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F-Measure

�e F-measure is used to evaluate the accuracy of pre-
dictions in two-class (binary)7classi�cation problems.
It originates in the �eld of information retrieval and is

o�en used to evaluate 7document classi�cation mod-
els and algorithms. It is de�ned as the harmonic mean

of 7precision (i.e., the ratio of 7true positives to all
instances predicted as positive) and 7recall (i.e., the
ratio of true positives to all instances that are actually

positive). As such, it lies between precision and recall,

but is closer to the smaller of these two values. �ere-

fore a system with high F has both good precision and
good recall.�e F-measure is a special case of themore
general family of evaluation measures:

Fβ = (β + )precisionrecall/(βprecision + recall)

�us using β > increases the in�uence of precision
on the overall measure, while using β <  increases
the in�uence of recall. Some authors use an alternative

parameterization,

Fα = /(α/precision + (tα)/recall)

which, however, leads to the same family of mea-

sures; conversion is possible via the relationship

α = /(β + ).

False Negative

In a two-class problem, a7classi�cation7modelmakes
two types of error: 7false positives and false nega-
tives. A false negative is an example of positive class
that has been incorrectly classi�ed as negative. See

7confusion matrix for a complete range of related
terms.

False Positive

In a two-class problem, a7classi�cation7modelmakes
two types of error: false positives and 7false negatives.
A false positive is an example of negative class that has
been incorrectly classi�ed as positive. See 7confusion
matrix for a complete range of related terms.

Feature

7Attribute

Feature Construction

7Data Preparation
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Synonyms
Feature generation in text mining

Definition
Feature construction in 7text mining consists of var-
ious techniques and approaches which convert textual

data into a feature-based representation. Since tradi-

tional machine learning and data mining techniques

are generally not designed to deal directly with tex-

tual data, feature construction is an important prelimi-

nary step in text mining, converting source documents
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into a representation that a data mining algorithm can

then work with. Various kinds of feature construction

approaches are used in text mining depending on the

task that is being addressed, the data mining algorithms

used, and the nature of the dataset in question.

Motivation and Background
Text mining is the use of machine learning and data

mining techniques on textual data. �is data consists

of natural language documents that can be more or less

structured, ranging from completely unstructured plain

text to documents with various kinds of tags containing

machine-readable semantic information. Furthermore,

documents may sometimes contain hyperlinks that

connect them into a graph. Since most traditional

machine learning and data mining techniques are not

directly equipped to deal with this kind of data, an

important �rst step in text mining is to extract or

construct features from the input documents, thereby

obtaining a feature-based representation which is suit-

able for handling with machine learning and data min-

ing algorithms.�us, the task of feature construction in

text mining is inextricably connected with text mining

itself and has evolved alongside it. An important trend

over the years has been the development of techniques

that do not process each document in isolation but

make use of a corpus of documents as a whole, possibly

even involving external data or background knowledge

in the process.

Documents and text data provide for valuable

sources of information and their growing availability

in electronic form naturally led to application of dif-

ferent analytic methods. One of the common ways is

to take a whole vocabulary of the natural language in

which the text is written as a feature set, resulting in

several tens of thousands of features. In a simple set-

ting, each feature gives a count of the word occurrences

in a document. In this way text of a document is rep-

resented as a vector of numbers. �e representation of

a particular document contains many zeros, as most of

the words from the vocabulary do not occur in a par-

ticular document. In addition to the already mentioned

two common speci�cs of text data, having a large num-

ber of features and a sparse data representation, it was

observed that frequency of words in text in general fol-

lows Zipf ’s law – a small subset of words occur very

frequently in texts while a large number of words occur

only rarely. 7Document classi�cation takes these and
some other data speci�cs into account when developing

the appropriate classi�cation methods.

Structure of Learning System
In a learning or mining system that deals with tex-

tual data, feature construction is usually one of the �rst

steps that is o�en performed alongside typical prepro-

cessing tasks such as data cleaning. A typical output

of feature construction are feature vectors represent-

ing the input documents; these vectors themselves then

form the input for a machine learning or data mining

algorithm. On the other hand, sometimes feature con-

struction is more closely integrated into the learning

algorithm itself, and sometimes it can be argued that

the features themselves are the desired output that is the

goal of the text mining task.

Solutions
At the lowest level, text is represented as a sequence of

bytes or other elementary units of information. How

these bytes are to be converted into a sequence of char-

acters depends on the character encoding of the text.
Many standard encodings exist, such asUTF-, the ISO-

 family, and so on. O�en, all the texts that appear

as input for a speci�c text mining task are in the same

encoding, or if various encodings are used they are

speci�ed clearly and explicitly (e.g., via the Content-

Type header in the HTTP protocol), in which case the

problem of conversion is straightforward. In the case of

missing or faulty encoding information, various heuris-

tics can be used to detect the encoding and convert the

data to characters; it is best to think of this as a data

cleaning and preprocessing step.

Word-Based Features

When we have our text represented as a sequence of

characters, the usual next step is to convert it into

a sequence of words. �is is usually performed with

heuristics which depend to some extent on the lan-

guage and underlying character set; for the purposes

of segmentation of text into words, a word is thought

of as a sequence of alphabetic characters delimited by
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whitespace and/or punctuation. Some e�orts to stan-

dardize word boundary detection in a way that would

work reasonably well with a large set of natural lan-

guages have also been made (see, e.g., the Unicode

Standard Annex #, Unicode Text Segmentation). For
many (but not all) text mining tasks, the distinction

between upper and lower case (if it is present in the

underlying natural language) is largely or entirely irrel-

evant; hence, all text is o�en converted into lower case

at this point. Another frequently used preprocessing

step is stemming, whereby each word is replaced by its
stem (e.g., walking → walk). �e details of stemming
depend on the natural language involved; for English,

a relatively simple set of heuristics such as Porter’s stem-

mer is su�cient. Instead of stemming, where the end-

ing is chopped o� the word, one can apply a more

sophisticated transformation referred to as lemmati-

zation that replaces the word by its normalized form

(lemma). Lemmatization is especially relevant for nat-

ural languages that have many di�erent forms of the

same word (e.g., several cases, gender in�uence on verb

form etc.). E�orts have also been made to discover

stemming rules or lemmatization rules automatically

using machine learning techniques (Plisson, Lavrač,

Mladenić, & Erjavec, ).

�e individual words can themselves be thought of

as features of the document. In the feature-vector rep-

resentation of a document d, the feature corresponding
to the word w would tell something about the presence
of the word w in this document: either the frequency
(number of occurrences) of w in d, or a simple binary
value ( if present,  if absent), or it can further be mod-

i�ed by, e.g., the 7TF-IDF weighting. In this kind of
representation, all information about the word order

in the original document is lost; hence, it is referred

to as the “bag of words” model. For many tasks, the

loss of word order information is not critical and the

bag of words model is a staple of information retrieval,

document classi�cation, and many other text-related

tasks. A downside of this approach (and many other

word-based feature construction techniques) is that the

resulting number of features can be very large (there

are easily tens of thousands of di�erent words in a mid-

sized document corpus); see7Feature Selection in Text
Mining.

Clearly, ignoring the word order completely can

sometimes lead to the loss of valuable information.

Multi-word phrases sometimes have a meaning that

is not adequately covered by the individual words of

the phrase (e.g., proper names, technical terms, etc.).

Various ways of creating multi-word features have

been considered. Let d be a document consisting of
the sequence of words (w, w, . . . ,wm) (note that,

this sequence might already be an output of some

preprocessing operations, e.g., the removal of stopwords

and of very infrequent words.). �en an n-gram is

de�ned as a sequence of n adjacent words from the doc-
ument, i.e., (wi, wi+, . . . ,wi+n−). We can use n-grams
as features in the same way as individual words, and

indeed a typical approach is to use n-grams for all values
of n from  to a certain upper limit (e.g., ). Many of the
resulting n-grams will be incidental and irrelevant, but
some of themmay be valuable and informative phrases;

whether the text mining algorithm will be able to pro�t

from them depends a lot on the algorithm used, and

feature selection might be even more necessary than

in the case of individual words. A related problem is

the explosion of the number of features; if the num-

ber of di�erent words in a corpus grows approximately

with the square root of the length of the corpus (Heaps’

law), the number of di�erent n-grams is more likely to
grow nearly linearly with the length of the corpus. �e

use of n-grams as features has been found to be bene�-
cial, e.g., for the classi�cation of very short documents

(Mladenić & Grobelnik, ).

Further generalization of n-grams is possible by
removing the requirement that the words of the n-
gram must appear adjacently; we can allow them to

be separated by other words. �e weight of an occur-

rence of the n-gram is o�en de�ned as decreasing

exponentially with the number of intervening separa-

tor words. Another direction of generalizing n-gram
is to ignore the order of words within the n-gram; in
e�ect one treats n-grams as bags (multisets) instead
of sequences. �is results in features sometimes called

loose phrases or proximity features (i.e., every bag of
words up to a certain size, occurring in su�ciently

close proximity to each other, is considered to be a

feature). �ese generalizations greatly increase the fea-

ture space as well as the number of features present

in any individual document, so the risk of compu-

tational intractability is greatly increased; this can

sometimes be alleviated through the use of kernels

(see below).
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Character-Based Features

Instead of treating the text as a sequences of words,

we might choose to treat it as a sequence of charac-

ters. A sequence of n characters is also known as an
n-graph. We can use n-graphs as features in the rep-
resentation of text in a way analogous to the use of

n-grams in the previous subsection. �e weight of the
feature corresponding to a particular n-graph in the fea-
ture vector of a particular document d will typically
depend on the number of occurrences of that n-graph
in the text of d. Sometimes noncontiguous occurrences
of the n-graph are also counted (i.e., occurrences where
characters from the n-graph are separated by one or
more other characters), although with a lower weight;

this is can be done very elegantly with kernel methods

(see below). Feature selection and TF-IDF style weight-

ing schemes can also be used as in the case of n-grams.
Whether an n-graph-based representation o�ers any
bene�ts compared to an n-gram-based one depends
largely on the dataset and task in question. For example,

the classi�cation of English documents the usefulness

of n-graphs has been found to be dubious, but they can
be bene�cial in highly agglutinative languages where an

individual word can consist of many morphemes and

it is not really useful to treat a whole word as an indi-

vidual unit of information (as would be the case in a

word-based feature representation). In e�ect, the use

of n-graphs provides the learner with cheap access to
the sort of information that would otherwise require

more sophisticated NLP technologies (stemming, pars-

ing, morpheme analysis, etc.); the downside is that a

lot of the n-graph features are merely noise (Lodhi,
Saunders, Shawe-Taylor, Cristianini, & Watkins, ).

For some application, word su�xes can be particu-

larly useful features, e.g., to learn lemmatization rules

(Mladenić, ; Plisson et al., ).

