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k-Armed Bandit
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Synonyms
Multi-armed bandit; Multi-armed bandit problem

Definition
In the classical k-armed bandit problem, there are k
alternative arms, each with a stochastic reward whose
probability distribution is initially unknown. A decision
maker can try these arms in some order, which may
depend on the rewards that have been observed so far.
A commonobjective in this context is to �nd a policy for
choosing the next arm to be tried, under which the sum
of the expected rewards comes as close as possible to
the ideal reward, that is, the expected reward that would
be obtained if it were to try the “best” arm at all times.
�ere are many variants of the k-armed bandit problem
that are distinguished by the objective of the decision
maker, the process governing the reward of each arm,
and the information available to the decision maker at
the end of every trial.

Motivation and Background
k-Armed bandit problems are a family of sequential
decision problems that are among the most studied
problems in statistics, control, decision theory, and
machine learning. In spite of their simplicity, they
encompass many of the basic problems of sequential
decision making in uncertain environments such as the
tradeo� between exploration and exploitation.

�ere are many variants of bandit problems includ-
ing Bayesian, Markovian, adversarial, budgeted, and
exploratory variants. Bandit formulations arise natu-
rally in multiple �elds and disciplines including com-
munication networks, clinical trials, search theory,

scheduling, supply chain automation, �nance, control,
information technology, etc. (Berry & Fristedt, ;
Cesa-Bianchi & Lugosi, ; Gittins, ).

�e term “multi-armed bandit” is borrowed from
the slang term for a slot machine (the one-armed ban-
dit), where a decision maker has to decide whether to
insert a coin into the gambling machine and pull a lever
possibly getting a signi�cant reward, or to quit without
spending any money.

Theory
We brie�y review some of the most popular bandit
variants.

The Stochastic k-Armed Bandit Problem
�e classical stochastic bandit problem is described as
follows. �ere are k arms (or machines or actions) and
a single decision maker (or controller or agent). Each
arm corresponds to a discrete time Markov process. At
each timestep, the decision maker observes the current
state of each arm’s process and selects one of the arms.
As a result, the decision maker obtains a reward from
the process of the selected arm and the state of the cor-
responding process changes. Arms that are not selected
are “frozen” and their processes remain in the same
state.�e objective of the decisionmaker is tomaximize
her (discounted) reward.
More formally, let the state of arm n’s process at stage

t be xn(t). �en, if the decision maker selects armm(t)
at time t we have that:

xn(t + ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xn(t) n ≠ m(t)

fn (xn(t),ω) n = m(t)
,

where fn(x,ω) is a function that describes the (possi-
bly stochastic) transition probability of the n-th process
and accepts the state of the n-th process and a random
disturbance ω.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC 



 K k-Armed Bandit

�e reward the decision maker receives at time t is
a function of the current state and a random element:
r(xm(t)(t),ω). �e objective of the decision maker is
to maximize her cumulative discounted reward.�at is,
she wishes to maximize

V = Eπ [
∞
∑
t=

γtr (xm(t) (t) ,ωt)] ,

where Eπ is the expectation obtained when following
policy π and γ is a discount factor ( < γ < ). A policy
is a decision rule for selected arms as a function of the
state of the processes.

�is problem can be solved using 7dynamic pro-
gramming, but the state space of the joint Markov deci-
sion process is exponential in the number of arms.
Moreover, the dynamic programming solution does
not reveal the important structural properties of the
solution.
Gittins and Jones () showed that there exists

an optimal index policy. �at is, there is a function
that maps the state of each arm to real number (the
“index”) such that the optimal policy is to choose the
armwith the highest index at any given time.�erefore,
the stochastic bandit problem reduces to the problem of
computing the index, which can be easily done in many
important cases.

