! L1-Distance

» Manhattan Distance

I
Label

A label is a target value that is associated with each
»object in Ptraining data. In Pclassification learn-
ing, labels are Mclasses. In Pregression, labels are
numeric.

! Labeled Data

Labeled data are »data for which each »object has
an identified target value, the Mlabel. Labeled data
are used in Psupervised learning. They stand in con-
trast to unlabeled data that are used in »unsupervised
learning.

! Language Bias

Definition
Alearner’s language bias is the set of hypotheses that can
be expressed using the hypothesis language employed
by the learner.

This language bias can be implicit, or it can be
defined explicitly, using a bias specification language
(see »Bias Specification Language).

Cross References
»Learning as Search

! Laplace Estimate

»Rule Learning

|
Latent Class Model

» Mixture Model

I Latent Factor Models and Matrix
Factorizations

Definition

Latent Factor models are a state of the art method-
ology for model-based »collaborative filtering. The
basic assumption is that there exist an unknown
low-dimensional representation of users and items
where user-item affinity can be modeled accurately.
For example, the rating that a user gives to a movie
might be assumed to depend on few implicit factors
such as the user’s taste across various movie genres.
Matrix factorization techniques are a class of widely
successful Latent Factor models that attempt to find
weighted low-rank approximations to the user-item
matrix, where weights are used to hold out missing
entries. There is a large family of matrix factorization
models based on choice of loss function to measure
approximation quality, regularization terms to avoid
overfitting, and other domain-dependent formulations.

! Lazy Learning

GEOFFREY 1. WEBB
Monash University, Victoria, Australia

Definition

The computation undertaken by a learning system can
be viewed as occurring at two distinct times, >training
time and »consultation time. Consultation time is the
time between when an Pobject is presented to a system
for an inference to be made and the time when the

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI10.1007/978-0-387-30164-8,
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inference is completed. Training time is the time prior
to consultation time during which the system makes
inferences from training data in preparation for consul-
tation time. Lazy learning refers to any machine learn-
ing process that defers the majority of computation to
consultation time. Two typical examples of lazy learn-
ing are »instance-based learning and »Lazy Bayesian
Rules. Lazy learning stands in contrast to »-eager learn-
ing in which the majority of computation occurs at
training time.

Discussion

Lazy learning can be computationally advantageous
when predictions using a single »training set will only
be made for few objects. This is because only the imme-
diate sections of the instance space that are occupied
by objects to be classified need be modeled. In conse-
quence, no computation is expended in the modeling
areas of the instance space that are irrelevant to the
predictions that need to be made. This can also be an
advantage when a training set is frequently updated,
as can be the case in Ponline learning, as only the
applicable portions of each model are created.

Lazy learning can help improve prediction »accu-
racy by allowing a system to concentrate on deriving the
best possible decision for the exact points of the instance
space for which predictions are to be made. In contrast,
eager learning can sometimes result in suboptimal pre-
dictions for some specific parts of the instance space as a
result of trade-offs during the process of deriving a sin-
gle model that seeks to minimize average error over the
entire instance space.

Cross References

»Eager Learning

»Instance-Based Learning

»Locally Weighted Regression for Control
»Online Learning

! Learning as Search

CLAUDE SAMMUT
The University of New South Wales, Sydney NSW,
Australia

Definition
Learning can be viewed as a search through the space
of all sentences in a concept description language for

a sentence that best describes the data. Alternatively, it
can be viewed as a search through all hypotheses in a
»hypothesis space. In either case, a generality relation
usually determines the structure of the search space.

Background
The input to a learning program consists of descrip-
tions of objects from the universe (the »training set)
and, in the case of »supervised learning, an output
value associated with the example. A program is limited
in the concepts that it can learn by the representa-
tional capabilities of both the »observation language
(i.e., the language used to describe the training exam-
ples) and »hypothesis language (the language used to
describe the concept). For example, if an attribute/value
list is used to represent examples for an induction pro-
gram, the measurement of certain attributes and not
others places limits on the kinds of patterns that the
learner can find. The learner is said to be biased by
its observation language. The hypothesis language also
places constraints on what may and may not be learned.
For example, in the language of attributes and values,
relationships between objects are difficult to represent.
Whereas, a more expressive language, such as first-order
logic, can easily be used to describe relationships. These
biases are collectively referred to as representation bias.
Representational power comes at a price. Learning
can be viewed as a search through the space of all sen-
tences in a language for a sentence that best describes
the data. The richer the language, the larger the search
space. When the search space is small, it is possible to
use “brute force” search methods. If the search space is
very large, additional knowledge is required to reduce
the search. Notions of generality and specificity are
important for ordering the search (see »Generalization
and »Specialization).

