(Was Wa) = {

In addition, if every pair has weight +1, then the instance
is called complete, otherwise it is referred to as general.
Demaine, Emanuel, Fiat, and Immorlica (2006) sug-
gest the following motivation. Suppose we have a set of
guests at a party. Each guest has preferences for whom
they would like to sit with, and for whom they would
like to avoid. We must group the guests into tables in a
way that enhances the amicability of the party.

The notion of producing good clusterings when
given inconsistent advice first appeared in the work
of Ben-Dor, Shamir, and Yakhini (1999). A canonical
example of inconsistent advice is this: items u and v are
similar, items v and y are similar, but u and y are dis-
similar. It is impossible to find a clustering that satisfies
all the advice. Figure 1 shows a very simple example of
inconsistent advice. In addition, although Correlation
clustering is an NP-hard problem, recent algorithms for
clustering with advice guarantee that their solutions are
only a specified factor worse than the optimal: that is,
they are approximation algorithms.

Theory
In setting out the correlation clustering framework,
Bansal et al. (2002) noted that the following algorithm
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(o] o}
Correlation Clustering. Figure 1. Top left is a toy cluster-
ing with advice example showing three similar pairs (solid
edges) and three dissimilar pairs (dashed edges). Bottom
left is a clustering solution for this example with four sin-
gleton clusters, while bottom right has one cluster. Top
right is a partitioning into two clusters that appears to
best respect the advice

produces a 2-approximation for the maximization
problem:

» If the total of the positive weights exceeds the total of
the negative weights then, place all the items in a single
cluster; otherwise, make each item a singleton cluster.

They then showed that complete instances are NP-hard
to optimize, and how to minimize the penalty (1) with
a constant factor approximation. The constant for this
combinatorial algorithm was rather large. The algo-
rithm relied heavily on the completeness of the instance;
it iteratively cleans clusters until every cluster is §-clean.
That is, for each item at most a fraction § (0 < § < 1)
of the other items in its cluster have a negative relation
with it, and at most & outside its cluster a positive rela-
tion. Bansal et al. also demonstrated that the minimiza-
tion problem on general instances is APX-hard: there
is some constant, larger than 1, below which approxi-
mation is NP-hard. Finally, they provided a polynomial
time approximation scheme (PTAS) for maximizing (2)
in complete instances.

The constant factor for minimizing (1) on complete
instances was improved to 4 by Charikar, Guruswami,
and Wirth (2003). They employed a region-growing

type procedure to round the solution of a linear pro-
gramming relaxation of the problem:

minimize

ZW:]— * Xij +Wi_j . (1—X,'j)
)

subject to 3)
xik < x5 +xj - forall i,j,k
xij € [0,1] for all i, j

In this setting, x;; = 1 implies i and j’s separation, while
x;;=0 implies coclustering, with values in between
representing partial evidence. In practice solving this
linear program is very slow and has huge memory
demands (Bertolacci & Wirth, 2007). Charikar et al. also
showed that this version of problem is APX-hard.

For the maximization problem (2), they showed
that instances with general weights were APX-hard and
provided a rounding of the following semidefinite pro-
gram (SDP) that yields a 0.7664 factor approximation

algorithm.
maximize
Z W,']'(Vi . Vj) + Z Wij(l il 7 Vj)
+(if) =(ij)
subject to (4)
vi-v; =1 foralli
vi-v; 20 forallij

In this case we interpret v;-v; = 1 as evidence that i and j
are in the same cluster, but v; - v; = 0 as evidence toward
separation.

Emanuel and Fiat (2003) extended the work of
Bansal et al. by drawing a link between Correlation
Clustering and the Minimum Multicut problem. This
reduction to Multicut provided an O(logn) approxi-
mation algorithm for minimizing general instances of
Correlation Clustering. Interestingly, Emanuel and Fiat
also showed that there was reduction in the opposite
direction: an optimal solution to Correlation Clustering
induced an optimal solution to Minimum Multicut.

Demaine and Immorlica (2003) also drew the link
from Correlation Clustering to Minimum multicut
and its O(logn) approximation algorithm. In addition,
they described an O(r*)-approximation algorithm for
graphs that exclude the complete bipartite graph K, , as
a minor.
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Swamy (2004), using the same SDP (4) as Charikar
et al., but different rounding techniques, showed how to
maximize (2) within factor 0.7666 in general instances.

The factor 4 approximation for minimization (1)
of complete instances was lowered to 2.5 by Ailon,
Charikar, and Newman (2005). Using the distances
obtained by solving the linear program (3), they repeat
the following steps:

» form a cluster around random item i by including each
(unclustered) j with probability 1 — x;; set the cluster
aside.

Since solving the linear program is highly resource hun-
gry, Ailon et al. provided a combinatorial alternative:
add j to /s cluster if wj; > w;;. Not only is this algorithm
very fast, it is actually a factor 3 approximation.

Recently, Tan (2007) has shown that the 79/80 + ¢
inapproximability for maximizing (2) on general
weighted graphs extends to general unweighted graphs.

A further variant in the Correlation Clustering fam-
ily of problems is the maximization of (2)-(1), known
as maximizing correlation. Charikar and Wirth (2004)
proved an Q(1/logn) approximation for the general
problem of maximizing

M=

aijXiXj, s.t.x; € {—1,1} for all i, (5)

n
1

Il
—_

for a matrix A with null diagonal entries, by rounding
the canonical SDP relaxation. This effectively max-
imized correlation with the requirement that two
clusters be formed; it was not hard to extend this to gen-
eral instances. The gap between the vector SDP solution
and the integral solution to maximizing the quadratic
program (5) was in fact shown to be ®(1/log ) in gen-
eral (Alon, Makarychev, Makarychev, & Naor, 2006).
However, in other instances such as those with a
bounded number of nonzero weights for each item,
a constant factor approximation was possible. Arora,
Berger, Hazan, Kindler, and Safra (2005) went further
and showed that it is quasi-NP-hard to approximate
the maximization to a factor better than Q(1/log” n)
for some y > 0.

Shamir, Sharan, and Tsur (2004) showed that
»Cluster Editing and p-Cluster Editing, in which p
clusters must be formed, are NP-complete (for p > 2).
Gramm, Guo, Hiiffner, and Niedermeier (2004) took

an innovative approach to solving the Clustering Edit-
ing problem exactly. They had previously produced an
0(2.27% + n*) time hand-made search tree algorithm,
where k is the number of edges that need to be mod-
ified. This “awkward and error-prone work” was then
replaced with a computer program that itself designed
a search tree algorithm, involving automated case anal-
ysis, that ran in O(1.92F + r®) time.

Kulis, Basu, Dhillon, and Mooney (2005) unify var-
ious forms of clustering, correlation clustering, spec-
tral clustering, and clustering with constraints in their
kernel-based approach to k-means. In this, they have
a general objective function that includes penalties for
violating pairwise constraints and for having points
spread far apart from their cluster centers, where the
spread is measured in some high-dimensional space.

Applications
The work of Demaine and Immorlica (2003) on Corre-
lation Clustering was closely linked with that of Bejer-
ano et al. on Location Area Planning. This problem is
concerned with the allocation of cells in a cellular net-
work to clusters known as location areas. There are costs
associated with traffic between the location areas (cuts
between clusters) and with the size of clusters them-
selves (related to paging phones within individual cells).
These costs drive the clustering solution in opposite
directions, on top of which there are constraints on
cells that must (or cannot) be in the same cluster. The
authors show that the same O(logn) region-growing
algorithm for minimizing Correlation Clustering and
Multicut applies to Location Area Planning.
Correlation clustering has been directly applied to
the coreference problem in natural language processing
and other instances in which there are multiple ref-
erences to the same object (Daume, 2006; McCallum
& Wellner, 2005). Assuming some sort of undirected
graphical model, such as a Conditional Random Field,
algorithms for correlation clustering are used to parti-
tion a graph whose edge weights corresponding to log-
potentials between node pairs. The machine learning
community has applied some of the algorithms for Cor-
relation clustering to problems such as email clustering
and image segmentation. With similar applications in
mind, Finley and Joachims (2005) explore the idea of
adapting the pairwise input information to fit example
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clusterings given by a user. Their objective function is
the same as Correlation Clustering (2), but their main
tool is the »Support Vector Machine.

There has been considerable in the

»consensus clustering problem, which is an excel-

interest

lent application of Correlation clustering techniques.
Gionis, Mannila, and Tsaparas (2005) note several
sources of motivation for the Consensus Clustering;
these include identifying the correct number of clusters
and improving clustering robustness. They adapt
Charikar et al’s region-growing algorithm to create a
three-approximation that performs reasonably well in
practice, though not as well as local search techniques.
Gionis et al. also suggest using sampling as a tool for
handling large data sets. Bertolacci and Wirth (2007)
extended this study by implementing Ailon et als
algorithms with sampling, and therefore a variety of
ways of developing a full clustering from the clustering
of the sample. They noted that LP-based methods
performed best, but placed a significant strain on
resources.

Applications of Clustering with Advice

The »k-means clustering algorithm is perhaps the
most-used clustering technique: Wagstaff et al. incor-
porated constraints into a highly cited k-means variant
called COP-KMEANS. They applied this algorithm to
the task of identifying lanes of traffic based on input
GPS data.

In the constrained-clustering framework, the
constraints are usually assumed to be consistent
(noncontradictory) and hard. In addition to the
usual must- and cannot-link constraints, Davidson
and Ravi (2005) added constraints enforcing various
requirements on the distances between points in
particular clusters. They analyzed the computational
feasibility of the problem of establishing the (in)
feasibility of a set of constraints, for various constraint
types. Their constrained k-means algorithms were used
to help a robot discover objects in a scene.
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Correlation-Based Learning

»Biological Learning: Synaptic Plasticity, Hebb Rule
and Spike Timing Dependent Plasticity

! Cost

In »Markov decision processes, negative rewards are
often expressed as costs. A reward of —x is expressed as
a cost of x. In »supervised learning, cost is used as a
synonym for »loss.

Cross References
»Loss

! Cost Function

»Loss Function

|
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' Cost-Sensitive Learning

CHARLES X. LING, VICTOR S. SHENG
The University of Western Ontario, Canada

Synonyms
Cost-sensitive classification; Learning with different
classification costs

Definition

Cost-Sensitive Learning is a type of learning that takes
the misclassification costs (and possibly other types of
cost) into consideration. The goal of this type of learning
is to minimize the total cost. The key difference between
cost-sensitive learning and cost-insensitive learning is
that cost-sensitive learning treats different misclassifica-
tions differently. That is, the cost for labeling a positive
example as negative can be different from the cost for
labeling a negative example as positive. Cost-insensitive
learning does not take misclassification costs into con-
sideration.

Motivation and Background

Classification is an important task in inductive learn-
ing and machine learning. A classifier, trained from a
set of training examples with class labels, can then be
used to predict the class labels of new examples. The
class label is usually discrete and finite. Many effective
classification algorithms have been developed, such as
»naive Bayes, -decision trees, »neural networks, and
»support vector machines. However, most classifica-
tion algorithms seek to minimize the error rate: the
percentage of the incorrect prediction of class labels.
They ignore the difference between types of misclassifi-
cation errors. In particular, they implicitly assume that
all misclassification errors have equal cost.