Kernel Methods

Let ϕ be a function which assigns, to a given docu-
ment d, a feature vector ϕ(d) from some feature space
F. Assume furthermore that a dot product (a.k.a. inner
product) is de�ned over F, denoted by ⟨⋅, ⋅⟩F . �en the
function K de�ned by K(d, d) = ⟨ϕ(d), ϕ(d)⟩F is
called a kernel function. It turns out that many machine
learning and data mining methods can be described

in a way such that the only operation they need to do

with the data is to compute dot products of their feature

vectors; in other words, they only require us to be able

to compute the kernel function over our documents.

�ese approaches are collectively known as 7kernel
methods; a well-known example of this is the7support
vector machine (SVM) method for supervised learn-

ing, but the same principle can be used in 7clustering
as well. An important advantage of this approach is

that it is o�en possible to compute the kernel function

K directly from the documents d, without explicitly
generating the feature vectors ϕ(d,). �is is especially
valuable if the feature space is untractably large. Sev-

eral families of kernel functions for textual data have

been described in the literature, corresponding to vari-

ous kinds of n-graph and n-gram based features (Brank,
; Lodhi et al., ).

Linear Algebra Methods

Assume that a corpus of n documents have already
been represented by d-dimensional real feature vectors
x, . . . , xn ∈ Rd. If we select some direction y ∈ Rd and

project a vector xi in this direction, the resulting value
yTxi/∣∣y∣∣ is in e�ect a new feature describing the doc-
ument i. In other words, we have constructed a new
feature as a linear combination of the existing features.

�is leads to the question of how to select one or more

suitable directions y; various techniques from linear
algebra and statistics have been proposed for this.

A well-known example of this is principal compo-
nent analysis (PCA) in which one or more new coordi-
nate axes y are selected in such a way that the variance
of the original vectors x, . . . , xn in the directions of
the new coordinate axes is maximized. As it turns out,

this problem is equivalent to computing the principal

eigenvectors of the covariance matrix of the original

dataset.

Another technique of this sort is latent semantic
indexing (LSI) (Deerwester, Dumais, Furnas, Landauer,
& Harshman, ). Let X be a d×n matrix with
x, . . . , xn as its columns (a.k.a. the term-document
matrix). LSI uses singular value decomposition (SVD)
to express X as the product of three matrices, T⋅S⋅D,
where T is a d × r orthonormal matrix, D is a r × n
orthonormal matrix, and S is a r× r diagonal matrix
containing the singular values of X. Here, r denotes the
rank of the original matrix X. Let T(m) be the matrix
consisting of the le� m columns of T, let D(m) be the
matrix consisting of the topm rows ofD, and let S(m) be
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the top le�m×m submatrix of S. �en it turns out that
X(m) = T(m)S(m)D(m) is the best rank-m approxima-
tion of the original X (best in the sense of minimizing
the Frobenius norm of X – X(m)). �us, the i-th col-
umn of D(m) can be seen as a vector of m new features
representing the i-th document of our original dataset,
and the product T(m)S(m) can be seen as a set ofm new
coordinate axes. �e new feature vectors (columns of

D(m)) can be used instead of the original vectors xi.
Canonical correlation analysis (CCA): Sometimes

several vector representations are available for the same

document di; for example, we might have the same
text in two di�erent languages, giving rise to two fea-

ture vectors, e.g., xi ∈ Rd and yi ∈ Rd′ . Given such a

“parallel corpus” of pairs (xi, yi), i =  . . . n, it is some-
times desirable to convert both types of representations

to a “common denominator.” In other words, we want

to �nd a set of r new coordinate axes in x-space (say
the columns of U ∈ Rd×r) and a set of r new coordi-
nate axes in y-space (say the columns of V ∈ Rd′×r)
such that the j-th column of U has a similar role in
x-space as the j-th column of V has in y-space, for
all j. �is can be formulated as an optimization prob-
lem: �nd U and V such that the correlation between
UTxi andVTyi (i.e., the projections of xi and yi onto the
new sets of axes) is maximized. Once we have suitable

matrices U and V , we can convert any feature vector
from the original x-space or y-space into a common
new r-dimensional space. �is makes it easier to deal
with multi-lingual corpora, allowing us, e.g., to retrieve

documents in language x as a response to a query in
language y, or vice versa.�e same techniques are appli-
cable in multimodal scenarios (i.e., xi and yi can be
any two representations of the same instance di from
two substantially di�erent perspectives, not necessar-

ily textual). �is method is o�en used in combination

with kernels, in which case it is known as kernel canoni-
cal correlation analysis (KCCA) (Hardoon, Szedmak, &
Shawe-Taylor, ).

Miscellaneous

�ere are many other ways to extract or construct fea-

tures from text, depending on the use that the features

are intended for. For example, a dual representation of
a corpus may be considered, in which features are used

to represent terms and not documents. �e feature vec-

tor for a term t contains one feature for each document,
and its value is related to the frequency of t in that
document. �is representation can be used to analyze

which words co-occur frequently and may therefore

be related in meaning. Feature construction can also

utilize methods from information extraction, such as
identifying various kinds of named entities (names of

persons, places, organizations, etc.) or other interesting

bits of information and introducing featureswhich indi-

cate the presence of particular names or other tagged

entities in the document.

Cross References
7Document Classi�cation
7Feature Selection in Text Mining
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Synonyms
Attribute selection; Feature reduction; Feature subset

selection; Variable selection; Variable subset selection

Definition
Feature selection is the study of algorithms for reducing
dimensionality of data to improve machine learning
performance. For a dataset with N features and M
dimensions (or features, attributes), feature selection

aims to reduceM toM′ andM′ ≤M. It is an important
and widely used approach to 7dimensionality reduc-
tion. Another e�ective approach is 7feature extraction.
One of the key distinctions of the two approaches lies

at their outcomes. Assuming we have four features

F,F,F,F, if both approaches result in  features,
the  selected features are a subset of  original fea-
tures (say, F,F), but the  extracted features are some
combination of  original features (e.g., F′ = ∑ aiFi
and F′ = ∑ biFi, where ai, bi are some constants). Fea-
ture selection is commonly used in applications where

original features need to be retained. Some examples

are document categorization, medical diagnosis and

prognosis, gene-expression pro�ling. We focus our dis-

cussion on feature selection. �e bene�ts of feature

selection are multifold: it helps improve machine learn-

ing in terms of predictive accuracy, comprehensibility,

learning e�ciency, compact models, and e�ective data

collection.

�e objective of feature selection is to remove irrel-

evant and/or redundant features and retain only rele-

vant features. Irrelevant features can be removed with-
out a�ecting learning performance. Redundant fea-
tures are a type of irrelevant features. �e distinction
is that a redundant feature implies the copresence of

another feature; individually, each feature is relevant,

but the removal of either one will not a�ect learning

performance.

Motivation and Background
�e rapid advance of computer technology and the

ubiquitous use of Internet have provided unparalleled

opportunities for humans to expand the capabilities in

production, services, communications, and research. In

this process, immense quantities of high-dimensional

data are accumulated, challenging the state-of-the-art

machine learning techniques to e�ciently produce use-

ful results. Machine learning can bene�t from using

only relevant data in terms of learning performance

(e.g., better predictive accuracy and shortened training

time) and learning results such as improved compre-

hensibility to gain insights and to facilitate validation.

At �rst glimpse, one might think a powerful machine

learning algorithm can automatically identify the useful

features in its model building process. In e�ect, remov-

ing irrelevant and/or redundant features can a�ect

machine learning. First, let us look at what constitutes

e�ective learning. In essence, the 7hypothesis space is
largely constrained by the number of features. Learning

can be viewed as searching for a “correct” hypothesis

in the hypothesis space. A hypothesis is correct if it is

consistent with the training data or the majority of it

in the presence of noise, and is expected to perform

equally well for the unseen data (or instances that are

not present in the training data). In some sense, the

more instances we have in the training data, the more

constraints there are in helping guide the search for a

correct hypothesis.

Broadly speaking, two factors matter most for e�ec-

tive learning: () the number of features (M), and
() the number of instances (N). For a �xedM, a larger
N means more constraints and the resulting correct

hypothesis is expected to bemore reliable. For a �xedN,
a decreasedM is tantamount to a signi�cantly increased
number of instances. Consider the following thought
experiment for a binary domain of a binary classi�ca-
tion problem: F,F,F,F are binary and class C is also
binary (e.g., positive or negative). If the training data

consists of  instances (N = ), it is only a quarter
of the total number of possible instances ( = ).
�e size of the hypothesis space is 



= , . If
only two features are relevant, the size of the hypothesis
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space becomes 


= , an exponential reduction of
the hypothesis space. Now, the only available  instances

might su�ce for perfect learning if there is no duplicate

instance in the reduced training data with two features.

And a resulting model of  features can also be more

complex than that of  features. Hence, feature selection

can e�ectively reduce the hypothesis space, or virtu-

ally increase the number of training instances, and help

create a compact model.

An unnecessarily complex model subjects itself to

oversearching an excessively large hypothesis space. Its

consequence is that the learned hypothesis over�ts the
training data and is expected to perform poorly when

applying the learnedmodel to the unseen data. Another

way of describing the relationship between N andM in
the context of learning is the so-called curse of dimen-
sionality, the need for the exponential increase in data
size associated with linearly adding additional dimen-
sions to a multidimensional space; or the concept of

proximity becomes blurry in a high-dimensional space,

resulting in degrading learning performance. �eoreti-

cally, the reduction of dimensionality can eventuate the

exponential shrinkage of hypothesis space.

Structure of the Learning System
�e structure of a feature selection system consists of

four basic components: input, search, evaluation, and

output. �e output of any feature selection system can

be either a ranked list of features or a subset of features.
For the former, one can select top k highly ranked fea-
tures depending on the need. In the context of learning,

the input to a feature selection system is the data which
can be () supervised – all instances are associated with

class labels as in supervised learning; () unsupervised –

no class labels are available as in unsupervised learning;

and () some instances have class labels and the rest do

not as in semi-supervised learning. To rank the features

or select a feature subset can be phrased as a searchprob-
lem in which various search strategies can be employed.

Depending on how a feature selection system isworking

together with a learning system, we can study di�erent

models of feature selection (Kohavi & John, ) such
as wrapper, �lter, or embedded. An inevitable question

about feature selection is whether the removal of fea-

tures can help machine learning. �is necessitates the

evaluation of feature selection. We will review these
aspects of feature selection research next.

Categories of Feature Selection

Feature selection algorithms can be categorized into

supervised, unsupervised, and semi-supervised, corres-

ponding to di�erent types of learning algorithms.�ere

has been a substantial gamut of research on supervised
feature selection. As in supervisedmachine learning, the
data available for feature selection contains class labels.

�e class information is used as a dominant factor in

determining the feature quality. For example, we can

simply measure the correlation between a feature (or a

subset of features) and the class and select those features

with highest correlations. Anotherway of using the class

information is to see if a feature can help di�erentiate

two neighboring instances with di�erent classes: obvi-

ously, a relevant feature can, but an irrelevant feature

cannot.