Regret Minimization for the Stochastic
k-Armed Bandit Problem
A di�erent �avor of the bandit problem focuses on the
notion of regret, or learning loss. In this formulation,
there are k arms as before and when selecting arm m a
reward that is independent and identically distributed
is given (the reward depends only on the identity of
the arm and not on some internal state or the results
of previous trials). �e decision maker’s objective is to
obtain high expected reward. Of course, if the decision
maker had known the statistical properties of each arm,
she would have always chosen the arm with the highest
expected reward. However, the decisionmaker does not
know the statistical properties of the arms in advance, in
this setting.
More formally, if the reward when choosing arm m

has expectation rm, the regret is de�ned as:

r(t) = t ⋅max≤m≤k rm − Eπ [
t

∑
τ=

r(τ)] ,

where r(t) is sampled from the armm(t). �is quantity
represents the expected loss for not choosing the arm
with the highest expected reward on every timestep.

�is variant of the bandit problem highlights the
tension between acquiring information (exploration)
and using the available information (exploitation). �e
decision maker should carefully balance between the
two since if she chooses to only try the arm with
the highest estimated reward she might regret not
exploring other arms whose reward is underestimated
but is actually higher than the reward of the arm with
highest estimated reward.
A basic question in this context is whether R(t) can

be made to grow sub-linearly. Robbins () answered
this question in the a�rmative. It was later proved
(Lai & Robbins, ) that it is possible in fact to obtain
logarithmic regret (the growth of the regret is loga-
rithmic in the number of timesteps). Matching lower
bounds (and constants) were also derived.

The Non-stochastic k-Armed Bandit
Problem
A third popular variant of the bandit problem is the
non-stochastic one. In this problem, it is assumed that
the sequence of rewards each arm produces is deter-
ministic (possibly adversarial). �e decision maker, as
in the stochastic bandit problem, wants to minimize
her regret, where the regret is measured with respect
to the best �xed arm (this best arm might change with
time, however). Letting the reward of arm m at time t
be rm(t), we rede�ne the regret as:

r(t) = max≤m≤k
t

∑
τ=

rm(τ) − Eπ [
t

∑
τ=

r(τ)],

where the expectation is now taken with respect to ran-
domness in the arm selection.�e basic question here is
if the regret can be made to grow sub-linearly. �e case
where the reward of each arm is observedwas addressed
in the s (see Cesa-Bianchi & Lugosi, , for a
discussion), where it was shown that there are algo-
rithms that guarantee that the regret grows like

√
t. For

the more di�cult case, where only the reward of the
selected arm is observed and that the rewards of the
other arms may not be observed it was shown (Auer,
Cesa-Bianchi, Freund, & Schapire, ) that the same
conclusion still holds.
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It should be noticed that the optimal policy of the
decision maker in this adversarial setting is generally
randomized. �at is, the decision maker has to select
an action at random by following some distribution.
�e reason is that if the action the decision maker takes
is deterministic and can be predicted by Nature, then
Nature can consistently “give” the decision maker a low
reward for the selected armwhile “giving” a high reward
to all other arms, leading to a linear regret.

�ere are some interesting relationships between
the non-stochastic bandit problem and prediction with
expert advice, universal prediction, and learning in
games (Cesa-Bianchi & Lugosi, ).

The Exploratory k-Armed Bandit Problem
�is bandit variant emphasizes e�cient exploration
rather than on the exploration–exploitation tradeo�. As
in the stochastic bandit problem, the decision maker
is given access to k arms where each arm is associ-
ated with an independent and identically distributed
random variable with unknown statistics. �e decision
maker’s goal is to identify the “best” arm. �at is, the
decision maker wishes to �nd the arm with the highest
expected reward as quickly as possible.

�e exploratory bandit problem is a sequential
hypothesis testing problem but with the added com-
plication that the decision maker can choose where to
sample next, making it among the simplest active learn-
ing problems. In the context of the probably approx-
imate correct (PAC) setup, it was shown (Mannor &
Tsitsiklis, ) that �nding the ε-optimal arm (that is,
an arm whose expected reward is lower than that of the
best arm by at most ε) with probability of at least  − δ
requires

O( k
ε
log( 

δ
))

samples on expectation. Moreover, this bound can be
obtained (up to multiplicative constants) via an algo-
rithm known as median elimination.
Bandit analyses such as these have played a key

role in understanding the e�ciency of7reinforcement-
learning algorithm as well.

