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' Data Preparation

GEOFFREY [. WEBB
Monash University, Victoria, Australia

Synonyms
Data preprocessing; Feature construction

Definition

Before data can be analyzed, they must be organized
into an appropriate form. Data preparation is the pro-
cess of manipulating and organizing data prior to
analysis.

Motivation and Background

Data are collected for many purposes, not necessarily
with machine learning in mind. Consequently, there is
often a need to identify and extract relevant data for the
given analytic purpose. Every learning system has spe-
cific requirements about how data must be presented for
analysis and hence, data must be transformed to fulfill
those requirements. Further, the selection of the specific
data to be analyzed can greatly affect the models that are
learned. For these reasons, data preparation is a critical
part of any machine learning exercise. Data preparation
is often the most time-consuming part of any nontrivial
machine learning project.

Processes and Techniques
The manner in which data are prepared varies greatly
depending upon the analytic objectives for which they

are required and the specific learning techniques and
software by which they are to be analyzed. The following
are a number of key processes and techniques.

Sourcing, Selecting, and Auditing Appropriate Data

It is necessary to review the data that are already avail-
able, assess their suitability to the task at hand, and
investigate the feasibility of sourcing new data collected
specifically for the desired task.

Much of the theory on which learning systems are
based assumes that the training data are a random sam-
ple of the population about which the user wishes to
learn a model. However, much historical data repre-
sent biased samples, for example, data that have been
easy to collect or that have been considered interest-
ing for some other purpose. It is desirable to consider
whether the available data are sufficiently representa-
tive of the future data to which a learned model is to be
applied.

It is important to assess whether there is sufficient
data to realistically obtain the desired machine learning
outcomes.

Data quality should be investigated. Much data is
of low quality. Those responsible for manual data col-
lection may have little commitment to assuring data
accuracy and may take shortcuts in data entry. For
example, when default values are provided by a sys-
tem, these tend to be substantially overrepresented in
the collected data. Automated data collection processes
might be faulty, resulting in inaccurate or incorrect data.
The precision of a measuring instrument may be lower
than desirable. Data may be out of date and no longer
correct.

Where the data contain »noise, it may be desirable
to identify and remove outliers and other suspect data
points or take other remedial action.

Existing data may be augmented through data
enrichment. This commonly involves sourcing of
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additional information about the data points on which
data are already held. For example, customer data might
be enriched by purchasing socioeconomic data about
individual customers.

It may be necessary to frequently transform data from
one representation to another. Reasons for doing so
include highlighting relevant distinctions and format-
ting data to satisfy the requirements of a specific learner.

» Discretization is a process whereby quantitative
data are transformed into qualitative.

Some systems cannot process multi-valued categor-
ical variables. This limitation can be circumvented by
converting a multi-valued categorical variable into mul-
tiple binary variables, one new variable to represent
the presence or absence of each value of the original
variable. Conversely, multiple mutually exclusive binary
variables might be converted into a single multi-valued
categorical variable.

Some systems require the input to be numeric. Cate-
gorical variables must be converted into numeric form.
Multi-valued categorical variables should usually be
converted into multiple binary variables before conver-
sion to numbers, as projecting unordered values onto a
linear scale can greatly distort analytic outcomes.

It is important to select appropriate levels of gran-
ularity for analysis. For example, when distinguishing
products, should a gallon of low fat milk be described
as a diary product, and hence not distinguished from
any other type of dairy product, be described as low fat
milk, and hence not distinguished from other brands
and quantities, or uniquely distinguished from all other
products. Analysis at the lowest level of granularity
makes possible identification of potentially valuable
fine-detail regularities in the data, but may make it more
difficult to identify high-level relationships.

It is often desirable to create derived values. For
example, the available data might contain fields for pur-
chase price, costs, and sale price. The relevant quantity
for analysis might be profit, which must be computed
from the raw data. The creation of new features is called
feature construction.

As many learning systems have difficulty with high
dimension data, it may be desirable to project the data
onto a lower dimensional space. Popular approaches to

doing so include »Principal Components Analysis and
»Kernel Methods.

Another approach to reducing dimensionality is
to select only a subset of the available features (see
» Feature Selection).

It is important to determine whether the data have
»Missing Values and, if so, to ensure that appropri-
ate measures are taken to allow the learning system to
handle this situation.

» Propositionalization. Some data sets contain infor-
mation expressed in a relational form, i.e., describing
relationships between objects in the world. While some
learning systems can accept relations directly, most
operate only on attribute-value representations. There-
fore, a relational representation must be reexpressed in
attribute-value form. In other words, a representation
equivalent to first-order logic must be converted to a
representation equivalent only to propositional logic.

Cross References

»Data Set

» Discretization

»Entity Resolution

»Evolutionary Feature Selection and Construction
»Feature Construction in Text Mining
»Feature Selection

»Feature Selection in Text Mining
»Kernel Methods

» Measurement Scales

»Missing Values

»Noise

»Principal Component Analysis

» Propositionalization
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! Data Set

A data set is a collection of data used for some specific
machine learning purpose. A »training set is a data set
that is used as input to a »learning system, which ana-
lyzesittolearna »model. A »-test set or B-evaluation set
is a data set containing data that are used to »-evaluate
the model learned by a learning system. A training
set may be divided further into a »growing set and a
»pruning set. Where the training set and the test set
contain disjoint sets of data, the test set is known as a
»holdout set.

' DBN

Dynamic Bayesian Network. See »Learning Graphical
Models

| Decision Epoch

In a »Markov decision process, decision epochs are
sequences of times at which the decision-maker is
required to make a decision. In a discrete time Markov
decision process, decision epochs occur at regular, fixed
intervals, whereas in a continuous time Markov deci-
sion process (or semi-Markov decision process), they
may occur at randomly distributed intervals.

! Decision List

JOHANNES FURNKRANZ
Fachbereich Informatik, Darmstadt, Germany

Synonyms
Ordered rule set

Definition

A decision list (also called an ordered rule set) is
a collection of individual Classification Rules that
collectively form a Classifier. In contrast to an unordered
Rule Set, decision lists have an inherent order, which

makes classification quite straightforward. For classify-
ing a new instance, the rules are tried in order, and the
class of the first rule that covers the instance is predicted.
If no induced rule fires, a default rule is invoked, which
typically predicts the majority class.

Typically, decision lists are learned with a »>Covering
Algorithm, which learns one rule at a time, appends
it to the list, and removes all covered examples before
learning the next one. Decision lists are popular in
»Inductive Logic Programming, because PROLOG
programs may be considered to be simple decision lists,
where all rules predict the same concept.

A formal definition of decision lists, a comparison
of their expressiveness to decision trees and rule sets in
disjunctive and conjunctive normal form, as well as the-
oretical results on the learnability of decision lists can be
found in Rivest (1987).

Cross References

» Classification Rule

» Disjunctive Normal Form
»Rule Learning
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|
Decision Lists and Decision Trees

JOHANNES FURNKRANZ
Fachbereich Informatik, Darmstadt, Germany

Definition

»Decision Trees and »Decision Lists are two popular
» Hypothesis Languages, which share quite a few simi-
larities. The key difference is that decision trees may be
viewed as unordered Rule Sets, where each leaf of the
tree corresponds to a single rule with a condition part
consisting of the conjunction of all edge labels on the
path from the root to this leaf. The hierarchical struc-
ture of the tree ensures that the rules in the set are
nonoverlapping, that is, each example can only be cov-
ered by a single rule. This additional constraint makes
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classification easier (no conflicts from multiple rules),
but may result in more complex rules. For example, it
has been shown that decision lists (ordered rule sets)
with at most k conditions per rule are strictly more
expressive than decision trees of depth k (Rivest, 1987).
A similar result has been proved in Bostrom (1995).

Moreover, the restriction of decision tree learn-
ing algorithms to nonoverlapping rules imposes strong
constraints on learnable rules. One problem resulting
from this constraint is the replicated subtree problem
(Pagallo and Haussler 1990); it often happens that iden-
tical subtrees have to be learned at various places in
a decision tree, because of the fragmentation of the
example space imposed by the restriction to nonover-
lapping rules. Rule learners do not make such a restric-
tion and are thus less susceptible to this problem. An
extreme example for this problem has been provided
by Cendrowska (1987), who showed that the minimal
decision tree for the concept x defined as

IF A=3 AND B=3 THEN Class=x
IF C=3 AND D=3 THEN Class=x

has 10 interior nodes and 21 leafs assuming that each
attribute A ... D can be instantiated with three different
values.

On the other hand, a key advantage of decision
tree learning is that not only a single rule is opti-
mized, but that conditions are selected in a way that
simultaneously optimizes the example distribution in
all successors of a node. Attempts to adopt this prop-
erty for rule learning have given rise to several hybrid
systems, the best known being PART (Frank & Witten,
1998), which learns a decision list of rules, each one
being the single best rule of a separate decision tree.
This rule can be efficiently found without learning the
full tree, by repeated expansion of its most promising
branch. Similarly, pruning algorithms can be used to
convert decision trees into sets of nonoverlapping rules
(Quinlan, 1987).

Cross References
»Covering Algorithm
»Decision Trees

» Divide-and-Conquer Learning
» Rule Learning
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|
Decision Rule

A decision rule is an element (piece) of knowledge,
usually in the form of a “if-then statement”:

if < Condition > then < Action >

If its Condition is satisfied (i.e., matches a fact in
the corresponding database of a given problem) then
its Action (e.g., classification or decision making) is
performed. See also »Markovian Decision Rule.

' Decision Stump

Definition

A decision stump is a »Decision Tree, which uses only a
single attribute for splitting. For discrete attributes, this
typically means that the tree consists only of a single
interior node (i.e., the root has only leaves as succes-
sor nodes). If the attribute is numerical, the tree may
be more complex.

Decision stumps perform surprisingly well on some
commonly used benchmark datasets from the »UCI
repository (Holte, 1993), which illustrates that learn-
ers with a high »Bias and low »Variance may per-
form well because they are less prone to »Overfitting.
Decision stumps are also often used as weak learners
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in »Ensemble Methods such as boosting (Freund &
Schapire, 1996).

Cross References
» Bias and Variance
» Decision Tree

» Overfitting

Recommended Reading
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|
Decision Threshold

The decision threshold of a binary classifier that out-
puts scores, such as »-decision trees or »naive Bayes, is
the value above which scores are interpreted as positive
classifications. Decision thresholds can be either fixed
if the classifier outputs calibrated scores on a known
scale (e.g., 0.5 for a probabilistic classifier), or learned
from data if the scores are uncalibrated. See »ROC
Analysis.

| . .
Decision Tree

JOHANNES FURNKRANZ
Fachbereich Informatik
Darmstadt

Germany

Synonyms
C4.5; CART,; Classification tree

Definition

A decision tree is a tree-structured W classification
»model, which is easy to understand, even by nonexpert
users, and can be efficiently induced from data. The
induction of decision trees is one of the oldest and most

popular techniques for learning discriminatory models,
which has been developed independently in the statisti-
cal (Breiman, Friedman, Olshen, & Stone, 1984; Kass,
1980) and machine learning (Hunt, Marin, & Stone,
1966; Quinlan, 1983, 1986) communities. An extensive
survey of decision tree learning can be found in Murthy
(1998).

Representation

Figure 1 shows a sample decision tree for a well-known
sample dataset, in which examples are descriptions of
weather conditions (Outlook, Humidity, Windy, Temper-
ature), and the target concept is whether these condi-
tions are suitable for playing golf or not (Quinlan, 1986).
Classification of a new example starts at the top node—
the root—and the value of the attribute that corresponds
to this node is considered (Outlook in the example). The
example is then moved down the branch that corre-
sponds to a particular value of this attribute, arriving at
anew node with a new attribute. This process is repeated
until one arrives at a terminal node—a so-called leaf —
which is not labeled with an attribute but with a value
of the target attribute (PlayGolf?). For all examples
that arrive at the same leaf, the same target value
will be predicted. Figure 1 shows leaves as rectangular
boxes.

Note that some of the attributes may not occur at
all in the tree. For example, the tree in Fig. 1 does not
contain a test on Temperature because the training data
can be classified without making a reference to this vari-
able. More generally, one can say that the attributes in

normal high true \ false

yes no no yes

Decision Tree. Figure 1. A decision tree describing the
Golf dataset (Quinlan, 1986)
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the upper parts of the tree (near the root) tend to have
a stronger influence on the value of the target variable
than the nodes in the lower parts of the tree (e.g., Out-
look will always be tested, whereas Humidity and Windy
will only be tested under certain conditions).

Learning Algorithm

Decision trees are learned in a top-down fashion, with
an algorithm known as Top-Down Induction of Deci-
sion Trees (TDIDT), recursive partitioning, or divide-
and-conquer learning. The algorithm selects the best
attribute for the root of the tree, splits the set of exam-
ples into disjoint sets, and adds corresponding nodes
and branches to the tree. The simplest splitting cri-
terion is for discrete attributes, where each test has
the form ¢t « (A = v) where v is one possible
value of the chosen attribute A. The corresponding
set S; contains all training examples for which the
attribute A has the value v. This can be easily adapted
to numerical attributes, where one typically uses binary
splits of the form t « (A < w), which indicate
whether the attribute’s value is above or below a cer-
tain threshold value v;. Alternatively, one can trans-
form the data before-hand using a P Discretization
algorithm.

function TDIDT(S)
Input: S, a set of labeled examples.

Tree = new empty node
if all examples have the same class ¢
or no further splitting is possible
then // new leaf
LABEL(Tree) = ¢
else // new decision node
(A, T) = FINDBESTSPLIT(S)
for each testt € T do
S; = all examples that satisfy ¢
Node; = TDIDT(S;)
ADDEDGE( Tree 4 Node,)
endfor
endif
return Tree

After splitting the dataset according to the selected
attribute, the procedure is recursively applied to each
of the resulting datasets. If a set contains only exam-
ples from the same class, or if no further splitting is
possible (e.g., because all possible splits have already
been exhausted or all remaining splits will have the
same outcome for all examples), the corresponding
node is turned into a leaf node and labeled with the
respective class. For all other sets, an interior node is
added and associated with the best splitting attribute
for the corresponding set as described above. Hence,
the dataset is successively partitioned into nonover-
lapping, smaller datasets until each set only contains
examples of the same class (a so-called pure node).
Eventually, a pure node can always be found via suc-
cessive partitions unless the training data contains two
identical but contradictory examples, that is, exam-
ples with the same feature values but different class
values.

The crucial step in decision tree induction is the choice
of an adequate attribute. In the sample tree of Fig. 2,
which has been generated from the same 14 training
examples as the tree of Fig. 1, most leaves contain only a
single training example, that is, with the selected split-
ting criteria, the termination criterion (all examples of a
node have to be of the same class) could, in many cases,
only trivially be satisfied (only one example remained
in the node). Although both trees classify the training
data correctly, the former appears to be more trustwor-
thy, and in practice, one can often observe that simpler
trees are more accurate than more complex trees. A pos-
sible explanation could be that labels that are based on
a higher number of training examples tend to be more
reliable. However, this preference for simple models is
a heuristic criterion known as »Occam’s Razor, which
appears to work fairly well in practice, but is still the
subject of ardent debates within the machine learning
community.

Typical attribute selection criteria use a function
that measures the impurity of a node, that is, the degree
to which the node contains only examples of a sin-
gle class. Two well-known impurity measures are the
information-theoretic entropy (Quinlan, 1986), and the
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sunny /rain \overcast

high [normal

true

false

Decision Tree. Figure 2. A needlessly complex decision tree describing the same dataset

Gini index (Breiman et al., 1984) which are defined as

M

< 1S;
Entropy(S) = - > |||| -log, (|S|)
i=1

S
Gini(S) :1—2('55"”)

where § is a set of training examples, and S; is the
set of training examples that belong to class c;. Both
functions have their maximum at the point where the
classes are equally distributed (i.e., where all S; have
the same size, maximum impurity), and their mini-
mum at the point where one S; contains all examples
(Si = S) and all other Sj,j # i are empty (minimum
impurity).

A good attribute divides the dataset into subsets that
are as pure as possible, ideally into sets so that each one
only contains examples from the same class. Thus, one
wants to select the attribute that provides the highest
decrease in average impurity, the so-called gain:

Gain(S, A) = Impurity(S) = " B

- Impurity(S;)
1]

where ¢ is one of the tests on attribute A which parti-
tions the set S is into nonoverlapping disjoint subsets
St, and Impurity can be any impurity measure. As the
first term, Impurity(S), is constant for all attributes, one
can also omit it and directly minimize the average impu-
rity (which is typically done when Gini is used as an
impurity measure).

A common problem is that attributes with many val-
ues have a higher chance of resulting in pure successor
nodes and are, therefore, often preferred over attributes
with fewer values. To counter this, the so-called gain
ratio normalizes the gained entropy with the intrinsic
entropy of the split:

GainRatio(S, A) = %
22t 1oga ()

A similar phenomenon can be observed for numeri-
cal attributes, where the number of possible threshold
values determines the number of possible binary splits
for this attribute. Numerical attributes with many pos-
sible binary splits are often preferred over numerical
attributes with fewer splits because they have a higher
chance that one of their possible splits fit the data. A dis-
cussion of this problem and a proposal for a solution can
be found in Quinlan (1996).

Other attribute selection measures, which do not
conform to the gain framework laid out above, are also
possible, such as CHAID’s evaluation with a y* test
statistic (Kass, 1980). Experimental comparison of dif-
ferent measures can be found in Buntine and Niblett
(1992) and Mingers (1989a).

Thus, the final tree is constructed by a sequence
of local choices that each consider only those exam-
ples that end up at the node that is currently split. Of
course, such a procedure can only find local optima
for each node, but cannot guarantee convergence to
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a global optimum (the smallest tree). One of the key
advantages of this divide-and-conquer approach is its
efficiency, which results from the exponential decrease
in the quantity of data to be processed at successive
depths in the tree.