Unsupervised feature selection has gained much
attention in the recent years. Most data collected are

without class labels since labeling data can incur huge

costs. �e basic principle of unsupervised learning is

to cluster data such that similar objects (instances)

are grouped together and dissimilar objects are sep-

arated. In other words, if we had all similar objects

in their corresponding designated clusters, we would

have the minimum intracluster distances and the max-

imum intercluster distances among all objects. For data

of high-dimensionality, distance calculation can be a big

problem due to the7curse of dimensionality. One idea
is to �nd features that can promote the data separability.

In Dy and Brodley (), the goal of unsupervised fea-

ture selection is de�ned as �nding the smallest feature

subset that best uncovers “interesting natural” clusters

fromdata according to the chosen criterion. A variant of

unsupervised feature selection is subspace clustering. It

explores the fact that in a high-dimensional space, clus-

ters can o�en be found in various subspaces of very low

dimensionality. Some subspace clustering algorithms

are reviewed in Parson, Haque, and Liu ().

Unsupervised feature selection is a more loosely

constrained problem than supervised feature selec-

tion. When a large number of labeled instances are

infeasible to obtain, could we use a small number

of labeled instances? Semi-supervised feature selection
attempts to take advantage of both the size of unla-

beled data and the labeling information of a small num-

ber of labeled instances. In the same spirit of 7semi-
supervised learning, semi-supervised feature selection

takes advantage of the two biases inherited in labeled
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and unlabeled data, respectively, in the hope that the

problemof feature selection becomesmore constrained.

�e basic idea is to �nd features that can not only help

group the data, but also encourage to �nd, amongmany

equally good groups, those groups in which instances of

di�erent classes are not in the same group (Zhao & Liu,

b).

Searching for Relevant Features

�e search for relevant features can be realized in two

ways: () feature ranking – features are ranked accord-
ing to the intrinsic properties of the data so that top

k features can be chosen according to the need or a
given threshold; and () subset selection – a subset of fea-
ture is selected from the full set of features, and there

is no relevant di�erence between the features in the

selected subset. Subset selection can be carried out in

variousways: forward selection – startingwith an empty

feature subset and adding more iteratively, backward

elimination – beginning with a full set of features and

eliminating some gradually, and random – the starting

subset can be any number which is then adjusted: if this

number of features su�ces according to some quality

measure, it may be decreased, otherwise it should be

increased. �e exhaustive search is usually too expen-

sive for either forward or backward search. Hence, a

sequential search strategy is o�en adopted. Sequential

forward search (SFS) selects one feature at a time; once a

feature is selected, it will always be in the selected feature

subset and also helps determine which feature should

be selected next within the already selected features.

Sequential backward search eliminates one feature at

a time; once it is ruled out, it will never be consid-

ered for selection or inclusion in the selected set of

features.

Here we brie�y illustrate two e�ective and e�-

cient algorithms with disparate ideas. One is ReliefF

(Robnik-Sikonja & Kononenko, ). It selects a

feature by checking how e�ectively it can di�erenti-

ate the neighboring data points with di�erent classes.

A feature’s weight is increased if it is e�ective in doing

so. �e features are then ranked according to their

weights, and the top ranked features are deemed rel-

evant. �e second is FCBF (Yu & Liu, ), which

adds the feature-feature correlation into the selection

process with feature-class correlations. �e basic idea

is that for two features and the class, we can consider

not only each feature’s correlationwith the class, but also

the correlation between the two features. If the feature-

feature correlation is greater than the smaller of the

two feature-class correlations, the feature with smaller

feature-class correlation is redundant and can thus be

removed.

Models of Feature Selection

�ree classic models of feature selection are �lter, wrap-

per, and embedded. Research shows that, generally

speaking, even for a classi�er with embedded feature

selection capability, it can bene�t from feature selection

in terms of learning performance. A �lter model relies

onmeasures about the intrinsic data properties. Mutual

information and data consistency are two examples

of measures about data properties. A wrapper model

involves a learning algorithm (e.g., a classi�er, or a clus-

tering algorithm) in determining the feature quality.

For instance, if removing a feature does not a�ect the

classi�er’s accuracy, the feature can be removed. Obvi-

ously, this way feature selection is adapted to improving

a particular classi�cation algorithm. To determine if

the feature should be selected or removed, it needs to

build a classi�er every time when a feature is consid-

ered. Hence, the wrapper model can be quite costly.

An embedded model embeds feature selection in the

learning of a classi�er. A best example can be found

in decision tree induction in which, at each branching

point, a feature has to be selected �rst. When feature

selection is performed for data preprocessing, �lter and

wrapper models are o�en employed. When the pur-

pose of feature selection goes beyond improving learn-

ing performance (e.g., classi�cation accuracy), themost

applied is the �lter model.

Evaluation of Feature Selection

�e e�cacy of feature selection can be validated via

empirical evaluation. Two natural questions related to

classi�cation learning are () whether using selected fea-

tures can do as well as using the full set of features, and

() how to compare two feature selection algorithms

when one wants to �gure out which is more e�ective.

�e �rst question can be considered as a special form

of the second one if we assume the full set of features

is selected by a dummy feature selection algorithm that

simply selects all given features. We therefore address
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only the second question here. When we need to com-

pare two feature selection algorithms (A,A), if the
relevant features are known (the ground truth) as in

the experiments using synthetic data, we can directly

compare the selected features by A and A, respec-
tively, and check which result is closer to the ground

truth. In practice, one seldom knows what the relevant

features are. A conventional way of evaluating two algo-

rithms is to evaluate the e�ect of selected features on

classi�cation accuracy. It is a two-step procedure: �rst,

selecting features from data D to form D′

i with reduced

dimensionality; and second, obtaining estimated pre-

dictive accuracy of a classi�er onD andD′

i , respectively.

Which algorithm is superior can be statistically mea-

sured by accuracy di�erence betweenA andA. If there
is no signi�cant di�erence, one cannot tell which one of

the two feature selection algorithms is better; otherwise,

the algorithm resulting in better predictive accuracy is

better.

Another issue arising from feature selection eval-

uation is about feature selection bias. Using the same
training data in both feature selection and classi�ca-

tion learning can result in this selection bias. According

to statistical theory based on regression research, this

bias can exacerbate data over�tting and negatively a�ect

classi�cation performance. A recommended practice is

to use separate data for feature selection and for learn-

ing. In reality, however, separate datasets are rarely used

in the selection and learning steps. �is is because we

o�en want to use as much data as possible in both selec-

tion and learning. It is against this intuition to divide the

training data into two datasets leading to the reduced

data in either task.�ework presented in Singhi and Liu

() convincingly demonstrates that in regression,

feature selection bias caused by using the same data

for feature selection and classi�cation learning does not

negatively impact classi�cation as expected.

Feature Selection Development and Applications

�e advancement of feature selection research enables

us to tackle new challenges. Feature interaction presents

a challenge to feature selection. If we de�ne relevance

using correlation, a feature by itselfmight have little cor-

relationwith the target concept as in classi�cation learn-

ing, but can be very relevant if it is combined with some

other features, because the subset can be strongly corre-

latedwith the target concept.�eunintentional removal

of these features can eventuate poor learning perfor-

mance. It is, in general, computationally intractable to

handle feature interaction. In Zhao and Liu (a), it is

shown that it is feasible to identify interacting features,

in the case of using data consistency as a feature quality

measure, by designing a special data structure for linear-

time backward elimination in terms of M features and
by employing an information-theoretic feature ranking

heuristic. �e authors also point out that the key chal-

lenge of employing the ranking heuristic is the feature
order problem – a lowly ranked feature is more likely to
be eliminated �rst.

Data fusion of multiple data sources presents

another challenge for feature selection. Multiple data

sources, each with its own features, need to be inte-

grated in order to perform an inference task with the

same objective optimally. Instead of selecting the most

relevant features from each data source, one now needs

to consider selecting complementary features. It is also
very likely that performing conventional feature selec-

tion on the single aggregated dataset by combining all

the data sources cannot accomplish the task. �e prob-

lemof complementary feature selection seems related to

that of �nding interacting features. It will be worthwhile

to examine howboth research e�orts can bootstrap each

other in attacking the two recent challenges.

�e recent developments in feature selection wit-

ness many new e�orts on studying causal relation-
ships among features (Guyon, Aliferis, & Elissee�, )
to distinguish actual features and experimental arti-

facts; on text feature selection (Forman, ) that were
widely employed in thwarting spam emails, automatic

sorting of news articles, Web content management,

and customer support; on small data sample problems
that present challenges to reliable estimation of fea-

ture quality and detection of feature interactions, and

on connecting feature selection and feature extraction.

Both feature selection and extraction aim to reduce the

dimensionality of the data by removing the nonessen-

tial (redundant or noisy) information, but the two

areas have been researched largely independently. �ey

can, however, indeed complement each other. On the

one hand, feature extraction approaches, such as lin-

ear discriminant analysis, are e�ective for reducing

data dimensionality, but su�er from the high computa-

tional complexity, especially for high-dimensional data;

on the other hand, feature selection algorithms can
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handle large-scale data and also lead to easy interpre-

tation of the resulting learning model, but they may

not select interacting features. �e challenges of high-

dimensional data suggest a need for the two to work

together.

�ere is little work in the literature discussing about

selecting structural features and sequential features.

When data evolve, the variety of data types increases.

Semi-structural or structural data now become increas-

ingly common. Consequently, some features in these

data may contain a structure (e.g., a hierarchy that

de�nes the relationships between some atomic fea-

tures). It can be commonly seen in the data with meta

data. Clearly, extant feature selection algorithms have to

evolve in order to handle structural feature selection.

Another area that requires more research attention is

the study of sequential features for data streams and

for7time series. �ey are very di�erent from the types
of data that are well studied. Data streams are massive,

transient, and o�en from multiple sources. Time series

data present their continuous temporal patterns.

Feature selection research has found its applica-

tion in many �elds where the presence of large (either

row-wise or column-wise) volumes of data presents

challenges to e�ective data analysis and processing.

High-throughput technologies allow for parallel mea-

surements of massive biological variables describing

biological processes. �e inordinate number of the bio-

logical measurements can contain noise, irrelevance,

and redundancy. Feature selection can help focus on rel-

evant biological variables in genomics and proteomics

research. �e pervasive use of Internet and Web tech-

nologies has been bringing about a great number of

new services and applications, ranging from recent

Web . applications to traditional Web services where

multimedia data are ubiquitous and abundant. Fea-

ture selection is widely applied to �nd topical terms,

establish group pro�les, assist categorization, simplify

descriptions, facilitate personalization and visualiza-

tion, among others.
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Synonyms
Dimensionality reduction on text via feature selection

Definition
�e term feature selection is used in machine learn-
ing for the process of selecting a subset of features
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(dimensions) used to represent the data (see 7Feature
Selection, and 7Dimensionality Reduction). Feature
selection can be seen as a part of data pre-processing

potentially followed or coupled with feature construc-

tion 7Feature Construction in Text Mining, but can
also be coupled with the learning phase if embed-

ded in the learning algorithm. An Assumption of fea-

ture selection is that we have de�ned an original fea-

ture space that can be used to represent the data,

and our goal is to reduce its dimensionality by select-

ing a subset of original features. �e original feature

space of the data is then mapped onto a new feature

space. Feature selection in text mining is addressed here
separately due to the speci�city of textual data com-

pared to the data commonly addressed in machine

learning.