Cross References
7Active Learning
7Associative Bandit Problems

7Dynamic Programming
7Machine Learning in Games
7Markov Processes
7PAC Learning
7Reinforcement Learning
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K-Means Clustering

Xin Jin, Jiawei Han
University of Illinois at Urbana-Champaign
Urbana, IL, USA

K-means (Lloyd, ; MacQueen, ) is one of the
most popular clustering methods. Algorithm  shows
the procedure of K-means clustering. �e basic idea
is: Given an initial but not optimal clustering, relocate
each point to its new nearest center, update the clus-
tering centers by calculating the mean of the member
points, and repeat the relocating-and-updating process
until convergence criteria (such as prede�ned number
of iterations, di�erence on the value of the distortion
function) are satis�ed.

�e task of initialization is to form the initial
K clusters. Many initializing techniques have been pro-
posed, from simple methods, such as choosing the �rst
K data points, Forgy initialization (randomly choosing
K data points in the dataset) and Random partitions
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(a) Initialization (b) Re-assignment

K-Means Clustering. Figure . K-Means clustering example (K = ). The center of each cluster is marked by “x”

(dividing the data points randomly into K subsets),
to more sophisticated methods, such as density-based
initialization, Intelligent initialization, Furthest First
initialization (FF for short, it works by picking the
�rst center point randomly, then adding more center
points which are furthest from existing ones), and sub-
set furthest-�rst (SFF)initialization. For more details,
refer to paper Steinley and Brusco () which pro-
vides a survey and comparison of over  initialization
methods.
Figure  shows an example ofK-means clustering on

a set of points, withK = .�e clusters are initialized by
randomly selecting two points as centers.

Complexity analysis. Let N be the number of points,
D the number of dimensions, and K the number of
centers. Suppose the algorithm runs I iterations to
converge. �e space complexity of K-means clustering
algorithm isO(N(D+K)). Based on the number of dis-
tance calculations, the time complexity of K-means is
O(NKI).

Algorithm  K-means clustering algorithm
Require: K, number of clusters;D, a data set ofN points
Ensure: A set of K clusters
. Initialization.
. repeat
. for each point p in D do
. �nd the nearest center and assign p to the

corresponding cluster.
. end for
. update clusters by calculating new centers using

mean of the members.
. until stop-iteration criteria satis�ed
. return clustering result.
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K-Medoids Clustering

Xin Jin, Jiawei Han
University of Illinois at Urbana-Champaign
Urbana, IL, USA

�e K-means clustering algorithm is sensitive to out-
liers, because amean is easily in�uenced by extreme val-
ues.K-medoids clustering is a variant ofK-means that is
more robust to noises and outliers. Instead of using the
mean point as the center of a cluster, K-medoids uses
an actual point in the cluster to represent it. Medoid
is the most centrally located object of the cluster, with
minimum sum of distances to other points. Figure 
shows the di�erence between mean and medoid in a
-D example. �e group of points in the right form a
cluster, while the rightmost point is an outlier. Mean is
greatly in�uenced by the outlier and thus cannot repre-
sent the correct cluster center, while medoid is robust to
the outlier and correctly represents the cluster center.
Partitioning around medoids (PAM) (Kaufman &

Rousseeuw, )  is a representative K-medoids clus-
tering method. �e basic idea is as follows: Select
K representative points to form initial clusters, and then
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(a) Mean (b) Medoid

K-Medoids Clustering. Figure . Mean vs. medoid in -D space. In both figures (a) and (b), the group of points in the

right form a cluster and the rightmost point is an outlier. The red point represents the center found by mean or medoid

repeatedly moves to better cluster representatives. All
possible combinations of representative and nonrep-
resentative points are analyzed, and the quality of the
resulting clustering is calculated for each pair. An orig-
inal representative point is replaced with the new point
which causes the greatest reduction in distortion func-
tion. At each iteration, the set of best points for each
cluster form the new respective medoids.