In principle, a decision tree model can be fit to any train-
ing set that does not contain contradictions (i.e., there
are no examples with identical attributes but different
class values). This may lead to »Overfitting in the form
of overly complex trees.

For this reason, state-of-the-art decision tree induc-
tion techniques employ various »Pruning techniques
for restricting the complexity of the found trees. For
example, C4.5 has a »pre-pruning parameter m that
is used to prevent further splitting unless at least two
successor nodes have at least m examples. The cost-
complexity pruning method used in CART may be
viewed as a simple »Regularization method, where a
good choice for the regularization parameter, which
trades off the fit of the data with the complexity of the
tree, is determined via »Cross-validation.

More typically, »post-pruning is used for removing
branches and nodes from the learned tree. More pre-
cisely, this procedure replaces some of the interior nodes
of the tree with a new leaf, thereby removing the subtree
that was rooted at this node. An empirical compari-
son of different decision-tree pruning techniques can be
found in Mingers (1989D).

It is important to note that the leaf nodes of the
new tree are no longer pure nodes, that is, they no
longer need to contain training examples that all belong
to the same class. Typically, this is simply resolved
by predicting the most frequent class at a leaf. The
class distribution of the training examples within the
leaf may be used as a reliability criterion for this
prediction.

Well-known Decision Tree Learning
Algorithms

The probably best-known decision tree learning algo-
rithm is C4.5 (Quinlan, 1993) which is based upon

ID3 (Quinlan, 1983), which, in turn, has been derived
from an earlier concept learning system (Hunt et al.,
1966). ID3 realized the basic recursive partitioning algo-
rithm for an arbitrary number of classes and for discrete
attribute values. C4.5 (Quinlan, 1993) incorporates sev-
eral key improvements that were necessary for tackling
real-world problems, including handling of numeric
and »missing attribute values, »-overfitting avoidance,
and improved scalability. A C-implementation of C4.5 is
freely available from its author. A re-implementation is
available under the name J4.8 in the Weka data mining
library. C5.0 is a commercial successor of C4.5, dis-
tributed by RuleQuest Research. CART (Breiman et al.,
1984) is the best-known system in the statistical learn-
ing community. It is integrated into various statistical
software packages, such as R or S.

Decision trees are also often used as components in
» Ensemble Methods such as random forests (Breiman,
2001) or AdaBoost (Freund & Schapire, 1996). They can
also be modified for predicting numerical target vari-
ables, in which case they are known as »Regression
Trees. One can also put more complex prediction mod-
els into the leaves of a tree, resulting in »Model
Trees.

Cross References
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' Decision Trees For Regression

»Regression Trees

! Deductive Learning

Synonyms
Analytical learning; Explanation-based learning

Definition

Deductive learning is a subclass of machine learning
that studies algorithms for learning provably correct
knowledge. Typically such methods are used to speedup
problem solvers by adding knowledge to them that is
deductively entailed by existing knowledge, but that
may result in faster solutions.

! Deduplication

» Entity Resolution

! Deep Belief Nets

GEOFFREY HINTON
University of Toronto, Toronto, Canada

Synonyms
Deep belief networks

Definition

Deep belief nets are probabilistic generative models that
are composed of multiple layers of stochastic latent
variables (also called “feature detectors” or “hidden
units”). The top two layers have undirected, symmetric
connections between them and form an associative
memory. The lower layers receive top-down, directed
connections from the layer above. Deep belief nets have
two important computational properties. First, there is
an efficient procedure for learning the top-down, gen-
erative weights that specify how the variables in one
layer determine the probabilities of variables in the layer
below. This procedure learns one layer of latent variables
at a time. Second, after learning multiple layers, the val-
ues of the latent variables in every layer can be inferred
by a single, bottom-up pass that starts with an observed
data vector in the bottom layer and uses the generative
weights in the reverse direction.

Motivation and Background

The perceptual systems of humans and other ani-
mals show that high-quality pattern recognition can
be achieved by using multiple layers of adaptive non-
linear features, and researchers have been trying to
understand how this type of perceptual system could
belearned, since the 1950s (Selfridge, 1958). Perceptrons
(Rosenblatt, 1962) were an early attempt to learn a bio-
logically inspired perceptual system, but they did not
have an efficient learning procedure for multiple lay-
ers of features. Backpropagation (Rumelhart, Hinton, &
Williams, 1986; Werbos, 1974) is a supervised learning
procedure that became popular in the 1980s because it
provided a fairly efficient way of learning multiple lay-
ers of nonlinear features by propagating derivatives of
the error in the output backward through the multilayer
network. Unfortunately, backpropagation has difficulty
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optimizing the weights in deep networks that contain
many layers of hidden units and it requires labeled
training data, which is often expensive to obtain. Deep
belief nets overcome the limitations of backpropagation
by using unsupervised learning to create layers of feature
detectors that model the statistical structure of the input
data without using any information about the required
output. High-level feature detectors that capture com-
plicated higher-order statistical structure in the input
data can then be used to predict the labels.

Structure of the Learning System

Deep belief nets are learned one layer at a time by
treating the values of the latent variables in one layer,
when they are being inferred from data, as the data for
training the next layer. This efficient, greedy learning
can be followed by, or combined with, other learning
procedures that fine-tune all of the weights to improve
the generative or discriminative performance of the
whole network. Discriminative fine-tuning can be per-
formed by adding a final layer of variables that represent
the desired outputs and backpropagating error deriva-
tives. When networks with many hidden layers are
applied in domains that contain highly structured input
vectors, backpropagation learning works much better if
the feature detectors in the hidden layers are initialized
by learning a deep belief net that models the structure in
the input data (Hinton & Salakhutdinov, 2006). Matlab
code for learning and fine-tuning deep belief nets can
be found at http://cs.toronto.edu/~hinton.

Early deep belief networks could be viewed as a com-
position of simple learning modules, each of which is a
“restricted Boltzmann machine” Restricted Boltzmann
machines contain a layer of “visible units” that repre-
sent the data and a layer of “hidden units” that learn
to represent features that capture higher-order corre-
lations in the data. The two layers are connected by a
matrix of symmetrically weighted connections, W, and
there are no connections within a layer. Given a vec-
tor of activities v for the visible units, the hidden units
are all conditionally independent so it is easy to sample
a vector, h, from the posterior distribution over hid-
den vectors, p(h|v,W). It is also easy to sample from

p(vlh, W). By starting with an observed data vector on
the visible units and alternating several times between
sampling from p(h|v, W) and p(v|h, W), it is easy to get
alearning signal which is simply the difference between
the pairwise correlations of the visible and hidden units
at the beginning and end of the sampling (see Chapter
Boltzmann Machines for details).

The key idea behind deep belief nets is that the weights,
W, learned by a restricted Boltzmann machine define
both p(vlh,W) and the prior distribution over hid-
den vectors, p(h|W), so the probability of generating a
visible vector, v, can be written as:

p(v) = ?p(hlw)p(vlhw) 6))

After learning W, we keep p(v|h,W) but we replace
p(h|W) by a better model of the aggregated posterior
distribution over hidden vectors - i.e., the nonfacto-
rial distribution produced by averaging the factorial
posterior distributions produced by the individual data
vectors. The better model is learned by treating the hid-
den activity vectors produced from the training data as
the training data for the next learning module. Hinton,
Osindero, and Teh (2006) show that this replacement
improves a variational lower bound on the probability
of the training data under the composite model.

Deep belief nets typically use the logistic function y =
1/(1+ exp(—x)) of the weighted input, x, received from
above or below to determine the probability that a
binary latent variable has a value of 1 during top-down
generation or bottom-up inference. Other types of vari-
able within the exponential family, such as Gaussian,
Poisson, or multinomial can also be used (Movellan &
Marks, 2001; Welling, Rosen-Zvi, & Hinton, 2005) and
the variational bound still applies. However, networks
with multiple layers of Gaussian or Poisson units are dif-
ficult to train and can become unstable. To avoid these
problems, the function log(1 + exp(x)) can be used as
a smooth approximation to a rectified linear unit. Units
of this type often learn features that are easier to inter-
pret than those learned by logistic units. log(1+exp(x))
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is not in the exponential family, but it can be approxi-
mated very accurately as a sum of a set of logistic units
that all share the same weight vector and adaptive bias
term, but differ by having offsets to the shared bias of
-0.5,-1.5,-2.5,....

A closely related approach that is also called a “deep
belief net” uses the same type of greedy, layer-by-layer
learning with a different kind of learning module - an
“autoencoder” that simply tries to reproduce each data
vector from the feature activations that it causes (Ben-
gio, Lamblin, Popovici, & Larochelle, 2007; Hinton,
1989; LeCun & Bengio, 2007). However, the variational
bound no longer applies, and an autoencoder module
is less good at ignoring random noise in its training
data (Larochelle, Erhan, Courville, Bergstra, & Bengio,
2007).

Deep belief nets have been used for generating and
recognizing images (Bengio, et al., 2007; Hinton et al,,
2006; Ranzato, Huang, Boureau, & LeCun, 2007), video
sequences (Sutskever & Hinton, 2007), and motion-
capture data (Taylor, Hinton, & Roweis, 2007). If the
number of units in the highest layer is small, deep
belief nets perform nonlinear dimensionality reduction
(Hinton & Salakhutdinov, 2006), and by pretraining
each layer separately it is possible to learn very deep
autoencoders that can then be fine-tuned with back-
propagation (Hinton & Salakhutdinov, 2006). Such net-
works cannot be learned in reasonable time using back-
propagation alone. Deep autoencoders learn compact
representations of their input vectors that are much bet-
ter than those found by linear methods such as Principal
Components Analysis, and if the highest level code is
forced to be binary, they allow extremely fast retrieval of
documents or images (Salakhutdinov & Hinton, 2007;
Torralba, Fergus, & Weiss, 2008).
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! Density Estimation

CLAUDE SAMMUT
University of New South Wales, Sydney, Australia

Synonyms
Kernel density estimation

Definition

Given a set of observations, x, . .., Xy, which is a ran-
dom sample from a probability density function fx (x),
density estimation attempts to approximate fx (x) by
Jx (x0)-

A simple way of estimating a probability density
function is to plot a histogram from a random sample
drawn from the population. Usually, the range of data
values is subdivided into equally sized intervals or bins.
How well the histogram estimates the function depends
on the bin width and the placement of the boundaries of
the bins. The latter can be somewhat improved by mod-
ifying the histogram so that fixed boundaries are not
used for the estimate. That is, the estimate of the prob-
ability density function at a point uses that point as the
centre of a neighborhood. Following Hastie, Tibshirani
and Friedman (2009), the estimate can be expressed as:

#x; € N(Xo)

NA @

fx (x0) =

where xi,...
probability density function fy (x) and fx (xo) is the esti-
mate of fx at point xy. N(x¢) is a neighborhood of

,xy is a random sample drawn from a

width A, around x,. That is, the estimate is the normal-
ized count of the number of values that fall within the
neighborhood of x.

The estimate above is still bumpy, like the histogram.
A smoother approximation can be obtained by using
a kernel function. Each x; in the sample is associated
with a kernel function, usually Gaussian. The count in
formula (1) above is replaced by the sum of the ker-
nel function applied to the points in the neighborhood
of xg:

_ N
fx(x0) = ﬁ > K (x0,x1) (2)
i1

where K is the kernel function associated with sample x;
near x,. This is called the Parzen estimate (Parzen, 1962).
The bandwidth, A, affects the roughness or smoothness
of the kernel histogram. The kernel density estimate

is said to be under-smoothed if the bandwidth is too
small. The estimate is over-smoothed if the bandwidth
is too large.

Density estimation is most often used in association
with memory-based classification methods, which can
be thought of as weighted »nearest neighbor classifiers.

»Mixture models and »Locally weighted regres-
sion are forms of kernel density estimation.

Cross References

»Kernel Methods

» Locally Weighted Regression for Control
» Mixture Models

»Nearest Neighbor

»Support Vector Machine
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Synonyms
Estimation of density level sets; Mode analysis; Non-
parametric cluster analysis

Definition

Density-Based Clustering refers to »unsupervised learn-
ing methods that identify distinctive groups/clusters
in the data, based on the idea that a cluster in a data
space is a contiguous region of high point density, sep-
arated from other such clusters by contiguous regions
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of low point density. The data points in the separat-
ing regions of low point density are typically considered
noise/outliers.

Motivation and Background

Clustering in general is an unsupervised learning task
that aims at finding distinct groups in data, called
clusters. The minimum requirements for this task are
that the data is given as some set of objects O for
which a dissimilarity-distance function d : O x O - R*
is given. Often, O is a set of d-dimensional real valued
points, O c R% which can be viewed as a sample from
some unknown probability density p(x), with d as the
Euclidean or some other form of distance.

There are different approaches to classifying what
characterizes distinct groups in the data.

From a procedural point of view, many cluster-
ing methods try to find a partition of the data into
k groups, so that within-cluster dissimilarities are min-
imized while the between-cluster dissimilarities are
maximized. The notions of within-cluster dissimilar-
ity and between-cluster dissimilarity are defined using
the given distance function d. From a statistical point
of view, such methods correspond to a parametric
approach, where the unknown density p(x) of the data
is assumed to be a mixture of k densities p;(x), each
corresponding to one of the k groups in the data; the
pi(x) are assumed to come from some parametric fam-
ily (e.g., Gaussian distributions) with unknown param-
eters, which are then estimated from the data.

In contrast, density-based clustering is a non-
parametric approach, where the groups in the data are
considered to be the high density areas of the density
p(x). Density-based clustering methods do not require
the number of clusters as input parameters, nor do they
make assumptions about the underlying density p(x) or
the variance within the groups that may exist in the data.
Consequently, density-based clusters are not necessar-
ily groups of points with high within-cluster similarity
as measured by the distance function d, but can have
an “arbitrary shape” in the feature space; they are some-
times also referred to as “natural clusters.” This property
makes density-based clustering particularly suitable for
applications where clusters cannot be well described as
distinct groups of low within-cluster dissimilarity, as,
for instance, in spatial data, where clusters of points
in the space may form along natural structures such
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Density-Based Clustering. Figure 1. lllustration of a
density-based clustering, showing three distinguishable
groups

as rivers, roads, and seismic faults. Figure 1 illustrates
density-based clusters using a two-dimensional exam-
ple, where the assumed dissimilarity function between
the points is the Euclidean distance: there are three
clusters indicated by triangles, points, and rectangles, as
well as some noise points, indicated by diamond shapes.
Note that the distance between some points within the
clusters is much larger than the distance between some
points from different clusters, yet the regions containing
the clusters clearly have a higher point density than the
region between them, and they can easily be separated.

Density-based clustering is one of the prominent
paradigms for clustering large data sets in the data
mining community. It has been extensively studied and
successfully used in many applications.

Structure of Learning System

Assuming that the dataset Oc R is a sample from some
unknown probability density p(x), there are different
ways of determining high density areas of the density
p(x). Commonly, the notion of a high density area is
(implicitly or explicitly) based on a local density esti-
mate at each point (typically, some kernel or nearest
neighbor density estimate), and a notion of connec-
tion between objects (typically, points are connected if
they are within a certain distance ¢ from each other);
clusters are essentially constructed as maximal sets of
objects that are directly or transitively connected to
objects whose density exceeds some threshold A. The set
{x|p(x) > A} of all high density objects is called the den-
sity level set of p at A. Objects that are not part of such
clusters are called noise or outliers.
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Different proposed density-based methods distin-
guish themselves mainly by how the density p(x) is esti-
mated, how the notion of connectivity is defined, and
how the algorithm for finding connected components
of the induced graph is implemented and supported by
suitable data structures to achieve scalability for large
data sets. Some methods include in a cluster only objects
whose density exceeds the threshold A, while others also
include objects with lower density if they are connected
to an object with density above the threshold A.

Density-based clustering was probably introduced
for the first time by Wishart (1969). His algorithm for
one level mode analysis consists of six steps: “(1) Select
a distance threshold r, and a frequency (or density)
threshold k, (2) Compute the triangular similarity
matrix of all inter-point distances, (3) Evaluate the fre-
quency k; of each data point, defined as the number
of points which lie within a distance r of point i (...),
(4) Remove the “noise” or non-dense points, those for
which k; <k, (5) Cluster the remaining dense points
(ki>k) by single linkage, forming the mode nuclei,
(6) Reallocate each non-dense point to a suitable cluster
according to some criterion (. ..) (Wishart, 1969).

Hartigan (1975) suggested a more general defini-
tion of a density-based cluster, a density contour cluster
at level A, as a maximally connected set of points x
for which p(x) > A, given a density p(x) at each point
x, a density threshold A, and links specified for some
pairs of objects. For instance, given a particular dis-
tance function, points can be defined as linked if the
distance between them is no greater than some thresh-
old r, or, if only direct links are available, one can define
a “distance” for pairs of objects x and y in the following
way:

i) —min[p(x),p(y)], x and y are linked,
x,y) =
0 otherwise.

To compute the density-contour clusters, Harti-
gan, like Wishart, suggest a version of single link-
age clustering, which will construct the maximal con-
nected sets of objects of density greater than the given
threshold A.

The DBSCAN algorithm (Ester et al., 1996) intro-
duced density-based clustering independently to the
Computer Science Community, also proposing the use

of spatial index structures to achieve a scalable cluster-
ing algorithm. Assuming a distance threshold r and a
density threshold k, DBSCAN, like Wishart’s method,
estimates the density for each point x; as the number k;
of points that lie inside a radius r around x. Core points
are defined as data points for which k; > k. Points are
considered directly connected if the distance between
them is no greater than r. Density-based clusters are
defined as maximally connected components of the set
of points that lie within distance r from some core object
(i.e., a cluster may contain points x; with k; <k, called
border objects, if they are within distance r of a core
object of that cluster). Objects not part of a cluster are
considered noise. The algorithm DBSCAN constructs
clusters iteratively, starting a new cluster C with a non-
assigned core object x, and assigning all points to C
that are directly or transitively connected to x. To deter-
mine directly and transitively connected points for a
given point, a spatial index structure is used to per-
form range queries with radius r for each object that is
newly added to a current cluster, resulting in an efficient
runtime complexity for moderately dimensional data of
O(N log N), where N is the total number of points in
the data set, and a worst case runtime of O(N?), e.g., for
high-dimensional data when the performance of spatial
index structures deteriorates.

