G

I
Gaussian Distribution

XINHUA ZHANG
Australian National University, Canberra, Australia
NICTA London Circuit, Canberra, Australia

Synonyms
Normal distribution

Definition

The simplest form of Gaussian distribution is the one-
dimensional standard Gaussian distribution, which can
be described by the probability density function (pdf):

1 2
_ _ —x"/2
x) =¢(x) = e s,
PO = 9(x) = =
where —= ensures the normalization, i.e., [p(x)dx=1.

This distribution centers around x = 0 and the rate of
decay or “width” of the curve is 1.

More generally, we can apply translation and scaling
to obtain a Gaussian distribution that centers on arbi-
trary gy € R and with arbitrary width ¢ > 0. The pdf

is:

P(")zi‘P(x;y):mae"p(

Technically, y is called the mean and o2 is called the
variance. Obviously, u is the peak/mode of the density,
and is also the mean and median of the distribution due
to the symmetry of the density around . If a random
variable X has this density, then we write

202

_(X—M)Z)'

X ~ N (u,0%).

Example density functions are plotted in Fig. la.
As an extension to multivariate random variables,
the multivariate Gaussian distribution is a distribution

on d-dimensional column vector x with mean column
vector p and positive definite variance matrix 2. This
gives

1

xbu,bY) = ——————
plilby,b2) (2m)d/2 det'? 3

x exp (—%(x— w7 (x- F)))

and is denoted by X ~ A/ (g, Z). An example pdf for the
two dimensional case is plotted in Fig. 1b.

Motivation and Background

Gaussian distributions are one of the most important
distributions in statistics. It is a continuous probability
distribution that approximately describes some mass of
objects that concentrate about their mean. The prob-
ability density function is bell-shaped, peaking at the
mean. Its popularity also arises partly from the cen-
tral limit theorem, which says the average of a large
number of independent and identically-distributed ran-
dom variables are approximately Gaussian distributed.
Moreover, under some reasonable conditions, poste-
rior distributions become approximately Gaussian in
the large data limit. Therefore, the Gaussian distribution
has been used as a simple model for many theoretical
and practical problems in statistics, natural science, and
social science.

In history, Abraham de Moivre first introduced this
distribution in 1733 under the name “normal distribu-
tion” (of course, he did not call it Gaussian distribution
since Gauss had not yet been born). Then Laplace used
it to analyze experiment errors, based on which Leg-
endre invented the least squares in 1805. Carl Friedrich
Gauss rigorously justified it in 1809, and determined the
formula of its probability density function. Finally this
distribution is named the Gaussian distribution after
Gauss. The name “normal distribution” is also widely

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI10.1007/978-0-387-30164-8,

© Springer Science+Business Media LLC 2011

426

Gaussian Distribution

— u=0, o=1
0.8
06
X
Y
0.4
0.2
-5
(a) One dimension

(b) Two dimension

Gaussian Distribution. Figure 1. Gaussian probability density functions

used, meaning it is a typical, common, or usual dis-
tribution. It was coined by Peirce, Galton, and Lexis
around 1875, and made popular by Karl Pearson near
the inception of the twentieth century.

Theory/Solution
The standard definition allows one to easily read off the

moments from the pdf. Another useful parameteriza-
tion is called canonical parameterization:

1 1
p(xln, A) = exp (’7Tx - EXTAX ~3 (dlog(Zﬂ)
~logdet A + qTAq)) ,
where 7 = 2_1[4 and A = =71, A is often called preci-

sion. This parameterization is useful when posing the
distribution as a member of the exponential family.

For a one-dimensional Gaussian distribution, the
cumulative distribution function (cdf) is defined by

O(x) = foo (1)dt.

Formally, it can be conveniently represented by the error
function and its complement:

erf(x) = %fo et
2 o
erfc(x) =1-erf(x) = 7 '/x e " dt.

So

1 X 1 X
O(x)=-(1+erf| —=)| = —erfc|-——].
=3 (e J5)) = 5o 75)
The inverse of the cdf, called quantile function, can be
written as

®7!(s) = V2erf (25 -1), forse (0,1).

The error function erf() and its inverse erf () do
not usually have a closed form, and can be computed
numerically by functions like ERF in Fortran, and dou-
ble erf(double x) in C/C++. For the multi-variate case,
the corresponding cdf is highly challenging to compute
numerically.

The first order moment is E[X] =y, the variance is
Var[X] = %, and all higher order cumulants are 0. Any
central moments with odd terms are 0, i.e., E[TTZ, (x; -
pi)P'] = 0 when ¥, p; is odd.

The differential entropy of a multi-variate Gaussian is

h(p) = - fde(x) Inp(x)dx = %ln((2ne)ddet2).

The Kullback-Leibler divergence from N (p,,%;) to
N(py 22) is

+tr 235

1 detX
KL(N(FP 21)”/\[(”2) 22)) = E (ln dzt Zj

+(py - F1)TZ£1(F‘2) - d)-

Gaussian Distribution

427

Let X ~ NM(p,2). Suppose A is a linear transform from
R? to R* and ¢ € R¥, then

Ax+c~N(Ap+c, ATAT)
E[(x—p) A(x - p)] = tr AZ
Var[(x—p) A(x—u)] =2 tr AZAZ.

where the last two relations require s = d.

Conjugate priors where discussed in »prior probabili-
ties. With known variance, the conjugate prior for the
mean is again a multi-variate Gaussian. With known
mean, the conjugate prior for the variance matrix is the
Wishart distribution, while the conjugate prior for the
precision matrix is the Gamma distribution.

Given n iid observations Xj, . . ., X, the maximum like-

lihood estimator of the mean is simply the sample mean

X;.

™-

]
—

p=X=

S | =

1
The maximum likelihood estimator of the covariance

matrix is:

5= znj(xi -X) (X -X)".

This estimator is biased, and its expectation is E[Z] =
"7‘12. An unbiased estimator is

‘ -

$=8= zn:(xl-—X)(X,»—X)T.

—

n—

IfX ~ N(0,%), then X" 27! X has a Gamma distribution
Gamma(d/2,2).

Let Xj, X2 ~N(0,1) and they are independent. Their
ratio is the standard Cauchy distribution, X;/X; ~
Cauchy(0,1).

Given # independent univariate random variables
X;~N(0,1), the random variable Z := \/Y; X? has a
x distribution with degree of freedom n. And Z?* has a
x* distribution with degree of freedom .

Using Basu’s theorem or Cochran’s theorem, one can

show that the sample mean of Xj, . . ., X, and the sample

standard deviation are independent. Their ratio
L(X; 4+ X,)
Vi [-%)2+ -+ (X, - X)?]

t:

X
=%

has the student’s ¢-distribution with degree of freedom
n—1L

Applications
This section discusses some applications and properties
of the Gaussian.

Given n independent and identically distributed obser-
vations drawn from a distribution whose variance is
finite, the average of the observations is asymptotically
Gaussian distributed when # tends to infinity. Under
certain conditions, the requirement for identical dis-
tribution can be relaxed and asymptotic normality still
holds.

Consider n independent and identically distributed
observations drawn from a distribution p(X;|0), so the
data set is X=(Xj,...,X,,)". Under certain conditions,
saying roughly that the posterior on 6 converges in
probability to a single interior point in its domain as
n — oo, the posterior for 6 is approximately Gaussian
for large n, 0]X ~ N(’G\,I(g)), where 8 is the maxi-
mum likelihood or aposterior value for 8 and I (6) is
the observed (Fisher) information, the negative of the
second derivative (Hessian) of the likelihood w.r.t. the
parameters 0.

The Gaussian approximation to the posterior, while
a poor approximation in many cases, serves as a use-
ful insight into the nature of asymptotic reasoning. It is
justified based on the multi-dimensional Taylor expan-
sion of the log likelihood at the maximum likelihood
or aposterior value, together with its asymptotic conver-
gence property.

For standard Gaussian distribution, 99.7% of the prob-
ability mass lie within the three standard deviations
[-30,30], ie, [r ¢(x)dx > 0.997. About 95% mass

428

Gaussian Process

lies within two standard deviations, and about 68%
within one standard deviation. This empirical rule is
called 3-0 rule, and can be easily extended to general
one dimensional Gaussian distributions.

Let d-dimensional random variables X; ~ N (g, %;). If
they are independent, then for any set of linear trans-
forms A; from RY to R®, we have ¥, A;X; ~N (X Aim,,
Y A;ZiA]). The converse is also true by the Cramer’s
theorem: if X; are independent and their sum }; X; is
Gaussian distributed, then all X; must be Gaussian.

In general, independent random variables must be
uncorrelated but not vice versa. However, if a multi-
variate random variable is jointly Gaussian, then any
uncorrelated subset of the random variables must be
independent. Notice the precondition of joint Gaus-
sian. It is possible for two Gaussian random variables
to be uncorrelated but not independent, for the rea-
son that they are not jointly Gaussian. For example, let
X~N(0,1)and Y = -Xif |X|<c,and Y = X if |X] > c.
By properly setting ¢, Y and X can be made uncorrelated
but obviously not independent.

Suppose the vector x can be written as (x/,x;)" and
correspondingly the mean and covariance matrix can
be written as

131 Zn Zp
U, 2o Zn

Then the marginal distribution of x; is Gaussian
N (u1,Z11), and the conditional distribution of x; con-
ditioned on x; is N'(p,, 2y), where

thp =yt 2025 (% - u1,), Zip=2n - DIPHINS PN

Suppose the multi-variate Gaussian vector x; ~ N (p1,
211),and a vector x; is a linear function of x; with Gaus-
sian noise, i.e., xz|x; ~ N (Ax; + 5, Z12). Then the joint
distribution of (x],x])7 is also Gaussian:

X1 1231 211 + ATzle —ATZU

NN >

X Ayl + U, —leA 21

For a complete treatment of Gaussian distributions
from a statistical perspective, see Casella and Berger
(2002), and Mardia, Kent, and Bibby (1979) provides
details for the multi-variate case. Bernardo and Smith
(2000) shows how Gaussian distributions can be used
in the Bayesian theory. Bishop (2006) introduces Gaus-
sian distributions in Chap. 2, and shows how it is
extensively used in machine learning. Finally, some his-
torical notes on Gaussian distributions can be found
at http://jeft560.tripod.com/mathword.html, especially
under the entries “NORMAL” and “GAUSS”

Cross References
» Gaussian Processes

Recommended Reading

Bernardo, J. M., & Smith, A. F. M. (2000). Bayesian theory. Chich-
ester: Wiley.

Bishop, C. (2006). Pattern recognition and machine learning. New
York: Springer.

Casella, G., & Berger, R. (2002). Statistical inference (2nd ed.). Pacific
Grove, CA: Duxbury.

Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). Springer
series in statistics. New York: Springer.

Mardia, K. V,, Kent, J. T., & Bibby, J. M.. (1979). Multivariate analysis.
London: Academic Press.

Miller, J., Aldrich, J., Cabillén, J. G., de Aratjo, C. C., Landau,
J. A. Earliest known uses of some of the words of mathematics.
http://jeff560.tripod.com/mathword.html

| .
Gaussian Process

Novi QUADRIANTO!, KRISTIAN KERSTING?, ZHAO XU?
"Department of Engineering and Computer Science,
RSISE, ANU and SML, NICTA, Canberra, Australia
Fraunhofer IAIS, Sankt Augustin, Germany

Synonyms
Expectation propagation; Kernels; Laplace estimate;
Nonparametric Bayesian

Definition

Gaussian processes generalize multivariate Gaussian dis-
tributions over finite dimensional vectors to infinite
dimensionality. Specifically, a Gaussian process is a

http://jeff560.tripod.com/mathword.html
http://jeff560.tripod.com/mathword.html

Gaussian Process

429

stochastic process that has Gaussian distributed finite
dimensional marginal distributions, hence the name.
In doing so, it defines a distribution over functions,
i.e., each draw from a Gaussian process is a function.
Gaussian processes provide a principled, practical, and
probabilistic approach to inference and learning in ker-
nel machines.

Motivation and Background

Bayesian probabilistic approaches have many virtues,
including their ability to incorporate prior knowledge
and their ability to link related sources of information.
Typically, we are given a set of data points sampled
from an underlying but unknown distribution, each of
which includes input x and output y, such as the ones
shown in Fig. la. The task is to learn a functional rela-
tionship between x and y. Traditionally, in a parametric
approach, an assumption on the mathematical form of
the relationship such as linear, polynomial, exponential,
or combination of them needs to be chosen a priori.
Subsequently, weights (or parameters) are placed on
each of the chosen forms, and a prior distribution is
then defined over parameters. Thus, the learning task
is now reduced to the Bayesian estimation over the
parameters, cf. Fig. la—c. This approach, however, may
not always be practical, as illustrated in Fig. 1d. To dis-
cover the latent input-output relationship in Fig. 1d,
we might need infinitely many functional forms, and
this translates to infinite number of parameters. Instead
of working over a parameter space, Gaussian processes
place a prior directly on the space of functions without
parameterizing the function, hence nonparametric. As
will be shown, the computational complexity of infer-
ence now scales as the number of data points instead of
the number of parameters.

Several nonparametric Bayesian models have been
developed for different tasks such as density estima-
tion, regression, classification, survival time analysis,
topic modeling, etc. Among the most popular ones
are »Dirichlet processes and Gaussian processes. Just as
the Gaussian process, a Dirichlet process has Dirichlet
distributed finite dimensional marginal distributions,
hence the name.

Gaussian processes were first formalized for machine
learning tasks by Williams and Rasmussen (1996) and
Neal (1996).

Theory

Formally, a Gaussian process is a stochastic process
(i.e., a collection of random variables) in which all the
finite-dimensional distributions are multivariate Gaus-
sian distributions for any finite choice of variables. In
general, Gaussian processes are used to define a proba-
bility distribution over functions f : X — R such that
the set of values of f evaluated at an arbitrary set of
points {x;}¥, € X will have an N-variate Gaussian dis-
tribution. Note that, for x; € R?, this may also be known
as a Gaussian random field.

A Gaussian distribution is completely specified by its
mean and covariance matrix. Similarly, a Gaussian
process is characterized by its mean function m(x):=
E[f(x)] and covariance function

Clx,x") = E[(f(x) = m(x))(f(x) - m(x"))].

We say a real process f(x) is Gaussian process dis-
tributed with a mean function m(x) and a covari-
ance function C(x,x'), written as f ~ GP(m(x),
C(x,x")).

The mean function can be arbitrarily chosen (for
convenience, it is often taken to be a zero function
since we can always center our observed outputs to
have a zero mean), but the covariance function must
be a positive definite function to ensure the existence
of all finite-dimensional distributions. That is, the pos-
itive definiteness of C(.,.) ensures the positive (semi-)
definiteness of all covariance matrices, £, appearing
in the exponent of the finite-dimensional multivariate
Gaussian distribution.

The attractiveness of Gaussian processes is that
they admit the marginalization property (»>Gaussian
Distribution), i.e., if the Gaussian process specifies
(f(x1), f(x2)) ~N(p, %), then it must also specify
f(x1) ~N(u1,Z11), where Xy is the relevant subma-
trix of X. This means, addition of novel points will
not influence the distribution of existing points. The
marginalization property allows us to concentrate on
distribution of only observed data points with the rest of
unobserved points considered to be marginalized out;
thus a finite amount of computation for inference can
be achieved.

430

Gaussian Process

20

|
A

Gaussian Process. Figure 1. (a) Ten observations (one-dimensional input x and output y variables) generated from a

»linear regression model y =3x + 2 + ¢ with Gaussian noise e. The task is to learn the functional relationship between
x and y. Assuming the parametric model y = wix + w2 + ¢, i.e., w = (w1, w2) is the vector of parameters, and the prior
distribution over w be a 2-dimensional Gaussian as shown in (b), the posterior distribution over w can be estimated as
shown in (c). Its mean (3.0287,2.0364) is close to the true parameters (3, 2). The inference, however, was performed in
an ideal situation where in the relationship between x and y was indeed linear. If the true relationship is not known in

advances and/or cannot easily be described using a finite set of parameters, this approach may fail. For example, in (d),

infinite number of parameters might be required to recover the functional relationship

A covariance function bears an essential role in a Gaus-
sian process model as its continuity properties deter-
mine the continuity properties of samples (functions)
from the Gaussian process. In the literature, covariance
functions are also known as positive (semi-)definite
kernels or Mercel kernels.

There are generally two types of covariance func-
tions: stationary and non-stationary. A stationary
covariance function is a function that is transla-
tion invariant, ie, C(x,x")=D(x — x’) for some
function D. The typical examples include squared

exponential, Matérn class, y-exponential, exponential,
rational quadratic, while examples of non-stationary
covariance functions are dot product and polynomial.

Squared exponential (SE) is a popular form of sta-
tionary covariance function, and it corresponds to the
class of sums of infinitely many Gaussian shaped basis
functions placed everywhere, f(x):=lim, e > ¥;yi
exp (—((x - x;)/2£)*) with y; ~ N'(0,1) Vi. This covari-
ance function is in the form of

C') = BLF ()] = & exp (=35 [+ 13).

Gaussian Process

431

Typical functions sampled from this covariance func-
tion can be seen in Fig. 2a. This covariance function has
the characteristic length scale € and the signal variance
s* as free parameters (hyperparameters). The longer
the characteristic length scale, the more slowly vary-
ing the typical sample function is. The signal variance
defines the vertical scale of variations of a sample func-
tion. Figure 3 illustrates prediction with SE covariance
function with varying characteristic length scale. Sev-
eral other covariance functions are listed in Table 1.

For a comprehensive review on the field of co-
variance functions, we refer interested readers to
(Abrahamsen, 1992).

2
1
X o0
N
) \./
-2
0 1 2 3 4 5
X
2,

f(x)

X

Gaussian Process. Figure 2. (a) Three functions drawn at
random from a Gaussian process prior. (b) Three random
functions drawn from the posterior, i.e., the distribution
learned with the prior from Fig. 2a and the ten observa-
tions from Fig. 1d. In both plots the shaded area shows the
pointwise mean plus and minus two times the standard
deviation for each input value, i.e., the 95% confidence
region

\>.</
_2.
0 1 2 3 4 5
X
2
1
X o0
-1
_2.
0 1 2 3 4 5
X

Gaussian Process. Figure 3. Gaussian process prediction
with the SE kernel. (a) mean of the prediction distribution
with length-scale 1.0 and signal variance 1.0 (the hyperpa-
rameters of the original process used to generate the data
in Fig. 1). The other two plots show the prediction setting
the length-scale (b) longer (1.5) and (c) shorter (0.1). In all
plots, the 95% confidence region is shown

432

Gaussian Process

Gaussian Process. Table 1 Examples of covariance functions. 8.,y denotes the set of hyperparameters

Squared exp. (SE) s2exp (—217 [x - x’||§) {s,¢} |Strong smoothness assumption
Matérn class ?1(;) (Y ZV‘;*X,‘) K, (M2 {v,€} |Lesssmooth than SE
y-exponential exp(—(x —x'|/€)"), with0 < y <=2 {¢} Includes both Exp. and SE

Exponential exp ("'XT"X,') {¢} v =1/2in the Matérn class
: ; =I5\~ .

Rational quadratic T+ 572 {a,€} |Aninfinite sum of SE

Dot product oy (x,x') + o? {ow, 0c}

Polynomial ({x,x"y + a2)P {oc} Effective for high-dimensional
classification with binary or grayscale
input

Applications That is, the data likelihood is distributed according to

For Gaussian processes, there are two main classes of
applications: regression and classification. We will dis-
cuss each of them in turn.

In a »regression problem, we are interested to recover a
functional dependency y; = f(x;) + ¢; from N observed
training data points {(x;,y;)}Y,, where y;eR is the
noisy observed output at input location x; e R?. Tra-
ditionally, in the Bayesian Mlinear regression model,
this regression problem is tackled by requiring us to
parameterize the latent function f by a parameter
weRH, f(x):= (¢(x),w) for H fixed basis functions
{¢n(x)}}L,. A prior distribution is then defined over
parameter w. The idea of Gaussian process regression
(in the geostatistical literature, this is also called kriging,
see e.g., (Krige, 1951; Matheron, 1963)) is to place a prior
directly on the space of functions without parameteriz-
ing the function (vide Motivation and Background).

Likelihood Function and Posterior Distribution: Assum-
ing independent and normally distributed noise terms,
€ ~ N(O’ O'r%oise
vector Y € RN and an input matrix X € RVN*? will be

), the likelihood model on an output

Y|f’X ~ N(fX’ Oﬁoisel)'

a Gaussian distribution with the function values eval-
uated at training input locations as its mean and the
variance of the noise terms as its variance.

Placing a (zero mean) Gaussian process prior over
functions

f~GP(m(x) = 0,k(x,x)), oy

will lead us to a Gaussian process posterior (this form
of posterior process is described in the next section),

f|X, Y~ gp(mpost(x) = k('x’X) [K + Oﬁoisel]_1 Y’
kpost(xx X’) = k(x’ x,) - k(x>X) [K + oﬁoisel]ilk(xl’x))'
()

In the above equations, K € RN denotes the Gram
matrix with elements Kj; =k(x;,%;) and k(x,x") is the
kernel function. The term k(x, X) denotes a kernel func-
tion with one of the inputs fixed at training points.

Predictive Distribution: The final goal in regression is to
make an output prediction for a novel input x,, given
a set of input-output training points. By the marginal-
ization property, instead of working with a prior over
infinite dimensional function spaces as in (1), we can
concentrate on the marginal distribution over the train-
ing inputs,

fx ~N(0,K). €

Gaussian Process

433

Subsequently, the marginal distribution over training
outputs (conditioned on inputs) can be computed via

p(Y1X) = [p(YUFIP()df = N (0K + 03c]).
(4)
The above integration is computed by using the
standard result for the convolution of two Gaussian
distributions (»Gaussian Distribution). The joint dis-
tribution over sets of training points Y and the quantity
we wish to predict y. is given by

p(Y,y.|X,x.) = N(0,C), (5)

where C € RN*D*(N*1) jg the joint covariance matrix.
We can partition this joint covariance matrix as follows:

I kx x,

Kae, k(oox0) + 050
where the vector ky ., € RY has elements k(x;, x.) for
i =1,...,N and T denotes a transpose operation. The
noise variance appears only at the diagonal elements of
the covariance matrix C, this is due to the independence
assumption about the noise. Using a standard Gaussian
property on computing conditional distribution from a
joint Gaussian distribution (»Gaussian Distribution),
the predictive distribution is given by

Pelx X, Y) = N (s 02), (6)
with

01551)71 Y’ (7)
03 = k(xx-axx-) - k)T(,x* (K+ Oﬁ I)_lkX,X* + O-r?oise‘

(8)

Au* = k;(,x* (K + O-r%

oise

Note that, (7) and (8) are the mean function and the
covariance function of the posterior process in (2) for
any novel inputs. The only difference is the additional
term o2 .., since there exists observation noise €, such

that y, = f« +¢..

Point Prediction: The previous section has shown how
to compute a predictive distribution for outputs y.
associated with the novel test inputs x.. To convert
this predictive distribution into a point prediction, we

need the notion of a loss function, £(Yirues Yprediction)-
This function specifies the loss incurred for pre-
dicting the value yprediction While the true value is
Yirue- Thus, the optimal point prediction can be com-
puted by minimizing the expected loss as follows

yoptima1|x* = argmlnyp,edmion [/3(}’* >yprediction)

X p(yulx:, X, Y)dy.. 9)

For a squared loss function (or any other symmetric
loss functions) and predictive distribution (6), the solu-
tion to the above equation is the mean of the predictive
distribution, i.e.,

J’Optima1|x* =E P (Palx, X, Y) D’*] = P

The above Gaussian process regression description
is known as a function space view in the literature
(Rasmussen & Williams, 2006). Equivalently, a Gaus-
sian process regression can also be viewed from the
traditional Bayesian linear regression with a possibly
infinite number of basis functions ¢(x) and with a zero
mean and arbitrary positive definite covariance matrix
Gaussian prior on the parameter w, see e.g., Rasmussen
& Williams (2006).

Gaussian process models can also be applied to classi-
fication problems. In a probabilistic approach to classi-
fication, the goal is to model posterior probabilities of
an input point x; belonging to one of Q classes, y; €
{1,...,0Q}. These probabilities must lie in the interval
[0,1], however, a Gaussian process model draws func-
tions that lie on (—o0, 00). For the binary classification
(Q = 2), we can turn the output of a Gaussian process
into a class probability using an appropriate nonlinear
activation function. In the following, we will show this
for the case of binary classification. For the more general
cases, see e.g., Rasmussen & Williams (2006).

Likelihood Function and Posterior Distribution: In a
regression problem, a Gaussian likelihood is chosen and
combined with a Gaussian process prior, which leads to
a Gaussian posterior process over functions where in
all required integrations remain analytically tractable.
For classification, however, Gaussian likelihood is not

434

Gaussian Process

the most suitable owing to the discreteness nature of
the class labels. The most commonly used likelihood
functions are

1
pUilfoxi) = m or

ifx;
pOilfox) = [Nt = 0o13f). (10

known as logistic and cumulative Gaussian likelihood
functions, respectively. Assuming that the class labels
(conditioned on f) are generated independent and iden-
tically distributed, the joint likelihood over N data
points can be expressed as p(Y|f,X) = [Tx, p(yil f).
By Bayes’ rule, the posterior distribution over latent
functions is given by p(fx|X,Y) %.
This posterior is no longer analytically tractable (due
to intractable integration in the denominator) and an
approximation is needed.

There are several approximation methods to han-
dle intractability of the inference stage in Gaussian
process classification such as Laplace approximation,
expectation propagation, variational bounding, and
MCMC, among others (see (Nickisch & Rasmussen,
2008) for a comprehensive overview of approximate
inference in binary Gaussian process classification).
Most of the methods (if not all) approximate the
non-Gaussian posterior with a tractable Gaussian
distribution. We describe in detail the straightforward
Laplace approximation method, but note that the more
complicated expectation propagation (»Expectation
Propagation) is almost always the method of choice
unless the computational budget is very tight (Nickisch
& Rasmussen, 2008).

Laplace’s method approximates the non-Gaussian
posterior with a Gaussian one by performing a
second order Taylor expansion of the log poste-
rior, logp(fx|X,Y) at the maximum point of the
posterior

PUAIXY) # p(IX.Y) = N (fo HT), (1)

where fx = argmax;, logp(fx|X,Y)and H = -VVlogp
(fx|X,)|}, is the Hessian of the negative log poste-
rior at the maxima. Since the denominator of the Bayes’
theorem is independent of the latent function, the mode

of the posterior can be computed instead from the log
un-normalized posterior

¥(fx) :=logp(Y|f) +logp(fx), (12)

with the expression for p(fx) given in (3). Computa-
tion of the mode requires us to evaluate the gradient of
¥ (fx) which is given as

VY¥(fx) = Viegp(Y|f) + K 'fx. (13)

To find the stationary point, however, we cannot sim-
ply set this gradient to zero as Vlogp(Y|f) depends
non-linearly on fx. We need to resort to an iterative
scheme based on the Newton-Raphson’s method with
the update equation given by

new old

RO (VYY) V(). (1)
and the Hessian given by
VVY¥(fx)=-W-K", (15)

and W := —=VVlogp(Y|f) is a diagonal matrix. It is
important to note that if the likelihood function
p(Y|f,X) islog-concave, the diagonal elements of W are
non-negative and the Hessian in (15) is negative definite
(since —K and its inverse is negative definite by con-
struction and the sum of two negative definite matrices
is also negative definite). Thus, ¥(fx) is concave and
has a unique maxima point.

Predictive Distribution: The latent function fx plays the
role of a nuisance function, i.e., we do not observe
values of fx itself, and more importantly, we are not
particularly interested in the values of fx. What we are
interested in is a class conditional posterior probabil-
ity, p(y« = +1|x.,X,Y) (as the probability of the two
classes must sum to 1, p(y« = —1|x4, X, Y) = 1-p(y. =
+1]x.,X,Y) is a class conditional probability of a class
label of not 1) for a novel input x,.

The inference strategy involves marginalizing out
the nuisance function and is divided into two steps.
First, we need to compute the distribution of the latent
function at the novel input x,,

PN Yx) = [p(fbe X, fiOpClX, V)l
(6)

Gaussian Process

435

The conditional distribution p(f |x., X, fx) is computed
by invoking the Gaussian process regression model in
(6) to arrive at

P(felwes Xo) = N (K, K™ fio k(o) = K, Kkt)-
(17)

Note that, the underlying Gaussian process regression
model is assumed to be a noise-free process. Another
approach would be assuming an independent Gaussian
noise in combination with a step function likelihood
function. However, this is equivalent to the noise-free
latent process with a cumulative Gaussian likelihood
function (Rasmussen & Williams, 2006). With Laplace
approximation of posterior distribution p(fx|X,Y) »
N(fx, (K™ + W)™), we can now compute the inte-
gration in (16) by using the standard result for the
convolution of two Gaussian distributions. Thus, the
conditional distribution is given by

p(felxe, X, Y) = N(E[fulxs, X, Y], Var[fo|x., X, Y]),
(18)
with

E[fix., X, Y] = ki . K,

Var[fi|x., X, Y] = k(x.,x.) — ;)x* (K+ W) ky,

The predictive distribution can now be computed as
follows

e = p(¥e = +1x4, X, Y)

= [PO = HIp(Ful X, V..
The above integral can be solved analytically for a cumu-
lative Gaussian likelihood function,

E[f [xx X, Y]

T, = ’/\(yIZJrVar[f*\X*)X)Y])l/Z N(t|0,1)dt

E[fe|x., X, Y]
= o,) 12]
(722 + Var[fu e, X, Y])V

and can be approximated for a logistic likelihood func-
tion (MacKay, 1992),

1
* 1+ exp(=E[fuxs, X, Y]x(Var[fulx., X, Y]))’

with «(c) = (1 + cm/8)V2.

