H

' Hebb Rule

»Biological Learning: Synaptic Plasticity, Hebb Rule
and Spike Timing Dependent Plasticity

! Hebbian Learning

Synaptic weight changes depend on the joint activity of
the »presynaptic and postsynaptic neurons.

Cross References
»Biological Learning: Synaptic Plasticity, Hebb Rule
and Spike Timing Dependent Plasticity

I
Heuristic Rewards

»Reward Shaping

! Hidden Markov Models

ANTAL VAN DEN BoscH
Tilburg University, Tilburg, The Netherlands

Synonyms
HMM

Definition

Hidden Markov models (HMMs) form a class of sta-
tistical models in which the system being modeled is
assumed to be a Markov process with hidden states.
From observed output sequences generated by the
Markov process, both the output emission probabilities
from the hidden states and the transition probabilities
between the hidden states can be estimated by using
dynamic programming methods. The estimated model

parameters can then be used for various sequence anal-
ysis purposes.

Motivation and Background

The states of a regular Markov model, named after
Russian mathematician Andrey Markov (1865-1922),
are directly observable, hence its only parameters are
the state transition probabilities. In many real-world
cases, however, the states of the system that one wants
to model are not directly observable. For instance, in
speech recognition the audio is the observable stream,
while the goal is to discover the phonemes (the cat-
egorical elements of speech) that emitted the audio.
HMMs offer the necessary architecture to estimate hid-
den states through indirect means. Dynamic program-
ming methods have been developed that can estimate
both the output emission probabilities and the tran-
sition probabilities between the hidden states, either
from observations of output sequences only (an unsu-
pervised learning setting), or from pairs of aligned
output sequences and gold-standard hidden sequences
(a supervised learning setting).

Structure of the Learning System
Figure 1 displays the general architecture of a HMM.
Each state (circle) represents a variable x; or y; occurring
at time 7; x; is the discrete value of the hidden variable at
time f. The variable y, is the output variable observed
at the same time ¢, said to be emitted by x,. Arrows
denote conditional dependencies. Any hidden variable
is only dependent on its immediate predecessor; thus,
the value of x; is only dependent on that of x,_; occur-
ring at time ¢-1; this deliberate simplicity is referred to
as the Markov assumption. Analogously, observed vari-
ables such as y; are conditionally dependent only on the
hidden variables occurring at the same time ¢, which is
x; in this case.

Typically, a start state x, is used as the first hidden
state (not conditioned by any previous state), as well as

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI10.1007/978-0-387-30164-8,

© Springer Science+Business Media LLC 2011

494

Hidden Markov Models

- o o o -

Hidden Markov Models. Figure 1. Architecture of a hid-
den Markov model (HMM)

an end state x,,,; that closes the hidden state sequence of
length n. Start and end states usually emit meta-symbols
signifying the “start” and “end” of the sequence.

An important constraint on the data that can, in
principle, be modeled in an HMM is that the hidden
and output sequences need to be discrete, aligned (i.e.,
one y; for each x;), and of equal length. Sequence pairs
that do not conform to these constraints need to be
discretized (e.g., in equal-length time slices) or aligned
where necessary.

HMMs can be trained both in an unsupervised and a
supervised fashion. First, when only observed output
sequences are available for training, the model’s condi-
tional probabilities from this indirect evidence can be
estimated through the Baum-Welch algorithm (Baum,
Petrie, Soules, & Weiss, 1970), a form of unsuper-
vised learning, and an instantiation of the expectation-
maximization algorithm (Dempster, Laird, & Rubin,
1977).

When instead aligned sequences of gold-standard
hidden variables and output variables are given as
supervised training data, both the output emission
probabilities and the state transition probabilities can
be straightforwardly estimated from frequencies of
co-occurrence in the training data.

Once trained, it is possible to find the most likely
sequence of hidden states that could have generated
a particular (test) output sequence using the Viterbi
algorithm (Viterbi, 1967).

HMMs are known for their successful application in
pattern recognition tasks such as speech recognition

(Rabiner, 1989) and DNA sequencing (Kulp, Haussler,
Reese, & Eeckman, 1996), but also in sequential pat-
tern analysis tasks such as in part-of-speech tagging
(Church, 1988).

Their introduction in speech recognition in the
1970s (Jelinek, 1998) led the way toward the introduc-
tion of stochastic methods in general in the field of
natural language processing in the 1980s and 1990s
(Charniak, 1993; Manning & Schiitze, 1999) and into
text mining and information extraction in the late 1990s
and onwards (Freitag & McCallum, 1999). In a similar
way, HMMs started to be used in DNA pattern recog-
nition in the mid-1980s, and have gained widespread
usage throughout bioinformatics since (Burge & Karlin,
1997; Durbin, Eddy, Krogh, & Mitchison, 1998).

Many implementations of HMMs exist. Three notewor-
thy packages are the following:

e UMDHMM by Tapas Kanungo: Implements the
forward-backward, Viterbi, and Baum-Welch algo-
rithms (Kanungo, 1999).

e JAHMM by Jean-Marc Frangois: A versatile Java
implementation of algorithms related to HMMs
(Frangois, 2006).

o HMMER by Sean Eddy: An implementation of pro-
file HMM software for protein sequence analysis
(Eddy, 2007).

Cross References

»Baum-Welch Algorithm

» Bayesian Methods

» Expectation-Maximization Algorithm
» Markov Process

» Viterbi Algorithm

Recommended Reading

Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximiza-
tion technique occurring in the statistical analysis of proba-
bilistic functions of Markov chains. Annals of Mathematical
Statistics, 41(1), 164-171.

Burge, C., & Karlin, S. (1997). Prediction of complete gene structures
in human genomic DNA. Journal of Molecular Biology, 268,
78-94.

Charniak, E. (1993). Statistical language learning. Cambridge, MA:
MIT Press.

Hierarchical Reinforcement Learning

495

Church, K. W. (1988). A stochastic parts program and noun phrase
parser for unrestricted text. In Proceedings of the second con-
ference on applied natural language processing (pp. 136-143).
Austin, TX.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society, Series B, 39(1), 1-38.

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). Biological
sequence analysis: Probabilistic models of proteins and nucleic
acids. Cambridge, UK: Cambridge University Press.

Eddy, S. (2007). HMMER. http://hmmer.janelia.org/.

Frangois, J.-M. (2006). JAHMM. http://www.run.montefiore.ulg.ac.
be/~francois/software/jahmm/.

Freitag, D., & McCallum, A. (1999). Information extraction with
HMM structures learned by stochastic optimization. In Pro-
ceedings of the national conference on artificial intelligence
(pp. 584-589). Cambridge, MA: MIT Press.

Jelinek, FE. (1998). Statistical methods for speech recognition.
Cambridge, MA: MIT Press.

Kanungo, T. (1999). UMDHMM: Hidden Markov model toolkit.
In A. Kornai (Ed.), Extended finite state models of language.
Cambridge, UK: Cambridge University Press. URL: http://www.
kanungo.us/software/software.html.

Kulp, D., Haussler, D., Reese, M. G., & Eeckman, F. H. (1996). A gen-
eralized hidden Markov model for the recognition of human
genes in DNA. Proceedings of the International Conference on
Intelligent Systems for Molecular Biology, 4, 134-142.

Manning, C., & Schiitze, H. (1999). Foundations of statistical natural
language processing. Cambridge, MA: MIT Press.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and
selected applications in speech recognition. Proceedings of the
IEEE, 77(2), 257-286.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. IEEE Transac-
tions on Information Theory, 13(2), 260-269.

! Hierarchical Reinforcement
Learning

BERNHARD HENGST
University of New South Wales
Sydney, Australia

Definition

Hierarchical reinforcement learning (HRL) decomposes
a P reinforcement learning problem into a hierarchy of
subproblems or subtasks such that higher-level parent-
tasks invoke lower-level child tasks as if they were
primitive actions. A decomposition may have multiple
levels of hierarchy. Some or all of the subproblems can
themselves be reinforcement learning problems. When
a parent-task is formulated as a reinforcement learning

problem it is commonly formalized as a semi-Markov
decision problem because its actions are child-tasks
that persist for an extended period of time. The advan-
tage of hierarchical decomposition is a reduction in
computational complexity if the overall problem can
be represented more compactly and reusable subtasks
learned or provided independently. While the solution
to a HRL problem is optimal given the constraints of
the hierarchy there are no guarantees in general that
the decomposed solution is an optimal solution to the
original reinforcement learning problem.

Motivation and Background

Bellman’s “curse of dimensionality” beleaguers rein-
forcement learning because the problem representation
grows exponentially in the number of state and action
variables. The complexity we encounter in natural envi-
ronments has a property, near decomposability, that
may be exploited using hierarchical models to greatly
simplify our understanding and control of behavior.
Human societies have used hierarchical organizations
to solve complex tasks dating back to at least Egyptian
times. It seems natural, therefore, to introduce hier-
archical structure into reinforcement learning to solve
more complex problems.