�e time complexity of the PAM algorithm is
O(K(N − K)I). PAM is not scalable for large dataset,
and some algorithms have been proposed to improve
the e�ciency, such as Clustering LARge Applications
(CLARA) (Kaufman & Rousseeuw, ) and Clus-
tering Large Applications based upon RANdomized
Search (CLARANS) (Ng & Han, ).
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K-Way Spectral Clustering

Xin Jin, Jiawei Han
University of Illinois at Urbana-Champaign
Urbana, IL, USA

In spectral clustering (Luxburg, ), the dataset is
represented as a similarity graph G=(V ,E). �e ver-
tices represent the data points. Two vertices are con-
nected if the similarity between the corresponding data

points is larger than a certain threshold, and the edge is
weighted by the similarity value. Clustering is achieved
by choosing a suitable partition of the graph that each
group corresponds to one cluster.
A good partition (i.e., a good clustering) is that

the edges between di�erent groups have overall low
weights and the edges within a group have high weights,
which indicates that the points in di�erent clusters are
dissimilar from each other and the points within the
same cluster are similar to each other. One basic spec-
tral clustering algorithm �nds a good partition in the
following way:
Given a set of data points P and the similaritymatrix

S, where Sij measures the similarity between points
i, j ∈ P, form a graph. Build a Laplacian matrix L of the
graph,

L = I −D−/SD−/, ()

where D is the diagonal matrix

Dii = ∑
j
Sij. ()

Find the eigenvalues and eigenvectors of the matrix
L, map the vertices to corresponding components and
form clusters based on the embedding space.

�e methods to �nd K clusters include recursive
bipartitioning and clusteringmultiple eigenvectors.�e
former technique is ine�cient and unstable. �e latter
approach is more preferable because it is able to prevent
instability due to information loss.

Recommended Reading
Luxburg, U. (). A tutorial on spectral clustering. Statistics and

Computing, (), –.
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Kernel Density Estimation

7Density Estimation

Kernel Matrix

Synonyms
Gram matrix

Definition
Given a kernel function k : X × X → and patterns
x, . . . , xm ∈ X, them×mmatrix K with elements Kij :=
k(xi, xj) is called the kernel matrix of k with respect to
x, . . . , xm.

Kernel Methods

Xinhua Zhang
Australian National University, Canberra, Australia
NICTA London Circuit, Canberra, Australia

Definition
Kernel methods refer to a class of techniques that
employ positive de�nite kernels. At an algorithmic level,
its basic idea is quite intuitive: implicitly map objects
to high-dimensional feature spaces, and then directly
specify the inner product there. As a more principled
interpretation, it formulates learning and estimation
problems in a reproducing kernel Hilbert space, which
is advantageous in a number of ways:

● It induces a rich feature space and admits a large class
of (nonlinear) functions.

● It can be �exibly applied to a wide range of domains
including both Euclidean and non-Euclidean spaces.

● Searching in this in�nite-dimensional space of func-
tions can be performed e�ciently, and one only
needs to consider the �nite subspace expanded by
the data.

● Working in the linear spaces of function lends signif-
icant convenience to the construction and analysis of
learning algorithms.

Motivation and Background
Over the past decade, kernelmethods have gainedmuch
popularity in machine learning. Linear estimators have
been popular due to their convenience in analysis and
computation. However, nonlinear dependencies exist
intrinsically in many real applications, and are indis-
pensable for e�ective modeling. Kernel methods can
sometimes o�er the best of both aspects. �e repro-
ducing kernel Hilbert space provides a convenient way
to model nonlinearity, while the estimation is kept lin-
ear. Kernels also o�er signi�cant �exibility in analyzing
generic non-Euclidean objects such as graphs, sets, and
dynamic systems.Moreover, kernels induce a rich func-
tion space where functional optimization can be per-
formed e�ciently. Furthermore, kernels have also been
used to de�ne statisticalmodels via exponential families
or Gaussian processes, and can be factorized by graph-
ical models. Indeed, kernel methods have been widely
used in almost all tasks in machine learning.

�e reproducing kernel was �rst studied by Aron-
szajn (). Poggio and Girosi () and Wahba
() used kernels for data analysis and Boser, Guyon,
and Vapnik () incorporated kernel function into
the maximum margin models. Schölkopf, Smola, and
Müller () �rst used kernels for principal component
analysis.

