! F,-Measure

The F)-measure is used to evaluate the accuracy of pre-
dictions in two-class (binary) »classification problems.
It originates in the field of information retrieval and is
often used to evaluate »document classification mod-
els and algorithms. It is defined as the harmonic mean
of Pprecision (ie., the ratio of »true positives to all
instances predicted as positive) and Precall (i.e., the
ratio of true positives to all instances that are actually
positive). As such, it lies between precision and recall,
but is closer to the smaller of these two values. There-
fore a system with high F; has both good precision and
good recall. The F;-measure is a special case of the more
general family of evaluation measures:

Fg = (B +1)precisionrecall | (f*precision + recall)

Thus using 3 > increases the influence of precision
on the overall measure, while using < 1 increases
the influence of recall. Some authors use an alternative
parameterization,

F, =1/(a/precision + (1ta) [recall)

which, however, leads to the same family of mea-
sures; conversion is possible via the relationship

a=1/(p*+1).

! False Negative

In a two-class problem, a »classification »model makes
two types of error: Mfalse positives and false nega-
tives. A false negative is an example of positive class
that has been incorrectly classified as negative. See
»confusion matrix for a complete range of related
terms.

|
False Positive

In a two-class problem, a »classification »model makes
two types of error: false positives and »false negatives.
A false positive is an example of negative class that has
been incorrectly classified as positive. See »confusion
matrix for a complete range of related terms.

! Feature

» Attribute

! Feature Construction

»Data Preparation

I Feature Construction in Text
Mining

JANEZ BRANK, DUNJA MLADENIC,
MARKO GROBELNIK

JozZef Stefan Insitute

Ljubljana, Slovenia

Synonyms
Feature generation in text mining

Definition

Feature construction in Ptext mining consists of var-
ious techniques and approaches which convert textual
data into a feature-based representation. Since tradi-
tional machine learning and data mining techniques
are generally not designed to deal directly with tex-
tual data, feature construction is an important prelimi-
nary step in text mining, converting source documents

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI10.1007/978-0-387-30164-8,

© Springer Science+Business Media LLC 2011

398

Feature Construction in Text Mining

into a representation that a data mining algorithm can
then work with. Various kinds of feature construction
approaches are used in text mining depending on the
task that is being addressed, the data mining algorithms
used, and the nature of the dataset in question.

Motivation and Background

Text mining is the use of machine learning and data
mining techniques on textual data. This data consists
of natural language documents that can be more or less
structured, ranging from completely unstructured plain
text to documents with various kinds of tags containing
machine-readable semantic information. Furthermore,
documents may sometimes contain hyperlinks that
connect them into a graph. Since most traditional
machine learning and data mining techniques are not
directly equipped to deal with this kind of data, an
important first step in text mining is to extract or
construct features from the input documents, thereby
obtaining a feature-based representation which is suit-
able for handling with machine learning and data min-
ing algorithms. Thus, the task of feature construction in
text mining is inextricably connected with text mining
itself and has evolved alongside it. An important trend
over the years has been the development of techniques
that do not process each document in isolation but
make use of a corpus of documents as a whole, possibly
even involving external data or background knowledge
in the process.

Documents and text data provide for valuable
sources of information and their growing availability
in electronic form naturally led to application of dif-
ferent analytic methods. One of the common ways is
to take a whole vocabulary of the natural language in
which the text is written as a feature set, resulting in
several tens of thousands of features. In a simple set-
ting, each feature gives a count of the word occurrences
in a document. In this way text of a document is rep-
resented as a vector of numbers. The representation of
a particular document contains many zeros, as most of
the words from the vocabulary do not occur in a par-
ticular document. In addition to the already mentioned
two common specifics of text data, having a large num-
ber of features and a sparse data representation, it was
observed that frequency of words in text in general fol-
lows Zipf’s law - a small subset of words occur very

frequently in texts while a large number of words occur
only rarely. »Document classification takes these and
some other data specifics into account when developing
the appropriate classification methods.

Structure of Learning System

In a learning or mining system that deals with tex-
tual data, feature construction is usually one of the first
steps that is often performed alongside typical prepro-
cessing tasks such as data cleaning. A typical output
of feature construction are feature vectors represent-
ing the input documents; these vectors themselves then
form the input for a machine learning or data mining
algorithm. On the other hand, sometimes feature con-
struction is more closely integrated into the learning
algorithm itself, and sometimes it can be argued that
the features themselves are the desired output that is the
goal of the text mining task.

Solutions

At the lowest level, text is represented as a sequence of
bytes or other elementary units of information. How
these bytes are to be converted into a sequence of char-
acters depends on the character encoding of the text.
Many standard encodings exist, such as UTF-8, the ISO-
8859 family, and so on. Often, all the texts that appear
as input for a specific text mining task are in the same
encoding, or if various encodings are used they are
specified clearly and explicitly (e.g., via the Content-
Type header in the HTTP protocol), in which case the
problem of conversion is straightforward. In the case of
missing or faulty encoding information, various heuris-
tics can be used to detect the encoding and convert the
data to characters; it is best to think of this as a data
cleaning and preprocessing step.

When we have our text represented as a sequence of
characters, the usual next step is to convert it into
a sequence of words. This is usually performed with
heuristics which depend to some extent on the lan-
guage and underlying character set; for the purposes
of segmentation of text into words, a word is thought
of as a sequence of alphabetic characters delimited by

Feature Construction in Text Mining

399

whitespace and/or punctuation. Some efforts to stan-
dardize word boundary detection in a way that would
work reasonably well with a large set of natural lan-
guages have also been made (see, e.g., the Unicode
Standard Annex #29, Unicode Text Segmentation). For
many (but not all) text mining tasks, the distinction
between upper and lower case (if it is present in the
underlying natural language) is largely or entirely irrel-
evant; hence, all text is often converted into lower case
at this point. Another frequently used preprocessing
step is stemming, whereby each word is replaced by its
stem (e.g., walking — walk). The details of stemming
depend on the natural language involved; for English,
arelatively simple set of heuristics such as Porter’s stem-
mer is sufficient. Instead of stemming, where the end-
ing is chopped oft the word, one can apply a more
sophisticated transformation referred to as lemmati-
zation that replaces the word by its normalized form
(lemma). Lemmatization is especially relevant for nat-
ural languages that have many different forms of the
same word (e.g., several cases, gender influence on verb
form etc.). Efforts have also been made to discover
stemming rules or lemmatization rules automatically
using machine learning techniques (Plisson, Lavrac,
Mladeni¢, & Erjavec, 2008).

The individual words can themselves be thought of
as features of the document. In the feature-vector rep-
resentation of a document d, the feature corresponding
to the word w would tell something about the presence
of the word w in this document: either the frequency
(number of occurrences) of w in d, or a simple binary
value (1 if present, 0 if absent), or it can further be mod-
ified by, e.g., the »TF-IDF weighting. In this kind of
representation, all information about the word order
in the original document is lost; hence, it is referred
to as the “bag of words” model. For many tasks, the
loss of word order information is not critical and the
bag of words model is a staple of information retrieval,
document classification, and many other text-related
tasks. A downside of this approach (and many other
word-based feature construction techniques) is that the
resulting number of features can be very large (there
are easily tens of thousands of different words in a mid-
sized document corpus); see »Feature Selection in Text
Mining.

Clearly, ignoring the word order completely can
sometimes lead to the loss of valuable information.

Multi-word phrases sometimes have a meaning that
is not adequately covered by the individual words of
the phrase (e.g., proper names, technical terms, etc.).
Various ways of creating multi-word features have
been considered. Let d be a document consisting of
, W) (note that,
this sequence might already be an output of some
preprocessing operations, e.g., the removal of stopwords
and of very infrequent words.). Then an n-gram is
defined as a sequence of n adjacent words from the doc-
ument, i.e., (Wj, Wit1,...,Wirn—1). We can use n-grams
as features in the same way as individual words, and
indeed a typical approach is to use n-grams for all values
of n from 1 to a certain upper limit (e.g., 5). Many of the
resulting n-grams will be incidental and irrelevant, but
some of them may be valuable and informative phrases;
whether the text mining algorithm will be able to profit
from them depends a lot on the algorithm used, and
feature selection might be even more necessary than
in the case of individual words. A related problem is
the explosion of the number of features; if the num-
ber of different words in a corpus grows approximately
with the square root of the length of the corpus (Heaps’
law), the number of different n-grams is more likely to
grow nearly linearly with the length of the corpus. The
use of n-grams as features has been found to be benefi-

the sequence of words (wy, wy,...

cial, e.g., for the classification of very short documents
(Mladeni¢ & Grobelnik, 2003).

Further generalization of n-grams is possible by
removing the requirement that the words of the n-
gram must appear adjacently; we can allow them to
be separated by other words. The weight of an occur-
rence of the n-gram is often defined as decreasing
exponentially with the number of intervening separa-
tor words. Another direction of generalizing n-gram
is to ignore the order of words within the n-gram; in
effect one treats n-grams as bags (multisets) instead
of sequences. This results in features sometimes called
loose phrases or proximity features (i.e., every bag of
words up to a certain size, occurring in sufficiently
close proximity to each other, is considered to be a
feature). These generalizations greatly increase the fea-
ture space as well as the number of features present
in any individual document, so the risk of compu-
tational intractability is greatly increased; this can
sometimes be alleviated through the use of kernels
(see below).

400

Feature Construction in Text Mining

Instead of treating the text as a sequences of words,
we might choose to treat it as a sequence of charac-
ters. A sequence of n characters is also known as an
n-graph. We can use n-graphs as features in the rep-
resentation of text in a way analogous to the use of
n-grams in the previous subsection. The weight of the
feature corresponding to a particular n-graph in the fea-
ture vector of a particular document d will typically
depend on the number of occurrences of that n-graph
in the text of d. Sometimes noncontiguous occurrences
of the n-graph are also counted (i.e., occurrences where
characters from the n-graph are separated by one or
more other characters), although with a lower weight;
this is can be done very elegantly with kernel methods
(see below). Feature selection and TF-IDF style weight-
ing schemes can also be used as in the case of n-grams.
Whether an n-graph-based representation offers any
benefits compared to an n-gram-based one depends
largely on the dataset and task in question. For example,
the classification of English documents the usefulness
of n-graphs has been found to be dubious, but they can
be beneficial in highly agglutinative languages where an
individual word can consist of many morphemes and
it is not really useful to treat a whole word as an indi-
vidual unit of information (as would be the case in a
word-based feature representation). In effect, the use
of n-graphs provides the learner with cheap access to
the sort of information that would otherwise require
more sophisticated NLP technologies (stemming, pars-
ing, morpheme analysis, etc.); the downside is that a
lot of the n-graph features are merely noise (Lodhi,
Saunders, Shawe-Taylor, Cristianini, & Watkins, 2002).
For some application, word suffixes can be particu-
larly useful features, e.g., to learn lemmatization rules
(Mladeni¢, 2002; Plisson et al., 2008).

Let ¢ be a function which assigns, to a given docu-
ment d, a feature vector ¢(d) from some feature space
F. Assume furthermore that a dot product (a.k.a. inner
product) is defined over F, denoted by (-, -)r. Then the
function K defined by K(d;, d2) = {¢(dy), ¢(dy))r is
called a kernel function. It turns out that many machine
learning and data mining methods can be described
in a way such that the only operation they need to do
with the data is to compute dot products of their feature

vectors; in other words, they only require us to be able
to compute the kernel function over our documents.
These approaches are collectively known as »kernel
methods; a well-known example of this is the »support
vector machine (SVM) method for supervised learn-
ing, but the same principle can be used in »clustering
as well. An important advantage of this approach is
that it is often possible to compute the kernel function
K directly from the documents d;, without explicitly
generating the feature vectors ¢(dj ;). This is especially
valuable if the feature space is untractably large. Sev-
eral families of kernel functions for textual data have
been described in the literature, corresponding to vari-
ous kinds of n-graph and n-gram based features (Brank,
2006; Lodhi et al., 2002).

Assume that a corpus of n documents have already
been represented by d-dimensional real feature vectors
X1, ..,X, € R If we select some direction y € R and
project a vector X; in this direction, the resulting value
y'x:/|lyl| is in effect a new feature describing the doc-
ument i. In other words, we have constructed a new
feature as a linear combination of the existing features.
This leads to the question of how to select one or more
suitable directions y; various techniques from linear
algebra and statistics have been proposed for this.