DENCLUE (Hinneburg and Keim, 1998) proposed
a notion of density-based clusters using a kernel den-
sity estimation. Each data point x is associated with
(“attracted by”) a local maximum (“density attractor”)
of the overall density function that lies in the direction
of maximum increase in density from x. Density-based
clusters are defined as connected components of density
attractors with their associated points, whose density
estimate is above a given threshold A. In this formu-
lation, DBSCAN and Wishart's method can be seen
as special cases of DENCLUE, using a uniform spher-
ical kernel and, for Wishart's method, not including
attracted points whose density is below .. DENCLUE
essentially uses a Gaussian kernel for the implemen-
tation, which is based on a clever data structure to
speed up local density estimation. The data space is
partitioned into d-dimensional cells. Non-empty cells
are mapped to one-dimensional keys, which are stored,
together with some sufficient statistics about the cell
(number of points, pointers to points, and linear sum
of the points belonging to the cell), in a search tree for
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efficient retrieval of neighboring cells, and local density
estimation (Hinneburg and Keim (1998) reports that
in an experimental comparison on 11-dimensional data
sets of different sizes, DENCLUE runs up to 45 times
faster than DBSCAN).

A large number of related methods and exten-
sions have been proposed, particularly in computer
science and application-oriented domains, some moti-
vated by algorithmic considerations that could improve
efficiency of the computation of density-based clus-
ters, others motivated by special applications, proposing
essentially density based clustering algorithms using
specific density measures and notions of connectivity.
An algorithmic framework, called GDBSCAN, which
generalizes the topological properties of density-based
clusters, can be found in Sander et al. (1998). GDBSCAN
generalizes the notion of a density-based clustering
to that of a density-connected decomposition, assuming
only a reflexive and symmetric neighborhood relation
for pairs of objects (direct links between some objects),
and an arbitrary predicate, called “MinWeight,” that
evaluates to true for some neighborhood sets of objects
and false on others, so that a core object can be defined
as an object whose neighborhood satisfies the Min-
Weight predicate. Then, a density-connected decompo-
sition consists of the maximally connected components
of the set of objects that are in the neighborhood of
some core object, and they can be computed with the
same algorithmic scheme as density-based clusters by
DBSCAN.

One of the principal problems of finding the
density-based clusters of a density level set for a sin-
gle level A is how to determine a suitable level A. The
result of a density-based clustering method depends
critically on the choice of A, which may be difficult
to determine even in situations when a meaningful
level exists, depending on how well the clusters are
separated in the given sample. In other situations, it
may not even be possible to characterize the cluster
structure appropriately using a single density thresh-
old, when modes exist in different regions of the data
space that have very different local densities, or clus-
ters are nested within clusters. The problem of selecting
suitable density threshold parameters has been already
observed by Wishart (1969) who also proposed a hier-
archical algorithm to represent the clusters at differ-
ent density levels. Hartigan (1975) also observed that

density-based clusters at different density levels have a
hierarchical structure, a density contour tree, based on
the fact that two clusters (i.e., connected components)
of different density levels are either disjoint, or the clus-
ter of higher density is completely contained in the
cluster of lower density. Recent proposals for hierarchi-
cal clustering methods based on a density estimate and
a notion of linkage are, e.g., Ankerst et al. (1999) and
Stuetzle (2003). These hierarchical methods are closely
related, and are essentially processing and rendering
a Minimum Spanning Tree of the data (with pairwise
distances or reachability distances as defined in Stuet-
zle (2003) as edge weights), and are thus also closely
related to single linkage clustering. Hierarchical meth-
ods do not, in a strict sense, compute a partition of
the data, but compute a representation of the overall
hierarchical density structure of the data from which
particular density-based clusters at different density lev-
els or a global density threshold (a “cut level”) could be
determined.

Cross References
» Clustering
» Density Estimation
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»Intelligent Backtracking

[
Detail

In »Minimum Message Length, detail is the code or
language shared between sender and receiver that is
used to describe the data conditional on the asserted
model.

|
Deterministic Decision Rule

» Decision Rule

! Digraphs

Synonyms
Directed graphs

Definition

A digraph D consists of a (finite) set of vertices V(D)
and a set A(D) of ordered pairs, called arcs, of distinct
vertices. An arc (u, v) has tail u and head v, and it is said
to leave 1 and enter v.

Figure 1 shows a digraph D with vertex set
V(D) ={u,v,w,x,y,z} andarcset A(D) = {(u,v), (u, w),
(v,w), (w,x), (x,w), (x,2), (¥, %), (z,x) }. Digraphs can
be viewed as generalizations of »graphs.

v z
Digraphs. Figure 1. A digraph

[ . . . .
Dimensionality Reduction

MICHAIL VLACHOS

IBM Ziirich Research Laboratory
Riischlikon

Switzerland

Synonyms
Feature extraction

Definition

Every data object in a computer is represented and
stored as a set of features, for example, color, price,
dimensions, and so on. Instead of the term features one
can use interchangeably the term dimensions, because
an object with n features can also be represented as
a multidimensional point in an n-dimensional space.
Therefore, dimensionality reduction refers to the pro-
cess of mapping an n-dimensional point, into a lower
k-dimensional space. This operation reduces the size for
representing and storing an object or a dataset gener-
ally; hence, dimensionality reduction can be seen as a
method for data compression. Additionally, this process
promotes data visualization, particularly when objects
are mapped onto two or three dimensions. Finally, in the
context of classification, dimensionality reduction can
be a useful tool for the following: (a) making tractable
classification schemes that are super-linear with respect
to dimensionality, (b) reducing the variance of classi-
fiers that are plagued by large variance in higher dimen-
sionalities, and (c) removing the noise that may be
present, thus boosting classification accuracy.

Motivation and Background
There are many techniques for dimensionality reduc-
tion. The objective of dimensionality reduction tech-
niques is to appropriately select the k dimensions (and
also the number k) that would retain the important
characteristics of the original object. For example, when
performing dimensionality reduction on an image,
using a wavelet technique, then the desirable outcome is
for the difference between the original and final images
to be almost imperceptible.

When performing dimensionality reduction not on
a single object, but on a dataset, an additional require-
ment is for the method to preserve the relationship
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between the objects in the original space. This is partic-
ularly important for reasons of classification and visual-
ization in the new space.

There exist two important categories of dimension-
ality reduction techniques:

o Feature selection techniques, where only the most
important or descriptive features/dimensions are
retained and the remaining are discarded. More
details on such techniques can be found under the
entry »Feature Selection.

o Feature projection methodologies, which project the
existing features onto different dimensions or axes.
The aim here is again, to find these new data axes
that retain the dataset structure and its variance as
closely as possible.

Feature projection techniques typically exploit the
correlations between the various data dimensions, with
the goal of creating dimensions/axes that are uncorre-
lated and sufliciently describe the data.

One of the most popular dimensionality reduction
techniques is Principal Components Analysis or PCA. Tt
attempts to discover those axes (or components) onto
which the data can be projected, while maintaining the
original correlation between the dimensions. Consider,
for example, a dataset that contains records of envi-
ronmental measurements over a period of time, such
as humidity and temperature. The two attributes can
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First principal component X
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Dimensionality Reduction. Figure 1. Principal
components analysis (PCA)

be highly correlated, as shown in Fig. 1. By deploying
PCA this trend will be discovered and the original two-
dimensional points can be reduced to one-dimensional,
by projecting the original points on the first principal
component. In that way the derived dataset can be stored
in less space.

PCA uses the Euclidean distance as the measure
of dissimilarity among the objects. The first principal
component (or axis) indicates the direction of maxi-
mum variance in the original dimensions. The second
component shows the direction of next highest variance
(and is uncorrelated to the first component), etc.

Other dimensionality reduction techniques opti-
mize or preserve different criteria than PCA. Mani-
fold inspired methods like ISOMAP (Tenenbaum et al.,
2000) preserve the geodesic distances between objects.
The notion here is to approximate the distance between
objects “through” the remaining ones. The result of
such dimensionality reduction techniques, is that when
the data lie on a manifold, the projected dimensions
effectively ‘unfold’ the underlying high-dimensional
manifold. An example of this mapping is portrayed in
Fig.2, where it is also compared with the respective
PCA mapping.

Other recent dimensionality reduction techniques
include locally linear embeddings (LLE) (Roweis and
Saul, 2000) and Laplacian Eigenmaps (Belkin and
Niyogi, 2002). We also refer the interested practitioners
to (van der Maaten et al., 2009), for a detailed compar-
ison of various techniques and also for Matlab imple-
mentations on a variety of dimensionality reduction
algorithms.

In general, dimensionality reduction is a commonly
practiced and useful operation in database and machine
learning systems because it generally offers the follow-
ing desirable properties:

e Data compression: the dataset objects are repre-
sented in fewer dimensions, hence saving important
disk storage space and offering faster loading of the
compressed data from the disk.

e Better data visualization: the relationships between
the original high-dimensional objects can be visual-
ized in two- or three-dimensional projections.

e Improved classification accuracy: this can be attri-
buted to both variance reduction and noise removal
from the original high-dimensional dataset.
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Dimensionality Reduction. Figure 2. Nonlinear

dimensionality

reduction techniques produce a better

low-dimensional data mapping, when the original data lie on a high-dimensional manifold

Probability of finding neighbor within range w
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Number of dimensions

Dimensionality Reduction. Figure 3. Probability P, (d)

against dimensionality d. The data becomes sparse in

higher dimensions

e More efficient data retrieval: dimensionality reduc-
tion techniques can also assist in making faster
and more efficient the retrieval of the original
uncompressed data, by offering very fast pre-
filtering with the help of the compressed data rep-
resentation.

e Boosting index performance: more effective use of
indexing structures can be achieved by utilizing the
compressed data, since indexing techniques only
work efficiently with lower-dimensional data (e.g.,
from 1 to 30 dimensions, depending on the type of
the index).

The fact that indexing structures do not perform
efficiently for higher-dimensional data is also known
as P“curse of dimensionality” Suppose that we are
interested in performing search operations on a set of
high-dimensional data. For simplicity let us assume that

the data lie in a unit hypercube C = [0, l]d, where d is
the data dimensionality. Given a query point, the prob-
ability P,, that a match (neighbor) exists within radius
w in the data space of dimensionality d is given by
P,(d) = wi.

Figure 3 illustrates this probability for various val-
ues of w. Evidently, at higher dimensionalities the data
becomes very sparse and even at large radii, only a
small portion of the entire space is covered. This fact
is coined under the term ‘curse of dimensionality;
which in simple terms translates into the following fact:
for large dimensionalities existing indexing structures
outperform sequential scan only when the dataset size
(number of objects) grows exponentially with respect to
dimensionality.

Dimensionality Reduction for Time-Series
Data
In this section we provide more detailed examples on
dimensionality reduction techniques for »time-series
data. We chose time-series in order to convey more
visually the effect of dimensionality reduction particu-
larly for high-dimensional data such as time-series.
Later, we also show how dimensionality reduction
on large datasets can help speed up the search opera-
tions over the original uncompressed data.
Dimensionality reduction for one- and two-
dimensional signals is commonly accomplished using
the Fourier decomposition. Fourier decomposition was
first presented in the beginning of the nineteenth cen-
tury by Jean Baptiste Fourier (1768-1830), in his seminal
work On the Propagation of Heat in Solid Bodies. Fourier
reached the conclusion that every function could be
expressed as a sum of trigonometrical series (i.e., sines
and cosines). This original work was initially faced
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with doubt (even by famous mathematicians such as
Lagrange and Laplace), because of its unexpected result
and because the solution was considered impractical
due of the complex integration functions.

However, in the twentieth century no one can deny
the importance of Fourier’s findings. With the introduc-
tion of fast ways to compute the Fourier decomposi-
tion in the 1960s (Fast Fourier Transform or FFT), the
barrier of the high computational complexity has been
lifted. What the Fourier transform attempts to achieve
is, represent the original signal as a linear combination
of sinusoids. Therefore, each Fourier coefficient is a
complex number that essentially encodes the amplitude
and phase of each of these sinusoids, after the original
signal is projected on them.

For most signals, utilizing just few of the coefficients
we can reconstruct with high accuracy the original
sequence. This is where the great power of the Fourier
transformation lies; by neglecting the majority of the
coeflicients, we can essentially compress the signal or
describe it with fewer numbers. For stock market data
or other time-series that follow the pattern of a random
walk, the first few coefficients, which capture the low
frequencies of the signal, are adequate to describe accu-
rately the signal (or capture most of its energy). Figure 4
depicts a signal of 1,024 points and its reconstruction
using seven Fourier coefficients (i.e., using 7 x 2 = 14
numbers).

Time series

Fourier components

—_——— T T ——— T T — T — T — T~ a6

—_— . . . __— &

a4

a3

a2
at

a0
Dimensionality Reduction. Figure 4. Decomposition of a
signal into the first seven Fourier coefficients. We can see
that using only of few of the Fourier coefficients we can
achieve a good reconstruction of the original signal

Other popular dimensionality reduction techniques
for time-series data are the various wavelet transforms,
piecewise linear approximations, piecewise aggregate
approximation (PAA), which can be regarded as a
projection in time of the wavelet coefficients, adap-
tive piecewise constant approximation (APCA (Keogh
et al,, 2001)), that utilizes the highest energy wavelet
coeflicients, Chebyshev Polynomial Approximation and
Symbolic Approximation of time-series (such as the
SAX representation (Lin et al., 2003)).

No dimensionality reduction technique is univer-
sally better than all the rest. According to the dataset
characteristics, one method may provide better approx-
imation of a dataset compared to other techniques.
Therefore, the key is to carefully pick the representation
that better suits the specific application or the task at
hand. In Fig. 5 we demonstrate various dimensionality
reduction techniques and the quality of the time-series
approximation. For all of the methods, the same stor-
age space is allocated for the compressed sequences. The
time-series reconstruction is shown in darker color, and
the approximation error to the original sequence is also
reported. In general, we can notice that dimensionality
reduction techniques based on the selection of the high-
est energy coeflicients can consistently provide a high
quality sequence approximation.

Dimensionality reduction can be a useful tool for speed-
ing up search operations. Figure 6 elucidates dimen-
sionality reduction for high-dimensional time-series
data. After dimensionality reduction, each object is rep-
resented using fewer dimensions (attributes), so it is
represented in a lower-dimensional space. Suppose that
auser poses another high-dimensional object as a query
and wishes to find all the objects closest to this query.

In order to avoid the search on the original high-
dimensional space, the query is also transformed into
a point in the low-dimensional space and its closest
matches can be discovered in the vicinity of the pro-
jected query point. However, when searching using the
compressed objects, one needs to provide an estimate
of the distance between the original objects. Typically,
it is preferable that the distance in the new space under-
estimates (or lower bounds) the distance in the original
high-dimensional space. The reason for this is explained
as follows.
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e = 48.3, coeffs =10 e =46, coeffs =5

Chebyshev
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Fourier (best coeffs)
e =29.3, coeffs =5

..r'\-/"‘-\_,—’_‘“‘l

T O LAkl

PAA APCA
e =22.5, coeffs =10

Chebyshev
e=23.1,coeffs=5 e =19.2, coeffs =10

Fourier (first coeffs)
e =19.5, coeffs=5

Fourier (best coeffs)
e =154, coeffs =5

Dimensionality Reduction. Figure 5. Comparison of various dimensionality reduction techniques for time-series data.
The darker series indicates the approximation using the indicated number of coefficients. Each figure also reports
the error e introduced by the dimensionality reduction technique. Lower errors indicate better low-dimensional

approximation of the original object

?/\/\>x

Query
Dimensionality Reduction. Figure 6. Search and dimen-
sionality reduction. Every object (time-series in this
case) is tranformed into a lower-dimensional point. User
queries are also projected into the new space. Similarity
search consists in finding the closest points to the query
projection

Suppose that we are seeking for the I-NN (»Nearest-
Neighbor) of a query Q in a database D. By exam-
ining all the objects (linear scan) one can guarantee
that the best match will be found. Can one provide
the same guarantee (i.e., that the same best match will

be returned) when examining the compressed objects
(after dimensionality reduction)?

The answer is positive, as long as the distance on
the compressed data underestimates or lower bounds the
distance on the raw data. In other words, the dimension-
ality reduction (dR) that is performed on the raw data
must have the following property:

Having AcD® 4 and Qﬁq
then
A(g.a) < A(Q A)

Since the computed distance A between any two
compressed objects is underestimated, false alarms may
arise. Suppose, for example, that our database consists
of six two-dimensional point (Fig. 7). If the user query
is “Find everything that lies within a radius of 1 around
A then B is the only result.

Let us assume for a minute that the dimensionality
reduction that is performed on the data is simply a pro-
jection on the x-axis (Fig. 8). In this new space, seeking
for points within a range of 1 from A, would also retrieve
point C, which is called a false alarm. This does not con-
stitute a problem, because in a post-processing phase,
the calculation of the exact distance will eliminate any
false alarms. Suppose now, that another dimensional-
ity reduction results in the projection of Fig. 9. Here, we
have a case of a false dismissal, since object B lies outside
the range of search.

This generic framework for similarity search using
dimensionality reduction and lower-bounding distance
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Dimensionality Reduction. Figure 7. Range search in the
original space, returns only object B
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Dimensionality Reduction. Figure 8. Because of the
dimensionality reduction, false alarms may arise
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Dimensionality Reduction. Figure 9. False dismissals
may happen when the lower bounding lemma is not

obeyed

functions was proposed in (Agrawal et al., 1993) and
is called GEMINI (GEneric Multimedia INdexIng).
One can show that orthonormal dimensionality reduc-
tion techniques (PCA, Fourier, Wavelets) satisfy the
lower bounding lemma when the distance used is the
Euclidean distance.