In many real-world applications, this assumption is
not true. The differences between different misclassifi-
cation errors can be quite large. For example, in medical
diagnosis of a certain cancer (where having cancer is
regarded as the positive class, and non-cancer (healthy)
as negative), misdiagnosing a cancer patient as healthy
(the patient is actually positive but is classified as nega-
tive; thus it is also called “false negative”) is much more
serious (thus expensive) than a false-positive error. The
patient could lose his/her life because of a delay in cor-
rect diagnosis and treatment. Similarly, if carrying a
bomb is positive, then it is much more expensive to
miss a terrorist who carries a bomb onto a flight than
searching an innocent person.

Cost-sensitive learning takes costs, such as the mis-
classification cost, into consideration. Turney (2000)
provides a comprehensive survey of a large variety of
different types of costs in data mining and machine
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learning, including misclassification costs, data acqui-
sition cost (instance costs and attribute costs), P»active
learning costs, computation cost, human-computer
interaction cost, and so on. The misclassification cost
is singled out as the most important cost, and it has
received the most attention in recent years.

Theory

The theory of cost-sensitive learning (Elkan, 2001;
Zadrozny and Elkan, 2001) describes how the misclas-
sification cost plays its essential role in various cost-
sensitive learning algorithms.

Without loss of generality, binary classification is
assumed (i.e., positive and negative class) in this paper.
In cost-sensitive learning, the costs of false positive
(actual negative but predicted as positive; denoted as
FP), false negative (FN), true positive (TP), and true
negative (TN) can be given in a cost matrix, as shown
in Table 1. In the table, the notation C(i, ) is also used
to represent the misclassification cost of classifying an
instance from its actual class j into the predicted class i
(1is used for positive, and 0 for negative). These misclas-
sification cost values can be given by domain experts,
or learned via other approaches. In cost-sensitive learn-
ing, it is usually assumed that such a cost matrix is
given and known. For multiple classes, the cost matrix
can be easily extended by adding more rows and more
columns.

Note that C(i,i) (TP and TN) is usually regarded
as the “benefit” (i.e., negated cost) when an instance is
predicted correctly. In addition, cost-sensitive learning
is often used to deal with datasets with very imbal-
anced class distributions (see »Class Imbalance Prob-
lem) (Japkowicz & Stephen, 2002). Usually (and without
loss of generality), the minority or rare class is regarded
as the positive class, and it is often more expensive
to misclassify an actual positive example into negative,

Cost-Sensitive Learning. Table1 An  Example of Cost
Matrix for Binary Classification

than an actual negative example into positive. That is,
the value of FN = C(0,1) is usually larger than that of FP
= C(1,0). This is true for the cancer example mentioned
earlier (cancer patients are usually rare in the popula-
tion, but predicting an actual cancer patient as negative
is usually very costly) and the bomb example (terrorists
are rare).

Given the cost matrix, an example should be clas-
sified into the class that has the minimum expected
cost. This is the minimum expected cost principle. The
expected cost R(i| x) of classifying an instance x into
class i (by a classifier) can be expressed as:

R(ilx) =3 P(jlx) C(jii), @)
J

where P(j| x) is the probability estimation of classifying
an instance into class j. That is, the classifier will classify
an instance x into positive class if and only if:

P(0]x) C(1,0) + P(1]x) C(L1) < P(0]x) C(0,0)
+P(1]x)C(0,1)

This is equivalent to:

P(0]x) (C(1,0) - C(0,0)) < P(1]x)
(C(0,1) -C(L1))

Thus, the decision (of classifying an example into
positive) will not be changed if a constant is added
into a column of the original cost matrix. Thus, the
original cost matrix can always be converted to a
simpler one by subtracting C(0,0)to the first col-
umn, and C(1,1) to the second column. After such
conversion, the simpler cost matrix is shown in
Table 2. Thus, any given cost-matrix can be converted
to one with C(0,0) = C(1,1) = 0. (Here it is
assumed that the misclassification cost is the same for

Cost-Sensitive Learning. Table2 A Simpler Cost Matrix
with an Equivalent Optimal Classification

Predict
negative

C(0,0),or TP C(0,1),or FN

Predict 0
negative

(0,7 -C(1,1)

Predict positive |C(1,0), or FP c(1,1),or TP

Predict positive |C(1,0) - C(0,0)

o
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all examples. This property is a special case of the one
discussed in Elkan (2001).) In the rest of the paper, it
will be assumed that C(0,0) = C(1,1) = 0. Under this
assumption, the classifier will classify an instance x into
positive class if and only if:

P(0|x)C(1,0) < P(1]x) C(0,1)

As P(0|x) =1- P(1]x), a threshold p* can be obtained
for the classifier to classify an instance x into positive if
P(1|x) > p*, where

* C(I’O)

"~ C(1,0)+ C(0,1) @

P

Thus, if a cost-insensitive classifier can produce a poste-
rior probability estimation p(1 | x) for each test example
x, one can make the classifier cost-sensitive by sim-
ply choosing the classification threshold according to
(2), and classify any example to be positive whenever
P(1|x) > p*. This is what several cost-sensitive meta-
learning algorithms, such as Relabeling, are based on
(see later for details). However, some cost-insensitive
classifiers, such as C4.5, may not be able to produce
accurate probability estimation; they return a class label
without a probability estimate. Empirical Thresholding
(Sheng & Ling, 2006) does not require accurate estima-
tion of probabilities — an accurate ranking is sufficient.
It simply uses »cross-validation to search for the best
probability value p* to use as a threshold.

Traditional cost-insensitive classifiers are designed
to predict the class in terms of a default, fixed thresh-
old of 0.5. Elkan (2001) shows that one can “rebalance”
the original training examples by sampling, such that
the classifiers with the 0.5 threshold is equivalent to the
classifiers with the p* threshold as in (2), in order to
achieve cost-sensitivity. The rebalance is done as fol-
lows. If all positive examples (as they are assumed as the
rare class) are kept, then the number of negative exam-
ples should be multiplied by C(1,0)/C(0,1) = FP/FN.
Note that as usually FP < FN, the multiple is less than 1.
This is, thus, often called “under-sampling the majority
class” This is also equivalent to “proportional sampling,’
where positive and negative examples are sampled by
the ratio of:

p(1)FN:p(0) FP 3)

where p(1) and p(0) are the prior probability of the
positive and negative examples in the original train-
ing set. That is, the prior probabilities and the costs
are interchangeable: doubling p(1) has the same effect
as doubling FN, or halving FP (Drummond & Holte,
2000). Most sampling meta-learning methods, such as
costing (Zadrozny, Langford, & Abe, 2003), are based
on (3) above (see later for details).

Almost all meta-learning approaches are either
based on (2) or (3) for the thresholding- and sampling-
based meta-learning methods, respectively, to be dis-
cussed in the next section.

Structure of Learning System

Broadly speaking, cost-sensitive learning can be catego-
rized into two categories. The first one is to design classi-
fiers that are cost-sensitive in themselves. They are called
the direct method. Examples of direct cost-sensitive
learning are ICET (Turney, 1995) and cost-sensitive
decision tree (Drummond & Holte, 2000; Ling, Yang,
Wang, & Zhang, 2004). The other category is to design
a “wrapper” that converts any existing cost-insensitive
(or cost-blind) classifiers into cost-sensitive ones. The
wrapper method is also called cost-sensitive meta-
learning method, and it can be further categorized into
thresholding and sampling. Here is a hierarchy of the
cost-sensitive learning and some typical methods. This
paper will focus on cost-sensitive meta-learning that
considers the misclassification cost only.

Cost-Sensitive learning

- Direct methods
e ICET (Turney, 1995)
e Cost-sensitive decision trees (Drummond &
Holte, 2000; Ling et al., 2004)
- Meta-learning
e Thresholding
MetaCost (Domingos, 1999)
CostSensitiveClassifier (CSC in short) (Wit-
ten & Frank, 2005)
Cost-sensitive naive Bayes (Chai, Deng, Yang,
& Ling, 2004)
Empirical Thresholding (ET in short) (Sheng
& Ling, 2006)
e Sampling
Costing (Zadrozny et al., 2003)
Weighting (Ting, 1998)
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The main idea of building a direct cost-sensitive learn-
ing algorithm is to directly introduce and utilize mis-
classification costs into the learning algorithms. There
are several works on direct cost-sensitive learning algo-
rithms, such as ICET (Turney, 1995) and cost-sensitive
decision trees (Ling et al., 2004).

ICET (Turney, 1995) incorporates misclassification
costs in the fitness function of genetic algorithms. On
the other hand, cost-sensitive decision tree (Ling et al.,
2004), called CSTree here, uses the misclassification
costs directly in its tree building process. That is, instead
of minimizing entropy in attribute selection as in C4.5,
CSTree selects the best attribute by the expected total
cost reduction. That is, an attribute is selected as a root
of the (sub) tree if it minimizes the total misclassifica-
tion cost.

Note that as both ICET and CSTree directly take
costs into model building, they can also take easily
attribute costs (and perhaps other costs) directly into
consideration, while meta cost-sensitive learning algo-
rithms generally cannot.

Drummond and Holte (2000) investigate the cost-
sensitivity of the four commonly used attribute selec-
tion criteria of decision tree learning: accuracy, Gini,
entropy, and DKM. They claim that the sensitivity of
cost is highest with the accuracy, followed by Gini,
entropy, and DKM.

Cost-sensitive meta-learning converts existing cost-
insensitive classifiers into cost-sensitive ones without
modifying them. Thus, it can be regarded as a mid-
dleware component that preprocesses the training data,
or post-processes the output, from the cost-insensitive
learning algorithms.

Cost-sensitive meta-learning can be further classi-
fied into two main categories: thresholding and sampling,
based on (2) and (3) respectively, as discussed in the
theory section.

Thresholding uses (2) as a threshold to classify exam-
ples into positive or negative if the cost-insensitive clas-
sifiers can produce probability estimations. MetaCost
(Domingos, 1999) is a thresholding method. It first uses
bagging on decision trees to obtain reliable probability
estimations of training examples, relabels the classes of
training examples according to (2), and then uses the

relabeled training instances to build a cost-insensitive
classifier. CSC (Witten & Frank, 2005) also uses (2) to
predict the class of test instances. More specifically, CSC
uses a cost-insensitive algorithm to obtain the proba-
bility estimations P(j| x) of each test instance. (CSC is a
meta-learning method and can be applied to any classi-
fiers.) Then it uses (2) to predict the class label of the test
examples. Cost-sensitive naive Bayes (Chai et al., 2004)
uses (2) to classify test examples based on the posterior
probability produced by the naive Bayes.

As seen, all thresholding-based meta-learning meth-
ods rely on accurate probability estimations of p(1 | x) for
the test example x. To achieve this, Zadrozny and Elkan
(2001) propose several methods to improve the cali-
bration of probability estimates. ET (Empirical Thresh-
olding) (Sheng and Ling, 2006) is a thresholding-based
meta-learning method. It does not require accurate esti-
mation of probabilities — an accurate ranking is suffi-
cient. ET simply uses cross-validation to search the best
probability from the training instances as the threshold,
and uses the searched threshold to predict the class label
of test instances.