A well-known example of this is principal compo-
nent analysis (PCA) in which one or more new coordi-
nate axes y are selected in such a way that the variance
of the original vectors xy,...,x, in the directions of
the new coordinate axes is maximized. As it turns out,
this problem is equivalent to computing the principal
eigenvectors of the covariance matrix of the original
dataset.

Another technique of this sort is latent semantic
indexing (LSI) (Deerwester, Dumais, Furnas, Landauer,
& Harshman, 1990). Let X be a d xn matrix with
Xi,...,X, as its columns (a.k.a. the term-document
matrix). LSI uses singular value decomposition (SVD)
to express X as the product of three matrices, T-S-D,
where T is a d x r orthonormal matrix, Disar x n
orthonormal matrix, and S is a r x r diagonal matrix
containing the singular values of X. Here, r denotes the
rank of the original matrix X. Let T(") be the matrix
consisting of the left m columns of T, let D("™) be the
matrix consisting of the top m rows of D, and let S be

Feature Extraction

401

the top left m x m submatrix of S. Then it turns out that
xm = mgm) p(m) s the best rank-m approxima-
tion of the original X (best in the sense of minimizing
the Frobenius norm of X — X(")). Thus, the i-th col-
umn of D™ can be seen as a vector of m new features
representing the i-th document of our original dataset,
and the product T (") can be seen as a set of m new
coordinate axes. The new feature vectors (columns of
D)) can be used instead of the original vectors x;.

Canonical correlation analysis (CCA): Sometimes
several vector representations are available for the same
document d;; for example, we might have the same
text in two different languages, giving rise to two fea-
ture vectors, e.g., X; € RY and y; € R?. Given such a
“parallel corpus” of pairs (x;,y;),i = 1...n, it is some-
times desirable to convert both types of representations
to a “common denominator” In other words, we want
to find a set of r new coordinate axes in x-space (say
the columns of U € R*™") and a set of r new coordi-
nate axes in y-space (say the columns of V e R?*")
such that the j-th column of U has a similar role in
x-space as the j-th column of V has in y-space, for
all j. This can be formulated as an optimization prob-
lem: find U and V such that the correlation between
UTx; and VTyZ. (i.e., the projections of x; and y; onto the
new sets of axes) is maximized. Once we have suitable
matrices U and V, we can convert any feature vector
from the original x-space or y-space into a common
new r-dimensional space. This makes it easier to deal
with multi-lingual corpora, allowing us, e.g., to retrieve
documents in language x as a response to a query in
languagey, or vice versa. The same techniques are appli-
cable in multimodal scenarios (i.e., x; and y; can be
any two representations of the same instance d; from
two substantially different perspectives, not necessar-
ily textual). This method is often used in combination
with kernels, in which case it is known as kernel canoni-
cal correlation analysis (KCCA) (Hardoon, Szedmak, &
Shawe-Taylor, 2004).

There are many other ways to extract or construct fea-
tures from text, depending on the use that the features
are intended for. For example, a dual representation of
a corpus may be considered, in which features are used

to represent terms and not documents. The feature vec-
tor for a term ¢ contains one feature for each document,
and its value is related to the frequency of ¢ in that
document. This representation can be used to analyze
which words co-occur frequently and may therefore
be related in meaning. Feature construction can also
utilize methods from information extraction, such as
identifying various kinds of named entities (names of
persons, places, organizations, etc.) or other interesting
bits of information and introducing features which indi-
cate the presence of particular names or other tagged
entities in the document.

Cross References
»Document Classification
»Feature Selection in Text Mining
» Kernel Methods

»Support Vector Machine

»Text Mining

Recommended Reading

Brank, J. (2006). Loose phrase string kernels. In Proceedings of
SiKDD, Ljubljana, Slovenia. Jozef Stefan Institute.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K,
& Harshman, R. (1990). Indexing by latent semantic analy-
sis. Journal of the American Society of Information Science, 41,
391-407.

Hardoon, D. R., Szedmak, S. R., & Shawe-Taylor, J. R. (2004).
Canonical correlation analysis: An overview with appli-
cation to learning methods. Neural Computation, 16(12),
2639-2664.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., & Watkins,
C. (2002). Text classification using string kernels. Journal of
Machine Learning Research, 2, 419-444.

Mladeni¢, D. (2002). Learning word normalization using word suffix
and context from unlabeled data. Proceedings of the 19th ICML
1(8), 427-434.

Mladenié, D., & Grobelnik, M. (2003). Feature selection on hier-
archy of web documents. Decision Support Systems, 35(1),
45-87.

Plisson, J., Lavra¢, N., Mladeni¢, D., & Erjavec, T. (2008). Rip-
ple down rule learning for automated word lemmatization. AI
Communications, 21(1), 15-26.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern
analysis. Cambridge: Cambridge University Press.

! Feature Extraction

» Dimensionality Reduction

402

Feature Reduction

|
Feature Reduction

» Feature Selection

|
Feature Selection

Huan Liv
Arizona State University
Tempe, AZ, USA

Synonyms
Attribute selection; Feature reduction; Feature subset
selection; Variable selection; Variable subset selection

Definition

Feature selection is the study of algorithms for reducing
dimensionality of data to improve machine learning
performance. For a dataset with N features and M
dimensions (or features, attributes), feature selection
aims to reduce M to M’ and M’ < M. It is an important
and widely used approach to »dimensionality reduc-
tion. Another effective approach is »feature extraction.
One of the key distinctions of the two approaches lies
at their outcomes. Assuming we have four features
Fy, F,, F3, Fy, if both approaches result in 2 features,
the 2 selected features are a subset of 4 original fea-
tures (say, Fy, F3), but the 2 extracted features are some
combination of 4 original features (e.g., F{ = > a;F;
and F} = 3 b;F;, where a;, b; are some constants). Fea-
ture selection is commonly used in applications where
original features need to be retained. Some examples
are document categorization, medical diagnosis and
prognosis, gene-expression profiling. We focus our dis-
cussion on feature selection. The benefits of feature
selection are multifold: it helps improve machine learn-
ing in terms of predictive accuracy, comprehensibility,
learning efficiency, compact models, and effective data
collection.

The objective of feature selection is to remove irrel-
evant and/or redundant features and retain only rele-
vant features. Irrelevant features can be removed with-
out affecting learning performance. Redundant fea-
tures are a type of irrelevant features. The distinction
is that a redundant feature implies the copresence of

another feature; individually, each feature is relevant,
but the removal of either one will not affect learning
performance.

Motivation and Background

The rapid advance of computer technology and the
ubiquitous use of Internet have provided unparalleled
opportunities for humans to expand the capabilities in
production, services, communications, and research. In
this process, immense quantities of high-dimensional
data are accumulated, challenging the state-of-the-art
machine learning techniques to efficiently produce use-
ful results. Machine learning can benefit from using
only relevant data in terms of learning performance
(e.g., better predictive accuracy and shortened training
time) and learning results such as improved compre-
hensibility to gain insights and to facilitate validation.
At first glimpse, one might think a powerful machine
learning algorithm can automatically identify the useful
features in its model building process. In effect, remov-
ing irrelevant and/or redundant features can affect
machine learning. First, let us look at what constitutes
effective learning. In essence, the »hypothesis space is
largely constrained by the number of features. Learning
can be viewed as searching for a “correct” hypothesis
in the hypothesis space. A hypothesis is correct if it is
consistent with the training data or the majority of it
in the presence of noise, and is expected to perform
equally well for the unseen data (or instances that are
not present in the training data). In some sense, the
more instances we have in the training data, the more
constraints there are in helping guide the search for a
correct hypothesis.

Broadly speaking, two factors matter most for effec-
tive learning: (1) the number of features (M), and
(2) the number of instances (N). For a fixed M, a larger
N means more constraints and the resulting correct
hypothesis is expected to be more reliable. For a fixed N,
adecreased M is tantamount to a significantly increased
number of instances. Consider the following thought
experiment for a binary domain of a binary classifica-
tion problem: Fy, F,, F5, F4 are binary and class C is also
binary (e.g., positive or negative). If the training data
consists of 4 instances (N = 4), it is only a quarter
of the total number of possible instances (2* = 16).
The size of the hypothesis space is 22" = 65,536. If
only two features are relevant, the size of the hypothesis

Feature Selection

403

2 . .
space becomes 2> = 16, an exponential reduction of
the hypothesis space. Now, the only available 4 instances
might suffice for perfect learning if there is no duplicate
instance in the reduced training data with two features.
And a resulting model of 4 features can also be more
complex than that of 2 features. Hence, feature selection
can effectively reduce the hypothesis space, or virtu-
ally increase the number of training instances, and help
create a compact model.

An unnecessarily complex model subjects itself to
oversearching an excessively large hypothesis space. Its
consequence is that the learned hypothesis overfits the
training data and is expected to perform poorly when
applying the learned model to the unseen data. Another
way of describing the relationship between N and M in
the context of learning is the so-called curse of dimen-
sionality, the need for the exponential increase in data
size associated with linearly adding additional dimen-
sions to a multidimensional space; or the concept of
proximity becomes blurry in a high-dimensional space,
resulting in degrading learning performance. Theoreti-
cally, the reduction of dimensionality can eventuate the
exponential shrinkage of hypothesis space.

Structure of the Learning System

The structure of a feature selection system consists of
four basic components: input, search, evaluation, and
output. The output of any feature selection system can
be either a ranked list of features or a subset of features.
For the former, one can select top k highly ranked fea-
tures depending on the need. In the context of learning,
the input to a feature selection system is the data which
can be (1) supervised - all instances are associated with
class labels as in supervised learning; (2) unsupervised -
no class labels are available as in unsupervised learning;
and (3) some instances have class labels and the rest do
not as in semi-supervised learning. To rank the features
or select a feature subset can be phrased as a search prob-
lem in which various search strategies can be employed.
Depending on how a feature selection system is working
together with a learning system, we can study different
models of feature selection (Kohavi & John, 1997) such
as wrapper, filter, or embedded. An inevitable question
about feature selection is whether the removal of fea-
tures can help machine learning. This necessitates the
evaluation of feature selection. We will review these
aspects of feature selection research next.

Feature selection algorithms can be categorized into
supervised, unsupervised, and semi-supervised, corres-
ponding to different types of learning algorithms. There
has been a substantial gamut of research on supervised
feature selection. As in supervised machine learning, the
data available for feature selection contains class labels.
The class information is used as a dominant factor in
determining the feature quality. For example, we can
simply measure the correlation between a feature (or a
subset of features) and the class and select those features
with highest correlations. Another way of using the class
information is to see if a feature can help differentiate
two neighboring instances with different classes: obvi-
ously, a relevant feature can, but an irrelevant feature
cannot.

Unsupervised feature selection has gained much
attention in the recent years. Most data collected are
without class labels since labeling data can incur huge
costs. The basic principle of unsupervised learning is
to cluster data such that similar objects (instances)
are grouped together and dissimilar objects are sep-
arated. In other words, if we had all similar objects
in their corresponding designated clusters, we would
have the minimum intracluster distances and the max-
imum intercluster distances among all objects. For data
of high-dimensionality, distance calculation can be a big
problem due to the »curse of dimensionality. One idea
is to find features that can promote the data separability.
In Dy and Brodley (2004), the goal of unsupervised fea-
ture selection is defined as finding the smallest feature
subset that best uncovers “interesting natural” clusters
from data according to the chosen criterion. A variant of
unsupervised feature selection is subspace clustering. It
explores the fact that in a high-dimensional space, clus-
ters can often be found in various subspaces of very low
dimensionality. Some subspace clustering algorithms
are reviewed in Parson, Haque, and Liu (2004).

Unsupervised feature selection is a more loosely
constrained problem than supervised feature selec-
tion. When a large number of labeled instances are
infeasible to obtain, could we use a small number
of labeled instances? Semi-supervised feature selection
attempts to take advantage of both the size of unla-
beled data and the labeling information of a small num-
ber of labeled instances. In the same spirit of »semi-
supervised learning, semi-supervised feature selection
takes advantage of the two biases inherited in labeled

404

Feature Selection

and unlabeled data, respectively, in the hope that the
problem of feature selection becomes more constrained.
The basic idea is to find features that can not only help
group the data, but also encourage to find, among many
equally good groups, those groups in which instances of
different classes are not in the same group (Zhao & Liu,
2007b).