Theory
Positive semi-de�nite kernels are the most commonly
used type of kernels, and its motivation is as follows.
Given two objects x, x from a space X , which is
not necessarily Euclidean, we map them to a high-
dimensional feature space via ϕ(x) and ϕ(x), and
then compute the inner products there by k(x, x) =
⟨ϕ(x), ϕ(x)⟩. In many algorithms, the set {xi} in�u-
ences learning only via inner products between xi and
xj, hence it is su�cient to specify k(x, x) directly
without explicitly de�ning ϕ. �is leads to consid-
erable savings in computation, when ϕ ranges in
high-dimensional spaces or even in�nite-dimensional
spaces. Clearly, the function k must satisfy some con-
ditions. For example, as a necessary condition, for any
�nite number of examples x, . . . , xn fromX , thematrix

K := (k(xi, xj))i,j =(ϕ(x), . . . , ϕ(xn))⊺

(ϕ(x), . . . , ϕ(xn))
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must be positive semi-de�nite. Surprisingly, this turns
out to be a su�cient condition as well, and hence we
de�ne the positive semi-de�nite kernels.

De�nition  (Positive semi-de�nite kernels) Let X
be a nonempty set. A function k : X × X ↦ R is
called a positive semi-de�nite kernel if for any n ∈N and
x, . . . , xn ∈ X , the Gram matrix K := (k(xi, xj))i,j is
symmetric and positive semi-de�nite (psd).

Reproducing Kernel Hilbert Space

Given a psd kernel k, we are able to construct a map
ϕ from X to an inner product space H, such that
⟨ϕ(x), ϕ(x)⟩ = k(x, x). �e image of x under ϕ is
just a function ϕ(x) := k(x, ⋅), where k(x, ⋅) is a func-
tion of ⋅, assigning the value k(x, x′) for any x′ ∈X .
To de�ne inner products between functions, we need
to construct an inner product space H that contains
{k(x, ⋅) : x ∈ X}. First,H must contain the linear com-
binations {∑n

i= αik(xi, ⋅) : n ∈ N, xi ∈ X , αi ∈ R}. �en,
we endow it with an inner product as follows. For any
f , g ∈H and f = ∑n

i= αik(xi, ⋅), g = ∑m
j= βjk (x′j , ⋅), de�ne

⟨ f , g⟩ :=
n

∑
i=

m

∑
j=

αiβjk (xi, x′j) ,

and it is easy to show that this is well de�ned (indepen-
dent of the expansion of f and g). Using the induced
norm, we can complete the space and thus get a Hilbert
space H, which is called reproducing kernel Hilbert
space (RKHS). �e term “reproducing” is because for
any function f ∈ H, ⟨ f , k(x, ⋅)⟩ = f (x).

Properties of psd Kernels

Let X be a nonempty set and k, k, . . . be arbitrary psd
kernels on X ×X . �en

● �e set of psd kernels is a closed convex cone, that
is, (a) if α, α ≥ , then αk + αk is psd; (b) if
k(x, x′) := limn→∞ kn(x, x′) exists for all x, x′, then k
is psd.

● �e pointwise product kk is psd.
● Assume for i = , , ki is a psd kernel on Xi × Xi,
whereXi is a nonempty set.�en the tensor product
k ⊗ k and the direct sum k ⊕ k are psd kernels on
(X × X) × (X × X).

Example Kernels

One of the key advantage of kernels lies in its applica-
bility to a wide range of objects.

Euclidean spaces: In Rn, popular kernels include
linear kernel k(x, x)= ⟨x, x⟩, polynomial kernels
k(x, x)= (⟨x, x⟩ + c)d where d ∈ N and c ≥ ,
Gaussian RBF kernels k(x, x) = exp(−γ ∥x − x∥)
where γ > , and Laplacian RBF kernels k(x, x) =
exp(−γ ∥x − x∥). Another useful type of kernels on
Euclidean spaces is the spline kernels.

Convolution kernels: Haussler () investigated
how to de�ne a kernel between composite objects by
building on the similarity measures that assess their
respective parts. It needs to enumerate all possible ways
to decompose the objects, hence e�cient algorithms
like dynamic programming are needed.