On the other hand, sampling first modifies the class
distribution of the training data according to (3), and
then applies cost-insensitive classifiers on the sampled
data directly. There is no need for the classifiers to pro-
duce probability estimations, as long as they can clas-
sify positive or negative examples accurately. Zadrozny
et al. (2003) show that proportional sampling with
replacement produces duplicated cases in the training,
which in turn produces overfitting in model building.
Instead, Zadrozny et al. (2003) proposes to use “rejec-
tion sampling” to avoid duplication. More specifically,
each instance in the original training set is drawn once,
and accepted into the sample with the accepting prob-
ability C(j,i)/Z, where C(j,i) is the misclassification
cost of class i, and Z is an arbitrary constant such that
Z > max C(j,i). When Z = max;;C(j, i), this is equivalent
to keeping all examples of the rare class, and sam-
pling the majority class without replacement accord-
ing to C(1,0)/C(0,1) - in accordance with (3). Bag-
ging is applied after rejection sampling to improve
the results further. The resulting method is called
Costing.

Weighting (Ting, 1998) can also be viewed as a
sampling method. It assigns a normalized weight to
each instance according to the misclassification costs
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specified in (3). That is, examples of the rare class (which
carries a higher misclassification cost) are assigned, pro-
portionally, high weights. Examples with high weights
can be viewed as example duplication - thus over-
sampling. Weighting then induces cost-sensitivity by
integrating the instances’ weights directly into C4.5,
as C4.5 can take example weights directly in the
entropy calculation. It works whenever the original
cost-insensitive classifiers can accept example weights
directly. (Thus, it can be said that Weighting is a semi
meta-learning method.) In addition, Weighting does
not rely on bagging as Costing does, as it “utilizes” all
examples in the training set.
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Definition

It is convenient to define a covariance matrix by using

multi-variate random variables (mrv): X = (X, ..., Xy)".
For univariate random variables X; and Xj, their covari-

ance is defined as:

Cov(X;,X;) =E [(Xi — i) (X - /"j)] J

where p; is the mean of X; : y; = E[X;]. As a special case,
when i = j, then we get the variance of X;, Var(X;) =
Cov(X;,X;). Now in the setting of mrv, assuming that
each component random variable X; has finite variance
under its marginal distribution, the covariance matrix
Cov(X,X) can be defined as a d-by-d matrix whose
(i,j)-th entry is the covariance:

(Cov(X,X));j = Cov(Xi, X)) = E[(Xi — i) (X = )]

And its inverse is also called precision matrix.

Motivation and Background
The covariance between two univariate random vari-
ables measures how much they change together, and
as a special case, the covariance of a random variable
with itself is exactly its variance. It is important to
note that covariance is an unnormalized measure of the
correlation between the random variables.

As a generalization to multi-variate random vari-
ables X=(Xj,...,Xy)", the covariance matrix is a
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d-by-d matrix whose (i,7)-th component is the covari-
ance between X; and X;.

In many applications, it is important to character-
ize the relations between a set of factors, hence the
covariance matrix plays an important role in practice,
especially in machine learning.

Theory
It is easy to rewrite the element-wise definition into the
matrix form:

Cov(X,X) =E[(X-EX])(X-E[X])T], @

which naturally generalizes the variance of univariate
random variables: Var(X) = E[(X - E[X])?].

Moreover, it is also straightforward to extend the
covariance of a single mrv X to two mrv s X (d
dimensional) and y (s dimensional), under the name
cross-covariance. It quantifies how much the component
random variables in X and y change together. The cross-
covariance matrix is defined as a d x s matrix Cov(X,y)
whose (i,/)-th entry is

(Cov(X,y));j = Cov(X;, Y;)
= E[(X; - E[X:])(Y; - E[Y;])].

Cov(X,y) can also be written in the matrix form as

Cov(X,y) = E[(X-E[X])(y-E[y])"],

where the expectation is with respect to the joint
distribution of (X,y). Obviously, Cov(X,y) becomes
Cov(X,X) wheny = X.

Covariance Cov(X, X) has the following properties:

1. Positive semi-definiteness. It follows from (1) that
Cov(X, X)) is positive semi-definite. Cov(X,X) = 0
if, and only if, X is a constant almost surely, i.e.,
there exists a constant x such that Pr(X # x) = 0.
Cov(X,X) is not positive definite if, and only if,
there exists a constant « such that (&, X) is constant
almost surely.

2. Relating cumulant to moments: Cov(X,X) =
E[XX"] -E[X]E[X]".

3. Linear transform: Ify = AX +b where A € R**¢ and
b € R’, then Cov(y,y) = ACov(X,X)A".

Cross-covariance Cov(X,y) has the following pro-
perties.

1. Symmetry: Cov(X,y) = Cov(y, X).

2. Linearity: Cov(X; + X;,y) = Cov(Xy,y) + Cov
(X2> Y)

3. Relating to covariance: If X and y have the same
dimension, then Cov(X +y,X +y) = Cov(X,X) +
Cov(y,y) + 2Cov(y, X).

4. Linear transform: Cov(AX, By) = ACov(X,y)B.

It is highly important to note that Cov(X,y) = O is a
necessary but not sufficient condition for X and y to be
independent.

Entries in the covariance matrix are sometimes pre-
sented in a normalized form by dividing each entry by
its corresponding standard deviations. This quantity is
called the correlation coefficient, represented as px, x;,
and defined as

_ COV(X,‘,X]‘)
- COV(Xi, X,')l/ZCOV(Xj, Xj)l/Z '

thXj

The corresponding matrix is called the correlation
matrix, and for Ty set to Cov(X,X) with all non-
diagonal entries zeroed, and Ty likewise, then the cor-
relation matrix is given by

Corr(X,y) = F)EI/ZCOV(X,y)F;l/Z.
The correlation coeflicient takes on values between

[-1,1].

Given observations xj, . ..,X, of a mrv X, an unbiased
estimator of Cov(X, X) is:

5= il(xi ) -2)",

where x = - 7L, x;. The denominator n — 1 reflects the
fact that the mean is unknown and the sample mean is
used in place. Note the maximum likelihood estimator
in this case replaces the denominator n — 1 by .
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A covariance matrix is used to define the Gaussian dis-
tribution. In this case, the inverse Wishart distribution
is the conjugate prior for the covariance matrix. Since
the Gamma distribution is a 1-D version of the Wishart
distribution, in the 1-D case the Gamma is the conjugate
prior for precision matrix.

Applications
Several key uses of the covariance matrix are reviewed
here.

In many machine learning problems, we often need to
quantify the correlation of two mrv s which may be
from two different spaces. For example, we may want
to study how much the image stream of a movie is cor-
related with the comments it receives. For simplicity, we
consider a r-dimensional mrv X and a s-dimensional
mry y. To study their correlation, suppose we have n
pairs of observations {(x,-,yi)}:l: , drawn iid from cer-
tain underlying joint distribution of (X,y). Let x =
Lyiixiandy =< YLy, and stack {x;} and {yi} into
%= (x,...,x,)  and ¥ = (y,...,y,)" respectively.
Then the cross-covariance matrix Cov(X,y) can be esti-
mated by + >, (x; —x)(y; —¥)"- To quantify the cross-
correlation by a real number, we need to apply some
norm of the cross-covariance matrix, and the simplest
one is the Frobenius norm, |A3 = Y;j A} Therefore,
we obtain a measure of cross-correlation,

2
1 -
= —Hxx"HYY", (2)
F n

s S -90,-9°

i=

where H;; = §;; — +, and &;; = 1if i = j and 0 otherwise.
It is important to notice that (1) in this measure,
inner product is performed only in the space of X
and y separately, i.e., no transformation between X
and y is required, (2) the data points affect the mea-
sure only via inner products x[x; as the (i,)-th entry
of xX" (and similarly for y,). Hence we can endow
new inner products on X and y, which eventually
allows us to apply kernels, e.g., Gretton, Herbrich,
Smola, Bousquet, & Schélkopf (2005). In a nutshell, ker-
nel methods (Schélkopf & Smola, 2002) redefine the
inner product x]x; by mapping x; to a richer feature
space via ¢(x;) and then compute the inner product

there: k(x;,X;) = ¢(x;)"¢(x;). Since the measure in
(2) only needs inner products, one can even directly
define k(, ) without explicitly specifying ¢. This allows
us to

o Implicitly use a rich feature space whose dimension
can be infinitely high.

e Apply this measure of cross correlation to non-
Euclidean spaces as long as a kernel k(x;,x;) can be
defined on it.

The measure of (2) can be equivalently motivated by
least square Plinear regression. That is, we look for a
linear transform T : RY — R* which minimizes

29 - -

And one can show that its minimum objective value is
exactly equal to (2) up to a constant, as longas ally;, -y
and x; — X have unit length. In practice, this can be
achieved by normalization. Or, the measure in (2) itself
can be normalized by replacing the covariance matrix
with the correlation matrix.

The covariance matrix plays a key role in principal
component analysis (PCA). Assume that we are given
n iid observations xi,...,X, of a mrv X, and let x =
13 x;. PCA tries to find a set of orthogonal directions
Wi, W, . . ., such that the projection of X to the direction
wi, Wi X, has the highest variance among all possible
directions in the d-dimensional space. After subtract-
ing from X the projection to wj, w; is chosen as the
highest variance projection direction for the remain-
der. This procedure goes on for the required number of
components.

To find w; := argmax,, Var(w'X), we need an empi-
rical estimate of Var(w'X). Estimating E[(w'X)?] by
w' (% ZiXiX,-T) w, and E[w'X] by ¥, w'x;, we get

wi = argmax, : [w = 1| w'Sw,
1 n
where §=-)(x;-%)(x;-%),
o=

ie, Sis ;% times the unbias empirical estimate of the

covariance of X, based on samples xj,. . .,X,. w; turns
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out to be exactly the eigenvector of S corresponding to
the greatest eigenvalue.

Note that PCA is independent of the distribution of
X. More details on PCA can be found at Jolliffe (2002).

Gaussian processes are another important framework
in machine learning that rely on the covariance matrix.
Itis a distribution over functions f (-) from certain space
X to R, such that for any n € N and any n points
{x; € X}, the set of values of f evaluated at {x;},,
{f(x1),....f(xn)}, will have an n-dimensional Gaus-
sian distribution. Different choices of the covariance
matrix of the multi-variate Gaussian lead to different
stochastic processes such as Wiener process, Brown-
ian motion, Ornstein-Uhlenbeck process, etc. In these
cases, it makes more sense to define a covariance func-
tion C: X x X ~ R, such that given any set {x; € X'}|_,
for any n € N, the n-by-n matrix (C(xi,xj))ij is pos-
itive semi-definite and can be used as the covariance
matrix. This further allows straightforward kerneliza-
tion of a Gaussian process by using the kernel function
as the covariance function.

Although the space of functions is infinite dimen-
sional, the marginalization property of multi-variate
Gaussian distributions guarantees that the user of the
model only needs to consider the observed x;, and
ignore all the other possible x € X' This important prop-
erty says that for a mrv X = (X/,X7)" ~ N(u, %), the
marginal distribution of X; is A (p,, Z11), where X, is
the submatrix of X corresponding to X; (and similarly
for p,). So taking into account the random variable X,
will not change the marginal distribution of Xj.

For a complete treatment of covariance matrix
from a statistical perspective, see Casella and Berger
(2002), and Mardia, Kent, and Bibby (1979) provides
details for the multi-variate case. PCA is comprehen-
sively discussed in Jolliffe (2002), and kernel meth-
ods are introduced in Schélkopf and Smola (2002).
Williams & Rasmussen (2006) gives the state of the art
on how Gaussian processes can be utilized for machine
learning.