In conclusion, for search operations, by using
dimensionality reduction one can examine first the
compressed objects and eliminate many of the uncom-
pressed objects from examination using a lower-
bounding approximation of the distance function. This

initial search will return a superset of the correct
answers (no false dismissals). False alarms can be fil-
tered out by computing the original distance between
the remaining uncompressed objects and the query.
Therefore, a significant speedup is achieved by exam-
ining only a small subset of the original raw data.

Cross References
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» Feature Selection
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Definition

The Dirichlet process (DP) is a stochastic process used
in »Bayesian nonparametric models of data, particu-
larly in Dirichlet process mixture models (also known
as infinite mixture models). It is a distribution over dis-
tributions, that is, each draw from a Dirichlet process
is itself a distribution. It is called a Dirichlet pro-
cess because it has Dirichlet distributed finite dimen-
sional marginal distributions, just as the »Gaussian
process, another popular stochastic process used for
Bayesian nonparametric regression, has Gaussian dis-
tributed finite dimensional marginal distributions. Dis-
tributions drawn from a Dirichlet process are dis-
crete, but cannot be described using a finite number of
parameters, thus the classification as a nonparametric
model.

Motivation and Background

Probabilistic models are used throughout machine
learning to model distributions over observed data.
Traditional parametric models using a fixed and finite
number of parameters can suffer from over- or under-
fitting of data when there is a misfit between the com-
plexity of the model (often expressed in terms of the
number of parameters) and the amount of data avail-
able. As a result, model selection, or the choice of a
model with the right complexity, is often an important
issue in parametric modeling. Unfortunately, model
selection is an operation that is fraught with difficul-
ties, whether we use Pcross validation or marginal
probabilities as the basis for selection. The Bayesian
nonparametric approach is an alternative to paramet-
ric modeling and selection. By using a model with an
unbounded complexity, underfitting is mitigated, while
the Bayesian approach of computing or approximating
the full posterior over parameters mitigates overfitting.
For a general overview of Bayesian nonparametrics, see
» Bayesian Nonparametrics.

Nonparametric models are also motivated philo-
sophically by Bayesian modeling. Typically we assume
that we have an underlying and unknown distribu-
tion which we wish to infer given some observed data.
Say we observe xi,...,x,, with x; ~ F independent
and identical draws from the unknown distribution F.
A Bayesian would approach this problem by placing a
prior over F then computing the posterior over F given
data. Traditionally, this prior over distributions is given
by a parametric family. But constraining distributions
to lie within parametric families limits the scope and
type of inferences that can be made. The nonparamet-
ric approach instead uses a prior over distributions with
wide support, typically the support being the space of
all distributions. Given such a large space over which
we make our inferences, it is important that posterior
computations are tractable.

The Dirichlet process is currently one of the most
popular Bayesian nonparametric models. It was first
formalized in Ferguson (1973) for general Bayesian sta-
tistical modeling, as a prior over distributions with
wide support yet tractable posteriors. (Note however
that related models in population genetics date back
to Ewens (1972)). Unfortunately the Dirichlet process
is limited by the fact that draws from it are discrete
distributions, and generalizations to more general pri-
ors did not have tractable posterior inference until the
development of MCMC (»Markov chain Monte Carlo)
techniques (Escobar & West, 1995; Neal, 2000). Since
then there has been significant developments in terms
of inference algorithms, extensions, theory and appli-
cations. In the machine learning, community work on
Dirichlet processes date back to Neal (1992) and Ras-
mussen (2000).

Theory

The Dirichlet process (DP) is a stochastic process whose
sample paths are probability measures with probability
one. Stochastic processes are distributions over func-
tion spaces, with sample paths being random functions
drawn from the distribution. In the case of the DP, it is a
distribution over probability measures, which are func-
tions with certain special properties, which allow them
to be interpreted as distributions over some probability
space ©. Thus draws from a DP can be interpreted as
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random distributions. For a distribution over probabil-
ity measures to be a DP, its marginal distributions have
to take on a specific form which we shall give below.
We assume that the user is familiar with a modicum of
measure theory and Dirichlet distributions.

Before we proceed to the formal definition, we will
first give an intuitive explanation of the DP as an infinite
dimensional generalization of Dirichlet distributions.
Consider a Bayesian mixture model consisting of K
components:

nla ~ Dir (%,...,%)
zi|m ~ Mult (1)

0:|H ~ H
xilz {0¢} ~ F(67) (1)

where 7 is the mixing proportion, « is the pseudo-
count hyperparameter of the Dirichlet prior, H is the
prior distribution over component parameters 6;, and
F(0) is the component distribution parametrized by 6.
It can be shown that for large K, because of the particu-
lar way we parametrized the Dirichlet prior over 7, the
number of components typically used to model n data
items becomes independent of K and is approximately
O(alogn). This implies that the mixture model stays
well defined as K — oo, leading to what is known as an
infinite mixture model (Neal, 1992; Rasmussen, 2000).
This model was first proposed as a way to sidestep the
difficult problem of determining the number of compo-
nents in a mixture, and as a nonparametric alternative
to finite mixtures whose size can grow naturally with
the number of data items. The more modern definition
of this model uses a DP and with the resulting model
called a DP mixture model. The DP itself appears as the
K — oo limit of the random discrete probability mea-
sure Zszl nk59: , where 0 is a point mass centered at 6.
We will return to the DP mixture toward the end of this
entry.

For a random distribution G to be distributed according
to a DP, its marginal distributions have to be Dirichlet
distributed (Ferguson, 1973). Specifically, let H be a dis-
tribution over ® and « be a positive real number. Then
for any finite measurable partition A;,...,A, of © the
vector (G(A;),...,G(A,)) is random since G is ran-
dom. We say G is Dirichlet process distributed with base
distribution H and concentration parameter «, written

G~ DP(a,H), if

(G(A),...,G(A,)) ~ Dir (aH(A)), ..., aH(A,))

2)

LA, of O

The parameters H and « play intuitive roles in
the definition of the DP. The base distribution is basi-
cally the mean of the DP: for any measurable set
A c O, we have E[G(A)] = H(A). On the other hand,
the concentration parameter can be understood as an
inverse variance: V[G(A)] = H(A)(1-H(A))/(a +1).
The larger « is, the smaller the variance, and the DP will
concentrate more of its mass around the mean. The con-
centration parameter is also called the strength param-
eter, referring to the strength of the prior when using
the DP as a nonparametric prior over distributions in
a Bayesian nonparametric model, and the mass param-
eter, as this prior strength can be measured in units of
sample size (or mass) of observations. Also, notice that
a and H only appear as their product in the definition
(3) of the DP. Some authors thus treat H = aH, as the
single (positive measure) parameter of the DP, writing
DP (H) instead of DP (&, H). This parametrization can
be notationally convenient, but loses the distinct roles «
and H play in describing the DP.

Since & describes the concentration of mass around

for every finite measurable partition Ay, ..

the mean of the DP, as a — oo, we will have G(A) —
H(A) for any measurable A, that is G — H weakly or
pointwise. However this not equivalent to saying that
G — H. As we shall see later, draws from a DP will be
discrete distributions with probability one, even if H is
smooth. Thus G and H need not even be absolutely con-
tinuous with respect to each other. This has not stopped
some authors from using the DP as a nonparametric
relaxation of a parametric model given by H. However,
if smoothness is a concern, it is possible to extend the
DP by convolving G with kernels so that the resulting
random distribution has a density.

A related issue to the above is the coverage of the DP
within the class of all distributions over ®. We already
noted that samples from the DP are discrete, thus the
set of distributions with positive probability under the
DP is small. However it turns out that this set is also
large in a different sense: if the topological support of
H (the smallest closed set S in ® with H(S) = 1) is all
of ®, then any distribution over ® can be approximated
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arbitrarily accurately in the weak or pointwise sense by
a sequence of draws from DP (a, H). This property has
consequence in the consistency of DPs discussed later.

For all but the simplest probability spaces, the num-
ber of measurable partitions in the definition (3) of the
DP can be uncountably large. The natural question to
ask here is whether objects satisfying such a large num-
ber of conditions as (3) can exist. There are a number
of approaches to establish existence. Ferguson (1973)
noted that the conditions (3) are consistent with each
other, and made use of Kolmogorov’s consistency the-
orem to show that a distribution over functions from
the measurable subsets of © to [0,1] exists satisfying
(3) for all finite measurable partitions of ®. However
it turns out that this construction does not necessar-
ily guarantee a distribution over probability measures.
Ferguson (1973) also provided a construction of the
DP by normalizing a gamma process. In a later sec-
tion we will see that the predictive distributions of the
DP are related to the Blackwell-MacQueen urn scheme.
Blackwell and MacQueen (1973) made use of this, along
with de Finetti’s theorem on exchangeable sequences, to
prove existence of the DP. All the above methods made
use of powerful and general mathematical machinery to
establish existence, and often require regularity assump-
tions on H and © to apply these machinery. In a later
section, we describe a stick-breaking construction of the
DP due to Sethuraman (1994), which is a direct and ele-
gant construction of the DP, which need not impose
such regularity assumptions.

Let G ~ DP (&, H). Since G is a (random) distribution,
we can in turn draw samples from Gitself. Let 0y, ..., 0,
be a sequence of independent draws from G. Note that
the 6;’s take values in ® since G is a distribution over ©.
We are interested in the posterior distribution of G given
.,0,.Let Ay,...,A, be a finite
measurable partition of ©, and let ny = #{i : 6; € Ay}

observed values of 6y, ..

be the number of observed values in Ay. By (3) and the
conjugacy between the Dirichlet and the multinomial
distributions, we have

(G(Ay),...,G(A)|6y, ..., 0,
~Dir(aH(Ay) + ny,...,aH(A,) + 1,) (3)

Since the above is true for all finite measurable
partitions, the posterior distribution over G must be a

DP as well. A little algebra shows that the posterior DP
has updated concentration parameter o+ and base dis-
tribution %&‘66’, where §; is a point mass located at
0; and n, = Y1, 6;(Ax). In other words, the DP pro-
vides a conjugate family of priors over distributions that
is closed under posterior updates given observations.

Rewriting the posterior DP, we have

Glon, ... 60, ~ DP (a+n, 5 H + 2 EE0) - (4)

a+n n

Notice that the posterior base distribution is a weighted
average between the prior base distribution H and the

.. T Yo
empirical distribution ==

. The weight associated
with the prior base distribution is proportional to «,
while the empirical distribution has weight propor-
tional to the number of observations n. Thus we can
interpret « as the strength or mass associated with the
prior. In the next section we will see that the posterior
base distribution is also the predictive distribution of
0,41 given 60y,...,0,. Taking « — 0, the prior becomes
non-informative in the sense that the predictive distri-
bution is just given by the empirical distribution. On the
other hand, as the amount of observations grows large,
n > a, the posterior is simply dominated by the empir-
ical distribution, which is in turn a close approximation
of the true underlying distribution. This gives a consis-
tency property of the DP: the posterior DP approaches
the true underlying distribution.

Consider again drawing G ~ DP(a,H), and draw-
ing an i.i.d. (independently and identically distributed)
sequence 0y,0;,... ~ G. Consider the predictive dis-
tribution for 0,,,;, conditioned on 84,..., 0, and with
G marginalized out. Since 6,,,1|G, 6;,...,0, ~ G, for a
measurable A c @, we have

P(9n+1 € A|91,. ..

_ 1! (ocH(A)+i89i(A)) )

a+n

0,) = E[G(A)[6).....6,]

where the last step follows from the posterior base dis-
tribution of G given the first n observations. Thus with
G marginalized out:

1 n
»Un ™ H
0 a+n((x +z691) (6)

i=1

0n+1|61) oo
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Therefore the posterior base distribution given 6, . .., 0,
is also the predictive distribution of 8,,;.

The sequence of predictive distributions (6) for
01, 0,, . . .is called the Blackwell-MacQueen urn scheme
(Blackwell & MacQueen, 1973). The name stems from
a metaphor useful in interpreting (6). Specifically, each
value in ® is a unique color, and draws 6 ~ G are
balls with the drawn value being the color of the ball.
In addition we have an urn containing previously seen
balls. In the beginning there are no balls in the urn, and
we pick a color drawn from H, that is, draw 0, ~ H,
paint a ball with that color, and drop it into the urn.
In subsequent steps, say the n + 1st, we will either, with
probability -, pick a new color (draw 6,,;; ~ H), paint
a ball with that color and drop the ball into the urn,
or, with probability -, reach into the urn to pick a
random ball out (draw 8,,.; from the empirical distri-
bution), paint a new ball with the same color, and drop
both balls back into the urn.

The Blackwell-MacQueen urn scheme has been
used to show the existence of the DP (Blackwell & Mac-
Queen, 1973). Starting from (6), which are perfectly well
defined conditional distributions regardless of the ques-
tion of the existence of DPs, we can construct a distri-
bution over sequences 0, 0,, ... by iteratively drawing

each 0; given 0y,...,0,_;. For n > 1let

P(@l,...,Gn):HP(0i|91,...,9,',1) (7)
i=1

be the joint distribution over the first # observations,
where the conditional distributions are given by (6). It
is straightforward to verify that this random sequence is
infinitely exchangeable. That is, for every n, the proba-
bility of generating 0,. .., 8, using (6), in that order, is
equal to the probability of drawing them in any alterna-
tive order. More precisely, given any permutation ¢ on
L,...,n, we have

P(01,...,0,) = P(051)s- -5 00(n)) (8)

Now de Finetti’s theorem states that for any infinitely
exchangeable sequence 0, 0,, . . . there is a random dis-
tribution G such that the sequence is composed of i.i.d.

draws from it:

P(6y,....6,) = ff[G(e,-)dp(G) )

In our setting, the prior over the random distribution
P(G) is precisely the Dirichlet process DP (&, H), thus
establishing existence.

A salient property of the predictive distribution
(6) is that it has point masses located at the previous
., 0,,. A first observation is that with positive
probability draws from G will take on the same value,
regardless of smoothness of H. This implies that the
distribution G itself has point masses. A further obser-
vation is that for a long enough sequence of draws from
G, the value of any draw will be repeated by another
draw, implying that G is composed only of a weighted
sum of point masses, that is, it is a discrete distribu-

draws 60, ..

tion. We will see two sections below that this is indeed
the case, and give a simple construction for G called
the stick-breaking construction. Before that, we shall
investigate the clustering property of the DP.

In addition to the discreteness property of draws from
a DP, (6) also implies a »-clustering property. The dis-
creteness and clustering properties of the DP play cru-
cial roles in the use of DPs for clustering via DP mixture
models, described in the application section. For now
we assume that H is smooth, so that all repeated val-
ues are due to the discreteness property of the DP and
not due to H itself. (Similar conclusions can be drawn
when H has atoms, there is just more bookkeeping.)
Since the values of draws are repeated, let 0;,..., 07, be
the unique values among 6;, . . ., 8,,, and ny be the num-
ber of repeats of 0;. The predictive distribution can be
equivalently written as

9ﬂ+1 61’ LR

>6nN
(44

l m
T ((XH+ anég’f) (10)

k=1

Notice that value 6; will be repeated by 0,,., with prob-
ability proportional to ny, the number of times it has
already been observed. The larger ny is, the higher the
probability that it will grow. This is a rich-gets-richer
phenomenon, where large clusters (a set of 6;’s with
identical values 8; being considered a cluster) grow
larger faster.
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We can delve further into the clustering property of
the DP by looking at partitions induced by the cluster-
ing. The unique values of 0, ..
ing of the set [n] = {1,...
within each cluster, say cluster k, the 0;’s take on the

., 8, induce a partition-
,n} into clusters such that
same value 0. Given that 0,,...,0, are random, this
induces a random partition of [n]. This random parti-
tion in fact encapsulates all the properties of the DP, and
is a very well-studied mathematical object in its own
right, predating even the DP itself (Aldous, 1985; Ewens,
1972; Pitman, 2002). To see how it encapsulates the DP,
we simply invert the generative process. Starting from
the distribution over random partitions, we can recon-
struct the joint distribution (7) over 64, ...,0,, by first
drawing a random partition on [#], then for each clus-
ter k in the partition draw a 6; ~ H, and finally assign
0; = 0 for each i in cluster k. From the joint distribu-
tion (7) we can obtain the DP by appealing to de Finetti’s
theorem.

The distribution over partitions is called the Chinese
restaurant process (CRP) due to a different metaphor.
(The name was coined by Lester Dubins and Jim Pit-
man in the early 1980s (Aldous, 1985)) In this metaphor
we have a Chinese restaurant with an infinite number
of tables, each of which can seat an infinite number of
customers. The first customer enters the restaurant and
sits at the first table. The second customer enters and
decides either to sit with the first customer, or by her-
self at a new table. In general, the n +1st customer either
joins an already occupied table k with probability pro-
portional to the number n; of customers already sitting
there, or sits at a new table with probability propor-
tional to «. Identifying customers with integers 1,2, . ..
and tables as clusters, after n customers have sat down
the tables define a partition of [n] with the distribution
over partitions being the same as the one above. The
fact that most Chinese restaurants have round tables
is an important aspect of the CRP. This is because it
does not just define a distribution over partitions of [#],
it also defines a distribution over permutations of [n],
with each table corresponding to a cycle of the permu-
tation. We do not need to explore this aspect further and
refer the interested reader to Aldous (1985) and Pitman
(2002).