Point Prediction: Similar to the regression case, we
might need to make a point prediction from the pre-
dictive distribution described in the section above. For
a zero-one loss function, i.e., a loss of one unit is suf-
fered for a wrong classification and 0 for not making a
classification mistake, the optimal point prediction (in
the sense of expected loss) is

Yoptimal|¥* = argmax p(y.|x.,X,Y). (19)
y+€{1,...,Q}

It is worth noting that the probabilistic approach to
classification allows the same inference stage to be re-
used with different loss functions. In some situations,
a cost sensitive loss function, i.e., different classifica-
tion mistakes incur different losses, is more desirable.
The optimal point prediction is now taken by minimiz-
ing expected cost sensitive loss with respect to the same
pslxs X, Y).

Extension of the Laplace approximation to multi-
class Gaussian process classification (Q > 2) (Williams
& Barber, 1998) can be achieved via the softmax activa-
tion function, i.e., a generalization of logistic activation
function.

Practical Issues

We have seen how to do regression and classifica-
tion using Gaussian processes. Like other kernel based
methods such as support vector machines, they are
very flexible in that all operations are kernelized, i.e.,
the operations are performed in the (possibly infinite
dimensional) feature space. However, this feature space
is only defined implicitly via positive definite kernels
(covariance functions), which only requires computa-
tion in the (lower dimensional) input space. Compared
to other non-Bayesian kernel approaches, Gaussian
processes provide an explicit probabilistic formulation
of the model. This directly provides us with confidence
intervals (for regression) or posterior class probabilities
(for classification).

So far, however, we have assumed a covariance func-
tion with the known functional form and hyperparam-
eters. In many practical applications, it may not be easy
to specify all aspects of the covariance function by hand.
Furthermore, inverting the corresponding N x N Gram
matrix is the main computational cost and it may be

436

Gaussian Process

prohibitive as it scales as O(N?). We will now discuss
approaches to overcome both limitations in turn.

In many practical applications, the functional form of
the covariance function needs to be chosen and any
values of hyperparameters associated with the chosen
covariance function and possible free parameters of the
likelihood function needs to be optimally determined.
This is called model selection.

Ideally, we would like to define a prior distribu-
tion over the hyperparameters 0, and predictions are
made by integrating over different possible choice of
hyperparameters. More formally,

POk X.Y) = [pOrulce X, Y, 0)p(61X. Y)do.

(20)
The evaluation of the above integral, however, may
be difficult, and an approximation is needed either
by using the most likely value of hyperparameters,
P(ulx, X, Y) » p(yu|x4, X, Y, Opm1), or by performing
the integration numerically via Monte Carlo methods.
We will focus here on the approximation approach and
show how to use it for regression and classification
problems respectively.

Marginal Likelihood for Regression: The posterior prob-
ability of the hyperparameters 0 in (20) is

(01X, Y) o< p(Y|X, 0)p(6), (21)

where the first term is known as marginal likelihood or
evidence for the hyperparameters and its logarithm is in
the form of (from (4))

logp(Y|X,0) = —%YTK_IY— %log|l_<| - %log(Zﬂ),
with K := K + 02,;..]. We can then set the hyperpa-
rameters by maximizing this marginal likelihood (We
can also maximize the un-normalized posterior instead,
assuming finding the derivatives of the priors is straight-
forward.) (also known as type II maximum likelihood

approximation, ML-II) and its partial derivatives with
respect to hyperparameters is

0 1 .. ,0K. 1 (. ,0K
—1 Y|X,0)=-Y K'—=K'vy-Ztr| K=).
5, oeP(YI%.0) = YK 2 r(agj)

J

Marginal Likelihood for Classification: The Laplace appr-
oximation of the marginal likelihood, p(Y|X,0)=~
p(YIX,0)

- [exp(¥ ()
= exp(7(f)) [exp(=3 () HOfx)k,

which is achieved via a Taylor expansion of (12) locally
around f to obtain Y(fx) ~ ¥(fx)~3 (fx—fx) "H(fx-
fx). Computing the integral analytically gives us the
approximate marginal likelihood

. 1, .
logp(Y|X,0) = _EfXK 'y
+logp(Y|f, X) - %log I+ WiKW?|.

Subsequently, the partial derivatives with respect to
hyperparameters is given by

0 . 1oy ;0K ;4
a—logp(Y|X,9) = Ef;K la*K fx
91 91'

1 oK
- —tr{(K+ W)=
5 r((+) aej)

N JZV: ologp(Y|X,0) %
00,

i=1 afxi

The familiar multiple local optima problem is also
present in the marginal likelihood maximization. How-
ever, practical experiences suggest that local optima
are not a devastating problem especially with simple
functional forms of covariance function.

A significant problem with Gaussian process model is
associated with the computation cost of inverting the
N x N Gram matrix. A number of sparse approxima-
tion methods have been proposed to overcome this
high computational demand. Common to all these
methods is that only a subset of the latent function
values of size M < N are treated exactly and the
remaining latent values are approximated with cheaper
computational demand. Quifionero-Candela and Ras-
mussen (2005) describe a unifying view of sparse

Gaussian Process

437

approximation. All existing sparse methods are shown
to be an instance of it. The framework is described
for regression problems, however, it should also be
applicable for classification learning settings, albeit
with complicacy associated with the non-Gaussian
likelihood.

In this unifying treatment, an additional set of M
latent variables fy € RM, called inducing variables,
are introduced. These latent variables are latent func-
tion values corresponding to a set of input locations
Xy € RMxd called inducing inputs. The choice of
inducing inputs are not restricted to only from the
training or test inputs. Due to the marginalization prop-
erty, introducing more latent variables will not change
the distribution of the original variables. Consider (5)
with the covariance matrix contains no noise compo-
nents, that is the distribution now defines joint dis-
tribution over latent training and test function values,

p(fofulXox:)
:fﬂﬁ$ﬁWMMh
(22)

:fp(fx,f*IX,x*,fu)P(fU)de,

with p(fu)=MN(0,K,,). So far, no approximations
have been introduced. Introducing the key assumption
which is fx is conditionally independent of f, given fy,
[+ lLfx | fu, allow us to approximate (22) as

p(fofilXox) s [pUfibeenfo)pelXofo e (fo)dfor
(23)

Gaussian Process. Table 2 Sparse approximation methods

where p(f;|x., fu) and p(fx|X, fu) admit the same form
as (6) without noise components. Different computa-
tionally efficient algorithms in the literature correspond
to different assumptions made on those two conditional
distributions. Table 2 shows various sparse approxima-
tion methods with their corresponding approximated
conditional distributions. For all sparse approxima-
tion methods, the computational complexity is reduced
from O(N?) to O(NM?).

Current and Future Directions

Gaussian processes are an active area of research both
within the machine learning and the Bayesian statis-
tics community. First, there is the issue of efficient
inference and learning as already discussed in the text
above. Second, there is interest in adapting Gaussian
processes to other learning settings. They have been
used for ordinal regression (Chu & Ghahramani, 2005a;
Yu, Yu, Tresp & Kriegel, 2006), preference learning
(Chu & Ghahramani, 2005b), ranking (Guiver &
Snelson, 2008), mixtures of experts (Tresp, 2000b),
transductive learning (Schwaighofer & Tresp, 2003),
multi-task learning (Yu, Tresp, & Schwaighofer, 2005),
dimensionality reduction (Lawrence, 2005), matrix fac-
torization (Lawrence & Urtasun, 2009), reinforcement
learning (Deisenroth & Rasmussen, 2009; Engel, Man-
nor, & Meir, 2005), among other settings. They have
also been extended to handle relational data (Chu,
Sindhwani, Ghahramani, & Keerthi, 2006; Kersting &
Xu, 2009; Silva, Chu, & Ghahramani, 2007; Xu, Kerst-
ing, & Tresp, 2009; Yu, Chu, Yu, Tresp, & Xu, 2006).
Standard Gaussian processes only exploit the available
information about attributes of instances and typically

SR N (Kxx Kxyx, fu: 0) N (K xy Ky x,fus 0) | Silverman (1985)

PP N(KX,XUK;J,XUfU,O) p(fulxe, fu) Seeger, Williams, and Lawrence (2003)
N (Kxx Ky x, fur A1) .

SPGPs Ay = diag[Kxx — K K, Kxox] p(felx«, fu) Snelson and Ghahramani (2006)

BCM N (Kxx, Kng x, fus A2) p(fe|xe, fu) Tresp (2000a)
Az = b|Odeiag[Kx,x = KX:XUK;J,XUKXU:X]

SR subset of regressors; PP projected process; SPGPs sparse pseudo-input gaussian processes; BCM: bayesian committe machine

438

Gaussian Process

ignore any relations among the instances. Intuitively,
however, we would like to use our information about
one instance to help us reach conclusions about other,
related instances.

Gaussian processes are also of great interest for
practical applications because they naturally deal with
noisy measurements, unevenly distributed observa-
tions, and fill small gaps in the data with high con-
fidence while assigning higher predictive uncertainty
in sparsely sampled areas. For instance, Platt (2002)
generated music playlists using Gaussian processes.
Schwaighofer, Grigoras, Tresp, and Hoffmann (2004)
used them for realizing positioning systems using cel-
lular networks. Chu, Ghahramani, and Falciani (2005)
proposed a gene selection algorithm based on Gaus-
sian processes to discover consistent gene expression
patterns associated with ordinal clinical phenotypes.
Brooks, Makarenko, and Upcroft (2006) proposed a
Gaussian process model in the context of appearance-
based localization with an omni-directional camera.
Ferris, Haehnel, and Fox (2006) applied Gaussian pro-
cesses to locate a mobile robot from wireless signal
strength. Plagemann, Fox, and Burgard (2007) used
them to detect failures on a mobile robot. Gao, Honkela,
Rattray, and Lawrence (2008) inferred latent chemi-
cal species in biochemical interaction networks using
Gaussian processes. Krause, Singh, and Guestrin (2008)
modeled precipitation data using Gaussian processes.

Finally, there is the issue of relaxing the assump-
tion of the standard Gaussian process model that the
noise on the output is uniform throughout the domain.
If we assume that the noise is a smooth function of
the inputs, the noise variance can be modeled using a
second Gaussian process, in addition to the process gov-
erning the noise-free output values. The posterior dis-
tribution of the noise levels can then be sampled using
MCMC or approximated using maximum-aposteriori
inference. The resulting heteroscedastic, i.e., input-
dependent noise regression model has been shown to
outperform state-of-the-art methods for mobile robot
localization (Plagemann, Kersting, Pfaff, & Burgard,
2007).

In addition to the references embedded in the
text above, we also recommend http://www.gaussian-
process.org/. A highly recommended textbook is Ras-
mussen & Williams (2006).

Cross References
» Dirichlet Process

Recommended Reading

Abrahamsen, P. (1992). A review of Gaussian random fields and cor-
relation functions. Rapport 917, Norwegian Computing Center,
Oslo. www.nr.no/publications/917_Rapport.ps.

Brooks, A., Makarenko, A., & Upcroft, B. (2006). Gaussian process
models for sensor-centric robot localisation. In Proceedings of
ICRA. IEEE.

Chu, W., & Ghahramani, Z. (2005a). Gaussian processes for ordinal
regression. Journal of Machine Learning Research, 6,1019-1041.

Chu, W., & Ghahramani, Z. (2005b). Npreference learning with
gaussian processes. In: Proceedings of the international confer-
ence on machine learning (pp. 137-144). New York: ACM.

Chu, W.,, Ghahramani, Z., Falciani, F., & Wild, D. (2005). Biomarker
discovery in microarray gene expression data with Gaussian
processes. Bioinformatics, 21(16), 3385-3393.

Chu, W, Sindhwani, V., Ghahramani, Z., & Keerthi, S. (2006). Rela-
tional learning with gaussian processes. In Proceedings of neural
information processing systems. Canada: Vancouver.

Deisenroth, M. P., Rasmussen, C. E., & Peters, J. (2009). Gaus-
sian process dynamic programming. Neurocomputing, 72(7-9),
1508-1524.

Engel, Y., Mannor, S., & Meir, R. (2005). Reinforcement learning
with Gaussian processes. In Proceedings of the international con-
ference on machine learning, Bonn, Germany (pp. 201-208). New
York: ACM.

Ferris, B., Haehnel, D., & Fox, D. (2006). Gaussian processes for
signal strength-based location estimation. In Proceedings of
robotics: Science and systems, Philadelphia, USA. Cambridge,
MA: The MIT Press.

Gao, P, Honkela, A., Rattray, M., & Lawrence, N. (2008). Gaussian
process modelling of latent chemical species: applications to
inferring transcription factor activities. Bioinformatics 24(16),
i70-i75.

Guiver, J., & Snelson, E. (2008). Learning to rank with softrank and
gaussian processes. In Proceedings of SIGIR. (pp. 259-266). New
York: ACM.

Kersting, K., & Xu, Z. (2009). Learning preferences with hidden
common cause relations. In Proceedings of ECML PKDD. Berlin:
Springer.

Krause, A., Singh, A., & Guestrin, C. (2008). Near-optimal sensor
placements in Gaussian processes: Theory, efficient algorithms
and empirical studies. Journal of Machine Learning Research, 9,
235-284.

Krige, D. G. (1951). A statistical approach to some basic mine val-
uation problems on the witwatersrand. Journal of the Chem-
ical, Metallurgical and Mining Society of South Africa, 52(6),
119-139.

Lawrence, N. (2005). Probabilistic non-linear principal component
analysis with gaussian process latent variable models. Journal of
Machine Learning Research, 6, 1783-1816.

Lawrence, N., & Urtasun, R. (2009). Non-linear matrix factoriza-
tion with Gaussian processes. In Proceedings of the international
conference on machine learning (pp. 601-608). New York: ACM.

MacKay, D. J. C. (1992). The evidence framework applied to classifi-
cation networks. Neural Computation, 4(5), 720-736.

www.nr.no/publications/917_Rapport.ps
http://www.gaussian-process.org/
http://www.gaussian-process.org/

Gaussian Process Reinforcement Learning

439

Matheron, G. (1963). Principles of geostatistics. Economic Geology
(58), 1246-1266.

Neal, R. (1996). Bayesian learning in neural networks. New York:
Springer.

Nickisch, H., & Rasmussen, C. E. (2008). Approximations for binary
gaussian process classification. Journal of Machine Learning
Research, 9, 2035-2078.

Plagemann, C., Fox, D., & Burgard, W. (2007). Efficient failure
detection on mobile robots using particle filters with gaus-
sian process proposals. In Proceedings of the international joint
conference on artificial intelligence (IJCAI), Hyderabad, India.
Morgan Kaufmann.

Plagemann, C., Kersting, K., Pfaff, P., & Burgard, W. (2007).
Gaussian beam processes: A nonparametric bayesian measure-
ment model for range finders. In Proceedings of the robotics:
Science and systems conference (RSS-07), Atlanta, GA, USA. The
MIT Press.

John C. Platt., Christopher J. C. Burges., Steven Swenson., Christo-
pher Weare., & Alice Zheng. (2002). Learning a gaussian
process prior for automatically generating music playlists. In
Advances in Neural Information Processing Systems, 1425-1432,
MIT Press.

Quinonero-Candela, J., & Rasmussen, C. E. (2005). A unifying view
of sparse approximate gaussian process regression. Journal of
Machine Learning Research, 6,1939-1959.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for
machine learning. Cambridge, MA: MIT Press.

Schwaighofer, A., Grigoras, M., Tresp, V., & Hoffmann, C. (2004).
A Gaussian process positioning system for cellular networks.
In Advances in neural information processing systems 16. Cam-
bridge, MA: MIT Press.

Schwaighofer, A., & Tresp, V. (2003). Transductive and inductive
methods for approximate guassian process regression. In Neural
information processing systems. Cambridge, MA: MIT Press.

Seeger, M., Williams, C. K. I., & Lawrence, N. (2003). Fast for-
ward selection to speed up sparse gaussian process regression.
In Ninth international workshop on artificial intelligence and
statistics. Society for Artificial Intelligence and Statistics.

Silva, R., Chu, W., & Ghahramani, Z. (2007). Hidden common
cause relations in relational learning. In Proceedings of neural
information processing systems. Canada: Vancouver.

Silverman, B. W. (1985). Some aspects of the spline smoothing
approach to non-parametric regression curve fitting. Journal of
Royal Statistical Society B, 47(1), 1-52.

Snelson, E., & Ghahramani, Z. (2006). Sparse gaussian processes
using pseudo-inputs. In Advanes in neural information process-
ing systems (pp. 1257-1264). The MIT Press.

Tresp, V. (2000a). A Bayesian committee machine. Neural Computa-
tion, 12(11), 2719-2741.

Tresp, V. (2000b). Mixtures of gaussian processes. In T. K. Leen,
T. G. Dietterich, V. Tresp (Eds.), Advances in neural information
processing systems 13 (pp. 654-660). The MIT Press.

Williams, C., & Barber, D. (1998). Bayesian classification with
Gaussian processes. IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI, 20(12), 1342-1351.

Williams, C., & Rasmussen, C. (1996). Gaussian processes for regres-
sion. In D. S. Touretzky, M. C. Mozer, M. E. Hasselmo (Eds.),
Advances in neural information processing systems 8 (Vol. 8,
pp. 514-520). Cambridge, MA: MIT Press.

Xu, Z., Kersting, K., & Tresp, V. (2009). Multi-relational learn-
ing with gaussian processes. In Proceedings of the interna-
tional joint conference on artificial intelligence (IJCAI). Morgan
Kaufmann.

Yu, K., Chu, W, Yu, S., Tresp, V., & Xu, Z. (2006). Stochastic rela-
tional models for discriminative link prediction. In Proceedings
of neural information processing systems. Canada: Vancouver.

Yu, K., Tresp, V., & Schwaighofer, A. (2005). Learning gaussian pro-
cesses from multiple tasks. In Proceedings of the international
conference on machine learning (pp. 1012-1019). New York:
ACM.

Yu, S., Yu, K., Tresp, V., & Kriegel, H. P. (2006). Collaborative
ordinal regression. In W. Cohen, A. Moore (Eds.), Proceed-
ings of the 23rd international conference on machine learning
(pp- 1089-1096). New York: ACM.

! Gaussian Process Reinforcement
Learning

YAAKOV ENGEL
University of Alberta, Edmonton, Alberta, Canada

Definition
Gaussian process reinforcement learning generically
refers to a class of »reinforcement learning (RL) algo-
rithms that use Gaussian processes (GPs) to model and
learn some aspect of the problem.

Such methods may be divided roughly into two
groups:

1. Model-based methods: Here, GPs are used to
learn the transition and reward model of the
»Markov decision process (MDP) underlying the
RL problem. The estimated MDP model is then
used to compute an approximate solution to the
true MDP.

2. Model-free methods: Here no explicit representation
of the MDP is maintained. Rather, GPs are used to
learn either the MDP’s value function, state-action
value function, or some other quantity that may be
used to solve the MDP.

This entry is concerned with the latter class of
methods, as these constitute the majority of published
research in this area.

440

Gaussian Process Reinforcement Learning

Motivation and Background

»Reinforcement learning is a class of learning problems
concerned with achieving long-term goals in unfamil-
iar, uncertain, and dynamic environments. Such tasks
are conventionally formulated by modeling the envi-
ronment as a »MDPs (Or more generally as partially
observable MDPs (»POMDPs).), and modeling the
agent as an adaptive controller implementing an action-
selection policy.

Let us denote by P(S) the set of probability distribu-
tions over (Borel) subsets of a set S. A discrete time
MDP isatuple (X,U, po, p,q,y), where X and U are the
state and action spaces, respectively; po(-) € P(X) is a
probability density over initial states; p(-[x,u) € P(X)
is a probability density over successor states, condi-
tioned on the current state x and action u; g(-|x,u) €
P(R) is a probability distribution over immediate
single-step rewards, conditioned on the current state
and action. We denote by R(x,u) the random variable
distributed according to g(-|x,u). Finally, y € [0,1] is
a discount factor. We assume that both p and g are sta-
tionary, that is, they do not depend explicitly on time. To
maintain generality, we use z to denote either a state x or
a state-action pair (x,u). This overloaded notation will
allow us to present models and algorithms in a concise
and unified form.

In the context of control it is useful to make sev-
eral additional definitions. A stationary policy u(-|x) €
P(U) is a time-independent mapping from states to
action selection probabilities. A stationary policy u
induces a Markov reward process (MRP) (Puterman,
1994) via policy-dependent state-transition probability
density, defined as (Here and in the sequel, whenever
integration is performed over a finite or discrete space,
the integral should be understood as a summation.)

PLXIX) = [dup(upp(xux).

Similarly, the policy 4 may also be used to define a state-
action transition probability density, defined as

Pru(Xsu'[xu) = p(x|u, x) p(u'[x").

Using our overloaded notational convention, we refer to
either of these as p} . Let us denote by &(z) a path that

starts at z. Hence, for a fixed policy y and a fixed initial
state or state-action pair z, the probability (density) of
observing the path &(zy) = (zo,zy,...,2) of length ¢ is
(we take zg as given) P(&(zo)) = [1., pt (zi|zi-1). The
discounted return D¥ (&(z)) of a path &(z) is a random
process, defined (with some abuse of notation) as

D¥(z) = D*(§(2)) = iyiR(Zi)l(Zo =z), (O

where y€[0,1] is the discount factor (When y =1 the
policy must be proper, see Bertsekas and Tsitsiklis
(1996).) The randomness in D¥(z), for any given z, is
due both to &(z) being a random process and to the
randomness, or noise, in the rewards R(zg),R(z),.. .,
etc., both of which jointly constitute the intrin-
sic randomness of the MDP. Equation (1) together
with the stationarity of the MDP yield the recursive
formula

D¥(z) =R(z) + yD*(z') wherez' ~pi(z). (2)

Let us define the expectation operator E; as the
expectation over all possible trajectories and all possi-
ble rewards collected in them. This allows us to define
the value function V¥#(z) as the result of applying this
expectation operator to the discounted return D¥(z),
ie.,

V#(z) = E¢D"(z). (3)

Applying the law of total expectation to this equation
results in the MRP (fixed policy) version of the Bellman
equation:

V#(z) = R(z) + yE, [V¥ (2')]. (4)

A policy that maximizes the expected discounted return
from each state is called an optimal policy, and is
denoted by . In the case of stationary MDPs, there
exists a deterministic optimal policy (This is no longer
the case for POMDPs and Markov games, see Kaelbling,
Littman, and Cassandra (1998) and Littman (1994)).
The value function corresponding to an optimal pol-
icy is called the optimal value, and is denoted by V* =
V#". While there may exist more than one optimal pol-
icy, the optimal value function is unique (Bertsekas,
1995).

Gaussian Process Reinforcement Learning

441

Many of the algorithms developed for solving RL prob-
lems may be traced back to the »dynamic program-
ming Value Iteration and Policy Iteration algorithms
(Bellman, 1957; Bertsekas, 1995; Bertsekas & Tsitsiklis,
1996; Howard, 1960). However, there are two major fea-
tures distinguishing RL from the traditional planning
framework. First, while in planning it is assumed that
the environment is fully known, in RL no such assump-
tion is made. Second, the learning process in RL is usu-
ally assumed to take place online, namely, concurrently
with the acquirement of data by the learning agent as it
interacts with its environment. These two features make
solving RL problems a significantly more challenging
undertaking.

An important algorithmic component of policy-
iteration-based RL algorithms is the estimation of either
state or state-action values of a fixed policy control-
ling a MDP, a task known as policy evaluation. Sutton’s
TD(A) algorithm (Sutton, 1984) is an early RL algorithm
that performs policy evaluation based on observed sam-
ple trajectories from the MDP, while it is being con-
trolled by the policy being evaluated (see »Temporal
Difference Learning). In its original formulation, TD(A)
as well as many other algorithms (e.g., Watkins’
»Q-learning (1989)), employs a lookup table to store
values corresponding to the MDP’s states or state-action
pairs. This approach clearly becomes infeasible when
the size of the MDPs joint state-action space exceeds the
memory capacity of modern workstations. One solution
to this problem is to represent the value function using
a parametric function approximation architecture, and
allow these algorithms to estimate the parameters of
approximate value functions. Unfortunately, with few
exceptions, this seemingly benign modification turns
out to have ruinous consequences to the convergence
properties of these algorithms. One notable exception
is TD(A), when it is used in conjunction with a func-
tion approximator V(z) = YN, wi¢;(z), which is linear
in its tunable parameters w= (w1, ..., wy)'. Under cer-
tain technical conditions, it has been shown that in this
case, TD(A) converges almost surely, and the limit of
convergence is “close” (in a well defined manner) to a
projection ITV*# of the true value function V* onto the
finite-dimensional space Hg4 of functions spanned by
{¢ili=1,...,N} (Tsitsiklis & Van Roy, 1996). Note that
this projection is the best one may hope for, as long

as one is restricted to a fixed function approximation
architecture. In fact, when A = 1, the bound of Tsitsik-
lis and Van Roy (1996) implies that TD(1) converges to
ITV¥ (assuming it is unique). However, as A is reduced
toward 0, the quality of TD(A)’s solution may deterio-
rate significantly. If V¥ happens to belong to H4, then
V# = IIV¥ and TD(A) converges almost surely to V¥,
for any A € [0,1].

As noted in Bertsekas and Tsitsiklis (1996), TD(A) is
a stochastic approximation algorithm (Kushner & Yin,
1997). As such, to ensure convergence to a meaning-
ful result, it relies on making small and diminishing
updates to its value-function estimates. Moreover, in the
typical on-line mode of operation of TD(A), a sample is
observed, acted upon (by updating the parameters of V)
and is then discarded, never to be seen again. A nega-
tive consequence of these two properties is that on-line
TD(A) is inherently wasteful in its use of the observed
data. The least-squares TD(A), or LSTD(A) algorithm
(Boyan, 1999; Bradtke & Barto, 1996), was put forward
as an alternative to TD(A) that makes better use of data,
by directly solving a set of equations characterizing the
fixed point of the TD(A) updates. LSTD(A) is amenable
to a recursive implementation, at a time and memory
cost of O(N?) per sample. A more fundamental short-
coming, shared by both TD(1) and LSTD(A) is that they
do not supply the user with a measure of the accuracy
of their value predictions.

The discussion above motivates the search for:

1. Nonparametric estimators for V¥, since these are
not generally restricted to searching in any finite
dimensional hypothesis space, such as H.

2. Estimators that make efficient use of the data.

3. Estimators that, in addition to value predictions,
deliver a measure of the uncertainty in their
predictions.

Structure of Learning System
We first describe the structure and operation of the basic
GP temporal differences (GPTD) algorithm for policy
evaluation. We then build on this algorithm to describe
policy improving algorithms, in the spirit of Howard’s
Policy Iteration (Howard, 1960).

In the preceding section we showed that the value
V is the result of taking the expectation of the dis-
counted return D with respect to the randomness in

442

Gaussian Process Reinforcement Learning

the trajectories and in the rewards collected therein.
In the classic, or frequentist approach V is no longer
random, since it is the true, albeit unknown value func-
tion induced by the policy y. Adopting the Bayesian
approach, we may still view the value V as a random
entity by assigning it additional randomness, that is
due to our subjective uncertainty regarding the MDP’s
transition model (p, q). We do not know what the true
distributions p and g are, which means that we are
also uncertain about the true value function. Previous
attempts to apply Bayesian reasoning to RL modeled
this uncertainty by placing priors over the MDP’s tran-
sition and reward model (p,q) and applying Bayes
rule to update a posterior based on observed transi-
tions. This line of work may be traced back to the
pioneering works of Bellman and Howard (Bellman,
1956; Howard, 1960) followed by more recent contri-
butions in the machine learning literature (Dearden,

Bayesian—RL

Frequentist RL:
No Prior

Friedman, & Andre, 1999; Dearden, Friedman, & Rus-
sell, 1998; Duff, 2002; Mannor, Simester, Sun, & Tsitsik-
lis, 2004; Poupart, Vlassis, Hoey, & Regan, 2006; Strens,
2000; Wang, Lizotte, Bowling, & Schuurmans, 2005).
A fundamental shortcoming of this approach is that
the resulting algorithms are limited to solving MDPs
with finite (and typically rather small) state and action
spaces, due to the need to maintain a probability distri-
bution over the MDP’s transition model. In this work,
we pursue a different path - we choose to model our
uncertainty about the MDP by placing a prior (and
updating a posterior) directly on V. We achieve this by
modeling V as arandom process, or more specifically, as
a Gaussian Process. This mirrors the traditional classifi-
cation of classical RL algorithms to either model-based
or model-free (direct) methods, see Chapter 9 in Sut-
ton and Barto (1998). Figure 1 illustrates these different
approaches.

GPTD Prior

learning data

Gaussian Process Reinforcement Learning. Figure 1. An illustration of the frequentist as well as the two different
Bayesian approaches to value-function based reinforcement learning. In the traditional Bayesian RL approach a prior
is placed on the MDP’s model, whereas in our GPTD approach the prior is placed directly on the value function. x, u,
and r denote state, action, and reward, respectively. The data required to learn value estimators typically consists of a
temporal stream of state-action-reward triplets. Another stream of data is used to update the policy based on the cur-
rent estimate of the value function. A MDP and a stationary policy controlling it, jointly constitute a MRP. lag(1) denotes

the 1-step time-lag operator

Gaussian Process Reinforcement Learning

443

GPTD should be viewed as a family of statistical gen-
erative models (see »Generative Learning) for value
functions, rather than as a family of algorithms. As such,
GPTD models specify the statistical relation between
the unobserved value function and the observable
quantities, namely the observed trajectories and the
rewards collected in them. The set of equations pre-
scribing the GPTD model for a path & = (zo,zy, ..., %)
is (Here and in the sequel, to simplify notation, we
omit the superscript y, with the understanding that
quantities such as D, V, or & generally depend on the
policy u being evaluated.)