When large problems can be decomposed hierar-
chically there may be improvements in the time and
space complexity for both learning and execution of
the overall task. Hierarchical decomposition is a divide-
and-conquer strategy that solves the smaller subtasks
and puts them back together for a more cost-effective
solution to the larger problem. The subtasks defined
over the larger problem are stochastic macro-operators
that execute their policy until termination. If there are
multiple ways to terminate a subtask the optimal sub-
task policy will depend on the context in which the
subtask is invoked. Subtask policies usually persist for
multiple time-steps and are hence referred to as tem-
porally extended actions. Temporally extended actions
have the potential to transition through a much smaller
“higher-level” state-space, reducing the size of the orig-
inal problem. For example, navigating through a house
may only require room states to represent the abstract
problem if room-leaving temporally extended actions
are available to move through each room. A room state
in this example is referred to as an abstract state as the

http://www.run.montefiore.ulg.ac.
be/~francois/software/jahmm/
http://www. kanungo.us/software/software.html
http://www. kanungo.us/software/software.html
http://hmmer.janelia.org/.

496

Hierarchical Reinforcement Learning

detail of the exact position in the room is abstracted
away. Hierarchical reinforcement learning can also pro-
vide opportunities for subtask reuse. If the rooms are
similar, the policy to leave a room will only need to be
learnt once and can be transferred and reused.

Early developments of hierarchical learning appeal
to analogies of boss — subordinate models. Ashby (1956)
discusses the “amplification” of regulation in very large
systems through hierarchical control - a doctor looks
after a set of mechanics who in turn maintain thou-
sands of air-conditioning systems. Watkins (1989) used
a navigator — helmsman hierarchical control exam-
ple to illustrate how reinforcement learning limitations
may be overcome. Early examples of hierarchical rein-
forcement learning include Singh’s Hierarchical- DYNA
(Dyna, a class of architectures for intelligent systems
based on approximating dynamic programming meth-
ods. Dyna architectures integrate trial-and-error (rein-
forcement) learning and execution-time planning into
a single process operating alternately on the world and
on a learned model of the world (Sutton 1990)) (Singh,
1992), Kaelbling’s Hierarchical Distance to Goal (HDG)
(Kaelbling, 1993), and Dayan and Hinton’s Feudal rein-
forcement learning (Dayan & Hinton, 1992). The latter
explains hierarchical structure in terms of a manage-
ment hierarchy. The example has four hierarchical lev-
els and employs abstract states, which they refer to as
“information hiding”

Close to the turn of the last century three approaches
to hierarchical reinforcement learning were devel-
oped relatively independently: Hierarchies of Abstract
Machines (HAMs) (Parr & Russell, 1997); the Options
framework (Sutton, Precup, & Singh, 1999); and MAXQ
value function decomposition (Dietterich, 2000). Each
approach has different emphases, but a common factor
is the use of temporally extended actions and the for-
malization of HRL in terms of semi-Markov decision
process theory (Puterman, 1994) to solve the higher-
level abstract reinforcement learning problem.

Hierarchical reinforcement learning is still an active
research area. More recent extensions include: contin-
uous state-space; concurrent actions and multi-agency;
use of average rewards (Ghavamzadeh & Mahadevan,
2002); continuing problems; policy-gradient methods;
partial-observability and hierarchical memory; fac-
tored state-spaces and graphical models; and basis func-
tions. Hierarchical reinforcement learning also includes

hybrid approaches such as Ryan’s reinforcement learn-
ing teleo-operators (RL-TOPs) (Ryan & Reid, 2000) that
combines planning at the top level and reinforcement
learning at the more stochastic lower levels. Please see
Barto and Mahadevan (2003) for a survey of recent
advances in hierarchical reinforcement learning. More
details can be found in the section on recommended
reading.

In most applications the structure of the hierarchy
is provided as background knowledge by the designer.
Some researchers have tried to learn the hierarchi-
cal structure from the agent-environment interaction.
Most approaches look for subgoals or subtasks that try
to partition the problem into near independent reusable
subproblems.

Structure of Learning System

The agent view of reinforcement learning illustrated
on the left in Fig. 1 shows an agent interacting with
an environment. At regular time-steps the agent takes
actions in the environment and receives sensor observa-
tions and rewards from the environment. A hierarchical
reinforcement learning agent is given or discovers back-
ground knowledge that explicitly or implicitly provides
a decomposition of the environment. The agent exploits
this knowledge to solve the problem more efficiently by
finding an action policy to optimize a measure of future
reward, as for reinforcement learning.

We will motivate the machinery of hierarchical
reinforcement learning with the simple example shown
in Fig. 1 (right). This diagram shows a four-room house
with doorways between adjoining rooms and a doorway
in the top left room leading outside. Each cell represents
a possible position of the agent. We assume the agent
always starts in the bottom left room position as shown
by the black oval. It is able to sense its position in the
room and which room it occupies. It can move one step
in any of the four compass directions each time-step.
It also receives a reward of —1 at each time-step. The
objective is to leave the house via the least-cost route.
We assume that the actions are stochastic with an 80%
chance of moving in the intended direction and a 20%
chance of staying in place. Solving this problem in a
straightforward manner using reinforcement learning
requires storage for 400 Q values defined over 100 states
and 4 actions.

Hierarchical Reinforcement Learning

497

Sense, reward

Act

Goal 1

Hierarchical Reinforcement Learning. Figure 1. Left: The agent view of reinforcement learning. Right: A four-room
environment with the agent in one of the rooms show as a solid black oval

If the state space is decomposed into the four iden-
tical rooms a hierarchical reinforcement learner could
solve this problem more efficiently. For example, we
could solve two subproblems. One that finds an opti-
mal solution to leave a room to the North and another to
leave a room to the West. When learning these subtasks,
leaving a room in any other way is disallowed. Each of
these subproblems requires storage for 100 Q values -
25 states and 4 actions.

We also formulate and solve a higher-level prob-
lem that consists of only the four rooms as states. These
are abstract states because, as previously explained, the
exact position in the room has been abstracted away.
In each abstract state we allow a choice of only one
or the other of the learnt room-leaving actions. These
are temporally extended actions because, once invoked,
they will usually persist for multiple time-steps until the
agent exits the room. We proceed to solve this higher-
level problem in the usual way using reinforcement
learning. The proviso is that the reward on completing a
temporally extended action is the sum of rewards accu-
mulated since invocation of the subtask. The higher-
level problem requires storage for only 8 Q values —
4 states and 2 actions.

Once learnt, execution of the higher-level policy will
determine the optimal room-leaving action to invoke
given the current room - in this case to leave the room
via the West doorway. Control is passed to the room-
leaving subtask that leads the agent out of the
room through the chosen doorway. Upon leaving the
room, the subtask is terminated and control is passed
back to the higher level that chooses the next optimal
room-leaving action until the agent finally leaves the
house. The total number of Q values required for the

hierarchical reinforcement formulation is 200 for the
two subtasks and eight for the higher-level problem, a
total of 208. This almost halves the storage requirements
compared to the “flat” formulation with corresponding
savings in time complexity. In this example, hierarchical
reinforcement learning finds the same optimal policy
that a less efficient reinforcement learner would find,
but this is not always the case.

The above example hides many issues that hierar-
chical reinforcement learning needs to address, includ-
ing: safe state abstraction; appropriately accounting for
accumulated subtask reward when initial conditions
change or rewards are discounted; optimality of the
solution; and learning of the hierarchical structure itself.
In the next sections we will touch on these issues as we
discuss the semi-Markov decision problem formalism
and review several approaches to hierarchical reinforce-
ment learning.

The common underlying formalism in hierarchical
reinforcement learning is the semi-Markov decision
process (SMDP). A SMDP generalizes a »Markov
decision process by allowing actions to be temporally
extended. We will state the discrete time equations fol-
lowing Dietterich (2000), recognizing that in general
SMDPs are formulated with real-time valued tempo-
rally extended actions (Puterman, 1994).

Denoting the random variable N to be the number
of time steps that a temporally extended action a takes
to complete when it is executed starting in state s, the
state transition probability function for the result state
s" and the expected reward function are given by (1) and

498

Hierarchical Reinforcement Learning

(2) respectively.

TN = Pr{spn = |s; = s,a, = a} 4))

N
N, -
R = E{Z Y riealse = 5,00 = a5y = S'} (2)
n=1

Ri’;“ is the expected sum of N future discounted
rewards. The discount factor y € [0,1]. When set to less
than 1, y insures that the value function will converge for
continuing or infinite-horizon problems. The Bellman
“backup” equations for the value function V(s) for an
arbitrary policy 7 and optimal policies (denoted by *)
are similar to those for MDPs with the sum taken with

respect to s" and N.

V()= X T RO NV @)

ss’
s',N

Vo(s) = max 21:\1 TR NV @
7

For problems that are guaranteed to terminate, the
discount factor y can be set to 1. In this case the num-
ber of steps N can be marginalized out and the sum
taken with respect to s alone. The above equations are
then similar to the ones for MDPs with the expected
primitive reward replaced with the expected sum of
rewards to termination of the temporally extended
action. All the methods developed for reinforcement
learning using primitive actions work equally well for
problems using temporally extended actions.

(HAMs) In the
HAM approach to hierarchical reinforcement learning

Hierarchies of Abstract Machines

(Parr & Russell, 1997), the designer specifies subtasks by
providing stochastic finite state automata called abstract
machines. While in practice several abstract machines
may allow some to call others as subroutines (hence
hierarchies of abstract machines), in principle this is
equivalent to specifying one large abstract machine with
two types of states. Action states, that specify the action
to be taken given the state of the MDP to be solved and
choice states with nondeterministic actions.