Cross References

» Gaussian Distribution
» Gaussian Processes

» Kernel Methods
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Synonyms
Structural
assignment

credit assignment; Temporal credit

Definition

When a learning system employs a complex decision
process, it must assign credit or blame for the out-
comes to each of its decisions. Where it is not possi-
ble to directly attribute an individual outcome to each
decision, it is necessary to apportion credit and blame
between each of the combinations of decisions that con-
tributed to the outcome. We distinguish two cases in
the credit assignment problem. Temporal credit assign-
ment refers to the assignment of credit for outcomes to
actions. Structural credit assignment refers to the assign-
ment of credit for actions to internal decisions. The
first subproblem involves determining when the actions
that deserve credit were taken and the second involves
assigning credit to the internal structure of actions (Sut-
ton, 1984).
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Motivation

Consider the problem of learning to balance a pole
that is hinged on a cart (Michie & Chambers, 1968,
Anderson & Miller, 1991). The cart is constrained to run
along a track of finite length and a fixed force can be
applied to push the cart left or right. A controller for the
pole and cart system must make a decision whether to
push left or right at frequent, regular time intervals, for
example, 20 times a second. Suppose that this controller
is capable of learning from trial-and-error. If the pole
falls over, then it must determine which actions it took
helped or hurt its performance. Determining that action
is the problem of temporal credit assignment. Although
the actions are directly responsible for the outcome of a
trial, the internal process for choosing the action indi-
rectly affects the outcome. Assigning credit or blame
to those internal processes that lead to the choice of
action is the structural credit assignment problem. In the
case of pole balancing, the learning system will typically
keep statistics such as how long, on average, the pole
remained balanced after taking a particular action in a
particular state, or after a failure, it may count back and
determine the average amount of time to failure after
taking a particular action in a particular state. Using
these statistics, the learner attempts to determine the
best action for a given state.

The above example is typical of many problems in
»reinforcement learning (Sutton & Barto, 1998), where
an agent interacts with its environment and through
that interaction, learns to improve its performance in
a task. Although Samuel (1959) was the first to use a
form of reinforcement learning in his checkers play-
ing program, Minksy (1961) first articulated the credit
assignment, as follows:

» Using devices that also learn which events are asso-
ciated with reinforcement, i.e, reward, we can build
more autonomous “secondary reinforcement” systems.
In applying such methods to complex problems, one
encounters a serious difficulty — in distributing credit
for success of a complex strategy among the many
decisions that were involved.

The BOXES algorithm of Michie and Chambers (1968)
learned to control a pole balancer and performed credit
assignment but the problem of credit assignment later
became central to reinforcement learning, particularly
following the work of Sutton (1984). Although credit

assignment has become most strongly identified with
reinforcement learning, it may appear in any learning
system that attempts to assess and revise its decision-
making process.

Structural Credit Assignment

The setting for our learning system is that we have an
agent that interacts with an environment. The environ-
ment may be a virtual one, as in game playing, or it may
be physical, as in a robot performing some task. The
agent receives input, possibly through sensing devices,
that allows it to characterize the state of the world.
Somehow, the agent must map these inputs to appro-
priate responses. These responses may change the state
of the world. In reinforcement learning, we assume that
the agent will receive some reward signal after an action
or sequence of actions. Its job is to maximize these
rewards over time.

Structural credit assignment is associated with gen-
eralization over the input space of the agent. For exam-
ple, a game player may have to respond to a very large
number of potential board positions or a robot may
have to respond to a stream of camera images. It is infea-
sible to learn a complete mapping from every possible
input to every possible output. Therefore, a learning
agent will typically use some means of grouping input
signals. In the case of the BOXES pole balancer, Michie
and Chambers discretized the state space. The state is
characterized by the cart’s position and velocity and the
pole’s angle and angular velocity. These parameters cre-
ate a four-dimensional space, which was broken into
three regions (left, center, right) for the pole angle, five
for the angular velocity, and three for the cart posi-
tion and velocity. These choices were arbitrary and other
combinations also worked.

Having divided the input space into non-overlapping
regions, Michie and Chambers associated a push-left
and push-right action with each region, or box. The
learning algorithm maintains a score for each action
and chooses the next action based on that score. BOXES
was an early, and simple example, of creating an internal
representation for mapping inputs to outputs. The prob-
lem with this method is that the structure of the
decision-making system is fixed at the start and the
learner is incapable of changing the representation.
This may be needed if, for example, the subdivisions
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that were chosen do not correspond to a real deci-
sion boundary. A learning system that could adapt its
representation has an advantage, in this case.

The BOXES representation can be thought of
as a lookup table that implements a function that
maps an input to an output. The fixed lookup table
can be replaced by a »function approximator that,
given examples from the desired function, general-
izes from them to construct an approximation of
that function. Different function approximation tech-
niques can be used. For example, Moore’s (1990) func-
tion approximator was a »-nearest-neighbor algorithm,
implemented using »kd-tree to improve efficiency.
Other function approximation methods may also be
used, e.g., Albus CMAC algorithm (1975), »locally
weighted regression (Atkeson, Schaal, & Moore, 1997),
»perceptrons (Rosenblatt, 1962), »multi-layer net-
works (Hinton, Rumelhart, & Williams, 1985), »radial
basis functions, etc. Structural credit assignment is also
addressed in the creation of hierarchical representa-
tions. See »-hierarchical reinforcement learning. Other
approaches to structural credit assignment include
»Value function approximation (Bertsekas & Tsitsik-
lis, 1996) and automatic basis generation (Mahade-
van, 2009). See the entry on MGaussian Processes
for examples of recent Bayesian and kernel method
based approaches to solving the credit assignment
problem.

Temporal Credit Assignment

In the pole balancing example described above, the
learning system receives a signal when the pole has
fallen over. How does it know which actions leading
up to the failure contributed to the fall? The system
will receive a high-level punishment in the event of a
failure or a reward in tasks where there is a goal to
be achieved. In either case, it makes sense to assign
the greatest credit or blame to the most recent actions
and assign progressively less to the preceding actions.
Each time a learning trial is repeated, the value of an
action is updated so that if it leads to another action of
higher value, its weight is increased. Thus, the reward
or punishment propagates back through the sequence
of decisions taken by the system. The credit assign-
ment problem was addressed by Michie and Cham-
bers, in the BOXES, algorithm but many other solutions

have subsequently been proposed. See the entries on
»Q-learning (Watkins, 1989; Watkins & Dayan, 1992)
and »temporal difference learning (Barto, Sutton, &
Anderson, 1983; Sutton, 1984).

Although temporal credit assignment is usually
associated with reinforcement learning, it also appears
in other forms of learning. In »learning by imitation or
»behavioral cloning, an agent observes the actions of
another agent and tries to learn from traces of behav-
iors. In this case, the learner must judge which actions
of the other agent should receive credit or blame. Plan
learning also encounters the same problem (Benson
& Nilsson, 1995; Wang, Simon, & Lehman, 1996), as
does »explanation-based learning (Mitchell, Keller, &
Kedar-Cabelli, 1986; Dejong & Mooney, 1986; Laird,
Newell, & Rosenbloom, 1987).

To illustrate the connection with explanation-based
learning, we use one of the earliest examples of this
kind of learning, Mitchell and Utgoft’s, LEX pro-
gram (Mitchell, Utgoff, & Banerji, 1983). The program
was intended to learn heuristics for performing sym-
bolic integration. Given a mathematical expression that
included an integral sign, the program tried to trans-
form the expression into one they did not. The standard
symbolic integration operators were known to the pro-
gram but not when it is best to apply them. The task
of the learning system was to learn the heuristics for
when to apply the operators. This was done by exper-
imentation. If no heuristics were available, the program
attempted a brute force search. If the search was suc-
cessful, all the operators applied, leading to the success
were assumed to be positive examples for a heuris-
tic, whereas operators applied during a failed attempt
became negative examples. Thus, LEX performed a
simple form of credit assignment, which is typical of
any system that learns how to improve sequences of
decisions.

»Genetic algorithms can also be used to evolve
rules that perform sequences of actions (Holland, 1986).
When situation-action rules are applied in a sequence,
we have a credit assignment problem that is similar to
when we use a reinforcement learning. That is, how do
we know which rules were responsible for success or
failure and to what extent? Grefenstette (1988) describes
a bucket brigade algorithm in which rules are given
strengths that are adjusted to reflect credit or blame.
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This is similar to temporal difference learning except
that in the bucket brigade the strengths apply to rules
rather than states. See Classifier Systems and for a more
comprehensive survey of bucket brigade methods, see
Goldberg (1989).

Transfer Learning

After a person has learned to perform some task, learn-
ing a new, but related, task is usually easier because
knowledge of the first learning episode is transferred to
the new task. Transfer Learning is particularly useful for
acquiring new concepts or behaviors when given only
a small amount for training data. It can be viewed as
a form of credit assignment because successes or fail-
ures in previous learning episodes bias future learning.
Reid (2004, 2007) identifies three forms of »inductive
bias involved in transfer learning for rules: language
bias, which determines what kinds of rules can be con-
structed by the learner; the search bias, which deter-
mines the order in which rules will be searched; and
the evaluation bias, which determines how the qual-
ity of the rules will be assessed. Note that learning
language bias is a form of structural credit assign-
ment. Similarly, where rules are applied sequentially,
evaluation bias becomes temporal credit assignment.
Taylor and Stone (2009) give a comprehensive sur-
vey of transfer in P»reinforcement learning, in which
they describe a variety of techniques for transferring
the structure of an RL task from one case to another.
They also survey methods for transferring evaluation
bias.

Transfer learning can be applied in many differ-
ent settings. Caruana (1997) developed a system for
transferring inductive bias in »neural networks per-
forming multitask learning and more recent research
has been directed toward transfer learning in »Bayesian
Networks (Niculescu-mizil & Caruana, 2007).

See »Transfer Learning and Silver et al. (2005) and
Banerjee, Liu, and Youngblood (2006) for recent work
on transfer learning.

Cross References
» Bayesian Network
» Classifier Systems
» Genetic Algorithms

»Hierarchical Reinforcement Learning
»Inductive Bias

»kd-Trees

»Locally Weighted Regression
»Nearest-Neighbor

» Perceptrons

» Radial Basis Function
»Reinforcement Learning

» Temporal Difference Learning

» Transfer Learning
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I Cross-Language Document
Categorization

Document Categorization is the task consisting in
assigning a document to zero, one or more categories
in a predefined taxonomy. Cross-language document cat-
egorization describes the specific case in which one is
interested in automatically categorize a document in a
same taxonomy regardless of the fact that the docu-
ment is written in one of several languages. For more
details on the methods used to perform this task see
»cross-lingual text mining.

! Cross-Language Information
Retrieval

Cross-language information retrieval (CLIR) is the task
consisting in recovering the subset of a document col-
lection D relevant to a query ¢, in the special case in
which D contains documents written in more than one
language. Generally, it is additionally assumed that the
subset of relevant documents must be returned as an
ordered list, in decreasing order of relevance. For more
details on methods and applications see »cross-lingual
text mining.

! Cross-Language Question
Answering

Question answering is the task consisting in finding in
a document collection the answer to a question. CLCat
is the specific case in which the question and the doc-
uments can be in different languages. For more details
on the methods used to perform this task see »cross-
lingual text mining.
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! Cross-Lingual Text Mining
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Definition

Cross-lingual text mining is a general category denot-
ing tasks and methods for accessing the information
in sets of documents written in several languages, or
whenever the language used to express an information
need is different from the language of the documents.
A distinguishing feature of cross-lingual text mining
is the necessity to overcome some language translation
barrier.