R(z;) = V(z;) = yV(zin1) + N(zi,2i41)
fori=0,1,...,t -1

N(z;,zi41) is a zero-mean noise term that must account
for the statistics of R(z;) + yV(zis1) — V(z;). lf Visa
priori distributed according to a GP prior, and the noise
term N(z;,2;41) is also normally distributed then R(z;)
is also normally distributed, and so is the posterior dis-
tribution of V conditioned on the observed rewards. To
fully specify the GPTD model, we need to specify the
GP prior over V in terms of prior mean and covariance
as well as the covariance of the noise process N. In Engel,
Mannor, and Meir (2003) it was shown that modeling
N as a white noise process is a suitable choice for MRPs
with deterministic transition dynamics. In Engel, Man-
nor, and Meir (2005) a different, correlated noise model
was shown to be useful for general MRPs. Let us define
Ri=(R(z0),...,R(2)), Vi= (V(29),...,V(z:)), and
N; = (N(z¢,21),...,N(zt-1,2+)), also define the ¢ x (¢ +
1) matrix

1 -y 0 0
0o 1 -
Hz: y
0
| 0 0 1 -y |

In the white-noise and correlated-noise GPTD models
the noise covariance matrices X, = Cov[N;] are given,
respectively, by

[oi(zg) 0 ... o
0 oi(z)
0
|0 oo 0 og(ze) |
[68 0 ... 0]
0 of :
and H, H/.
: w0
| 0 0 o |

The final component of the GPTD model remaining to
be specified is the prior distribution of the GP V. This
distribution is specified by prior mean and covariance
functions vy (z) and k(z,z"), respectively.

Let us define v, = (vo(2o)s . .., vo(z;)) . Employing
»Bayes’ rule, the posterior distribution of V(z) - the
value function at some arbitrary query point z - is now
given by

(V(2)|Ri1 = 1121) ~ N{Vi(2), Pi(z,2),
where

Vi(z) = vo(z) +k(2) s, Py(z,2))
=k(z,2') - ki(z)"Cik:(2'),
a =H (HKH] +2,) " (r, 1 -Hw),
C: = H] (H;KH] +Z,)'H,.

Itis seen here that in order to compute the posterior dis-
tribution of V for arbitrary sets of query points, one only
needs the vector «; and the matrix C;. Consequently,
«, and C; are sufficient statistics for the posterior
of V.

Algorithms 1 and 2 provide pseudocode for recur-
sive computations of these sufficient statistics, in the
deterministic-transitions and general MDP models,
respectively.

It can be seen that after observing t sample transi-
tions, both the algorithms require storage quadratic in
t (due to the matrix C;). The updates also require time
quadratic in t due to matrix-vector products involving

Gaussian Process Reinforcement Learning

C;. These properties are unsatisfying from a practi-
cal point of view, since realistic RL problems typically
require large amounts of data to learn. There are two
general approaches for reducing the memory and time
footprints of GPTD. One approach is to define para-
metric counterparts of the two GPTD models described
earlier, and derive the corresponding recursive algo-
rithms. If the number of independent parameters (i.e.,
the dimensionality of the hypothesis space H4) used to
represent the value function is m, the memory and time
costs of the algorithms become quadratic in m, rather
than t. Another approach, which is based on an effi-
cient sequential kernel sparsification method, allows us
to selectively exclude terms from D;, while controlling
the error incurred as a result. Here again (Bounds on
m in this case may be derived using arguments based
on the finiteness of packing numbers of the hypothe-
sis space, see Engel (2005) for details.), if the size of
D, saturates at m, the memory and time costs of the
resulting algorithms are quadratic in m. For the com-
plete derivations, as well as detailed pseudocode of the
corresponding algorithms we refer the reader to Engel
(2005).

Theory

In this section we derive the two GPTD models men-
tioned above, explicitly stating the assumptions under-
lying each model.

In the deterministic case, the Bellman equation (4)
degenerates into

R(z) = V(z) -yV(z), ()

where z’ is the state or state-action pair succeeding z,
under the deterministic policy y. We also assume that
the noise in the rewards is independent and Gaussian,
but not necessarily identically distributed. We denote
the reward variance by 0(z) = Var [R(z)]. Formally,
this means that the reward R(z), at some z, satisfies
R(z) = R(z) + N(z) where R(z) is the mean reward for
that state. Assume we have a sequence of rewards sam-
pled along a sampled path &. Then, at the ith time step
we have R(z;) = R(z;) + N(z;). Using the random vec-
tors Ry, V;, and N; defined earlier, we have AV (0, X,),

Algorithm 1 Recursive nonparametric GPTD for deter-
ministic MDPs
Initialize ap = 0, Co = 0, Dy = {z0}
fort=1,2,...
observe z;_1, 111, Z;
h: = (0,...,1,—y)"
Ak; = ke-1(ze-1) — yke-1(2:)
Akit = k(2e-1,261) = 2yk(2e-1,20) + Vzk(zf’ z)

Cio1 Ak,
C = h[-
0
di =111 - AktTat—l
St = O‘tz,l + Akrt - AktTCt_lAkt
Q-1
o = + %d;
t
0
thl 0
C = + éctcf
0" 0
Dr = Dt—l U {Zr}
end for

return «;, C;, D,

where
¥, = diag(0z(20)s. .., 0x(2:1)), (6)

and diag(-) denotes a diagonal matrix whose diagonal
elements are the components of the argument vector.
Writing the Bellman equations (5) for the points belong-
ing to the sample path, and substituting R(z;) = R(z;) +
N(z;), we obtain the following set of t equations

R(Zi) = V(Zi)—yV(Z,‘+1)+N(Zi), i=0,1,...,t—1

This set of linear equations may be concisely written as

Rt—l = HtVt + Nt- (7)

Let us consider a decomposition of the discounted
return D into its mean V and a zero-mean residual AV:
D(z) = E¢D(z) + (D(z) - E¢D(z)) €V (z) + AV(z).

®)
This decomposition is useful, since it separates the two
sources of uncertainty inherent in the discounted return

Gaussian Process Reinforcement Learning

445

Algorithm 2 Recursive nonparametric GPTD for gen-
eral MDPs
Initialize &g = 0, Co = 0, Do = {20}, o = 0,do = 0,1/sp = 0
fort=12,...

observe z;_1, 1i-1, Z:

h; = (0,...,1,-p)"

Ak; = kH(ZH) - ka(Zt)

Akt = k(2415 2e-1) — 29k (2i-1, 24) + Y k(245 24)

o, | 1 Ci_1Ak;
== +h; -

St—1
0 0
)"72 1 T
— =
di = ﬁdt—l + 11— ARy @y

2 4 2
2 2.2 Yo T 2701 T
St = 01 +y 0y — = +Aktt—Akt Ct_lAkf‘F L 1Ct71Akt
St—1 St—1

&t-1
o = + %dr
0
Cia 0 1. .7
Ct = + ;tht
0" 0
Dt = thl U {Z[}

end for
return «;, C;, D,

process D: For aknown MDP model, V is a (determinis-
tic) function and the randomness in D is fully attributed
to the intrinsic randomness in the trajectories gener-
ated by the MDP and policy pair, modeled by AV. On
the other hand, in a MDP in which both transitions and
rewards are deterministic but otherwise unknown, AV
is deterministic (identically zero), and the randomness
in D is due solely to the extrinsic Bayesian uncertainty,
modeled by the random process V.
Substituting (8) into (2) and rearranging we get

R(z) =V(z) —-yV(z') + N(z,7'),

where z’ ~ p#(-|z), and

def

N(z,2')=AV(z) - yAV(Z). 9)

As before, we are provided with a sample path &, and
we may write the model equations (9) for these samples,

resulting in the following set of ¢ equations

R(Zi): V(Z,’)—)/V(Zi+1)+N(Zi,Z,'+1) fori= 0,...,t—1

Using our standard definitions for R;, V;, H; and with
N; = (N(z0,21),...,N(z:-1,2;))7, we again have

Rt—l = HtVt + Nt- (10)

In order to fully define a complete probabilistic gen-
erative model, we also need to specify the distribu-
tion of the noise process N;. We model the residuals
AV, = (AV(zp),...,AV(z;))" as random Gaussian
noise (This may not be a correct assumption in gen-
eral; however, in the absence of any prior information
concerning the distribution of the residuals, it is the
simplest assumption we can make, since the Gaussian
distribution possesses the highest entropy among all
distributions with the same covariance. It is also pos-
sible to relax the Gaussianity requirement on both the
prior and the noise. The resulting estimator may then
be shown to be the linear minimum mean-squared error
estimator for the value.). In particular, this means that
the distribution of the vector AV, is completely spec-
ified by its mean and covariance. Another assumption
we make is that each of the residuals AV (z;) is inde-
pendently distributed. Denoting o7 = Var[D(z;)], the
distribution of AV, is given by:

AV, ~ N(0,diag(o;)),

.
(gg,o'lz’_”,gtz) . Since Ny = H;AV,, we

have Nt ~ N(O, Zt) Wlth,

where o; =

% = Hdiag(o)H;

-ag +y*a? -yof 0 e 0 0
-yot ol +y*c} —yai 0 ... 0
0 -y 0% +y*oF
B 0 0
0 : -yal,
| 0 0 0 -yoiy of +y'at]

Q8

Applications

Any RL algorithm that requires policy evaluation as
an algorithmic component can potentially use a GPTD
algorithm for this task. In particular, this is true of algo-
rithms based on Howard’s Policy Iteration. In Engel

446

Gaussian Process Reinforcement Learning

etal. (2005) and Engel (2005) is shown how GPTD may
be used to construct a SARSA-type algorithm (Rum-
mery & Niranjan, 1994; Sutton & Barto, 1998), called
GPSARSA. In Engel, Szabo, and Volkinshtein (2005),
GPSARSA was used to learn control policies for a simu-
lated Octopus arm. In Ghavamzadeh and Engel (2007)
GPTD was used within a Bayesian actor-critic learning
algorithm.

Future Directions

By virtue of the posterior covariance, GPTD algorithms
compute a confidence measure (or more precisely,
Bayesian credible intervals) for their value estimates.
So far, little use has been made of this additional
information. Several potential uses of the posterior
covariance may be envisaged:

1. It may be used to construct stopping rules for value
estimation.

2. It may be used to guide exploration.

3. In the context of Bayesian actor—critic algorithms
(Ghavamzadeh & Engel, 2007), it may used to con-
trol the size and direction of policy updates.

Further Reading

Yaakov Engel’s doctoral thesis (Engel, 2005) is currently
the most complete reference to GPTD methods. Two
conference papers (Engel et al., 2003, 2005) provide a
more concise view. The first of these introduces the
GPTD model for deterministic MRPs, while the sec-
ond introduces the general MDP model, as well as the
GPSARSA algorithm. A forthcoming journal article will
subsume these two papers, and include some additional
results, concerning the connection between GPTD and
the popular TD(A) and LSTD(A) algorithms.

Recommended Reading

Bellman, R. E. (1956). A problem in the sequential design of experi-
ments. Sankhya, 16, 221-229.

Bellman, R. E. (1957). Dynamic programming. Princeton, NJ: Prince-
ton University Press.

Bertsekas, D. P. (1995). Dynamic programming and optimal control.
Belmont, MA: Athena Scientific.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic program-
ming. Belmont, MA: Athena Scientific.

Boyan, J. A. (1999). Least-squares temporal difference learning.
In Proceedings of the 16th international conference on machine
learning (pp. 49-56). San Francisco: Morgan Kaufmann.

Bradtke, S. J., & Barto, A. G. (1996). Linear least-squares algo-
rithms for temporal difference learning. Machine Learning, 22,
33-57.

Dearden, R., Friedman, N., & Andre, D. (1999). Model based
Bayesian exploration. In Proceedings of the fifteenth confer-
ence on uncertainty in artificial intelligence (pp. 150-159). San
Francisco: Morgan Kaufmann.

Dearden, R., Friedman, N., & Russell, S. (1998). Bayesian Q-
learning. In Proceedings of the fifteenth national conference on
artificial intelligence (pp. 761-768). Menlo Park, CA: AAAI
Press.

Duff, M. (2002). Optimal learning: Computational procedures for
Bayes-adaptive Markov decision processes. PhD thesis, Univer-
sity of Massachusetts, Amherst.

Engel, Y. (2005). Algorithms and representations for reinforcement
learning. PhD thesis, The Hebrew University of Jerusalem.
Engel, Y., Mannor, S., & Meir, R. (2003). Bayes meets Bellman:
The Gaussian process approach to temporal difference learning.
In Proceedings of the 20th international conference on machine

learning. San Francisco: Morgan Kaufmann.

Engel, Y., Mannor, S., & Meir, R. (2005). Reinforcement learning
with Gaussian processes. In Proceedings of the 22nd interna-
tional conference on machine learning.

Engel, Y., Szabo, P., & Volkinshtein, D. (2005). Learning to con-
trol an Octopus arm with Gaussian process temporal difference
methods. Technical report, Technion Institute of Technology.
www.cs.ualberta.ca/~yaki/reports/octopus.pdf.

Ghavamzadeh, M., & Engel, Y. (2007). Bayesian actor-critic algo-
rithms. In Z. Ghahramani (Ed.), 24th international conference
on machine learning. Corvallis, OR: Omnipress.

Howard, R. (1960). Dynamic programming and Markov processes.
Cambridge, MA: MIT Press.

Kaelbling, L. P.,, Littman, M. L., & Cassandra, A. R. (1998). Planning
and acting in partially observable stochastic domains. Artificial
Intelligence, 101, 99-134.

Kushner, H. J., & Yin, C. J. (1997). Stochastic approximation algo-
rithms and applications. Berlin: Springer.

Littman, M. L. (1994). Markov games as a framework for multi-agent
reinforcement learning. In Proceedings of the 11th international
conference on machine learning (ICML-94) (pp. 157-163). New
Brunswick, NJ: Morgan Kaufmann.

Mannor, S., Simester, D., Sun, P., & Tsitsiklis, J. N. (2004). Bias and
variance in value function estimation. In Proceedings of the 21st
international conference on machine learning.

Poupart, P, Vlassis, N. A., Hoey, J., & Regan, K. (2006). An analytic
solution to discrete Bayesian reinforcement learning. In Pro-
ceedings of the twenty-third international conference on machine
learning (pp. 697-704). Pittsburgh, PA.

Puterman, M. L. (1994). Markov decision processes: Discrete stochas-
tic dynamic programming. New York: Wiley.

Rummery, G., & Niranjan, M. (1994). On-line Q-learning using con-
nectionist systems. Technical report CUED/F-INFENG/TR 166,
Cambridge University Engineering Department.

Strens, M. (2000). A Bayesian framework for reinforcement learn-
ing. In Proceedings of the 17th international conference on
machine learning (pp. 943-950). San Francisco: Morgan Kauf-
mann.

Sutton, R. S. (1984). Temporal credit assignment in reinforcement
learning. PhD thesis, University of Massachusetts, Amherst.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An
introduction. Cambridge, MA: MIT Press.

www.cs.ualberta.ca/~yaki/reports/octopus.pdf

Generalization Bounds

447

Tsitsiklis, J. N., & Van Roy, B. (1996). An analysis of temporal-
difference learning with function approximation. Technical
report LIDS-P-2322, Cambridge, MA: MIT Press.

Wang, T., Lizotte, D., Bowling, M., & Schuurmans, D. (2005).
Bayesian sparse sampling for on-line reward optimization. In
Proceedings of the 22nd international conference on machine
learning (pp. 956-963). New York: ACM Press.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD
thesis, King’s College, Cambridge, UK.

! Generality And Logic

» Logic of Generality

[
Generalization

CLAUDE SAMMUT
University of New South Wales, Sydney, Australia

A hypothesis, h, is a predicate that maps an instance to
true or false. That is, if h(x) is true, then x is hypothe-
sized to belong to the concept being learned, the target.
Hypothesis, h;, is more general than or equal to hy, if
covers at least as many examples as h, (Mitchell, 1997).
That is, h; > h; if and only if

(V) [(x) = ha(x)]

A hypothesis, hy, is strictly more general than h,, if h; >
]’lg and h2 f_]’11.

Note that the more general than ordering is strongly
related to subsumption.

Cross References
» Classification
»Specialization
» Subsumption
» Logic of Generality

Recommended Reading
Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.

|
Generalization Bounds

MARK REID
The Australian National University, Canberra,
Australia

Synonyms
Inequalities; Sample complexity

Definition
In the theory of statistical machine learning, a gener-
alization bound - or, more precisely, a generalization
error bound - is a statement about the predictive per-
formance of a learning algorithm or class of algorithms.
Here, a learning algorithm is viewed as a procedure that
takes some finite training sample of labeled instances as
input and returns a hypothesis regarding the labels of all
instances, including those which may not have appeared
in the training sample. Assuming labeled instances are
drawn from some fixed distribution, the quality of a
hypothesis can be measured in terms of its risk — its
incompatibility with the distribution. The performance
of a learning algorithm can then be expressed in terms
of the expected risk of its hypotheses given randomly
generated training samples.

Under these assumptions, a generalization bound is
a theorem, which holds for any distribution and states
that, with high probability, applying the learning algo-
rithm to a randomly drawn sample will result in a
hypothesis with risk no greater than some value. This
bounding value typically depends on the size of the
training sample, an empirical assessment of the risk of
the hypothesis on the training sample as well as the
“richness” or “capacity” of the class of predictors that
can be output by the learning algorithm.

Motivation and Background

Suppose we have built an e-mail classifier and then col-
lected a random sample of e-mail labeled as “spam” or
“not spam” to test it on. We notice that the classifier
incorrectly labels 5% of the sample. What can be said
about the accuracy of this classifier when it is applied
to new, previously unseen e-mail? If we make the rea-
sonable assumption that the mistakes made on future

448

Generalization Bounds

e-mails are independent of mistakes made on the sam-
ple, basic results from statistics tell us that the classifier’s
true error rate will also be around 5%.

Now suppose that instead of building a classifier by
hand we use a learning algorithm to infer one from the
sample. What can be said about the future error rate
of the inferred classifier if it also misclassifies 5% of
the training sample? In general, the answer is “nothing”
since we can no longer assume future mistakes are inde-
pendent of those made on the training sample. As an
extreme case, consider a learning algorithm that outputs
a classifier that just “memorizes” the training sample -
predicts labels for e-mail in the sample according to
what appears in the sample - and predicts randomly
otherwise. Such a classifier will have a 0% error rate
on the sample, however, if most future e-mail does not
appear in the training sample the classifier will have a
true error rate around 50%.

To avoid the problem of memorizing or over-fitting
the training data it is necessary to restrict the “flexibil-
ity” of the hypotheses a learning algorithm can output.
Doing so forces predictions made off the training set to
be related to those made on the training set so that some
form of generalization takes place. However, doing this
can limit the ability of the learning algorithm to output
a hypothesis with small risk. Thus, there is a classic bias
and variance trade-off: the bias being the limits placed
on how flexible the hypotheses can be versus the vari-
ance between the training and the true error rates (see
»bias variance decomposition).

By quantifying the notion of hypothesis flexibility in
various ways, generalization bounds provide inequali-
ties that show how the flexibility and empirical error
rate can be traded off to control the true error rate.
Importantly, these statements are typically probabilistic
but distribution-independent—they hold for nearly all
sets of training data drawn from a fixed but unknown
distribution. When such a bound holds for a learning
algorithm it means that, unless the choice of training
sample was very unlucky, we can be confident that some
form of generalization will take place. The first results of
this kind were established by Vapnik and Chervonenkis
(1971) about 40 years ago and the measure of hypoth-
esis flexibility they introduced - the »VC dimension
(see below) — now bears their initials. A similar style
of results were obtained independently by Valiant in
1984 in the Probably Approximately Correct, or »PAC

learning framework (Valiant, 1984). These two lines of
work were drawn together by Blumer et al. (1989) and
now form the basis of what is known today as statistical
learning theory.

Details

For simplicity, we restrict our attention to generaliza-
tion bounds for binary Pclassification problems such
as the spam classification example above. In this set-
ting instances (e.g., e-mail) from a set X are associated
with labels from a set) = {-1,1} (e.g., indicating not
spam/spam) and an example z = (x,y) is a labeled
instance from Z := X x). The association of instances
to labels is assumed to be governed by some unknown
distribution P over Z.

A hypothesis h is a function that assigns labels
h(x) € Y to instances. The quality of a hypothesis
is assessed via a loss function £ : Y x Y — [0,00),
which assigns penalty £(y,y") when h predicts the label
y" = h(x) for the example (x,y). For convenience,
we will often combine the loss and hypothesis evalu-
ation on an example z = (x,y) by defining €,(z) =
2(y,h(x)). When examples are sampled from P the
expected penalty, or risk

Lp(h) =Ep[tn(2)]

can be interpreted as a measure of how well 4 models the
distribution P. A loss that is prevalent in classification is
the 0-11oss €°7'(y,y") = [y # y'] where [p] is the indica-
tor function for the predicate p. This loss simply assigns
a penalty of 1 for an incorrect prediction and 0 other-
wise. The associated 0-1 risk for is the probability the
prediction h(x) disagrees with a randomly drawn sam-
ple (x,y) from P. Unless stated otherwise, the bounds
discussed below are for the 0-1loss only but, with care,
can usually be made to hold with more general losses
also.

Once a loss is specified, the goal of a learning algo-
rithm is to produce a low-risk hypothesis based on a
finite number of examples. Formally, a learning algo-
rithm A is a procedure that takes a training sample
z=(zy,...,2,) € Z" as input and returns a hypothesis
h = A(z) with an associated empirical risk

Ly(h) = %ieh(zi).

Generalization Bounds

449

In order to relate the empirical and true risks, a com-
mon assumption made in statistical learning theory is
that the examples are drawn independently from P. In
this case, a sample z = (z;,...,2,) is a random vari-
able from the product distribution P" over Z”. Since the
sample can be of arbitrary but finite size a learning algo-
rithm can be viewed as a function A : U2, 2" - H
where H is the algorithm’s »hypothesis space.

A generalization bound typically comprises several
quantities: an empirical estimate of a hypothesis’s per-
formance L,(h); the actual (and unknown) risk of the
hypothesis Lp(h); a confidence term § € [0,1]; and
some measure of the flexibility or complexity C of the
hypotheses that can be output by learning algorithm.
The majority of the bounds found in the literature fit
the following template.

» Ageneric generalization bound: Let A be a learning algo-
rithm, P some unknown distribution over X x), and
& > 0. Then, with probability at least 1- & over randomly
drawn samples z from P”, the hypothesis h = .A(z) has
risk Lp(h) no greater than L,(h) + ¢(6, C).

Of course, there are many variations, refinements, and
improvements of the bounds presented below and not
all fit this template. The bounds discussed below are
only intended to provide a survey of some of the key
ideas and main results.

Basic bounds: The penalties €),(z;) := €(y;,h(x;)) made
by a fixed hypothesis 4 on a sample z = (zy,...,2,)
drawn from P" are independent random variables. The
law of large numbers guarantees (under some mild con-
ditions) that their mean L,(h) = L 3L en(z;) con-
verges to the true risk Lp(h) = Ep[€,(2)] for h as
the sample size increases and several inequalities from
probability theory can be used to quantify this conver-
gence. A key result is »McDiarmid’s inequality, which
can be used to bound the deviation of a function of
independent random variables from its mean. Since the
0-1 loss takes values in [0,1], applying this result to the
random variables ¢£;,(Z;) gives

P"(Lp(h) > L,(h) +¢) < exp (-2n€). (1
We can invert this and obtain an upper bound for the

true risk that will hold on a given proportion of samples.
That is, if we want Lp(h) < L,(h) + € to hold on at least

1 - § of the time on randomly drawn samples we can

1
solve 8 = exp(—2ne?) for € and obtain € = \/ 1;175 so that

Ind

—d]l>1-6. 2
o |2 (2)

P"| Lp(h) < L,(h) +
This simple bound lays the foundation for many of the
subsequent bounds discussed below and is the reason

for the ubiquity of the \/? -like terms.

A crucial observation to make about the above
bound is that while it holds for any hypothesis & it does
not hold for all h € H simultaneously. That is, the sam-
ples for which the bounds hold for h; may be completely
different to those which make the bound hold for h,.
Since a generalization bound must hold for all possi-
ble hypotheses output by a learning algorithm we need
to extend the above analysis by exploiting additional
properties of the hypothesis space H.

In the simple case when there are only finitely many

hypothesis, we use the union bound. This states that
for any distribution P and any finite or countably infi-
nite sequence of events Aj, A, ... we have P(U; A;) <
YiP(A;). For H = {hy, ..., h,} we consider the events
Zp={z¢€ Z": Lp(h) > L,(h) + €} when samples of size
n give empirical risks for h that are least € smaller than
its true risk. Using the union bound and (1) on these
events gives

p" (U Zh(n,e)) < iP” (Zn(n,€)) = m-exp(—2ne?).

heH

This is a bound on the probability of drawing a train-
ing sample from P" such that every hypothesis has a
true risk that is € larger than its empirical risk. Invert-
ing this inequality by setting § = mexp(-2ne?®) yields
the following bound.

» Finite class bound: Suppose A has finite hypothesis class
H={h,..
draws of z from P” the hypothesis h = A(z) satisfies

1
Lo(h) < Ly() +/ P10 3)
2n

It is instructive to compare this to the single hypothesis
bound in (2) and note the bound is weakened by the
additional term In |H]|.

.»hm }. Then with probability at least 1-§ over

450

Generalization Bounds

Since the union bound also holds for countable sets
of events this style of bound can be extended from
finite hypothesis classes to countable ones. To do this
requires a slight modification of the above argument
and the introduction of a distribution 7 over a count-
able hypothesis space H = {hy,h,, ...}, which is cho-
sen before any samples are seen. This distribution can
be interpreted as a prior belief or preference over the
hypotheses in #. Letting §(h) = & - 7(h) in the bound
(2) implies that for each h € H we have

1
In sa(h)
2n

<& n(h).

P"| Lp(h) > L,(h) + \

Thus, applying the countable union bound to the union
of these events over all of 7, and noting that ;.4 6 -
n(h) = § since 7 is a distribution over H, gives use the
following bound:

» Countable class bound: Suppose u is a probability dis-
tribution over a finite or countably infinite hypothesis
space ‘H. Then with probability at least 1 — § over draws
of z from P" the following bound holds forall 4 € H

In % +1n %

2n '

Although the finite and countable class bounds are
proved using very similar techniques (indeed, the for-
mer can be derived from the latter by choosing 7(h) =
Wll)’ they differ in the type of penalty they introduce
for simultaneously bounding all the hypotheses in #.
In (3), the penalty In|#| is purely a function of the size
of the class whereas in (4) the penalty In ﬁ varies with
h. These two different styles of bound can be seen as
templates for the two main classes of bounds discussed
below: the hypothesis-independent bounds of the next
section and the hypothesis-dependent bounds in the
section on PAC-Bayesian bounds. The main conceptual
leap from here is the extension of the arguments above
to non-countable hypothesis classes.

Lo(h) < L,(h) + (4)

Class complexity bounds: A key result in extending the
notion of size or complexity in the above bounds to
more general classes of hypotheses is the symmetriza-
tion lemma. Intuitively, it is based on the observation
that if the empirical risks for different samples are fre-
quently near the true risk then they will also be near

each other. Formally, it states that for any € > 0 such
that ne* > 2 we have

pP" (sup |Lp(h) - I:z(h)| > e)
heH

< opP (sup L (h) - ()| > e).)
heH 2

Thus, to obtain a bound on the difference between
empirical and true risk it suffices to bound the differ-
ence in empirical risks on two independent samples z
and z’, both drawn from P". This is useful since the max-
imum difference sup,,,, |I:z/ (h) - I:z(h)| is much easier
to handle than the difference involving Lp(h) as the
former term only evaluates losses on the points in z and
z’ while the latter takes into account the entire space Z.

To study these restricted evaluations, we define the
restriction of a function class F to the sample z by F, =
{(f(21),...,f(zn)) : f € F}. Since the empirical risk
L,(h) = 1 3L, €n(zi) only depends on the values of the
loss functions €, on samples from z we define the loss
classIL = €3, = {€y, : h € H} and consider its restriction
IL, as well as the restriction , of the hypothesis class it
is built upon. As we will see, the measures of complexity
of these two classes are closely related.

One such complexity measure is arrived at by
examining the size of a restricted function class F,
as the size of the sample z increases. The growth
function or Wshattering coefficient for the function
class F is defined as the maximum number of dis-
tinct values the vectors in F, can take given a sam-
ple of size n: S,(F) = sup,.z.|F,| In the case of
binary classification with a 0-1 loss, it is not hard to
see that the growth functions for both L and # are
equal, that is, S,(L) = S,(#), and so they can be
used interchangeably. Applying a union bound argu-
ment to (1) as in the previous bounds guarantees that
P" (supy,eqy |Lp(h) — L, (h)| > €) < 28, (H) exp(—ne?/8)
and by inversion we obtain the following generalization
bound for arbitrary hypothesis classes #:

» Growth function bound: For all § > 0, a draw of z from P”
will, with probability at least 1 — §, satisfy forall h € H

R 2InS,(H) +2In 2
Lp(h)st(h)+2\/ nSu(#)+2Ing
n

One conclusion that can be immediately drawn from
this bound is that the shattering coefficient must grow

(6)

Generalization Bounds

451

sub-exponentially for the bound to provide any mean-
ingful guarantee. If the class # is so rich that hypotheses
from it can fit all 2" possible label combinations - if
Sa(H) = 2" for all n - then the term /21n S, (H)/n > 1
and so (6) just states Lp(h) < 1. Therefore, to get non-
trivial bounds from (6) there needs to exist some value
d for which S, (#) < 2" whenever n > d.

VC dimension: This desired property of the growth
function is exactly what is captured by the »VC dimen-
sion VC(H) of a hypothesis class #. Formally, it is
defined as VC(H) = max{n ¢ N : §,(H) = 2"}
and is infinite if no finite maximum exists. Whether
or not the VC dimension is finite plays a central role
in the consistency of empirical risk minimization tech-
niques. Indeed, it is possible to show that using ERM
on a hypothesis class H is consistent if and only if
VC(H) < oo. This is partly due to Sauer’s lemma, which
shows that when a hypothesis class H has finite VC
dimension VC(H) = dy < oo its growth function
is eventually polynomial in the sample size. Specifi-
cally, for all n > dy the growth function satisfies

Sa(H) < (%)dﬂ. By substituting this result into the
Growth Function Bound (6) we obtain the following
bound, which shows how the VC dimension plays a role
that is analogous to the size a hypothesis class in the
finite case.