An abstract machine is a triple (y,I,§), where y
is a finite set of machine states, I is a stochastic func-
tion from states of the MDP to be solved to machine
states that determines the initial machine state, and &
is a stochastic next-state function mapping machine
states and MDP states to next machine states. The par-
allel action of the MDP and an abstract machine yields
a discrete-time higher-level SMDP with the abstract
machine’s action states generating a sequence of tem-
porally extended actions between choice states. Only
a subset of states of the original MDP are associated
with choice-points, potentially reducing the higher-
level problem significantly.

Continuing with our four-room example, the
abstract machine in Fig. 2 provides choices for leaving
a room to the West or the North. In each room it
will take actions that move the agent to a wall, and
perform a random walk along the wall until it finds
the doorway. Only five states of the original MDP are
states of the higher-level SMDP. These states are the
initial state of the agent and the states on the other
side of doorways where the abstract machine enters
choice states. Reinforcement learning methods update
the value function for these five states in the usual way
with rewards accumulated since the last choice state.

Leave room
to West

Choose

Leave room
to North

Door

Door

Hierarchical Reinforcement Learning. Figure 2. An abstract machine for a HAM that provides routines for leaving

rooms to the West and North of the house in Fig. 1right

Hierarchical Reinforcement Learning

499

The optimal policy consists of the three temporally
extended actions sequentially leaving a room to the
West, North, and North again.

Solving the SMDP will yield an optimal policy for
the agent to leave the house subject to the constraints of
the abstract machine. In this case it is not a globally opti-
mal policy because a random walk along walls to find
a doorway is inefficient. The HAM approach is predi-
cated on engineers and control theorists being able to
design good controllers that will realize specific lower
level behaviors. HAMs are a way to partially specify pro-
cedural knowledge to transform an MDP to a reduced
SMDP. In the most general case HAMs can be Turing
machines that execute any computable mapping of the
agent’s complete sensory-action history.

Options For an MDP with finite states S and actions
A, options generalize one-step primitive actions to
include temporally extended actions (Sutton et al.,
1999). Options consist of three components: a policy
7:SxA — [0,1], a termination condition 8 : § - [0,1],
and an initiation set I € S. An option (I, 7, 8) is avail-
able in state s if and only if s € I. If an option is invoked,
actions are selected according to 7 until the option ter-
minates according to 3. These options are called Markov
options because intra-option actions taken by policy
7 depend only on the current state s. It is possible to
generalize options to semi-Markov options in which
policies and termination conditions make their choices
dependent on all prior events since the option was ini-
tiated. In this way it is possible, for example, to “time-
out” options after some period of time has expired.
For their most general interpretation, options and
HAM:s appear to have similar functionality, but different
emphases.

Options were intended to augment the primitive
actions available to an MDP. The temporally extended
actions executed by the options yield a SMDP. As for
HAMs, if options replace primitive actions, the SMDP
can be considerably reduced. There is debate as to bene-
fits when primitive actions are retained. Reinforcement
learning may be accelerated because the value function
can be backed-up over greater distances in the state-
space and the inclusion of primitive actions guaran-
tees convergence to the globally optimal policy, but the
introduction of additional actions increased the storage
and exploration necessary.

In a similar four-room example to that of Fig. 1,
the authors (Sutton et al., 1999) show how options
can learn significantly faster proceeding on a room-by-
room basis, rather than position by position. When the
goal is not in a convenient location, able to be reached
by the given options, it is possible to include primi-
tive actions as special-case options and still accelerate
learning for some problems. For example, with room-
leaving options alone, it is not possible to reach a goal
in the middle of a room. Primitive actions are required
when the room containing the goal state is entered.
Although the inclusion of primitive actions guarantees
convergence to the globally optimal policy, this may
create extra work for the learner.

MAXQ The MAXQ (Dietterich, 2000) approach to hier-
archical reinforcement learning restricts subtasks to
subsets of states, actions, and policy fragments of the
original MDP without introducing extra state, as is pos-
sible with HAMs and semi-Markov options. The con-
tribution of MAXQ is the decomposition of the value
function over the hierarchy and provision of opportuni-
ties for state abstraction. An MDP is manually decom-
posed into a hierarchical directed acyclic graph of sub-
tasks called a task-hierarchy. Each subtask is a smaller
(semi-)MDP. In decomposing the MDP the designer
specifies the active states and terminal states for each
subtask. Terminal states are typically classed either as
goal terminal states or non-goal terminal states. Using
disincentives for non-goal terminal states, policies are
learned for each subtask to encourage them to terminate
in goal terminal states. The actions available in each sub-
task can be primitive actions or other (child) subtasks.
Each sub-task can invoke any of its child subtasks as a
temporally extended action. When a task enters a termi-
nal state, it, and all its children, abort and return control
to the calling subtask.

Figure 3 shows a task-hierarchy for the previous
four-room problem. The four lower-level subtasks are
sub-MDPs for a generic room, where a separate pol-
icy is learnt to exit a room by each of the four possible
doorways. The arrow indicates a transition to a goal
terminal state and the “x”s indicate non-goal terminal
states. States, actions, transitions, and rewards are inher-
ited from the original MDP. The rewards on transition
to terminal states are engineered to encourage the agent
to avoid non-goal terminal states and terminate in goal

500

Hierarchical Reinforcement Learning

—_
x

X X

¥ X

Hierarchical Reinforcement Learning. Figure 3. A task-hierarchy decomposing the four-room problem in Fig. 1. The

four lower-level subtasks are generic room-leaving sub-MDPs, one for leaving a room in each compass direction

states. The higher-level problem (SMDP) consists of just
four states representing the rooms. Any of the subtasks
(room-leaving actions) can be invoked in any of the
rooms.

A key feature of MAXQ is that it represents the value
of a state as a decomposed sum of subtask comple-
tion values plus the value of the immediate primitive
action. A completion value is the expected (discounted)
cumulative reward to complete the subtask after taking
the next (temporally extended) action when following
a policy over subtasks. The sum includes all the tasks
invoked on the path from the root task in the task hier-
archy right down to the primitive action. For a rigorous
mathematical treatment the reader is referred to Diet-
terich (2000). The Q function is expressed recursively
(5) as the value for completing the subtask plus the com-
pletion value for the overall problem after the subtask
has terminated. In this equation, i is the subtask iden-
tifier, s is the current state, action a is the child subtask
(or primitive action), and 7 is a policy for each subtask.

Q"(i,s,a) = V™(a,s) + C"(i,s,a) (5)

We describe the basic idea for the task-hierarchy
shown in Fig. 3 for the optimal policy. The value of the
agent’s state has three components determined by the
two levels in the task-hierarchy plus a primitive action.
For the agent state, shown in Fig. 4 by a solid black oval,
the value function represents the expected reward for
taking the next primitive action to the North, complet-
ing the lower-level subtask of leaving the room to the
West, and completing the higher-level task of leaving
the house. The benefit of decomposing the value func-
tion is that it can be represented much more compactly
because only the completion values for non-primitive
subtasks and primitive actions need be stored.

A

2

Hierarchical Reinforcement Learning. Figure 4. The com-
ponents of the decomposed value function for the agent
following an optimal policy for the the four-room prob-
lem in Fig. 1. The agent is shown as a solid black oval at
the starting state

The example illustrates two types of state abstrac-
tion. As all the rooms are similar we can ignore the room
identity when we learn intra-room navigation policies.
Secondly, when future rewards are not discounted, the
completion value after leaving a room is independent of
the starting state in that room. These “funnel” actions
allow the intra-room states to be abstracted into a sin-
gle state for each room as far as the completion value is
concerned. The effect is that the original problem can
be decomposed into a small four-state SMDP at the top
level and four smaller subtask MDPs.

Optimality Hierarchical reinforcement learning can at
best yield solutions that are hierarchically optimal,

Hierarchical Reinforcement Learning

501

assuming convergence conditions are met, meaning
that they are consistent with the task-hierarchy. MAXQ
introduces another form of optimality - recursive opti-
mality. MAXQ optimizes subtask policies to reach goal
states ignoring the needs of their parent tasks. This
has the advantage that subtasks can be reused in vari-
ous contexts, but they may not therefore be optimal in
each situation. A recursively optimal solution cannot be
better than a hierarchical optimal solution. Both recur-
sive and hierarchical optimality can be arbitrarily worse
than the globally optimal solution if a designer chooses
a poor HAM, option or hierarchical decomposition.

The stochastic nature of MDPs means that the con-
dition under which a temporally abstract action is
appropriate may have changed after the action’s invoca-
tion and that another action may become a better choice
because of “stochastic drift” A subtask policy proceed-
ing to termination in this situation may be suboptimal.
By constantly interrupting the subtask, as for exam-
ple in HDG (Kaelbling, 1993), a better subtask may be
chosen. Dietterich calls this “polling” procedure hier-
archical greedy execution. While this is guaranteed to
be no worse than the hierarchically optimal or recur-
sively optimal solution and may be considerably better,
it still does not provide any global optimality guaran-
tees. Great care is required while learning with hier-
archical greedy execution. Hauskrecht, Meuleau, and
Kaelbling (1998) discuss decomposition and solution
techniques that make optimality guarantees, but unfor-
tunately, unless the MDP can be decomposed into very
weakly coupled smaller MDPs, the computational com-
plexity is not necessarily reduced. Benefits will still
accrue if the options or subtask policies can be reused
and amortized over multiple MDPs.