The search for relevant features can be realized in two
ways: (1) feature ranking — features are ranked accord-
ing to the intrinsic properties of the data so that top
k features can be chosen according to the need or a
given threshold; and (2) subset selection — a subset of fea-
ture is selected from the full set of features, and there
is no relevant difference between the features in the
selected subset. Subset selection can be carried out in
various ways: forward selection - starting with an empty
feature subset and adding more iteratively, backward
elimination - beginning with a full set of features and
eliminating some gradually, and random - the starting
subset can be any number which is then adjusted: if this
number of features suffices according to some quality
measure, it may be decreased, otherwise it should be
increased. The exhaustive search is usually too expen-
sive for either forward or backward search. Hence, a
sequential search strategy is often adopted. Sequential
forward search (SFS) selects one feature at a time; once a
feature is selected, it will always be in the selected feature
subset and also helps determine which feature should
be selected next within the already selected features.
Sequential backward search eliminates one feature at
a time; once it is ruled out, it will never be consid-
ered for selection or inclusion in the selected set of
features.

Here we briefly illustrate two effective and effi-
cient algorithms with disparate ideas. One is ReliefF
(Robnik-Sikonja & Kononenko, 2003). It selects a
feature by checking how effectively it can differenti-
ate the neighboring data points with different classes.
A feature’s weight is increased if it is effective in doing
so. The features are then ranked according to their
weights, and the top ranked features are deemed rel-
evant. The second is FCBF (Yu & Liu, 2004), which
adds the feature-feature correlation into the selection
process with feature-class correlations. The basic idea
is that for two features and the class, we can consider

not only each feature’s correlation with the class, but also
the correlation between the two features. If the feature-
feature correlation is greater than the smaller of the
two feature-class correlations, the feature with smaller
feature-class correlation is redundant and can thus be
removed.

Three classic models of feature selection are filter, wrap-
per, and embedded. Research shows that, generally
speaking, even for a classifier with embedded feature
selection capability, it can benefit from feature selection
in terms of learning performance. A filter model relies
on measures about the intrinsic data properties. Mutual
information and data consistency are two examples
of measures about data properties. A wrapper model
involves a learning algorithm (e.g., a classifier, or a clus-
tering algorithm) in determining the feature quality.
For instance, if removing a feature does not affect the
classifier’s accuracy, the feature can be removed. Obvi-
ously, this way feature selection is adapted to improving
a particular classification algorithm. To determine if
the feature should be selected or removed, it needs to
build a classifier every time when a feature is consid-
ered. Hence, the wrapper model can be quite costly.
An embedded model embeds feature selection in the
learning of a classifier. A best example can be found
in decision tree induction in which, at each branching
point, a feature has to be selected first. When feature
selection is performed for data preprocessing, filter and
wrapper models are often employed. When the pur-
pose of feature selection goes beyond improving learn-
ing performance (e.g., classification accuracy), the most
applied is the filter model.

The efficacy of feature selection can be validated via
empirical evaluation. Two natural questions related to
classification learning are (1) whether using selected fea-
tures can do as well as using the full set of features, and
(2) how to compare two feature selection algorithms
when one wants to figure out which is more effective.
The first question can be considered as a special form
of the second one if we assume the full set of features
is selected by a dummy feature selection algorithm that
simply selects all given features. We therefore address

Feature Selection

405

only the second question here. When we need to com-
pare two feature selection algorithms (A;,A,), if the
relevant features are known (the ground truth) as in
the experiments using synthetic data, we can directly
compare the selected features by A; and A,, respec-
tively, and check which result is closer to the ground
truth. In practice, one seldom knows what the relevant
features are. A conventional way of evaluating two algo-
rithms is to evaluate the effect of selected features on
classification accuracy. It is a two-step procedure: first,
selecting features from data D to form D] with reduced
dimensionality; and second, obtaining estimated pre-
dictive accuracy of a classifier on D and D/, respectively.
Which algorithm is superior can be statistically mea-
sured by accuracy difference between A; and A,. If there
is no significant difference, one cannot tell which one of
the two feature selection algorithms is better; otherwise,
the algorithm resulting in better predictive accuracy is
better.

Another issue arising from feature selection eval-
uation is about feature selection bias. Using the same
training data in both feature selection and classifica-
tion learning can result in this selection bias. According
to statistical theory based on regression research, this
bias can exacerbate data overfitting and negatively affect
classification performance. A recommended practice is
to use separate data for feature selection and for learn-
ing. In reality, however, separate datasets are rarely used
in the selection and learning steps. This is because we
often want to use as much data as possible in both selec-
tion and learning. It is against this intuition to divide the
training data into two datasets leading to the reduced
data in either task. The work presented in Singhi and Liu
(2006) convincingly demonstrates that in regression,
feature selection bias caused by using the same data
for feature selection and classification learning does not
negatively impact classification as expected.

The advancement of feature selection research enables
us to tackle new challenges. Feature interaction presents
a challenge to feature selection. If we define relevance
using correlation, a feature by itself might have little cor-
relation with the target concept as in classification learn-
ing, but can be very relevant if it is combined with some
other features, because the subset can be strongly corre-
lated with the target concept. The unintentional removal

of these features can eventuate poor learning perfor-
mance. It is, in general, computationally intractable to
handle feature interaction. In Zhao and Liu (2007a), it is
shown that it is feasible to identify interacting features,
in the case of using data consistency as a feature quality
measure, by designing a special data structure for linear-
time backward elimination in terms of M features and
by employing an information-theoretic feature ranking
heuristic. The authors also point out that the key chal-
lenge of employing the ranking heuristic is the feature
order problem - a lowly ranked feature is more likely to
be eliminated first.

Data fusion of multiple data sources presents
another challenge for feature selection. Multiple data
sources, each with its own features, need to be inte-
grated in order to perform an inference task with the
same objective optimally. Instead of selecting the most
relevant features from each data source, one now needs
to consider selecting complementary features. It is also
very likely that performing conventional feature selec-
tion on the single aggregated dataset by combining all
the data sources cannot accomplish the task. The prob-
lem of complementary feature selection seems related to
that of finding interacting features. It will be worthwhile
to examine how both research efforts can bootstrap each
other in attacking the two recent challenges.

The recent developments in feature selection wit-
ness many new efforts on studying causal relation-
ships among features (Guyon, Aliferis, & Elisseeft, 2007)
to distinguish actual features and experimental arti-
facts; on text feature selection (Forman, 2007) that were
widely employed in thwarting spam emails, automatic
sorting of news articles, Web content management,
and customer support; on small data sample problems
that present challenges to reliable estimation of fea-
ture quality and detection of feature interactions, and
on connecting feature selection and feature extraction.
Both feature selection and extraction aim to reduce the
dimensionality of the data by removing the nonessen-
tial (redundant or noisy) information, but the two
areas have been researched largely independently. They
can, however, indeed complement each other. On the
one hand, feature extraction approaches, such as lin-
ear discriminant analysis, are effective for reducing
data dimensionality, but suffer from the high computa-
tional complexity, especially for high-dimensional data;
on the other hand, feature selection algorithms can

406

Feature Selection in Text Mining

handle large-scale data and also lead to easy interpre-
tation of the resulting learning model, but they may
not select interacting features. The challenges of high-
dimensional data suggest a need for the two to work
together.

There is little work in the literature discussing about
selecting structural features and sequential features.
When data evolve, the variety of data types increases.
Semi-structural or structural data now become increas-
ingly common. Consequently, some features in these
data may contain a structure (e.g., a hierarchy that
defines the relationships between some atomic fea-
tures). It can be commonly seen in the data with meta
data. Clearly, extant feature selection algorithms have to
evolve in order to handle structural feature selection.
Another area that requires more research attention is
the study of sequential features for data streams and
for »-time series. They are very different from the types
of data that are well studied. Data streams are massive,
transient, and often from multiple sources. Time series
data present their continuous temporal patterns.

Feature selection research has found its applica-
tion in many fields where the presence of large (either
row-wise or column-wise) volumes of data presents
challenges to effective data analysis and processing.
High-throughput technologies allow for parallel mea-
surements of massive biological variables describing
biological processes. The inordinate number of the bio-
logical measurements can contain noise, irrelevance,
and redundancy. Feature selection can help focus on rel-
evant biological variables in genomics and proteomics
research. The pervasive use of Internet and Web tech-
nologies has been bringing about a great number of
new services and applications, ranging from recent
Web 2.0 applications to traditional Web services where
multimedia data are ubiquitous and abundant. Fea-
ture selection is widely applied to find topical terms,
establish group profiles, assist categorization, simplify
descriptions, facilitate personalization and visualiza-
tion, among others.

Cross References

» Classification

» Clustering

»Cross Validation

» Curse of Dimensionality

» Dimensionality Reduction
»Semi-Supervised Learning

Recommended Reading

Dy, J. G., & Brodley, C. E. (2004). Feature selection for unsupervised
learning. Journal of Machine Learning Research, 5, 845-889.
Forman, G. (2007). Feature selection for text classification. In
H. Liu & Motoda, H. (Eds.), Computational methods of feature

selection. Boca Raton, FL: Chapman and Hall/CRC Press.

Guyon, I., Aliferis, C., & Elisseeff, A. (2007). Causal feature
selection. In (LM07), A longer technical report is available:
http://clopinet.com/isabelle/Papers/causalFS.pdf.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and
feature selection. Journal of Machine Learning Research, 3, 1157-
1182.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset
selection. Artificial Intelligence, 97(1-2), 273-324.

Liu, H., & Motoda, H. (1998). Feature Selection for knowledge discov-
ery & data mining. Boston, MA: Kluwer Academic Publishers.

Liu, H., & Motoda, H. (Eds.). (2007). Computational methods of fea-
ture selection. Boca Raton, FL: Chapman and Hall/CRC Press.

Liu, H., & Yu, L. (2005). Toward integrating feature selection algo-
rithms for classification and clustering. IEEE Transactions on
Knowledge and Data Engineering, 17(3), 1-12.

Parson, L., Haque, E., & Liu, H. (2004). Subspace clustering for
high dimensional data - a review. ACM SIGKDD Explorations
Newsletter Archive special issue on learning from imbalanced
datasets, 6(1): 90-105. ISSN: 1931-0145

Robnik-Sikonja, M., & Kononenko, I. (2003). Theoretical and empir-
ical analysis of Relief and ReliefF. Machine Learning, 53, 23-69.

Singhi, S., & Liu, H. (2006). Feature subset selection bias for clas-
sification learning. In Proceeding of the 23rd international con-
ference on machine learning ACM international conference pro-
ceeding series, (Vol. 148, pp. 849-856). Pittsburg, PA. ISBN:
1-59593-383-2

Yu, L., & Liu, H. (2004). Efficient feature selection via analysis of rel-
evance and redundancy. Journal of Machine Learning Research,
5(October), 1205-1224.

Zhao, Z., & Liu, H. (2007a). Searching for interacting features.
In Proceedings of the 20th international joint conference on
artificial intelligence, (pp. 1156-1161). Hydrabad, India.

Zhao, Z., & Liu, H. (2007b). Semi-supervised feature selection
via spectral analysis. In Proceedings of 24th international con-
ference on machine learning (1151-1157). Corvalis, OR. ISBN:
978-1-59593-793-3

| . . .
Feature Selection in Text Mining

DuNnjA MLADENIC
JozZef Stefan Insitute
Ljubljana, Slovenia

Synonyms
Dimensionality reduction on text via feature selection

Definition
The term feature selection is used in machine learn-
ing for the process of selecting a subset of features

http://clopinet.com/isabelle/Papers/causalFS.pdf

Feature Selection in Text Mining

407

(dimensions) used to represent the data (see »Feature
Selection, and »Dimensionality Reduction). Feature
selection can be seen as a part of data pre-processing
potentially followed or coupled with feature construc-
tion PFeature Construction in Text Mining, but can
also be coupled with the learning phase if embed-
ded in the learning algorithm. An Assumption of fea-
ture selection is that we have defined an original fea-
ture space that can be used to represent the data,
and our goal is to reduce its dimensionality by select-
ing a subset of original features. The original feature
space of the data is then mapped onto a new feature
space. Feature selection in text mining is addressed here
separately due to the specificity of textual data com-
pared to the data commonly addressed in machine
learning.