» VCdimension bound: Suppose A has hypothesis class H
with finite VC dimension dy;. Then with probability at
least 1 — & over draws of z from P" the hypothesis h =
A(z) satisfies

2dyIn (22) +21n 2

Lo(h) < L,(h) +2\J

There are many other bounds in the literature that are

(7)

n

based on the VC dimension. See the Recommended
Reading for pointers to these.

Rademacher averages: »Rademacher averages are
a second kind of measure of complexity for uncount-
able function classes and can be used to derive more
refined bounds than those above. These averages arise
naturally by treating as a random variable the sample-
dependent quantity Mz (z) = sup; r [Ep[f] - E,[f]].
This is just the largest difference taken over all f € F
between its true mean Ep[f] and its empirical mean

E,[f] = é Zliz:llf(z,'). For a loss class L = £3; a bound
on this maximum difference - My, (z) < B - immedi-
ately gives a generalization bound of the form Lp(h) <
L,(h) + B. Since Mx(z) is a random variable, McDi-
armid’s inequality can be used to bound its value in

. In L
terms of its expected value plus the usual \/ % term.
Applying symmetrization it can then be shown that this
expected value satisfies

Ep [Mr(2)] < E [;ug . zp (f () —f(zi))]
< 2R, (F)

where the right-hand expectation is taken over two
independent samples z,z’ ~ P" and the Rademacher
variables p,...,pn. These are independent random
variables, each with equal probability of taking the val-
ues —1 or 1, that give their name to the Rademacher
average

R,(F)=E [sup . Zpif(zi)] :
feF Mol

Intuitively, this quantity measures how well the func-
tions in F can be chosen to align with randomly chosen
labels p;. The Rademacher averages for the loss class L
and the hypothesis class H are closely related. For 0-1
loss, it can be shown they satisfy R, (L) = 1R, (H).

Putting all the above steps together gives the follow-
ing bounds.

» Rademacher bound: Suppose A has hypothesis class #.
Then with probability at least 1 — § over draws of z from
P" the hypothesis h = A(Z) satisfies

. Ini
Lp(h) < L,(h) + Ry(H) +\/275. (8)

This bound is qualitatively different to the Growth
Function and VC bounds above as the Rademacher
average term is distribution-dependent whereas the
other complexity terms are purely a function of
the hypothesis space. Indeed, it is possible to bound
the Rademacher average in terms of the VC dimension
and obtain the VC bound (7) from (8). Furthermore,
the Rademacher average is closely related to the mini-
mum empirical risk via R, (H) = 1-2E[infpez; Ly p (h)]
where Ly , (h) is the empirical risk of / for the randomly
labeled sample z = ((x1,p1),...,(%u, pn)). Thus, in

452

Generalization Bounds

principle, R, (#) could be estimated for a given learning
problem using standard ERM methods.

The Rademacher bound can be further refined so
that the complexity term is data-dependent rather than
distribution-dependent. This is done by noting that the
Rademacher average R, (F) = E [R,(F)] where R,(F)
is the empirical Rademacher average for F conditioned
on the sample z. Applying McDiarmid’s inequality to
the difference between R,(F) and its mean gives a
sample-dependent bound:

» Empirical Rademacher bound: Under the same condi-
tions as the Rademacher bound, the following holds
with probability 1 — §:

. . ln%
Lp(h) < L,(h) +R,(H) +3 T 9)

PAC-Bayesian bounds: All the bounds in the previous
section provide bounds on deterministic hypotheses,
which include complexity terms that are functions of
the entire hypothesis space. PAC-Bayesian bounds dif-
fer from these in two ways: they provide bounds on
nondeterministic hypotheses — labels may be predicted
for instances stochastically; and their complexity terms
are hypothesis-dependent. The term “Bayesian” given to
these bounds refers to the use of a distribution over
hypotheses that is used to define the complexity term.
This distribution can be interpreted as a prior belief over
the efficacy of each hypothesis before any observations
are made.

Nondeterministic hypotheses are modeled by assum-
ing that a distribution y over # is used to randomly
draw a deterministic hypothesis h € H to predict h(x)
each time a new instance x is seen. Such a strategy is
called a Gibbs hypothesis for u. Since its behavior is
defined by the distribution y, we will abuse our nota-
tion slightly and define its loss on the example z to
be €,(z) := Ep., [€n(2)]. Similarly, the true risk and
empirical risk for a Gibbs hypothesis are, respectively,
defined to be Lp(u) = Ej.,[Lp(h)] and L,(p) :=
Epep [I:z (h)] . As with the earlier generalization bounds,
the aim is to provide guarantees about the difference
between Lp(u) and L,(u). In the case of 0-1 loss,
p := Lp(u) € [0,1] is just the probability of the
Gibbs hypothesis for y misclassifying an example and
g := L,(#) € [0,1] can be thought of as an estimate
of p. However, unlike the earlier bounds on the differ-
ence between the true and estimated risk, PAC-Bayesian

bounds are expressed in terms the Kullback-Leibler
(KL) divergence. For the values p, q € [0,1] this is defined
askl(q|p) = qln %+(1—q) In i:—g and for distributions
and 7 over the hypothesis space H we write KL(y|) :=
i % du. Using these definitions, the most common
PAC-Bayesian bound states the following.

» Theorem (PAC-Bayesian bound): For all choices of the dis-
tribution 7 over H made prior to seeing any examples,
the Gibbs hypothesis defined by y satisfies

(10)

kl(LP(/l),lA/z(‘u)) < W

» with probability at least 1 — & over draws of z from P".

This says that the difference (as measured by kl) between
the true and empirical risk for the Gibbs hypothesis

based on p is controlled by two terms: a complexity term
KL(p|m)
n

and a sampling term lnr:TH , both of which con-
verge to zero as n increases. To make connections with
the previous bounds more apparent, we can weaken (10)
using the inequality kl(g[p) > 2(p — q)* to get the fol-

lowing bound that holds under the same assumptions:

KL(u|7) +1n ”T“
2n '

Lp(u) < Ly () +\/

The sampling term is similar to the ubiquitous estima-
tion penalty in the earlier bounds but with an additional
In(n + 1)/n . The complexity term is a measure of the
complexity of the Gibbs hypothesis for y relative to the
distribution 7. Intuitively, KL(:||7r) can be thought of
as a parametrized family of complexity measures where
hypotheses from a region where 7 is large are “cheap”
and those where 7 is small are “expensive”. Informa-
tion theoretically, it is the expected number of extra bits
required to code hypotheses drawn from y using a code
based on 7 instead of a code based on p. It is for these
reasons the PAC-Bayes bound is said to demonstrate
the importance of choosing a good prior. If the Gibbs
hypothesis g, which minimizes L,(u) is also “close” to
7 then the bound will be tight.

Unlike the other bounds discussed above, PAC-
Bayesian bounds are in terms of the complexity of single
meta-classifiers rather than the complexity of classes.
Furthermore, for specific base hypothesis classes such
as margin classifiers used by SVMs it is possible to
get hypothesis-specific bounds via the PAC-Bayesian

Generalization Bounds

453

bounds. These are typically much tighter than the VC
or Rademacher bounds.

Other bounds: While the above bounds are land-
marks in statistical learning theory there is obviously
much more territory that has not been covered here.
For starters, the VC bounds for classification can
be refined by using more sophisticated results from
empirical process theory such as the Bernstein and
Variance-based bounds. These are discussed in Sect. 5 of
(Boucheron et al., 2005). There are also other dis-
tribution- and sample-dependent complexity measures
that are motivated differently to Rademacher aver-
ages. For example, the VC entropy (see Sect. 4.5 of
(Bousquet et al.,, 2004)) is a distribution-dependent
measure obtained by averaging |F,| with respect to the
sample distribution rather than taking supremum in the
definition of the shattering coefficient.

Moving beyond classification, bounds for regression
problems have been studied in depth and have similar
properties to those for classification. These bounds are
obtained by essentially discretizing the function spaces.
The growth function is replaced by what is known
as a covering number but the essence of the bounds
remain the same. The reader is referred to (Herbrich and
Williamson, 2002) for a brief discussion and (Anthony
and Bartlett, 1999) for more detail.

There are a variety of bounds that, unlike those
above, are algorithm-specific. For example, the reg-
ularized empirical risk minimization performed by
SVMs has been analyzed within an algorithmic stabil-
ity framework. As discussed in Boucheron et al. (2005)
and Herbrich and Williamson (2002), hypotheses are
considered stable if their predictions are not varied
too much when a single training example is perturbed.
Two other algorithm-dependent frameworks include
the luckiness and compression frameworks, both sum-
marized in Herbrich and Williamson (2002). The for-
mer gives bounds in terms of an a priori measure of
luckiness — how well a training sample aligns with biases
encoded in an algorithm - while the latter considers
algorithms, like SVMs, which base hypotheses on key
examples within a training sample.

Recently, there has been work on a type of
algorithm-dependent, relative bound called reductions
(see Beygelzimer et al., 2008 for an overview). By trans-
forming inputs and outputs for one type of problem
(e.g., probability estimation) into a different type of

problem (e.g., classification), bounds for the former
can be given in terms of bounds for the latter while
making very few assumptions. This opens up a variety
of avenues for applying existing results to new learn-
ing tasks.

Cross References

» Classification

»Empirical Risk Minimization
» Hypothesis Space

»Loss

»PAC Learning

»Regression

»Regularization

» Structural Risk Minimization
» VC Dimension

Recommended Readings

As mentioned above, the uniform convergence bounds by Vapnik
and Chervonenkis (1971) and the PAC framework of Valiant (1984)
were the first generalization bounds for statistical learning. Ideas
from both were synthesized and extended by Blumer et al. (1989).
The book by Kearns and Vazirani (1994) provides a good overview
of the early PAC-style bounds while Vapnik’s comprehensive book
(Vapnik, 1998), and Antony and Bartlett’s book (1999) cover clas-
sification and regression bounds involving the VC dimension.
Rademacher averages were first considered as an alternative to VC
dimension in the context of learning theory by Koltchinskii and
Panchenko (2001) and were refined and extended by Bartlett and
Mendelson (2003) who provide a readable overview. Early PAC-
Bayesian bounds were established by McAllester (1999) based on
an earlier PAC analysis of Bayesian estimators by Shawe-Taylor
and Williamson (1997). Applications of the PAC-Bayesian bound
to SVMs are discussed in Langford’s tutorial on prediction the-
ory (Langford, 2005) and recent paper by Banerjee (2006) pro-
vides an information theoretic motivation, a simple proof of the
bound in (10), as well as connections with similar bounds in online
learning.
There are several well-written surveys of generalization bounds
and learning theory in general. Herbrich and Williamson (2002)
presenta unified view of VC, compression, luckiness, PAC-Bayesian,
and stability bounds. In a very readable introduction to statisti-
cal learning theory, Bousquet et al. (2004) provide good intuition
and concise proofs for all but the PAC-Bayesian bounds presented
above. That introduction is a good companion for the excellent but
more technical survey by Boucheron et al. (2005) based on tools
from the theory of empirical processes. The latter paper also pro-
vides a wealth of further references and a concise history of the
development of main techniques in statistical learning theory.
Anthony, M., & Bartlett, P. L. (1999). Neural network learning: The-
oretical foundations. Cambridge: Cambridge University Press.
Banerjee, A. (2006). On Bayesian bounds. ICML ’06: Proceedings of
the 23rd International Conference on Machine learning, Pitts-
burgh, pp. 81-88.

454

Generalization Performance

Bartlett, P. L., & Mendelson, S. (2003). Rademacher and Gaus-
sian complexities: risk bounds and structural results. Journal
of Machine Learning Research, 3, 463-482.

Beygelzimer, A., Langford, J., & Zadrozny, B. (2008). Machine learn-
ing techniques - reductions between prediction quality metrics.
In Liu, Zhen; Xia, Cathy H. (Eds.) Performance modeling and
engineering (pp. 3-28). Springer.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1989).
Learnability and the Vapnik-Chervonenkis dimension. Journal
of the ACM (JACM), 36(4), 929-965.

Boucheron, S., Bousquet, O., & Lugosi, G. (2005). Theory of classi-
fication: A survey of some recent advances. ESAIM Probability
and statistics, 9, 323-375.

Bousquet, O., Boucheron, S., & Lugosi, G. (2004). Introduction
to statistical learning theory, volume 3176 of lecture notes in
artificial intelligence (pp. 169-207). Berlin: Springer.

Herbrich, R., & Williamson, R. C. (2002). Learning and generaliza-
tion: Theory and bounds. In M. Arbib (Ed.), Handbook of brain
theory and neural networks (2nd ed.). Cambridge: MIT Press.

Kearns, M. J., & Vazirani, U. V. (1994). An introduction to computa-
tional learning theory. Cambridge: MIT Press.

Koltchinskii, V. (2001). Rademacher penalties and structural risk
minimization. IEEE Transactions on Information Theory, 47(5),
1902-1914.

Langford, J. (2005). Tutorial on practical prediction theory for clas-
sification. Journal of Machine Learning Research, 6(1), 273-306.

McAllester, D. A. (1999). Some PAC-Bayesian theorems. Machine
Learning, 37(3), 355-363.

Shawe-Taylor, J., & Williamson, R. C. (1997). A PAC analysis of a
Bayesian estimator. Proceedings of the Tenth Annual Conference
on Computational Learning Theory, ACM, p. 7.

Valiant, L. G. (1984). A theory of the learnable. Communications of
the ACM, 27(11), 1142.

Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.

Vapnik, V. N, & Chervonenkis, A. Y., (1971). On the uniform con-
vergence of relative frequencies of events to their probabilities.
Theory of Probability and Its Applications, 16(2), 264-280.

|
Generalization Performance

The generalization performance of a learning algorithm
refers to the performance on »out-of-sample data of the
»models learned by the algorithm.

Cross References
» Algorithm Evaluation

|
Generalized Delta Rule

» Backpropagation

! General-to-Specific Search

When searching a hypothesis space, a general-to-
specific search starts from the most general hypoth-
esis and expands the search by specialization. See
» Learning as Search.

! Generative and Discriminative
Learning

BIN L1u, GEOFFREY 1. WEBB
Monash University

Definition

Generative learning refers alternatively to any classi-
fication learning process that classifies by using an
estimate of the joint probability P(y, x) or to any clas-
sification learning process that classifies by using esti-
mates of the prior probability P(y) and the conditional
probability P(x | y) (Bishop, 2007; Jaakkola & Haussler,
1999; Jaakkola, Meila & Jebara, 1999; Lasserre, Bishop &
Minka, 2006; Ng & Jordan, 2002), where y is a class and
x is a description of an object to be classified. Generative
learning contrasts with discriminative learning in which
a model or estimate of P(y | x) is formed without ref-
erence to an explicit estimate of any of P(y, x), P(x) or
P(x|y).

It is also common to categorize as discriminative
approaches based on a decision function that directly
maps from input x onto the output y (such as support
vector machines, neural networks, and decision trees),
where the decision risk is minimized without estimation
of P(y,x), P(x| y) or P(y | x) (Jaakkola & Haussler, 1999).

The standard exemplar of generative learning is
naive Bayes and of discriminative learning, »logistic
regression. Another important contrasting pair is the
generative hidden Markov model and discriminative
conditional random field.

It is widely accepted that generative learning works
well when samples are rare while discriminative learn-
ing has better asymptotic error performance (Ng &
Jordan, 2002).

Generative Learning

455

Motivation and Background

Efron (1975) provides an early examination of the gen-
erative/discriminative distinction. Efron performs an
empirical comparison of the efficiency of the gen-
erative linear discriminant analysis (LDA) and dis-
criminative logistic regression. His results show that
logistic regression has 30% less efficiency than LDA,
which means the discriminative approach is 30% slower
to reach the asymptotic error than the generative
approach.

Ng et al. (2002) give a theoretical discussion of the
efficiency of generative naive Bayes and discrimina-
tive logistic regression. Their result shows that logis-
tic regression converges toward its asymptotic error in
order n samples while naive Bayes converges in order
log n samples. While logistic regression converges much
slower than naive Bayes, it has lower asymptotic error
than naive Bayes. These results suggest that it is desir-
able to use a generative approach when training data is
scarce and to use a discriminative approach when there
is enough training data.

Recent research into the generative/discriminative
learning distinction has concentrated on the area of
hybrids of generative and discriminative learning, as
well as generative learning and discriminative learning
in structured data learning or semi-supervised learning
context.

In hybrid approaches, researchers seek to obtain
the merits of both generative learning and discrimina-
tive learning. Some examples include the Fisher ker-
nel for discriminative learning (Jaakkola & Haussler,
1999), max-ent discriminative learning (Jaakkola, Meila
& Jebara, 1999), and principled hybrids of generative
and discriminative models (Lasserre, Bishop & Minka,
2006).

In structured data learning, the output data have
dependent relationships. As an example of genera-
tive learning, the hidden Markov models are used
in structured data problems which need sequential
decisions. The discriminative analog is the conditional
random field models. Another example of discrimina-
tively structured learning is Max-margin Markov net-
works (Taskar, Guestrin & Koller, 2004).

In semi-supervised learning, co-training and mul-
tiview learning are usually applied to generative learn-
ing (Blum & Mitchell, 1998). It is less straightfor-
ward to apply semi-supervised learning in traditional

discriminative learning, since P(y| x) is estimated by
ignoring P(x). Examples of semi-supervised learning
methods in discriminative learning include transduc-
tive SVM, Gaussian processes, information regulariza-
tion, and graph-based methods (Chapelle, Scholkopf &
Zien, 2006).

Cross References
» Evolutionary Feature Selection and Construction

Recommended Reading

Bishop, C. M. (2007). Pattern recognition and machine learning.
Springer.

Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled
data with co-training. Proceedings of the eleventh annual con-
ference on Computational learning theory, Madison, Wisconsin,
USA. New York: ACM.

Chapelle, O., Schélkopf, B., & Zien, A. (2006). Semi-supervised
learning. Cambridge: The MIT Press.

Efron, B. (1975). The efficiency of logistic regression compared to
normal discriminant analysis. Journal of the American Statisti-
cal Association, 70(352), 892-898.

Jaakkola, T. S., & Haussler, D. (1999). Exploiting generative mod-
els in discriminative classifiers. Advances in neural information
processing systems, 11.

Jaakkola, T., Meila, M., & Jebara, T. (1999). Maximum entropy
discrimination. Advances in neural information processing sys-
tems, 12.

Lasserre, J. A., Bishop, C. M., & Minka, T. P. (2006). Princi-
pled hybrids of generative and discriminative models. IEEE
Conference on Computer Vision and Pattern Recognition,
New York.

Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. Generative
classifiers: A comparison of logistic regression and naive Bayes.
Advances in neural information processing systems, 14.

Taskar, B., Guestrin, C., & Koller, D. (2004). Max-margin
Markov networks. Advances in neural information processing
systems, 16.

' Generative Learning

Definition

Generative learning refers alternatively to any classifica-
tion learning process that classifies by using an estimate
of the joint probability P(y, x) or to any classification
learning process that classifies by using estimates of the
prior probability P(y) and the conditional probability

456

Genetic and Evolutionary Algorithms

P(x | y), where y is a class and x is a description of an
object to be classified. Given such models or estimates
itis possible to generate synthetic objects from the joint
distribution. Generative learning contrasts to discrimi-
native learning in which a model or estimate of P(y | x) is
formed without reference to an explicit estimate of any
of P(x), P(y, x), or P(x | y).

Cross References
» Generative and Discriminative Learning

" Genetic and Evolutionary
Algorithms

CLAUDE SAMMUT
The University of New South Wales
Sydney, Australia

Definitions

There are many variations of genetic algorithms (GA).
Here, we describe a simple scheme to introduce some of
the key terms in genetic and evolutionary algorithms.
See the main entry on »Evolutionary Algorithms for
references to specific methods.

In genetic learning, we assume that there is a popu-
lation of individuals, each of which represents a candi-
date problem solver for a given task. GAs can be thought
of as a family of general purpose search methods that
are capable of solving a broad range of problems from
optimization and scheduling to robot control. Like evo-
lution, genetic algorithms test each individual from the
population and only the fittest survive to reproduce for
the next generation. The algorithm creates new genera-
tions until at least one individual is found that can solve
the problem adequately.

Each problem solver is a chromosome. A position,
or set of positions in a chromosome is called a gene.
The possible values (from a fixed set of symbols) of a
gene are known as alleles. For example, a simple genetic
algorithm may define the set of symbols to be {0, 1}, and
chromosome lengths are fixed. The most critical prob-
lem in applying a genetic algorithm is in finding a suit-
able encoding of the examples in the problem domain
to a chromosome. A good choice of representation will

make the search easier by limiting the size of the search
space. A poor choice will result in a large search space.
Choosing the size of the population can be problematic
since a small population size provides an insufficient
sample over the space of solutions for a problem and
large population requires extensive evaluation and will
be slow.

Each iteration in a genetic algorithm is called a gen-
eration. Each chromosome in a population is used to
solve a problem. Its performance is evaluated and the
chromosome is given a rating of fitness. The popula-
tion is also given an overall fitness rating based on the
performance of its members. The fitness value indi-
cates how close a chromosome or population is to the
required solution.

New sets of chromosomes are produced from one
generation to the next. Reproduction takes place when
selected chromosomes from one generation are recom-
bined with others to form chromosomes for the next
generation. The new ones are called offspring. Selection
of chromosomes for reproduction is based on their fit-
ness values. The average fitness of the population may
also be calculated at the end of each generation. The
strategy must be modified if too few or too many chro-
mosomes survive. For example, at least 10% and at most
60% must survive.

Genetic Operators

Operators that recombine the selected chromosomes
are called genetic operators. Two common operators are
crossover and mutation. Crossover exchanges portions
of a pair of chromosomes at a randomly chosen point
called the crossover point. Some Implementations have
more than one crossover point. For example, if there are
two chromosomes, X and Y:

X =100101011, Y =1110 10010

and the crossover point is after position 4, the resulting
offspring are:

01 = 100110010, O2 = 1110 01011

Offspring produced by crossover cannot contain infor-
mation that is not already in the population, so an addi-
tional operator, mutation, is required. Mutation gener-
ates an offspring by randomly changing the values of

Gini Coefficient

457

genes at one or more gene positions of a selected chro-
mosome. For example, if the following chromosome,

Z =100101011

is mutated at positions 2, 4, and 9, then the resulting
offspring is:
O = 110001010

The number of offspring produced for each new gen-
eration depends on how members are introduced so as
to maintain a fixed population size. In a pure replace-
ment strategy, the whole population is replaced by a new
one. In an elitist strategy, a proportion of the population
survives to the next generation.

Cross References
» Evolutionary Algorithms

[
Genetic Attribute Construction

» Evolutionary Feature Selection and Construction

I . .
Genetic Clustering

» Evolutionary Clustering

[
Genetic Feature Selection

» Evolutionary Feature Selection and Construction

" Genetic Grouping

»Evolutionary Clustering

[
Genetic Neural Networks

» Neuroevolution

" Genetic Programming

MOSHE SIPPER
Ben-Gurion University, Beer-Sheva, Israel

Genetic Programming is a subclass of »evolutionary
algorithms, wherein a population of individual pro-
grams is evolved. The main mechanism behind genetic
programming is that of a »generic algorithm, namely,
the repeated cycling through four operations applied
to the entire population: evaluate-select-crossover-
mutate. Starting with an initial population of randomly
generated programs, each individual is evaluated in the
domain environment and assigned a fitness value rep-
resenting how well the individual solves the problem
at hand. Being randomly generated, the first-generation
individuals usually exhibit poor performance. However,
some individuals are better than others, that is, as in
nature, variability exists, and through the mechanism
of selection, these have a higher probability of being
selected to parent the next generation. The size of the
population is finite and usually constant.

See »-Evolutionary Games for a more detailed expla-
nation of genetic programming.

[. . .
Genetics-Based Machine Learning

> Classifier Systems

! Gibbs Sampling

Gibbs Sampling is a heuristic inference algorithm
for »Bayesian networks. See »Graphical Models for
details.

[
Gini Coefficient

The Gini coeflicient is an empirical measure of classi-
fication performance based on the area under an ROC
curve (AUC). Attributed to the Italian statistician Cor-
rado Gini (1884-1965), it can be calculated as 2- AUC -1

458

Gram Matrix

and thus takes values in the interval [-1,1], where 1indi-
cates perfect ranking performance and -1 indicates that
all negatives are ranked before all positives. See »ROC
Analysis.

! Gram Matrix

» Kernel Matrix

' Grammar Learning

» Grammatical Inference

|
Grammatical Inference

LORENZA SAITTA!, MICHELE SEBAG?
"Universita del Piemonte Orientale, Alessandria, Italy
2CNRS - INRIA - Université Paris-Sud, Orsay, France

Synonyms
Grammatical inference, Grammar learning

Definition

Grammatical inference is concerned with inferring
grammars from positive (and possibly negative) exam-
ples (Angluin, 1978; Korfiatis & Paliouras, 2008;
Sakakibara, 2005). A context-free grammar (CFG) G
(equivalent to a push-down finite-state automaton), is
described by a four-tuple (Q,&,6,%):

e X is the alphabet of terminal symbols, upon which
the grammar is defined.

e The pair (Q, &) defines a graph, where Q is the set of
nodes (states), and £ is the set of edges (production
rules). Q includes one starting node qo and a set Qf
(QrcQ) of final or accepting nodes.

e Every edge in & is labelled by one or several letters
in ¥, expressed through mapping & : € ~ 2*.

e Let £(G) denote the language associated to the
grammar. Each string s in £(G) is generated along a
random walk in the graph, starting in qo with an ini-
tially empty s. Upon traversing edge e, one symbol
from &(e) is concatenated to s. The walk ends upon
reaching a final node (e € Q).

A CFG is determinist iff all pairs of edges (g,q’)
and (q,q9") (q9'#4q") bear different labels (8(g,q4") N
8(q.9") = 2).

One generalizes a given CFG by applying one or
several operators, among the following: (1) introduc-
ing additional nodes and edges; (2) turning a node into
an accepting one; (3) merging two nodes g and ¢q’. In
the latter case, some non-determinism can be intro-
duced (if some edges (g,7) and (g, ") have label(s) in
common); enforcing a deterministic generalization is
done using the recursive determinisation operator (e.g.,
merging nodes r and r').

In general, grammatical inference proceeds as fol-
lows (Lang, Pearlmutter, & Price, 1998; Oncina &
Garcia, 1992). Let S be the set of positive examples,
strings on alphabet X. The prefix tree acceptor (PTA),
a most specific generalization of S, is constructed by
associating to each character of every string a distinct
node, and applying the determinisation operator. This
PTA is thereafter iteratively generalized by merging a
pair of nodes. Well known grammar learners are RpN1
(Oncina & Garcia, 1992) and BLUE-FRINGE (Lang et
al., 1998). RpNI uses a depth first search strategy, and
merges the pair of nodes which are closest to the start
node, such that their deterministic generalization does
not cover any negative example. BLUE-FRINGE uses a
beam search from a candidate list, selecting the pair of
nodes to be merged after the evidence-driven state merg-
ing (EDSM) criterion, i.e., such that their generalization
involves a minimal number of final states.

Recommended Reading

Angluin D. (1978). On the complexity of minimum inference of
regular sets. Information and Control, 39, 337-350.

Korfiatis, G., & Paliouras, G. (2008). Modeling web navogation using
grammatical inference. Applied Artificial Intelligence, 22(1-2),
116-138.

Lang, K. J., Pearlmutter, B. A., & Price, R. A. (1998). Results
of the abbadingo one dfa learning competition and a new
evidence-driven state merging algorithm. In ICGI ’98: Proceed-
ings of the 4th international colloquium on grammatical inference
(pp. 1-12). Berlin: Springer.

Oncina, J., & Garcia, P. (1992). Inferring regular languages in poly-
nomial update time. In Pattern recognition and image analysis,
(Vol. 1, pp. 49-61). World Scientific.

Sakakibara, Y. (2005). Grammatical inference in bioinformatics.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(7), 1051-1062.

Graph Clustering

459

! Grammatical Tagging

»POS Tagging

! Graph Clustering

CHARU C. AGGARWAL
IBM T. J. Watson Research Center, Hawthorne,
NY, USA

Synonyms
Minimum cuts; Network clustering; Spectral clustering;
Structured data clustering

Definition

Graph clustering refers to »clustering of data in the
form of graphs. Two distinct forms of clustering can
be performed on graph data. Vertex clustering seeks to
cluster the nodes of the graph into groups of densely
connected regions based on either edge weights or edge
distances. The second form of graph clustering treats the
graphs as the objects to be clustered and clusters these
objects on the basis of similarity. The second approach
is often encountered in the context of structured or
XML data.

Motivation and Background

Graph clustering is a form of »graph mining that is use-
ful in a number of practical applications including mar-
keting, customer segmentation, congestion detection,
facility location, and XML data integration (Lee, Hsu,
Yang, & Yang, 2002). The graph clustering problems are
typically defined into two categories:

o Node clustering algorithms: Node clustering algo-
rithms are generalizations of multidimensional clus-
tering algorithms in which we use functions of the
multidimensional data points in order to define
the distances. In the case of graph clustering algo-
rithms, we associate numerical values with the edges.
These numerical values need not satisfy traditional
properties of distance functions such as the trian-
gle inequality. We use these distance values in order

to create clusters of nodes. We note that the numer-
ical value associated with a given node may either
be a distance value or a similarity value. Corre-
spondingly, the objective function associated with
the partitioning may either be minimized or maxi-
mized. We note that the problem of minimizing the
intercluster similarity for a fixed number of clusters
essentially reduces to the problem of graph parti-
tioning or the minimum multiway cut problem. This
is also referred to the problem of mining dense
graphs and pseudo-cliques. Recently, the problem
has also been studied in the database literature as
that of quasi-clique determination. In this problem,
we determine groups of nodes which are “almost
cliques”” In other words, an edge exists between any
pair of nodes in the set with a high probability.
A closely related problem is that of determining shin-
gles (Gibson, Kumar, & Tomkins, 2005). Shingles
are defined as those subgraphs which have a large
number of common links. This is particularly use-
ful for massive graphs which contain a large num-
ber of nodes. In such cases, a min-hash approach
(Gibson et al., 2005) can be used in order to sum-
marize the structural behavior of the underlying
graph.

e Graph clustering algorithms: In this case, we have
a (possibly large) number of graphs which need to
be clustered based on their underlying structural
behavior. This problem is challenging because of
the need to match the structures of the underly-
ing graphs and use these structures for clustering
purposes. Such algorithms are discussed both in
the context of classical graph data sets as well as
semistructured data. In the case of semistructured
data, the problem arises in the context of a large
number of documents which need to be clustered on
the basis of the underlying structure and attributes.
It has been shown by Aggarwal, Ta, Feng, Wang,
and Zaki (2007) that the use of the underlying doc-
ument structure leads to significantly more effective
algorithms.