Automatic Decomposition In the above approaches the
programmer is expected to manually decompose the
overall problem into a hierarchy of subtasks. Methods
to automatically decompose problems include ones that
look for subgoal bottleneck or landmark states, and ones
that find common behavior trajectories or region poli-
cies. For example, in Fig. 1 the agent will exit one of
the two starting room doorways on the way to the goal.
The states adjacent to each doorway will be visited more
frequently in successful trials than other states.

Both NQL (nested Q learning) (Digney, 1998) and
McGovern (2002) use this idea to identify subgoals.

Moore, Baird, and Kaelbling (1999) suggest that, for
some navigation tasks, performance is insensitive to the
position of landmarks and an (automatic) randomly
generated set of landmarks does not show widely vary-
ing results from more purposefully positioned ones.
Hengst has explored automatic learning of MAXQ-like
task-hierarchies from the agent’s interactive experience
with the environment, automatically finding common
regions and generating subgoals when the agent’s pre-
diction fails. Methods include state abstraction with
discounting for infinite horizon problems and decom-
positions of problems to form partial-order task-
hierarchies (Hengst, 2008). When there are no cycles in
the causal graph the variable influence structure analy-
sis (VISA) algorithm (Jonsson & Barto, 2006) performs
hierarchical decomposition of factored Markov deci-
sion processes using a given dynamic Bayesian network
model of actions. Konidaris and Barto (2009) introduce
a skill discovery method for reinforcement learning
in continuous domains that constructs chains of skills
leading to an end-of-task reward.

Given space limitations we cannot adequately cover
all the research in hierarchical reinforcement learn-
ing, but we trust that the material above will provide a
starting point.

Cross References

> Associative Reinforcement Learning

> Average Reward Reinforcement Learning
»Bayesian Reinforcement Learning

> Credit Assignment

» Markov Decision Process
»Model-Based Reinforcement Learning
» Policy Gradient Methods

»Q Learning

> Reinforcement Learning

»Relational Reinforcement Learning

» Structured Induction

» Temporal Difference Learning

Recommended Reading

Ashby, R. (1956). Introduction to Cybernetics. London: Chapman &
Hall.

Barto, A., & Mahadevan, S. (2003). Recent advances in hiearchical
reinforcement learning. Special Issue on Reinforcement Learn-
ing, Discrete Event Systems Journal, 13, 41-77.

Dayan, P, & Hinton, G. E. (1992). Feudal reinforcement learning.
In Advances in neural information processing systems 5 NIPS

502

High-Dimensional Clustering

Conference, Denver, CO, December 2-5, 1991. San Francisco:
Morgan Kaufmann.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with
the MAXQ value function decomposition. Journal of Artificial
Intelligence Research, 13, 227-303.

Digney, B. L. (1998). Learning hierarchical control structures for
multiple tasks and changing environments. In From animals to
animats 5: Proceedings of the fifth international conference on
simulation of adaptive behaviour. SAB 98 Zurich, Switzerland,
August 17-21, 1998. Cambridge: MIT Press.

Ghavamzadeh, M., & Mahadevan, S. (2002). Hierarchically optimal
average reward reinforcement learning. In C. Sammut & Achim
Hoffmann (Eds.), Proceedings of the nineteenth international
conference on machine learning, Sydney, Australia (pp. 195-202).
San Francisco: Morgan-Kaufman.

Hauskrecht, M., Meuleau, N., Kaelbling, L. P, Dean, T., &
Boutilier, C. (1998). Hierarchical solution of Markov decision
processes using macro-actions. In Fourteenth annual confer-
ence on uncertainty in artificial intelligence, Madison, WI (pp.
220-229).

Hengst, B. (2008). Partial order hierarchical reinforcement learn-
ing. In Australasian conference on artificial intelligence Auck-
land, New Zealand, December 2008 (pp. 138-149). Berlin:
Springer.

Jonsson, A., & Barto, A. (2006). Causal graph based decomposi-
tion of factored MDPs. Journal of Machine Learning Research,
7, 2259-2301.

Kaelbling, L. P. (1993). Hierarchical learning in stochastic domains:
Preliminary results. In Machine learning: Proceedings of the
tenth international conference (pp.167-173). San Mateo: Morgan
Kaufmann.

Konidaris, G., & Barto, A. (2009). Skill discovery in continuous
reinforcement learning domains using skill chaining. In Y. Ben-
gio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta
(Eds.), Advances in neural information processing systems 22
(pp- 1015-1023).

McGovern, A. (2002). Autonomous discovery of abstractions
through interaction with an environment. In SARA (pp. 338-
339). London: Springer.

Moore, A., Baird, L., & Kaelbling, L. P. (1999). Multi-value functions:
Efficient automatic action hierarchies for multiple goal MDPs.
In Proceedings of the international joint conference on artificial
intelligence, Stockholm (pp. 1316-1323). San Francisco: Morgan
Kaufmann.

Parr, R., & Russell, S. J. (1997). Reinforcement learning with hierar-
chies of machines. In NIPS, Denver, CO, 1997.

Puterman, M. L. (1994). Markov decision processes: Discrete stochas-
tic dynamic programming. Wiley: New York.

Ryan, M. R. K., & Reid, M. D. (2000). Using ILP to improve planning
in hierarchical reinforcement learning. In Proceedings of the
tenth international conference on inductive logic programming,
ILP 2000, London. London: Springer.

Singh, S. (1992). Reinforcement learning with a hierarchy of abstract
models. In Proceedings of the tenth national conference on arti-
ficial intelligence.

Sutton, R. S., Precup, D., & Singh, S. P. (1999). Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence, 112(1-2),
181-211.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD
thesis, King’s College.

! High-Dimensional Clustering

»Document Clustering

! Higher-Order Logic

Joun~ LLoyD
The Australian National University
Canberra ACT, Australia

Definition

Higher-order logic is a logic that admits so-called
“higher-order functions,” which are functions that can
have functions as arguments or return a function as a
result. The expressive power that comes from higher-
order functions makes the logic highly suitable for
representing individuals, predicates, features, back-
ground theories, and hypotheses, and performing the
necessary reasoning, in machine learning applications.

Motivation and Background

Machine learning tasks naturally require knowledge
representation and reasoning. The individuals that are
the subject of learning, the training examples, the
features, the background theory, and the hypothesis
languages all have to be represented. Furthermore, rea-
soning, usually in the form of computation, has to be
performed.

Logic is a convenient formalism in which knowl-
edge representation and reasoning can be carried out;
indeed, it was developed exactly for this purpose.
For machine learning applications, quantification over
variables is generally needed, so that, at a minimum,
»first-order logic should be used. Here, the use of
higher-order logic for this task is outlined. Higher-order
logic admits higher-order functions that can have func-
tions as arguments or return a function as a result. This
means that the expressive power of higher-order logic
is greater than first-order logic so that some expressions
of higher-order logic are difficult or impossible to state
directly in first-order logic. For example, sets can be
represented by »predicates which are terms in higher-
order logic and operations on sets can be implemented
by higher-order functions. Grammars that generate

Higher-Order Logic

503

spaces of predicates can be easily expressed. Also the
programming idioms of functional programming lan-
guages become available.

The use of higher-order logic in learning appli-
cations began around 1990 when researchers argued
for the advantages of lifting the concept of »least
general generalization in the first-order setting to the
higher-order setting (Dietzen & Pfenning, 1992; Feng
& Muggleton, 1992; Lu, Harao, & Hagiya, 1998). A few
years later, Muggleton and Page (1994) advocated the
use of higher-order concepts, especially sets, for learn-
ing applications. Then the advantages of a type sys-
tem and also higher-order facilities for concept learn-
ing were presented in Flach, Giraud-Carrier, and Lloyd
(1998). Higher-order logic is also widely used in other
parts of computer science, for example, theoretical com-
puter science, functional programming, and verifica-
tion of software.

Most treatments of higher-order logic can be traced
back to Church’s simple theory of types (Church,
1940). Recent accounts can be found, for example, in
Andrews (2002), Fitting (2002), and Wolfram (1993).
For a highly readable account of the advantages of
working in higher-order rather than first-order logic,
Farmer (2008) is strongly recommended. An account
of higher-order logic specifically intended for learning
applications is in Lloyd (2003), which contains much
more detail about the knowledge representation and
reasoning issues that are discussed below.

Theory

To begin, here is one formulation of the syntax of
higher-order logic which gives prominence to a type
system that is useful for machine learning applications,
in particular.

An alphabet consists of four sets: a set T of type con-
structors; a set ‘,B of parameters; a set ¢ of constants;
and a set U of variables. Each type constructor in ¥ has
an arity. The set T always includes the type constructor
Q of arity 0. Q is the type of the booleans. Each con-
stant in € has a signature (i.e., type declaration). The
set ¥ is denumerable. Variables are typically denoted
by x,y,z,. ... The parameters are type variables that pro-
vide polymorphism in the logic; they are ignored for the
moment.