Motivation and Background
Tasks addressed in machine learning on text are o�en

characterized by a high number of features used to

represent the data. However, these features are not nec-

essarily all relevant and bene�cial for the task, and

may slow down the applied methods giving similar

results as a much smaller feature set. �e main rea-

sons for using feature selection in machine learning are

Mladenić : to improve performance, to improve

learning e�ciency, to provide faster models possibly

requesting less information on the original data, and to

reduce the complexity of the learned results and enable

better understanding of the underlying process.

Feature selection in text mining was applied in a

simple form from the start of applyingmachine learning

methods on text data; for instance, feature selection

by keeping the most frequent features and learning

decision rules 7Rule Learning proposed in Apte,
Damerau, and Weiss () or keeping the most infor-

mative features for learning decision trees 7Decision
Trees or 7Naïve Bayes 7Bayes Rule proposed in Lewis
and Ringuette (). �e reason is that the number of

features used to represent text data formachine learning

tasks is high, as the basic approach of learning on text

de�nes a feature for each word that occurs in the given

text. �is can easily result in several tens of thousands

of features, compared to several tens or hundreds of fea-

tures, as commonly observed onmostmachine learning

tasks at the time.

Most methods for feature subset selection that are

used on text are very simple compared to the feature

selectionmethods developed inmachine learning.�ey

perform a �ltering of features assuming feature inde-

pendence, so that a score is assigned to each feature

independently and the features with high scores are

selected. However, there are also more sophisticated

methods for feature selection on text data that take into

account interactions between the features. Embedded

feature selectionmethodswere successfully used on text

data, either by applying a learning algorithm that has

feature selection embedded (pre-processing step) or by

inspecting a model generated by such an algorithm to

extract feature scores. On the other hand, approaches to

feature selection that search a space of all possible fea-

ture subsets can be rather time consumingwhen dealing

with a high number of features, and are rarely used on

text data.

Structure of Learning System
Feature selection in text mining is mainly used in

connection with applying knownmachine learning and

statistical methods on text when addressing tasks such

as 7Document Clustering or 7Document Classi�ca-
tion. �is is also the focus of this chapter. However,

we may need to perform some kind of feature selec-

tion on di�erent text mining tasks where features are

not necessarywords or phrases, inwhich casewe should

reconsider the appropriate feature selection methods in

the light of the task properties, including the number

and type of features.

As already pointed out, the common way of doc-

ument text representation is by de�ning a feature for

each word in the document collection and feature

selection by assuming feature independence, assigning

score to the features, and selecting features with high

scores. Scoring of individual features is performed

either in an unsupervised way, ignoring the class infor-

mation, or in a supervised way, taking into account

class information. Surprisingly both kind of approaches

have been shown to perform comparably on docu-

ment classi�cation tasks, even though supervised scor-

ing uses more information. Here we discuss several

feature scoringmeasures and their performance ondoc-

ument classi�cation, as reported in di�erent researcher

papers.
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One of the �rst scoring measures used on text data

is scoring by the number of documents that contain a

particular word. �is was applied a�er removing very

frequent words, as given in a standard “stop-list” for

English. An alternative is scoring by frequency – that

is, by the number of times a feature occurs in a doc-

ument collection. Both were shown to work well in

document classi�cation Mladenić & Grobelnik ();

Yang & Pedersen ().

Information gain is commonly used in decision tree

induction (Quinlan, ). It was reported to work

well as a feature scoring measure on text data (Yang &

Pedersen, ) in some domains (news articles of in

a collection named Reuters-, abstracts of medical

articles in a subset of the MEDLINE collection), where

a multiclass problem was addressed using the nearest

neighbor algorithm 7Nearest Neighbor. �e same fea-
ture scoring almost completely failed when using Naïve

Bayes 7Bayes Rule on a binary classi�cation prob-
lem on a hierarchical topic taxonomy of Web pages

(Mladenić & Grobelnik, ). �is di�erence in per-

formance can be partially attributed to the classi�cation

algorithm and domain characteristics.

It is interesting to notice that information gain takes

into account all values for each feature. In the case of

document classi�cation, these are two values: occurs

or does not occur in a document. On the other hand,

expected cross entropy as used on text data (Koller &

Sahami, ;Mladenić &Grobelnik, ) is similar in

nature to information gain, but only uses the situation

when the feature occurred in a document. Experiments

on classifying document into a hierarchical topic tax-

onomy (Mladenić & Grobelnik, ) have show that

this signi�cantly improves performance. Expected cross

entropy is related to information gain as follows: Inf-

Gain(F) = CrossEntropyTxt(F) + CrossEntropyTxt(F),

where F is a binary feature (usually representing aword’s

occurrence).

�e odds ratio was reported to outperform many

other measures (Mladenić & Grobelnik, ) in

combination with Naïve Bayes, used for document clas-

si�cation on data with highly imbalanced class distri-

bution. A characteristic of Naïve Bayes used for text

classi�cation is that, once the model has been gen-

erated, the classi�cation is based on the features that

occur in a document to be classi�ed. �is means that

an empty document will be classi�ed into the majority

class. Consequently, having a highly imbalanced class

distribution, if we want to identify documents from

the under-represented class value, we need to have a

model sensitive to the features that occur in such docu-

ments. If most of the selected features are representative

for the majority class value, the documents from other

classes will be almost empty when represented using the

selected features.

Experimental comparison of di�erent feature selec-

tion measures in combination with the support vec-

tor machines 7Support Vector Machines classi�cation
algorithm (SVM) on news articles from the Reuters-

 collection (Brank, Grobelnik, Milič-Frayling, &

Mladenić, ) has shown that using all or almost

all the features yields the best performance. �e same

�nding was con�rmed in experimental evaluation of

di�erent feature selectionmeasures on a number of text

classi�cation problems (Forman, ). In addition, in

Forman () a new feature selection measure was

introduced: Bi-Normal Separation, which was reported

to improve the performance of SVM, especially with

problems where the class distribution is highly imbal-

anced. Interestingly, they also report that information

gain is outperforming the other tested measures in the

situation when using only a small number of selected

features (– features).

Another feature scoringmeasure for text data, called

the Fisher Index, was proposed as part of a document

retrieval systembased onorganizing large text databases

into hierarchical topic taxonomies (Chakrabarti, Dom,

Agrawal,&Raghavan, ). Similar toMladenić (),

for each internal node in the topic taxonomy, a separate

feature subset is used to build a Naïve Bayes model for

that node. �is is sometimes referred to as local feature

selection or, alternatively, context sensitive feature selec-

tion.�e feature set used in each node is relatively small

and tuned to the node context.

What follows are formulas of the described scoring

measures as given in Mladenić and Grobelnik ().

InfGain(F) = P(F)∑i P(Ci∣F) log(P(Ci∣F)/P(Ci))
+P( ⨼F)∑i P(Ci∣

⨼F)
× logP(Ci∣

⨼F)/P(Ci))
CrossEntropyTxt(F) = P(F)∑i P(Ci∣F)

log(P(Ci∣F)/P(Ci))
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MutualInfoTxt(F) = ∑i P(Ci) log(P(F∣Ci)/P(F))
OddsRatio(F) = log(P(F∣Cpos)( − P(F∣Cneg)))

− log(( − P(F∣Cpos))P(F∣Cneg))
Bi-NormalSeparation(F) = Z−(P(F∣Cpos))

−Z−(P(F∣Cneg))
FisherIndexTxt(F) = (∑pos,neg(P(F∣Cpos)

−P(F∣Cneg)))/∑Ciεpos,neg ∣Ci∣−

×∑dεCi(n(F,d)
−P(F∣Ci))

where P(F) is the probability that feature F occurred,⨼

F means that the feature does not occur, P(Ci) is the
probability of the ith class value, P(Ci∣F) is the condi-
tional probability of the ith class value given that feature
F occurred, P(F∣Ci) is the conditional probability of
feature occurrence given the ith class value, P(F∣Cpos)
is the conditional probability of feature F occurring
given the class value “positive,” P(F∣Cneg) is the condi-
tional probability of feature F occurring given the class

value “negative,” Z−(x) is the standard Normal dis-
tribution’s inverse cumulative probability function (z-
score), ∣Ci∣ is the number of documents in class Ci, and

n(F, d) is  if the document d contains feature F and 
otherwise.

As already highlighted in text classi�cation, most

of the feature selection methods evaluate each feature

independently. A more sophisticated approach is pro-

posed in Brank et al. (), where a linear SVM is �rst

trained using all the features, and the induced model is

then used to score the features (weight assigned to each

feature in the normal to the induced hyper plane is used

as a feature score). Experimental evaluation using that

feature selection in combinationwith SVM, Perceptron,

and Naïve Bayes has shown that the best performance

is achieved by SVM when using almost all the features.

�e experiments have con�rmed the previous �ndings

on feature subset selection improving the performance

of Naïve Bayes, but the overall performance is lower

than using SVM on all the features.

Much the same as in Brank et al. (), fea-

ture selection was performed using a linear SVM to

rank the features in Bi, Bennett, Embrechts, Bren-

eman, and Song (). However, the experiments

in Bi et al. () were performed on a regression

problem, and the �nal model was induced using a

nonlinear SVM. �e feature selection was shown to

improve performance.

Distributional clustering of words with an agglom-

erative approach (words are viewed as distributions over

document categories) is used for dimensionality red-

uction via feature construction (Bekkerman, El-Yaniv,

Tishby, & Winter, ) that preserves the mutual

information between the features as much as possi-

ble. �is representation was shown to achieve com-

parable or better results than the bag-of-words docu-

ment representation using feature selection based on

Mutual information for text; a linear SVM was used

as the classi�er. A related approach, also based on pre-

serving the mutual information between the features

(Globerson & Tishby, ), �nds new dimensions by

using an iterative projection algorithm instead of clus-

tering. It was shown to achieve performance compara-

ble to the bag-of-words representationwith all the origi-

nal features, using signi�cantly less features (e.g., on one

dataset, four constructed features achieved % of per-

formance of  original features) using the linear SVM

classi�er.

Divisive clustering for feature construction (Dhillon,

Mallela, & Kumar, ) was shown to outperform

distributional clustering when used for dimensional-

ity reduction on text data. �e approach uses the

Kullback-Leibler divergence as a distance function, and

minimizes within-cluster divergence while maximiz-

ing between-cluster divergence. Experiments on two

datasets have shown that this dimensionality reduction

slightly improves the performance ofNaïve Bayes (com-

pared to using all the original features), outperforming

the agglomerative clustering of words combined with

Naïve Bayes and achieving considerably higher clas-

si�cation accuracy for the same number of features

than feature subset selection using information gain or

mutual information (in combination with Naïve Bayes

or SVM).
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Synonyms
First-order predicate calculus; First-order predicate

logic; Predicate calculus; Predicate logic; Resolution

Definition
First-order predicate logic – �rst-order logic for short –

is the logic of properties of, and relations between,

objects and their parts. Like any logic, it consists of

three parts: syntax governs the formation ofwell-formed
formulae, semantics ascribes meaning to well-formed
formulae and formalizes the notion of deductive con-
sequence, and proof procedures allow the inference of
deductive consequences by syntactic means. A num-

ber of variants of �rst-order logic exist, mainly di�ering

in their syntax and proof systems. In machine learn-

ing, the main use of �rst-order logic is in 7learning
from structured data, 7inductive logic programming
and7relational data mining.