This chapter will discuss the different kinds of clustering
algorithms and their applications. Each section will dis-
cuss a particular class of clustering algorithms and the
different approaches which are commonly used for this
class.

460

Graph Clustering

Graph Clustering as Minimum Cut
The graph clustering problem can be related to the
minimum-cut and graph partitioning problems. In this
case, it is assumed that the underlying graphs have
weights on the edges. It is desired to partition the graphs
in such a way so as to minimize the weights of the
edges across the partitions. In general, we would like to
partition the graphs into k groups of nodes. However,
since the special case k = 2 is efficiently solvable, we
would like to first provide a special discussion for this
case. This version is polynomially solvable, since it is the
mathematical dual of the maximum-flow problem. This
problem is also referred to as the minimum-cut problem.
The minimum-cut problem is defined as follows.
Consider a graph G = (N, A) with node set N and edge
set A. The node set N contains the source s and sink ¢.
Eachedge (i,j) € A hasaweightassociated with it which
is denoted by u;;. We note that the edges may be either
undirected or directed, though the undirected case is
often much more relevant for connectivity applications.
We would like to partition the node set N into two
groups Sand N-S. The set of edges such that one end lies
in S and the other lies in N — S is denoted by C(S, N - S).
We would like to partition the node set N into two
sets S and N — S, such that the sum of the weights in
C(S, N -S) is minimized. In other words, we would like
to minimize ¥ (;jyec(s,N-s) %ij- This is the unrestricted
version of the minimum-cut problem. We will examine
two variations of the minimum-cut problem:

e We wish to determine the global minimum s-t cut
with no restrictions on the membership of nodes to
different partitions.

e Wewish to determine the minimum s-f cut, in which
one partition contains the source node s and the
other partition contains the sink node t.

It is easy to see that the former problem can be solved
by using repeated applications of the latter algorithm.
By fixing s and choosing different values of the sink ¢,
it can be shown that the global minimum cut may be
effectively determined.

It turns out that the maximum-flow problem is the
mathematical dual of the minimum-cut problem. In the
maximum-flow problem, we assume that the weight u;;
is a capacity of the edge (i,j). Each edge is allowed to

have a flow x;; which is at most equal to the capacity u;;.
Each node other than the source s and sink ¢ is assumed
to satisfy the flow conservation property. In other words,
for each node i € N we have

> X=X
ji(ij)eA J:Gsi)eA

We would like to maximize the total flow originat-
ing from the source and reaching the sink #, subject
to the above constraints. The maximum-flow problem
is solved with the use of a variety of augmenting path
and preflow push algorithms. Details of different kinds of
algorithms may be found in the work by Ahuja, Orlin,
and Magnanti (1992).

A closely related problem to the minimum s-t
cut problem is that of determining a global mini-
mum cut in an undirected graph. This particular case
is more efficient than that of finding the s-t mini-
mum cut. One way of determining a minimum cut is
by using a contraction-based edge-sampling approach.
While the previous technique is applicable to both
the directed and undirected versions of the prob-
lem, the contraction-based approach is applicable only
to the undirected version of the problem. Further-
more, the contraction-based approach is applicable
only for the case in which the weight of each edge is
u;; = 1. While the method can easily be extended to the
weighted version by varying the edge-sampling proba-
bility, the polynomial running time bounds discussed
by Tsay, Lovejoy, and Karger (1999) do not apply to
this case. The contraction approach is a probabilistic
technique in which we successively sample the edges
in order to collapse nodes into larger sets of nodes. By
successively sampling different sequences of edges and
picking the optimum value (Tsay et al., 1999), it is possi-
ble to determine a global minimum cut. The broad idea
of the contraction-based approach is as follows. We pick
an edge randomly in the graph and contract its two end
points into a single node. We remove all the self-loops
which are created as a result of the contraction. We may
also create some parallel edges, which are allowed to
remain, since they influence the sampling probability
(Alternatively, we may replace parallel edgesby a single
edge of weight which is equal to the number of parallel
edges. We use this weight in order to bias the sampling
process.) of contractions. The process of contraction is
repeated until we are left with two nodes. We note that

Graph Clustering

461

each of this pair of “super-nodes” corresponds to a set
of nodes in the original data. These two sets of nodes
provide us with the final minimum cut. We note that
the minimum cut will survive in this approach, if none
of the edges in the minimum cut are sampled during
the contraction. It has been shown by Tsay et al. that
by using repeated contraction of the graph to a size of
\/nnodes, it is possible to obtain a correct solution with
high probability in O(n?*) time.

Graph Clustering as Multiway Graph
Partitioning

The multiway graph partitioning problem is significantly
more difficult, and is NP-hard (Kernighan & Lin, 1970).
In this case, we wish to partition a graph into k > 2 com-
ponents, so that the total weight of the edges whose ends
lie in different partitions is minimized. A well-known
technique for graph partitioning is the Kerninghan-
Lin algorithm (Kernighan & Lin, 1970). This classical
algorithm is based on hill climbing (or more generally
neighborhood-search technique) for determining the
optimal graph partitioning. Initially, we start off with a
random cut of the graph. In each iteration, we exchange
a pair of vertices in two partitions to see if the overall
cut value is reduced. In the event that the cut value is
reduced, then the interchange is performed. Otherwise,
we pick another pair of vertices in order to perform
the interchange. This process is repeated until we con-
verge to a optimal solution. We note that this optimum
may not be a global optimum, but may only be a local
optimum of the underlying data. The main variation
in different versions of the Kerninghan-Lin algorithm
is the policy which is used for performing the inter-
changes on the vertices. Some examples of strategies
which may be used in order to perform the interchange
are as follows:

e We randomly pick a pair of vertices and perform the
interchange, if it improves the underlying solution
quality.

o We test all possible vertex-pair interchanges (or a
sample of possible interchanges), and pick the inter-
change which improves the solution by the greatest
amount.

e A k-interchange is one in which a sequence of k
interchanges are performed at one time. We can test

any k-interchange and perform it, if it improves the
underlying solution quality.

e We can pick the optimal k-interchange from a sam-
ple of possibilities.

We note that the use of more sophisticated strategies
allows a better improvement in the objective function
for each interchange, but also requires more time for
each interchange. For example, the determination of an
optimal k-interchange requires much more time than
a straightforward interchange. This is a natural trade-
oft which may work out differently depending upon
the nature of the application at hand. Furthermore, the
choice of the policy also affects the likelihood of get-
ting stuck at a local optimum. For example, the use of
k-interchange techniques are far less likely to result in
local optimum for larger values of k. In fact, by choos-
ing the best interchange across all possible values of k
it is possible to ensure that a global optimum is always
reached. On the other hand, it is increasingly difficult
to implement the algorithm efficiently with increasing
value of k. This is because the time complexity of the
interchange increases exponentially with the value of k.

Graph Clustering with k-Means

Two well-known (and related) techniques for cluster-
ing in the context of multidimensional data (Jain &
Dubes, 1998) are the k-medoid and k-means algorithms.
In the k-medoid algorithm (for multidimensional data),
we sample a small number of points from the original
data as seeds and assign every other data point from
the clusters to the closest of these seeds. The close-
ness may be defined based on a user-defined objec-
tive function. The objective function for the cluster-
ing is defined as the sum of the corresponding dis-
tances of data points to the corresponding seeds. In
the next iteration, the algorithm interchanges one of
the seeds for another randomly selected seed from the
data, and checks if the quality of the objective func-
tion improves upon performing the interchange. If this
is indeed the case, then the interchange is accepted.
Otherwise, we do not accept the interchange and try
another sample interchange. This process is repeated,
until the objective function does not improve over a
predefined number of interchanges. A closely related
method is the k-means method. The main difference

462

Graph Clustering

with the k-medoid method is that we do not use rep-
resentative points from the original data after the first
iteration of picking the original seeds. In subsequent
iterations, we use the centroid of each cluster as the seed
set for the next iteration. This process is repeated until
the cluster membership stabilizes.

A method has been proposed by Rattigan, Maier,
and Jensen (2007), which uses the characteristics of
both the k-means and k-medoids algorithms. As in
the case of the conventional partitioning algorithms,
it picks k graph nodes as seeds. The main differences
from the conventional algorithms are in terms of com-
putation of distances (for assignment purposes), and in
determination of subsequent seeds. A natural distance
function for graphs is the geodesic distance, or the small-
est number of hops between a pair of nodes. In order to
determine the seed set for the next iteration, we com-
pute the local closeness centrality for each cluster, and
use the corresponding node as the sample seed. Thus,
while this algorithm continues to use seeds from the
original data set (as in the k-medoids algorithm), it uses
intuitive ideas from the k-means algorithms in order to
determine the identity of these seeds.

Graph Clustering with the Spectral Method
Eigenvector techniques are often used in multidimen-
sional data in order to determine the underlying cor-
relation structure in the data. It is natural to question
as to whether such techniques can also be used for the
more general case of graph data. It turns out that this is
indeed possible with the use of a method called spectral
clustering.

In the spectral clustering method, we make use of
the node-node adjacency matrix of the graph. For a
graph containing #n nodes, let us assume that we have
an n x n adjacency matrix, in which the entry (i,) cor-
respond to the weight of the edge between the nodes
i and j. This essentially corresponds to the similarity
between nodes i and j. This entry is denoted by w;;, and
the corresponding matrix is denoted by W. This matrix
is assumed to be symmetric, since we are working with
undirected graphs. Therefore, we assume that w;; = w;;
for any pair (i,j). All diagonal entries of the matrix W
are assumed to be 0. As discussed earlier, the aim of any
node partitioning algorithm is to minimize (a function
of) the weights across the partitions. The spectral clus-
tering method constructs this minimization function in

terms of the matrix structure of the adjacency matrix
and another matrix which is referred to as the degree
matrix.

The degree matrix D is simply a diagonal matrix in
which all entries are zero except for the diagonal val-
ues. The diagonal entry d;; is equal to the sum of the
weights of the incident edges. In other words, the entry
d;j is defined as follows:

dij=) wy, i=j,
j=l
0, i#].

We formally define the Laplacian matrix as follows:
(Laplacian matrix): The Laplacian matrix L is defined
by subtracting the weighted adjacency matrix from the
degree matrix. In other words, we have

L=D-W.

This matrix encodes the structural behavior of the
graph effectively and its eigenvector behavior can be
used in order to determine the important clusters in
the underlying graph structure. It can be shown that
the Laplacian matrix L is positive semidefinite i.e., for
any n-dimensional row vector f = [f;...f,] we have
f+L-fT > 0. This can be easily shown by expressing
L in terms of its constituent entries which are a func-
tion of the corresponding weights w;;. Upon expansion,
it can be shown that

n n

FLff=0/2)- 33wy (fi-£)

i=1 j=1

The Laplacian matrix L is positive semidefi-
nite. Specifically, for any n-dimensional row vector

f=1fi-- fu], wehave
foLoft=Qf2)- 3 Yoy (fi-)
i=1 j=1
At this point, let us examine some interpretations of
the vector f in terms of the underlying graph partition-
ing. Let us consider the case in which each f; is drawn
from the set {0,1}, and this determines a two-way par-
tition by labeling each node either 0 or 1. The particular
partition to which the node i belongs is defined by
the corresponding label. Note that the expansion of the

Graph Clustering

463

expression f - L - fT from the above relationship simply
represents the sum of the weights of the edges across
the partition defined by f. Thus, the determination of
an appropriate value of f for which the function f - L- T
is minimized also provides us with a good node parti-
tioning. Unfortunately, it is not easy to determine the
discrete values of f which determine this optimum par-
titioning. Nevertheless, we will see later in this section
that even when we restrict f to real values, this provides
us with the intuition necessary to create an effective
partitioning.

An immediate observation is that the indicator vec-
tor f = [1...1] is an eigenvector with a correspond-
ing eigenvalue of 0. We note that f = [1...1] must
be an eigenvector, since L is positive semidefinite and
f-L-fT can be 0 only for eigenvectors with 0 eigen-
values. This observation can be generalized further in
order to determine the number of connected compo-
nents in the graph. We make the following observation.

The number of (linearly independent) eigenvectors
with zero eigenvalues for the Laplacian matrix L is equal
to the number of connected components in the underlying
graph.

We observe that connected components are the
most obvious examples of clusters in the graph. There-
fore, the determination of eigenvectors correspond-
ing to zero eigenvalues provides us the information
about (relatively rudimentary set of) clusters. Broadly
speaking, it may not be possible to glean such clean
membership behavior from the other eigenvectors. One
of the problems is that other than this particular rudi-
mentary set of eigenvectors (which correspond to the
connected components), the vector components of the
other eigenvectors are drawn from the real domain
rather than the discrete {0,1} domain. Nevertheless,
because of the nature of the natural interpretation of
f-L-f" in terms of the weights of the edges across nodes
with very differing values of f;, it is natural to cluster
together the nodes for which the values of f; are as sim-
ilar as possible across any particular eigenvector on an
average. This provides us with the intuition necessary to
define an effective spectral clustering algorithm, which
partitions the data set into k clusters for any arbitrary
value of k. The algorithm is as follows:

e Determine the k eigenvectors with the smallest
eigenvalues. Note that each eigenvector has as many

components as the number of nodes. Let the com-
ponent of the jth eigenvector for the ith node be
denoted by p;;.

o Create a new data set with as many records as the
number of nodes. The ith record in this data set
corresponds to the ith node and has k components.
The record for this node is simply the eigenvector
components for that node, which are denoted by
pir-- . Pik-

o Since we would like to cluster nodes with simi-
lar eigenvector components, we use any conven-
tional clustering algorithm (e.g., k-means) in order
to create k clusters from this data set. Note that
the main focus of the approach was to create a
transformation of a structural clustering algorithm
into a more conventional multidimensional cluster-
ing algorithm, which is easy to solve. The particular
choice of the multidimensional clustering algorithm
is orthogonal to the broad spectral approach.

The above algorithm provides a broad framework for
the spectral clustering algorithm. The input parameter
for the above algorithm is the number of clusters k. In
practice, a number of variations are possible in order to
tune the quality of the clusters which are found. More
details on the different methods which can be used
for effective spectral graph clustering may be found in
Chung (1997).

Graph Clustering as Quasi-Clique
Detection

A different way of determining massive graphs in the
underlying data is that of determining quasi-cliques.
This technique is different from many other partition-
ing algorithms, in that it focuses on definitions which
maximize the edge densities within a partition, rather
than minimizing the edge densities across partitions.
A clique is a graph in which every pair of nodes are
connected by an edge. A quasi-clique is a relaxation on
this concept, and is defined by imposing a lower bound
on the degree of each vertex in the given set of nodes.
Specifically, we define a y-quasi-clique is as follows:

A k-graph (k > 1) G is a y-quasi-clique if the degree of
each node in the corresponding subgraph of vertices is at
least y - k.

The value of y always lies in the range (0, 1]. We note
that by choosing y = 1, this definition reverts to that

464

Graph Clustering

of standard cliques. Choosing lower values of y allows
for the relaxations which are more true in the case of
real applications. This is because we rarely encounter
complete cliques in real applications, and at least some
edges within a dense subgraph would always be miss-
ing. A vertex is said to be critical if its degree in the
corresponding subgraph is the smallest integer which is
at least equal to y - k.

The earliest piece of work on this problem is from
Abello, Resende, and Sudarsky (2002). The work of
Abello et al. (2002) uses a greedy randomized adap-
tive search algorithm, GRASP, to find a quasi-clique
with the maximum size. A closely related problem is
that of finding frequently occurring cliques in multiple
data sets. In other words, when multiple graphs are
obtained from different data sets, some dense subgraphs
occur frequently together in the different data sets. Such
graphs help in determining important dense patterns of
behavior in different data sources. Such techniques find
applicability in mining important patterns in graph-
ical representations of customers. The techniques are
also helpful in mining cross-graph quasi-cliques in gene
expression data. An efficient algorithm for determining
cross graph quasi-cliques was proposed by Pei, Jiang,
and Zhang (2005). The main restriction of the work pro-
posed by Pei et al. (2005) is that the support threshold
for the algorithms is assumed to be 100%. This restric-
tion has been relaxed in subsequent work (Zeng, Wang,
Zhou, & Karypis, 2007). The work by Zeng et al. (2007)
examines the problem of mining frequent, closed quasi-
cliques from a graph database with arbitrary support
thresholds.

Graph Clustering as Dense Subgraph
Determination

A closely related problem is that of dense subgraph
determination in massive graphs. This problem is fre-
quently encountered in large graph data sets. For exam-
ple, the problem of determining large subgraphs of web
graphs was studied by Gibson et al. (2005). The broad
idea in the min-hash approach is to represent the out-
links of a particular node as sets. Two nodes are consid-
ered similar if they share many outlinks. Thus, consider
anode A with an outlink set S4, and a node B with out-
link set Sg. Then the similarity between the two nodes
is defined by the Jaccard coefficient, which is defined

SA ﬁSB
SAUSE
edges in order to compute this can be computationally

as . We note that explicit enumeration of all the
ineflicient. Rather, a min-hash approach is used in order
to perform the estimation. This min-hash approach is
as follows. We sort the universe of nodes in a random
order. For any set of nodes in random sorted order,
we determine the first node First(A) for which an out-
link exists from A to First(A). We also determine the
first node First(B) for which an outlink exists from B
to First(B). It can be shown that the Jaccard coeflicient
is an unbiased estimate of the probability that First(A)
and First(B) are the same nodes. By repeating this pro-
cess over different permutations over the universe of
nodes, it is possible to accurately estimate the Jaccard
coefficient. This is done by using a constant number of
permutations c of the node order. The actual permuta-
tions are implemented by associated ¢ different random-
ized hash values with each node. This creates c sets of
hash values of size n. The sort-order for any particular
set of hash-values defines the corresponding permu-
tation order. For each such permutation, we store the
minimum node index of the outlink set. Thus, for each
node, there are ¢ such minimum indices. This means
that, for each node, a fingerprint of size ¢ can be con-
structed. By comparing the fingerprints of two nodes,
the Jaccard coefficient can be estimated. This approach
can be further generalized with the use of every s ele-
ment set contained entirely with Sy and Sp. Thus, the
above description is the special case when sis set to 1. By
using different values of s and ¢, it is possible to design
an algorithm which distinguishes between two sets that
are above or below a certain threshold of similarity.
The overall technique by Gibson et al. (2005) first
generates a set of ¢ shingles of size s for each node.
The process of generating the ¢ shingles is extremely
straightforward. Each node is processed independently.
We use the min-wise hash function approach in order
to generate subsets of size s from the outlinks at each
node. This results in ¢ subsets for each node. Thus, for
each node, we have a set of ¢ shingles. Thus, if the graph
contains a total of n nodes, the total size of this shingle
fingerprint is n x ¢ x sp, where sp is the space required
for each shingle. Typically, sp will be O(s), since each
shingle contains s nodes. For each distinct shingle thus
created, we can create a list of nodes which contain it.
In general, we would like to determine groups of shin-
gles which contain a large number of common nodes.

Graph Clustering

465

In order to do so, the method by Gibson et al. performs
a second-order shingling in which the meta-shingles
are created from the shingles. Thus, this further com-
presses the graph in a data structure of size ¢ x ¢. This is
essentially a constant-size data structure. We note that
this group of meta-shingles have the the property that
they contain a large number of common nodes. The
dense subgraphs can then be extracted from these meta-
shingles. More details on this approach may be found in
the work by Gibson et al.

Clustering Graphs as Objects

In this section, we will discuss the problem of cluster-
ing entire graphs in a multigraph database, rather than
examining the node clustering problem within a sin-
gle graph. Such situations are often encountered in the
context of XML data, since each XML document can
be regarded as a structural record, and it may be nec-
essary to create clusters from a large number of such
objects. We note that XML data is quite similar to graph
data in terms of how the data is organized structurally.
The attribute values can be treated as graph labels and
the corresponding semistructural relationships as the
edges. In has been shown by Aggarwal et al. (2007),
Dalamagas, Cheng, Winkel, and Sellis (2005), Lee et al.
(2002), and Lian, Cheung, Mamoulis, and Yiu (2004)
that this structural behavior can be leveraged in order
to create effective clusters.

Since we are examining entire graphs in this ver-
sion of the clustering problem, the problem simply boils
down to that of clustering arbitrary objects, where the
objects in this case have structural characteristics. Many
of the conventional algorithms discussed by Jain and
Dubes (1998) (such as k-means type partitional algo-
rithms and hierarchical algorithms) can be extended to
the case of graph data. The main changes required in
order to extend these algorithms are as follows:

e Most of the underlying classical algorithms typi-
cally use some form of distance function in order to
measure similarity. Therefore, we need appropriate
measures in order to define similarity (or distances)
between structural objects.

e Many of the classical algorithms (such as k-means)
use representative objects such as centroids in criti-
cal intermediate steps. While this is straightforward
in the case of multidimensional objects, it is much

more challenging in the case of graph objects. There-
fore, appropriate methods need to be designed in
order to create representative objects. Furthermore,
in some cases it may be difficult to create represen-
tatives in terms of single objects. We will see that it
is often more robust to use representative summaries
of the underlying objects.

There are two main classes of conventional techniques,
which have been extended to the case of structural
objects. These techniques are as follows:

e Structural distance-based approach: This approach
computes structural distances between documents
and uses them in order to compute clusters of doc-
uments. One of the earliest work on clustering tree
structured data is the XClust algorithm (Lee et al.
2002), which was designed to cluster XML schemas
in order for efficient integration of large numbers of
document type definitions (DTDs) of XML sources.
It adopts the agglomerative hierarchical clustering
method which starts with clusters of single DTDs
and gradually merges the two most similar clusters
into one larger cluster. The similarity between two
DTDs is based on their element similarity, which
can be computed according to the semantics, struc-
ture, and context information of the elements in
the corresponding DTDs. One of the shortcomings
of the XClust algorithm is that it does not make
full use of the structure information of the DTDs,
which is quite important in the context of clustering
tree-like structures. The method by Chawathe (1999)
computes similarity measures based on the struc-
tural edit-distance between documents. This edit-
distance is used in order to compute the distances
between clusters of documents.

S-GRACE is hierarchical clustering algorithm
(Lian et al. 2004). In the work by Lian et al, an
XML document is converted to a structure graph (or
s-graph), and the distance between two XML doc-
uments is defined according to the number of the
common element-subelement relationships, which
can capture better structural similarity relationships
than the tree edit-distance in some cases (Lian et al.).

e Structural summary-based approach: In many cases,
it is possible to create summaries from the under-
lying documents. These summaries are used for

466

Graph Clustering

creating groups of documents which are simi-
lar to these summaries. The first summary-based
approach for clustering XML documents was pre-
sented by Dalamagas et al. (2005). In the work by
Dalamagas et al., the XML documents are modeled
as rooted, ordered labeled trees. A framework for
clustering XML documents by using structural sum-
maries of trees is presented. The aim is to improve
algorithmic efficiency without compromising cluster
quality.

A second approach for clustering XML docu-
ments is presented by Aggarwal et al. (2007). This
technique is a partition-based algorithm. The pri-
mary idea in this approach is to use frequent-pattern
mining algorithms in order to determine the sum-
maries of frequent structures in the data. The tech-
nique uses a k-means type approach in which each
cluster center comprises a set of frequent patterns
which are local to the partition for that cluster. The
frequent patterns are mined using the documents
assigned to a cluster center in the last iteration. The
documents are then further reassigned to a clus-
ter center based on the average similarity between
the document and the newly created cluster cen-
ters from the local frequent patterns. In each itera-
tion the document assignment and the mined fre-
quent patterns are iteratively reassigned until the
cluster centers and document partitions converge to
a final state. It has been shown by Aggarwal et al.
that such a structural summary-based approach is
significantly superior to a similarity function-based
approach, as presented by Chawathe (1999). The
method is also superior to the structural approach
by Dalamagas et al. (2005) because of its use of more
robust representations of the underlying structural
summaries.

Conclusions and Future Research

In this chapter, we presented a review of the commonly
known algorithms for clustering graph data. The prob-
lem of clustering graphs has been widely studied in
the literature, because of its application to a variety of
data mining and data management problems. Graph
clustering algorithms are of two types:

e Node clustering algorithms: In this case, we attempt
to partition the graph into groups of clusters so

that each cluster contains groups of nodes which are
densely connected. These densely connected groups
of nodes may often provide significant information
about how the entities in the underlying graph are
interconnected with one another.

o Graph clustering algorithms: In this case, we have
complete graphs available, and we wish to determine
the clusters with the use of the structural informa-
tion in the underlying graphs. Such cases are often
encountered in the case of XML data, which are
commonly encountered in many real domains.

We provided an overview of the different clustering
algorithms available and the trade-offs with the use of
different methods. The major challenges that remain in
the area of graph clustering are as follows:

o Clustering massive data sets: In some cases, the data
sets containing the graphs may be so large that they
may be held only on disk. For example, if we have a
dense graph containing 107 nodes, then the number
of edges may be as high as 10"*. In such cases, it may
not even be possible to store the graph effectively on
disk. In the cases in which the graph can be stored
on disk, it is critical that the algorithm should be
designed in order to take the disk-resident behavior
of the underlying data into account. This is especially
challenging in the case of graph data sets, because
the structural behavior of the graph interferes with
our ability to process the edges sequentially for many
applications. In the cases in which the graph is
too large to store on disk, it is essential to design
summary structures which can effectively store the
underlying structural behavior of the graph. This
stored summary can then be used effectively for
graph clustering algorithms.

o Clustering graph streams: In this case, we have large
graphs which are received as edge streams. Such
graphs are more challenging, since a given edge can-
not be processed more than once during the com-
putation process. In such cases, summary structures
need to be designed in order to facilitate an effective
clustering process. These summary structures may
be utilized in order to determine effective clusters in
the underlying data. This approach is similar to the
case discussed above in which the size of the graph
is too large to store on disk.

Graph Kernels

467

In addition, techniques need to be designed for inter-
facing clustering algorithms with traditional database
management techniques. In order to achieve this goal,
effective representations and query languages need to
be designed for graph data. This is a new and emerg-
ing area of research, and can be leveraged upon in
order to further improve the effectiveness of graph
algorithms.

Cross References
» Group Detection
» Partitional Clustering

Recommended Reading

Abello, J., Resende, M. G., & Sudarsky, S. (2002). Massive quasi-
clique detection. In Proceedings of the 5th Latin American sym-
posium on theoretical informatics (LATIN) (pp. 598-612). Berlin:
Springer.

Aggarwal, C., Ta, N., Feng, J., Wang, J., & Zaki, M. J. (2007).
XProj: A framework for projected structural clustering of XML
documents. In KDD conference (pp. 46-55). San Jose, CA.

Ahuja, R., Orlin, J., & Magnanti, T. (1992). Network flows: Theory,
algorithms, and applications. Englewood Cliffs, NJ: Prentice-
Hall.

Chawathe, S. S. (1999). Comparing hierachical data in external
memory. In Very large data bases conference (pp. 90-101). San
Francisco: Morgan Kaufmann.

Chung, F. (1997). Spectral graph theory. Washington, DC: Confer-
ence Board of the Mathematical Sciences.

Dalamagas, T., Cheng, T., Winkel, K., & Sellis, T. (2005). Clustering
XML documents using structural summaries. In Information
systems. Elsevier, January 2005.

Gibson, D., Kumar, R., & Tomkins, A. (). Discovering large dense
subgraphs in massive graphs. In VLDB conference (pp. 721-732).
http://www.vldb2005.0rg/program/paper/thu/p721- gibson.pdf

Jain, A., & Dubes, R. (1998). Algorithms for clustering data. Engle-
wood, NJ: Prentice-Hall.

Kernighan, B. W., & Lin, S. (1970). An efficient heuristic proce-
dure for partitioning graphs, Bell System Technical Journal, 49,
291-307.

Lee, M., Hsu, W,, Yang, L., & Yang, X. (2002). XClust: Clus-
tering XML schemas for effective integration. In ACM
conference on information and knowledge management.
http://doi.acm.org/10.1145/584792.584841

Lian, W,, Cheung, D. W., Mamoulis, N., & Yiu, S. (2004). An efficient
and scalable algorithm for clustering XML documents by struc-
ture, IEEE Transactions on Knowledge and Data Engineering,
16(1), 82-96.

Pei,]., Jiang, D., & Zhang, A. (2005). On mining cross-graph quasi-
cliques. In ACM KDD conference. Chicago, IL.

Rattigan, M., Maier, M., & Jensen, D. (2007). Graph clustering
with network structure indices. Proceedings of the International
Conference on Machine Learning (783-790). ACM: New York.

Tsay, A. A., Lovejoy, W. S., & Karger, D. R. (1999). Random sam-
pling in cut, flow, and network design problems. Mathematics
of Operations Research, 24(2), 383-413.

Zeng, Z., Wang, J., Zhou, L., & Karypis, G. (2007). Out-of-core
coherent closed quasi-clique mining from large dense graph
databases. ACM Transactions on Database Systems, 32(2), 13.

! Graph Kernels

THOMAS GARTNER, TAMAS HORVATH, STEFAN WROBEL
University of Bonn, Fraunhofer IAIS,
Schloss Birlinghoven, Sankt Augustin, Germany

Definition

The term graph kernel is used in two related but dis-
tinct contexts: On the one hand, graph kernels can be
defined between graphs, that is, as a kernel function
k:GxG — R where G denotes the set of all graphs un-
der consideration. In the most common setting G is the
set of all labeled undirected graphs. On the other hand,
graph kernels can be defined between the vertices of a
single graph, that is, as a kernel functionk: Vx V — R
where V is the vertex set of the graph G under consid-
eration. In the most common setting G is an undirected
graph.