Representation

The representation of instances and concepts affects the
way a learning system searches for concept representa-
tions.

The input to a learning program may take many
forms, for example, records in a database, pages of
text, images, audio, and other signals of continuous
data. Very often, the raw data are transformed into fea-
ture vectors or attribute/value lists. The values of the
attributes or features may be continuous or discrete.
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These representation by attribute/value lists is the obser-
vation language.

The representation of the concept varies consider-
ably, depending on the approach taken for learning. In
»instance-based learning, concepts are represented by
a set of prototypical instances of the concept, so abstract
representations are not constructed at all. This kind
of representation is said to be extensional. Instance-
based learning is also called »lazy learning because
the learner does little work at the time that training
instances are presented. Rather, at classification time,
the system must find the most similar instances to the
new example. See Fig. 1.

When instances are represented as feature vectors,
we can treat each feature or attribute as one dimension
in a multi-dimensional space. The supervised learn-
ing problem can then be characterized as the prob-
lem of finding a surface that separates objects that
belong to different classes into different regions. In the
case of unsupervised learning, the problem becomes
one of the finding clusters of instances in the multi-
dimensional space.

Learning methods differ in the way they repre-
sent and create the discrimination surfaces. In function
approximation, the learner searches for functions that
describes the surface (Fig. 2). Function approximation
methods can often produce accurate classifiers because

Learning as Search. Figure1. The extension of an
Instance-Based Learning concept is shown in solid lines.
The dashed lines represent the target concept. A sample
of positive and negative examples is shown Adapted

from Aha, Kibler and Albert (1991)

they are capable of construction complex decision sur-
faces. However, the concept description is stored as a set
of coefficients. Thus, the results of learning are not easily
available for inspection by a human reader.

Rather than searching for discriminant functions,
symbolic learning systems find expressions equivalent
to sentences in some form of logic. For example, we may
distinguish objects according to two attributes: size and
color. We may say that an object belongs to class 3 if its
color is red and its size is very small to medium. Follow-
ing the notation of Michalski (1983), the classes in Fig. 3
may be written as:

classl < size = large A color € {red,orange}
class2 < size € {small, medium} A color
€ {oragne, yellow}

class3 < size € {v_small ... medium} A color = blue

Note that this kind of description partitions the uni-
verse with axis-orthogonal surfaces, unlike the function
approximation methods that find smooth surfaces to
discriminate classes (Fig. 4).

Useful insights into induction can be gained by visu-
alizing it as searching for a discrimination surface in a
multi-dimensional space. However, there are limits to
this geometric interpretation of learning. If we wish to
learn concepts that describe complex objects and rela-
tionships between the objects, it is often useful to rely on
reasoning about the concept description language itself.

As we saw, the concepts in Fig. 3 can be expressed
as clauses in propositional logic. We can establish a
correspondence between sentences in the concept des-

Learning as Search. Figure2. A linear discrimination

between two classes
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Learning as Search. Figure 3. Discrimination on attributes and values

Learning as Search. Figure 4. The dashed line shows the
real division of objects in the universe. The solid lines
show a decision tree approximation

cription language (the hypothesis language) and a
diagrammatic representation of the concept. More
importantly, we can create a correspondence between
generalization and specialization operations on the sets
of objects and generalization and specialization opera-
tions on the sentences of the language.

Once we have established the correspondence
between sets of objects and their descriptions, it is often
convenient to forget about the objects and only consider
that we are working with expressions in a language. For
example, the clause

class2 « size = large A color = red @
can be generalized to

classl < size = large (2)

by dropping one of the conditions. Thus, we can view
learning as search through a generalization lattice that is
created by applying different syntactic transformations
on sentences in the hypothesis language.

Version Spaces and Subsumption

Mitchell (1977, 1982) defines the version space for a
learning algorithm as the subset of hypotheses consis-
tent with the training examples. That is, the hypothesis
language is capable of describing a large, possibly infi-
nite, number of concepts. When searching for the target
concept, we are only interested in the subset of sen-
tences in the hypothesis language that are consistent
with the training examples, where consistent means that
the examples are correctly classified. We can used the
generality of concepts to help us limit our search to only
those hypotheses in the version space.