Motivation and Background
Tasks addressed in machine learning on text are often
characterized by a high number of features used to
represent the data. However, these features are not nec-
essarily all relevant and beneficial for the task, and
may slow down the applied methods giving similar
results as a much smaller feature set. The main rea-
sons for using feature selection in machine learning are
Mladeni¢ 2006: to improve performance, to improve
learning efficiency, to provide faster models possibly
requesting less information on the original data, and to
reduce the complexity of the learned results and enable
better understanding of the underlying process.
Feature selection in text mining was applied in a
simple form from the start of applying machine learning
methods on text data; for instance, feature selection
by keeping the most frequent features and learning
decision rules »Rule Learning proposed in Apte,
Damerau, and Weiss (1994) or keeping the most infor-
mative features for learning decision trees »Decision
Trees or »Naive Bayes »Bayes Rule proposed in Lewis
and Ringuette (1994). The reason is that the number of
features used to represent text data for machine learning
tasks is high, as the basic approach of learning on text
defines a feature for each word that occurs in the given
text. This can easily result in several tens of thousands
of features, compared to several tens or hundreds of fea-
tures, as commonly observed on most machine learning
tasks at the time.

Most methods for feature subset selection that are
used on text are very simple compared to the feature
selection methods developed in machine learning. They
perform a filtering of features assuming feature inde-
pendence, so that a score is assigned to each feature
independently and the features with high scores are
selected. However, there are also more sophisticated
methods for feature selection on text data that take into
account interactions between the features. Embedded
feature selection methods were successfully used on text
data, either by applying a learning algorithm that has
feature selection embedded (pre-processing step) or by
inspecting a model generated by such an algorithm to
extract feature scores. On the other hand, approaches to
feature selection that search a space of all possible fea-
ture subsets can be rather time consuming when dealing
with a high number of features, and are rarely used on
text data.

Structure of Learning System

Feature selection in text mining is mainly used in
connection with applying known machine learning and
statistical methods on text when addressing tasks such
as »Document Clustering or »Document Classifica-
tion. This is also the focus of this chapter. However,
we may need to perform some kind of feature selec-
tion on different text mining tasks where features are
not necessary words or phrases, in which case we should
reconsider the appropriate feature selection methods in
the light of the task properties, including the number
and type of features.

As already pointed out, the common way of doc-
ument text representation is by defining a feature for
each word in the document collection and feature
selection by assuming feature independence, assigning
score to the features, and selecting features with high
scores. Scoring of individual features is performed
either in an unsupervised way, ignoring the class infor-
mation, or in a supervised way, taking into account
class information. Surprisingly both kind of approaches
have been shown to perform comparably on docu-
ment classification tasks, even though supervised scor-
ing uses more information. Here we discuss several
feature scoring measures and their performance on doc-
ument classification, as reported in different researcher
papers.

408

Feature Selection in Text Mining

One of the first scoring measures used on text data
is scoring by the number of documents that contain a
particular word. This was applied after removing very
frequent words, as given in a standard “stop-list” for
English. An alternative is scoring by frequency - that
is, by the number of times a feature occurs in a doc-
ument collection. Both were shown to work well in
document classification Mladeni¢ & Grobelnik (2003);
Yang & Pedersen (1997).

Information gain is commonly used in decision tree
induction (Quinlan, 1993). It was reported to work
well as a feature scoring measure on text data (Yang &
Pedersen, 1997) in some domains (news articles of in
a collection named Reuters-22173, abstracts of medical
articles in a subset of the MEDLINE collection), where
a multiclass problem was addressed using the nearest
neighbor algorithm »Nearest Neighbor. The same fea-
ture scoring almost completely failed when using Naive
Bayes PBayes Rule on a binary classification prob-
lem on a hierarchical topic taxonomy of Web pages
(Mladeni¢ & Grobelnik, 2003). This difference in per-
formance can be partially attributed to the classification
algorithm and domain characteristics.

It is interesting to notice that information gain takes
into account all values for each feature. In the case of
document classification, these are two values: occurs
or does not occur in a document. On the other hand,
expected cross entropy as used on text data (Koller &
Sahami, 1997; Mladeni¢ & Grobelnik, 2003) is similar in
nature to information gain, but only uses the situation
when the feature occurred in a document. Experiments
on classifying document into a hierarchical topic tax-
onomy (Mladeni¢ & Grobelnik, 2003) have show that
this significantly improves performance. Expected cross
entropy is related to information gain as follows: Inf-
Gain(F) = CrossEntropyTxt(F) + CrossEntropyTxt(F),
where Fis a binary feature (usually representing a word’s
occurrence).

The odds ratio was reported to outperform many
other measures (Mladeni¢ & Grobelnik, 2003) in
combination with Naive Bayes, used for document clas-
sification on data with highly imbalanced class distri-
bution. A characteristic of Naive Bayes used for text
classification is that, once the model has been gen-
erated, the classification is based on the features that
occur in a document to be classified. This means that

an empty document will be classified into the majority
class. Consequently, having a highly imbalanced class
distribution, if we want to identify documents from
the under-represented class value, we need to have a
model sensitive to the features that occur in such docu-
ments. If most of the selected features are representative
for the majority class value, the documents from other
classes will be almost empty when represented using the
selected features.

Experimental comparison of different feature selec-
tion measures in combination with the support vec-
tor machines »Support Vector Machines classification
algorithm (SVM) on news articles from the Reuters-
2000 collection (Brank, Grobelnik, Mili¢-Frayling, &
Mladeni¢, 2002) has shown that using all or almost
all the features yields the best performance. The same
finding was confirmed in experimental evaluation of
different feature selection measures on a number of text
classification problems (Forman, 2003). In addition, in
Forman (2003) a new feature selection measure was
introduced: Bi-Normal Separation, which was reported
to improve the performance of SVM, especially with
problems where the class distribution is highly imbal-
anced. Interestingly, they also report that information
gain is outperforming the other tested measures in the
situation when using only a small number of selected
features (20-50 features).

Another feature scoring measure for text data, called
the Fisher Index, was proposed as part of a document
retrieval system based on organizing large text databases
into hierarchical topic taxonomies (Chakrabarti, Dom,
Agrawal, & Raghavan, 1998). Similar to Mladenic (1998),
for each internal node in the topic taxonomy, a separate
feature subset is used to build a Naive Bayes model for
that node. This is sometimes referred to as local feature
selection or, alternatively, context sensitive feature selec-
tion. The feature set used in each node is relatively small
and tuned to the node context.

What follows are formulas of the described scoring
measures as given in Mladeni¢ and Grobelnik (2003).

InfGain(F) = P(F) ¥, P(Ci[F) log(P(Ci|F)/P(C;))
+P(~F) ¥; P(Ci|~F)
xlog P(Ci|~F)/P(C;))
CrossEntropyTxt(F) = P(F) ¥; P(Ci|F)
log(P(Ci|F)/P(C:))

Feature Selection in Text Mining

409

MutuallnfoTxt(F) = 3; P(C;) log(P(F|C;)/P(F))
OddsRatio(F) = log(P(F|Cpos)(1 = P(F|Cpeg)))
—log((1 _P(F|CPOS))P(F|CnEg))
Bi-NormalSeparation(F) = Z™' (P(F|Cpos))
_Z_I(P(F|Cneg))
FisherIndexTxt(F) = (¥ pos,neg (P(F|Cpos)
_P(F|Cneg))2)/ ZCiepos,neg |Ci|71
x Ldeci(n(F,d)
-P(F|C;))2

where P(F) is the probability that feature F occurred,
~F means that the feature does not occur, P(C;) is the
probability of the ith class value, P(C;|F) is the condi-
tional probability of the ith class value given that feature
F occurred, P(F|C;) is the conditional probability of
feature occurrence given the ith class value, P(F|Cpos)
is the conditional probability of feature F occurring
given the class value “positive,” P(F|Cpeq) is the condi-
tional probability of feature F occurring given the class
value “negative,” Z7!(x) is the standard Normal dis-
tribution’s inverse cumulative probability function (z-
score), |C;| is the number of documents in class C;, and
n(F, d) is 1 if the document d contains feature F and 0
otherwise.

As already highlighted in text classification, most
of the feature selection methods evaluate each feature
independently. A more sophisticated approach is pro-
posed in Brank et al. (2002), where a linear SVM is first
trained using all the features, and the induced model is
then used to score the features (weight assigned to each
feature in the normal to the induced hyper plane is used
as a feature score). Experimental evaluation using that
feature selection in combination with SVM, Perceptron,
and Naive Bayes has shown that the best performance
is achieved by SVM when using almost all the features.
The experiments have confirmed the previous findings
on feature subset selection improving the performance
of Naive Bayes, but the overall performance is lower
than using SVM on all the features.

Much the same as in Brank et al. (2002), fea-
ture selection was performed using a linear SVM to
rank the features in Bi, Bennett, Embrechts, Bren-
eman, and Song (2003). However, the experiments
in Bi et al. (2003) were performed on a regression

problem, and the final model was induced using a
nonlinear SVM. The feature selection was shown to
improve performance.

Distributional clustering of words with an agglom-
erative approach (words are viewed as distributions over
document categories) is used for dimensionality red-
uction via feature construction (Bekkerman, El-Yaniv,
Tishby, & Winter, 2003) that preserves the mutual
information between the features as much as possi-
ble. This representation was shown to achieve com-
parable or better results than the bag-of-words docu-
ment representation using feature selection based on
Mutual information for text; a linear SVM was used
as the classifier. A related approach, also based on pre-
serving the mutual information between the features
(Globerson & Tishby, 2003), finds new dimensions by
using an iterative projection algorithm instead of clus-
tering. It was shown to achieve performance compara-
ble to the bag-of-words representation with all the origi-
nal features, using significantly less features (e.g., on one
dataset, four constructed features achieved 98% of per-
formance of 500 original features) using the linear SVM
classifier.

Divisive clustering for feature construction (Dhillon,
Mallela, & Kumar, 2003) was shown to outperform
distributional clustering when used for dimensional-
ity reduction on text data. The approach uses the
Kullback-Leibler divergence as a distance function, and
minimizes within-cluster divergence while maximiz-
ing between-cluster divergence. Experiments on two
datasets have shown that this dimensionality reduction
slightly improves the performance of Naive Bayes (com-
pared to using all the original features), outperforming
the agglomerative clustering of words combined with
Naive Bayes and achieving considerably higher clas-
sification accuracy for the same number of features
than feature subset selection using information gain or
mutual information (in combination with Naive Bayes
or SVM).

Recommended Reading

Apte, C., Damerau, F., & Weiss, S. M. (1994). Toward language inde-
pendent automated learning of text categorization models. In
Proceedings of the 17th annual International ACM SIGIR con-
ference on research and development in Information Retrieval,
pp. 23-30, Dublin, Ireland, 1994.

410

Feature Subset Selection

Brank, J., Grobelnik, M., Mili¢-Frayling, N., & Mladeni¢, D.
(2002). Feature selection using support vector machines. In
A. Zanasi (Ed.), Data mining III (pp. 261-273). Southampton,
UK: WIT.

Bi, J., Bennett, K. P.,, Embrechts, M., Breneman, C. M., &
Song, M. (2003). Dimensionality reduction via sparse sup-
port vector machines. Journal of Machine Learning Research, 3,
1229-1243.

Bekkerman, R., El-Yaniv, R., Tishby, N., & Winter, Y. (2003). Distri-
butional word clusters vs. words for text categorization. Journal
of Machine Learning Research, 3, 1183-1208.

Chakrabarti, S., Dom, B., Agrawal, R., & Raghavan, P. (1998). Scal-
able feature selection, classification and signature generation
for organizing large text databases into hierarchical topic tax-
onomies. The VLDB Journal, 7,163-178.

Dhillon, I., Mallela, S., & Kumar, R. (2003). A divisive information-
theoretic feature clustering algorithm for text classification.
Journal of Machine Learning Research, 3,1265-1287.

Forman, G. (2003). An extensive empirical study of feature selec-
tion metrics for text classification. Journal of Machine Learning
Research, 3,1289-1305.

Globerson, A., & Tishby, N. (2003). Sufficient dimensional-
ity reduction. Journal of Machine Learning Research, 3,
1307-1331.