Motivation and Background

»Kernel methods are a class of machine learning algo-
rithms that can be applied to any data set on which
a valid, that is, positive definite, kernel function has
been defined. Many kernel methods are theoretically
well founded in statistical learning theory and have
shown good predictive performance on many real-
world learning problems.

Approaches for Kernels between Graphs

One desireable property of kernels between graphs is
that for non-isomorphic graphs G, G’ € G the functions
k(G,-) and k(G’,-) are not equivalent. If this property
does not hold, the distance is only a pseudometric rather
than a metric, that is, non-isomorphic graphs can be
mapped to the same point in feature space and no kernel
method can ever distinguish between the two graphs.
However, it can be seen that computing graph kernels

http://www.vldb2005.org/program/paper/thu/p721-gibson.pdf
http://doi.acm.org/10.1145/584792.584841

468

Graph Kernels

for which the property does hold is at least as hard as
solving graph isomorphism (Gértner et al., 2003).

For various classes of graphs, special purpose ker-
nels have been defined such as for paths (»string ker-
nels) and trees (Collins & Duffy, 2002). These kernels
are typically defined as the number of patterns that two
objects have in common or as the inner product in a
feature space counting the number of times a particu-
lar pattern occurs. The problem of computing a graph
kernel where the patterns are all connected graphs, all
cycles, or all paths and occurrence is determined by
subgraph-isomorphism is, however, NP-hard (Gértner
etal., 2003).

Techniques that have been used to cope with the
computational intractability of such graph kernels are
(1) to restrict the considered patterns, for example, to
bound the pattern size by a constant; (2) to restrict
the class of graphs considered, for example, to trees or
small graphs; (3) to define occurrence of a pattern dif-
ferently, that is, not by subgraph-isomorphism; and (4)
to approximate the graph kernel. Note that these four
techniques can be combined.

While for technique (1) it is not immediately clear
if the resulting graph kernel is feasible, technique
(2) allows for fixed parameter tractable graph kernels.
(Notice that even counting paths or cycles of length k
in a graph is #W[l1]-complete while the corresponding
decision problem is fixed parameter tractable.) Though
these will often still have prohibitive runtime require-
ments, it has been observed that enumerating cycles
in real-world databases of small molecules is feasible
(Horvath et al., 2004).

With respect to technique (3) it has been proposed
to use graph kernels where the patterns are paths but
the occurrences are determined by homomorphism
(Gértner et al., 2003; Kashima et al., 2003). Despite the
explosion in the number of pattern occurrences (even
very simple graphs can contain an infinite number of
walks, that is, images of paths under homomorphism), if
one downweights the influence of larger patterns appro-
priately, the kernel takes a finite value and closed form
polynomial time computations exist. To increase the
practical applicability of these graph kernels, it has been
proposed to increase the number of labels by taking
neighborhoods into account (Gartner, 2005) or to avoid
“tottering” walks (Mahé et al., 2004).

Various approaches to approximate computation of
graph kernels (4) exist. On the one hand, work on com-
puting graph kernels based on restricting the patterns to
frequent subgraphs (Deshpande et al., 2002) can be seen
as approximations to the intractable all-subgraphs ker-
nel. Computing such graph kernels is still NP-hard and
no approximation guarantees are known. On the other
hand, a recent graph kernel (Borgwardt et al., 2007)
based on sampling small subgraphs of a graph at ran-
dom is known to have a polynomial time algorithm with
approximation guarantees.

The most common application scenario for such
graph kernels is the prediction pharmaceutical activity
of small molecules.

Approaches for Kernels on a Graph

Learning on the vertices of a graph is inherently trans-
ductive. Work on kernels between the vertices of a
graph began with the “diffusion kernel” (Kondor &
Lafferty, 2002) and was later generalized in (Smola and
Kondor, 2003) to a framework that contains the diffu-
sion kernel as a special case. Intuitively, these kernels
can be understood as comparing the neighborhoods
of two vertices in the sense that the more neighbors
two vertices have in common, the more similar they
are. For classification, this definition is related to mak-
ing the “cluster assumption’, that is, assuming that
the decision boundary between classes does not cross
“high density” regions of the input space. To compute
such graph kernels for increasing sizes of the neigh-
borhood, one needs to compute the limit of a matrix
poser series of the (normalized) graph Laplacian or its
adjacency matrix. Different graph kernels arise from
choosing different coefficients. In general, the limit of
such matrix power series can be computed on the eigen-
values. For geometrically decaying parameters, the ker-
nel matrix can also be computed by inverting a sparse
matrix obtained by adding a small value to the diago-
nal of the Laplacian (in which case the kernel is called
the “regularized Laplacian kernel”) or the adjacency
matrix.

In the case of the regularized Laplacian kernel,
rather than first computing the kernel matrix and then
applying an off-the-shelf implementation of a kernel
method, it is often more effective to reformulate the

Graph Mining

469

optimization problem of the kernel method. Several
possibilities for such reformulation have been pro-
posed, including changing the variables as in (Géartner
et al., 2006).

The most common application scenario for such
graph kernels is the classification of entities in a social
network.

Recommended Reading

Borgwardt, K. M., Petri, T., Vishwanathan, S. V. N., & Kriegel,
H.-P. (2007). An efficient sampling scheme for comparison of
large graphs. In Mining and learning with graphs (MLG 2007),
Firenze.

Collins, M., & Duffy, N. (2002). Convolution kernel for natural lan-
guage. In Advances in neural information proccessing systems
(NIPS), 16, 625-632.

Deshpande, M., Kuramochi, M., & Karypis, G. (2002). Automated
approaches for classifying structures. In Proceedings of the 2nd
ACM SIGKDD workshop on data mining in bioinformatics (BIO
KDD 2002).

Girtner, T. (2005). Predictive graph mining with kernel methods. In
S. Bandyopadhyay, U. Maulik, L.B. Holder, and D.J. Cook (Eds.),
Advanced methods for knowledge discovery from complex data.
pp- 95-121, Springer, Heidelberg.

Girtner, T., Flach, P. A., & Wrobel, S. (2003). On graph kernels:
Hardness results and efficient alternatives. In Proceedings of
the 16th annual conference on computational learning theory
and the 7th kernel workshop (COLT 2003), vol. 2777 of LNCS,
pp. 129-143, Springer, Heidelberg.

Girtner, T., Le, Q. V., Burton, S., Smola, A. J., & Vishwanathan,
S. V. N. (2006). Large-scale multiclass transduction. In
Advances in neural information processing systems, vol. 18,
pp- 411-418, MIT Press, Cambride, MA.

Horvath, T., Gartner, T., & Wrobel, S. (2004). Cyclic pattern kernels
for predictive graph mining. In Proceedings of the international
conference on knowledge discovery and data mining (KDD 2004),
pp. 158-167, ACM Press, New York, NY.

Kashima, H., Tsuda, K., & Inokuchi, A. (2003). Marginalized kernels
between labeled graphs. In Proceedings of the 20th international
conference on machine learning (ICML 2003), pp. 321-328, AAAI
Press, Menlo Park, CA.

Kondor, R. I., & Lafferty, J. (2002). Diffusion kernels on graphs
and other discrete input spaces. In C. Sammut & A. Hoff-
mann (Eds.), Proceedings of the nineteenth international confer-
ence on machine learning (ICML 2002), pp. 315-322, Morgan
Kaufmann, San Fransisco, CA.

Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., & Vert, J.-P. (2004).
Extensions of marginalized graph kernels. In Proceedings of the
2Ist international conference on machine learning (ICML 2004),
pp. 70, ACM Press, New York, NY.

Smola, A. J., & Kondor, R. (2003). Kernels and regularization on
graphs. In Proceedings of the 16th annual conference on computa-
tional learning theory and the 7th kernel workshop (COLT 2003),
vol. 2777 of LNCS, pp. 144-158, Springer, Heidelberg.

! Graph Mining

DEEPAYAN CHAKRABARTI
Yahoo! Research, Sunnyvale, USA

Definition

Graph Mining is the set of tools and techniques used to
(a) analyze the properties of real-world graphs, (b) pre-
dict how the structure and properties of a given graph
might affect some application, and (c) develop models
that can generate realistic graphs that match the patterns
found in real-world graphs of interest.

Motivation and Background

A graph G = (V, E) consists of a set of edges, E connec-
ting pairs of nodes from the set V; extensions allow for
weights and labels on both nodes and edges. Graphs
edges can be used to point from one node to another,
in which case the graph is called directed; in an undi-
rected graph, edges must point both ways: i - j <
j — i. A variant is the bipartite graph G = (V}, V3, E)
where only edges linking nodes in V; to nodes in V; are
allowed.

A graph provides a representation of the binary rela-
tionships between individual entities, and thus is an
extremely common data structure. Examples include
the graph of hyperlinks linking HTML documents
on the Web, the social network graph of friendships
between people, the bipartite graphs connecting users
to the movies they like, and so on. As such, mining
the graph can yield useful patterns (e.g., the commu-
nities in a social network) or help in applications (e.g.,
recommend new movies to a user based on movies
liked by other “similar” users). Graph mining can also
yield patterns that are common in many real-world
graphs, which can then be used to design graph “gen-
erators” (e.g., a generator that simulates the Internet
topology, for use in testing next-generation Internet
protocols).

Structure of Learning System
We split up this discussion into three parts: the analy-
sis of real-world graphs, realistic graph generators, and

470

Graph Mining

applications on graphs. Detailed surveys can be found
in Newman (2003) and Chakrabarti and Faloutsos
(2006).

Four basic types of large-scale patterns have been
detected in real-world graphs. The first is the existence
of power-laws, for instance in the degree distribution
and eigenvalue distribution. Most nodes have very low
degree while a few have huge degree. This has implica-
tions for algorithms whose running times are bounded
by the highest degree. The second set of patterns is called
the “small-world phenomenon,” which state that the
diameter (or effective diameter) of such graphs are very
small with respect to their size. Recall that the diam-
eter of a connected graph is the maximum number of
hops needed to travel between any pair of nodes; the
effective diameter is a more robust version that specifies
the number of hops within which a large fraction (say,
90%) of all pairs can reach each other. Examples include
a diameter of around 4 for the Internet Autonomous
System graph, around 19 for the entire US power grid,
around 4 for the graph of actors who worked together
in movies, and so on. Third, many large graphs exhibit
“community effects,” where each community consists of
a set of nodes that are more tightly connected to other
nodes in the community compared to nodes outside.
One local manifestation of this effect is the relatively
high clustering coefficient which counts, given all pairs of
edges (i,j) and (j, k), the probability of the existence of
the “transitive” edge (i, k). High clustering coefficients
imply tight connections in neighborhoods, which is the
basis of strong community structure. Finally, many large
graphs were shown to increase in density as they evolve
over time, that is, the number of edges grows accord-
ing to a power-law on the number of nodes. In addition,
even while more nodes and edges are being added, the
diameter of the graph tends to decrease.

Imagine designing an application that works on the
Internet graph. Collecting the entire Internet graph in
one place is hard, making the testing process for such
an application infeasible. In such cases, a realistic graph
generator can be used to simulate a large “Internet-like”
graph, which can be used in place of the real graph.

This synthetic graph must match the patterns typi-
cally found in the Internet, including the patterns dis-
cussed in the previous paragraph. Apart from generat-
ing such graphs, the generators can provide insights into
the process by which large graphs came to attain their
structure.

One example of this is the preferential attachment
model. Starting with a small initial graph, this model
adds one new node every step. The new node is con-
nected to m previous nodes, with the probability of
connecting to node i being proportional to its degree.
This idea, popularly known as “the rich get richer,” can
be shown to lead to a power-law degree distribution
after a large number of nodes and edges have been
added.

Many other models have also been proposed, which
demonstrate graph generation as a random process, an
optimization process, as a process on nodes embedded
in some geographic space, and so on.

Applications
Some graph mining algorithms are meant to solve
some application on any graph(s) provided as input
to the algorithm. Several basic tools are commonly
used in such applications, such as the »Greedy Search
Approach to Graph Mining the »Inductive Database
Search Approach to Graph Mining spectral methods,
graph partitioning methods, and models based on ran-
dom walks on graphs. Tree Mining is a special case of
graph mining where the graphs are constrained to be
trees. We will discuss a few such applications here.

Frequent subgraph mining: The aim is to find sub-
graphs that occur very frequently in the particular
graph(s) in question (Kuramochi & Karypis, 2001). This
is quite useful in chemical datasets consisting of the
graph structures of many different molecules (say, all
protein molecules that have a certain chemical prop-
erty); the frequent subgraphs in such molecules might
represent basic structural units responsible for giving
the molecules their special property. Unfortunately, the
frequent subgraph problem subsumes the problem of
subgraph isomorphism, and hence is NP-Hard. How-
ever, clever techniques have been devised to represent
subgraphs so that checking for isomorphism can be
done quickly in many cases.

Community detection: The problem is to detect
tightly knit groups of nodes, where all nodes in the

Graphical Models

an

group have “similar” linkage structure. There are many
algorithms, each optimizing for a different notion
of similarity. Examples include graph partitioning
methods such as spectral partitioning (Ng, Jordan, &
Weiss , 2002) and METIS that try to minimize the num-
ber of edges linking nodes across partitions, and co-
clustering methods that aim for homogeneity in links
across partitions.

Information diffusion and virus propagation: The
spread of a contagious disease or a computer virus can
be modeled (somewhat crudely) as a contact process on
a graph, where the nodes are individuals who can get
infected, and the links allow transmission of the conta-
gion from an infected individual to an uninfected one.
Similar models have been proposed to model the dif-
fusion of information in social networks. The topology
of the graph can be used to infer the most “influential”
nodes in the graph, who are most capable of spreading
the information quickly throughout the graph (Kempe,
Kleinberg, & Tardos , 2003).

Graph kernels: While subgraph isomorphism is a
hard problem, we still need to be able to compare
graphs on the basis of some similarity measure that can
be computed in polynomial time. In the Kernel-Based
Approach to Graph Mining graph kernels perform this
task by computing similarities based on numbers of
walks, paths, cyclic patterns, trees, etc.

Ranking on graphs: Given a graph (say, the Web
hyperlink graph), we often need a ranking of the nodes
in the graph. The ranking could be static (as in Page-
Rank (Brin & Page, 1998)) or it could depend on a user-
specified query node. Such algorithms typically use
some version of random walks on graphs (Lovasz, 1993),
with the probability of the walk hitting a node being
correlated with the importance of the node; such impor-
tances in turn yield a ranking of the nodes. Both static
and query-dependent rankings can be useful in infor-
mation retrieval settings, where a user desires informa-
tion pertinent (i.e., “similar”) to her query.

Cross References

» Graph Theory

»Greedy Search Approach of Graph Mining
»Inductive Database Search Approach of Graph Mining
» Kernel-Based Approach of Graph Mining

»Link Mining and Link Discovery

»Tree Mining

Recommended Reading

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual
web search engine. Computer Networks and ISDN Systems, 30
(1-7), 107-117.

Chakrabarti, D., & Faloutsos, C. (2006). Graph mining: Laws, gen-
erators and algorithms. ACM Computing Surveys, 38(1).

Kempe, D., Kleinberg, J., & Tardos, E. (2003). Maximizing the spread
of influence through a social network. In KDD.

Kuramochi, M., & Karypis, G. (2001). Frequent subgraph discovery.
In ICDM (pp. 313-320).

Lovasz, L. (1993). Random walks on graphs: A survey. In Combina-
torics: Paul Erdés is eighty (Vol. 2, pp. 353-397).

Ng, A., Jordan, M., & Weiss, Y. (2002). On spectral clustering:
Analysis and an algorithm. In NIPS.

The structure and function of complex networks. (2003). SIAM
Review, 45,167-256.

[
Graphical Models

JuLiaAN MCAULEY, TiBERIO CAETANO,

WRAY BUNTINE

Statistical Machine Learning Program, NICTA,
Canberra, Australia

Definition

The notation we shall use is defined in Table 1, and some
core definitions are presented in Table 2. In each of the
examples presented in Fig. 1, we are simply asserting
that

= p(xalxc)p(xplxc) » (1)

p(xa,xlxc)

function of three variables functions of two variables

which arises by a straightforward application of the
product rule (Definition 1), along with the fact that X4
and X are conditionally independent, given X¢ (Defini-
tion 3). The key observation we make is that while the
left-hand side of (Eq. 1) is a function of three variables,
its conditional independence properties allow it to be
factored into functions of two variables.

In general, we shall have a series of conditional
independence statements about X:

{XAz J.LXBi |Xci}. 2)
Itis precisely these statements that define the “structure”

of our multivariate distribution, which we shall express
in the form of a graphical model.

472

Graphical Models

Graphical Models. Table 1 Notation

X =(X...Xy) | Arandom variable (we shall also use X =
(A,B,C...)infigures to improve readabil-
ity)

x=(x1...xn) | Arealization of the random variable X

X The sample space (domain) of X

Xa X can be indexed by a set, where we
assumeAc {1...N}

p(x) The probability that X = x
A The negation of A, i.e., {1...N}\ A
Xa 1L Xp Xa and Xp are independent

Xa L Xs|Xc | Xa and Xs are conditionally independent,

given Xc

Graphical Models. Table 2 Definitions

Definition 1 (product Rule). p(xa,xg) = p(xalxs)p(xs).
Definition 2 (marginalization). p(xa) = Loxxey p(Xa, Xz).
Definition 3 (conditional independence). Xo and X are said

to be conditionally independent (given Xc) iff p(Xa|Xo, Xc) =
p(Xalxc), for all xa, xv, and x.; the conventional definition of

“independence” is obtained by setting Xc = @.

Motivation and Background

Graphical models are often used to model multivariate
data, since they allow us to represent high-dimensional
distributions compactly; they do so by exploiting the
interdependencies that typically exist in such data. Put
simply, we can take advantage of the fact that high-
dimensional distributions can often be decomposed
into low-dimensional factors to develop efficient algo-
rithms by making use of the distributive law: ab + ac =
a(b+c).

Some motivating examples are presented in Fig. 1;
similar examples are ubiquitous in fields ranging from
computer vision and pattern recognition, to economics
and the social sciences. Although we are dealing with
high-dimensional data, we can make certain statements
about the structure of the variables involved, allowing

(yesterday's weath‘eb
;today's weather-

sprinkler raining

the quick brown fox-over the lazy dog

WO

Xa Xz Xc
Graphical Models. Figure 1. Some examples of con-
ditional independence; we say that X, and Xz are
conditionally independent, given Xc, or more compactly
Xa 1L Xg |Xc

us to express important properties about the distribu-
tion compactly. Some of the properties we would like
to compute include the probabilities of particular out-
comes, and the outcomes with the highest probability.

Theory

Due to the product rule (Definition 1), it is clear that any
probability distribution can be written as

N
p(x) = Hp(xﬂi |x<7fi) (3)
i=1

for an arbitrary permutation 7 of the labels, where
we define < i:={1...i — 1}. For example any four-
dimensional distribution can be written as

P(Xas Xy Xe, %) = p(ec) p(xp) p(xalxe, xp)
P(Xalxes Xp, %4). (4)

Graphical Models

473

With this idea in mind, consider a model p(x) for which
we have the conditional independence statements

{p(xmlxen) = P(Xn|%pay,) } 5)

where pa,, c<m;. We now have

N
p(x) = Hp(xm |xpani) (6)
i=1

We can interpret pa; as referring to the “parents” of the
node i. Essentially, we are saying that a variable is con-
ditionally independent on its nondescendants, given its
parents.

We can represent (Eq. 6) using a directed acyclic
graph (DAG) by representing each variable X; as a node;
an arrow is formed from X; to X; if j € pa;. An example
of such a representation is given in Fig. 2. It can easily
be shown that the resulting graph is always acyclic.

A Bayesian Network (a type of directed graphical
model) is simply a set of probability distributions of the
form p(x) = TIY, p(xixpa,). Every Bayesian Network
can be represented as a DAG, though we often simply
say that the Bayesian Network “is” the DAG. Some triv-
ial examples, and the type of independence statements
they imply are shown in Fig. 3.

We finish this section with a simple lemma:

Lemma 4 (topological sort) Every DAG has at least
one permutation 7 that “sorts” the nodes such that each

oZ“Z-e

node has a larger index than its parents; in other words,
the factorization associated to any DAG can be written in
the form of (Eq. 6) for at least one m such that m; > j for
all i, where j € pay,.

Although we have shown how conditional indepen-
dence statements in the form of (Eq. 5) can be modeled
using a DAG, there exist certain conditional indepen-
dence statements that are not satisfied by any Bayesian
Network, such as those in Fig. 4.

Markov random fields (or MRFs) allow for the speci-
fication of a different class of conditional independence
statements, which are naturally represented by undi-
rected graphs (UGs for short). The results associated
with MRFs require a few additional definitions:

Definition 5 (clique) A set of nodes X in a graph G =
(V,E) is said to form a clique if (X;,X;) € E for every
X;, Xj € X (i.e., the subgraph X is fully connected).

Definition 6 (maximal clique) A clique X is said to be
maximal if there is no clique Y such that X c Y.

A Markov random field is a probability distribution
of the form p(x) = 7 [Teec Ye(xc), where C is the set
of maximal cliques of G, v, is an arbitrary nonnegative
real-valued function and Z is simply a normalization
constant ensuring that 3, p(x) = 1.

o“e

p(a)p(bla)p(cla)p(d|b)p(elb.)p(fib.e) 3 w(a b)w(a. c)y(b.d)y(c,)y (b, e.)

Graphical Models. Figure 2. A directed model (left) and an undirected model (right). The joint distributions they

represent are shown

@A) B
p(a,b,c) = p(c)p(ale)p(ble) p(a)p(cla)p(blc) p(a)p(b)p(cla,b)
Al B|C Al BlC AlLB

Graphical Models. Figure 3. Some simple Bayesian Networks, and their implied independence statements. Note in
particular that in the rightmost example, we do not have A 1L B ‘ C

474

Graphical Models

AlB

A 1Bl {C, D},

CL D |{A B}
Graphical Models. Figure 4. There is no Bayesian Net-
work that captures precisely the conditional indepen-
dence properties of the Markov random field at left; there
is no Markov random field that captures precisely the con-
ditional independence properties of the Bayesian Net-
work at right

Conversion from Directed to Undirected Graphical
Models

It is possible to convert a directed graphical model to
an undirected graphical model via the following simple
procedure:

o For every node X; with parents pay,, add undirected
edges between every X, X € pax,.
o Replace all directed edges with undirected edges.

In other words, we are replacing statements of the form
p(xalxp) with w(x4,xp), so that the nodes {X;} U pay,
now form a clique in the undirected model. This proce-
dure of “marrying the parents” is referred to as Moral-
ization. Naturally, the undirected model formed by this
procedure does not precisely capture the conditional
independence relationships in the directed version. For
example, if it is applied to the graph in Fig. 4 (right),
then the nodes A, B, and C form a clique in the result-
ing model, which does not capture the fact that A 1L B.
However, we note that every term of the form p(x;|x,4,)
appears in some clique of the undirected model, mean-
ing that it can include all of the factors implied by the
Bayesian Network.

We can now present some theorems that charac-
terize both Bayesian Networks and Markov random
fields:

Lemma 7 (Local Markov Property) A node in a DAG
is conditionally independent of its non-descendants, given
its parents (this is referred to as the “Directed” Local

Graphical Models. Figure 5. The Markov Blanket of the
node A consists of its parents, its children, and the par-
ents of its children (left). The corresponding structure
for undirected models simply consists of the neighbors
of A. Note that if we convert the directed model to an
undirected one (using the procedure described in Sec-
tion “Conversion from directed to undirected graphical
models”), then the Markov Blankets of the two graphs are
identical

Markov Property); a node in a UG is conditionally inde-
pendent of its non-neighbors, given its neighbors.

Definition 8 (Markov Blanket) Given a node A, its
“Markov Blanket” is the minimal set of nodes C such that
ALB | C for all other nodes B in the model (in other
words, the minimal set of nodes that we must know to
“predict” the behavior of A).

Lemma 9 (Markov Blankets of Directed and Undirected
Graphs) In a directed network, the Markov Blanket of
a node A (denoted MB(A)) consists of its parents, its chil-
dren, and its children’s (other) parents. In an undirected
network, it simply consists of the node’s neighbors (see
Fig. 5).

Definition 10 (d-separation) The notion of a Markov
Blanket can be generalized to the notion of “d-separation”.
A set of nodes A is said to be d-separated from a set B
by a set C if every (undirected) path between A and B is
“blocked” when C is in the conditioning set (i.e., when C is
observed). A path is said to be blocked if either it contains
(p1>p2,p3) with py = p, < p3 (where arrows indicate
edge directions) and neither p, nor any of its descendants
are observed, or it contains (py, pa, p3) withp, = p2 = p3
and p, is observed or it contains (py,py,p3) with p; <
D2 = p3 and p, is observed.

Applying (Definition 10) to the directed graphs
in Fig. 1, we would say that the aqua regions (Xc)
d-separate the red regions (X,) from the white regions

Graphical Models 475

Graphical Models. Figure 6. The nodes {B,E} form a
clique; the nodes {B,E,F} form a maximal clique. The
nodes {B, E} separate the nodes {A, C} from {D, F}

(X3); all conditional independence statements can simply
be interpreted as d-separation in a DAG.

The analogous notion of graph separation for
Markov random fields is simpler than that of d-
separation for Bayesian Networks. Given an undirected
graph G and disjoint subsets of nodes A,B,C, if A is
only reachable from B via C, this means that A is sep-
arated from B by C and these semantics encode the
probabilistic fact that A 1L B | C. This is illustrated in
Fig. 6.

In both the directed and undirected case, A Markov
Blanket of a node is simply the minimal set of nodes that
d-separates/graph separates that node from all others.

A complete characterization of the class of proba-
bility distributions represented by Bayesian Networks
can be obtained naturally once conditional indepen-
dence statements are mapped to d-separation state-
ments in a DAG. The following theorem settles this
characterization.

Theorem 11 Let p be a probability distribution that sat-
isfies the conditional independence statements implied
by d-separation in a DAG. Then p factors according to
(Eq. 6). The converse also holds.

For Markov random fields, an analogous character-
ization exists:

Theorem 12 (Hammersley-Clifford) If a strictly pos-
itive probability distribution p satisfies the conditional
independence statements implied by graph-separation in
an undirected graph G, then

p() = [Tl)

ceC

The converse also holds, albeit in a more general sense in
that p need not be strictly positive.

It can be shown that

directed local local Markov
Markov property
property
i 8
d-separation in and (for positive graph
a DAG p) that separation in a
UG

i §

factorization of
pby (Eq.7)

factorization of
p by (Eq.6)

Knowing that directed models can be converted to
undirected models, we shall consider inference algo-
rithms in undirected models only.

Applications

The key observation that we shall rely on in order to do
inference efficiently is the distributive law:

ab+ac =
——

a(b+c). (8)
——

three operations o operations

By exploiting the factorization in a graphical model,
we can use this law to perform certain queries effi-
ciently (such as computing the marginal with respect to
a certain variable).

As an example, suppose we wish to compute
the marginal p(x;) in an MRF with the following
factorization:

1 N-1
p(x) = 7 H (i, Xig1)-)
i=1

Note that the graph representing this model is simply
a chain. Computing the sum in the naive way requires
computing

N

P = ¥ T
X{2..N}

-1
Ny i=1

W(xi: xi+1)7 (10)

476

Graphical Models

whose complexity is @ ([TY, |Xi|). However, due to the
distributive law, the same result is simply

p(x1) = % Z[I//(xl,xz) Z[‘//(xz,xs)"'

X2

> [I/I(xN-z,xN-l) > W(XN-be)]]], (11)

XN-1 XN

whose complexity is ©(XN,"|X;||Xis1]). As a more
involved example, consider computing the marginal
with respect to A in the undirected model in Fig. 2; here
we wish to compute

p@)=5 3 wab)y(u(bdy(ee)
b,c.d,e.f
y(bef) (12)
SR COMRTCEINICHINTED
Y v(bef). (13)
f

Exploiting the distributive law in this way is often
referred to as the Elimination Algorithm. It is useful for
computing the marginal with respect to a single vari-
able. However, should we wish to compute the marginal
with respect to each variable (for example), it is not
an efficient algorithm as several operations shall be
repeated.

Belief-Propagation In tree-structured models, the elim-
ination algorithm can be adapted to avoid repeated
computations, using a message-passing scheme known
as Belief Propagation, or the sum-product algorithm.
This is presented in Algorithm 1. Here the “cliques”
in the model are simply edges. This algorithm was
invented independently by many authors, and is the
most efficient amongst many variations.

It can be easily demonstrated that the condition in
Algorithm 1, Line 3 is always satisfied by some pair of
edges until all messages have been passed: initially, it is
satisfied by all of the “leaves” of the model; messages are
then propagated inwards until they reach the “root” of
the tree; they are then propagated outwards.

Maximum A Posteriori (MAP) Estimation Algorithm 1
allows us to compute the marginals of the variables in a
graphical model. There are other related properties that
we may also wish to compute, such as finding which

states have the highest probability (the Maximum A
Posteriori, or simply “MAP” states). To do so, we note
that the operations (+, x) used in Algorithm 1 can be
replaced by (max, x). This variant is usually referred to
as the max-product (as opposed to sum-product) algo-
rithm. Indeed, different quantities can be computed by
replacing (+, x) by any pair of operations that form a
semiring (Aji & McEliece, 2000).

The Junction-Tree Algorithm Algorithm 1 applies only
for tree-structured graphs. We can generalize this algo-
rithm to general graphs. We do so by working with
a different type of tree-structured graph, whose nodes
contain the cliques in our original graph. We begin with
some definitions:

Definition 13 (chordal graph) A graph G is said to be
chordal ifevery cycle (¢, ... c,) in G contains a chord (i.e.,
an edge (c;, ¢;) such that j > (i +1)).

Definition 14 (clique-graph, clique-tree) A clique-
graph H of a graph G is a graph whose nodes consist of
(maximal) cliques in G, and whose edges correspond to
intersecting cliques in G. A clique-tree is a clique-graph
without cycles.