Motivation and Background
�e interest in logic arises from a desire to formal-

ize human, mathematical and scienti�c reasoning, and

goes back to at least the Greek philosophers. Aristotle

devised a form of propositional reasoning called syl-
logisms in the fourth century BC. Aristotle was held
in very high esteem by medieval scholars, and so fur-

ther signi�cant advances were not made until a�er the

Middle Ages. Leibniz wrote of an “algebra of thought”
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and linked reasoning to calculation in the late sev-

enteenth century. Boole and De Morgan developed

the algebraic point of view in the mid-nineteenth

century.

Universally quanti�ed variables, which form the

main innovation in �rst-order logic as compared to

7propositional logic, were invented by Gottlob Frege
in his Begri�sschri� (“concept notation”) from ,

and independently by Charles Sanders Peirce in ,

who introduced the notation ∏x and ∑x for universal

and existential quanti�cation. Frege’s work went largely

unnoticed until it was developed further by Alfred

North Whitehead and Bertrand Russell in their Prin-
cipia Mathematica (). Seminal contributions were
made, among many others: by Giuseppe Peano, who

axiomatized number theory and introduced the nota-

tion (x) and ∃x; by Kurt Gödel, who established the
completeness of �rst-order logic as well as the incom-

pleteness of any system incorporating Peano arithmetic;

by Alonzo Church, who proved that �rst-order logic

is undecidable, and who introduced λ-calculus, a form
of 7higher-order logic that allows quanti�cation over
predicates and functions (as opposed to �rst-order

logic, which only allows quanti�cation over objects);

and by Alfred Tarski, who pioneered logical semantics

through model theory, and the notion of logical conse-

quence. �e now universally accepted notation ∀x was
introduced by Gerhard Gentzen.

Logic plays an important role in any approach to

symbolic AI that employs a formal language for knowl-

edge representation and inference. A signi�cant, rela-

tively recent development was the introduction of logic

programming languages such as 7Prolog, which turn
logical inference into computation. In machine learn-

ing, the use of a �rst-order language is essential in order

to handle domains inwhich objects have inherent struc-

ture; the availability of Prolog as a common language

and programming platform gave rise to the �eld of

inductive logic programming.

Theory
Syntax

A�rst-order logical language is built from constant sym-
bols, variable symbols, predicate symbols and function
symbols; the latter two kinds of symbols have an associ-
ated arity, which is the number of arguments they take.

Terms are either constant symbols, variable symbols, or
of the form f (t, . . . , tn) where f is a function symbol
with arity n, and t, . . . , tn is a sequence of n terms.Using
the logical connectives ¬ (negation), ∧ (conjunction),
∨ (disjunction) and → (material implication) and the
quanti�ers ∀ (universal quanti�er) and ∃ (existential
quanti�er), well-formed formulae or w�s are de�ned
recursively as follows: () if P is a predicate symbol with
arity n, and t, . . . , tn is a sequence of n terms, then
P(t, . . . , tn) is a w�, also referred to as an atomic for-
mula or atom; () if ϕ and ϕ are w� ’s, then (¬ϕ),
(ϕ ∧ ϕ), (ϕ ∨ ϕ) and (ϕ → ϕ) are w�s; () if x is
a variable and ϕ is a w�, then (∀x : ϕ) and (∃x : ϕ)
are w�s; () nothing else is a w�. Brackets are usu-

ally dropped as much as it is possible without causing

confusion.

Example  Let “man,” “single,” and “partner” be two
unary and one binary predicate symbol, respectively, and
let “x” and “y” be variable symbols, then the following is
a w� ϕ expressing that men who are not single have a
partner:

(∀x : (man(x)∧(¬single(x))) → (∃y : partner(x, y))).

Assuming that ¬ binds strongest, then ∧, then →, the
brackets can be dropped:

∀x : man(x) ∧ ¬single(x) → ∃y : partner(x, y).

A propositional language is a special case of a
predicate-logical language, built only from predicate

symbols with arity , referred to as proposition sym-
bols or propositional atoms, and connectives. So, for
instance, assuming the proposition symbols “man,”
“single” and “has_partner,” the following is a proposi-
tional w�: man ∧ ¬single → has_partner. �e main
di�erence is that in propositional logic references to

objects cannot be expressed and therefore have to be

understood implicitly.

Semantics

First-order w�s express statements that can be true or

false and so a �rst-order semantics consists in con-

structing a mapping from w�s to truth-values, given an

interpretation, which is a possible state of a�airs in the

domain of discourse, mapping constant, predicate and
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function symbols to elements, relations and functions in

and over the domain. To deal with variables, a valuation

function is employed. Once this mapping is de�ned, the

meaning of a w� consists in the set of interpretations in

which the w� maps to true, also called its models. �e

intuition is that the more “knowledge” a w� contains,

the fewer models it has. �e key notion of logical con-

sequence is then de�ned in terms of models: one w� is

a logical consequence of another if the set of models of

the �rst contains the set of models of the second; hence

the second w� contains at least the same, if not more,

knowledge than the �rst.

Formally, a predicate-logical interpretation, or inter-
pretation for short, is a pair (D, i), where D is a

non-empty domain of individuals, and i is a function
assigning to every constant symbol an element of D, to
every function symbol with arity n a mapping from Dn

toD, and to every predicate symbol with arity n a subset
of Dn, called the extension of the predicate. A valuation
is a function v assigning to every variable symbol an
element of D.
Given an interpretation I = (D, i) and a valuation v,

a mapping iv from terms to individuals is de�ned as fol-
lows: () if t is a constant symbol, iv(t) = i(t); () if
t is a variable symbol, iv(t) = v(t); () if t is a term
f (t, . . . , tn), iv(t) = i(f )(iv(t), . . . , iv(tn)). �e map-
ping is extended to a mapping from w�s to truthvalues

as follows: () if ϕ is an atom P(t, . . . , tn), iv(ϕ) =
i(P)(iv(t), . . . , iv(tn)); () iv(¬ϕ) = T if iv(ϕ) = F,
and F otherwise; () iv(ϕ ∧ ϕ) = T if iv(ϕ) = T
and iv(ϕ) = T, and F otherwise; () iv(∀x : ϕ) = T
if ivx→d(ϕ) = T for all d ∈ D, and F otherwise, where
vx→d is v except that x is assigned d.�e remaining con-
nectives and quanti�er are evaluated by rewriting: ()

iv(ϕ ∨ ϕ) = iv(¬(¬ϕ ∧ ¬ϕ)); () iv(ϕ → ϕ) =
iv(¬ϕ ∨ ϕ); () iv(∃x : ϕ) = iv(¬∀x : ¬ϕ).
An interpretation I satis�es a w� ϕ, notation I ⊧ ϕ,

if iv(ϕ) = T for all valuations v; we say that I is amodel
of ϕ, and that ϕ is satis�able. If all models of a set of w�s
Σ are also models of ϕ, we say that Σ logically entails ϕ
or ϕ is a logical consequence of Σ, and write Σ ⊧ ϕ. If
Σ = ∅, ϕ is called a tautology and we write ⊧ ϕ. A w�
ψ is a contradiction if ¬ψ is a tautology. Contradictions
do not have any models, and consequently ψ ⊧ α for
any w� α. �e deduction theorem says that Σ ⊧ α → β
if and only if Σ ∪ {α} ⊧ β. Another useful fact is that,
if Σ ∪ {¬γ} is a contradiction, Σ ⊧ γ; this gives rise to

a proof technique known as Reductio ad absurdum or
proof by contradiction (see below).

Example  We continue the previous example. Let
D = {Peter,Paul,Mary}, and let the function i be
de�ned as follows: i(man) = {Peter,Paul}; i(single) =
{Paul}; i(partner) = {(Peter,Mary)}. We then have
that the interpretation I = (D, i) is a model for the w�
ϕ above. On the other hand, I doesn’t satisfy ψ =∀x:∃ y:
partner(x, y), and therefore ϕ ⊭ ψ. However, the reverse
does hold: there is no interpretation that satis�es ψ and
not ϕ, and therefore ψ ⊧ ϕ.

In case of a propositional logic this semantics can

be considerably simpli�ed. Since there are no terms the

domain D plays no role, and an interpretation simply
assigns truth-values to proposition symbols. W�s can

thenbe evaluatedusing rules (–) and (–). For exam-

ple, if i(man)=T, i(single)=T and i(has_partner)=T,
then i(man∧¬single→has_partner) = T (if this

seems counter-intuitive, this is probably because the

reader’s knowledge of the domain suggests another w�

¬(single∧has_partner), which is false in this particular
interpretation).

Proofs

A proof procedure consists of a set of axioms and a set of
inference rules. Given a proof procedure P, we say that ϕ
is provable from Σ and write Σ⊢Pϕ if there exists a �nite
sequence of w�s ϕ, ϕ, . . . , ϕn−, ϕwhich is obtained by
successive applications of inference rules to axioms, pre-
misses in Σ, and/or previous w�s in the sequence. Such a
sequence of w�s, if it exists, is called a proof of ϕ from Σ.
Aproof procedureP is sound, with respect to the seman-
tics established by predicate-logical interpretations, if

Σ ⊧ ϕ whenever Σ ⊢P ϕ; it is complete if Σ ⊢P ϕ when-
ever Σ ⊧ ϕ. For a sound and complete proof proce-
dure for �rst-order predicate logic, see e.g., Turner,

, p. .

A set of w�s Σ is consistent, with respect to a proof
procedure P, if not both Σ ⊢P ϕ and Σ ⊢P ¬ϕ for some
w� ϕ. Given a sound and complete proof procedure,
the proof-theoretic notion of consistency coincideswith

the semantic notion of satis�ability. In particular, if we

can prove that Σ ∪ {¬γ} is inconsistent, then we know
that Σ ∪ {¬γ} is not satis�able, hence a contradiction,
and thus Σ ⊧ γ. �is still holds if the proof procedure
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is only complete in the weaker sense of being able to

demonstrate the inconsistency of arbitrary sets of w�s

(see the resolution inference rule, below).

Example  One useful inference rule for predicate logic
replaces a universally quanti�ed variable with an arbi-
trary term, which is called universal elimination. So,
if “c” is a constant symbol in our language, then we
can infer

man(c) ∧ ¬single(c) → ∃y : partner(c, y)

from ϕ above by universal elimination. Another inference
rule, which was calledModus Ponens by Aristotle, allows
us to infer β from α and α → β. So, if we additionally have
man(c) ∧ ¬single(c), then we can conclude

∃y : partner(c, y)

by Modus Ponens. �is rule is also applicable to proposi-
tional logic. An example of an axiom is c= c for any con-
stant symbol c (strictly speaking this is an axiom schema,
giving rise to an axiom for every constant symbol in the
language).