In the above example, we stated that clause (2) is
more general than clause (1). In doing so, we assumed
that there is a general-to-specific ordering on the sen-
tences in the hypothesis language. We can formalize the
generality relation as follows. A hypothesis, h, is a predi-
cate that maps an instance to true or false. That is, if h(x)
is true then x is hypothesized to belong to the concept
being learned, the target. Hypothesis, h;, is more general
than or equal to hy, if h; covers at least as many examples
as h, (Mitchell, 1997). That is, h; > h; if and only if

(Vx)[I(x) = ha(x)]

A hypothesis, hy, is strictly more general than h,, if h; >
hy and h; £ h;.

Note that the more general than ordering is strongly
related to subsumption (see P»subsumption and the
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»Logic of Generality). Where the above definition of
the generality relation is given in terms of the cover of
a hypothesis, subsumption defines a generality ordering
on expressions in the hypothesis language.

Learning algorithms can use the more general than
relation to order their search for the best hypothesis.
Because generalizations and specializations may not be
unique, this relation forms a lattice over the sentences
in the hypothesis language, as illustrated in Fig. 5. A
search may start from the set of most specific hypothe-
ses that fit the training data and perform a specific-
to-general search or it may start from the set of most
general hypotheses and perform a general-to-specific
search. The search algorithm may also be bidirectional,
combining both.

In Fig. 5, each node represents a hypothesis. The
learning algorithm searches this lattice in an attempt
to find the hypothesis that best fits the training data.
Like searching in any domain, the algorithm may keep
track of one node at a time, as in depth first or best
first searches, or it may create a frontier of nodes as in
breadth first or beam searches.

Suppose we have single-hypothesis search. A specific-
to-general search may begin by randomly selecting a
positive training example and creating a hypothesis that
the target concept is exactly that example. Each time a
new positive example is seen that is not covered by the
hypothesis, the hypothesis must be generalized. Thatis, a
new hypothesis is constructed that is general enough to
cover all the examples covered by the previous hypothe-
sis, as well as covering the new example. If the algorithm
sees a negative example that is incorrectly covered by
the current hypothesis, then the hypothesis must be

A
/\ General
A ha
h
\ v Specific
[ [ [ )

Learning as Search. Figure 5. Generalization lattice

specialized. That is, a new hypothesis is construct that is
more specific than the current hypothesis such that all
the positive examples that were previously covered are
still covered by the new negative example is excluded.

A similar method can be used for a general-to-
specific search. In this case, the initial hypothesis is that
the target concept covers every object in the universe.
In both cases, the algorithm must choose how to con-
struct either generalizations or specializations. That is, a
method is needed to choose which nodes in the search
to expand next. Here, the »least general generalization
(Plotkin, 1970) or the »most general specialization are
useful. These define the smallest steps that can be taken
in expanding the search. For example, in Fig. 5, h; is the
minimal specialization that can be made from h; or h;
in a general-to-specific search that starts from the top
of the lattice. Similarly, h; and h; are the least general
generalizations of h,. A search for the target concept
can begin with an initial hypothesis and make minimal
generalizations or specializations in expanding the next
node in the search.

Rather than maintaining on a single current hypoth-
esis, a search strategy may keep a set of candidate
hypotheses. For example, a breadth first search gener-
alizing from hypothesis h, will create a frontier for the
search that is the set {h;, h3;}. When there are many
ways in which an hypothesis can be generalized or spe-
cialized, the size of the frontier set may be large. In
algorithms such as Aq (Michalski, 1983) and CN2 (Clark
and Niblett, 1989), a beam search is used. Rather than
storing all possible hypotheses, the n best are kept are
stored, where “best” can be defined in several ways. One
metric for comparing hypotheses is given by

P, +N;
P+N
where P and N are the number of positive and nega-

tive instances, respectively; P, is the number of posi-
tive instances covered by the hypothesis; and N; is the
number of negative instances not covered.

Mitchell’s (1997) candidate-elimination algorithm
performs a bidirectional search in the hypothesis space.
It maintains a set, S, of most specific hypotheses that
are consistent with the training data and a set, G,
of most general hypotheses consistent with the train-
ing data. These two sets form two boundaries on the
version space. As new training examples are seen, the
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Algorithm 1. The candidate-elimination algorithm, after Mitchell (1997)

Initialize G to the set of maximally general hypotheses in the hypothesis space
Initialize S to the maximally specific hypotheses in the hypothesis space

For each training example, d,

if d is a positive example
remove from G any hypothesis inconsistent with d
For each hypothesis, s, in S that is not consistent with d
remove s from S
add all minimal generalizations, h, of s such that
h is consistent with d and some member of G is more general than h
remove from S any hypothesis that is more general than another hypothesis in §
if d is a negative example
remove from S any hypothesis inconsistent with d
For each hypothesis, g, in G that is not consistent with d

remove ¢ from G

add all minimal specializations, h, of g such that
h is consistent with d and some member of S is more general than h
remove from G any hypothesis that is less general than another hypothesis in G

boundaries are generalized or specialized to maintain
consistency. If a new positive example is not covered by
a hypothesis in S, then it must be generalized. If a new
negative example is not rejected by an hypotheses in G,
then it must be specialized. Any hypothesis in G not
consistent with a positive example is removed and any
hypothesis in S not consistent with a negative example
is also removed. See Algorithm 1.