Here is the definition of a type (for the nonpolymor-
phic case).

Definition A type is defined inductively as follows:

1. If T is a type constructor of arity k and a, ..., ax
are types, then T «;...ax is a type. (Thus a type
constructor of arity 0 is a type.)

2. If a and B are types, then a« — f is a type.

3. Ifw,...,a, are types, then a; x --- x a, is a type.

The set € always includes the following constants:

T and 1, having signature Q.

=4, having signature « - o - Q, for each type a.
-, having signature Q - Q.

A, V, —>, «—, and «—, having signature Q - Q —
Q.

5. X, and I1,, having signature (« - Q) — Q, for
each type a.

L S

The intended meaning of =, is identity (i.e., =4 x y
is T if x and y are identical), the intended meaning of
T is true, the intended meaning of L is false, and the
intended meanings of the connectives -, A, v, —, «—,
and <— are as usual. The intended meanings of 2, and
I, are that X, maps a predicate to T if the predicate
maps at least one element to T and I1, maps a predicate
to T iff the predicate maps all elements to T.

Here is the definition of a term (for the nonpolymor-
phic case).

Definition A term, together with its type, is defined
inductively as follows:

1. A variable in U of type « is a term of type a.

2. A constant in € having signature « is a term of
type a.

3. Iftisaterm of type f and x a variable of type «, then
Ax.t is a term of type a — J5.

4. Ifsisaterm of type « — f and t a term of type «,
then (st) is a term of type f3.

5. Ifty,...,t, areterms of type ay, . ..
then (t,...,t,) is a term of type a; x -+ X ay,.

, &y, respectively,

A formula is a term of type Q. Terms of the form
(Z4 Ax.t) are written as J,x.t and terms of the
form (II, Ax.t) are written as V,x.t (in accord with the

504

Higher-Order Logic

intended meaning of X, and I1,). Thus, in higher-order
logic, each quantifier is obtained as a combination of an
abstraction acted on by a suitable function (2, or I,).

The polymorphic version of the logic extends what
is given above by also having available parameters. The
definition of a type as above is then extended to poly-
morphic types that may contain parameters and the
definition of a term as above is extended to terms that
may have polymorphic types.

Reasoning in higher-order logic can consist of theo-
rem proving, via resolution or tableaus, for example, or
can consist of equational reasoning, as is embodied in
the computational mechanisms of functional program-
ming languages, for example. Theorem proving and
equational reasoning can even be combined to produce
more flexible reasoning systems. Determining whether
a formula is a theorem is, of course, undecidable.

The semantics for higher-order logic is generally
based on Henkin (1950) models. Compared with first-
order interpretations, the main extra ingredient is that,
for each (closed) type of the form a — f3, there is a
domain that consists of some set of functions from the
domain corresponding to « to the domain correspond-
ing to fB. There exist proof procedures that are sound
and complete with respect to this semantics (Andrews,
2002; Fitting, 2002).

The logic includes the A-calculus. Thus, the rules of
A-conversion are available:

1. (a-Conversion) Ax.t >, Ay.(t{x/y}),if yis not
freein t.

2. (B-Reduction) (Ax.st) >g s{x/t}.

3. (#-Reduction) Ax.(tx) >, t,ifxisnot freeint.

Here s{x/t} denotes the result of replacing free occur-
rences of x in s by f, where free variable capture is
avoided by renaming the relevant bound variables in s.

Higher-order generalization is introduced through
the concept of least general generalization as follows
(Feng & Muggleton, 1992). A term s is more general
than a term ¢ if there is a substitution 6 such that s6 is
A-convertible to t. A term t is a common generalization
of a set T of terms if ¢ is more general than each of the
terms in T. A term ¢ is a least general generalization of a
set T of terms if t is a common generalization of T and,
for all common generalizations s of T, t is not strictly
more general than s.

In machine learning applications, the individuals that
are the subject of learning need to be represented. Using
logic, individuals are most naturally represented by
(closed) terms. In higher-order logic, advantage can be
taken of the fact that sets can be identified with predi-
cates (their characteristic functions). Thus, the set {1,2}
is the term

Ax.if x =1then T else if x = 2 then T else 1.

This idea generalizes to multisets and similar abstrac-
tions. For example,

Ax.if x = A then 42 else if x = B then 21 else O

is the multiset with 42 occurrences of A and 21 occur-
rences of B (and nothing else). Thus abstractions of the
form

Ax.if x = t; then sy else ... if x =t, then s, else so
are adopted to represent (extensional) sets, multisets,
and so on.

These considerations motivate the introduction of
the class of basic terms that are used to represent indi-
viduals (Lloyd, 2003). The definition of basic terms is
an inductive one consisting of three parts. The first part
covers data types such as lists and trees and uses the
same constructs for this as are used in functional pro-
gramming languages. The second part uses abstractions
to cover data types such as (finite) sets and multi-
sets, for which the data can be represented by a finite
lookup table. The third part covers data types that are
product types and therefore allows the representation
of tuples. The definition is inductive in the sense that
basic terms include lists of sets of tuples, tuples of sets,
and so on.

It is common in learning applications to need to
generate spaces of predicates. This is because features
are typically predicates and logical hypothesis languages
contain predicates. Thus, there is a need to specify gram-
mars that can generate spaces of predicates. In addition
to first-order approaches based on refinement operators
or antecedent description grammars, higher-order logic
offers another approach to this task based on the idea
of generating predicates by composing certain primitive
functions.

Higher-Order Logic

505

Predicate rewrite systems are used to define spaces
of standard predicates, where standard predicates are
predicates in a particular syntactic form that involves
composing certain functions (Lloyd, 2003). A predicate
rewrite is an expression of the form p > g, where p and
q are standard predicates. The predicate p is called the
head and q is the body of the rewrite. A predicate rewrite
system is a finite set of predicate rewrites. One should
think of a predicate rewrite system as a kind of grammar
for generating a particular class of predicates. Roughly
speaking, this works as follows. Starting from the weak-
est predicate top, all predicate rewrites that have top (of
the appropriate type) in the head are selected to make
up child predicates that consist of the bodies of these
predicate rewrites. Then, for each child predicate and
each redex (i.e., subterm selected for expansion) in that
predicate, all child predicates are generated by replacing
each redex by the body of the predicate rewrite whose
head is identical to the redex. This generation of predi-
cates continues to produce the entire space of predicates
given by the predicate rewrite system.

Predicate rewrite systems are a convenient mecha-
nism to specify precise control over the space of predi-
cates that is to be generated. Note that predicate rewrite
systems depend essentially on the higher-order nature
of the logic since standard predicates are obtained by
composition of functions and composition is a higher-
order function.

Other ingredients of learning problems, such as
background theories and training examples, can also be
conveniently represented in higher-order logic.

Machine learning applications require that reasoning
tasks be carried out, for example, computing the value of
some predicate on some individual. Generally, reason-
ing in (higher-order) logic can be either theorem prov-
ing or purely equational reasoning or a combination of
both.

A variety of proof systems have been developed for
higher-order logic; these include Hilbert-style systems
(Andrews, 2002) and tableau systems (Fitting, 2002).

Purely equational reasoning includes the compu-
tational models of functional programming languages
and therefore can be usefully thought of as computation.
Typical examples of this approach include the declara-
tive programming languages Curry (Hanus, 2006) and

Escher (Lloyd, 2003) which are extensions of the func-
tional programming language Haskell (Peyton Jones,
2003). For both Curry and Escher, the Haskell compu-
tational model is generalized in such a way as to admit
the logic programming idioms.

Alternatively, by suitably restricting the fragment of
the logic considered and the proof system, computation
systems in the form of declarative programming lan-
guages can be developed. A prominent example of this
approach is the logic programming language AProlog
that was introduced in the 1980s (Nadathur & Miller,
1998). In AProlog, program statements are higher-order
hereditary Harrop formulas, a generalization of the
definite »clauses used by »Prolog. The language pro-
vides an elegant use of A-terms as data structures,
meta-programming facilities, universal quantification
and implications in goals, among other features.

Applications

Higher-order logic has been used in a variety of
machine learning settings including decision-tree
learning, kernels, Bayesian networks, and evolution-
ary computing. Decision-tree learning based on the use
of higher-order logic as the knowledge representation
and reasoning language is presented in Bowers, Giraud-
Carrier, and Lloyd (2000), and further developed in Ng
(2005b). Kernels and distances over individuals repre-
sented by basic terms are studied in Girtner, Lloyd,
and Flach (2004). In Gyftodimos and Flach (2005),
Bayesian networks over basic terms are defined and it
is shown there how to construct probabilistic classifiers
over such networks. In Ng, Lloyd, and Uther (2008),
higher-order logic is used as the setting for study-
ing probabilistic modelling, inference and learning. An
evolutionary approach to learning higher-order con-
cepts is demonstrated in Kennedy and Giraud-Carrier
(1999). In addition, the learnability of hypothesis lan-
guages expressed in higher-order logic is investigated in
Ng (2005a, 2006).

Cross References

» First-Order Logic

»Inductive Logic Programming
> Learning from Structured Data
» Propositional Logic

506

HMM

Recommended Reading

Andrews, P. B. (2002). An introduction to mathematical logic and
type theory: To truth through proof (3rd ed.). Dordrecht: Kluwer
Academic Publishers.