Programming in Logic

Syntax, semantics and proof procedures for �rst-order

logic can be simpli�ed and made more amenable to

computation if we limit the number of ways of express-

ing the same thing. �is can be achieved by restricting

w�s to a normal form called prenex conjunctive normal
form (PCNF). �is means that all quanti�ers occur at
the start of the w� and are followed by a conjunction of

disjunctions of atoms and negated atoms, jointly called

literals. An example of a formula in PCNF is

∀x : ∃y : ¬man(x) ∨ single(x) ∨ partner(x, y).

�is formula is equivalent to the w� ϕ in Example , in
the sense that it has the same set ofmodels, and so either

one logically entails the other. Every �rst-order w� can

be transformed into a logically equivalent formula in

PCNF, which is unique up to the order of conjuncts and

disjuncts. A transformation procedure can be found in

Flach ().

PCNF can be further simpli�ed if we use func-

tion symbols instead of existential quanti�ers. For

instance, instead of ∃y : partner(x, y), we can say

partner(x, partner_of (x)), where partner_of is a unary
function symbol called a Skolem function, a�er the
Norwegian logician�oralf Skolem.�e two statements

are not logically equivalent, as the second entails the

�rst but not vice versa, but this di�erence is of little

practical consequence. Since all variables are now uni-

versally quanti�ed the quanti�ers are usually omitted,

leading to clausal form:

¬man(x) ∨ single(x) ∨ partner(x, partner_of (x)).

To sum up, a w� in clausal form is a conjunction of dis-

junctions of literals, of which the variables are implicitly

universally quanti�ed. �e individual disjunctions are

called clauses.

Further simpli�cations include dispensing with

equality, which means that terms involving function

symbols, such as partner_of (c), are not evaluated and
in e�ect treated as names of objects (in this case, the

function symbols are called functors or data construc-
tors). Under this assumption each ground term (a term
without variables) denotes a di�erent object, which

means that we can take the set of ground terms as the

domain D of an interpretation; this is called a Her-
brand interpretation, a�er the French logician Jacques
Herbrand.

�e main advantage of clausal logic is the existence

of a proof procedure consisting of a single inference rule

and no axioms.�is inference rule, which is called reso-
lution, was introduced by Robinson (). In propo-
sitional logic, given two clauses P ∨ Q and ¬Q ∨ R
containing complementary literalsQ and ¬Q, resolution
infers the resolvent P ∨ R (P and/or R may themselves
contain several disjuncts). For instance, given ¬man ∨
single ∨ has_partner and man ∨ woman, we can infer
woman∨single∨has_partner by resolution. In �rst-order
logic, Q and ¬Q′ are complementary if Q and Q′ are

uni�able, i.e., there exists a substitution θ of terms for
variables such that Qθ = Q′θ, where Qθ denotes the
application of substitution θ toQ; in this case, the resol-
vent of P∨Q and ¬Q′ ∨R is Pθ ∨Rθ. For instance, from
the following two clauses:

¬man(x) ∨ single(x) ∨ partner(x, partner_of (x))

¬single(father_of (c))
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we can infer

¬man(father_of (c)) ∨ partner(father_of (c),

partner_of (father_of (c))).

�e resolution inference rule is sound but not complete:

for instance, it is unable to produce tautologies such as

man(c) ∨ ¬man(c) if no clauses involving the predi-
cate man are given. However, it is refutation-complete,
which means it can demonstrate the unsatis�ability of

any set of clauses by deriving the empty clause, indi-
cated by ◻. For instance, man(c) ∧ ¬man(c) is a w�
consisting of two clauses which are complementary lit-

erals, so by resolution we infer the empty clause in

one step.

Refutation by resolution is the way in which queries

are answered in the logic programming language

Prolog. Prolog works with a subset of clausal logic

calledHorn logic, named a�er the logician Alfred Horn.
A Horn clause is a disjunction of literals with at most
one positive (un-negated) literal; Horn clauses can

be further divided into de�nite clauses, which have
one positive literal, and goal clauses which have none
A Prolog program consists of de�nite clauses, and a

goal clause functions as a procedure call. Notice that

resolving a goal clause with a de�nite clause result in

another goal clause, because the positive literal in the

de�nite clause (also called its head) must be one of the
complementary literals. �e idea is that the resolution

step reformulates the original goal into a new goal that

is one step closer to the solution. A refutation is then

a sequence of goals G,G,G, . . . ,Gn such that G is the
original goal, each Gi is obtained by resolving Gi− with

a clause from the program P, and Gn = ◻. Such a refu-
tation demonstrates that P ∪ {G} is inconsistent, and
therefore P ⊧ ¬G.
Finding a refutation amounts to a search problem,

because there are typically several program clauses that

could be resolved against the current goal. Virtually all

Prolog interpreters apply a depth-�rst search procedure,

searching the goal literals le�-to-right and the program

clauses top-down. Once a refutation is found the sub-

stitutions collected in all resolution steps are composed

to obtain an answer substitution. One unique feature of
logic programming is that a goal may have more than

one (or, indeed, less than one) refutation and answer

substitution from a given program.

Example  Consider the following Prolog program:

peano_sum(0,Y,Y).
peano_sum(s(X),Y,s(Z)):-

peano_sum(X,Y,Z).

�is program de�nes addition in Peano arithmetic. We
follow Prolog syntax: variables start with an uppercase
letter, and :- stands for reversed implication ← or “if.”
�e unary functor s represents the successor function.
So the �rst rule reads “the sum of  and an arbi-
trary number y is y,” and the second rule reads “the
sum of x +  and y is z +  if the sum of x and y
is z.”

�e goal :-peano_sum(s(0),s(s(0)),Q)
states “there are no numbers q such that + = q." We
�rst resolve this goal with the second program clause
to obtain :-peano_sum(0,s(s(0)),Z) under the
substitution {Q /s(Z)}. �is new goal states “there are
no numbers z such that  +  = z.” It is resolved
with the �rst clause to yield the empty clause under
the substitution {Y /s(s(0)), Z /s(s(0))}. �e
resulting answer substitution is {Q /s(s(s(0)))}, i.e.,
q = .

As another example, goal :-peano_sum(A,B,
s(s(0))) states “there are no numbers a and b
such that a + b = .” �is goal has three refu-
tations: one involving the �rst clause only, yielding
the answer substitution {A /0, B /s(s(0))}; one
involving the second clause then the �rst, resulting in
{A /s(0), B /s(0)}; and the third applying the second
clause twice followed by the �rst, yielding {A /s(s(0)),
B /0}. Prolog will return these three answers in this
order.

Induction in �rst-order logic amount to recon-

structing a logical theory from some of its logical con-

sequences. For techniques to induce a Prolog program

given examples such as peano_sum(s(0),s(0),
s(s(0))), see inductive logic programming.
For general introductions to logic and its use inArti-

�cial Intelligence, see Genesereth and Nilsson ()

and Turner (). Kowalski’s classic text Logic for prob-
lem solving focusses on clausal logic and resolution
theorem proving (Kowalski, ). For introductions

to Prolog programming, see Bratko () and Flach

().
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First-Order Predicate Calculus

7First-Order Logic

First-Order Predicate Logic

7First-Order Logic

First-Order Regression Tree

Synonyms
Logical regression tree; Relational regression tree

Definition
A �rst-order regression tree can be de�ned as follows:

De�nition  (First-Order Regression Tree) A �rst-
order regression tree is a binary tree in which

● Every internal node contains a test which is a conjunc-
tion of �rst-order literals.

● Every leaf (terminal node) of the tree contains a real
valued prediction.

An extra constraint placed on the �rst-order literals that
are used as tests in internal nodes is that a variable
that is introduced in a node (i.e., it does not occur in
higher nodes) does not occur in the right subtree ofl
the node.

Figure  gives an example of a �rst-order regression

tree.�e test in a node should be read as the existentially

quanti�ed conjunction of all literals in the nodes in the

path from the root of the tree to that node. In the le�

subtree of a node, the test of the node is added to the

conjunction, for the right subtree, the negation of the

test should be added. For the example state description

of Fig. , the tree would predict a Qvalue = ., since
there exists no block that is both on the �oor and clear,

but there is a blockwhich is on the �oor and has another

block on top of it. To see this, substitute BlockA in the

tree with  (or ) and BlockB with  (or ).

�e constraint on the use of variables stems from the

fact that variables in the tests of internal nodes are exis-

tentially quanti�ed. Suppose a node introduces a new

variableX.Where the le� subtree of a node corresponds
to the fact that a substitution for X has been found to
make the conjunction true, the right side corresponds

to the situation where no substitution for X exists, i.e.,

On(BlockA, floor)

On(BlockB, BlockA)

Clear(BlockA) Qvalue = 0.1

Qvalue = 0.4

Qvalue = 0.9 Qvalue = 0.3

yes

yes

yes

no

no

no

First-Order Regression Tree. Figure . A relational regres-

sion tree

First-Order Regression Tree. Figure . State description
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there is no such X. �erefore, it makes no sense to refer
to X in the right subtree.

Cross References
7First-Order Rule
7Inductive Logic Programming
7Relational Reinforcement Learning

F-Measure

A measure of information retrieval performance. See

7Precision and Recall.

Foil

7Rule Learning

Formal Concept Analysis

Gemma C. Garriga

Universite Pierre et Marie Curie

Paris, France

Definition
Formal concept analysis is a mathematical theory of

concept hierarchies that builds on order theory; it can

be seen as an unsupervisedmachine learning technique

and is typically used as a method of knowledge repre-

sentation. �e approach takes an input binary relation

(binary matrix) specifying a set of objects (rows) and

a set of attributes for those objects (columns), �nds

the natural concepts described in the data, and then

organizes the concepts in a partial order structure or

Hasse diagram. Each concept in the �nal diagram is a

pair of sets of objects and attributes that are maximally

contained one in each other.

Theory
�e above intuition can be formalized through a Galois

connection as follows. Let R be the binary relation
between a set of objects and a set of attributes, that is,

R ⊆ O × A. Two mappings α : O ↦ A and β :

A ↦ O are de�ned so that the operator α(O), for some
O ⊆ O, returns the maximal set of attributes common
to all objects in O; dually, the operator β(A), for some
A ⊆ A, returns the maximal set of objects containing all
attributes inA.�ese twomappings induce aGalois con-
nection between the powerset of objects and the power-

set of attributes, that is, they satisfy O ⊆ β(A) ⇔ A ⊆
α(O) for a set of objectsO and a set of attributes A.
From here, a formal concept is a pair of sets of

objects and attributes (O,A) from the binary relation
that satisfy α(O) = A and β(A) = O. Typically, O
is called the extent of the concept and A the intent of
the concept. Note that concepts can be interpreted from

the geometrical point of view, they are maximal rectan-

gles of ones (not necessarily consecutive) in the input

binary table R. �e organization of all the formal con-
cepts in a Hasse diagram is called the concept lattice.