This distribution over partitions first appeared in
population genetics, where it was found to be a robust
distribution over alleles (clusters) among gametes

(observations) under simplifying assumptions on the
population, and is known under the name of Ewens
sampling formula (Ewens, 1972). Before moving on we
shall consider just one illuminating aspect, specifically
the distribution of the number of clusters among n
observations. Notice that for i > 1, the observation 0;
takes on a new value (thus incrementing m by one) with
probability —“— independently of the number of clus-
ters among previous 6’s. Thus the number of cluster m
has mean and variance:

] = Y =5 = a(y(a 1) - y(a)

x oclog(l+ E)
o

Vim|n] = a(y(a+n) - y(a))
+ o (y (o +n) -y (@)

n
= oclog(1+ —)
o

where y(-) is the digamma function. Note that the num-

for N,a > 0, (11)

forn>a>0, (12)

ber of clusters grows only logarithmically in the number
of observations. This slow growth of the number of clus-
ters makes sense because of the rich-gets-richer phe-
nomenon: we expect there to be large clusters thus the
number of clusters m has to be smaller than the num-
ber of observations n. Notice that & controls the number
of clusters in a direct manner, with larger « implying
a larger number of clusters a priori. This intuition will
help in the application of DPs to mixture models.

We have already intuited that draws from a DP are com-
posed of a weighted sum of point masses. Sethuraman
(1994) made this precise by providing a constructive
definition of the DP as such, called the stick-breaking
construction. This construction is also significantly
more straightforward and general than previous proofs
of the existence of DPs. It is simply given as follows:

Bk ~ Beta (L, a)

k-1
7k = Pr [I(l - Br)

0; ~H

G= Z ﬂkag; (13)
k=1
Then G~ DP(a,H). The construction of 7 can be

understood metaphorically as follows. Starting with a
stick of length 1, we break it at f3;, assigning 7, to be the
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length of stick we just broke oft. Now recursively break
the other portion to obtain m,, 73, and so forth. The
stick-breaking distribution over 7 is sometimes writ-
ten m ~ GEM («), where the letters stand for Griffiths,
Engen, and McCloskey (Pitman, 2002). Because of its
simplicity, the stick-breaking construction has lead to
a variety of extensions as well as novel inference tech-
niques for the Dirichlet process (Ishwaran & James,
2001).

Applications

Because of its simplicity, DPs are used across a wide
variety of applications of Bayesian analysis in both
statistics and machine learning. The simplest and most
prevalent applications include Bayesian model valida-
tion, density estimation, and clustering via mixture
models. We shall briefly describe the first two classes
before detailing DP mixture models.

How does one validate that a model gives a good fit
to some observed data? The Bayesian approach would
usually involve computing the marginal probability of
the observed data under the model, and comparing
this marginal probability to that for other models. If
the marginal probability of the model of interest is
highest we may conclude that we have a good fit. The
choice of models to compare against is an issue in this
approach, since it is desirable to compare against as
large a class of models as possible. The Bayesian non-
parametric approach gives an answer to this question:
use the space of all possible distributions as our com-
parison class, with a prior over distributions. The DP
is a popular choice for this prior, due to its simplicity,
wide coverage of the class of all distributions, and recent
advances in computationally efficient inference in DP
models. The approach is usually to use the given para-
metric model as the base distribution of the DP, with the
DP serving as a nonparametric relaxation around this
parametric model. If the parametric model performs
as well or better than the DP relaxed model, we have
convincing evidence of the validity of the model.

Another application of DPs is in »density estima-
tion (Escobar & West, 1995; Lo, 1984; Neal, 1992; Ras-
mussen, 2000). Here we are interested in modeling the
density from which a given set of observations is drawn.
To avoid limiting ourselves to any parametric class, we
may again use a nonparametric prior over all densities.

Here again DPs are a popular. However note that distri-
butions drawn from a DP are discrete, thus do not have
densities. The solution is to smooth out draws from the
DP with a kernel. Let G ~ DP («, H) and let f(x|6) be
a family of densities (kernels) indexed by 6. We use the
following as our nonparametric density of x:

p(x) = [ 1(x16)G(6) do 14)

Similarly, smoothing out DPs in this way is also useful
in the nonparametric relaxation setting above. As we see
below, this way of smoothing out DPs is equivalent to
DP mixture models, if the data distributions F(6) below
are smooth with densities given by f(x|6).

The most common application of the Dirichlet process
is in clustering data using mixture models (Escobar &
West, 1995; Lo, 1984; Neal, 1992; Rasmussen, 2000).
Here the nonparametric nature of the Dirichlet pro-
cess translates to mixture models with a countably
infinite number of components. We model a set of
observations {x1,...,x,} using a set of latent parame-
ters {0y,...,0,}. Each 6; is drawn independently and
identically from G, while each x; has distribution F(6;)
parametrized by 0;:

xi|9,- ~ F(Gl)
0,/G~G
Gla,H ~ DP (o, H) (15)

Because G is discrete, multiple 8,’s can take on the same
value simultaneously, and the above model can be seen
as a mixture model, where x;’s with the same value of
0, belong to the same cluster. The mixture perspective
can be made more in agreement with the usual repre-
sentation of mixture models using the stick-breaking
construction (13). Let z; be a cluster assignment vari-
able, which takes on value k with probability 7x. Then
(15) can be equivalently expressed as

ntla ~ GEM («)
zi|m ~ Mult (1)

0:|H ~ H
X1|Zl,{6;€} NF(Q;) (16)

with G = Y12, mcdp+ and 0; = 67 . In mixture model-
ing terminology, 7 is the mixing proportion, 0] are the
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cluster parameters, F (6;) is the distribution over data
in cluster k, and H the prior over cluster parameters.

The DP mixture model is an infinite mixture model -
a mixture model with a countably infinite number of
clusters. However, because the m;’s decrease exponen-
tially quickly, only a small number of clusters will be
used to model the data a priori (in fact, as we saw previ-
ously, the expected number of components used a priori
is logarithmic in the number of observations). This is
different than a finite mixture model, which uses a fixed
number of clusters to model the data. In the DP mixture
model, the actual number of clusters used to model data
is not fixed, and can be automatically inferred from data
using the usual Bayesian posterior inference framework
(see Neal (2000) for a survey of MCMC inference proce-
dures for DP mixture models). The equivalent operation
for finite mixture models would be model averaging or
model selection for the appropriate number of com-
ponents, an approach that is fraught with difficulties.
Thus infinite mixture models as exemplified by DP mix-
ture models provide a compelling alternative to the
traditional finite mixture model paradigm.

Generalizations and Extensions
The DP is the canonical distribution over probability
measures and a wide range of generalizations have been
proposed in the literature. First and foremost is the
Pitman-Yor process (Ishwaran & James, 2001; Pitman
& Yor, 1997), which has recently seen successful appli-
cations modeling data exhibiting power-law properties
(Goldwater, Griffiths, & Johnson, 2006; Teh, 2006). The
Pitman-Yor process includes a third parameter d ¢
[0,1), with d=0 reducing to the DP. The various rep-
resentations of the DP, including the Chinese restau-
rant process and the stick-breaking construction, have
analogues for the Pitman-Yor process. Other gener-
alizations of the DP are obtained by generalizing one
of its representations. These include Pélya trees, nor-
malized random measure, Poisson-Kingman models,
species sampling models and stick-breaking priors.
The DP has also been used in more complex models
involving more than one random probability measure.
For example, in nonparametric regression we might
have one probability measure for each value of a covari-
ate, and in multitask settings each task might be asso-
ciated with a probability measure with dependence

across tasks implemented using a hierarchical Bayesian
model. In the first situation, the class of models is typ-
ically called dependent Dirichlet processes (MacEach-
ern, 1999), while in the second the appropriate model
is a hierarchical Dirichlet process (Teh, Jordan, Beal, &
Blei, 2006).

Future Directions

The Dirichlet process, and Bayesian nonparametrics
in general, is an active area of research within both
machine learning and statistics. Current research trends
span a number of directions. Firstly, there is the issue
of efficient inference in DP models. Reference Neal
(2000) is an excellent survey of the state-of-the-art in
2000, with all algorithms based on Gibbs sampling
or small-step Metropolis—Hastings MCMC sampling.
Since then there has been much work, including split-
and-merge and large-step auxiliary variable MCMC
sampling, sequential Monte Carlo, expectation prop-
agation, and variational methods. Secondly, there has
been interest in extending the DP, both in terms of
new random distributions, as well as novel classes of
nonparametric objects inspired by the DP. Thirdly, the-
oretical issues of convergence and consistency are being
explored to provide frequentist guarantees for Bayesian
nonparametric models. Finally, there are applications of
such models, to clustering, transfer learning, relational
learning, models of cognition, sequence learning, and
regression and classification among others. We believe
DPs and Bayesian nonparametrics will prove to be rich
and fertile grounds for research for years to come.

Cross References
»Bayesian Methods

» Bayesian Nonparametrics
» Clustering

» Density Estimation

» Gaussian Process

» Prior Probabilities

Further Reading

In addition to the references embedded in the text
above, we recommend the book (Hjort, Holmes, Miiller,
& Walker, 2010) on Bayesian nonparametrics.
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|
Discrete Attribute

A discrete attribute assumes values that can be
counted. The attribute cannot assume all values on the
number line within its value range. See P Attribute and
» Measurement Scales.

! Discretization

YING YANG
Australian Taxation Office, Australia

Synonyms
Binning

Definition

Discretization is a process that transforms a »numeric
attribute into a »categorical attribute. Under discretiza-
tion, a new categorical attribute X’ is formed from and
replaces an existing numeric attribute X. Each value x’
of X’ corresponds to an interval (a,b] of X. Any original
numeric value x of X that belongs to (a,b] is replaced by
x'. The boundary values of formed intervals are often
called “cut points”

Motivation and Background

Many learning systems require categorical data, while
many data are numeric. Discretization allows numeric
data to be transformed into categorical form suited
to processing by such systems. Further, in some cases
effective discretization can improve either computa-
tional or prediction performance relative to learning
from the original numeric data.

The following taxonomy identifies many key dimen-
sions along which alternative discretization techniques
can be distinguished.

»Supervised vs. »Unsupervised (Dougherty, Kohavi,
& Sahami, 1995). Supervised methods use the class
information of the training instances to select dis-
cretization cut points. Methods that do not use the class
information are unsupervised.



288

Discriminative Learning

Global vs. Local (Dougherty et al., 1995). Global meth-
ods discretize with respect to the whole training data
space. They perform discretization only once, using a
single set of intervals throughout a single classification
task. Local methods allow different sets of intervals to
be formed for a single attribute, each set being applied
in a different classification context. For example, differ-
ent discretizations of a single attribute might be applied
at different nodes of a decision tree (Quinlan, 1993).

Eager vs. Lazy (Hsu, Huang, & Wong, 2000). Eager
methods perform discretization prior to classification
time. Lazy methods perform discretization during the
process of classification.

Disjoint vs. Nondisjoint (Yang & Webb, 2002). Dis-
joint methods discretize the value range of a numeric
attribute into disjoint intervals. No intervals overlap.
Nondisjoint methods discretize the value range into
intervals that can overlap.

Parameterized vs. Unparameterized. Parameterized
discretization requires input from the user, such as the
maximum number of discretized intervals. Unparame-
terized discretization uses information only from data
and does not need input from the user, for instance, the
entropy minimization discretization (Fayyad & Irani,
1993).

Univariate vs. Multivariate (Bay, 2000). Methods that
discretize each attribute in isolation are univariate.
Methods that take into consideration relationships
among attributes during discretization are multivariate.

Split vs. Merge (Kerber, 1992) vs. Single-scan (Yang &
Webb, 2001). Split discretization initially has the whole
value range as an interval and then continues split-
ting it into subintervals until some threshold is met.
Merge discretization initially puts each value into an
interval and then continues merging adjacent intervals
until some threshold is met. Single-scan discretization
uses neither split nor merge process. Instead, it scans
the ordered values only once, sequentially forming the
intervals.
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' Discriminative Learning

Definition

Discriminative learning refers to any Pclassification
learning process that classifies by using a »model or
estimate of the probability P(y| x) without reference
to an explicit estimate of any of P(x), P(y, x), or P(x
|y), where y is a class and x is a description of an
object to be classified. Discriminative learning con-
trasts to »-generative learning which classifies by using
an estimate of the joint probability P(y, x) or of the
prior probability P(y) and the conditional probability
P(x|y).

It is also common to categorize as discriminative
any approaches that are directly based on a decision
risk function (such as »Support Vector Machines,
» Artificial Neural Networks, and »Decision Trees),
where the decision risk is minimized without estima-
tion of P(x), P(y, x), or P(x | »).

Cross References
» Generative and Discriminative Learning



Document Classification 289

M . .
Disjunctive Normal Form

BERNHARD PFAHRINGER
University of Waikato, Hamilton, New Zealand

Disjunctive normal form is an important normal form
for propositional logic. A logic formula is in disjunctive
normal form if it is a single disjunction of conjunctions
of (possibly negated) literals. No more nesting and no
other negations are allowed. Examples are:

a

-b

avb

(an=b)v(cnd)
—av(ban-crnd)v(an-d)

Any arbitrary formula in propositional logic can be
transformed into disjunctive normal form by applica-
tion of the laws of distribution, De Morgan’s laws, and
by removing double negations. It is important to note
that this process can lead to exponentially larger for-
mulas which implies that the process in the worst case
runs in exponential time. An example for this behavior
is the following formula given in »conjunctive normal
form (CNF), which is linear in the number of propo-
sitional variables in this form. When transformed into
disjunctive normal form (DNF), its size is exponentially
larger.

CNF: (ag var) A(axVaz) A A(adz, V azne1)

DNE: (ag Aday A= Adgy) V(a1 Aay A+ Aday)

Veeevi(agAaz A Adaner)

Recommended Reading

Mendelson, E. (1997). Introduction to mathematical logic (4th ed.)
(p-30). Chapma & Hall.

! Distance

»Similarity Measures

! Distance Functions

»Similarity Measures

M
Distance Measures

»Similarity Measures

! Distance Metrics

»Similarity Measures

| Distribution-Free Learning

»PAC Learning

| Divide-and-Conquer Learning

Synonyms
Recursive partitioning; TDIDT strategy

Definition

The divide-and-conquer strategy is a learning algorithm
for inducing »Decision Trees. Its name reflects its key
idea, which is to successively partition the dataset into
smaller sets (the divide part), and recursively call itself
on each subset (the conquer part). It should not be con-
fused with the separate-and-conquer strategy which is
used in the »Covering Algorithm for rule learning.

Cross References
»Covering Algorithm
» Decision Tree

[
Document Classification

DuUNJA MLADENI, JANEZ BRANK, MARKO GROBELNIK
Jozef Stefan Institute, Ljubljana, Slovenia

Synonyms
Document categorization; Supervised learning on text
data

Definition
Document classification refers to a process of assigning
one or more Plabels for a document from a predefined
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set of labels. The main issues in document classification
are connected to classification of free text giving docu-
ment content. For instance, classifying Web documents
asbeingabout arts, education, science, etc. or classifying
news articles by their topic. In general, one can con-
sider different properties of a document in document
classification and combine them, such as document
type, authors, links to other documents, content, etc.
Machine learning methods applied to document clas-
sification are based on general classification methods
adjusted to handle some specifics of text data.

Motivation and Background

Documents and text data provide for valuable sources
of information and their growing availability in elec-
tronic form naturally led to application of different
analytic methods. One of the common ways is to take
a whole vocabulary of the natural language in which
the text is written as a feature set, resulting in several
tens of thousands of features. In a simple setting, each
feature gives a count of the word occurrences in a doc-
ument. In this way, text of a document is represented
as a vector of numbers. The representation of a par-
ticular document contains many zeros, as most of the
words from the vocabulary do not occur in a partic-
ular document. In addition to the already mentioned
two common specifics of text data, having a large num-
ber of features and a sparse data representation, it was
observed that frequency of words in text generally fol-
lows Zipf’s law — a small subset of words occur very
frequently in texts while a large number of words occur
only rarely. Document classification takes these and
some other data specifics into account when developing
the appropriate classification methods.

Structure of Learning System

Document classification is usually performed by repre-
senting documents as word-vectors, usually referred to
as the “bag-of-words” or “vector space model” represen-
tation, and using documents that have been manually
classified to generate a model for document classifi-
cation (Cohen & Singer, 1996, Mladeni¢ & Grobelnik,
2003; Sebastiani, 2002; Yang, 1997).

In the word-vector representation of a document, a
vector of word weights is formed taking all the words

occurring in all the documents. Most researchers have
used single words when representing text, but there is
also research that proposes using additional information
to improve classification results. For instance, the
feature set might be extended with various multi-
word features, e.g., n-grams (sequences of n adjacent
words), loose phrases (n-grams in which word order
is ignored), or phrases based on grammatical analysis
(noun phrases, verb phrases, etc.). Information exter-
nal to the documents might also be used if it is available;
for example, when dealing with Web pages, their graph
organization can be a source of additional features (e.g.,
features corresponding to the adjacency matrix; fea-
tures based on graph vertex statistics such as degree or
PageRank; or features taken from the documents that
are adjacent to the current document in the Web graph).

The commonly used approach to weighting words
is based on TF-IDF weights where the number of
occurrences of the word in the document, referred to
as term frequency (TF), is multiplied by the importance
of the word with regards to the whole corpus (IDF -
inverse document frequency). The IDF weight for the
ith word is defined as IDF,=log(N/DF;), where N is
total number of documents and DF; is the document
frequency of the ith word (the number of documents
from the whole corpus in which the ith word appears).
The IDF weight decreases the influence of common
words (which are not as likely to be useful for dis-
criminating between classes of documents) and favors
the less common words. However, the least frequently
occurring words are often deleted from the documents
as a preprocessing step, based on the notion that if a
word that does not occur often enough in the train-
ing set cannot be useful for learning and generaliza-
tion, and would effectively be perceived as noise by the
learning algorithm. A stopword list is also often used
to delete some of the most common and low-content
words (such as “the;” “of;” “in,” etc.) during preprocess-
ing. For many purposes, the vectors used to represent
documents should be normalized to unit length so that
the vector reflects the contents and themes of the docu-
ment but not its length (which is typically not relevant
for the purposes of document categorization).