Graph kernels: Graph kernels are available in two
categories: between graphs and on a graph.�e�rst type
is similar to convolution kernels, which measures the
similarity between two graphs. �e second type de�nes
a metric between the vertices, and is generally based
on the graph Laplacian. By applying various transform
functions to the eigenvalue of the graph Laplacian,
various smoothing and regularization e�ects can be
achieved.

Fisher kernels: Kernels can also be de�ned between
probability densities p(x∣θ). LetUθ(x) = −∂θ log p(x∣θ)
and I =Ex [Uθ(x)U⊺

θ (x)] be the Fisher score and Fisher
information matrix respectively. �en the normalized
and unnormalized Fisher kernels are de�ned by

k(x, x′) = U⊺
θ (x)I

−Uθ(x′) and

k(x, x′) = U⊺
θ (x)Uθ(x′),

respectively. In theory, estimation using normalized
Fisher kernels corresponds to regularization on the
L(p(⋅∣θ)) norm. And in the context of exponential
families, the unnormalized Fisher kernels are identical
to the inner product of su�cient statistics.

Kernel Function Classes

Many machine learning algorithms can be posed as
functional minimization problems, and the RKHS is
chosen as the candidate function set. �e main advan-
tage of optimizing over an RKHS originates from the
representor theorem.
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�eorem  (Representor theorem) Denote by Ω :
[,∞) ↦ R a strictly monotonic increasing function, by
X a set, and by c : (X ×R)n ↦ R ∪ {∞} an arbitrary
loss function. �en each minimizer f ∈ H of the regular-
ized risk functional

c((x, y, f (x)), . . . , (xn, yn, f (xn))) +Ω (∥f ∥H) ()

admits a representation of the form

f (x) =
n

∑
i=

αik(xi, x).

�e representer theorem is important in that al-
though the optimization problem is in an in�nite-
dimensional spaceH, the solution is guaranteed to lie in
the span of n particular kernels centered on the training
points.

�e objective () is composed of two parts: the �rst
part measures the loss on the training set {xi, yi}ni=,
which depends on f only via its value at xi. �e second
part is the regularizer, which encourages small RKHS
norm of f . Intuitively, this regularizer penalizes the
complexity of f and prefers smooth f . When the kernel
k is translation invariant, that is, k(x, x) = h(x − x),
Smola, Schölkopf, andMüller () showed that ∥f ∥ is
related to the Fourier transform of h, with more penalty
imposed on the high frequency components of f .

Applications
Kernels have been applied to almost all branches of
machine learning.

Supervised Learning

One of the most well-known applications of kernel
method is the SVM for binary classi�cation. Its primal
form can be written as

minimize
w,b,ξ

λ

∥w∥ + 

n

n

∑
i=

ξi,

s.t. yi(⟨w, xi⟩ + b) ≥  − ξi, and ξi ≥ , ∀i.

Its dual form can be written as

minimize
αi


λ∑i,j

yiyj ⟨xi, xj⟩ αiαj −∑
i

αi,

s.t. ∑
i
yiαi = , αi ∈ [,n−], ∀i.

Clearly, this can be extended to feature maps and ker-
nels by setting k(xi, xj) = ⟨xi, xj⟩. �e same trick can
be applied to other algorithms like ν-SVM, regression,
density estimation, etc. For multi-class classi�cation
and structured output classi�cation where the possi-
ble label set Y can be large, kernel maximum margin
machines can be formulated by introducing a joint ker-
nel on pairs of (xi, y) (y ∈ Y), that is, the feature map
takes the tuple (xi, y). Letting ∆(yi, y) be the discrep-
ancy between the true label yi and the candidate label y,
the primal form is

minimize
w,ξi

λ

∥w∥ + 

n

n

∑
i=

ξi,

s.t. ⟨w, ϕ(xi, yi) − ϕ(xi, y)⟩ ≥ ∆(yi, y) − ξi, ∀ i, y,

and the dual form is

minimize
αi,y


λ ∑
(i,y),(i′ ,y′)

αi,yαi′ ,y′⟨ϕ(xi, yi)

− ϕ(xi, y), ϕ(xi′ , yi′) − ϕ(xi′ , y′)⟩

−∑
i,y
∆(yi, y)αi,y

s.t. αi,y ≥ , ∀ i, y; ∑
y

αi,y =

n
, ∀i.