�is lattice corresponds to a partial order structure of

concepts where edges between concepts correspond to

the standard inclusion of the sets.

A small toy example in Figs.  and  illustrates

the formal concepts and their organization in a Hasse

diagram.

Motivation and Background
Formal concept analysis has been applied to a vari-

ety of disciplines, from psychology, sociology, biology,

medicine, linguistics, or industrial engineering, to cite

some, for the interactive exploration of implicit and

explicit structures in the data.

From the point of view ofmachine learning and data

mining, the connection between the formal concepts

of the lattice and the so-called, closed sets of items is

remarkable. Closed sets of items appear in the context of

7constraint-based mining, in which the user provides

1

2

3

a b c d

1 0 1 1

1 1 1 0

1 1 0 0

Formal Concept Analysis. Figure . A binary relation R ⊆
{, , } × {a,b, c,d}



Frequent Itemset F 

F

{a, b, c, d}
{}

{a, b, c}
{2}

{a, c, d}
{1}

{a, c}
{1, 2}

{a}
{1, 2, 3}

{a, b}
{2, 3}

Formal Concept Analysis. Figure . Concepts of the rela-

tion R organized in a Hasse diagram

restraints that guide a search of patterns in the data.

�ey are maximal sets of attributes occuring frequently

in the data; they correspond to a compacted repre-

sentation of the frequent sets from 7frequent itemset
mining. It is well known that closed sets correspond

exactly to the intents of the concepts derived via for-

mal concept analysis, and therefore, from the formal

concepts it is possible to construct bases of minimal

nonredundant sets of association rules from which all

other rules holding in the data can be derived.

Also, formal concept analysis has been typically seen

as a type of conceptual 7clustering. Each concept or
groups of concepts form a cluster of objects sharing sim-

ilar properties. �e diagrams obtained from this sort of

clustering can then be used in class discovery and class

prediction. Although a diagramof concepts can become

large and complex, di�erent approaches have worked

toward reducing the complexity of concept lattices via

conceptual scaling.

We refer the reader to Ganter & Wille () for

a general reference on formal concept analysis, and

to Davey & Priestly () for the basic concepts on

order theory. For more thorough descriptions of di�er-

ent applications of formal concept analysis in the com-

puter science �eld, see Carpineto & Romano ().

Cross References
7Clustering
7Constraint-Based Mining
7Frequent Itemset Mining

Recommended Reading
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and applications. New York: Wiley.
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Frequent Itemset

Hannu Toivonen

University of Helsinki

Helsinki, Finland

Synonyms
Frequent set

Definition
Frequent itemsets (Agrawal et al., , ) are a form

of 7frequent pattern. Given examples that are sets of
items and a minimum frequency, any set of items that

occurs at least in the minimum number of examples is

a frequent itemset.

For instance, customers of an on-line bookstore

could be considered examples, each represented by the

set of books he or she has purchased. A set of books,

such as {“Machine Learning,” “�e Elements of Statis-
tical Learning,” “Pattern Classi�cation,”} is a frequent
itemset if it has been bought by su�ciently many cus-

tomers. Given a frequency threshold, perhaps only .

or .% for an on-line store, all sets of books that have
been bought by at least that many customers are called

frequent. Discovery of all frequent itemsets is a typi-

cal data mining task. �e original use has been as part

of 7association rule discovery. 7Apriori is a classical
algorithm for �nding frequent itemsets.
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�e idea generalizes far beyond examples consist-

ing of sets. �e pattern class can be re-de�ned, e.g.,

to be (frequent) subsequences rather than itemsets; or

original data can o�en be transformed to a suitable rep-

resentation, e.g., by considering each discrete attribute-

value pair or an interval of a continuous attribute

as an individual item. In such more general settings,

the term 7frequent pattern is o�en used. Another
direction to generalize frequent itemsets is to consider

other conditions than frequency on the patterns to

be discovered; see 7constraint-based mining for more
details.

Cross References
7Apriori Algorithm
7Association Rule
7Constraint-Based Mining
7Frequent Pattern
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Frequent Pattern

Hannu Toivonen

University of Helsinki

Finland

Definition
Given a setD of examples, a languageL of possible pat-
terns, and a minimum frequencymin_ fr, every pattern
θ ∈ L that occurs at least in the minimum number
of examples, i.e., ∣{e ∈ D ∣ θ occurs in e}∣ ≥ min_ fr,
is a frequent pattern. Discovery of all frequent pat-

terns is a common data mining task. In its most typical

form, the patterns are7frequent itemsets. A more gen-
eral formulation of the problem is 7constraint-based
mining.

Motivation and Background
Frequent patterns can be used to characterize a given set

of examples: they are the most typical feature combina-

tions in the data.

Frequent patterns are o�en used as components in

larger data mining or machine learning tasks. In partic-

ular, discovery of 7frequent itemsets was actually �rst
introduced as an intermediate step in7association rule
mining (Agrawal, Imieliński & Swami, ) (“frequent

itemsets” were then called “large”). �e frequency and

con�dence of every valid association rule X → Y are
obtained simply as the frequency of X ∪Y and the ratio
of frequencies of X ∪ Y and X, respectively.
Frequent patterns can be useful as 7features for

further learning tasks.�eymay capture shared proper-

ties of examples better than individual original features,

while the frequency threshold gives some guarantee that

the constructed features are not so likely just noise.

However, other criteria besides frequency are o�en used

to choose a good set of candidate patterns.

Structure of Problem
A frequent pattern o�en is essentially a set of binary

7features. Given a set I of all available features, the pat-
tern language L then is the power set of I . An example
in dataD covers a pattern θ ∈ L if it has all the features
of θ. In such cases, the frequent pattern discovery task
reduces to the task of discovering 7frequent itemsets.
�erefore, the structure of the frequent pattern discov-

ery problem is best described using the elementary case

of frequent itemsets.

Let I be the set of all items (or binary features); sub-
sets of I are called itemsets (or examples or patterns,
depending on the context). �e input to the frequent

itemset mining problem is a multiset D of itemsets
(examples described by their features), and a frequency

threshold. �e task is to output all frequent itemsets
(patterns) and their frequencies, i.e., all subsets of I
that exceed the given frequency threshold in the given

dataD.

Example  Assume the following problem speci�cation:

● Set of all items I = {A,B,C,D}.
● Data D = {{A,B,C},{A,D},{B,C,D},{A,B,C},
{C,D},{B,C}}.

● Frequency threshold is .
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All possible itemsets and their frequencies:

Itemset Frequency

{A} 

{B} 

{C} 

{D} 

{A,B} 

{A,C} 

{A,D} 

{B,C} 

Itemset Frequency

{B,D} 

{C,D} 

{A,B,C} 

{A,B,D} 

{A,C,D} 

{B,C,D} 

{A,B,C,D} 

�e frequent itemsets are {A}, {B}, {C}, {D},
{A,B}, {A,C}, {B,C}, {C,D}, {A,B,C}.

�e7hypothesis space for itemsets obviously is the
power set of I , and it has an exponential size (∣I∣) in the
number of items. Since all frequent itemsets are output,

this is also the size of the output in the worst case (e.g.,

if the frequency threshold is zero, or if all examples in

D equal I), as well as the worst case time complexity.
In practical applications of frequent itemset mining,

the size of the output as well as the running times are

much smaller, but they strongly depend on the proper-

ties of the data and the frequency threshold. �e useful

range of thresholds varies enormously among di�er-

ent datasets. In many applications – such as 7basket
analysis – the number ∣I∣ of di�erent items can be
in thousands, even millions, while the typical sizes of

examples are at most in dozens. In such sparse datasets

a relatively small number of frequent itemsets can reveal

the most outstanding co-occurrences; e.g., there are not

likely to be very large sets of books typically bought

by the same customers. In dense datasets, in turn, the

number of frequent patterns can be overwhelming and

also relatively uninformative. E.g., consider the dense

dataset of books that have not been purchased by a cus-
tomer: there are a huge number of sets of books that

have not been bought by the same customers.

Theory/solutions
�emost widely known solution for �nding all frequent

itemsets is the 7Apriori algorithm (Agrawal, Mannila,
Srikant, Toivonen, & Verkamo, ). It is based on the

monotonicity of itemset frequencies (a7generalization
relation): the frequency of a set is at most as high as

the frequency of any of its subsets. Conversely, if a set is

known to be infrequent, then none of its supersets can

be frequent.

Apriori views the 7hypothesis space of item-
sets as a (re�nement) lattice de�ned by set contain-

ment, and performs a7general-to-speci�c search using
7breadth-�rst search. In other words, it starts with sin-
gleton itemsets, the most general and frequent sets, and

proceeds to larger and less frequent sets. �e search is

pruned whenever a set does not reach the frequency

threshold: all supersets of such sets are excluded from

further search. Apriori deviates from standard breadth-

�rst search by evaluating all sets of equal size in a single

batch, i.e., it proceeds in a levelwisemanner.�is has no

e�ect on the search structure or results, but can reduce

disk access considerably for large databases. See the

entry7Apriori Algorithm for an outline of themethod.

Example  Figure  illustrates the search space for the
data D of Example . Dark nodes represent frequent
itemsets, i.e., the answer to the frequent itemset mining
problem. Apriori traverses the space a level at a time. For
instance, on the second level, it �nds out that {A,D} and
{B,D} are not frequent. It therefore prunes all their super-
sets, i.e., does not evaluate sets {A,B,D}, {A,C,D}, and
{B,C,D} on the third level.

Other search strategies have also been applied.

A 7depth-�rst search without the subset check allows
faster identi�cation of candidates, at the expense of hav-

ing more candidates to evaluate and doing that without

natural batches (e.g., Zaki, ). FP-growth (Han, Pei,

Yin, & Mao, ) uses a tree structure to store the

information in the dataset, and uses it to recursively

search for frequent itemsets.

�e search strategy of Apriori is optimal in a cer-

tain sense. Consider the number of sets evaluated, and

assume that for any already evaluated set we know

whether it was frequent or not but do not consider its

frequency. Apriori evaluates the frequencies of all fre-

quent itemsets plus a number of candidates that turn

out to be infrequent. It turns out that every infrequent

candidate must actually be evaluated under the given

assumptions: knowing which other sets are frequent

andwhich are not does not help, regardless of the search
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{A, B, C, D}

{A}

{A, B} {A, C} {A, D} {B, C} {B, D} {C, D}

{A, B, C } {A, B, D} {A, C, D} {B, C, D}

{B} {C} {D}

Frequent Pattern. Figure . The search space of frequent itemsets for data D of the running example. Dark nodes:

frequent itemsets; white nodes: infrequent itemsets

{A, B, C, D}

{A, B} {A, C} {A, D} {B, C} {B, D} {C, D}

{A, B, C} {A, B, D} {A, C, D} {B, C, D}

{B} {C} {D}{A}

Frequent Pattern. Figure . The positive border ({A,B,C}, {C,D}) and negative border ({A,D}, {B,D}) of frequent
itemsets

order. �is observation leads to the concept of bor-
der: the border consists of all those itemsets whose all
proper subsets are frequent and whose all proper super-

sets are infrequent (Gunopulos et al., ; Mannila &

Toivonen, ).�e border can further be divided into

two: the positive border contains those itemsets in the

border that are frequent, the negative border contains

those that are not. �e positive border thus consists of

the most speci�c patterns that are frequent, and corre-

sponds to the “S” set of7version spaces.