Even in a corpus of just a few thousand docu-
ments, this approach to document representation can
easily lead to a feature space of thousands, possibly tens
of thousands, of features. Therefore, feature selection
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is sometimes used to reduce the feature set before
training. Such questions as whether feature selection is
needed and/or beneficial, and which feature selection
method should be used, depend considerably on the
learning algorithm used; the number of features to be
retained depends both on the learning algorithm and on
the feature selection method used. For example, naive
Bayes tends to benefit, indeed require, heavy feature
selection while support vector machines (SVMs) tend
to benefit little or nothing from it. Similarly, odds ratio
tends to value (some) rare features highly and therefore
requires a lot of features to be kept, while information
gain tends to score some of the more frequent features
highly and thus often works better if a smaller number
of features is kept (see also »-Feature Selection in Text
Mining).

Due to the large number of features in the original
data representation, some of the more computationally
expensive feature selection methods from traditional
machine learning cannot be used with textual data. Typ-
ically, simple feature scoring measures, such as informa-
tion gain, odds ratio, and chi-squared are used to rank
the features and the features whose score falls below
a certain threshold are discarded. A better, but com-
putationally more expensive feature scoring method is
to train a linear classifier on the full feature set first
(e.g., usinglinear SVM, see below) and rank the features
by the absolute value of their weights in the resulting
linear model (see also »Feature Construction in Text
Mining).

Different classification algorithms have been adjusted
and applied on text data. A few more popular are
described here.

»Naive Bayes based on the multinomial model,
where the predicted class for document d is the one
that maximizes the posterior probability P(c|d) o<
P(c)I1,P(t|c) TE(t,d), where P(c) is the prior proba-
bility that a document belongs to class ¢, P(¢]c) is the
probability that a word chosen randomly in a docu-
ment from class ¢ equals ¢, and TF(¢, d) is the “term
frequency;” or the number of occurrences of word t in
a document d. Where there are only two classes, say ¢,
and c_, maximizing P(c|d) is equivalent to taking the
sign of In P(c, | d)/P(c;|d), which is a linear combina-
tion of TF(w, d). Thus, the naive Bayes classifier can be

seen as a linear classifier as well. The training consists
simply of estimating the probabilities P(¢|c) and P(c)
from the training documents.

> Perceptron trains a linear classifier in an incre-
mental way as a neural unit using an additive update
rule. The prediction for a document represented by
the vector x is sgn(wa), where w is a vector of
weights obtained during training. Computation starts
with w = 0, then considers each training example x; in
turn. If the present w classifies document x; correctly
it is left unchanged, otherwise it is updated according
to the additive rule: w < w + y;x;, where y; is the cor-
rect class label of the document x;, namely y; = +1 for a
positive document, y; = 1 for a negative one.

»SVM trains a linear classifier of the form sgn
(w'x + b). Learning is posed as an optimization prob-
lem with the goal of maximizing the margin, i.e., the
distance between the separating hyperplane w'x+b = 0
and the nearest training vectors. An extension of this
formulation, known as the soft margin, also allows for
a wider margin at the cost of misclassifying some of
the training examples. The dual form of this optimiza-
tion task is a quadratic programing problem and can be
solved numerically.

Results of numerous experiments reported in
research papers suggest that among the classification
algorithms that have been adjusted to text data SVM,
Naive Bayes and k-Nearest Neighbor are among the
best performing (Lewis, Schapire, Callan, & Ron Papka,
1996). Moreover, experimental evaluation on some
standard Reuters news datasets shows that SVM tends
to outperform other classifiers including Naive Bayes
and Perceptron (Mladenic, Brank, Grobelnik, & Milic-
Frayling, 2004).

A characteristic property of machine learning problems
arising in document classification is a very unbalanced
class distribution. In a typical dataset there may be tens
(or sometimes hundreds or thousands) of categories,
most of which are very small. When we train a binary
(two-class) classification model for a particular cate-
gory, documents belonging to that category are treated
as the positive class while all other documents are
treated as the negative class. Thus, the negative class is
typically vastly larger as the positive one. These circum-
stances are not well suited to some traditional machine
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learning evaluation measures, such as »accuracy (if
almost all documents are negative, then a useless clas-
sifier that always predicts the negative class will have
very high accuracy). Instead, evaluation measures from
information retrieval are more commonly used, such
as P-precision, »recall, the F;-measure, the breakeven
point (BEP), and the area under the receiver operating
characteristic (ROC) curve (see also »ROC Analysis).

The evaluation of a binary classifier for a given cat-
egory c on a given test set can be conveniently summa-
rized in a contingency table. We can divide documents
into four groups depending on whether they belong to
¢ and whether our classifier predicted them as positive
(i.e., supposedly belonging to ¢) or not:

Predicted | TP (true positives)
negative

FP (false positives)

Predicted
negative

FN (false negatives) | TN (true negatives)

Given the number of documents in each of the four
groups (TP, FP, TN, and FN), we can compute various
evaluation measures as follows:

Precision = TP/(TP + FP)

Recall = TP, = TP/(TP + FN)

FP,4c = FP/(TN + FP)

Fy =2 eprecision erecall/(precision + recall)

Thus, precision is the proportion of documents pre-
dicted positive that are really positive, while recall is the
proportion of positive documents that have been cor-
rectly predicted as positive. The F, is the harmonic mean
of precision and recall; thus, it lies between precision
and recall, but is closer to the lower of these two values.
This means that a classifier with high F; has both good
precision and good recall. In practice, there is usually
a tradeoft between precision and recall; by making the
classifier more liberal (i.e., more likely to predict posi-
tive), we can increase recall at the expense of precision,
while by making it more conservative (less likely to pre-
dict positive) we can usually increase precision at the
expense of recall. Often the classification model involves
a threshold which can be varied at will to obtain various
(precision, recall) pairs. These can be plotted on a chart,

resulting in the precision-recall curve. As we decrease
the threshold (thus making the classifier more liberal),
precision decreases and recall increases until at some
point precision and recall are equal; this value is known
as the (precision-recall) BEP (Lewis, 1991). Instead of
(precision, recall) pairs, one can measure (TP, e, FP,ate )
pairs, resulting in a ROC curve (see ROC analysis). The
area under the ROC curve is another valuable measure
of the classifier quality.

Document classification problems are typically
multi-class, multi-label problems, which are treated by
regarding each category as a separate two-class clas-
sification problem. After training a two-class classifier
for each category and evaluating it, the question arises
how to combine these evaluation measures into an
overall evaluation measure. One way is macroaverag-
ing, which means that the values of precision, recall,
F,, or whatever other measure we are interested in are
simply averaged over all the categories. Since small cate-
gories tend to be much more numerous than large ones,
macroaveraging tends to emphasize the performance of
our learning algorithm on small categories. An alter-
native approach is microaveraging, in which the con-
tingency tables for individual two-class classifiers are
summed up and measures such as precision, recall, and
F, computed from the resulting aggregated table. This
approach emphasizes the performance of our learning
algorithm on larger categories.
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Synonyms
High-dimensional clustering; Text clustering; Unsuper-
vised learning on document datasets

Definition

At a high-level, the problem of document clustering
is defined as follows. Given a set S of n documents,
we would like to partition them into a predetermined
number of k subsets S, S,,...,Sk, such that the doc-
uments assigned to each subset are more similar to
each other than the documents assigned to different
subsets. Document clustering is an essential part of
text mining and has many applications in information
retrieval and knowledge management. Document clus-
tering faces two big challenges: the dimensionality of the
feature space tends to be high (i.e., a document collec-
tion often consists of thousands or tens of thousands
unique words) and the size of a document collection
tends to be large.

Motivation and Background
» Clustering is an essential component of data mining
and a fundamental means of knowledge discovery in

data exploration. Fast and high-quality document clus-
tering algorithms play an important role in providing
intuitive navigation and browsing mechanisms as well
as in facilitating knowledge management. In recent
years, we have witnessed a tremendous growth in
the volume of text documents available on the Inter-
net, digital libraries, news sources, and company-wide
intranets. This has led to an increased interest in devel-
oping methods that can help users effectively navi-
gate, summarize, and organize this information with
the ultimate goal of helping them find what they are
looking for. Fast and high-quality document cluster-
ing algorithms play an important role toward this goal
as they have been shown to provide both an intuitive
navigation/browsing mechanism by organizing large
amounts of information into a small number of mean-
ingful clusters as well as to greatly improve the retrieval
performance either via cluster-driven dimensionality
reduction, term-weighting, or query expansion.

Structure of Learning System

Figure 1 shows the three procedures of transferring
a document collection to clustering results that are
valuable to users. Original documents are often plain
text files, html files, xml files, or a mixture of them.
However, most clustering algorithms cannot operate

Text
Documents

<>

Document
Representation
Partitional Aggemorative Model-based
Clustering Clustering Clustering | -

Clustering Results and
Evaluation

Document Clustering. Figure 1. Structure of document
clustering learning system
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on such textual files directly. Hence, document rep-
resentation is needed to prepare original documents
into the data model on which clustering algorithms
can operate. The actual clustering process can choose
clustering algorithms of various kinds: partitional clus-
tering, agglomerative clustering, model-based cluster-
ing, etc., depending on the characteristics of the dataset
and requirements of the application. We focus on two
kinds of clustering algorithms that have been widely
used in document clustering: partitional clustering and
agglomerative clustering. Finally, clustering results need
to be presented with proper quality evaluation to users.

Structure of Document Clustering

In the section, we describe document representation,
partitional document clustering, agglomerative docu-
ment clustering, and clustering evaluation in details.

We introduce here the most widely used document
model for clustering and information retrieval: term
frequency-inverse document frequency (tf-idf) vector-
space model (Salton, 1989). In this model, each docu-
ment d is considered to be a vector in the term-space
and is represented by the vector

diiar = (tf; log(n/dh), tf, log(n/df2),.. .,
x tf,, log(n/dfm)),

where tf, is the frequency of the ith term (i.e., term fre-
quency), n is the total number of documents, and df,
is the number of documents that contain the ith term
(i.e., document frequency). To account for documents
of different lengths, the length of each document vector
is normalized so that it is of unit length.

We need to define similarity between two documents
under tf-idf model, which is essential to a clustering
algorithm. Two prominent ways have been proposed to
compute the similarity between two documents d; and
d;. The first method is based on the commonly-used
(Salton, 1989) cosine function

cos(d;,d;) = did;/ (i | i),

and since the document vectors are of unit length, it
simplifies to did;. The second method computes the

similarity between the documents using the Euclidean
distance dis(d;,d;) = |d; — d;|. Note that besides the
fact that one measures similarity and the other measures
distance, these measures are quite similar to each other
because the document vectors are of unit length.

Partitional algorithms, such as K-means (MacQueen,
1967), K-medoids (Jain & Dubes, 1988), probabilistic
(Dempster, Laird, & Rubin, 1977), graph-partitioning-
based (Zahn, 1971), or spectral-based (Boley, 1998), find
the clusters by partitioning the entire dataset into either
a predetermined or an automatically derived number of
clusters. A key characteristic of many partitional clus-
tering algorithms is that they use a global criterion
function whose optimization drives the entire cluster-
ing process. For some of these algorithms the criterion
function is implicit (e.g., PDDP, Boley, 1998), whereas
for other algorithms (e.g., K-means, MacQueen, 1967)
the criterion function is explicit and can be easily stated.
This latter class of algorithms can be thought of as
consisting of two key components. First is the crite-
rion function that the clustering solution optimizes,
and second is the actual algorithm that achieves this
optimization.

Criterion Function Criterion functions used in the par-
titional clustering reflect the underlying definition of
the “goodness” of clusters. The partitional clustering can
be considered as an optimization procedure that tries
to create high quality clusters according to a particu-
lar criterion function. Many criterion functions have
been proposed and analyzed (Duda, Hart, & Stork, 2001;
Jain & Dubes, 1988; Zhao & Karypis, 2004). We list
in Table 1 a total of seven different clustering criterion
functions. These functions optimize various aspects of
intra-cluster similarity, inter-cluster dissimilarity, and
their combinations, and represent some of the most
widely used criterion functions for document cluster-
ing. These criterion functions utilize different views
of the underlying collection, by modeling either the
objects as vectors in a high-dimensional space, or the
collection as a graph.

The Z; criterion function (1) maximizes the sum
of the average pairwise similarities (as measured by
the cosine function) between the documents assigned
to each cluster weighted according to the size of each
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Document Clustering. Table 1 The mathematical
definition of various clustering criterion functions

T S
1 maximize Z; disim(vu) | ()

i=1 V,ues;

K
A maximize . /> sim(v,u) @
i=1 V,UES;

k ves. ues SIM(v, u
& minimize Zn;L_() B)
T/ Lvues; SIM(v, u)
KoY ves ues Sim(v, u
G minimize L() (4)
i=1 Zv,ues,- 5|m(v, U)
K
L cut(V,, V-V,
G minimize =AU (5)
2w
Ha maximize 4 (6)
&
H, maximize % @)
1

The notation in these equations are as follows: k is the total number
of clusters, S is the total objects to be clustered, S; is the set of objects
assigned to the ith cluster, n; is the number of objects in the ith
cluster, v and u represent two objects, and sim(v, u) is the similarity
between two objects

cluster. The 7, criterion function (2) is used by the
popular vector-space variant of the K-means algorithm
(Cutting, Pedersen, Karger, & Tukey, 1992). In this algo-
rithm each cluster is represented by its centroid vector
and the goal is to find the solution that maximizes the
similarity between each document and the centroid of
the cluster that is assigned to. Comparing Z; and Z,, we
see that the essential difference between them is that Z,
scales the within-cluster similarity by the ||D,| term as
opposed to the n, term used by Z;. | D, | is the square-
root of the pairwise similarity between all the document
in S, and will tend to emphasize clusters whose docu-
ments have smaller pairwise similarities compared to
clusters with higher pairwise similarities.

The & criterion function (3) computes the clustering
by finding a solution that separates the documents of

each cluster from the entire collection. Specifically, it
tries to minimize the cosine between the centroid vec-
tor of each cluster and the centroid vector of the entire
collection. The contribution of each cluster is weighted
proportionally to its size so that larger clusters will be
weighted higher in the overall clustering solution. &
was motivated by multiple discriminant analysis and is
similar to minimizing the trace of the between-cluster
scatter matrix (Duda et al., 2001).

The H; and H, criterion functions (6) and (7) are
obtained by combining criterion Z; with &, and 7, with
&, respectively. Since &; is minimized, both #; and H,
need to be maximized as they are inversely related to &;.

The criterion functions that we described so far view
each document as a multidimensional vector. An alter-
nate way of modeling the relations between documents
is to use graphs. Two types of graphs are commonly
used in the context of clustering. The first corresponds
to the document-to-document similarity graph G, and
the second to the document-to-term bipartite graph G,
(Dhillon, 2001; Zha, He, Ding, Simon, & Gu, 2001). G
is obtained by treating the pairwise similarity matrix of
the dataset as the adjacency matrix of G, whereas Gy, is
obtained by viewing the documents and the terms as the
two sets of vertices (V; and V;) of a bipartite graph. In
this bipartite graph, if the ith document contains the jth
term, then there is an edge connecting the correspond-
ing ith vertex of V; to the jth vertex of V. The weights
of these edges are set using the tf-idf model.

Viewing the documents in this fashion, edge-cut-
based criterion functions can be used to cluster doc-
ument datasets. G; and G, ((4) and (5)) are two such
criterion functions that are defined on the similarity and
bipartite graphs, respectively. The G, function (Ding,
He, Zha, Gu, & Simon, 2001) views the clustering pro-
cess as that of partitioning the documents into groups
that minimize the edge-cut of each partition. How-
ever, because this edge-cut-based criterion function
may have trivial solutions the edge-cut of each cluster is
scaled by the sum of the cluster’s internal edges (Ding et
al.,, 2001). Note that, cut(S,, S—S,) in (4) is the edge-cut
between the vertices in S, and the rest of the vertices S —
S, and can be re-written as DL (D — D, ) because the sim-
ilarity between documents is measured using the cosine
function. The G, criterion function (Dhillon, 2001; Zha
etal., 2001) views the clustering problem as a simultane-
ous partitioning of the documents and the terms so that
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it minimizes the normalized edge-cut of the partition-
ing. Note that, V, is the set of vertices assigned to the
rth cluster and W(V,) is the sum of the weights of the
adjacency lists of the vertices assigned to the rth cluster.

Optimization Method There are many techniques that
can be used to optimize the criterion functions
described above. They include relatively simple greedy
schemes, iterative schemes with varying degree of hill-
climbing capabilities, and powerful but computation-
ally expensive spectral-based optimizers (Boley, 1998;
Dhillon, 2001; Fisher, 1996; MacQueen, 1967; Zha et
al., 2001). We introduce here a simple yet very pow-
erful greedy strategy that has been shown to produce
comparable results to those produced by more sophisti-
cated optimization algorithms. In this greedy straggly, a
k-way clustering of a set of documents can be computed
either directly or via a sequence of repeated bisections.
A direct k-way clustering is computed as follows. Ini-
tially, a set of k objects is selected from the datasets to
act as the seeds of the k clusters. Then, for each object, its
similarity to these k seeds is computed, and it is assigned
to the cluster corresponding to its most similar seed.
This forms the initial k-way clustering. This clustering
is then repeatedly refined so that it optimizes a desired
clustering criterion function. A k-way partitioning via
repeated bisections is obtained by recursively applying
the above algorithm to compute 2-way clustering (i.e.,
bisections). Initially, the objects are partitioned into two
clusters, then one of these clusters is selected and is fur-
ther bisected, and so on. This process continues k — 1
times, leading to k clusters. Each of these bisections
is performed so that the resulting two-way clustering
solution optimizes a particular criterion function.