Koller, D., & Sahami, M. (1997). Hierarchically classifying doc-
uments using very few words. In Proceedings of the 14th
international conference on machine learning ICML97 (pp. 170-
178). Nashrille, TN.

Lewis, D. D., & Ringuette, M. (1994). Comparison of two learn-
ing algorithms for text categorization. In Proceedings of the
3rd annual symposium on document analysis and information
retrieval SDAIR-1994. Las Vegas, NV.

Mladeni¢, D. (1998). Feature subset selection in text-learning. In
Proceedings of the 10th European conference on machine learning
ECML’98. Chemnitz, Germany.

Mladeni¢, D. (2006). Feature selection for dimensionality reduc-
tion. In C. Saunders, S. Gunn, J. Shawe-Taylor, & M. Grobelink
(Eds.), Subspace, Latent Structure and Feature Selection: Statis-
tical and Optimization Perspectives Workshop: Lecture notes in
computer science (Vol. 3940, pp. 84-102). Berlin, Heidelberg:
Springer.

Mladenié, D., & Grobelnik, M. (2003). Feature selection on hierar-
chy of web documents. Journal of Decision Support Systems, 35,
45-87.

Quinlan, J. R. (1993). Constructing decision tree. In C4.5: Pro-
grams for machine learning. San Francisco: Morgan Kaufman
Publishers.

Yang, Y., & Pedersen, J. O. (1997). A comparative study on fea-
ture selection in text categorization. In Proceedings of the
14th international conference on machine learning ICML97
(pp. 412-420). Las Vegas, NV.

|
Feature Subset Selection

» Feature Selection

Feedforward Recurrent Network

»Simple Recurrent Network

|
Finite Mixture Model

» Mixture Model

! First-Order Logic

PETER A. FLACH
University of Bristol
Bristol, UK

Synonyms
First-order predicate calculus; First-order predicate
logic; Predicate calculus; Predicate logic; Resolution

Definition

First-order predicate logic - first-order logic for short —
is the logic of properties of, and relations between,
objects and their parts. Like any logic, it consists of
three parts: syntax governs the formation of well-formed
formulae, semantics ascribes meaning to well-formed
formulae and formalizes the notion of deductive con-
sequence, and proof procedures allow the inference of
deductive consequences by syntactic means. A num-
ber of variants of first-order logic exist, mainly differing
in their syntax and proof systems. In machine learn-
ing, the main use of first-order logic is in Plearning
from structured data, »inductive logic programming
and P relational data mining.

Motivation and Background

The interest in logic arises from a desire to formal-
ize human, mathematical and scientific reasoning, and
goes back to at least the Greek philosophers. Aristotle
devised a form of propositional reasoning called syl-
logisms in the fourth century BC. Aristotle was held
in very high esteem by medieval scholars, and so fur-
ther significant advances were not made until after the
Middle Ages. Leibniz wrote of an “algebra of thought”

First-Order Logic

am

and linked reasoning to calculation in the late sev-
enteenth century. Boole and De Morgan developed
the algebraic point of view in the mid-nineteenth
century.

Universally quantified variables, which form the
main innovation in first-order logic as compared to
»propositional logic, were invented by Gottlob Frege
in his Begriffsschrift (“concept notation”) from 1879,
and independently by Charles Sanders Peirce in 1885,
who introduced the notation [], and)., for universal
and existential quantification. Frege’s work went largely
unnoticed until it was developed further by Alfred
North Whitehead and Bertrand Russell in their Prin-
cipia Mathematica (1903). Seminal contributions were
made, among many others: by Giuseppe Peano, who
axiomatized number theory and introduced the nota-
tion (x) and 3x; by Kurt Godel, who established the
completeness of first-order logic as well as the incom-
pleteness of any system incorporating Peano arithmetic;
by Alonzo Church, who proved that first-order logic
is undecidable, and who introduced A-calculus, a form
of »higher-order logic that allows quantification over
predicates and functions (as opposed to first-order
logic, which only allows quantification over objects);
and by Alfred Tarski, who pioneered logical semantics
through model theory, and the notion of logical conse-
quence. The now universally accepted notation Vx was
introduced by Gerhard Gentzen.

Logic plays an important role in any approach to
symbolic Al that employs a formal language for knowl-
edge representation and inference. A significant, rela-
tively recent development was the introduction of logic
programming languages such as »Prolog, which turn
logical inference into computation. In machine learn-
ing, the use of a first-order language is essential in order
to handle domains in which objects have inherent struc-
ture; the availability of Prolog as a common language
and programming platform gave rise to the field of
inductive logic programming.

Theory

A first-order logical language is built from constant sym-
bols, variable symbols, predicate symbols and function
symbols; the latter two kinds of symbols have an associ-
ated arity, which is the number of arguments they take.

Terms are either constant symbols, variable symbols, or
of the form f(#,..
with arity n,and t;, . .
the logical connectives — (negation), A (conjunction),
v (disjunction) and — (material implication) and the

.»t,) where f is a function symbol
.» ty isasequence of n terms. Using

quantifiers V (universal quantifier) and 3 (existential
quantifier), well-formed formulae or wffs are defined
recursively as follows: (1) if P is a predicate symbol with
arity n, and #,...,t, is a sequence of n terms, then
P(t1,...,t,) is a wif, also referred to as an atomic for-
mula or atom; (2) if ¢ and ¢, are wi’s, then (-¢y),
(91 A ¢2), (¢1V ¢2) and (¢ — ¢2) are wifs; (3) if x is
a variable and ¢ is a wif, then (Vx : ¢) and (3Ix : ¢)
are wifs; (4) nothing else is a wff. Brackets are usu-
ally dropped as much as it is possible without causing
confusion.

Example 1 Let “man,” “single,” and “partner” be two
unary and one binary predicate symbol, respectively, and
let “x” and “y” be variable symbols, then the following is
a wif ¢ expressing that men who are not single have a

partner:

(Vx : (man(x) A (=single(x))) — (Iy : partner(x,y))).

Assuming that — binds strongest, then A, then —, the
brackets can be dropped:

Vx : man(x) A —single(x) — Jy : partner(x, y).

A propositional language is a special case of a
predicate-logical language, built only from predicate
symbols with arity 0, referred to as proposition sym-
bols or propositional atoms, and connectives. So, for
instance, assuming the proposition symbols “man,
“single” and “has_partner,” the following is a proposi-
tional wit: man A -single — has_partner. The main
difference is that in propositional logic references to
objects cannot be expressed and therefore have to be
understood implicitly.

First-order wits express statements that can be true or
false and so a first-order semantics consists in con-
structing a mapping from wifs to truth-values, given an
interpretation, which is a possible state of affairs in the
domain of discourse, mapping constant, predicate and

412

First-Order Logic

function symbols to elements, relations and functions in
and over the domain. To deal with variables, a valuation
function is employed. Once this mapping is defined, the
meaning of a wif consists in the set of interpretations in
which the wff maps to true, also called its models. The
intuition is that the more “knowledge” a wft contains,
the fewer models it has. The key notion of logical con-
sequence is then defined in terms of models: one wif is
a logical consequence of another if the set of models of
the first contains the set of models of the second; hence
the second wif contains at least the same, if not more,
knowledge than the first.

Formally, a predicate-logical interpretation, or inter-
pretation for short, is a pair (D,i), where D is a
non-empty domain of individuals, and i is a function
assigning to every constant symbol an element of D, to
every function symbol with arity #» a mapping from D"
to D, and to every predicate symbol with arity n a subset
of D", called the extension of the predicate. A valuation
is a function v assigning to every variable symbol an
element of D.

Given an interpretation I = (D, i) and a valuation v,
a mapping i, from terms to individuals is defined as fol-
lows: (1) if ¢ is a constant symbol, i,(¢) = i(t); (2) if
t is a variable symbol, i,(t) = v(¢); (3) if ¢ is a term
f(tl’ cees tn)’ iv(t) = i(f)(iv(tl)’ s iv(tn))- The map-
ping is extended to a mapping from wifs to truthvalues
as follows: (4) if ¢ is an atom P(ty,...,t,), i,(¢) =
i(P)(iv(tl)) e ’iv(tn)); (5) iv(_‘(/s) = Tif lv(¢) = F,
and F otherwise; (6) i,(¢p1 A ¢2) = Tifi,(¢y) = T
and i,(¢,) = T, and F otherwise; (7) i,(Vx : ¢) = T
ifi, _,(¢) = T for all d € D, and F otherwise, where
Vx—q 18 v except that x is assigned d. The remaining con-
nectives and quantifier are evaluated by rewriting: (8)
iy(¢1 v ¢2) = iv(=(=¢1 A =¢2)); 9) iv($1 — ¢2) =
iy(~¢1 v $2); (10) iy, (Ix :) = i, (=Vx : =¢).

An interpretation I satisfies a wit ¢, notation I £ ¢,
ifi,(¢) = T for all valuations v; we say that I is a model
of ¢, and that ¢ is satisfiable. If all models of a set of wits
3 are also models of ¢, we say that X logically entails ¢
or ¢ is a logical consequence of %, and write X £ ¢. If
3 = &, ¢ is called a tautology and we write = ¢. A wif
v is a contradiction if -y is a tautology. Contradictions
do not have any models, and consequently y = « for
any wit a. The deduction theorem says that ¥ = o — 8
ifand only if £ U {a} = f. Another useful fact is that,
if ¥ U {-y} is a contradiction, ¥ £ yp; this gives rise to

a proof technique known as Reductio ad absurdum or
proof by contradiction (see below).

Example 2 We continue the previous example. Let
D = {Peter, Paul,Mary}, and let the function i be
defined as follows: i(man) = {Peter, Paul}; i(single) =
{Paul}; i(partner) = {(Peter,Mary)}. We then have
that the interpretation I = (D, i) is a model for the wff
¢ above. On the other hand, I doesn’t satisfy y=Vx: 3 y:
partner(x,y), and therefore ¢ ¥ y. However, the reverse
does hold: there is no interpretation that satisfies y and
not ¢, and therefore y = ¢.

In case of a propositional logic this semantics can
be considerably simplified. Since there are no terms the
domain D plays no role, and an interpretation simply
assigns truth-values to proposition symbols. Wiffs can
then be evaluated using rules (5-6) and (8-9). For exam-
ple, if i(man) =T, i(single) = T and i(has_partner) =T,
then i(man A —single > has_partner) = T (if this
seems counter-intuitive, this is probably because the
reader’s knowledge of the domain suggests another wff
—(single A has_partner), which is false in this particular
interpretation).

A proof procedure consists of a set of axioms and a set of
inference rules. Given a proof procedure P, we say that ¢
is provable from ¥ and write X p¢ if there exists a finite
sequence of wis ¢, ¢», . . ., 1, ¢ which is obtained by
successive applications of inference rules to axioms, pre-
misses in X, and/or previous wifs in the sequence. Such a
sequence of wifs, if it exists, is called a proof of ¢ from X.
A proof procedure P is sound, with respect to the seman-
tics established by predicate-logical interpretations, if
Y & ¢ whenever £ p ¢; it is complete if X -p ¢ when-
ever X = ¢. For a sound and complete proof proce-
dure for first-order predicate logic, see e.g., Turner,
1984, p. 15.

A set of wifs X is consistent, with respect to a proof
procedure P, if not both £ +p ¢ and X +p —¢ for some
wit ¢. Given a sound and complete proof procedure,
the proof-theoretic notion of consistency coincides with
the semantic notion of satisfiability. In particular, if we
can prove that ¥ U {-y} is inconsistent, then we know
that £ U {-y} is not satisfiable, hence a contradiction,
and thus X E y. This still holds if the proof procedure

First-Order Logic

413

is only complete in the weaker sense of being able to
demonstrate the inconsistency of arbitrary sets of wifs
(see the resolution inference rule, below).

Example 3 One useful inference rule for predicate logic
replaces a universally quantified variable with an arbi-
trary term, which is called universal elimination. So,
if ¢ is a constant symbol in our language, then we
can infer

man(c) A —single(c) - Iy : partner(c, y)

from ¢ above by universal elimination. Another inference
rule, which was called Modus Ponens by Aristotle, allows
us to infer 3 from o and o — f. So, if we additionally have
man(c) A —single(c), then we can conclude

dy : partner(c, y)

by Modus Ponens. This rule is also applicable to proposi-
tional logic. An example of an axiom is ¢ = ¢ for any con-
stant symbol c (strictly speaking this is an axiom schema,
giving rise to an axiom for every constant symbol in the
language).