Bowers, A. F., Giraud-Carrier, C., & Lloyd, J. W. (2000). Classi-
fication of individuals with complex structure. In P. Langley
(Ed.), Machine learning: Proceedings of the seventeenth inter-
national conference (ICML 2000) (pp. 81-88). Stanford, CA:
Morgan Kaufmann.

Church, A. (1940). A formulation of the simple theory of types.
Journal of Symbolic Logic, 5, 56-68.

Dietzen, S., & Pfenning, F. (1992). Higher-order and modal logic
as a framework for explanation-based generalization. Machine
Learning, 9, 23-55.

Farmer, W. (2008). The seven virtues of simple type theory. Journal
of Applied Logic, 6(3), 267-286.

Feng, C., & Muggleton, S. H. (1992). Towards inductive general-
isation in higher order logic. In D. Sleeman & P. Edwards
(Eds.), Proceedings of the ninth international workshop on
machine learning (pp. 154-162). San Mateo, CA: Morgan
Kaufmann.

Fitting, M. (2002). Types, tableaus, and Gédel’s god. Dordrecht:
Kluwer Academic Publishers.

Flach, P., Giraud-Carrier, C., & Lloyd, J. W. (1998). Strongly typed
inductive concept learning. In D. Page (Ed.), Inductive logic
programming, 8th international conference, ILP-98. Lecture
Notes in Artificial Intelligence 1446 (pp. 185-194). Berlin:
Springer.

Girtner, T., Lloyd, J. W., & Flach, P. (2004). Kernels and
distances for structured data. Machine Learning, 57(3),
205-232.

Gyftodimos, E., & Flach, P. (2005). Combining Bayesian networks
with higher-order data representations. In Proceedings of 6th
international symposium on intelligent data analysis (IDA 2005).
Lecture notes in computer science (Vol. 3646, pp. 145-156).
Berlin: Springer.

Hanus, M. (Ed.). (2006). Curry: An integrated functional logic lan-
guage. http://www.informatik.uni-kiel.de/~curry. Retrieved 21
December 2009.

Henkin, L. (1950). Completeness in the theory of types. Journal of
Symbolic Logic, 15(2), 81-91.

Kennedy, C. J., & Giraud-Carrier, C. (1999). An evolutionary
approach to concept learning with structured data. In Proceed-
ings of the fourth international conference on artificial neural
networks and genetic algorithms (ICANNGA’99) (pp. 331-366).
Berlin: Springer.

Lloyd, J. W. (2003). Logic for learning. Cognitive technologies. Berlin:
Springer.

Lu, J., Harao, M., & Hagiya, M. (1998). Higher order generalization.
In JELIA °98: Proceedings of the European workshop on logics in
artificial intelligence. Lecture notes in artificial intelligence (Vol.
1489, pp. 368-381). Berlin: Springer.

Muggleton, S., & Page, C. D. (1994). Beyond first-order learning:
Inductive learning with higher-order logic. Technical report
PRG-TR-13-94, Oxford University Computing Laboratory.

Nadathur, G., & Miller, D. A. (1998). Higher-order logic program-
ming. In D. M. Gabbay, C. J. Hogger, & J. A. Robinson (Eds.),
The handbook of logic in artificial intelligence and logic pro-
gramming (Vol. 5, pp. 499-590). Oxford: Oxford University
Press.

Ng, K. S. (2005a). Generalization behaviour of alkemic decision
trees. In Inductive logic programming, 15th international con-
ference (ILP 2005). Lecture notes in artificial intelligence (Vol.
3625, pp. 246-263). Berlin: Springer.

Ng, K. S. (2005b). Learning comprehensible theories from struc-
tured data. PhD thesis, Computer Sciences Laboratory, The
Australian National University.

Ng, K. S. (2006). (Agnostic) PAC learning concepts in higher-
order logic. In European conference on machine learning
(ECML 2006). Lecture notes in artificial intelligence (Vol. 4212,
pp. 711-718). Berlin: Springer.

Ng, K. S., Lloyd, J. W., & Uther, W. T. B. (2008). Probabilistic mod-
elling, inference and learning using logical theories. Annals
of Mathematics and Artificial Intelligence, 54, 159-205. Doi:
10.1007/s 10472-009-9136-7.

Peyton Jones, S. (Ed.) (2003). Haskell 98 language and libraries: The
revised report. Cambridge: Cambridge University Press.

Wolfram, D. A. (1993). The clausal theory of types. Cambridge:
Cambridge University Press.

" HMM

»Hidden Markov Models

|
Hold-One-Out Error

» Leave-One-Out Error

|
Holdout Data

» Holdout Set

|
Holdout Evaluationl

Definition
Holdout evaluation is an approach to »out-of-sample
evaluation whereby the available data are partitioned
into a Ptraining set and a Mtest set. The test set is
thus P-out-of-sample data and is sometimes called the
holdout set or holdout data. The purpose of holdout
evaluation is to test a model on different data to that
from which it is »learned. This provides an unbiased
estimate of learning performance, in contrast to »in-
sample evaluation.

In repeated holdout evaluation, repeated holdout
evaluation experiments are performed, each time with

http://www.informatik.uni-kiel.de/~curry

Hypothesis Language

507

a different partition of the data, to create a distribution
of »training and Ptest sets with which an algorithm is
assessed.

Cross References
» Algorithm Evaluation

|
Holdout Set

Synonyms
Holdout data

Definition

A holdout set is a »-data set containing data that are not
used for learning and that are used for »evaluation by
a Plearning system.

Cross References
» Evaluation Set
» Holdout Evaluation

! Hopfield Network

R1STO MIIKKULAINEN
The University of Texas at Austin, Austin, TX, USA

Synonyms
Recurrent associative memory

Definition

The Hopfield network is a binary, fully recurrent
network that, when started on a random activation
state, settles the activation over time into a state that
represents a solution (Hopfield & Tank, 1986). This
architecture has been analyzed thoroughly using tools
from statistical physics. In particular, with symmetric
weights, no self-connections, and asynchronous neu-
ron activation updates, a Lyapunov function exists for
the network, which means that the network activity will
eventually settle. The Hopfield network can be used as
an associate memory or as a general optimizer. When
used as an associative memory, the weight values are

computed from the set of patterns to be stored. During
retrieval, part of the pattern to be retrieved is acti-
vated, and the network settles into the complete pattern.
When used as an optimizer, the function to be opti-
mized is mapped into the Lyapunov function of the
network, which is then solved for the weight values. The
network then settles to a state that represents the solu-
tion. The basic Hopfield architecture can be extended
in many ways, including continuous neuron activa-
tions. However, it has limited practical value mostly
because it is not strong in either of the above task: as
an associative memory, its capacity is approximately
0.15N in practice (where N is the number of neurons),
and as an optimizer, it often settles into local optima
instead of the global one. The »Boltzmann Machine
extends the architecture with hidden neurons, allow-
ing for better performance in both tasks. However, the
Hopfield network has had a large impact in the field
because the theoretical techniques developed for it have
inspired theoretical approaches for other architectures
as well, especially for those of self-organizing systems
(e.g., »Self Organizing Maps, »Adaptive Resonance
Theory).

Recommended Reading

Hopfield, J. J., & Tank, D. W. (1986). Computing with neural circuits:
A model. Science, 233, 624-633.

! Hypothesis Language

HENDRIK BLOCKEEL

Katholieke Universiteit Leuven, Belgium
Leiden Institute of Advanced Computer Science
The Netherlands

Synonyms
Representation language

Definition
The hypothesis language used by a machine learn-
ing system is the language in which the hypotheses

(also referred to as patterns or models) it outputs are
described.

508

Hypothesis Language

Motivation and Background

Most machine learning algorithms can be seen as a pro-
cedure for deriving one or more hypotheses from a set
of observations. Both the input (the observations) and
the output (the hypotheses) need to be described in
some particular language. This language is respectively
called the »Observation Language or the hypothesis
language. These terms are mostly used in the con-
text of symbolic learning, where these languages are
often more complex than in subsymbolic or statisti-
cal learning. For instance, hypothesis languages have
received a lot of attention in the field of »Inductive
Logic Programming, where systems typically take as
one of their input parameters a declarative specifica-
tion of the hypothesis language they are supposed to
use (which is typically a strict subset of full clausal
logic). Such a specification is also called a »Language
Bias.

Examples of Hypothesis Languages

The hypothesis language used obviously depends on the
learning task that is performed. For instance, in pre-
dictive learning, the output is typically a function, and
thus the hypothesis language must be able to repre-
sent functions; whereas in clustering the language must
have constructs for representing clusters (sets of points).
Even for one and the same goal, different languages may
be used; for instance, decision trees and rule sets can
typically represent the same type of functions, so the
difference between these two is mostly syntactic.