Hierarchical agglomerative algorithms find the clusters
by initially assigning each object to its own cluster and
then repeatedly merging pairs of clusters until a certain
stopping criterion is met. Consider an n-object dataset
and the clustering solution that has been computed after
performing I merging steps. This solution will contain
exactly n — [ clusters as each merging step reduces the
number of clusters by one. Now, given this (n — I)-way
clustering solution, the pair of clusters that is selected
to be merged next is the one that leads to an (n—1-1)-
way solution that optimizes a particular criterion func-
tion. That is, each one of the (n = 1) x (n - 1-1)/2

pairs of possible merges is evaluated, and the one that
leads to a clustering solution that has the maximum
(or minimum) value of the particular criterion func-
tion is selected. Thus, the criterion function is locally
optimized within each particular stage of agglomera-
tive algorithms. Depending on the desired solution, this
process continues until either there are only k clus-
ters left or when the entire agglomerative tree has been
obtained.

The three basic criteria to determine which pair of
clusters to be merged next are single-link (Sneath &
Sokal, 1973), complete-link (King, 1967), and group
average (i.e., unweighed pair group method with arith-
metic mean, UPGMA) (Jain & Dubes, 1988). The single-
link criterion function measures the similarity of two
clusters by the maximum similarity between any pair
of objects from each cluster, whereas the complete-
link uses the minimum similarity. In general, both the
single- and the complete-link approaches do not work
very well because they either base their decisions to a
limited amount of information (single-link), or assume
that all the objects in the cluster are very similar to each
other (complete-link). On the other hand, the group
average approach measures the similarity of two clusters
by the average of the pairwise similarity of the objects
from each cluster and does not suffer from the problems
arising with single- and complete-link.

Clustering results are hard to be evaluated, especially
for high dimensional data and without a priori knowl-
edge of the objects’ distribution, which is quite com-
mon in practical cases. However, assessing the quality
of the resulting clusters is as important as generating
the clusters. Given the same dataset, different clustering
algorithms with various parameters or initial conditions
will give very different clusters. It is essential to know
whether the resulting clusters are valid and how to com-
pare the quality of the clustering results, so that the
right clustering algorithm can be chosen and the best
clustering results can be used for further analysis.

In general, there are two types of metrics for
assessing clustering results: metrics that only utilize
the information provided to the clustering algorithms
(i.e., internal metrics) and metrics that utilize a pri-
ori knowledge of the classification information of the
dataset (i.e., external metrics).



Document Clustering

297

The basic idea behind internal quality measures is
rooted from the definition of clusters. A meaningful
clustering solution should group objects into various
clusters, so that the objects within each cluster are more
similar to each other than the objects from different
clusters. Therefore, most of the internal quality mea-
sures evaluate the clustering solution by looking at how
similar the objects are within each cluster and how well
the objects of different clusters are separated. In partic-
ular, the internal similarity measure, ISim, is defined as
the average similarity between the objects of each clus-
ter, and the external similarity measure, ESim, is defined
as the average similarity of the objects of each cluster
and the rest of the objects in the data set. The ratio
between the internal and external similarity measure is
also a good indicator of the quality of the resultant clus-
ters. The higher the ratio values, the better the clustering
solution is. One of the limitations of the internal qual-
ity measures is that they often use the same information
both in discovering and in evaluating the clusters.

The approaches based on external quality measures
require a priori knowledge of the natural clusters that
exist in the dataset, and validate a clustering result by
measuring the agreement between the discovered clus-
ters and the known information. For instance, when
clustering document datasets, the known categorization
of the documents can be treated as the natural clusters,
and the resulting clustering solution will be considered
correct if it leads to clusters that preserve this catego-
rization. A key aspect of the external quality measures is
that they utilize information other than that used by the
clustering algorithms. The entropy measure is one such
metric that looks how the various classes of documents
are distributed within each cluster.

Given a particular cluster, S,, of size n,, the entropy
of this cluster is defined to be

1 q i i
72&10?5&, (8)

E(S,) = -
(S:) logg = n, n,

where g is the number of classes in the data set, and n’
is the number of documents of the ith class that were
assigned to the rth cluster. The entropy of the entire
clustering solution is then defined to be the sum of the
individual cluster entropies weighted according to the
cluster size. That is,

k
Entropy = ﬂE(S,). 9)
n

r=1

A perfect clustering solution will be the one that leads
to clusters that contain documents from only a single
class, in which case the entropy will be zero. In general,
the smaller the entropy values, the better the clustering
solution is.

Programs and Data

An illustrative example of a software package for clus-
tering low- and high-dimensional datasets and for
analyzing the characteristics of the various clusters is
Cruto(Karypis, 2002). CLuTo has implementations of
the various clustering algorithms and evaluation met-
rics described in previous sections. It was designed
by the University of Minnesota’s data mining’s group
and is available at www.cs.umn.edu/~karypis/cluto.
Cruto has been developed as a general purpose
clustering toolkit. CrLuto’s distribution consists of
both stand-alone programs (vcluster and scluster)
for clustering and analyzing these clusters, as well
as a library through which an application program
can access directly the various clustering and anal-
ysis algorithms implemented in CruTo. Utility tools
for preprocessing documents into vector matrices and
some sample document datasets are also available at
www.cs.umn.edu/~Kkarypis/cluto.
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Synonyms
Dynamic memory model; Memory organization
packets

Definition

Schank’s dynamic memory model (Schank, 1982) was
designed to capture knowledge of specific experiences.
Schank’s memory organization packets (MOPs) and
Kolodner’s E-MOPs (episodic MOPS) (Kolodner, 1983)
provide templates about typical scenes. For a restaurant

scene these might identify “being seated,” “ordering,”
and “paying”
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Definition

Dynamic programming is a method for modeling a
sequential decision process in which past decisions
impact future possibilities. Decisions can be made at
fixed discrete time intervals or at random time intervals
triggered by some change in the system. The decision
process can last for a finite period of time or run indef-
initely - depending on the application. Each time a
decision needs to be made, the decision-maker (referred
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to as “he” in this chapter with no sexist connotation
intended) views the current Pstate of the system and
chooses from a known set of possible »-actions. As a
result of the state of the system and the action cho-
sen, the decision-maker receives a »reward (or pays
a Pcost) and the system evolves to a new state based
on known probabilities. The challenge faced by the
decision-maker is to choose a sequence of actions that
will lead to the greatest reward over the length of the
decision-making horizon. To do this, he needs to con-
sider not only the current reward (or cost) for taking a
given action but the impact such an action might have
on future rewards. A P»policy is a complete sequence
of decisions that dictates what action to take in any
given state and at any given time. Dynamic program-
ming finds the optimal policy by developing mathe-
matical recursions that decompose the multi-decision
problem into a series of single-decision problems that
are analytically or computationally more tractable.

Background and Motivation

The earliest concepts that later developed into dynamic
programming can be traced back to the calculus of vari-
ations problems in the seventeenth century. However,
the modern investigation of stochastic sequential deci-
sion problems arguably dates back to work by Wald
in 1947 on sequential statistical analysis. At much the
same time, Pierre Masse was analyzing similar prob-
lems applied to water resource management in France.
However, the major name associated with dynamic pro-
gramming is that of Richard Bellman who established
the optimality equations that form the basis of dynamic
programming.

It is not hard to demonstrate the potential scope
of dynamic programming. Table 1 gives a sense of
the breadth of application as well as highlighting the
stochastic nature of most instances.

Structure of the Learning System

A dynamic program is a general representation of a
sequential decision problem under uncertainty about
the future and is one of the main methods for solv-
ing Markov Decision Problems (see »Markov Decision
Process). Like a decision tree, it models a process where
the decision we make “today” impacts where we end up
tomorrow and therefore what decisions are available to

us tomorrow. It has distinct advantages over a decision
tree in that:

e It is a more compact representation of a decision
process

o It enables efficient calculation

o It allows exploration of the structural properties of
optimal decisions

e It can analyze and solve problems with infinite or
indefinite time horizons

The Finite Horizon Setting

A finite horizon MDP, is a decision process with a
known end date. Thus, the decision-maker is faced with
the task of making a finite sequence of decisions at fixed
intervals. The MDP model is based on five elements:
»Decision epochs: Sequences of decision times
n=1,...,N (in the infinite horizon we set N = o0). In a
discrete time MDD, these decision times happen at reg-
ular, fixed intervals while in a continuous time model
they occur at random times triggered by a change in
the system. The time between decision epochs is called
a period.

> State space: States represent the possible system con-
figurations facing the decision-maker at each decision
epoch. They contain all information available to the
decision-maker at each decision epoch. The state space,
S, is the set of all such states (often assumed to be finite).
In choosing the state space, it is important to include all
the information that may be relevant in determining a
decision and that may change from decision epoch to
decision epoch.

> Actions: Actions are the available choices for the
decision-maker at any given decision epoch, in any
given state. A(s) is the set of all actions available in state
s (usually assumed to be finite for all s). No action is
taken in the final decision epoch N.

»Transition probabilities: The probability of being in
state s’ at time ¢+1, given you take action a from state s at
time ¢, is written as p;(s|s, a). It clearly makes sense to
allow the transition probabilities to be conditional upon
the current state and the action taken.

»Rewards/costs: In most MDP applications, the deci-
sion-maker receives a reward each period. This reward
can depend on the current state, the action taken, and
the next state and is denoted by r,(s, a,s"). Since a deci-
sion must be made before knowing the next state, s, the
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Dynamic Programming. Table 1 Dynamic programming applications

less interest

Capacity Size of plant Maintain or add Costs of expansion Demand for a product
capacity and production at
current capacity
Cash mgt Cash available Borrow or invest Transaction costs and |External demand for

cash

Catalog mailing

Customer purchase
record

Type of catalog to
send, if any

Purchases in current
period less mailing
costs

Customer purchase
amount

Clinical trials Number of successes |Stop or continue the |Costs of treatment Response of a subject
with each treatment | trial and incorrect to treatment
decisions
Economic State of the economy |Investment or Utility of consumption | Effect of investment
growth consumption

Fisheries mgt

Fish stock in each age
class

Number of fish to to
harvest

Value of the catch

Population size

Forest mgt Size and condition of |Harvesting and Revenues and less Stand growth and
stand reforestation activities | harvesting costs price fluctuation
Gambling Current wealth Stop or continue Cost of playing Outcome of the game
playing

Inventory Stock on hand Order additional stock | Revenue per item sold | Demand for items
control and less ordering,

holding, and penalty

costs
Project Status of each project |Project to investin at |Return from investing |Change in project
selection present in project status

Queueing con-
trol

Number in the queue

Accept/reject new
customers or control
service rate

Revenue from serving
customers and less
delay costs

Interarrival times and
service times

Reliability

Age or status of
equipment

Inspect and repair or
replace if necessary

Inspection, repair, and
failure costs

Failure and
deterioration

Reservations

Number of confirmed
reservations

Accept, wait-list, or
reject new reservation

Profit from satisfied
reservations and less
overbooking
penalties

Number of arrivals
and the demand for
reservations

Scheduling

Activities completed

Next activity to
schedule

Cost of activity

Length of time to
complete activity

Selling an asset

Current offer

Accept or reject the
offer

The offer is less than
the cost of holding the
asset for one period

Size of the offer

Water resource
management

Level of water in each
reservoir

Quantity of water to
release

Value of power
generated

Rainfall and run-off
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MDP formulation deals with the expected reward:

ri(s,a) = Y. ri(s, a8 )pi(s']s, a).

s’'eS

We also define the terminal rewards as ry (s) for being in
state s at the final decision epoch. These are independent
of the action since no action is taken at that point.

The objective in the finite horizon model is to max-
imize total expected reward:

max {E[ i re(Stap,Se41) + () |s1 = s]} 1)

t=1

At any given time t, the decision-maker has
observed the history up to time f, represented by
,a¢1,5¢), and needs to choose a; in
such a way as to maximize (1). A »decision rule, d,
determines what action to take, based on the history
to date at a given decision epoch and for any possible
state. It is >deterministic if it selects a single member
of A(s) with probability 1 for each s € S and for a given
hy, and it is »randomized (»randomized decision rule)

hy = (s1, a1, 82, a2, . . .

if it selects a member of A(s) at random with prob-
ability gg,(,)(a). It is Markovian (»Markovian deci-
sion rule) if it depends on h; only through s;. That is,
di(hy) = di(sy).

A w»policy, m = (dy,...,dy-1), denotes a complete
sequence of decision rules over the whole horizon. It
can be viewed as a “contingency plan” that determines
the action for each possible state at each decision epoch.
One of the major results in MDP theory is that, under
reasonable conditions, it is possible to prove that there
exists a Markovian, deterministic policy that attains the
maximum total expected reward. Thus, for the purposes
of this chapter we will concentrate on this subset of all
policies.

If we define, v;(s) as the expected total reward from
time ¢ to the end of the planning horizon, given that
at time f the system occupies state s, then a recursion
formula can be built that represents v; in terms of v;,;.
Specifically,

v¢(s) = max {rt(s,a) + Zp(s'|s,a)vt+1(s')} (2)
acA(s) s7eS

This is often referred to as the »Bellman equation,
named after Richard Bellman who was responsible for

the seminal work in this area. It breaks the total reward
at time t, into the immediate reward (s, a) and the total
future expected reward, 3. p(s’ls,a)vs1(s"). Define
A7 as the set of actions that attain the maximum in (2)
for a given state s and decision epoch t. Then the finite
horizon discrete time MDP can be solved through the
following backward induction algorithm.

e Sett=Nandw(s) =rn(s) VsesS(since there is
no decision at epoch N and no future epochs, it fol-
lows that the optimal reward-to-go function is just
the terminal reward).

e Lett=1t—1and compute for each s € S;

ve(s) = argr}\eg() {rt(s,a) + Zp(s'|s,a)vt+1(s')}.

s’eS

o For each s € S;, compute A}, by solving

argmax,, {rt(s,a) + Zp(s'|s,a)vt+1(s')}.

s’'eS

e Ift =1then stop else return to step 2.

The function v;(s) is the maximum expected reward
over the entire planning horizon given the system starts
in state s. The optimal policy is constructed by choos-
ing a member of A}, for each s € Sand t € {1,...,N}.
In essence, the algorithm solves a complex N-period
decision problem by solving N simple 1-period decision
problems.

Example - inventory control: Periodically (daily,
weekly, or monthly), an inventory manager must deter-
mine how much of a product to stock in order to satisfy
random external demand for the product. If too lit-
tle is in stock, potential sales are lost. Conversely, if
too much is on hand, a cost for carrying inventory is
incurred. The objective is to choose an ordering rule
that maximizes expected total profit (sales minus hold-
ing and ordering costs) over the planning horizon. To
formulate an MDP model of this system requires precise
assumptions such as:

e The decision regarding the quantity to order is made
at the beginning of each period and delivery occurs
instantaneously.
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e Demand for the product arrives throughout the
period, but all orders are filled on the last day of the
period.

¢ If demand exceeds the stock on hand, potential sales
are lost.

o The revenues, costs and demand distribution are the
same each period.

o The product can only be sold in whole units.

o The warehouse has a capacity for M units.

(These assumptions are not strictly necessary but
removing them leads to a different formulation.) Deci-
sions epochs correspond to the start of a period.
The state, s;€{0,..., M}, represents the inventory on
hand at the start of period t and the action, a; ¢
{0,1,2,...,M - s}, is the number of units to order
that period; the action 0 corresponds to not placing an
order. Let D; represent the random demand throughout
period f and assume that the distribution of demand is
given by p;(d) = P(D; = d),d = 0,1,2,... . The cost
of ordering u units is O(u) = K + c(u) (a fixed cost
plus variable cost) and the cost of storing u units is k(u),
where c(u) and h(u) are increasing functions in u. We
will assume that left-over inventory at the end of the
planning horizon has value g(u) and that the sale of u
units yields a revenue of f (u). Thus, if there are  units
on hand at decision epoch t, the expected revenue is

Fi() = Y2 F (i) +£ (w)P(Dy 2 ).
j=0

The expected reward is therefore
ri(s,a) =F(s+a)-0(a) - h(s+a)

and the terminal rewards are ry (s, a) = g(s). Finally, the
transition probabilities depend on whether or not there
is enough stock on hand, s + g, to meet the demand for
that month, D;. Specifically,

0 ifj>s+a,

p:()

ifj=s+a-Dys+a< M,

pe(j

s,a) =
s+a> Dy,

Yiceapt(d) ifj=0,s+a<M,s+a< D

Solving the finite horizon version of this problem
through backward induction reveals a simple form to

the optimal policy referred to as an (s, S) policy. Specif-
ically, if at time ¢, the inventory is below some number
s' then it is optimal to order a quantity that raises the
inventory level to S'. It has been shown that a struc-
tured policy of this type is optimal for several variants
of the inventory management problem with a fixed
ordering cost. Many variants of this problem have been
studied; these models underly the field of supply chain
management.

The Infinite Horizon Setting

In the infinite (or indefinite) horizon setting, the back-
ward induction algorithm described above no longer
suffices as there are no terminal rewards with which to
begin the process.

In most finite horizon problems, the optimal policy
begins to look the same at each decision epoch as the
horizon is pushed further and further into the future.
For instance, in the inventory example above, s’ =s'*!
and S'=S""! if t is sufficiently removed from the end
of the horizon. The form of the optimal policy only
changes as the end of the time horizon approaches.
Thus, if there is no fixed time horizon, we should expect
the optimal policy to be stationary in most cases. We call
a policy stationary if the same decision rule is applied
at each decision epoch (i.e., d; =d V t). One necessary
assumption for this to be true is that the rewards and
transition probabilities are independent of time (i.e.,
ri(s,a)=r(s,a) and p,(s'ls,a) =p(s'|s,a) Vs,'s€S and
a € A(s)). For the infinite horizon MDP, the theory
again proves that under mild assumptions there exists
an optimal policy that is stationary, deterministic, and
Markovian. This fact greatly simplifies the process of
finding the optimal policy as we can concentrate on a
small subset of all potential policies.