Example  Continuing our running example, Figure 
illustrates the border between the frequent and infrequent
sets. Either the positive or the negative border can alone
be used to specify the collection of frequent itemsets: every
frequent itemset is a subset of a set in the positive border
({A,B,C}, {C,D}), while every infrequent itemset is a
superset of a set in the negative border ({A,D}, {B,D}).

One variant of frequent itemset mining is to out-

put the positive border only, i.e., to �nd the maximal
frequent itemsets (Bayardo, ). �is can be imple-
mented with search strategies that do not need to eval-

uate the whole space of frequent patterns. �is can be

useful especially if the number of frequent itemsets is

very large, or if the maximal frequent itemsets are large

(in which case the number of frequent itemsets is large,

too, since the number of subsets is exponential in the

length of themaximal set). As a trade-o�, the result does

not directly indicate frequencies of itemsets.

Condensed Representations: Closed Sets and

Nonderivable Sets Closed sets and nonderivable sets

are a powerful concept for working with frequent item-

sets, especially if the data is relatively dense or there are

strong dependencies. Unlike the aforementioned sim-

ple model for borders, here also the known frequencies

of sets are used to make inferences about frequencies of

other sets.

As a motivation for closed sets (Pasquier, Bastide,

Taouil, & Lakhal, ), consider a situation where the

frequency of itemset {i, j} equals the frequency of item j.
�is implies that whenever j occurs, so does i.�us, any
set A∪ {j} that contains item j also contains item i, and
the frequencies of sets A ∪ {j} and A ∪ {i, j} must be
equal. As a result, it su�cies to evaluate sets A ∪ {j} to
obtain the frequencies of sets A ∪ {i, j}, too.
More formally, the closure of setA is its largest super-

set with identical frequency. A is closed i� it is its own
closure, i.e., if every proper superset of A has a smaller
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frequency than A. �e utility of closed sets comes from
the fact that frequent closed sets and their frequen-

cies are a su�cient representation of all frequent sets.

Namely, if B is a frequent set then its closure is a fre-
quent closed set in Cℓ, where Cℓ denotes the collection
of all frequent closed itemsets. B’s frequency is obtained
as fr(B) = max{fr(A) ∣ A ∈ Cℓ and B ⊆ A}. If B is not
a frequent set, then it has no superset in Cℓ. 7Formal
concept analysis studies and uses closed sets and other

related concepts.

Generators are a complementary concept, and also

constitute a su�cient representation of frequent item-

sets. (To be more exact, in addition to frequent genera-

tors, generators in the border are also needed). Set A is
a generator (also known as a key pattern or a free set)
if all its proper subsets have a larger frequency than A
has. �us, in an equivalence class of itemsets, de�ned

by the set of examples in which they occur, the maximal

element is unique and is the closed set, and theminimal

elements are generators. �e property of being a gener-

ator is monotone in the same way that being frequent is,

and generators can be found with simple modi�cations

to the Apriori algorithm.

Example  Figure  illustrates the equivalence classes
of itemsets by circles. For instance, the closure of itemset
{A,B} is {A,B,C}, i.e., whenever {A,B} occurs in the
data, C also occurs, but no other items. Given just the
frequent closed sets and their frequencies, the frequency
of, say, {B} is obtained by �nding its smallest frequent
closed superset. It is {B,C}, with frequency , which is
also B’s frequency. Alternatively, using generators as the
condensed representation, the frequency of itemset {B,C}

can be obtained by �nding its maximal generator subset,
i.e., {B}, with which it shares the same frequency.

Nonderivability of an itemset (Calders & Goethals,

) is a more complex but o�en also a more pow-

erful concept than closed sets. Given the frequencies

of (some) subsets of itemset A, the frequency of A
may actually be uniquely determined, i.e., there is only

one possible consistent value. A practical method of

trying to determine the frequency is based on deriv-

ing upper and lower bounds with inclusion–exclusion

formula from the known frequencies of some sub-

sets, and checking if these coincide. An itemset is

derivable if this is indeed the case, otherwise it is non-
derivable. Obviously, the collection of nonderivable fre-
quent sets is a su�cient representation for all frequent

sets.

Bounds for the absolute frequency of set I are
obtained from its subsets as follows, for any X ⊆ I:

fr(I) ≤ ∑
J :X⊆J⊂I

(−)∣I∖J∣+fr(J) if ∣I ∖ X∣ is odd, ()

fr(I) ≥ ∑
J :X⊆J⊂I

(−)∣I∖J∣+fr(J) if ∣I ∖ X∣ is even. ()

Using all subsets X of I, one can obtain a number of
upper and lower bounds. If the least upper bound equals

the greatest lower bound, then set I is derivable. �e
conceptual elegance of this solution lies in the fact that

derivable sets follow logically from the nonderivable

ones – the aforementioned formula is one way of �nd-

ing (some) such situations – whereas with closed sets

the user must know the closure properties.

{A }: 3 { B }: 4 {C }: 5 { D }: 3

{ A, B }: 2 { A, C }: 2 { B, C }: 4 { C, D }: 2

{ A, B, C }: 2

{ A, D } { B, D }

{ A, B, D } { A, C, D } { B, C, D }

{ A, B, C, D }

Frequent closed set    = {{A},{C},{D},{B, C},{C, D},{A, B, C}}.
Frequent generators: {{A},{B},{C},{D},{A,B},{A,C},{C,D}}.

Frequent Pattern. Figure . Frequencies and equivalence classes of frequent itemsets in dataD of the running exam-

ple, and the corresponding closed sets and generators
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Generalizations of Frequent Patterns �e concept of

frequent patterns has been extended in two largely

orthogonal directions. One is to more complex patterns

and data, such as frequent sequences, trees (see 7tree
mining), graphs (see 7graph mining), and �rst-order
logic (Dehaspe & Toivonen, ). �e other direction

to generalize the concept is to 7constraint-based min-
ing, where other and more complex conditions are con-

sidered beyond frequency. We encourage the interested

reader to continue at the entry for 7constraint-based
mining, which also gives further insight into many of

themore theoretical aspects of frequent patternmining.

Programs and Data
Frequent itemset mining implementations repository:

http://�mi.cs.helsinki.�/

Weka: http://www.cs.waikato.ac.nz/ml/weka/

Christian Borgelt’s implementations:

http://www.borgelt.net/so�ware.html

Data mining template library:

http://dmtl.sourceforge.net/

Applications
Frequent patterns are a general purpose tool for data

exploration, with applications virtually everywhere.

Market 7basket analysis was the �rst application, tele-
com alarm correlation and gene mapping are examples

of quite di�erent application �elds.

Future Directions
Work on frequent pattern mining is being expanded in

several directions. New types of pattern languages are

being developed, either to meet some speci�c needs or

to increase the expressive power.Many of these develop-

ments aremotivated by di�erent types of data and appli-

cations.Withinmachine learning, frequent patterns are

increasingly being used as a tool for feature construc-

tion in complex domains. For an end-user application,

methods for choosing and ranking the most interest-

ing patterns among thousands or millions of them is

a crucial problem, for which there are no perfect solu-

tions (cf. Geng & Hamilton, ). At the same time,

theoretical understanding of the problem and solu-

tions of frequent pattern discovery still has room for

improvement.

Cross References
7Apriori Algorithm
7Association Rule
7Basket Analysis
7Constraint-Based Mining
7Data Mining
7Frequent Itemset
7Graph Mining
7Knowledge Discovery in Databases
7Tree Mining

Recommended Reading
Agrawal, R., Imielinski, T., & Swami, A. (). Mining association
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of the  ACM SIGMOD international conference on man-
agement of data, Washington, DC (pp. –). New York:
ACM.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo,

A. I. (). Fast discovery of association rules. In U. M.

Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy
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(pp. –). Menlo Park, CA: AVAAI Press.
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Frequent Set

7Frequent Itemset

Functional Trees

7Model Trees

Fuzzy Sets

Fuzzy sets were introduced by Lo�i Zadeh as a gener-
alization of the concept of a regular set. A fuzzy set is

characterized by a membership function that assigns a

degree (or grade) of membership to all the elements in

the universe of discourse. �e membership value is a

real number in the range [, ], where  denotes no def-

inite membership,  denotes de�nite membership, and

intermediate values denote partial membership to the

set. In this way, the transition from nonmembership to

membership in a fuzzy set is gradual and not abrupt like

in a regular set, allowing the representation of impre-

cise concepts like “small,” “cold,” “large,” or “very” for

example.

A variable with its values de�ned by fuzzy sets is

called a linguistic variable. For example, a linguistic

variable used to represent a temperature can be de�ned

as taking the values “cold,” “comfortable,” and “warm,”

each one of them de�ned as a fuzzy set. �ese lin-

guistic labels, which are imprecise by their own nature,

are, however, de�ned very precisely by using fuzzy set

concepts.

Based on the concepts of fuzzy sets and linguistic

variables, it is possible to de�ne a complete fuzzy logic,

which is an extension of the classical logic but appro-

priate to deal with approximate knowledge, uncertainty,

and imprecision.

Recommended Reading
Zadeh, L. A. (). Fuzzy sets. Information and control. ():

–.

Fuzzy Systems

A fuzzy system is a computing framework based on

the concepts of the theory of 7fuzzy sets, fuzzy rules,
and fuzzy inference. It is structured in four main com-

ponents: a knowledge base, a fuzzi�cation interface,

an inference engine, and a defuzzi�cation interface.

�e knowledge base consists of a rule base de�ned in

terms of fuzzy rules, and a database that contains the

de�nitions of the linguistic terms for each input and

output linguistic variable. �e fuzzi�cation interface

transforms the (crisp) input values into fuzzy values,

by computing their membership to all linguistic terms

de�ned in the corresponding input domain. �e infer-

ence engine performs the fuzzy inference process, by

computing the activation degree and the output of each

rule. �e defuzzi�cation interface computes the (crisp)

output values by combining the output of the rules and

performing a speci�c transformation.

Fuzzy systems can be classi�ed in di�erent cate-

gories. �e most widely used are the Mamdani and the

Takagi-Sugeno models. In a Mamdani fuzzy system the

output variables are de�ned as linguistic variables while

in a Takagi-Sugeno fuzzy system they are de�ned as a

linear combination of the input variables.

Fuzzy systems can model nonlinear functions of

arbitrary complexity, however, their main strength

comes from their ability to represent imprecise concepts

and to establish relations between them.

Recommended Reading
Mamdani, E. H., & Assilian, S. (). An experiment in linguistic

synthesis with a fuzzy logic controller. International journal of
man-machine studies. (): –.

Sugeno, M. () Industrial applications of fuzzy control. Elsevier
Science Publishers, New York.
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