In the following section, we discuss briefly a few
different formalisms for representing hypotheses. For
most of these, there are separate entries in this vol-
ume that offer more detail on the specifics of that

formalism.
Outlook

sunny rainy
overcast

(Humidity) | yes | (Wind)

high normal

A »Decision Tree represents a decision process where
consecutive tests are performed on an instance to deter-
mine the value of its target variable, and at each step in
this process, the test that is performed depends on the
outcome of previous tests. Each leaf of the tree contains
the set of all instances that fulfill the conjunctions of all
conditions on the path from the root to this leaf, and
as such a tree can easily be written as a set of if-then
rules where each rule contains one such conjunction. If
the target variable is boolean, this format corresponds
to disjunctive normal form.

Figure 1 shows a decision tree and the corresponding
rule set. (Inspired by Mitchell, 1997).

The term “graphical models” usually refers to proba-
bilistic models where the joint distribution over a set of
variables is defined as the product of a number of joint
distributions over subsets of these variables (i.e., a fac-
torization), and this factorization is defined by a graph
structure. The graph may be directed, in which case we
speak of a »Bayesian Network, undirected, in which
case we speak of a »Markov Network, or even a mix
of the two (so-called chain graphs). In a Bayesian net-
work, the constituent distributions of the factorization
are conditional probability functions associated with
each node. In a Markov network, the constituent dis-
tributions are potential functions associated with each
clique in the graph.

Two learning settings can be distinguished: learn-
ing the parameters of a graphical model given the model
structure (the graph), and learning both structure and
parameters of the model. In the first case, the graph is
in fact a language bias specification: the user forces the
learner to return a hypothesis that lies within the set

IF Outlook=sunny AND Humidity=high THEN Play=no

IF Outlook=sunny AND Humidity=normal THEN Play=yes
IF Outlook=overcast THEN Play=yes

IF Outlook=rainy AND Wind=strong THEN Play=no

IF Outlook=rainy AND Wind=weak THEN Play=yes

Hypothesis Language. Figure 1. A decision tree and an equivalent rule set

Hypothesis Language

509

oy)+ (oueaf—{ray) | (a0
WA

Outlook
: ¢ | Humidity
Wind [Humiditﬂ [Wind HHumidityj [Outlook A

Hypothesis Language. Figure 2. A Bayesian network, a Markov network, and a neural network

of hypotheses representable by this particular structure.
In the second case, the structure of the graph makes
explicit certain independencies that are hypothesized
to exist between the variables (thus it is part of the
hypothesis itself).

Figure 2 shows examples of possible graphical mod-
els that might be learned from data. For details about
the interpretation of such graphical models, we refer to
the respective entries in this encyclopedia.

» Neural networks are typically used to represent com-
plex nonlinear functions. A neural network can be seen
as a directed graph where the nodes are variables and
edges indicate which variables depend on which other
variables. Some nodes represent the observed input
variables x; and output variables y, and some represent
new variables introduced by the network. Typically, a
variable depends, in a nonlinear way, on a linear com-
bination of those variables that directly precede it in
the directed graph. The parameters of the network are
numerical edge labels that represent the weight of a
parent variable in that linear combination.

As with graphical models, one can learn the param-
eters of a neural network with a given structure, in
which case the structure serves as a language bias; or
one can learn both the structure and the parameters of
the network.

Figure 2 shows an example of a neural network. We
refer to the respective entry for more information on
neural networks.

In the most basic version of Pinstance-based learn-
ing, the training data set itself represents the hypoth-
esis. As such, the hypothesis language is simply the

powerset of the observation language. Because many
instance-based learners rescale the dimensions of the
input space, the vector containing the rescaling factors
can be seen as part of the hypothesis. Similarly, some
methods derived from instance-based learning build a
model in which the training set instances are replaced
by prototypes (one prototype being representative for a
set of instances) or continuous functions approximating
the instances.

In clustering tasks, there is an underlying assumption
that there is a certain structure in the data set; that is,
the data set is really a mixture of elements from different
groups or clusters, with each cluster corresponding to a
different population. The goal is to describe these clus-
ters or populations and to indicate which data elements
belong to which cluster.

Some clustering methods define the clusters exten-
sionally, that is, they describe the different clusters in the
dataset by just enumerating the elements in the dataset
that belong to them. Other methods add an intensional
description to the clusters, defining the properties that
an instance should have in order to belong to the cluster;
as such, these intensional methods attempt to describe
the population that the cluster is a sample from. Some
methods recursively group the clusters into larger clus-
ters, building a cluster hierarchy. Figure 3 shows an
example of such a cluster hierarchy.

The term “mixture models” typically refers to meth-
ods that return a probabilistic model (e.g., a Gaussian
distribution with specified parameters) for each sepa-
rate population identified. Being probabilistic in nature,
these methods typically also assign data elements to the
populations in a probabilistic, as opposed to determin-
istic, manner.

510

Hypothesis Language

|
O 0
| o ©O
o L, o
AR A
™
u o0
] ¢ ®
] °
u

black white

sq cir sq tr cir

| ® O A O

Hypothesis Language. Figure 3. A hierarchical clustering: left, the data set; middle: an extensional clustering shown
on the data set; right, above: the corresponding extensional clustering tree; right, below: a corresponding intensional
clustering tree, where the clusters are described based on color and shape of their elements

In symbolic machine learning, a distinction is often
made between the so-called attribute-value (or propo-
sitional) and relational (or first-order) languages. The
terminology “propositional” versus “first-order” origi-
nates in logic. In »Propositional Logic, only the exis-
tence of propositions, which can be true or false, is
assumed, and these propositions can be combined with
the usual logical connectives into logical formulae. In
> First-Order Predicate Logic, the existence of a uni-
verse of objects is assumed as well as the existence of
predicates that can express certain properties of and
relationships between these objects. By adding variables
and quantifiers, one can describe deductive reasoning
processes in first-order logic that cannot be described
in propositional logic. For instance, in propositional
logic, one could state propositions Socrates_is_human
and all_humans_are_mortal (both are statements that
may be true or false), but there is no inherent relation-
ship between them. In first order logic, the formulae
human(Socrates) and Vx : human(x) — mortal(x)
allow one to deduce mortal(Socrates). A more exten-
sive explanation of the differences between proposi-
tional and first-order logic can be found in the entry on
» First-Order Logic.

Many machine learning approaches use an essen-
tially propositional language for describing obser-
vations and hypotheses. In the fields of Inductive
Logic Programming and »Relational Learning, more

powerful languages are used, with an expressiveness
closer to that of first-order logic. Many of the repre-
sentation languages mentioned above, which are essen-
tially propositional, have been extended towards the
first-order logic context.

The simplest example is that of rule sets. If-then
rules have a straightforward counterpart in first-order
logic in the form of »Clauses, which are usually writ-
ten as logical implications where all variables are inter-
preted as universally quantified. For instance, the rule
“IF Human=true THEN Mortal=true” can be written in
clausal form as

mortal(x) < human(x).

Propositional rules correspond to clauses that refer to
only one object (and the object reference is implicit). A
rule such as

grandparent(x,y) < parent(x,z), parent(z,y)

(expressing that, for any x, y,z, whenever x is a parent
of z and z is a parent of y, x is a grandparent of y) has
no translation into propositional logic that retains the
inference capacity of the first-order logic clause.
Clauses are a natural first-order logic equivalent
to the if-then rules typically returned by rule learn-
ers, and many of the other representation languages
have also been upgraded to the relational or first-
order-logic context. For instance, several researchers
(e.g., Blockeel & De Raedt, 1998) have upgraded the

Hypothesis Space

51

formalism of decision trees toward “structural” or “first-
orderlogic” decision trees. Probabilistic relational mod-
els (Getoor, Friedman, Koller, & Pfeffer, 2001) and
Bayesian logic programs (Kersting & De Raedt, 2001)
are examples of how Bayesian networks have been
upgraded, while Markov networks have been lifted to
“Markov logic” (Richardson & Domingos, 2006).

Further Reading

Most of the literature on hypothesis and observation
languages is found in the area of inductive logic pro-
gramming. Excellent starting points, containing exten-
sive examples of bias specifications, are Relational Data
Mining by Dzeroski & Lavra¢ (2001), Logic for Learning
by Lloyd (2003), and Logical and Relational Learning by
De Raedt (2008).

De Raedt (1998) compares a number of differ-
ent observation and hypothesis languages with respect
to their expressiveness, and indicates relationships
between them.

Cross References

» First-Order Logic

» Hypothesis Space

»Inductive Logic Programming
»Observation Language

Recommended Reading

Blockeel, H., & De Raedt, L. (1998). Top-down induction of first
order logical decision trees. Artificial Intelligence, 101(1-2),
285-297.

De Raedt, L. (1998). Attribute-value learning versus inductive logic
programming: the missing links (extended abstract). In D. Page
(Ed.), Proceedings of the eighth international conference on
inductive logic programming. Lecture notes in artificial intelli-
gence (Vol. 1446, pp. 1-8). Berlin: Springer.

De Raedt, L. (2008). Logical and relational learning. Berlin:
Springer.

Dzeroski, S., & Lavra¢, N. (Ed.). (2001). Relational data mining.
Berlin: Springer.

Getoor, L., Friedman, N., Koller, D., & Pfeffer, A. (2001).
Learning probabilistic relational models. In S. Dzeroski &
N. Lavrac (Eds.), Relational data mining (pp. 307-334). Berlin:
Springer.