Syntax, semantics and proof procedures for first-order
logic can be simplified and made more amenable to
computation if we limit the number of ways of express-
ing the same thing. This can be achieved by restricting
wifs to a normal form called prenex conjunctive normal
form (PCNF). This means that all quantifiers occur at
the start of the wif and are followed by a conjunction of
disjunctions of atoms and negated atoms, jointly called
literals. An example of a formula in PCNF is

Vx: Ay : -man(x) v single(x) v partner(x, y).

This formula is equivalent to the wff ¢ in Example 1, in
the sense that it has the same set of models, and so either
one logically entails the other. Every first-order wif can
be transformed into a logically equivalent formula in
PCNE which is unique up to the order of conjuncts and
disjuncts. A transformation procedure can be found in
Flach (1994).

PCNF can be further simplified if we use func-
tion symbols instead of existential quantifiers. For
instance, instead of 3Jy:partner(x,y), we can say

partner(x, partner_of (x)), where partner_of is a unary
function symbol called a Skolem function, after the
Norwegian logician Thoralf Skolem. The two statements
are not logically equivalent, as the second entails the
first but not vice versa, but this difference is of little
practical consequence. Since all variables are now uni-
versally quantified the quantifiers are usually omitted,
leading to clausal form:

—man(x) Vv single(x) v partner(x, partner_of (x)).

To sum up, a wif in clausal form is a conjunction of dis-
junctions of literals, of which the variables are implicitly
universally quantified. The individual disjunctions are
called clauses.

Further simplifications include dispensing with
equality, which means that terms involving function
symbols, such as partner_of (c), are not evaluated and
in effect treated as names of objects (in this case, the
function symbols are called functors or data construc-
tors). Under this assumption each ground term (a term
without variables) denotes a different object, which
means that we can take the set of ground terms as the
domain D of an interpretation; this is called a Her-
brand interpretation, after the French logician Jacques
Herbrand.

The main advantage of clausal logic is the existence
of a proof procedure consisting of a single inference rule
and no axioms. This inference rule, which is called reso-
lution, was introduced by Robinson (1965). In propo-
sitional logic, given two clauses P v Q and -Q v R
containing complementary literals Q and —Q, resolution
infers the resolvent P v R (P and/or R may themselves
contain several disjuncts). For instance, given -man v
single v has_partner and man v woman, we can infer
womanvsinglevhas_partner by resolution. In first-order
logic, Q and -Q’ are complementary if Q and Q' are
unifiable, i.e., there exists a substitution 6 of terms for
variables such that Q9 = Q'6, where Q8 denotes the
application of substitution 8 to Q; in this case, the resol-
vent of Pv Q and -Q’ v R is PO v R0. For instance, from
the following two clauses:

—man(x) v single(x) v partner(x, partner_of (x))

—single(father_of (c))

414

First-Order Logic

we can infer

—man(father_of (¢)) v partner(father_of (c),
partner_of (father_of (c))).

The resolution inference rule is sound but not complete:
for instance, it is unable to produce tautologies such as
man(c) v ~man(c) if no clauses involving the predi-
cate man are given. However, it is refutation-complete,
which means it can demonstrate the unsatisfiability of
any set of clauses by deriving the empty clause, indi-
cated by O. For instance, man(c) A -man(c) is a wif
consisting of two clauses which are complementary lit-
erals, so by resolution we infer the empty clause in
one step.

Refutation by resolution is the way in which queries
are answered in the logic programming language
Prolog. Prolog works with a subset of clausal logic
called Horn logic, named after the logician Alfred Horn.
A Horn clause is a disjunction of literals with at most
one positive (un-negated) literal; Horn clauses can
be further divided into definite clauses, which have
one positive literal, and goal clauses which have none
A Prolog program consists of definite clauses, and a
goal clause functions as a procedure call. Notice that
resolving a goal clause with a definite clause result in
another goal clause, because the positive literal in the
definite clause (also called its head) must be one of the
complementary literals. The idea is that the resolution
step reformulates the original goal into a new goal that
is one step closer to the solution. A refutation is then
a sequence of goals G, G, Gy, . . ., G, such that G is the
original goal, each G; is obtained by resolving G;_; with
a clause from the program P, and G, = O. Such a refu-
tation demonstrates that P u {G} is inconsistent, and
therefore P = -G.

Finding a refutation amounts to a search problem,
because there are typically several program clauses that
could be resolved against the current goal. Virtually all
Prolog interpreters apply a depth-first search procedure,
searching the goal literals left-to-right and the program
clauses top-down. Once a refutation is found the sub-
stitutions collected in all resolution steps are composed
to obtain an answer substitution. One unique feature of
logic programming is that a goal may have more than
one (or, indeed, less than one) refutation and answer
substitution from a given program.

Example 4 Consider the following Prolog program:

peano_sum(0,Y,Y) .
peano_sum (s (X),Y,s(Z2)) :—
peano_sum(X,Y, 7).

This program defines addition in Peano arithmetic. We
follow Prolog syntax: variables start with an uppercase
letter, and : - stands for reversed implication < or “if”
The unary functor s represents the successor function.
So the first rule reads “the sum of 0 and an arbi-
trary number y is y,” and the second rule reads “the
sum of x + 1 and y is z + 1 if the sum of x and y
isz”

The goal :-peano_sum(s(0),s(s(0)),Q)
states “there are no numbers q such that 1+2=q." We
first resolve this goal with the second program clause
to obtain : —peano_sum (0, s (s (0)), Z) under the
substitution {Q [s (Z)}. This new goal states “there are
no numbers z such that 0 + 2 =
with the first clause to yield the empty clause under
the substitution {Y [s(s(0)), Z [s(s(0))}. The
resulting answer substitution is {0 [s (s (s (0))) }, i.e.,
q =3

As another example, goal :-peano_sum (A, B,

z” It is resolved

s(s(0))) states “there are no numbers a and b
such that a + b = 27 This goal has three refu-
tations: one involving the first clause only, yielding
the answer substitution {A |0, B [s(s(0))} one
involving the second clause then the first, resulting in
{A[s(0), B/s (0)}; and the third applying the second
clause twice followed by the first, yielding {A [s (s (0)),
B [0}. Prolog will return these three answers in this
order.

Induction in first-order logic amount to recon-
structing a logical theory from some of its logical con-
sequences. For techniques to induce a Prolog program
given examples such as peano_sum(s (0),s (0),
s (s (0))), see inductive logic programming.

For general introductions to logic and its use in Arti-
ficial Intelligence, see Genesereth and Nilsson (1987)
and Turner (1984). Kowalski’s classic text Logic for prob-
lem solving focusses on clausal logic and resolution
theorem proving (Kowalski, 1979). For introductions
to Prolog programming, see Bratko (2001) and Flach
(1994).

First-Order Regression Tree

415

Cross References

» Abduction

» Entailment

»Higher-Order Logic
»Hypothesis Language
»Inductive Logic Programming
» Learning from Structured Data
»Logic Program

» Propositionalization

» Relational Data Mining

Recommended Reading

Bratko, I. (2001). Prolog programming for artificial intelligence (3rd
ed.). Boston: Addison Wesley.

Flach, P. (1994). Simply logical: Intelligent reasoning by example. New
York: Wiley.

Genesereth, M., & Nilsson, N. (1987). Logical foundations of artificial
intelligence. San Francisco: Morgan Kaufmann.

Kowalski, R. (1979). Logic for problem solving. New York: North-
Holland.

Robinson, J. A. (1965). A machine-oriented logic based on the
resolution principle. Journal of the ACM, 12(1), 23-41.

Turner, R. (1984). Logics for artificial intelligence. Chichester: Ellis
Horwood.

|
First-Order Predicate Calculus

»First-Order Logic

! First-Order Predicate Logic

» First-Order Logic

! First-Order Regression Tree

Synonyms
Logical regression tree; Relational regression tree

Definition
A first-order regression tree can be defined as follows:

Definition 1 (First-Order Regression Tree) A first-
order regression tree is a binary tree in which

o Everyinternal node contains a test which is a conjunc-
tion of first-order literals.

o Every leaf (terminal node) of the tree contains a real
valued prediction.

An extra constraint placed on the first-order literals that
are used as tests in internal nodes is that a variable
that is introduced in a node (i.e., it does not occur in
higher nodes) does not occur in the right subtree ofl
the node.

Figure 1 gives an example of a first-order regression
tree. The test in a node should be read as the existentially
quantified conjunction of all literals in the nodes in the
path from the root of the tree to that node. In the left
subtree of a node, the test of the node is added to the
conjunction, for the right subtree, the negation of the
test should be added. For the example state description
of Fig. 2, the tree would predict a Qvalue = 0.9, since
there exists no block that is both on the floor and clear,
but there is a block which is on the floor and has another
block on top of it. To see this, substitute BlockA in the
tree with 2 (or 4) and BlockB with 1 (or 4).

The constraint on the use of variables stems from the
fact that variables in the tests of internal nodes are exis-
tentially quantified. Suppose a node introduces a new
variable X. Where the left subtree of a node corresponds
to the fact that a substitution for X has been found to
make the conjunction true, the right side corresponds
to the situation where no substitution for X exists, i.e.,

On(BlockA, floor)

yes no
Clear(BlockA) Qvalue = 0.1
yes no
Qvalue = 0.4 On(BlockB, BlockA)
yes no
Qvalue = 0.9 Qvalue = 0.3

First-Order Regression Tree. Figure 1. A relational regres-
sion tree

on(1,2). clear(1).
on(2,floor). clear(3).
on(3,4). clear(floor).

on(4,floor).

First-Order Regression Tree. Figure 2. State description

416

F-Measure

there is no such X. Therefore, it makes no sense to refer
to X in the right subtree.

Cross References

» First-Order Rule

»Inductive Logic Programming
»Relational Reinforcement Learning

! F-Measure

A measure of information retrieval performance. See
» Precision and Recall.

|
Foil

»Rule Learning

! Formal Concept Analysis

GEMMA C. GARRIGA
Universite Pierre et Marie Curie
Paris, France

Definition

Formal concept analysis is a mathematical theory of
concept hierarchies that builds on order theory; it can
be seen as an unsupervised machine learning technique
and is typically used as a method of knowledge repre-
sentation. The approach takes an input binary relation
(binary matrix) specifying a set of objects (rows) and
a set of attributes for those objects (columns), finds
the natural concepts described in the data, and then
organizes the concepts in a partial order structure or
Hasse diagram. Each concept in the final diagram is a
pair of sets of objects and attributes that are maximally
contained one in each other.

Theory

The above intuition can be formalized through a Galois
connection as follows. Let R be the binary relation
between a set of objects and a set of attributes, that is,

R ¢ O x A Two mappingsa : O ~ Aandff :
A — O are defined so that the operator «(O), for some
O ¢ O, returns the maximal set of attributes common
to all objects in O; dually, the operator S(A), for some
A ¢ A, returns the maximal set of objects containing all
attributesin A. These two mappings induce a Galois con-
nection between the powerset of objects and the power-
set of attributes, that is, they satisfy O ¢ f(A) < A ¢
a(O) for a set of objects O and a set of attributes A.

From here, a formal concept is a pair of sets of
objects and attributes (O, A) from the binary relation
that satisfy «(O) = A and S(A) = O. Typically, O
is called the extent of the concept and A the intent of
the concept. Note that concepts can be interpreted from
the geometrical point of view, they are maximal rectan-
gles of ones (not necessarily consecutive) in the input
binary table R. The organization of all the formal con-
cepts in a Hasse diagram is called the concept lattice.
This lattice corresponds to a partial order structure of
concepts where edges between concepts correspond to
the standard inclusion of the sets.

A small toy example in Figs. 1 and 2 illustrates
the formal concepts and their organization in a Hasse
diagram.

Motivation and Background

Formal concept analysis has been applied to a vari-
ety of disciplines, from psychology, sociology, biology,
medicine, linguistics, or industrial engineering, to cite
some, for the interactive exploration of implicit and
explicit structures in the data.