Again all the inner products ⟨ϕ(xi, y), ϕ(xi′ , y′)⟩ can
be replaced by the joint kernel k((xi, y), (xi′ , y′)). Fur-
ther factorization using graphical models are possible
(see Taskar, Guestrin, & Koller, ). Notice when
Y = {,−}, setting ϕ(xi, y) = yϕ(xi) recovers the
binary SVM formulation. E�ectivemethods to optimize
the dual objective include sequential minimal opti-
mization, exponentiated gradient (Collins, Globerson,
Koo, Carreras, & Bartlett, ),mirror descent, cutting
plane, or bundle methods (Smola, Vishwanathan, & Le,
).

Unsupervised Learning

Data analysis can bene�t from modeling the distribu-
tion of data in feature space. �ere we can still use the
rather simple linear methods, which gives rise to non-
linear methods on the original data space. For exam-
ple, the principal components analysis (PCA) can be
extended to Hilbert spaces (Schölkopf et al., ),
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which allows for image denoising, clustering, and non-
linear dimensionality reduction.
Given a set of data points {xi}ni=, PCA tries to �nd a

direction d such that the projection of {xi} to d has the
maximal variance. Mathematically, one solves:

max
d:∥d∥=

Var{⟨xi,d⟩} ⇐⇒

max
d:∥d∥=

d⊺
⎛
⎝

n
∑
i
xix⊺i −


n
∑
ij
xix⊺j

⎞
⎠
d,

which can be solved by �nding the maximum eigen-
value of the variance of {xi}. Along the same line, we
can map the examples to the RKHS and �nd the maxi-
mum variance projection direction again. Here we �rst
center the data, that is, let the feature map be ϕ̃(xi) =
ϕ(xi) − 

n ∑j ϕ(xj), and de�ne a kernel k̃ based on the
centered feature. So we have ∑n

j= K̃ij =  for all i. Now
the objective can be written as

max
f :∥f ∥H̃=

Var{⟨ϕ̃(xi), f ⟩H̃} ⇐⇒ max
f :∥f ∥=

Var{f (xi)}

⇐⇒ max
f :∥f ∥≤

Var{f (xi)}. ()

Treat the constraint ∥f ∥ ≤  as an indicator function
Ω(∥f ∥) where Ω(x)=  if x≤  and∞ otherwise. �en
the representer theorem can be invoked to guaran-
tee that the optimal solution is f = ∑i αik̃(xi, ⋅) for
some αi ∈R. Plugging it into (), the problem becomes
maxα :α⊺K̃α= α⊺K̃α. To get necessary conditions for
optimality, we write out the Lagrangian L = αK̃α −
λ(αK̃α − ). Setting to  the derivative over α, we get

K̃α = λK̃α. ()

�erefore α⊺K̃α = λ. Although () does not guaran-
tee that α is an eigenvector of K̃, one can show that for
each λ satisfying () there exists an eigenvector α of K̃
such that K̃α = λα. Hence, it is su�cient to study the
eigensystem of K̃ just like in the vanilla PCA. Once the
optimal α∗i is obtained, any data point x can be projected
to∑i α∗i k̃(xi, x).
More applications of kernels in unsupervised learn-

ing can be found in canonical correlation analysis, inde-
pendent component analysis (Bach & Jordan, ),
kernelized independence criteria via Hilbert space
embeddings of distributions (Smola, Gretton, Song, &
Schölkopf, ), etc.

Cross References
7Principal Component Analysis
7Support Vector Machine

Further Reading
A survey paper on kernel methods up to year  is
Hofmann, Schölkopf, and Smola (). For an intro-
duction to SVMs and kernel methods, read Cristianini
and Shawe-Taylor (). More comprehensive treat-
ment can be found in Schölkopf and Smola (),
Shawe-Taylor and Cristianini (), and Steinwart and
Christmann (). As far as applications are con-
cerned, see Lampert () for computer vision and
Schölkopf, Tsuda, and Vert () for bioinformatics.
Finally, Vapnik () provides the details on statistical
learning theory.
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