Motivation and Background

Advances in mass storage and network connectivity
make enormous amounts of information easily accessi-
ble to an increasingly large fraction of the world popu-
lation. Such information is mostly encoded in the form
of running text which, in most cases, is written in a lan-
guage different from the native language of the user. This
state of affairs creates many situations in which the main
barrier to the fulfillment of an information need is not
technological but linguistic. For example, in some cases
the user has some knowledge of the language in which
the text containing a relevant piece of information is
written, but does not have a sufficient control of this
language to express his/her information needs. In other
cases, documents in many different languages must be
categorized in a same categorization schema, but man-
ually categorized examples are available for only one
language.

While the automatic translation of text from a nat-
ural language into another (machine translation) is
one of the oldest problems on which computers have
been used, a palette of other tasks has become relevant
only more recently, due to the technological advances
mentioned above. Most of them were originally moti-
vated by needs of government Intelligence commu-
nities, but received a strong impulse from the diftu-
sion of the World-Wide Web and of the Internet in
general.

Tasks and Methods
A number of specific tasks fall under the term of Cross-
lingual text mining (CLTM), including:

e Cross-language information retrieval

e Cross-language document categorization
e Cross-language document clustering

o Cross-language question answering

These tasks can in principle be performed using
methods which do not involve any »Text Mining, but
as a matter of fact all of them have been successfully
approached relying on the statistical analysis of mul-
tilingual document collections, especially parallel cor-
pora. While CLTM tasks differ in many respect, they
are all characterized by the fact that they require to reli-
ably measure the similarity of two text spans written in
different languages. There are essentially two families of
approaches for doing this:

1. In translation-based approaches one of the two text
spans is first translated into the language of the
other. Similarity is then computed based on any
measure used in mono-lingual cases. As a variant,
both text spans can be translated in a third pivot
language.

2. In latent semantics approaches, an abstract vector
space is defined based on the statistical properties
of a parallel corpus (or, more rarely, of a compara-
ble corpus). Both text spans are then represented
as vectors in such latent semantic space, where any
similarity measure for vector spaces can be used.

The rest of this entry is organized as follows: first
Translation-related approaches will be introduced, fol-
lowed by Latent-semantic approaches. Finally, each of
the specific CLTM tasks will be discussed in turn.

Translation-Based Approaches

The simplest approach consists in using a manually-
written machine-readable bilingual dictionary: words
from the first span are looked up and replaced with
words in the second language (see e.g., Zhang & Vines,
2005). Since typically dictionaries contain entries for
“citation forms” only (e.g., the singular for nouns, the
infinitive for verbs etc.), words in both spans are prelim-
inarily lemmatized, i.e., replaced with the corresponding
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citation form. In all cases when the lexica and morpho-
logical analyzers required to perform lemmatization are
not available, a frequently adopted crude alternative
consists in stemming (i.e., truncating by taking away a
suffix) both the words in the span to be translated and in
the corresponding side in the lexicon. Some languages
(e.g., Germanic languages) are characterized by a very
productive compounding: simpler words are connected
together to form complex words. Compound words are
rarely in dictionaries as such: in order to find them it
is first necessary to break compounds into their ele-
ments. This can be done based on additional linguistic
resources or by means of heuristics, but in all cases it
is a challenging operation in itself. If the method used
afterward to compare the two spans in the target lan-
guage can take weights into account, translations are
“normalized” in such a way that the cumulative weight
of all translations of a word is the same regardless of
the number of alternative translations. Most often, the
weight is simply distributed uniformly among all alter-
native translations. Sometimes, only the first translation
for each word is kept, or the first two or three.

A second approach consists in extracting a bilin-
gual lexicon from a parallel corpus instead of using a
manually-written one. Methods for extracting proba-
bilistic lexica look at the frequencies with which a word s
in one language was translated with a word ¢ to estimate
the translation probability p(#|s). In order to determine
which word is the translation of which other word in
the available examples, these examples are preliminarily
aligned, first at the sentence level (to know what sen-
tence is the translation of what other sentence) and then
at the word level. Several methods for aligning sentences
at the word level have been proposed, and this prob-
lem is a lively research topic in itself (see Brown, Della
Pietra, Della Pietra, & Mercer, 1993 for a seminal paper).

Once a probabilistic bilingual dictionary is available,
it can be used much in the same way as human-written
dictionaries, with the notable difference that the esti-
mated conditional probabilities provide a natural way to
distribute weight across translations. When the example
documents used for extracting the bilingual dictionar-
ies are of the same style and domain as the text spans to
be translated, this can result in a significant increase in
accuracy for the final task, whatever this is.

It is often the case that a parallel corpus sufficiently
similar in topic and style to the spans to be translated
is unavailable, or it is too small to be used for reliably

estimating translation probabilities. In such cases, it can
be possible to replace or complement the parallel cor-
pus with a “comparable” corpus. A comparable corpus
is a pair of collections of documents, one in each of the
languages of interest, which are known to be similar in
content, although not the translation of one another.
A typical case might be two sets of articles from cor-
responding sections of different newspapers collected
during a same period of time. If some additional bilin-
gual seed dictionary (human-written or extracted from
a parallel corpus) is also available, then the compara-
ble corpus can be leveraged as well: a word ¢ is likely
to be the translation of a word s if it turns out that
the words often appearing near s are translations of the
words often appearing near f. Using this observation it
is thus possible to estimate the probability that ¢ is a
valid translation of s even though they are not contained
in the original dictionary. Most approaches proceed by
associating with s a context vector. This vector, with one
component for each word in the source language, can
simply be formed by summing together the count his-
tograms of the words occurring within a fixed window
centered in all occurrences of s in the corpus, but is often
constructed using statistically more robust association
measures, such as mutual information. After a possible
normalization step, the context vector CV (s) is trans-
lated using the seed dictionary into the target language.
A context vector is also extracted from the corpus for all
target words t. Eventually, a translation score between s
and ¢ is computed as (Tr(CV (s)), CV (¢)):

S(s,t) ={(CV(s), Tr(CV(1)))

> a(ssa(tt'),

(s',t")eD

where a is the association score used to construct
the context vector. While effective in many cases, this
approach can provide inaccurate similarity values when
polysemous words and synonyms appear in the corpus.
To deal with this problem, Gaussier, Renders, Matveeva,
Goutte, and Déjean (2004) propose the following
extension:

S(st)= > (O a(ss")a(ss"))

(s',t")eD ¢

(S a(t', ¢")a(t, ")),

Hr

which is more robust in cases when the entries in
the seed bilingual dictionary do not cover all senses
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actually present in the two sides of the comparable
corpus.

Although these methods for building bilingual dic-
tionaries can be (and often are) used in isolation, it can
be more effective to combine them.

Using a bilingual dictionary directly is not the
only way for translating a span from one language
into another. A second alternative consists in using a
machine translation (MT) system. While the MT sys-
tem, in turn, relies on a bilingual dictionary of some
sort, it is in general in the position of leveraging con-
textual clues to select the correct words and put them
in the right order in the translation. This can be more
or less useful depending on the specific task. MT sys-
tems fall, broadly speaking, into two classes: rule-based
and statistical. Systems in the first class rely on sets of
hand-written rules describing how words and syntactic
structures should be translated. Statistical machine
translation (SMT) systems learn this mapping by per-
forming a statistical analysis of a parallel corpus. Some
authors (e.g., Savoy & Berger, 2005) also experimented
with combining translation from multiple machine
translation systems.

Latent Semantic Approaches

In CLTM, Latent Semantic approaches rely on some
interlingua (language-independent) representation.
Most of the time, this interlingua representation is
obtained by linear or non-linear statistical analysis tech-
niques and more specifically »dimensionality reduc-
tion methods with ad-hoc optimization criterion and
constraints. But, others adopt a more manual approach
by exploiting multilingual thesauri or even multilingual
ontologies in order to map textual objects towards a
list - possibly weighted - of interlingua concepts.

For any textual object (typically a document or a
section of document), the interlingua concept represen-
tation is derived from a sequence of operations that
encompass:

1. Linguistic preprocessing (as explained in previous
sections, this step amounts to extract the rele-
vant, normalized “terms” of the textual objects, by
tokenisation, word segmentation/decompounding,
lemmatisation/stemming, part-of-speech tagging,
stopword removal, corpus-based term filtering,
Noun-phrase extractions, etc.).

2. Semantic enrichment and/or monolingual dimen-
sionality reduction.
3. Interlingua semantic projection.

A typical semantic enrichment method is the gen-
eralized vector space model, that adds related terms -
or neighbour terms - to each term of the textual
object, neighbour terms being defined by some co-
occurrence measures (for instance, mutual infor-
mation). Semantic enrichment can alternatively be
achieved by using (monolingual) thesaurus, exploit-
ing relationships such as synonymy, hyperonymy and
hyponymy. Monolingual dimensionality reduction con-
sists typically in performing some latent semantic
analysis (LSA), some form of principal component
analysis on the textual object/term matrix. Dimension-
ality reduction techniques such as LSA or their dis-
crete/probabilistic variants such as probabilistic seman-
tic analysis (PLSA) and latent dirichlet allocation (LDA)
offer to some extent a semantic robustness to deal with
the effects of polysemy/synonymy, adopting a language-
dependent concept representation in a space of dimen-
sion much smaller than the size of the vocabulary in a
language.

Of course, steps (1) and (2) are highly language-
dependent. Textual objects written in different lan-
guages will not follow the same linguistic processing
or semantic enrichment/ dimensionality reduction. The
last step (3), however, aims at projecting textual objects
in the same language-independent concept space, for
any source language. This is done by first extracting
these common concepts, typically from a parallel cor-
pus that offers a natural multiple-view representation
of the same objects. Starting from these multiple-view
observations, common factors are extracted through
the use of canonical correlation analysis (CCA), cross-
language latent semantic analysis, their kernelized
variants (eg. Kernel-CCA) or their discrete, probabilis-
tic extensions (cross-language latent dirichlet alloca-
tion, multinomial CCA, ...). All these methods try to
discover latent factors that simultaneously explain as
much as possible the “intra-language” variance and the
“inter-language” correlation. They differ in the choice
of the underlying distributions and how they precisely
define and combine these two criteria. The following
subsections will describe them in more details.

As already emphasized, CLTM mainly relies on
defining appropriate similarities between textual objects
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expressed in different languages. Numerous catego-
rization, clustering and retrieval algorithms focus on
defining efficient and powerful measures of similar-
ity between objects, as strengthened recently by the
development of kernel methods for textual informa-
tion access. We will see that the (linear) statistical
algorithms used for performing steps (2) and (3) can
most of the time be embedded into one valid (Mercer)
kernel, so that we can very easily obtain non-linear vari-
ants of these algorithms, just by adopting some standard
non-linear kernels.

This amounts to concatenate the vectorial representa-
tion of each view of the objects of the parallel collec-
tion (typically, objects are aligned sentences), and then
to perform standard singular value decomposition of
the global object/term matrix. Equivalently, defining
the kernel similarity matrix between all pairs of multi-
view objects as the sum of the mono-lingual textual
similarity matrices, this amounts to perform the eigen-
value decomposition of the corresponding kernel Gram
matrix, if a dual formulation is adopted. The number
of eigenvalues/eigenvectors that are retained to define
the latent factors and the corresponding projections is
typically from several hundreds of components to sev-
eral thousands, still much fewer than the original sizes
of the vocabulary. Note that this process does not really
control the formation of interlingua concepts: nothing
prevents the method from extracting factors that are
linear combination of terms in one language only.