Algorithm 1 The sum-product algorithm

Input: an undirected, tree-structured graphical model
X with cliques C {the cliques are simply edges in this
case}

1: define m4_p(xanp) to be the “message” from an
edge A to an adjacent edge B {for example if A =
(a,b) and B = (b,) then we have m,), (,c) (xp)}

2. while there exist adjacent edges A, B € C for which
ma_.p has not been computed do

3: find some A € C such that mc_ 4 has been com-

puted for every neighbor C ¢ T(A), except B
{T'(A) returns the edges neighboring A; initially
the condition is satisfied by all leaf-edges}

4 masp(xanp):=

Y s 1¥a(xa) Teer(ays Meoa(xanc) }

5. end while

6: for AeC'do

7. marginal, (x4):=

ya(xa) [eer(a) Me—-a(xanc)
8: end for

Graphical Models

477

Graphical Models. Figure 7. The graph at/eftis not chordal, since the cycle (A, B, E, C) does not contain a chord; adding
the edge (B, C) results in a chordal (or triangulated) graph (centre). The graph at right is a Junction-Tree for the graph at
centre; the cliques of the triangulated graph form the nodes (circles); their intersection sets are shown as squares. Note
that this is not the only Junction-Tree that we could form - the node {B, D} could connect to any of the other three

nodes

Definition 15 (Junction-Tree) A clique-tree H of G is
said to form a Junction-Tree if for every pair of nodes
A, B (i.e., maximal cliques in G), the path between them
(Py...Py,) satisfies (ANB) c P forallie {1...m}.

The algorithms we shall define apply only if the
graph in question is chordal, or “triangulated” (Def-
inition 13); this can always be achieved by adding
additional edges to the graph, as demonstrated in Fig. 7;
adding additional edges means increasing the size of the
maximal cliques in the graph.

Finding the “optimal” triangulation (i.e., the one
that minimizes the size of the maximal cliques) is an
NP-complete problem. In practice, triangulation algo-
rithms vary from simple greedy heuristics (e.g., select
a node that has as few neighbors as possible), to com-
plex approximation algorithms working within a factor
of the optimal solution (Amir, 2001).

The problem of actually generating a Junction-
Tree from the triangulated graph is easily solved by
a maximum spanning tree algorithm (where we pre-
fer edges corresponding to pairs of cliques with large
intersections).

Theorem 16 Let G be a triangulated graph and H a
corresponding clique-tree. If the sum of the cardinalities
of the intersection sets of H is maximum, then H is a
Junction Tree. The converse also holds.

If the nodes and edges in Algorithm 1are replaced by
the nodes (maximal cliques in G) and edges (intersect-
ing cliques in G) of H, then we recover the Junction-Tree
Algorithm.

Approximate Inference The act of triangulating the
graph in the Junction-Tree Algorithm may have the

Graphical Models. Figure 8. The graph above at left has
maximal cliques of size two; in order to triangulate it, we
must introduce maximal cliques of size four (right)

effect of increasing the size of its maximal cliques, as
in Fig. 8. This may be a problem, as its running time
is exponential in the size of the maximal cliques in the
triangulated graph (this size minus one is referred to as
the tree-width of the graph, e.g., a chain has a tree-width
of 1).

There are a variety of approximate algorithms that
allow us to perform inference more efficiently:

Variational approximation. If doing inference in a
graphical model X is intractable, we might search
for a model) for which inference is tractable,
and which is “similar” to X in terms of the KL-
divergence between p(x) and p(y). (Wainwright &
Jordan, 2008).

Loopy belief-propagation. We can build a clique-graph
from a graph that has not been triangulated, sim-
ply by connecting all cliques that intersect (in which
case, the clique-graph will contain loops). If we then
propagate messages in some random order, we can
obtain good approximations under certain condi-
tions (Ihler et al., 2005).

Gibbs sampling. Given an estimate x4 p of a set of vari-
ables X, 5, we can obtain an estimate of xz by sam-
pling from the conditional distribution p(xp|xa<5).
If we choose B = {X;}, and repeat the procedure for

478

Graphical Models

random choices of i € {1...N}, we obtain the pro-
cedure known as Gibbs Sampling (Geman & Geman,
1984).

There are several excellent books and tutorial papers
on graphical models. A selection of tutorial papers
includes Aji and McEliece (2000), Kschischang, Frey,
and Loeliger (2001), Murphy (1998), Wainwright and
Jordan (2008); review articles include Roweis and
Ghahramani (1997) and Smyth (1998), to name but
a few.

A selection of works includes Koller and Friedman
(2009), Jensen (2001) (introductory books), Edwards
(2000) (undirected models), Pearl (1988, 2000) (directed
models), Cowell, Dawid, Lauritzen, and Spiegelhalter
(2003) (exact inference), Jordan (1998) (learning and
approximate inference) and Lauritzen (1996, Lauritzen
and Spiegelhalter (1988) (a comprehensive mathemati-
cal theory).

There is also a variety of closely related models and
extensions:

Gaussian graphical models. We have assumed through-
out that our probability distributions are discrete;
however, the only condition we require is that they
are closed under multiplication and marginalization.
This property is also satisfied for Gaussian random
variables.

Hidden Markov models. In many applications, the vari-
ables in our model may be hidden. The above
algorithms can be adapted to infer properties
about our hidden states, given a sequence of
observations.

Kalman filters. Kalman filters employ both of the above
ideas, in that they include hidden state variables tak-
ing values from a continuous space using a Gaussian
noise model. They are used to estimate the states of
linear dynamic systems under noise.

Factor graphs. Factor graphs employ an alternate
message-passing scheme, which may be prefer-
able for computational reasons. Inference remains
approximate in graphs with loops, though approx-
imate solutions may be obtained more efficiently
than by Loopy Belief-Propagation (Kschischang et
al., 2001).

Relational models. Relational models allow us to explore
the relationships between objects in order to predict

the behavior and properties of each. Graphical mod-
els are used to predict the properties of an object
based on others that relate to it (Getoor & Taskar,
2007).

Learning. Often, we would like to learn either the
parameters or the structure of the model from (pos-
sibly incomplete) data. There is an extensive vari-
ety of approaches; a collection of papers appears in
Jordan (1998).

Cross References
»Bayesian Network
»Expectation Propogation
»Hidden Markov Models
» Markov Random Field

Recommended Reading

Aji, S. M., & McEliece, R. J. (2000). The generalized distribu-
tive law. IEEE transactions on information theory, 46(2):
325-343.

Amir, E. (2001). Efficient approximation for triangulation of mini-
mum treewidth. In Proceedings of the 17th conference on uncer-
tainty in artificial intelligence (pp. 7-15). San Francisco: Morgan
Kaufmann.

Cowell, R. G., Dawid, P. A., Lauritzen, S. L., & Spiegelhalter, D. J.
(2003). Probabilistic networks and expert systems. Berlin:
Springer.

Edwards, D. (2000). Introduction to graphical modelling. New York:
Springer.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs dis-
tributions and the bayesian restoration of images. In IEEE
transactions on pattern analysis and machine intelligence, 6,
721-741.

Getoor, L., & Taskar, B. (Eds.). (2007). An introduction to statistical
relational learning. Cambridge, MA: MIT Press.

Ihler, A. T., Fischer III, J. W,, & Willsky, A. S. (2005). Loopy
belief propagation: Convergence and effects of message errors.
Journal of Machine Learning Research, 6, 905-936.

Jensen, F. V. (2001). Bayesian networks and decision graphs. Berlin:
Springer.

Jordan, M. (Ed.). (1998). Learning in graphical models. Cambridge,
MA: MIT Press.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models:
Principles and techniques. Cambridge, MA: MIT Press.

Kschischang, F. R., Frey, B.]J., & Loeliger, H. A. (2001). Factor
graphs and the sum-product algorithm. IEEE transactions on
information theory, 47(2), 498-519.

Lauritzen, S. L. (1996). Graphical models. Oxford: Oxford University
Press.

Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations
with probabilities on graphical structures and their application

Graphs

479

to expert systems. Journal of the Royal Statistical Society, Series
B, 50, 157-224.

Murphy, K. (1998). A brief introduction to graphical models and
Bayesian networks. San Francisco: Morgan Kaufmann.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Net-
works of plausible inference. San Francisco: Morgan Kaufmann.

Pearl, J. (2000). Causality. Cambridge: Cambridge University Press.

Roweis, S., & Ghahramani, Z. (1997). A unifying review of linear
Gaussian models. Neural Computation, 11, 305-345.

Smyth, P. (1998). Belief networks, hidden Markov models, and
Markov random fields: A unifying view. Pattern Recognition
Letters, 18, 1261-1268.

Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, expo-
nential families, and variational inference. Foundations and
Trends in Machine Learning, 1,1-305.

! Graphs

ToMmmyY R. JENSEN
Alpen-Adria-Universitit Klagenfurt,
Klagenfurt, Austria

Definition

Graph Theory is (dyadic) relations on collections spec-
ified objects. In its most common, a graph is a pair
G = (V,E) of a (finite) set of vertices V and a set of edges
E (or links). Each edge e is a 2-element subset {u, v} of
V, usually abbreviated as e = uv; u and v are called the
endvertices of e, they are mutually adjacent and each is
incident to e in G. This explains the typical model of a
simple graph.

A directed graph or »digraph is a more general
structure, in which the edges are replaced by ordered
pairs of distinct elements of the vertex set V, each such
pair being referred to as an arc. Another generalization
of a graph is a hypergraph or “set-system” on V/, in which
the hyperedges may have any size. Various concepts in
graph theory extend naturally to multigraphs, in which
each pair of (possibly identical) vertices may be adja-
cent via several edges (respectively loops). Also studied
are infinite graphs, for which the vertex and edge sets are
not restricted to be finite.

A graph is conveniently depicted graphically by rep-
resenting each vertex as a small circle, and representing
each edge by a curve that joins its two endvertices. A

digraph is similarly depicted by adding an arrow on the
curve representing an arc showing the direction from its
tail to its (possibly identical) head.

Motivation and Background

One of the very first results in graph theory appeared in
Leonhard Euler’s paper on Seven Bridges of Konigsberg,
published in 1736. The paper contained the complete
solution to the problem whether, when given a graph,
it is possible to locate an Euler tour, that is, a sequence
of adjacent edges (each edge imagined to be traversed
from one end to the other) that uses every edge exactly
once. Figure 1 illustrates the four main parts of the city
of Konigsberg with the seven bridges connecting them;
since this graph contains four vertices of odd degree, it
does not allow an Euler tour.

Applications of graphs are numerous and widespread.

Much of the success of graph theory is due to the ease at
which ideas and proofs may be communicated pictori-
ally in place of, or in conjunction with, the use of purely
formal symbolism.

Theory

A graph drawing should not be confused with the graph
itself (the underlying abstract structure) as there are
several ways to structure the graph drawing. It only mat-
ters which vertices are connected to which others by
how many edges, the exact layout may be suited for the
particular purpose at hand. It is often a problem of inde-
pendent interest to optimize a drawing of a given graph
in terms of aesthetic features.

In practice it is often difficult to decide if two
drawings represent the same graph (as in Fig. 2). This

Graphs. Figure 1. A graph of the city of Kénigsberg

480

Graphs

Graphs. Figure 2. Two drawings of the same graph

decision problem has gained increasing status in com-
plexity theory, with growing suspicion that this prob-
lem may fall in a new class of problems, which lies
between the familar classes of polynomially solvable
and NP-complete »(NP-completeness) problems (sup-
posing that these classes are indeed distinct; for issues
related to the complexities of decision and optimiza-
tion problems see Garey & Johnson, (1979)). Nonethe-
less it is customary in the treatment of abstract graphs
to consider two graphs identical if they are isomor-
phic. A closely related problem, the subgraph isomor-
phism problem, an NP-complete problem, consists in
finding a given graph as a subgraph of another given
graph.

Whereas there seems common agreement in the
graph theoretic community on what constitutes a draw-
ing of a graph, it may be considered a weakness, and
sometimes a source of confusion, that even the most
central general sources on the fundamentals of graph
theory, such as the monographs (Berge, 1976; Bondy &
Murty, 2007; Diestel, 2005), do not agree on a common
formalization of the theory.

Important special classes of graphs are bipartite graphs,
for which the vertex set is partitionable into two classes
A, B with every edge having one end in A and one in
B; in particular the complete bipartite graph K,, , has
|A| = m, |B| = n, and every vertex in A is joined to
every vertex in B. The complete graph K, consists of n
vertices that are all pairwise adjacent. A path of length
n consists of vertices vo, 1, ..., v, with edges v;_1v; for
i =1,2,...,n; such a path joins its two endvertices v,
and v,,. A circuit of length n consists of a path of length

n — 1 together with an additional edge between the two
endvertices of the path. A graph is connected if each pair
of its vertices is joined by at least one path within the
graph. Of central importance to the study of efficient
search procedures in computer science is the class of
trees, those connected graphs that contain no circuits.
Most definitions have various natural counterparts for
directed graphs, in particular a tournament is a directed
graph in which each pair of vertices is joined by exactly
one arc.

Finding a complete subgraph of a given order in
an input graph is called the cliqgue problem. The
complementary problem of finding an independent set
is called the independent set problem. The longest path
problem and the longest circuit problem have as spe-
cial cases the Hamilton path problem and the Hamilton
circuit problem, the latter two problems asking to find
a path, respectively a circuit, that uses all vertices of
the given graph. Each of these problems (or a suit-
able modification of it) belongs to the complexity class
of NP-complete problems, hence is generally believed
to be very difficult to solve efficiently. The weighted
version of the Hamilton circuit problem, the so-called
travelling salesman problem is of central importance in
combinatorial optimization.

A graph is called planar if it may be drawn in the
Euclidian plane without any two of its edges cross-
ing except where they meet at a common endver-
tex. This is often a convenient way of representing a
graph, whenever it is doable. A theorem of Kuratowski
states that a graph is planar if and only if it contains

Graphs

481

homeomorphic copies of neither the complete bipartite
graph Kj 5 (the three-houses-three-utilities-graph) nor
the complete graph Ks. A main branch of graph theory
is concerned with investigating relationships between
the topological and combinatorial properties of graphs
Mohar & Thomassen, (2001).

In 1852, Francis Guthrie posed the four color prob-
lem, asking if it is possible to color the countries of
any map, using only four colors, in such a way that
all pairs of bordering countries receive different colors.
Equivalently, by representing dually every country as a
vertex of a graph, with two vertices joined by an edge
if their countries share a stretch of common border, the
question is whether it is possible to color the vertices
of a planar graph using four colors, so that any two
adjacent vertices receive distinct colors. This problem,
was solved a century later in 1976 by Kenneth Appel,
Wolfgang Haken, and John Koch, who invested mas-
sive amounts of computing time to complete a graph
theoretic approach developed by various mathemati-
cians over a period of most of the preceding part of the
twentieth century.

The problem of coloring a possibly nonplanar graph
with a minimal number of colors, that is, to partition
its vertex set into as few independent sets as possible, is
a well-studied problem (e.g., see Jensen & Toft, (1995)),
though NP-hard in general. In fact it is already an NP-
complete problem to ask whether a given planar graph
allows a coloring using at most three colors (see Garey,
Johnson & Stockmeyer 1976). The recent strong perfect
graph theorem provides one of quite few known exam-
ples of a fairly rich class of graphs, the Berge graphs,
for which the coloring problem has a satisfactory solu-
tion (see Chudnovsky, Robertson, Seymour & Thomas
2006).

Other well-solved problems include finding a largest
matching in a given graph; a largest set of edges no
two of which share a common endvertex (see Lovasz &
Plummer (1986) for a thorough treatment of matching
theory). The most interesting special case asks to find a
perfect matching, having the property that every vertex
is paired up with a unique vertex of the graph adjacent
to it. For the special case of bipartite graphs (the mar-
riage problem), the problem was solved by Dénes Konig
in 1931. Even when given for every pair of vertices a
measure of the desirability of pairing up these particular
vertices (the weighted matching problem), there exists an

X1
T2 xs3
T4 Ty
Te X

Graphs. Figure 3. Reproduced from Bishop (2006, p. 362)

efficient solution to the problem of finding an optimum
matching of maximal total weight, discovered by Jack
Edmonds in 1959.

Applications

As an example of a visualization application, Fig. 3
shows a digraph to symbolize for a collection of seven
stochastic variables x;, . ..,x7 that their joint distribu-

tion is given by the product

p(x1)p(x2)p(x3) p(alxr, x2, %3) p (x5 [x1, x3)
x p(x6|x2)p(x7)x4, x5)

In addition to visualization of a network, a pro-
cess, a search procedure, or any hierarchical structure,
there are many applications using implementations of
known graph algorithms on computers, so that the
graph in question will only exist as an abstract datas-
tructure within a program and thus remains invisible to
the user.

There are different ways to store graphs in a com-
puter. Often a combination of list and matrix structures
will be preferred for storage and dynamic manipula-
tion of a graph by an algorithm. List structures are often
preferred for sparse graphs as they have smaller mem-
ory requirements. Matrix structures on the other hand
provide faster access but can consume a large amount
of memory if a graph contains many vertices. In most
cases it is convenient to represent a graph or digraph
by an array containing, for each edge or arc, the pair
of vertices that it joins, together with additional infor-
mation, such as the weight of the edge, as appropriate.

482

Greedy Search

It may be an advantage in addition to store for each
vertex a list of the vertices adjacent to it, or alterna-
tively, a list of the edges incident to it, depending on the
application.

The adjacency matrix of a graph, multigraph, or
digraph on n vertices is an n x n matrix in which the
ij-entry is the number of edges or arcs that join vertex
i to vertex j (or more generally, the weight of a single
such edge or arc). As a storage device this is inferior for
sparse graphs, those with relatively few edges, but gains
in importance when an application naturally deals with
very dense graphs or multigraphs.

Future Directions

In recent years the theory of graph minors has been an
important focus of graph theoretic research. A graph
H is said to be a minor of a graph G if there exists a
subgraph of G from which H can be obtained through
a sequence of edge contractions, each consisting of the
identification of the two ends of an edge e followed by
the removal of e. A monumental effort by Neil Robert-
son and Paul Seymour has resulted in a proof of the
Robertson-Seymour theorem (Robertson & Seymour,
2004; see also Diestel, 2005), with the important con-
sequence that for any set G of graphs that is closed
under taking minors, there exists a finite set of obstruc-
tion graphs, such that G is an element of G precisely
if G does not contain any minor that belongs to the
obstruction set. This theorem has several important
algorithmic consequences, many still waiting to be fully
explored.

A particularly challenging unsolved problem is the
Hadwiger conjecture (see Jensen & Toft, 1995), stating
that any graph G that does not allow a vertex coloring
with as few as k colors will have to contain the complete
graph K., as a minor. The special cases of k < 5 colors
have been shown to be consequences of the four color
theorem. But the problem remains open for all larger
values of k.

Other central areas of research relate to the notori-
ously hard problems of vertex- and edge-coloring, and
of Hamilton paths and circuits. These have important
applications, but it is not expected that any satisfactory
necessary and sufficient conditions will be found for
their existence. Hence the study of sufficient conditions
of practical value is lively pursued.

A list of open problems in graph theory can be found
in Bondy & Murty (2007).

Recommended Reading

Bang-Jensen, J., & Gutin, G. (2000). Digraphs: theory, algorithms
and applications. Springer monographs in mathematics, London:
Springer. http://www.imada.sdu.dk/Research/Digraphs/

Berge, C. (1976). Graphs and hypergraphs. North-Holland mathemat-
ical library (Vol. 6).

Bishop, C. M. (2006). Pattern recognition and machine learning.
Springer.

Bondy, J. A., & Murty, U. S. R. (2007) Graph theory, Springer.

Chudnovsky, M., Robertson, N., Seymour, P., & Thomas, R. (2006).
The strong perfect graph theorem. Annals of Mathematics, 164,
51-229.

Diestel, R. (2005). Graph theory (3rd ed.). Springer. http://www.
math . uni- hamburg.de/home/ diestel / books/ graph. theory/
GraphTheoryIILpdf

Emden-Weinert, T. Graphs:
http://people.freenet.de/Emden- Weinert/graphs.html.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability:
A guide to the theory of NP-completeness. New York: Freeman.

Garey, M. R., Johnson, D. S., & Stockmeyer, L. J. (1976). Some
simplified NP-complete graph problems. Theoretical Computer
Science, 1, 237-267.

Gimbel, J., Kennedy, J. W., & Quintas, L. V. (Eds.). (1993). Quo Vadis,
graph theory? North-Holland.

Harary, F. (1969). Graph theory. Reading: Addison-Wesley.

Jensen, T. R., & Toft, B. (1995). Graph coloring problems. Wiley.

Locke, S. C. Graph theory.http://www.math.fau.edu/locke/graphthe.
htm.

Lovasz, L., & Plummer, M. D. (1986). Matching theory. Annals of
discrete math (Vol. 29). North Holland.

Mohar, B., & Thomassen, C. (2001). Graphs on surfaces. John Hop-
kins University Press.

Robertson, N., & Seymour, P. D. (2004). Graph minors. XX. Wagner’s
conjecture. Journal of Combinatorial Theory, Series B, 92(2),
325-357.

Weisstein, E. W. Books about graph theory. http://www.

theory-algorithms-complexity.

ericweisstein.com/encyclopedias/books/GraphTheory.html.

! Greedy Search

CLAUDE SAMMUT
University of New South Wales, Sydney, Australia

At each step in its search, a greedy algorithm makes the
best decision it can at the time and continues without
backtracking. For example, an algorithm may perform
a Pgeneral-to-specific search and at each step, commits
itself to the specialization that best fits that training data,
so far. It continues without backtracking to change any

http://www.imada.sdu.dk/Research/Digraphs/
http://people.freenet.de/Emden-Weinert/graphs.html
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://www.math.fau.edu/locke/graphthe.htm.
http://www.math.fau.edu/locke/graphthe.htm.
http://www.ericweisstein.com/encyclopedias/books/GraphTheory.html.
http://www.ericweisstein.com/encyclopedias/books/GraphTheory.html.

Greedy Search Approach of Graph Mining

483

of its decisions. Greedy algorithms are used in many
machine-learning algorithms, including decision tree
learning (Breiman, Friedman, Olshen, & Stone, 1984;
Quinlan, 1993) and »rule learning algorithms, such as
»sequential covering.

Cross References
» Learning as Search
»Rule Learning

Recommended Reading

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984).
Classification and regression trees. Belmont, CA: Wadsworth
International Group.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San
Mateo, CA: Morgan Kaufmann.

! Greedy Search Approach of Graph
Mining

LAWRENCE HOLDER
Washington State University, Pullman, USA

Definition

»Greedy search is an efficient and effective strategy for
searching an intractably large space when sufficiently
informed heuristics are available to guide the search.
The space of all subgraphs of a graph is such a space.
Therefore, the greedy search approach of »graph min-
ing uses heuristics to focus the search toward subgraphs
of interest while avoiding search in less interesting por-
tions of the space. One such heuristic is based on the
compression afforded by a subgraph; that is, how much
is the graph compressed if each instance of the subgraph
is replaced by a single vertex. Not only does compres-
sion focus the search, but it has also been found to prefer
subgraphs of interest in a variety of domains.

Motivation and Background

Many data mining and machine learning methods focus
on the attributes of entities in the domain, but the rela-
tionships between these entities also represents a signif-
icant source of information, and ultimately, knowledge.
Mining this relational information is an important chal-
lenge both in terms of representing the information and

facing the additional computational obstacles of ana-
lyzing both entity attributes and relations. One efficient
way to represent relational information is as a graph,
where vertices in the graph represent entities in the
domain, and edges in the graph represent attributes and
relations among the entities. Thus, mining graphs is
an important approach to extracting relational infor-
mation. The main alternative to a graph-based rep-
resentation is first-order logic, and the methods for
mining this representation fall under the area of induc-
tive logic programming. Here, the focus is on the graph
representation.

Several methods have been developed for mining
graphs (Washio & Motoda, 2003), but most of these
methods focus on finding the most frequent subgraphs
in a set of graph transactions (e.g., FSG (Kuramochi
& Karypis, 2001), gSpan (Yan & Han, 2002), Gaston
(Nijjssen & Kok, 2004)) and use efficient exhaustive,
rather than heuristic search. However, there are other
properties besides frequency of a subgraph pattern that
are relevant to many domains. One such property is the
amount of compression afforded by the subgraph pat-
tern, when each instance of the pattern is replaced by a
single vertex. Searching for the most frequent subgraphs
can be made efficient mainly through the exploitation of
the downward closure property, which essentially says
one can prune any extension of a subgraph that does
not meet the minimum support frequency threshold.
Unfortunately, the compression of a subgraph does not
satisfy the downward closure property; namely, while a
small extension of a subgraph may have less compres-
sion, a larger extension may have greater compression.
Therefore, one cannot easily prune extensions and must
search a larger portion of the space of subgraphs. Thus,
one must resort to a greedy search method to search this
space efficiently.

As with any greedy search approach, the result-
ing solution may sometimes be suboptimal, that is, the
resulting subgraph pattern is not the pattern with max-
imum compression. The extent to which optimal solu-
tions are missed depends on the type of greedy search
and the strength of the heuristics used to guide the
search. One approach is embodied in the graph-based
induction (GBI) method (Matsuda, Motoda, Yoshida,
& Washio, 2002; Yoshida, Motoda, & Indurkhya, 1994).
GBI continually compresses the input graph by identi-
fying frequent triples of vertices, some of which may

484

Greedy Search Approach of Graph Mining

represent previously compressed portions of the input
graph. Candidate triples are evaluated using a measure
similar to information gain.

A similar approach recommended here is the use
of a beam search strategy coupled with a compression
heuristic based on the »minimum description length
(MDL) principle (Rissanen, 1989). The goal is to per-
form unsupervised discovery of a subgraph pattern that
maximizes compression, which is essentially a trade-
off between frequency and size. Once the capability to
find such a pattern exists, it can be used in an iterative
discovery-and-compress fashion to perform hierarchi-
cal conceptual clustering, and it can be used to perform
supervised learning, that is, find patterns that com-
press the positive graphs, but not the negative graphs.
This approach has been well studied (Cook & Holder,
2000, 2007; Gonzalez, Holder, & Cook, 2002; Holder
& Cook, 2003; Jonyer, Cook, & Holder, 2001; Kukluk,
Holder, & Cook, 2007) and has proven successful in sev-
eral domains (Cook, Holder, Su, Maglothin, & Jonyer,
2001; Eberle & Holder, 2006; Holder, Cook, Coble, &
Mukherjee, 2005; You, Holder, & Cook, 2006).

Structure of Learning System

Figure 1 depicts the structure of the greedy search
approach of graph mining. The input data is a labeled,
directed graph G. The search begins by identifying the
set of small common patterns in G, that is, all vertices
with unique labels having a frequency greater than one.
The algorithm then iterates by evaluating the patterns

according to the search heuristic, retaining the best pat-
terns, and extending the best patterns by one edge until
the stopping condition is met.

The search is guided by the minimum description
length (MDL) principle, which seeks to minimize the
description length of the entire data set. The evaluation
heuristic based on the »MDL principle assumes that
the best pattern is the one that minimizes the descrip-
tion length of the input graph when compressed by the
pattern. The description length of the pattern S given
the input graph G is calculated as DL(G, S) = DL(S) +
DL(G|S), where DL(S) is the description length of the
pattern, and DL(G|S) is the description length of the
input graph compressed by the pattern. The search seeks
a pattern S that minimizes DL(G,S).

While several greedy search strategies apply here
(e.g., hill climbing, stochastic), the strategy that has
been found to work best is the »beam search. Of
the patterns currently under consideration, the sys-
tem retains only the best Beam patterns, where Beam
is a user-defined parameter. These patterns are then
extended by one edge in all possible ways according
to the input graph, the extended patterns are evalu-
ated, and then again, all but the best Beam patterns
are discarded. This process continues until the stop-
ping condition is met. Several stopping conditions are
applicable here, including a user-defined limit on the
number of patterns considered, the exhaustion of the
search space, or the case in which all extensions of
a pattern evaluate to a lesser value than their parent
pattern. Once meeting the stopping condition, the sys-
tem returns the best patterns. Note that while the naive

Identify small, Evaluate .
Input N) Retain best
GraphG | cemmon > pattermsin G "| Beam patterns
patterns in G using MDL
A
Extend Stopping
patterns by condition?
one edge

Best patterns

Greedy Search Approach of Graph Mining. Figure 1. Structure of the greedy search approach of graph mining

Greedy Search Approach of Graph Mining

485

o
A

Greedy Search Approach of Graph Mining. Figure 2. Exa-
mple of the greedy search approach of graph
mining

approach to implementing this algorithm would require
an NP-complete subgraph isomorphism procedure to
collect the instances of each pattern, a more efficient
approach takes advantage of the fact that new patterns
are always one-edge extensions of existing patterns, and,
therefore, the instances of the extended patterns can
be identified by searching the extensions of the par-
ent’s instances. This process does require several iso-
morphism tests, which is the computational bottleneck
of the approach, but avoids the subgraph isomorphism
problem.

Once the search terminates, the input graph can be
compressed using the best pattern. The compression
procedure replaces all instances of the pattern in the
input graph by single vertices, which represent the pat-
tern’s instances. Incoming and outgoing edges to and
from the replaced instances will point to, or originate
from the new vertex that represents the instance. The
algorithm can then be invoked again on this compressed
graph.

Figure 2 illustrates the process on a simple example.
The system discovers pattern S;, which is used to com-
press the data. A second iteration on the compressed
graph discovers pattern S,. Because instances of a pat-
tern can appear in slightly different forms throughout
the data, an inexact graph match, based on graph edit
distance, can be used to address noise by identifying
similar pattern instances.

Given the ability to find a prevalent subgraph pattern
in a larger graph and then compress the graph with this
pattern, iterating over this process until the graph can
no longer be compressed will produce a hierarchical,
conceptual clustering of the input data (Jonyer, Cook,

& Holder, 2001). On the ith iteration, the best subgraph
S; is used to compress the input graph, introducing new
vertices labeled S; in the graph input to the next itera-
tion. Therefore, any subsequently discovered subgraph
Sj can be defined in terms of one or more of S;s, where
i < j. The result is a lattice, where each cluster can be
defined in terms of more than one parent subgraph. For
example, Fig. 3 shows such a clustering done on a DNA
molecule.