Kersting, K., & De Raedt, L.
inductive logic programming and Bayesian networks. In
C. Rouveirol & M. Sebag (Eds.), Proceedings of the 1Ith inter-
national conference on inductive logic programming Lecture
notes in computer science (Vol. 2157, pp. 118-131). Berlin:

(2001). Towards combining

Springer.

Lloyd, J. W. (2003). Logic for learning. Berlin: Springer.

Mitchell, T. (1997). Machine Learning. McGraw Hill.

Richardson, M., & Domingos, P. (2006). Markov logic networks.
Machine Learning, 62(1-2), 107-136.

! Hypothesis Space

HENDRIK BLOCKEEL

Katholieke Universiteit Leuven, Belgium

Leiden Institute of Advanced Computer Science
The Netherlands

Synonyms
Model space

Definition

The hypothesis space used by a machine learning sys-
tem is the set of all hypotheses that might possibly be
returned by it. It is typically defined by a »Hypothesis
Language, possibly in conjunction with a »Language
Bias.

Motivation and Background

Many machine learning algorithms rely on some kind
of search procedure: given a set of observations and a
space of all possible hypotheses that might be consid-
ered (the “hypothesis space”), they look in this space for
those hypotheses that best fit the data (or are optimal
with respect to some other quality criterion).

To describe the context of a learning system in more
detail, we introduce the following terminology. The
key terms have separate entries in this encyclopedia,
and we refer to those entries for more detailed
definitions.

A learner takes observations as inputs. The »Obser-
vation Language is the language used to describe these
observations.

The hypotheses that a learner may produce, will be
formulated in a language that is called the Hypoth-
esis Language. The hypothesis space is the set of
hypotheses that can be described using this hypothesis
language.

Often, a learner has an implicit, built-in, hypoth-
esis language, but in addition the set of hypotheses

512

Hypothesis Space

learner’s implicit
hypothesis language

language bias

—+ hypothesis space

' bias specification |
! language ,

observation language !

|| set of observations f—»[leaming aIgorithmj—»: hypotheses

| hypothesis language

,,,,,,,,,,,,,,,,

Hypothesis Space. Figure 1. Structure of learning systems that derive one or more hypotheses from a set of

observations

that can be produced can be restricted further by the
user by specifying a language bias. This language bias
defines a subset of the hypothesis language, and cor-
respondingly a subset of the hypothesis space. A sepa-
rate language, called the »Bias Specification Language,
is used to define this language bias. Note that while
elements of a hypothesis language refer to a single
hypothesis, elements of a bias specification language
refer to sets of hypotheses, so these languages are typ-
ically quite different. Bias specification languages have
been studied in detail in the field of »Inductive Logic
Programming.

The terms “hypothesis language” and “hypothesis
space” are sometimes used in the broad sense (the lan-
guage that the learner is inherently restricted to, e.g.,
Horn clauses), and sometimes in a more narrow sense,
referring to the smaller language or space defined by the
language bias.

The structure of a learner, in terms of the above
terminology, is summarized in Fig. 1.

Theory

For a given learning problem, let us denote with O the
set of all possible observations (sometimes also called
the instance space), and with 7{ the hypothesis space,
i.e., the set of all possible hypotheses that might be
learned. Let 2% denote the power set of a set X. Most
learners can then be described abstractly as a function
T : 29 — H, which takes as input a set of observations
(also called the training set) S ¢ O, and produces as
output a hypothesis h € H.

In practice, the observations and hypotheses are
represented by elements of the observation language
Lo and the hypothesis language Ly, respectively. The
connection between language elements and what they
represent is defined by functions Zp : Lo — O (for
observations) and Zy : Ly — H (for hypotheses).
This mapping is often, but not always, bijective. When
it is not bijective, different representations for the same
hypothesis may exist, possibly leading to redundancy in
the learning process.

We will use the symbol 7 as a shorthand for Zy or
Zy. We also define the application of Z to any set S as
Z(S) = {Z(x)|x € S}, and to any function f as Z(f) =
g Vx:g(Z(x)) = T(f(x)).

Thus, a machine learning system really implements
afunction T":2£0 - £, rather than a function T:2° >H.
The connection between T’ and T is straightforward:
forany S ¢ Lo and h € Ly, T'(S) = h if and only if
T(Z(S)) = Z(h); in other words: T = Z(T").

Figure 2 summarizes these languages and spaces and
the connections between them. We further illustrate
them with a few examples.

Examplel In supervised learning, the observations are
usually pairs (x,y) with x € X an instance and y € Y
its label, and the hypotheses are functions mapping X
onto Y. Thus O = X x Y and H < Y%, with Y* the
set of all functions from X to Y. Lo is typically chosen
such that T(Lo) = O, i.e., each possible observation can
be represented in Lo. In contrast to this, in many cases
Z(Ly) will be a strict subset of Y, i.e., Z(Lg) c Y.

Hypothesis Space

513

Hypothesis Space. Figure 2. lllustration of the interpreta-
tion function Z mapping Lo, L4, and T' onto O, H,and T

For instance, Ly may contain representations of all poly-
nomial functions from X to Y if X = R" and Y = R (with
R the set of real numbers), or may be able to represent all
conjunctive concepts over X when X = B" and Y = B
(with B the set of booleans).

When Z(Ly) c YX, the learner cannot learn every
imaginable function. Thus, L reflects an inductive bias
that the learner has, called its language bias. We can
distinguish an implicit language bias, inherent to the
learning system, and corresponding to the hypothesis
language (space) in the broad sense, and an explicit
language bias formulated by the user, correspond-
ing to the hypothesis language (space) in the narrow
sense.

Example 2 Decision tree learners and rule set learn-
ers use a different language for representing the functions
they learn (call these languages Lpr and Lgs, respec-
tively), but their language bias is essentially the same: for
instance, if X = B" and Y = B, Z(Lpr) = Z(Lgs) =
YX: both trees and rule sets can represent any boolean
function from B" to B.

In practice a decision tree learner may employ con-
straints on the trees that it learns, for instance, it might
be restricted to learning trees where each leaf contains at
least two training set instances. In this case, the actual
hypothesis language used by the tree learner is a subset
of the language of all decision trees.

Generally, if the hypothesis language in the broad
sense is Ly and the hypothesis language in the nar-
row sense is L};, then we have £}, € Ly and the

corresponding spaces fulfill (in the case of supervised
learning)

T(Ly) cT(Ly)c Y™

Clearly, the choice of £y and Ly determines the
kind of patterns or hypotheses that can be expressed.
See the entries on Observation Language and Hypoth-
esis Language for more details on this.

Further Reading

The term “hypothesis space” is ubiquitous in the
machine learning literature, but few articles discuss the
concept itself. In Inductive Logic Programming, a sig-
nificant body of work exists on how to define a language
bias (and thus a hypothesis space), and on how to auto-
matically weaken the bias (enlarge the hypothesis space)
when a given bias turns out to be too strong. The expres-
siveness of particular types of learners (e.g., classes of
»Neural Networks) has been studied, and this relates
directly to the hypothesis space they use. We refer to the
respective entries in this volume for more information
on these topics.

Cross References

» Bias Specification Language

» Hypothesis Language
»Inductive Logic Programming
»Observation Language

Recommended Reading

De Raedt, L. (1992). Interactive theory revision: An inductive logic
programming approach. London: Academic Press.

Nédellec, C., Adé, H., Bergadano, F, & Tausend, B. (1996).
Declarative bias in ILP. In L. De Raedt (Ed.), Advances
in inductive logic programming. Frontiers in artificial intelli-
gence and applications (Vol. 32, pp. 82-103). Amsterdam: I0S
Press.

! Hypothesis Space

Definition

A hypothesis space is the space of hypotheses through
which a learning algorithm can search for a model. See
> Learning as Search.

	H
	Hebb Rule
	Hebbian Learning
	Cross References

	Heuristic Rewards
	Hidden Markov Models
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Training and Using Hidden Markov Models
	Applications of Hidden Markov Models
	Programs

	Cross References
	Recommended Reading

	Hierarchical Reinforcement Learning
	Definition
	Motivation and Background
	Structure of Learning System
	Structure of HRL
	Semi-Markov Decision Problem Formalism
	Approaches to Hierarchical Reinforcement Learning
	Hierarchies of Abstract Machines (HAMs)
	MAXQ
	Automatic Decomposition

	Cross References
	Recommended Reading

	High-Dimensional Clustering
	Higher-Order Logic
	Definition
	Motivation and Background
	Theory
	Logic
	Knowledge Representation
	Reasoning

	Applications
	Cross References
	Recommended Reading

	HMM
	Hold-One-Out Error
	Holdout Data
	Holdout Evaluation
	Definition
	Cross References

	Holdout Set
	Synonyms
	Definition
	Cross References

	Hopfield Network
	Synonyms
	Definition
	Recommended Reading

	Hypothesis Language
	Synonyms
	Definition
	Motivation and Background
	Examples of Hypothesis Languages
	Decision Trees and Rule Sets
	Graphical Models
	Neural Networks
	Instance-Based Learning
	Clustering
	First-Order Logic Versus Propositional Languages

	Further Reading
	Cross References
	Recommended Reading

	Hypothesis Space
	Synonyms
	Definition
	Motivation and Background
	Theory
	Further Reading
	Cross References
	Recommended Reading

	Hypothesis Space
	Definition