The extraction of interlingua components is realised by
using LDA to model the set of parallel objects, by impos-
ing the same proportion of components (topics) for all
views of the same object. This is represented in Fig. 1.
LDA is performing some form of clustering, with
a predefined number of components (K) and with the
constraint that the two views of the same object belongs
to the clusters with the same membership values. This
results in 2.K component profiles that are then used for
“folding in” (projecting) new documents by launching
some form of EM to derive their posterior probabilities
to belong to each of the language-independent compo-
nent. The similarity between two documents written in

different languages is obtained by comparing their pos-
terior distribution over these latent classes. Note that
this approach could easily integrate supervised topic
information and provides a nice framework for semi-
supervised interlingua concept extraction.

The Primal Formulation CCA is a standard statistical
method to perform multi-block multivariate analysis,
the goal being to find linear combinations of variables
for each block (i.e., each language) that are maximally
correlated. In other words, CCA is able to enforce the
commonality of latent concept formations by extract-
ing maximally correlated projections. Starting from a
set of paired views of the same objects (typically, aligned
sentences of a parallel corpus) in languages L1 and L2,
the algebraic formulation of this optimization prob-
lem leads to a generalized eigenvalue problem of size
(ny + ny), where n; and n, are the sizes of the vocab-
ularies in L1 and L2 respectively. For obvious scalability
reasons, the dual - or kernel - formulation (of size N,
the number of paired objects in the training set) is often
preferred.

Kernel Canonical Correlation Analysis Basically, Kernel
Canonical Correlation Analysis amounts to do CCA on
some implicit, but more complex feature space and to
express the projection coeflicients as linear combination
of the training paired objects. This results in the dual
formulation, which is a generalized eigenvalue/vector

Z " Z,
W, W,
B4 » O« Bo
N

seg

Cross-Lingual Text Mining. Figure 1. Latent dirichlet

allocation of a parallel corpus
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problem of size 2N, that involves only the monolingual
kernel gram matrices K; and K, (matrices of mono-
lingual textual similarities between all pairs of objects
in the training set in language L1 and L2 respectively).
Note that it is easy to show that the eigenvalues go by
pairs: we always have two symmetrical eigenvalues +A
and —A. This kernel formulation has the advantage to
include any text specific prior properties in the kernel
(e.g., use of N-gram kernels, word-sequence kernels,
and any semantically-smoothed kernel). After extrac-
tion of the first k generalized eigenvalues/eigenvectors,
the similarity between any pair of test objects in lan-
guages L1 and L2 can be computed by using projection
matrices composed of extracted eigenvector as well as
the (monolingual) kernels of the test objects with the
training objects.

Regularization and Partial Least Squares Solution When
the number of training examples (N) is less than n; and
n; (the dimensions of the monolingual feature spaces),
the eigenvalue spectrum of the KCCA problem has
generally two null eigenvalues (due to data centering),
(N-1) eigenvalues in +1 and (N —1) eigenvalues in -1, so
that, as such, the KCCA problem only results in trivial
solutions and is useless. When using kernel methods,
the case (N < ny,m;) is frequent, so that some regu-
larization scheme is needed. One way of realizing this
regularization is to resort to finding the directions of
maximum covariance (instead of correlation): this can
be considered as a partial least squares (PLS) problem,
whose formulation is very similar to the CCA prob-
lem. Adopting a mixed criterion CCA/PLS (trying to
maximize a combination of covariance and correla-
tion between projections) turns out to both avoid over-
fitting (or spurious solutions) and to enhance numerical
stability.

Approximate Solutions Both CCA and KCCA suffer
from a lack of scalability, due to the fact the complex-
ity of generalized eigenvalue/vector decomposition is
O(N?) for KCCA or O(min(ny,n,)*) for CCA. Asitcan
be shown that performing a complete KCCA (or KPLS)
analysis amounts to do first complete PCAS, and then a
linear CCA (or PLS) on the resulting new projections,
it is obvious that we could reduce the complexity by
working on a reduced-rank approximation (incomplete

KPCA) of the kernel matrices. However, the implicit
projections derived from incomplete KPCA may be not
optimal with respect to cross-correlation or covariance
criteria. Another idea to decrease the complexity is to
perform some incomplete Cholesky decomposition of
the (monolingual) kernel matrices K; and K, (that is
equivalent to partial Gram-Schmit orthogonalisation in
the feature space): K; = G,.G! and K; = G,.G5, with G;
of rank k < N. Considering G; as the new representa-
tion of the training data, KCCA now reduces to solving
a generalized eigenvalue problem of size 2.k.

Specific Applications

The previous sections illustrated a number of different
ways of solving the core problem of cross-language text
mining: quantifying the similarity between two spans
of text in different languages. In this section we turn
to describing some actual applications relying on these
methods.

Given a collection of documents in several languages
and a single query, the CLIR problem consists in pro-
ducing a single ranking of all documents according to
their relevance to the query. CLIR is in particular useful
whenever a user has some knowledge of the languages
in which documents are written, but not enough to
express his/her information needs in those languages
by means of a precise query. Sometimes CLIR engines
are coupled with translation tools to help the user
access the content of relevant documents written in lan-
guages unknown to him/her. In this case document
collections in an even larger number of languages can
be effectively queried.

It is probably fair to say that the vast majority of
the CLIR systems use a translation-based approach. In
most cases it is the query which is translated in all lan-
guages before being sent to monolingual search engines.
While this limits the amount of translation work that
needs be done, it requires doing it on-line at query
time. Moreover, when queries are short it can be dif-
ficult to translate them correctly, since there is little
context to help identifying the correct sense in which
words are used. For these reasons several groups also
proposed translating all documents at indexing time
instead. Regardless of whether queries or documents
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are translated, whenever similarity scores between (pos-
sibly translated) queries and (possibly translated) doc-
uments are not directly comparable, all methods then
face the problem of merging multiple monolingual
rankings in a single multilingual ranking.

Research in CLIR and cross-language question
answering (see below) has been significantly stimu-
lated by at least three government-sponsored evaluation
campaigns:

e The NII Test Collection for IR Systems (NTCIR)
(http://research.nii.ac.jp/ntcir/), running yearly since
1999, focusing on Asian languages (Japanese,
Chinese, Korean) and English.

e The Cross-Language Evaluation Forum (CLEF)
(http://www.clef-campaign.org), running yearly since
2000, focusing on European languages.

o A cross-language track at the Text Retrieval Con-
ference (TREC) (http://trec.nist.gov/), which was
run until 2002, focused on querying documents in
Arabic using queries in English.

The respective websites are ideal starting points for any
further exploration on the subject.

Question answering is the task of automatically finding
the answer to a specific question in a document col-
lection. While in practice this vague description can be
instantiated in many different ways, the sense in which
the term is mostly understood is strongly influenced by
the task specification formulated by the National Insti-
tute of Science and Technology (NIST) of the United
States for its TREC evaluation conferences (see above).
In this sense, the task consists in identifying a text snip-
pet, ie., a substring, of a predefined maximal length
(e.g., 50 characters, or 200 characters) within a docu-
ment in the collection containing the answer. Different
classes of questions are considered:

e Questions around facts and events.

e Questions requiring the definition of people, things
and organizations.

e Questions requiring as answer lists of people, objects
or data.

Most proposals for solving the QA problem proceed
by first identifying promising documents (or document

segments) by using information retrieval techniques
treating the question as a query, and then performing
some finer-grained analysis to converge to a sufficiently
short snippet. Questions are classified in a hierarchy of
possible “question types.” Also, documents are prelimi-
narily indexed to identify elements (e.g., person names)
that are potential answers to questions of relevant types
(e.g., “Who” questions).

Cross-language question answering (CLQA) is the
extension of this task to the case where the collection
contains documents in a language different than the lan-
guage of the question. In this task a CLIR step replaces
the monolingual IR step to shortlist promising docu-
ments. The classification of the question is generally
done in the source language.

Both CLEF and NTCIR (see above) organize cross-
language question answering comparative evaluations
on an annual basis.

Cross-language categorization tackles the problem of
categorizing documents in different languages in a same
categorization scheme.

The vast majority of document categorization sys-
tems rely on machine learning techniques to automat-
ically acquire the necessary knowledge (often referred
to as a model) from a possibly large collection of man-
ually categorized documents. Most often the model is
based on frequency counts of words, and is thus intrin-
sically language-dependent. The most direct way to per-
form categorization in different languages would consist
in manually categorizing a sufficient amount of docu-
ments in all languages of interest and then train a set
of independent categorizer. In some cases, however, it
is impractical to manually categorize a sufficient num-
ber of documents to ensure accurate categorization in
all languages, while it can be easier to identify bilingual
dictionaries or parallel (or comparable) corpora for the
language pairs and in the application domain of inter-
est. In such cases it is then preferable to obtain manually
categorized documents only for a single language A and
use them to train a monolingual categorizer. Any of
the translation-based approaches described above can
then be used to translate a document originally in lan-
guage B — or most often its representation as a bag of
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words— into language A. Once the document is trans-
lated, it can be categorized using the monolingual A
system.

As an alternative, latent-semantics approaches can
be used as well. An existing parallel corpus can be used
to identify an abstract vector space common to A and B.
The manually categorized documents in A can then be
represented in this space, and a model can be learned
which operates directly on this latent-semantic repre-
sentation. Whenever a document in B needs be catego-
rized, it is first projected in the common semantic space
and then categorized using the same model.

All these considerations carry unchanged to the
cross-language clustering task, which consists in identi-
tying subsets of documents in a multilingual document
collection which are mutually similar to one another
according to some criterion. Again, this task can be
effectively solved by either translating all documents
into a single language or by learning a common seman-
tic space and performing the clustering task there.

While CLCat and Clustering are relevant tasks in
many real-world situations, it is probably fair to say that
less effort has been devoted to them by the research
community than to CLIR and CLQA.

Recommended Reading
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Cross-Validation

Definition
Cross-validation is a process for creating a distribu-
tion of pairs of P-training and P test sets out of a single

»data set. In cross validation the data are partitioned
into k subsets, S;...Sk, each called a fold. The folds are
usually of approximately the same size. The learning
algorithm is then applied k times, for i = 1 to k, each
time using the union of all subsets other than §; as the
»training set and using S; as the »-test set.

Cross References
» Algorithm Evaluation
» Leave-One-Out Cross-Validation
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Synonyms
Continual learning; Lifelong learning; Sequential induc-
tive transfer

Definition

Cumulative learning (CL) exploits knowledge acquired
on prior tasks to improve learning performance on
subsequent related tasks. Consider, for example, a CL
system that is learning to play chess. Here, one might
expect the system to learn from prior games concepts
(e.g., favorable board positions, standard openings, end
games, etc.) that can be used for future learning. This
is in contrast to base learning (Vilalta & Drissi, 2002)
in which a fixed learning algorithm is applied to a sin-
gle task and performance tends to improve only with
more exemplars. So, in CL there tends to be explicit
reuse of learned knowledge to constrain new learn-
ing, whereas base learning depends entirely upon new
external inputs.