Extending a graph-based data mining approach to per-
form »supervised learning involves the need to handle
negative examples (focusing on the two-class scenario).
In the case of a graph the negative information can
come in three forms. First, the data may be in the
form of numerous smaller graphs, or graph transac-
tions, each labeled either positive or negative. Second,
data may be composed of two large graphs: one posi-
tive and one negative. Third, the data may be one large
graph in which the positive and negative labeling occurs
throughout. The first scenario is closest to the standard
supervised learning problem in that one has a set of
clearly defined examples (Gonzalez et al., 2002). Let G*
represent the set of positive graphs, and G~ represent
the set of negative graphs. Then, one approach to super-
vised learning is to find a subgraph that appears often in
the positive graphs, but not in the negative graphs. This
amounts to replacing the information-theoretic mea-
sure with simply an error-based measure. This approach
will lead the search toward a small subgraph that dis-
criminates well. However, such a subgraph does not
necessarily compress well, nor represent a characteristic
description of the target concept.

One can bias the search toward a more characteristic
description by using the information-theoretic measure
to look for a subgraph that compresses the positive
examples, but not the negative examples. If I(G) rep-
resents the description length (in bits) of the graph G,
and I(G|S) represents the description length of graph G
compressed by subgraph S, then one can look for an
S that minimizes I(G*|S) + I(S) + I(G™) — I(G™S),
where the last two terms represent the portion of the
negative graph incorrectly compressed by the subgraph.
This approach will lead the search toward a larger sub-
graph that characterizes the positive examples, but not
the negative examples.

486

Greedy Search Approach of Graph Mining

&
P,
g S
o gOH H ‘}\7_0

Hi

X
CH,
N—H - O
N A
O HNT CHy g
o—#—oH i
o il HO—P=0
it

CH, 0 _/) .
gt
2
cHy b--H-N \\)
o \—OOH H HO—F=0

o

Greedy Search Approach of Graph Mining. Figure 3. Iterative application of the greedy search approach of graph min-
ing yields the hierarchical, conceptual clustering on the right given an input graph representing the portion of DNA

structure depicted on the left

Finally, this process can be iterated in a set-covering
approach to learn a disjunctive hypothesis. If using the
error measure, then any positive example containing
the learned subgraph would be removed from sub-
sequent iterations. If using the information-theoretic
measure, then instances of the learned subgraph in
both the positive and negative examples (even multi-
ple instances per example) are compressed to a single
vertex. Note that the compression is a lossy one, that
is, one does not keep enough information in the com-
pressed graph to know how the instance was connected
to the rest of the graph. This approach is consistent with
the goal of learning general patterns, rather than mere
compression.

In the above algorithms the patterns are limited to
non-recursive structures. In order to learn subgraph
motifs, or patterns that can be used as the building
blocks to generate arbitrarily large graphs, one needs
the ability to learn graph grammars. The key to the
inference of a graph grammar is the identification of
overlapping structure. One can detect the possibility of
a recursive graph-grammar production by checking if
the instances of a pattern overlap. If a set of instances
overlap by a single vertex, then one can propose a
recursive node-replacement graph grammar produc-
tion. Figure 4 shows an example of a node-replacement
graph grammar (right) learned from a simple, repetitive
input graph (left). The input graph in Fig. 4 is composed
of three overlapping substructures. Based on how the

instances overlap, one can also infer connection instruc-
tions that describe how the pattern can connect to itself.
For example, the connection instructions in Fig. 4 indi-
cate that the graph can grow by connecting vertex 1 of
one pattern instance to either vertex 3 or vertex 4 of
another pattern instance.

If a set of pattern instances overlap by an edge, then
one can propose a recursive edge-replacement graph
grammar production. Figure 5 shows an example of an
edge-replacement graph grammar (right) learned from
the input graph (left). Connection instructions describe
how the motifs can connect via the edge labeled “a” or
the edge labeled “b”

Apart from the inclusion of recursive patterns, the
greedy search approach of graph mining is unchanged.
Both recursive and non-recursive patterns are evalu-
ated according to their ability to compress the input
graph using the »MDL heuristic. After several iter-
ations of the approach, the result is a graph gram-
mar consisting of recursive and non-recursive pro-
ductions that both describe the input graph and pro-
vide a mechanism for generating graphs with similar
properties.

Programs and Data

Most of the aforementioned functionality has been
implemented in the SUBDUE graph-based pattern
learning system. The SUBDUE source code and numer-
ous sample graph data files are available at http://www.
subdue.org.

http://www.subdue.org.
http://www.subdue.org.

Greedy Search Approach of Graph Mining

487

Connection
instructions
1-3
1-4

Greedy Search Approach of Graph Mining. Figure 4. The node-replacement graph grammar (right) inferred from the
input graph (left). The connection instructions indicate how the pattern can connect to itself

r S3a

3
s3> a S3b
4

5

Connections

S3a :> 83 (1-1,2-2) Ib
s3b > 3 (3—2,4—6)‘ Ia

Greedy Search Approach of Graph Mining. Figure 5. The edge-replacement graph grammar (right) inferred from the
input graph (left). The connection instructions indicate how the pattern can connect to itself

Applications

Many relational domains, from chemical molecules to
social networks, are naturally represented as a graph,
and a graph mining approach is a natural choice for
extracting knowledge from such data. Three such appli-
cations are described below.

A huge amount of biological data that has been
generated by long-term research encourages one to
move one’s focus to a systems-level understanding of
bio-systems. A biological network, containing various
biomolecules and their relationships, is a fundamen-
tal way to describe bio-systems. Multi-relational data
mining finds the relational patterns in both the entity
attributes and relations in the data. A graph consist-
ing of vertices and edges between these vertices is a
natural data structure to represent biological networks.
The greedy search approach of graph mining has been
applied to find patterns in metabolic pathways (You
et al, 2006). Graph-based supervised learning finds
the unique substructures in a specific type of pathway,

which help one understand better how pathways differ.
Unsupervised learning shows hierarchical clusters that
describe the common substructures in a specific type
of pathway, which allow one to better understand the
common features in pathways.

Social network analysis is the mapping and mea-
suring of relationships and flows between people, orga-
nizations, computers, or other information processing
entities. Such analysis is naturally done using a graphical
representation of the domain. The greedy approach of
graph mining has been applied to distinguish between
criminal and legitimate groups based on their mode
of communication (Holder et al., 2005). For exam-
ple, terrorist groups tend to exhibit communications
chains; whereas, legitimate groups (e.g., families) tend
to exhibit more hub-and-spoke communications.

Anomaly detection is an important problem for
detecting fraud or unlawful intrusions. However,
anomalies are typically rare and, therefore, present
a challenge to most mining algorithms that rely on

488

Greedy Search Approach of Graph Mining

regularity and frequency to detect patterns. With the
graph mining approach’s ability to iteratively compress
away regularity in the graph, what is left can be con-
strued as anomalous. To distinguish this residual struc-
ture from noise, one can compare its regularity with
the probability that such structure would appear ran-
domly. The presence of rare structure that is unlikely
to appear by chance suggests an anomaly of inter-
est. Furthermore, most fraudulent activity attempts to
disguise itself by mimicking legitimate activity. There-
fore, another method for finding such anomalies in
graphs is to first find the normative pattern using the
greedy search approach of graph mining and then find
unexpected deviations to this normative pattern. This
approach has been applied to detect anomalies in cargo
data (Eberle & Holder, 2006).

Future Directions

One of the main challenges in approaches to graph
mining is scalability. Since most relevant graph opera-
tions (e.g., graph and subgraph isomorphism) are com-
putationally expensive, they can be applied to only
modest-sized graphs that can fit in the main memory.
Clearly, there will always be graphs larger than can fit
in main memory, so efficient techniques for mining in
such graphs are needed. One approach is to keep the
graph in a database and translate graph mining oper-
ations into database queries. Another approach is to
create abstraction hierarchies of large graphs so that
mining can occur at higher-level, smaller graphs to
identify interesting regions of the graph before descend-
ing down into more specific graphs. Traditional high-
performance computing techniques of partitioning a
problem into subproblems, solving the subproblems,
and then recomposing a solution do not always work
for graph mining problems, because partitioning the
problem means breaking links which may later turn
out to be important. New techniques and architectures
are needed to improve the scalability of graph mining
operations.

Another challenge for graph mining techniques is
dynamic graphs. Most graphs represent data that can
change over time. For example, a social network can
change as people enter and leave the network, new links
are established and old links are discarded. First, one
would like to be able to mine for static patterns in

the presence of the changing data, which will require
incremental approaches to graph mining. Second, one
would like to mine patterns that describe the evolution
of the graph over time, which requires mining of time
slice graphs or the stream of graph transaction events.
Third, the dynamics can reside in the attributes of enti-
ties (e.g., changing concentrations of an enzyme in a
metabolic pathway), in the relation structure between
entities (e.g., new relationships in a social network),
or both. Research is needed on eflicient and effective
techniques for mining dynamic graphs.

Cross References
» Grammatical Inferences

Recommended Reading

Cook, D., & Holder, L. (March/April 2000). Graph-based data min-
ing. IEEE Intelligent Systems, 15(2), 32-41.

Cook, D., & Holder, L. (Eds.). (2007). Mining graph data. New Jersey:
Wiley.

Cook, D., Holder, L., Su, S., Maglothin, R., & Jonyer, 1. (July/August
2001). Structural mining of molecular biology data. IEEE
Engineering in Medicine and Biology, Special Issue on Genomics
and Bioinformatics, 20(4), 67-74.

Eberle, W., & Holder, L. (2006). Detecting anomalies in cargo ship-
ments using graph properties. In Proceedings of the IEEE intel-
ligence and security informatics conference, San Diego, CA, May
2006.

Gonzalez, J., Holder, L., & Cook D. (2002). Graph-based relational
concept learning. In: Proceedings of the nineteenth interna-
tional conference on machine learning, Sydney, Australia, July
2002.

Holder, L., & Cook, D. (July 2003). Graph-based relational learning:
Current and future directions. ACM SIGKDD Explorations, 5(1),
90-93.

Holder, L., Cook, D., Coble, J., & Mukherjee, M. (March 2005).
Graph-based relational learning with application to security.
Fundamenta Informaticae, Special Issue on Mining Graphs, Trees
and Sequences, 66(1-2), 83-101.

Jonyer, 1., Cook, D., & Holder, L. (October 2001). Graph-based
hierarchical conceptual clustering. Journal of Machine Learning
Research, 2,19-43.

Kukluk, J., Holder, L., & Cook, D. (2007). Inference of node
replacement graph grammars. Intelligent Data Analysis, 11(4),
377-400.

Kuramochi, M., & Karypis, G. (2001). Frequent subgraph discov-
ery. In Proceedings of the IEEE international conference on data
mining (ICDM) (pp. 313-320), San Jose, CA.

Matsuda, T., Motoda, H., Yoshida, T., & Washio, T. (2002). Min-
ing patterns from structured data by beam-wise graph-based
induction. In Proceedings of the fifth international conference on
discovery science (pp. 323-338), Lubeck, Germany.

Nijssen, S., & Kok, J. N. (2004). A quickstart in frequent structure
mining can make a difference. In Proceedings of the tenth ACM

Group Detection

489

SIGKDD international conference on knowledge discovery and
data mining (KDD) (pp. 647-652), Seattle, WA.

Rissanen, J. (1989). Stochastic complexity in statistical inquiry. New
Jersey: World Scientific.

Washio, T., & Motoda H. (July 2003). State of the art of graph-based
data mining. ACM SIGKDD Explorations, 5(1), 59-68.

Yan, X., & Han, J. (2002). gSpan: Graph-based substructure pat-
tern mining. In Proceedings of the IEEE international confer-
ence on data mining (ICDM) (pp. 721-724), Maebashi City,
Japan.

Yoshida, K., Motoda, H., & Indurkhya, N. (1994). Graph-based
induction as a unified learning framework. Journal of Applied
Intelligence, 4, 297-328.

You, C., Holder, L., & Cook, D. (2006). Application of graph-based
data mining to metabolic pathways. In Workshop on data mining
in bioinformatics, IEEE international conference on data mining,
Hong Kong, China, December 2006.

! Group Detection

HossaM SHARARA, LiSE GETOOR
University of Maryland, Maryland, USA

Synonyms
Community detection; Graph clustering; Modularity
detection

Definition

Group detection can defined as the clustering of nodes
in a graph into groups or communities. This may be a
hard partitioning of the nodes, or may allow for overlap-
ping group memberships. A community can be defined
as a group of nodes that share dense connections among
each other, while being less tightly connected to nodes
in different communities in the network. The impor-
tance of communities lies in the fact that they can
often be closely related to modular units in the system
that have a common function, e.g., groups of individu-
als interacting with each other in a society (Girvan &
Newman, 2002), WWW pages related to similar top-
ics (Flake, Lawrence, Giles, & Coetzee, 2002), or pro-
teins having the same biological function within the cell
(Chen & Yuan, 2006).

Motivation and Background

The work done in group detection goes back as early
as the 1920s when Stuart Rice clustered data by hand
to investigate political blocks (Rice, 1927). Another
early example is the work of George (Homans, 1950)

who illustrated how simple rearrangement of the rows
and columns of data matrices helped to reveal their
underlying structure. Since then, group detection has
attracted researchers from different areas such as soci-
ology, mathematics, physics, marketing, statistics, and
computer science.

Group detection techniques vary from simple
similarity-based »clustering algorithms that follow the
classical assumption that the data points are inde-
pendent and identically distributed, to more advanced
techniques that take into consideration the existing rela-
tionships between nodes in addition to their attributes,
and try to characterize the different distributions
present in the data.

Theory Solution

A network is defined as a graph G = (V, E) consisting
of a set of nodes v € V, and a set of edges e € E. In the
case of weighted networks, w(v;, vj) denotes the weight
of the edge connection nodes v; and v;. A community,
or a group, C is a subgraph C(V’,E’) of the original
graph G(V,E) whose nodes and edges are subsets of
the original graph’s nodes and edges; i.e,, V' ¢ V and
E'cE.

Following the definition of the community, we can
expect that all the vertices in any community must be
connected by a path within the same community. This
property is referred to in literature as connectedness,
which implies that in the case of disconnected graphs,
we can analyze each connected component separately,
as communities cannot span different components.

Another important property that follows from the
definition of a community is that the group of vertices
within a community should share denser connections
among each other, and fewer connections with the other
vertices in the network. To quantify this measure, the
link density of a group 8(C) is defined as the ratio
between the number of internal edges in that group and
the maximum number of possible internal edges:

E'|

2O w2

)
Thus, for any community C, we require that 6(C) >
0(G); where 8(G) is the average link density of the
whole network. Similarly, the average link density
between different communities, calculated using the

490

Group Detection

ratio between the number of edges emanating from a
group and terminating in another, and the maximum
number possible of such edges, should generally be low.

Approaches

Beyond the intuitive discussion above, the precise
definition of what constitutes a community involves
multiple aspects. One important aspect is whether com-
munities form hard partitions of the graph or nodes can
belong to several communities. Overlapping communi-
ties do commonly occur in natural settings, especially
in social networks. Currently, only a few methods are
able to handle overlapping communities (Palla, Dernyi,
Farkas, & Vicsek, 2005).

Other aspects should also be taken into consid-
eration when defining community structure, such as
whether link weights and/or directionalities are uti-
lized, and whether the definition allows for hierarchical
community structure, which means that communities
may be parts of larger ones. However, one of the most
important aspect that comes into consideration in com-
munity detection is whether the definition depends on
global or local network properties. The main difference
between the two approaches is whether the commu-
nities are defined in the scope of the whole network
structure, such as methods based on centrality mea-
sures (Girvan & Newman, 2002), global optimization
methods (Newman & Girvan, 2004), spectral meth-
ods (Arenas, Daz-Guilera, & Prez-Vicente, 2006), or
information-theoretic methods (Rosvall & Bergstrom,
2008). Local methods, on the other hand, define com-
munities based on purely local network structure, such
as detecting cliques of different sizes, clique percolation
method (Pallaetal., 2005), and subgraph fitness method
(Lancichinetti, Fortunato, & Kertesz, 2009).

Local methods for community detection basically rely
on defining a set of properties that should exist in a
community, then finding maximal subgraphs for which
these set of properties hold. This formulation corre-
sponds to finding maximal cliques in the network,
where a clique is a subgraph in which all its vertices are
directly connected.

However, there are some issues that rises from the
previous formulation. First, finding cliques in a graph is
an NP-Complete problem, thus most solutions will be

approximate based on heuristic methods. Another more
semantic issue is the interpretation of communities,
especially in the context of social networks, where dif-
ferent individuals have different centralities within their
corresponding groups, contradicting with the degree
symmetry of the nodes in cliques. To overcome these
drawbacks, the notion of a clique is relaxed to n-clique,
which is a maximal subgraph where each pair of vertices
are at most n-steps apart from each other.

» Data clustering is considered one of the earliest tech-
niques for revealing group structure, where data points
are grouped based on the similarity between their cor-
responding features according to a given similarity
measure. The main objective of traditional clustering
methods is to obtain clusters or groups of data points
possessing high intra-cluster similarity and low inter-
cluster similarity. Classical data clustering techniques
can be divided into partition-based methods such as
k-means clustering (MacQueen, 1967), spectral clus-
tering algorithms (Alpert, Kahng, & Yao, 1999), and
hierarchical clustering methods (Hartigan, 1975), which
are the most popular and the most commonly used in
many fields.

One of the main advantages of the hierarchical clus-
tering techniques is their ability to provide multiple
resolutions at which the data can be grouped. In general,
hierarchical clustering can be divided into agglomer-
ative and divisive algorithms. The agglomerative algo-
rithm is a greedy bottom-up one that starts with clusters
including single data points then successively merge
the pairs of clusters with the highest similarity. Divi-
sive algorithms work in an opposite direction, where
initially all the data points are regarded as one clus-
ter, which is successively divided into smaller ones by
splitting groups of nodes having the lowest similarity.
In both algorithms, clusters are represented as a den-
drogram, whose depths indicate the steps at which two
clusters are joined. This representation clarifies which
communities are built up from smaller modules, and
how these smaller communities are organized, which
can be particularly useful in the case of the presence of
anormal hierarchy of community structure in the data.
Hierarchical clustering techniques can easily be used
in network domains, where data points are replaced by

Group Detection

491

individual nodes in the network, and the similarity is
based on edges between them.

One of the methods for community detection that
is based on the global network structure is the one
proposed by Girvan and Newman (2002), where they
proposed an algorithm based on the betweenness
centrality of edges to be able to recover the group struc-
ture within the network. Betweenness centrality is a
measure of centrality of nodes in networks, defined for
each node as the number of shortest paths between
pairs of nodes in the network that run through it. The
Girvan-Newman algorithm extended this definition for
edges in the network as well, where the betweenness
centrality of an edge is defined as the number of shortest
paths between pairs of nodes that run along it.

The basic idea behind the algorithm is exploiting the
fact that the number of edges connecting nodes from
different communities is sparse. Following from that,
all shortest paths between nodes from different commu-
nities should pass along one of these edges, increasing
their edge betweenness centrality measure. Therefore,
by following a greedy approach and removing edges
with highest betweenness centrality from the network
successively, the underlying community structure will
be revealed. One of the major drawbacks of the algo-
rithm is the time complexity, which is O(|E|*|V|) gen-
erally,and O(|V|*) for sparse networks. The fact that the
edge betweenness needs only to be recalculated only for
the edges affected by the edge removal can be factored
in, which makes the algorithm efficient in sparse net-
works with strong community structure, but not very
efficient on dense networks.

The concept of modularity was introduced by Newman
and Girvan (2004) as a measure to evaluate the qual-
ity of a set of extracted communities in a network, and
has become one of the most popular quality functions
used for community detection. The basic idea is uti-
lizing a null model: a network having the same set of
nodes as the original one, but with random edges placed
between them taking into account preserving the orig-
inal node degrees. The basic idea is that the created
random network is expected to contain no commu-
nity structure, thus by comparing the number of edges

within the extracted communities against the expected
number of edges in the same communities from the ran-
dom network, we can judge the quality of the extracted
community structure. More specifically, the modularity
Q is defined as follows

Q 1 5[4, - deg(i) x deg(j)

= o i Ok (cir ¢ 2
R iR E

where Aj; is the element of the adjacency matrix of the
network denoting the number of edges between nodes i
and j, deg(i) and deg(j) are the degrees of nodes i and j
respectively, ¢; and ¢j are the communities to which
nodes i and j belong respectively, and &y refers to the
kronecker delta. The summation runs over all pairs of
nodes within the same community.

Clearly, a higher modularity value indicates that the
average link density within the extracted community
is larger than that of the random network where no
community structure is present. Thus, modularity max-
imization can be used as the objective for producing
high-quality community structure. However, modular-
ity maximization is an NP-hard problem. Nevertheless,
there have been several algorithms for finding fairly
good approximations of the modularity maximum in
reasonable amount of time.

One of the first modularity maximization algo-
rithms was introduced by Newman in 2004 (Newman,
2004). It is a greedy hierarchical agglomerative clus-
tering algorithm, which starts with individual nodes
and merges them in the order of increasing the over-
all modularity of the resulting configuration. The time
complexity of this greedy algorithm is O(|V|(|E| +|V]))
or O(|V|?) for sparse networks, which enables the user
to run community detection on large networks in a
reasonable amount of time.

Issues

One of the main issues with the methods of group detec-
tion in network setting is the focus on the network
structure, without taking into consideration other prop-
erties of nodes and edges in the network. This issue
often results in a lack of correspondence between the
extracted communities and the functional groups in the
network (Shalizi, Camperi, & Klinkner, 2007). This also

492

Grouping

leads to another common problem which is how to val-
idate the resulting communities produced by any of the
proposed techniques.

Although in network settings there are often differ-
ent types of interactions between entities of different
natures, most group detection methods work on single-
mode networks, which have just a single node and edge
type. Fewer works focus on finding groups in more
complex, multimodal settings, where nodes from differ-
ent types have multiple types of interactions with each
other. One of the most common approaches to deal with
these types of networks is projecting them into a series
of individual graphs for each node type. However, this
approach results in losing some of the information that
could have been retained by operating collectively on
the original multi-relational network.

Another issue also gaining interest is developing
methods for group detection in dynamic network set-
tings (Tantipathananandh & Berger-Wolf, 2009), where
the underlying network structure changes over time.
Most of the previous work on group detection focused
on static networks, and handles the dynamic case by
either analyzing a snapshot of the network at a single
point in time, or aggregating all interactions over the
whole time period. Both approaches do not capture the
dynamics of change in the network structure, which
can be an important factor in revealing the underlying
communities.

Cross References
» Graph Clustering
» Graph Mining

Recommended Reading

Alpert, C., Kahng, A., & Yao, S. (1999). Spectral partitioning: The
more eigenvectors, the better. Discrete Applied Mathematics, 90,
3-26.

Arenas, A., Daz-Guilera, A., & Prez-Vicente, C. J. (2006). Syn-
chronization reveals topological scales in complex networks.
Physical Review Letters, 96(11), 114102.

Chen, J., & Yuan, B. (2006). Detecting functional modules in
the yeast protein-protein interaction network. Bioinformatics,
22(18), 2283-2290.

Flake, G. W., Lawrence, S., Giles, C. L., & Coetzee, E (2002).
Self-organization and identification of web communities. IEEE
Computer, 35, 66-71.

Girvan, M., & Newman, M. E. J. (2002). Community structure
in social and biological networks. Proceedings of National
Academy of Science, 99, 7821-7826.

Hartigan, J. A. (1975). Clustering algorithms. New York: Wiley.

Homans, G. C. (1950). The human group. New York: Harcourt, Brace.

Lancichinetti, A., Fortunato, S., & Kertesz, J. (2009). Detecting the
overlapping and hierarchical community structure in complex
networks. New Journal of Physics, 11, 033015.

MacQueen, J. B. (1967). Some methods for classification and
analysis of multivariate observations. In Proceedings of fifth
Berkeley symposium on mathematical statistics and probability
(Vol. 1, pp. 281-297). Berkeley, CA: University of California
Press.

Newman, M. E. J. (2004). Fast algorithm for detecting community
structure in networks. Physical Review E, 69(6), 066133.

Newman, M. E. J., & Girvan, M. (2004). Finding and evaluat-
ing community structure in networks. Physical Review E, 69,
026113.

Palla, G., Dernyi, I., Farkas, I., & Vicsek, T. (2005). Uncovering
the overlapping community structure of complex networks in
nature and society. Nature, 435(7043), 814-818.

Rice, S. A. (1927). The identification of blocs in small political
bodies. American Political Science Review, 21, 619-627.

Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on
complex networks reveal community structure. Proceedings of
National Academy of Science, 105, 1118-1123.

Shalizi, C. R., Camperi, M. F, & Klinkner, K. L. (2007). Discovering
functional communities in dynamical networks. Statistical net-
work analysis: Models, issues, and new directions (pp. 140-157).
Berlin: Springer-Verlag.

Tantipathananandh, C., & Berger-Wolf, T. Y. (2009). Algorithms for
identifying dynamic communities. In Proceedings of the 15th
ACM SIGKDD international conference on knowledge discovery
and data mining, Paris. New York: ACM.

! Grouping

» Categorical Data Clustering

! Growing Set

Definition

A growing set is a subset of a P-training set contain-
ing data that are used by a »learning system to develop
models that are then evaluated against a »pruning set.

Cross References
» Data Set

|
Growth Function

» Shattering Coeflicient

	G
	Gaussian Distribution
	Synonyms
	Definition
	Motivation and Background
	Theory/Solution
	Canonical Form
	Cumulative Distribution Function
	Moments
	Entropy and Kullback–Leibler Divergence
	Properties Under Affine Transform
	Conjugate Priors
	Parameter Estimation
	Distributions Induced by the Gaussian

	Applications
	Central Limit Theorem
	Approximate Gaussian Posterior
	3-bold0mu mumu Rule
	Combination of Random Variables
	Correlations and Independence
	Marginalization, Conditioning, and Agglomeration

	Cross References
	Recommended Reading

	Gaussian Process
	Synonyms
	Definition
	Motivation and Background
	Theory
	Gaussian Process
	Covariance Functions

	Applications
	Regression
	Likelihood Function and Posterior Distribution:
	Predictive Distribution:
	Point Prediction:

	Classification
	Likelihood Function and Posterior Distribution:
	Predictive Distribution:
	Point Prediction:

	Practical Issues
	Model Selection
	Marginal Likelihood for Regression:
	Marginal Likelihood for Classification:

	Sparse Approximation

	Current and Future Directions
	Cross References
	Recommended Reading

	Gaussian Process Reinforcement Learning
	Definition
	Motivation and Background
	Markov Decision Processes
	Reinforcement Learning

	Structure of Learning System
	Gaussian Process Temporal Difference Learning

	Theory
	MRPs with Deterministic Transitions
	General MRPs

	Applications
	Future Directions
	Further Reading
	Recommended Reading

	Generality And Logic
	Generalization
	Cross References
	Recommended Reading

	Generalization Bounds
	Synonyms
	Definition
	Motivation and Background
	Details
	Cross References
	Recommended Readings

	Generalization Performance
	Cross References

	Generalized Delta Rule
	General-to-Specific Search
	Generative and Discriminative Learning
	Definition
	Motivation and Background
	Cross References
	Recommended Reading

	Generative Learning
	Definition
	Cross References

	Genetic and Evolutionary Algorithms
	Definitions
	Genetic Operators
	Cross References

	Genetic Attribute Construction
	Genetic Clustering
	Genetic Feature Selection
	Genetic Grouping
	Genetic Neural Networks
	Genetic Programming
	Genetics-Based Machine Learning
	Gibbs Sampling
	Gini Coefficient
	Gram Matrix
	Grammar Learning
	Grammatical Inference
	Synonyms
	Definition
	Recommended Reading

	Grammatical Tagging
	Graph Clustering
	Synonyms
	Definition
	Motivation and Background
	Graph Clustering as Minimum Cut
	Graph Clustering as Multiway Graph Partitioning
	Graph Clustering with k-Means
	Graph Clustering with the Spectral Method
	Graph Clustering as Quasi-Clique Detection
	Graph Clustering as Dense Subgraph Determination
	Clustering Graphs as Objects
	Conclusions and Future Research
	Cross References
	Recommended Reading

	Graph Kernels
	Definition
	Motivation and Background
	Approaches for Kernels between Graphs
	Approaches for Kernels on a Graph
	Recommended Reading

	Graph Mining
	Definition
	Motivation and Background
	Structure of Learning System
	Analysis of Real-World Graphs
	Graph Generators

	Applications
	Cross References
	Recommended Reading

	Graphical Models
	Definition
	Motivation and Background
	Theory
	Directed Graphical Models
	Undirected Graphical Models
	Conversion from Directed to Undirected GraphicalModels

	Characterization of Directed and Undirected Graphical Models

	Applications
	Inference Algorithms in Graphical Models
	Belief-Propagation
	Maximum A Posteriori (MAP) Estimation
	The Junction-Tree Algorithm
	Approximate Inference

	Cross References
	Recommended Reading

	Graphs
	Definition
	Motivation and Background
	Theory
	Isomorphism
	Classes of Graphs
	Properties of Graphs

	Applications
	Future Directions
	Recommended Reading

	Greedy Search
	Cross References
	Recommended Reading

	Greedy Search Approach of Graph Mining
	Definition
	Motivation and Background
	Structure of Learning System
	Graph-Based Hierarchical Conceptual Clustering
	Graph-Based Supervised Learning
	Graph Grammar Inference

	Programs and Data
	Applications
	Future Directions
	Cross References
	Recommended Reading

	Group Detection
	Synonyms
	Definition
	Motivation and Background
	Theory Solution
	Approaches
	Local Techniques
	Clustering Techniques
	Centrality-Based Techniques
	Modularity-Based Techniques

	Issues
	Cross References
	Recommended Reading

	Grouping
	Growing Set
	Definition
	Cross References

	Growth Function