From the point of view of machine learning and data
mining, the connection between the formal concepts
of the lattice and the so-called, closed sets of items is
remarkable. Closed sets of items appear in the context of
»constraint-based mining, in which the user provides

_.
-

- 2 oflo
-
-

Formal Concept Analysis. Figure 1. A binary relation R ¢
{1,2,3} x {a,b,¢,d}

Frequent Itemset

417

{a, b, c, d}
{}

{a, c, d} {a, b, c}
{1} {2}
{a, c} {a, b}

1,2} {2, 3}

{a}

{1,2, 3}

Formal Concept Analysis. Figure 2. Concepts of the rela-
tion R organized in a Hasse diagram

restraints that guide a search of patterns in the data.
They are maximal sets of attributes occuring frequently
in the data; they correspond to a compacted repre-
sentation of the frequent sets from Pfrequent itemset
mining. It is well known that closed sets correspond
exactly to the intents of the concepts derived via for-
mal concept analysis, and therefore, from the formal
concepts it is possible to construct bases of minimal
nonredundant sets of association rules from which all
other rules holding in the data can be derived.

Also, formal concept analysis has been typically seen
as a type of conceptual »clustering. Each concept or
groups of concepts form a cluster of objects sharing sim-
ilar properties. The diagrams obtained from this sort of
clustering can then be used in class discovery and class
prediction. Although a diagram of concepts can become
large and complex, different approaches have worked
toward reducing the complexity of concept lattices via
conceptual scaling.

We refer the reader to Ganter & Wille (1998) for
a general reference on formal concept analysis, and
to Davey & Priestly (2002) for the basic concepts on
order theory. For more thorough descriptions of differ-
ent applications of formal concept analysis in the com-
puter science field, see Carpineto & Romano (2004).

Cross References

» Clustering

» Constraint-Based Mining
»Frequent Itemset Mining

Recommended Reading

Carpineto, C., & Romano, G. (2004). Concept data analysis. Theory
and applications. New York: Wiley.

Davey, B. A., & Priestly, H. A. (2002). Introduction to lattices and
order. Cambridge: Cambridge University Press.

Ganter, B. & Wille, R. (1998). Formal concept analysis. Mathematical
foundations. Heidelberg: Springer.

! Frequent Itemset

HANNU TOIVONEN
University of Helsinki
Helsinki, Finland

Synonyms
Frequent set

Definition

Frequent itemsets (Agrawal et al., 1993, 1996) are a form
of »frequent pattern. Given examples that are sets of
items and a minimum frequency, any set of items that
occurs at least in the minimum number of examples is
a frequent itemset.

For instance, customers of an on-line bookstore
could be considered examples, each represented by the
set of books he or she has purchased. A set of books,
such as {“Machine Learning “The Elements of Statis-
tical Learning, “Pattern Classification,”} is a frequent
itemset if it has been bought by sufficiently many cus-
tomers. Given a frequency threshold, perhaps only 0.1
or 0.01% for an on-line store, all sets of books that have
been bought by at least that many customers are called
frequent. Discovery of all frequent itemsets is a typi-
cal data mining task. The original use has been as part
of P»association rule discovery. »Apriori is a classical
algorithm for finding frequent itemsets.

418

Frequent Pattern

The idea generalizes far beyond examples consist-
ing of sets. The pattern class can be re-defined, e.g.,
to be (frequent) subsequences rather than itemsets; or
original data can often be transformed to a suitable rep-
resentation, e.g., by considering each discrete attribute-
value pair or an interval of a continuous attribute
as an individual item. In such more general settings,
the term Mfrequent pattern is often used. Another
direction to generalize frequent itemsets is to consider
other conditions than frequency on the patterns to
be discovered; see Pconstraint-based mining for more
details.

Cross References

» Apriori Algorithm

» Association Rule

» Constraint-Based Mining
»Frequent Pattern

Recommended Reading

Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association
rules between sets of items in large databases. In Proceedings of
the 1993 ACM SIGMOD international conference on management
of data, Washington, DC (pp. 207-216). New York: ACM.

Agrawal, R., Mannila, H,, Srikant, R., Toivonen, H., & Verkamo, A. L.
(1996). Fast discovery of association rules. In U. M. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.),
Advances in knowledge discovery and data mining (pp. 307-328).
Menlo Park: AAAI Press.

! Frequent Pattern

HANNU TOIVONEN
University of Helsinki
Finland

Definition

Given a set D of examples, a language L of possible pat-
terns, and a minimum frequency min_fr, every pattern
0 ¢ L that occurs at least in the minimum number
of examples, i.e., |[{e € D | 6 occursine}| > min_fr,
is a frequent pattern. Discovery of all frequent pat-
terns is a common data mining task. In its most typical
form, the patterns are »frequent itemsets. A more gen-
eral formulation of the problem is Pconstraint-based
mining.

Motivation and Background

Frequent patterns can be used to characterize a given set
of examples: they are the most typical feature combina-
tions in the data.

Frequent patterns are often used as components in
larger data mining or machine learning tasks. In partic-
ular, discovery of »-frequent itemsets was actually first
introduced as an intermediate step in »-association rule
mining (Agrawal, Imielinski & Swami, 1993) (“frequent
itemsets” were then called “large”). The frequency and
confidence of every valid association rule X — Y are
obtained simply as the frequency of X U Y and the ratio
of frequencies of X U Y and X, respectively.

Frequent patterns can be useful as »features for
further learning tasks. They may capture shared proper-
ties of examples better than individual original features,
while the frequency threshold gives some guarantee that
the constructed features are not so likely just noise.
However, other criteria besides frequency are often used
to choose a good set of candidate patterns.

Structure of Problem

A frequent pattern often is essentially a set of binary
»features. Given a set Z of all available features, the pat-
tern language £ then is the power set of Z. An example
in data D covers a pattern 0 € £ if it has all the features
of 0. In such cases, the frequent pattern discovery task
reduces to the task of discovering »frequent itemsets.
Therefore, the structure of the frequent pattern discov-
ery problem is best described using the elementary case
of frequent itemsets.

Let 7 be the set of all items (or binary features); sub-
sets of Z are called itemsets (or examples or patterns,
depending on the context). The input to the frequent
itemset mining problem is a multiset D of itemsets
(examples described by their features), and a frequency
threshold. The task is to output all frequent itemsets
(patterns) and their frequencies, i.e., all subsets of Z
that exceed the given frequency threshold in the given
data D.

Examplel Assume the following problem specification:

Set of all items T = {A, B,C, D}.

Data D = {{A,B,C},{A,D},{B,C,D},{A,B,C},
{C,D},{B,C}}.

Frequency threshold is 2.

Frequent Pattern

419

All possible itemsets and their frequencies:

Itemset Frequency ltemset Frequency
{A} 3 {B,D} 1

{B} 4 {C,D} 2

{C} 5 {A,B,C} 2

{D} 3 {A,B,D} 0
{A,B} 2 {A,C,D} 0
{A,C} 2 {B,C,D} 1
{A,D} 1 {A,B,C,D} 0
{B,C} 4

The frequent itemsets are {A}, {B}, {C}, {D},
{A,B}, {A,C}, {B,C}, {C,D}, {A,B,C}.

The »hypothesis space for itemsets obviously is the
power set of Z, and it has an exponential size (21!) in the
number of items. Since all frequent itemsets are output,
this is also the size of the output in the worst case (e.g.,
if the frequency threshold is zero, or if all examples in
D equal 7), as well as the worst case time complexity.

In practical applications of frequent itemset mining,
the size of the output as well as the running times are
much smaller, but they strongly depend on the proper-
ties of the data and the frequency threshold. The useful
range of thresholds varies enormously among differ-
ent datasets. In many applications - such as »basket
analysis — the number |Z| of different items can be
in thousands, even millions, while the typical sizes of
examples are at most in dozens. In such sparse datasets
arelatively small number of frequent itemsets can reveal
the most outstanding co-occurrences; e.g., there are not
likely to be very large sets of books typically bought
by the same customers. In dense datasets, in turn, the
number of frequent patterns can be overwhelming and
also relatively uninformative. E.g., consider the dense
dataset of books that have not been purchased by a cus-
tomer: there are a huge number of sets of books that
have not been bought by the same customers.

Theory/solutions

The most widely known solution for finding all frequent
itemsets is the »Apriori algorithm (Agrawal, Mannila,
Srikant, Toivonen, & Verkamo, 1996). It is based on the

monotonicity of itemset frequencies (a »generalization
relation): the frequency of a set is at most as high as
the frequency of any of its subsets. Conversely, if a set is
known to be infrequent, then none of its supersets can
be frequent.

Apriori views the Mhypothesis space of item-
sets as a (refinement) lattice defined by set contain-
ment, and performs a »general-to-specific search using
» breadth-first search. In other words, it starts with sin-
gleton itemsets, the most general and frequent sets, and
proceeds to larger and less frequent sets. The search is
pruned whenever a set does not reach the frequency
threshold: all supersets of such sets are excluded from
further search. Apriori deviates from standard breadth-
first search by evaluating all sets of equal size in a single
batch, i.e., it proceeds in a levelwise manner. This has no
effect on the search structure or results, but can reduce
disk access considerably for large databases. See the
entry P Apriori Algorithm for an outline of the method.

Example 2 Figure 1 illustrates the search space for the
data D of Example 1. Dark nodes represent frequent
itemsets, i.e., the answer to the frequent itemset mining
problem. Apriori traverses the space a level at a time. For
instance, on the second level, it finds out that {A, D} and
{B, D} are not frequent. It therefore prunes all their super-
sets, i.e., does not evaluate sets {A, B,D}, {A, C,D}, and
{B, C, D} on the third level.

Other search strategies have also been applied.
A »depth-first search without the subset check allows
faster identification of candidates, at the expense of hav-
ing more candidates to evaluate and doing that without
natural batches (e.g., Zaki, 2000). FP-growth (Han, Pei,
Yin, & Mao, 2004) uses a tree structure to store the
information in the dataset, and uses it to recursively
search for frequent itemsets.

The search strategy of Apriori is optimal in a cer-
tain sense. Consider the number of sets evaluated, and
assume that for any already evaluated set we know
whether it was frequent or not but do not consider its
frequency. Apriori evaluates the frequencies of all fre-
quent itemsets plus a number of candidates that turn
out to be infrequent. It turns out that every infrequent
candidate must actually be evaluated under the given
assumptions: knowing which other sets are frequent
and which are not does not help, regardless of the search

420

Frequent Pattern

{A,B,C,D}

Frequent Pattern. Figure 1. The search space of frequent itemsets for data D of the running example. Dark nodes:

frequent itemsets; white nodes: infrequent itemsets

Frequent Pattern. Figure 2. The positive border ({A,B,C}, {C,D}) and negative border ({A, D}, {B,D}) of frequent

itemsets

order. This observation leads to the concept of bor-
der: the border consists of all those itemsets whose all
proper subsets are frequent and whose all proper super-
sets are infrequent (Gunopulos et al., 2003; Mannila &
Toivonen, 1997). The border can further be divided into
two: the positive border contains those itemsets in the
border that are frequent, the negative border contains
those that are not. The positive border thus consists of
the most specific patterns that are frequent, and corre-
sponds to the “S” set of »-version spaces.

Example 3 Continuing our running example, Figure 2
illustrates the border between the frequent and infrequent
sets. Either the positive or the negative border can alone
be used to specify the collection of frequent itemsets: every
frequent itemset is a subset of a set in the positive border
({A,B,C}, {C,D}), while every infrequent itemset is a
superset of a set in the negative border ({A, D}, {B,D}).

One variant of frequent itemset mining is to out-
put the positive border only, i.e., to find the maximal
frequent itemsets (Bayardo, 1998). This can be imple-
mented with search strategies that do not need to eval-
uate the whole space of frequent patterns. This can be
useful especially if the number of frequent itemsets is

very large, or if the maximal frequent itemsets are large
(in which case the number of frequent itemsets is large,
too, since the number of subsets is exponential in the
length of the maximal set). As a trade-off, the result does
not directly indicate frequencies of itemsets.

Condensed Closed Sets and
Nonderivable Sets Closed sets and nonderivable sets
are a powerful concept for working with frequent item-
sets, especially if the data is relatively dense or there are
strong dependencies. Unlike the aforementioned sim-
ple model for borders, here also the known frequencies
of sets are used to make inferences about frequencies of
other sets.