Relevant techniques for CL operate over multiple
tasks, often at higher levels of abstraction, such as
new problem space representations, task-based selec-
tion of learning algorithms, dynamic adjustment of
learning parameters, and iterative analysis and modi-
fication of the learning algorithms themselves. Though
actual usage of this term is varied and evolving, CL typi-
cally connotes sequential inductive transfer. It should
be noted that the word “inductive” in this connotation
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qualifies the transfer of knowledge to new tasks, not the
underlying learning algorithms.

Related Terminology

The terms “meta-learning” and “learning to learn”
are sometimes used interchangeably with CL. How-
ever each of these concepts has a specific relationship
to CL.

> Meta-learning (Brazdil et al, 2009; Vilalta &
Drissi, 2002) involves the application of learning algo-
rithms to meta-data, which are abstracted represen-
tations of input data or learning system knowledge.
In the case that abstractions of system knowledge are
themselves learning algorithms, meta-learning involves
assessing the suitability of these algorithms for previ-
ous tasks and, on that basis, selecting algorithms for
new tasks (see entry on “meta-learning”). In general,
the sharing of abstracted knowledge across tasks in a
CL system implies the use of meta-learning techniques.
However, the converse is not true. Meta-learning can
and does occur in learning systems that do not accu-
mulate and transfer knowledge across tasks.

Learning to learn is a synonym for inductive trans-
fer. Thus, learning to learn is more general than CL.
Though it specifies the application of knowledge learned
in one domain to another, it does not stipulate whether
that knowledge is accumulated and applied sequentially
or shared in a parallel learning context.

Motivation and Background

Traditional »supervised learning approaches require
large datasets and extensive training in order to gener-
alize to new inputs in a single task. Furthermore, tra-
ditional (non-CL) »reinforcement learning approaches
require tightly constrained environments to ensure a

tractable state space. In contrast, humans are able to
generalize across tasks in dynamic environments from
brief exposure to small datasets. The human advantage
seems to derive from the ability to draw upon prior
task and context knowledge to constrain hypothesis
development for new tasks. Recognition of this dispar-
ity between human learning and traditional machine
learning had led to the pursuit of methods that seek
to emulate the accumulation and exploitation of task-
based knowledge that is observed in humans. A coarse
evolution of this work is depicted in Fig. 1.

History

Advancements in CL have resulted from two classes
of innovation: the development of techniques for
»inductive transfer and the integration of those tech-
niques into autonomous learning systems.

Alan Turing (1950) was the first to propose a cumu-
lative learning system. His 1950 paper is best remem-
bered for the imitation game, later known as the Turing
test. However, the final sections of the paper address the
question of how a machine could be made sufficiently
complex to be able to pass the test. He posited that
programming it would be too difficult a task. There-
fore, it should be instructed as one might teach a child,
starting with simple concepts and working up to more
complex ones.

Banerji (1964) introduced the use of predicate logic
as a description language for machine learning. Thus,
Banerji was one of the earliest advocates of what would
later become »ILP. His concept description language
allowed the use of background knowledge and there-
fore was an extensible language. The first implementa-
tion of a cumulative learning system based on Baner-
ji’s ideas was Cohen’s CONFUCIUS (Cohen, 1978;

Supervised Learning

Inductive

Sequential/
Hybrid:

Parallel:

Bias

Inductive MULTI-TASK LEARNING
Transfer

CUMULATIVE

LEARNING

Reinforcement Learning

Cumulative Learning. Figure 1. Evolution of cumulative learning
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Cohen & Sammut, 1982). In this work, an instructor
teaches the system concepts that are stored in a long-
term memory. When examples of a new concept are
seen, their descriptions are matched against stored con-
cepts, which allow the system to re-describe the exam-
ples in terms of the background knowledge. Thus, as
more concepts are accumulated, the system is capa-
ble of describing complex objects more compactly than
if it had not had the background knowledge. Com-
pact representations generally allow complex concepts
to be learned more efficiently. In many cases, learning
would be intractable without the prior knowledge. See
the entries on »Inductive Logic Programming, which
describe the use of background knowledge further.

Independent of the research in symbolic learn-
ing, much of the »inductive transfer research that
underlies CL took root in Partificial neural network
research, a traditional approach to »supervised learn-
ing. For example, Abu-Mostafa (1990) introduced the
notion of reducing the hypothesis space of a neural
network by introducing “hints” either as hard-wired
additions to the network or via examples designed
to teach a particular invariance. The task of a neu-
ral network can be thought of as the determination
of a function that maps exemplars into a classification
space. So, in this context, hints constitute an artic-
ulation of some aspect of the target mapping func-
tion. For example, if a neural network is tasked with
mapping numbers into primes and composites, one
“hint” would be that all even numbers (besides 2)
are composite. Leveraging such a priori knowledge
about the mapping function may facilitate conver-
gence on a solution. An inherent limitation to neu-
ral networks, however, is their immutable architecture,
which does not lend itself to the continual accumu-
lation of knowledge. Consequently, Ring (1991) intro-
duced a neural network that constructs new nodes on
demand in a reinforcement learning context in order
to support ongoing hierarchical knowledge acquisi-
tion and transfer. In this model, nodes called “bions”
correspond simultaneously to the enactment and per-
ception of a single behavior. If two bions are acti-
vated in sequence repeatedly, a new bion is created to
join the coincident pair and represent their collective
functionality.

Contemporaneously, Pratt, Mostow, and Kamm
(1991) investigated the hypothesis that knowledge

acquired by one neural network could be used to assist
another neural network learn a related task. In the
speech recognition domain, they trained three separate
networks, each corresponding to speech segments of a
different length, such that each network was optimized
to learn certain types of phonemes. They then demon-
strated that a direct transfer of information encoded
as network weights from these three specialized net-
works to a single, combined speech recognition net-
work resulted in a tenfold reduction in training epochs
for the combined network compared with the number
of training epochs required when no knowledge was
transferred. This was one of the first empirical results
in neural network-based transfer learning. Caruana
(1993) extended this work to demonstrate the perfor-
mance benefits associated with the simultaneous trans-
fer of »inductive bias in a “Multitask Learning” (MTL)
methodology. In this work, Caruana hypothesized that
training the same neural network simultaneously on
related tasks would naturally induce additional con-
straints on learning for each individual task. The intu-
ition was that converging on a mapping in support of
multiple tasks with shared representations might best
reveal aspects of the input that are invariant across
tasks, thus obviating within-task regularities, which
might be less relevant to classification. Those empiri-
cal results are supported by Baxter (1995) who proved
that the number of examples required by a representa-
tion learner for learning a single task is an inverse linear
function of the number of simultaneous tasks being
learned.

Though the innovative underpinnings of induc-
tive transfer that critically underlie CL evolved in a
supervised learning context, it was the integration of
those methods with classical reinforcement learning
that has led to current models of CL. Early integra-
tion of this type comes from Thrun and Mitchell (1995),
who applied an extension of explanation-based learn-
ing (EBL), called explanation-based neural networks
(EBNN) (Mitchell & Thrun, 1993), to an agent-based
“lifelong learning framework.” This framework provides
for the acquisition of different control policies for dif-
ferent environments and reward functions. Since the
robot actuators, sensors, and the environment (largely)
remain invariant, this framework supports the use of
knowledge acquired from one control problem to be
applied to another. By using EBNN to allow learning
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from previous control problems to constrain learning
on new control problems, learning is accelerated over
the lifetime of the robot.

More recently, Silver and Mercer (2002) introduced
a hybrid model that involves a combination of paral-
lel and sequential inductive transfer in an autonomous
agent framework. The so-called task rehearsal method
(TRM) uses MTL to combine new training inputs with
relevant exemplars that are generated from prior task
knowledge. Thus, inductive bias is achieved by training
the neural networks on new tasks while simultaneously
rehearsing learned task knowledge.

Structure of the Learning System

CL is characterized by systems that use prior knowl-
edge to bias future learning. The canonical interpre-
tation is that knowledge transfer occurs at the task
level. Although this description encompasses a broad
research space, it is not boundless. In particular, CL sys-
tems must be able to (1) retain knowledge and (2) use
that knowledge to restrict the hypothesis space for new
learning. Nonetheless, learning systems can vary widely
across numerous orthogonal dimensions and still meet
these criteria.

Toward a CL Specification

Recognizing the empirical utility of a more specific
delineation of CL systems, Silver and Poirier (2005)
introduced a set of functional requirements, classifica-
tion criteria, and performance specifications that char-
acterize more precisely the scope of machines capable of
lifelong learning. Any system that meets these require-
ments is considered a machine lifelong learning (ML3)
system. A general CL architecture that conforms to the
ML3 standard is depicted in Fig. 2.

Two basic memory constructs are typical of CL sys-
tems. Long term memory (LTM) is required for storing
domain knowledge (DK) that can be used to bias new
learning. Short term memory (STM) provides a work-
ing memory for building representations and testing
hypotheses associated with new task learning. Most of
the ML3 requirements specify the interplay of these
constructs.

LTM and STM are depicted in Fig. 2, along with
a comparison process, an assessment process, and the
learning environment. In this model, the comparison

process evaluates the training input in the context of
LTM to determine the most relevant domain knowl-
edge that can be used to constrain short term learning.
The comparison process also determines the weight
assigned to domain knowledge that is used to bias short
term learning. Once the rate of performance improve-
ment on the primary task falls below a threshold the
assessment process compares the state of STM to the
environment to determine which domain knowledge to
extract and store in LTM.

Classification of CL Systems

The simplicity of the architecture shown in Fig. 2 belies
the richness of the feature space for CL systems. The
following classification dimensions are derived largely
from the ML3 specification. This list includes both qual-
itative and quantitative dimensions. They are presented
in three overlapping categories: architectural features,
characteristics of the knowledge base, and learning
capabilities.

The following architectural dimensions for a CL sys-
tem range from paradigm choices to low-level interface
considerations.

Learning paradigm — The learning paradigm(s) may
include supervised learning (e.g., neural network, SVM,
ILP, etc.), unsupervised learning (e.g., clustering), rein-
forcement learning (e.g., automated agent), or some
combination thereof. Figure 2 depicts a general archi-
tecture with processes that are common across these

’Comparison Process‘

State
Relevant DK

s |

State
Extracted
DK
Assessment Process

Cumulative Learning. Figure 2. Typical CL system




Cumulative Learning

253

learning paradigms, and which could be elaborated to
reflect the details of each.

Task order — CL systems may learn tasks sequen-
tially (Thrun & Mitchell, 1995), in parallel (e.g., MTL
(Caruana, 1993)), or via a hybrid methodology (e.g.,
TRM (Silver & Mercer, 2002)). One hybrid approach is
to engage in practice (i.e., revisiting prior learned tasks).
Transferring knowledge between learned tasks through
practice may serve to improve generalization accuracy.
Task order would be reflected in the sequence of events
within and among process arrows in the Fig. 2 archi-
tecture. For example, a system may alternate between
processing new exemplars and “practicing” with old,
stored exemplars.

Transfer method — Knowledge transfer can also be
representational or functional. Functional transfer pro-
vides implicit pressure from related training exemplars.
For example, the environmental input in Fig. 2 may take
the form of training exemplars drawn randomly from
data representing two related tasks, such that learning
to classify exemplars from one task implicitly constrains
learning on the other task. Representational knowledge
transfer involves the direct or indirect (Pratt et al., 1991)
assignment of a hypothesis representation. A direct
inductive transfer entails the assignment of an original
hypothesis representation, such as a vector of trained
neural network activation weights. This might take the
form of a direct injection to LTM in Fig. 2. Indirect
transfer implies that some level of abstraction analysis
has been applied to the hypothesis representation prior
to assignment.