The set up for the infinite horizon MDP is entirely
analogous to the finite horizon setting with the same
»decision epochs, Pstates, P-actions, »rewards, and
»transition probabilities (with the last two assumed to
be independent of time).

The most obvious objective is to extend the finite
horizon objective to infinity and seek to find the policy,
7, that maximizes the total expected reward:

N
v”(s) :I\}E‘Igo {E?[Zr(staat)]}- 3)

t=1
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This, however, is problematic since

1. The sum may be infinite for some or all policies
The sum may not even exist, or
3. Even if the sum exists, there may be no maximizing

policy

In the first case, just because all (or a subset of all) poli-
cies lead to infinite reward in the long run does not
mean that they are all equally beneficial. For instance,
one may give a reward of $100 each epoch and the
other $1 per epoch. Alternatively, one may give large
rewards earlier on while another gives large rewards
only much later. Generally speaking, the first is more
appealing but the above objective function will not dif-
ferentiate between them. Secondly, the limit may not
exist if, for instance, the reward each decision epoch
oscillates between 1 and —1. Thirdly, there may be no
maximizing policy simply because there is an infinite
number of policies and thus there may be an infinite
sequence of policies that converges to a maximum limit
but never reaches it. Thus, instead we look to maxi-
mize either the total expected discounted reward or the
expected long run average reward depending on the
application.

Let A € (0,1) be a discount factor. Assuming the
rewards are bounded (i.e., there exists an M such that
[r(s,a)] < M V(s,a) € S x A(s)), the total expected
discounted reward for a given policy 7 is defined as

N
Vi(s) = 1\}5120 ET {Z A (s, dt(st))}
=1

_pr {gk“lr(sbdt(st))}.

Since, A < 1 and the rewards are bounded, this
limit always exists. The second objective is the expected
average reward which, for a given policy 7, is defined as

¢7(s) = lim ;]E{ S (s dt(st))}.

t=1

Once again, we are dealing with a limit that may or may
not exist. As we will see later, whether the above limit
exists depends on the structure of the Markov chain
induced by the policy.

Let us, at this point, formalize what we mean by
an optimal policy. Clearly, that will depend on which
objective function we choose to use. We say that

o 7* is total reward optimal if v (s) 2 v*(s) Vs € S
and V.

e 7 is discount optimal if vf (s) > vj(s) Vs € S
and V.

o 7" isaverageoptimalifg”™ (s) > g"(s) Vs € Sand V7.

For simplicity, we introduce matrix and vector notation.
Let r4(s) = r(s,d(s)) and ps(jls) = p(jls,d(s)). Thus r4
is the vector of rewards for each state under decision
rule d, and P, is the transition matrix of states under
decision rule d. We will now take a more in-depth look
at the infinite horizon model with the total expected
discounted reward as the optimality criterion.

Given a Markovian, deterministic policy n = (d,da,
d3,...) and defining m, = (di,dks1,...) we can
compute

Vi(s) = EP [ $ M*r(st,dt(st»]

t=1

_E [r(s, di()) + A S A (s, dt(s,))]

- () A T GO | S )
Jj€ t=1

- () +1 53pu G ).
]E

In matrix notation,
T _ T2
Vi =14+ APg vy’

If we follow our supposition that we need to only con-
sider stationary policies (so that the same decision rule
is applied to every decision epoch), r=d* = (d,4d,...),
then this results in

Vi =g AP

This implies that the value function generated by a
stationary policy satisfies the equation:

v=rg+ APyv
=v=(I- /\Pd)_lrd.
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The inverse above always exists since P, is a probability
matrix (so that its spectral radius is less than or equal
to1) and A € (0,1). Moving to the maximization prob-
lem of finding the optimal policy, we get the recursion
formula

v(s) = aIer,lqa()s() {r(s, a) + A p(sls, a)v(j)}. (4)

jes

Note that the right hand side can be viewed as a function
of a vector v (given r,p,A). We define a vector-valued
function

Lv=max {ry+APsvy,
deDMD

DMP s the set of all Markovian, »deterministic

where
decision rules. There are three methods for solving the
above optimization problem in order to determine the
optimal policy. The first method, called value iteration,
creates a sequence of approximations to the value func-
tion that eventually converges to the value function

associated with the optimal policy.

1. Start with an arbitrary |S|-vector v°. Let n = 0 and
choose € > 0 to be small.

n+1(

2. Foreverys € S, compute v"*'(s) as

v(s) = areriag() {r(s,a) + Z Ap(jls, a)v" (])}

jes

3. Ifmaxes [V (s)—v"(s)| > e(1- 1) /21 letn — n+1
and return to step 2.
4. Foreachse S, choose

de(s) € argmaxaeA(S){r(s,aﬁZ Ap(j|s,a)v"+1(j)}.
Jjes

It has been shown that value iteration identifies a policy
with expected total discounted reward within € of opti-
mality in a finite number of iterations. Many variants
of value iteration are available such as using different
stopping criteria to accelerate convergence or combin-
ing value iteration with the policy iteration algorithm
described below.

A second algorithm, called policy iteration, iterates
through a sequence of policies eventually converging to
the optimal policy.

1. Setdp € D to be an arbitrary policy. Let n = 0.
2. (Policy evaluation) Obtain v" by solving

V= (I - Apdn)ilrdn.
3. (Policy improvement) Choose d,; to satisfy
dyi € argmax  p{rq + AP;v"}

componentwise. If d, is in this set, then choose
dn+1 = dn~

4. Ifd,. = d,, set d* = d, and stop. Otherwise, let
n — n + 1and return to (2).

Note that value iteration and policy iteration have
different conceptual underpinnings. Value iteration
seeks a fixed point of the operator L using successive
approximations while policy iteration can be viewed as
using Newton's Method to solve Lv — v = 0.

Finally, a third method for solving the discounted
infinite horizon MDP takes advantage of the fact that,
because L is monotone, if Lv < v then L*v < Lv and
more generally, L*v < v. Thus, induction implies that
the value function of the optimal policy, v} is less than
or equal to v for any v, where Lv < v. We define the set
U := {v € V|Lv < v}. Then, not only is v} in the set U,
it is also the smallest element of U. Therefore, we can
solve for v} by solving the following linear program:

mvin > a(s)v(s)

seS

subject to
v(s) 2 r(s,a) + A Zp(j|s,a)v(j) VseS, aeA,.
jes

(Note that the above set of constraints is equivalent to
Lv < v.) We call this the primal LP. The coefficients
a(s) are arbitrarily chosen. The surprising fact is that
the solution to the above LP will be v for any strictly
positive a.

We can construct the dual to the above primal to get

max > > r(s,a)X(s,a)

s€S aeA;
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subject to

Z X(j,a) - Z Z Ap(ls,a)X(s,a) = a(j) VjeS

acA; seS aeA;

X(s,a) 20 VseS, acA,

Let (X(s,a) : s € S,a € A,) be a feasible solu-
tion for the dual (i.e., satisfies the constraints but not
necessarily optimal). Every such feasible solution cor-
responds to a randomized Markov policy d* and vice
versa. Furthermore, for a given feasible solution, X,
and the corresponding policy d*°, X (s, a) represents the
expected total number of times you will be in state s and
take action a following policy d*° before stopping in the
indefinite horizon problem. Thus, the objective in the
dual can be interpreted as the total expected reward over
the length of the indefinite horizon. The strong law of
duality states that at the optimal solution the objective
functions in the primal and dual will be equal. But we
already know that at the optimal, the primal objective
will correspond to a weighted sum of v} (s), s € S, which
is the total expected discounted reward over the infinite
(or indefinite) horizon given you start in state s. Thus
our interpretations for the primal and dual variables
coincide.

Recall that in the average reward model, the objective
is to find the policy that has the maximum average
reward, often called the gain. The gain of a policy can
be written as

1 N IR .
§7(s) = lim i = lim & Y Pra)(s). G

As mentioned earlier, the major drawback is that for
a given policy 7, the gain may not even exist. An impor-
tant result, however, states that if we confine ourselves
to stationary policies, we can in fact be assured that the
gain is well defined. Our ability to solve a given infi-
nite horizon average reward problem depends on the
form of the Markov chains induced by the determin-
istic, stationary policies available in the problem. Thus,
we divide the set of average reward MDPs according to
the structure of the underlying Markov chains. We say
that an MDP is

e Unichain if the transition matrix corresponding to
every deterministic stationary policy is unichain,
that is, it consists of a single recurrent class plus a
possibly empty set of transient states, or

o Multichain if the transition matrix corresponding to
at least one stationary policy contains two or more
closed irreducible recurrent classes

If an MDP is unichain, then the gain for any given
stationary, deterministic policy can be defined by a sin-
gle number (independent of starting state). This makes
intuitive sense since if we assume that it is possible to
visit every state from every other one (possibly minus
some set of transient states that may be visited ini-
tially but will eventually be abandoned) then it would
seem reasonable to assume that over the infinite horizon
the initial starting state would not impact the average
reward. However, if the initial state impacts what set of
states can be visited in the future (i.e., the MDP is mul-
tichain) then clearly it is likely that the expected average
reward will be dependent on the initial state.

If the average reward MDP is unichain then the gain
can be uniquely determined by solving

v(s) = uga(f) {r(s,a) -g+ Zp(s'|s,a)v(s')}. (6)

s'eS

Notice that the above equation has |S| + 1 unknowns but
only |S| equations. Thus, v is not uniquely determined.
To specify v uniquely, it is sufficient to set v(s") = 0 for
some s’ € S. If this is done, then v(s) is called the rela-
tive value function and v(j) — v(k) is the difference in
expected total reward obtained in using an optimal pol-
icy and starting in state j as opposed to state k. It is also
often represented by the letter / and called the bias.

As in the discounted infinite horizon MDP, there are
three potential methods for solving the average reward
case. We present only policy iteration here and refer the
reader to the recommended readings for value iteration
and linear programming.

1. Setn =0, and choose an arbitrary decision d,,.
2. (Policy evaluation) Solve for g,, v,:

0= rq, —ge+ (Pd,, —I)V.
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3. Choose d,4; to satisfy
dpy1 € argmax  p{ra + Pavu}.

Setting d,,41 = d,, if possible.
4. Ifd,. = d,, stop, set d* = d,,. Else, increment n by
1 and return to step 2.

As mentioned earlier, the equation in step 2 fails to
provide a unique v, since we have |S| + 1 unknowns
and only S| equations. We therefore need an addi-
tional equation. Any one of the following three will
suffice:

1. Setv,(so) = 0 for some fixed sj € S.

2. Choose v, to satisfy P;n v, = 0.

3. Choose v, to satisfy —v, + (P; — I)w = 0 for some
weV.

Continuous Time Models

So far, we have assumed that decision epochs occur at
regular intervals but clearly in many applications this
is not the case. Consider, for instance, a queueing con-
trol model where the service rate can be adjusted in
response to the size of the queue. It is reasonable to
assume, however, that changing the service rate is only
possible following the completion of a service. Thus, if
the service time is random then the decision epochs will
occur at random time intervals. We will therefore turn
our attention now to systems in which the state changes
and decision epochs occur at random times. At the most
general level, decisions can be made at any point in time
but we will focus on the subset of models for which
decision epochs only occur at state transitions. It turns
out that this is usually sufficient as the added bene-
fit of being able to change decisions apart from state
changes does not generally improve performance. Thus,
the models we study generalize the discrete time MDP
models by:

1. Allowing, or requiring, the decision-maker to
choose actions whenever the system changes state

2. Modeling the evolution of the system in continuous
time, and

3. Allowing the time spent in a particular state to
follow an arbitrary probability distribution

Semi-Markov decision processes (SMDP) are continuous
time models where decisions are made at some but
not necessarily all state transitions. The most com-
mon subset of these, called exponential SMDPs, are
SMDPs where the intertransition times are exponen-
tially distributed.

We distinguish between two processes:

1. The natural process that monitors the state of the
system as if it were observed continually through
time and

2. The embedded Markov chain that monitors the evo-
lution of the system at the decision epochs only

For instance, in a queueing control model one may
decide only to change the rate of service every time there
is an arrival. Then the embedded Markov chain would
only keep track of the system at each arrival while the
natural process would keep track of all state changes -
including both arrivals and departures.

While the actions are generally only going to depend
on the state of the system at each decision epoch, it
is possible that the rewards/costs to the system may
depend on the natural process. Certainly, in the queue-
ing control model the cost to the system would go down
as soon as a departure occurs. In discrete models it
was sufficient to let the reward depend on the current
state s and the current action a and possibly the next
state s’. However, in an SMDP, the natural process may
change between now and the next decision epoch and
moreover, the time the process stays in a given state is
no longer fixed. Thus we need to consider two types
of rewards/costs. First, a lump sum reward, k(s,a), for
taking action @ when in state s. Second, a reward rate,
¢(j,s,a), paid out for each time unit that the natural
process spends in state j until the next decision epoch
when the state at the last decision epoch was s and the
action taken was a. Note that if we insist that every state
transition triggers a decision epoch, we can reduce this
to ¢(s,a) since the system remains in s until the next
decision epoch.

Before we can state our objective we need to deter-
mine what we mean by discounting. Again, because
we are dealing with continuous time so that decision
epochs are not evenly spaced, it is not sufficient to have a
fixed discount factor A. Instead, we will discount future

rewards at rate e %!, for some o > 0. If welet A = 7@
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(the discount rate for one time unit) then a = 0.11 cor-
responds to A = 0.9. Thus an « around 0.1 is commonly
used.

We can now state our objective. We look to find
a policy that maximizes the total expected discounted
reward over the infinite horizon. There is an average
reward model for continuous time models as well but
we will not discuss that here. Given a policy m we can
write its total expected discounted reward as:

vi(s) = Ef|: Z e %o (K(Xn, Y,)
n=0
N f el e_(x(t—tfn)c( WX, Yy) dt)], (7)

where X, and Y, are the random variables that repre-
sent the state and action at time n respectively, W, is the
random variable that represents the state of the natu-
ral process at time ¢, and 0, is the random time of the
nth decision epoch. Again, if we assume that each state
transition triggers a decision epoch, X, = W, for all
t € [0y, 0n41). We seek to find a policy 7 such that

va(s) = vo(s) = max vi(s) ®)

for all s € S. Perhaps surprisingly, (7) can be reduced
to one that has the same form as in the discrete time
case for any SMDP. As a consequence, all the theory and
the algorithms that worked in the discrete version can
be transferred to the continuous model! Again, we refer
the reader to the recommended readings for the details.

Extensions

»Partially Observed MDPs

In some instances, the state of the system may not
be directly observable but instead, the decision-maker
receives a signal from the system that provides infor-
mation about the state. For example, in medical deci-
sion making, the health care provider will not know
the patient’s true health status but will have on hand
some diagnostic information that may be related to the
patient’s true health. These problems are modeled from
a Bayesian perspective. The decision-maker uses the sig-
nal to update his estimate of the probability distribution
of the system state. He then bases his decision on this
probability distribution. The computational methods
for solving partially observed MDPs are significantly

more complex than in the fully observable case and only
small problems have been solved numerically.

Often the transition probabilities in an MDP are derived
from a system model, which is determined by a few
parameters. Examples include demand distributions in
inventory control and arrival and/or service distribu-
tions in queueing systems. In these cases the forms of
the distributions are known (for example, Poisson for
demand models and exponential for arrival or service
models) but their parameter values are not. Herein, the
decision-maker seeks a policy that combines learning
with control. A Bayesian approach is used. The param-
eter is related to the system state through a likelihood
function and after observing the system state, the prob-
ability distribution on the parameter is updated. This
updated probability distribution provides the basis for
choosing a policy.

Arguably the greatest challenge to implementing MDP
theory in practice is “the curse of dimensionality”
As the complexity of a problem grows, the amount
of information that needs to be stored in the state
space quickly reaches a point where the MDP is no
longer computationally tractable. There now exist sev-
eral methods for dealing with this problem, all of which
are grouped under the title of approximate dynamic
programming or neuro-dynamic programming. These
potential methods begin by restricting the value func-
tion to a certain class of functions and then seeking
to find the optimal value function within this class. A
typical approximation scheme is based on the linear
architecture:

k

OENCHEDITION

i=1

where ¢;(s),i = 1,...,k are pre-defined basis func-
tions that attempt to characterize the state space and
r is a set of weights applied to the basis functions.
This reduces the problem from one with |S|-dimensions
to one with |k|-dimensions. The questions are (1) how
do you determine what class of functions (determined
by ¢) to choose and (2) how to find the best approx-
imate value function within the chosen class (i.e., the
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best values for r)? The first question is still very much
wide open.

Answers to the second question fall into two main
camps. On the one hand, there are a number of meth-
ods that seek to iteratively improve the approximation
through the simulation of sample paths of the decision
process. The second method uses linear programming
but restricts the value function to the approximate form.
This reduces the number of variables in the primal to
a reasonable number (equal to the number of basis
functions chosen). One can then determine the opti-
mal set of weights, r, through column generation. One
of the major challenges facing approximate dynamic
programming is that it is difficult to determine how
close the approximate value function is to its true value.
In other words, how much more reward might have
been accumulated had the original MDP been solved
directly? Though there are some attempts in the liter-
ature to answer this question, it remains a significant
challenge.

Cross References
» Markov Decision Processes
> Partially Observable Markov Decision Processes

Recommended Reading

Bertsekas, D. (2000). Dynamic programming and optimal control.
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Feinberg, E., & Shwartz, A. (2002). Handbook of Markov decision
processes. Boston, MA: Kluwer Academic Publishers.
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Sutton, R., & Barto, A. (1998). Reinforcement learning. Cambridge,
MA: MIT Press.

! Dynamic Programming For
Relational Domains

» Symbolic Dynamic Programming

! Dynamic Systems

The dynamic systems approach emphasizes the human,
and animal, interaction with the environment. Inter-
actions are described by partial differential equa-
tions. Attractors and limit cycles represent stable states
which may be analogous to attribute-values.
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