As a motivation for closed sets (Pasquier, Bastide,
Taouil, & Lakhal, 1999), consider a situation where the
frequency of itemset {4, j} equals the frequency of item j.
This implies that whenever j occurs, so does i. Thus, any
set A U {j} that contains item j also contains item i, and
the frequencies of sets A U {j} and A U {i,j} must be
equal. As a result, it sufficies to evaluate sets A U {j} to
obtain the frequencies of sets A U {i,j}, too.

More formally, the closure of set A is its largest super-
set with identical frequency. A is closed iff it is its own
closure, i.e., if every proper superset of A has a smaller

Representations:

Frequent Pattern

a1

frequency than A. The utility of closed sets comes from
the fact that frequent closed sets and their frequen-
cies are a sufficient representation of all frequent sets.
Namely, if B is a frequent set then its closure is a fre-
quent closed set in C¢, where C¢ denotes the collection
of all frequent closed itemsets. B’s frequency is obtained
as fr(B) = max{fr(A) | A e C¢and B ¢ A}. If Bis not
a frequent set, then it has no superset in C¢. »Formal
concept analysis studies and uses closed sets and other
related concepts.

Generators are a complementary concept, and also
constitute a sufficient representation of frequent item-
sets. (To be more exact, in addition to frequent genera-
tors, generators in the border are also needed). Set A is
a generator (also known as a key pattern or a free set)
if all its proper subsets have a larger frequency than A
has. Thus, in an equivalence class of itemsets, defined
by the set of examples in which they occur, the maximal
element is unique and is the closed set, and the minimal
elements are generators. The property of being a gener-
ator is monotone in the same way that being frequent is,
and generators can be found with simple modifications
to the Apriori algorithm.

Example 4 Figure 3 illustrates the equivalence classes
of itemsets by circles. For instance, the closure of itemset
{A,B} is {A,B,C}, i.e., whenever {A,B} occurs in the
data, C also occurs, but no other items. Given just the
frequent closed sets and their frequencies, the frequency
of, say, {B} is obtained by finding its smallest frequent
closed superset. It is { B, C}, with frequency 4, which is
also B’s frequency. Alternatively, using generators as the
condensed representation, the frequency of itemset { B, C}

can be obtained by finding its maximal generator subset,
i.e., { B}, with which it shares the same frequency.

Nonderivability of an itemset (Calders & Goethals,
2002) is a more complex but often also a more pow-
erful concept than closed sets. Given the frequencies
of (some) subsets of itemset A, the frequency of A
may actually be uniquely determined, i.e., there is only
one possible consistent value. A practical method of
trying to determine the frequency is based on deriv-
ing upper and lower bounds with inclusion-exclusion
formula from the known frequencies of some sub-
sets, and checking if these coincide. An itemset is
derivable if this is indeed the case, otherwise it is non-
derivable. Obviously, the collection of nonderivable fre-
quent sets is a sufficient representation for all frequent
sets.

Bounds for the absolute frequency of set I are
obtained from its subsets as follows, for any X ¢ I:

fr() < > (D)) if [T~ X]isodd, (1)

J:XSJel
fr(I)> > (=)™ e (1) if [T\ X|is even. (2)

J:X<jcl

Using all subsets X of I, one can obtain a number of
upper and lower bounds. If the least upper bound equals
the greatest lower bound, then set I is derivable. The
conceptual elegance of this solution lies in the fact that
derivable sets follow logically from the nonderivable
ones — the aforementioned formula is one way of find-
ing (some) such situations — whereas with closed sets
the user must know the closure properties.

@ @)

Frequent closed setCe = {{A},{C},{D},{B, C},{C, D}{A, B, C}}.
Frequent generators: {{A},{B},{C},{D}{A,B},{A,C},{C,D}}.

Frequent Pattern. Figure 3. Frequencies and equivalence classes of frequent itemsets in data D of the running exam-

ple, and the corresponding closed sets and generators

422

Frequent Pattern

Generalizations of Frequent Patterns The concept of
frequent patterns has been extended in two largely
orthogonal directions. One is to more complex patterns
and data, such as frequent sequences, trees (see P»tree
mining), graphs (see »graph mining), and first-order
logic (Dehaspe & Toivonen, 1999). The other direction
to generalize the concept is to »constraint-based min-
ing, where other and more complex conditions are con-
sidered beyond frequency. We encourage the interested
reader to continue at the entry for »constraint-based
mining, which also gives further insight into many of
the more theoretical aspects of frequent pattern mining.

Programs and Data

Frequent itemset mining implementations repository:
http://fimi.cs.helsinki.fi/

Weka: http://www.cs.waikato.ac.nz/ml/weka/
Christian Borgelt’s implementations:
http://www.borgelt.net/software.html

Data mining template library:
http://dmtl.sourceforge.net/

Applications

Frequent patterns are a general purpose tool for data
exploration, with applications virtually everywhere.
Market »basket analysis was the first application, tele-
com alarm correlation and gene mapping are examples
of quite different application fields.

Future Directions

Work on frequent pattern mining is being expanded in
several directions. New types of pattern languages are
being developed, either to meet some specific needs or
to increase the expressive power. Many of these develop-
ments are motivated by different types of data and appli-
cations. Within machine learning, frequent patterns are
increasingly being used as a tool for feature construc-
tion in complex domains. For an end-user application,
methods for choosing and ranking the most interest-
ing patterns among thousands or millions of them is
a crucial problem, for which there are no perfect solu-
tions (cf. Geng & Hamilton, 2006). At the same time,
theoretical understanding of the problem and solu-
tions of frequent pattern discovery still has room for
improvement.

Cross References

» Apriori Algorithm

» Association Rule

»Basket Analysis

» Constraint-Based Mining

»Data Mining

»Frequent Itemset

» Graph Mining

»Knowledge Discovery in Databases
»Tree Mining

Recommended Reading

Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association
rules between sets of items in large databases. In Proceedings
of the 1993 ACM SIGMOD international conference on man-
agement of data, Washington, DC (pp. 207-216). New York:
ACM.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo,
A. 1. (1996). Fast discovery of association rules. In U. M.
Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy
(Eds.), Advances in knowledge discovery and data mining
(pp- 307-328). Menlo Park, CA: AVAAI Press.

Bayardo, R. J. Jr. (1998). Efficiently mining long patterns from
databases. In Proceedings of the 1998 ACM SIGMOD interna-
tional conference on management of data, Seatle, Washington,
DC (pp. 85-93). New York: ACM.

Calders, T., & Goethals, B. (2002). Mining all non-derivable fre-
quent itemsets. In Proceedings of the 6th European Confer-
ence on principles of data mining and knowledge discovery,
Helsinki, Finland. Lecture Notes in Computer Science (vol. 2431,
pp. 74-85). London: Springer.

Ceglar, A., & Roddick, J. F. (2006). Association mining. ACM Com-
puting Surveys 38(2): Article No. 5.

Dehaspe, L., & Toivonen, H. (1999). Discovery of frequent datalog
patterns. Data mining and knowledge discovery 3(1): 7-36.
Geng, L., & Hamilton, H. J. (2006). Interestingness measures for data

mining: A survey. ACM Computing Surveys 38(3): Article No. 9.

Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., &
Sharma, R. S. (2003). Discovering all most specific sentences.
ACM transactions on database systems 28(2): 140-174.

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent
patterns without candidate generation: A frequent-pattern
tree approach. Data Mining and Knowledge Discovery 8(1):
53-87.

Mannila, H., & Toivonen, H. (1997). Levelwise search and borders of
theories in knowledge discovery. Data Mining and Knowledge
Discovery 1(3): 241-258.

Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999). Discovering
frequent closed itemsets for association rules. In Proceedings
of 7th international conference on database theory, Jerusalem,
Israel. Lecture Notes in Computer Science (vol. 1540, pp. 398-
416). London: Springer.

Zaki, M. J. (2000). Scalable algorithms for association mining. In
IEEE transactions on knowledge and data engineering 12(3):
372-390.

http://fimi.cs.helsinki.fi/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.borgelt.net/software.html
http://dmtl.sourceforge.net/

Fuzzy Systems

! Frequent Set

»Frequent Itemset

|
Functional Trees

» Model Trees

! Fuzzy Sets

Fuzzy sets were introduced by Lofti Zadeh as a gener-
alization of the concept of a regular set. A fuzzy set is
characterized by a membership function that assigns a
degree (or grade) of membership to all the elements in
the universe of discourse. The membership value is a
real number in the range [0, 1], where 0 denotes no def-
inite membership, 1 denotes definite membership, and
intermediate values denote partial membership to the
set. In this way, the transition from nonmembership to
membership in a fuzzy set is gradual and not abrupt like
in a regular set, allowing the representation of impre-
cise concepts like “small,” “cold,” “large;” or
example.

A variable with its values defined by fuzzy sets is
called a linguistic variable. For example, a linguistic
variable used to represent a temperature can be defined
as taking the values “cold,” ©
each one of them defined as a fuzzy set. These lin-
guistic labels, which are imprecise by their own nature,

very” for

comfortable,” and “warm,”

are, however, defined very precisely by using fuzzy set
concepts.

Based on the concepts of fuzzy sets and linguistic
variables, it is possible to define a complete fuzzy logic,
which is an extension of the classical logic but appro-
priate to deal with approximate knowledge, uncertainty,
and imprecision.

Recommended Reading

Zadeh, L. A. (1965). Fuzzy sets. Information and control. 8(3):
338-353.

! Fuzzy Systems

A fuzzy system is a computing framework based on
the concepts of the theory of »fuzzy sets, fuzzy rules,
and fuzzy inference. It is structured in four main com-
ponents: a knowledge base, a fuzzification interface,
an inference engine, and a defuzzification interface.
The knowledge base consists of a rule base defined in
terms of fuzzy rules, and a database that contains the
definitions of the linguistic terms for each input and
output linguistic variable. The fuzzification interface
transforms the (crisp) input values into fuzzy values,
by computing their membership to all linguistic terms
defined in the corresponding input domain. The infer-
ence engine performs the fuzzy inference process, by
computing the activation degree and the output of each
rule. The defuzzification interface computes the (crisp)
output values by combining the output of the rules and
performing a specific transformation.

Fuzzy systems can be classified in different cate-
gories. The most widely used are the Mamdani and the
Takagi-Sugeno models. In a Mamdani fuzzy system the
output variables are defined as linguistic variables while
in a Takagi-Sugeno fuzzy system they are defined as a
linear combination of the input variables.

Fuzzy systems can model nonlinear functions of
arbitrary complexity, however, their main strength
comes from their ability to represent imprecise concepts
and to establish relations between them.

Recommended Reading

Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic
synthesis with a fuzzy logic controller. International journal of
man-machine studies. 7(1): 1-13.

Sugeno, M. (1985) Industrial applications of fuzzy control. Elsevier
Science Publishers, New York.

	F
	F1-Measure
	False Negative
	False Positive
	Feature
	Feature Construction
	Feature Construction in Text Mining
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Solutions
	Word-Based Features
	Character-Based Features
	Kernel Methods
	Linear Algebra Methods
	Miscellaneous

	Cross References
	Recommended Reading

	Feature Extraction
	Feature Reduction
	Feature Selection
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Categories of Feature Selection
	Searching for Relevant Features
	Models of Feature Selection
	Evaluation of Feature Selection
	Feature Selection Development and Applications

	Cross References
	Recommended Reading

	Feature Selection in Text Mining
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Recommended Reading

	Feature Subset Selection
	Feedforward Recurrent Network
	Finite Mixture Model
	First-Order Logic
	Synonyms
	Definition
	Motivation and Background
	Theory
	Syntax
	Semantics
	Proofs
	Programming in Logic

	Cross References
	Recommended Reading

	First-Order Predicate Calculus
	First-Order Predicate Logic
	First-Order Regression Tree
	Synonyms
	Definition
	Cross References

	F-Measure
	Foil
	Frequent Itemset
	Synonyms
	Definition
	Cross References
	Recommended Reading

	Frequent Pattern
	Definition
	Motivation and Background
	Structure of Problem
	Theory/solutions
	Condensed Representations: Closed Sets andNonderivable Sets
	Generalizations of Frequent Patterns

	Programs and Data
	Applications
	Future Directions
	Cross References
	Recommended Reading

	Frequent Set
	Functional Trees
	Fuzzy Sets
	Recommended Reading

	Fuzzy Systems
	Recommended Reading