Learning stages — A learning system may imple-
ment learning in a single stage or in a series of stages.
An example of a two-stage system is one that waits
to initiate the long-term storage of domain knowledge
until after primary task learning in short-term memory
is complete. Like task order, learning stages would be
reflected in the sequence of events within and among
process arrows in the Fig. 2 architecture. But in this case,
ordering pertains to the manner in which learning is
staged across encoding processes.

Interface cardinality — The interface cardinality can
be fixed or variable. Fixing the number of inputs and
outputs has the advantage of providing a consistent
interface without posing restrictions on the growth of
the internal representation.

Data type — The input and output data types can
be fixed or variable. A type-flexible system can produce
both categorical and scalar predictions.

Scalability - CL systems may or may not scale on a
variety of dimensions including inputs, outputs, train-
ing examples, and tasks.

This category pertains to the long-term storage of
learned knowledge. Thus, the following CL dimen-
sions characterize knowledge representation, storage,
and retrieval.

Knowledge representation — Stored knowledge can
manifest as functional or representational. Functional
knowledge retention involves the storage of specific
exemplars or parameter values, which tends to be more
accurate, whereas representational knowledge retention
involves the storage of hypotheses derived from train-
ing on exemplars, which has the advantage of storage
economy.

Retention efficacy - The efficacy of long term
retention varies across CL systems. Effective retention
implies that only domain knowledge with an accept-
able level of accuracy is retained so that errors aren’t
propagated to future hypotheses. A related considera-
tion is whether or not the consolidation of new domain
knowledge degrades the accuracy of current or prior
hypotheses.

Retention efficiency — The retention efficiency of long
term memory can vary according to both economy of
representation and computationally efficiency.

Indexing method - The input to the comparison pro-
cess used to select appropriate knowledge for biasing
new learning may simply be exemplars (as provided by
LTM in Fig. 2) or may take a representational form (e.g.,
a vector of neural network weights).

Indexing efficiency — CL systems vary in terms of the
speed and accuracy with which they can identify related
prior knowledge that is suitable for inductive transfer
during short term learning. The input to this selection
process is the indexing method.

Meta-knowledge — CL systems differentially exhibit
the ability to abstract, store, and utilize meta-knowledge,
such as characteristics of the input space, learning sys-
tem parameter values, etc.
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Cumulative Learning. Table 1 CL System Dimensions

Architecture

Learning paradigm

Supervised learning

Reinforcement learning

Unsupervised learning

v Hybrid

Task order

Sequential

Parallel

v Revisit (practice)

Hybrid

Transfer method

Functional

Representational — direct

Representational — indirect

Learning stages

Interface cardinality

Data type

Scalability

v’ Single (computational retention efficiency)
Multiple

v Fixed

Variable

Fixed

Variable

v Inputs

v~ Outputs

V" Exemplars

v~ Tasks

Knowledge

Representation

Functional

Representational - disjoint

v Representational - continuous

Retention efficacy

v Improves prior task performance

v Improves new task performance

Retention efficiency

v Space (memory usage)

v Time (computational processing)

Indexing method

v~ Deliberative - functional

V" Deliberative - representational

Reflexive
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Cumulative Learning. Table 1 (Continued)

Indexing efficiency

v  Time < O(n®), ¢ > 1(n = tasks)

Meta-knowledge

v’ Probability distribution of input space

Learning curve

Error rate

Learning Agency

Single learning method

Task-based selection of learning method

Utility

Task awareness

Bias modulation

Single learning method

Task-based selection of learning method
Task boundary identification (begin/end)
v Estimated sample complexity

v Number of task exemplars

v'  Generalization accuracy of retained
knowledge

v Relatedness of retained knowledge

Learning efficacy

v’ Generalization | bias > generalization | no
bias

Learning efficiency

v Time | bias < time | no bias

While all of the dimensions listed herein impact learn-
ing, the following dimensions correspond to specific
learning capabilities or learning performance metrics.

Agency — The agency of a learning system is the
degree of sophistication exhibited by its top-level con-
troller. For example a learning system may be on the
low end of the agency continuum if it always applies
one predetermined learning method to one task or on
the high end if it selects among many learning methods
as a function of the learning task. One might imag-
ine, for example, two process diagrams such as the one
depicted in Fig. 2, that share the same LTM, but are
otherwise distinct and differentially activated by a gov-
erning controller as a function of qualitative aspects of
the input.

Utility - Domain knowledge acquisition can be
deliberative in the sense that the learning system
decides which hypotheses to incorporate based upon
their estimated utility, or reflexive, in which case all

hypotheses are stored irrespective of utility
considerations.

Task awareness — Task awareness characterizes the
systemy’s ability to identify the beginning and end of a
new task.

Bias modulation — A CL system may have the abil-
ity to determine the extent to which short-term learning
would benefit from inductive transfer and, on that basis,
assign a relevant weight. The depth of this analysis can
vary and might consider factors such as the estimated
sample complexity, number of exemplars, the general-
ization accuracy of retained knowledge, and relatedness
of retained knowledge.

Learning efficacy - A measure of learning efficacy
is derived by comparing generalization performance in
the presence and absence of an inductive bias. Learn-
ing is considered effective when the application of an
inductive bias results in greater generalization perfor-
mance on the primary task than when the bias is
absent.
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Learning efficiency — Similarly, learning efficiency is
assessed by comparing the computational time needed
to generate a hypothesis in the presence and absence
of an inductive bias. Lower computational time in the
presence of bias signifies greater learning efficiency.

The Research Space

Table 1 summarizes the classification dimensions, pro-
viding an overview of the research space, an eval-
uative framework for assessing and contrasting CL
approaches, and a generative framework for identifying
new areas of exploration. In addition, checked items in
the Values column indicate ML3 guidance. Specifically,
an ideal ML3 system would correspond functionally to
the called-out items and performance criteria. How-
ever, Silver and Poirier (2005) allude to the fact that it
would be nigh impossible to generate a strictly com-
pliant ML3 system since some of the recommended
criteria do not coexist easily. For example, effective and
efficient learning are mutually incompatible because
they require different forms of knowledge transfer.
Nonetheless, a CL system that falls within scope of the
majority of the ML3 criteria would be well-positioned
to exhibit lifelong learning behavior.

Future Directions
Emergent work (Oblinger, 2006; Swarup, Lakkaraju,
Ray, & Gasser, 2006) in instructable computing has
given rise to a new CL paradigm that is largely ML3
compliant and involves high degrees of task aware-
ness and agency sophistication. Swarup et al. (2006)
describe an approach in which domain knowledge is
represented in the form of structured graphs. Short
term (primary task) learning occurs via a genetic algo-
rithm, after which domain knowledge is extracted by
mining frequent subgraphs. The accumulated domain
knowledge forms an ontology to which the learning sys-
tem grounds symbols as a result of structured interac-
tions with instructional agents. Subsequent interactions
occur using the symbol system as a shared lexicon for
communication between the instructor and the learn-
ing system. Knowledge acquired from these interactions
bootstrap future learning.

The Bootstrapped Learning framework proposed
by Oblinger (2006) provides for hierarchical, domain-
independent learning that, like the effort described

above, is also premised on a model of building concepts
from structured lessons. In this case, however, there is
no a priori knowledge acquisition. Instead, some “com-
mon” knowledge about the world is provided explicitly
to the learning system, and then lessons are taught by
a human teacher using the same natural instruction
methods that would be used to teach another human.
Rather than requiring a specific learning algorithm,
this framework provides a context for evaluating and
comparing learning algorithms. It includes a knowledge
representation language that supports syntactic, logical,
procedural, and functional knowledge, an interaction
language for communication among the learning sys-
tem, instructor, and environment, and an integration
architecture that evaluates, processes, and responds to
interaction language communiqués in the context of
existing knowledge and through the selective utilization
of available learning algorithms.

The learning performance advantages anticipated by
these proposals for instructional computing seem to
stem from the economy of representation afforded by
hierarchical knowledge combined with the tremendous
learning bias imposed by explicit instruction.
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Curse of Dimensionality
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Riverside, CA, USA

Definition
The curse of dimensionality is a term introduced by
Bellman to describe the problem caused by the expo-

nential increase in volume associated with adding extra
dimensions to Euclidean space (Bellman, 1957).

For example, 100 evenly-spaced sample points suf-
fice to sample a unit interval with no more than 0.01
distance between points; an equivalent sampling of a
10-dimensional unit hypercube with a grid with a spac-
ing of 0.01 between adjacent points would require 102
sample points: thus, in some sense, the 10D hypercube
can be said to be a factor of 10'® “larger” than the unit
interval.

Informally, the phrase curse of dimensionality is
often used to simply refer to the fact that one’s intu-
itions about how data structures, similarity measures,
and algorithms behave in low dimensions do typically
generalize well to higher dimensions.

Background

Another way to envisage the vastness of high-dimensi-
onal Euclidean space is to compare the size of the unit
sphere with the unit cube as the dimension of the space
increases: as the dimension increases. As we can see in
Fig. 1, the unit sphere becomes an insignificant volume
relative to that of the unit cube. In other words, almost
all of the high-dimensional space is far away from the
center.

In research papers, the phrase curse of dimensional-
ity is often used as shorthand for one of its many impli-
cations for machine learning algorithms. Examples of
these implications include:

e P> Nearest neighbor searches can be made signifi-
cantly faster for low-dimensional data by indexing
the data with an R-tree, a KD-tree, or a similar spa-
tial access method. However, for high-dimensional
data all such methods degrade to the performance
of a simple linear scan across the data.

o For machine learning problems, a small increase in
dimensionality generally requires a large increase in
the numerosity of the data, in order to keep the same
level of performance for regression, clustering, etc.

e In high-dimensional spaces, the normally intuitive
concept of proximity or similarity may not be qual-
itatively meaningful. This is because the ratio of
an object’s nearest neighbor over its farthest neigh-
bor approaches one for high-dimensional spaces
(Aggarwal, Hinneburg, & Keim, 2001). In other
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Curse of Dimensionality. Figure 1. The ratio of the volume of the hypersphere enclosed by the unit hypercube. The
most intuitive example, the unit square and unit circle, are shown as an inset. Note that the volume of the hypersphere

quickly becomes irrelevant for higher dimensionality

words, all objects are approximately equidistant
from each other.

There are many ways to attempt to mitigate the curse
of dimensionality, including Mfeature selection and
»dimensionality reduction. However, there is no single
solution to the many difficulties caused by the effect.

Recommended Reading

The major database (SIGMOD, VLDB, PODS), data mining
(SIGKDD, ICDM, SDM), and machine learning (ICML, NIPS)

conferences typically feature several papers which explicitly
address the curse of dimensionality each year.

Aggarwal, C. C., Hinneburg, A., & Keim, D. A. (2001). On the sur-
prising behavior of distance metrics in high dimensional spaces.
In ICDT (pp. 420-434). London, England.

Bellman, R. E. (1957). Dynamic programming. Princeton, NJ: Prince-
ton University Press.

Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., & Keogh, E.
(2008). Querying and mining of time series data: Experimen-
tal comparison of representations and distance measures. In
Proceedings of the VLDB endowment (Vol. 1, pp. 1542-1552).
Auckland, NewZealand.
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