Noisy Data
Up to this point, we have assumed that the training
data are free of noise. That is, all the examples are
correctly classified and all the attribute values are cor-
rect. Once we relax this assumption, the algorithms
described above must be modified to use approximate
measures of consistency. The danger presented by noisy
data is that the learning algorithm will over fit the train-
ing data by creating concept descriptions that try to
cover the bad data as well as the good. For methods to
handle noisy data see the entries in »pruning.

Several standard texts give good introductions to
search in learning, including Langley (1996), Mitchell
(1997), Bratko (2000), Russell and Norvig (2009).

Cross References
» Decision Tree Learning
» Generalization

» Induction
»Instance-Based Learning
»Logic of Generality
»Rule Learning

» Subsumption
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! Learning Bayesian Networks

» Learning Graphical Models

| Learning Bias

» Inductive Bias

| Learning By Demonstration

» Behavioral Cloning

! Learning By Imitation

» Behavioral Cloning

| Learning Classifier Systems

»Classifier Systems

[ -
Learning Control

Learning control refers to the process of acquiring a
control strategy for a particular control system and a
particular task by trial and error. Learning control is
usually distinguished from adaptive control in that the
learning system is permitted to fail during the process of
learning. In contrast, adaptive control emphasizes single
trial convergence without failure. Thus, learning con-
trol resembles the way that humans and animals acquire
new movement strategies, while adaptive control is a
special case of learning control that fulfills stringent
performance constraints, e.g., as needed in life-critical
systems like airplanes and industrial robots. In general,
the control system can be any system that changes its
state in response to a control signal, e.g., a web page with
a hyperlink, a car, or a robot.

[ -
Learning Control Rules

» Behavioral Cloning

! Learning Curves in Machine
Learning

CLAUDIA PERLICH
IBM T.J. Watson Research Center, Yorktown Heights,
NY, USA

Synonyms
Error curve; Experience curve; Improvement curve;
Training curve

Definition

A learning curve shows a measure of predictive per-
formance on a given domain as a function of some
measure of varying amounts of learning effort. The most
common form of learning curves in the general field
of machine learning shows predictive accuracy on the
test examples as a function of the number of training
examples as in Fig. 1.

Motivation and Background

Learning curves were initially introduced in educa-
tional and behavioral/cognitive psychology. The first
person to describe the learning curve was Hermann
Ebbinghaus in 1885 (Wozniak, 1999). He found that
the time required to memorize a nonsense syllable
increased sharply as the number of syllables increased.
Wright (1936) described the effect of learning on labor

Prediction Accuracy

Number of Training Examples
Learning Curves in Machine Learning. Figure 1. Stylized
learning curve showing the model accuracy on test
examples as a function of the number of training
examples
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productivity in the aircraft industry and proposed
a mathematical model of the learning curve. Over
time, the term has acquired related interpretation in
many different fields including the above definition in
machine learning and statistics.

Use of Learning Curves in Machine
Learning

In the area of machine learning, the term “learning
curve” is used in two different contexts, the main
difference being the variable on the x-axis of the
curve.

e The »artificial neural network (ANN) literature has
used the term to show the diverging behavior of
in and out-of-sample performance as a function of
the number of training iterations for a given num-
ber of training examples. Figure 2 shows this stylized
effect.

e General machine learning uses learning curves to
show the predictive »generalization performance as
a function of the number of training examples. Both
the graphs in Fig. 3 are examples of such learning
curves.

The origins of ANNs are heavily inspired by the social
sciences and the goal of recreating the learning behav-
ior of the brain. The original model of the “perceptron”
mirrored closely the biological foundations of neural

Generalization error

Prediction Error

Training error

Training lterations

Learning Curves in Machine Learning. Figure 2. Learning
curve for an artificial neural network

sciences. It is likely that the notion of learning curves
was to some extent carried over from the social sci-
ences of human learning into the field of ANNs. It shows
the model error as a function of the training time mea-
sured in terms of the number of iterations. One iteration
denotes in the context of neural network learning one
single pass over the training data and the corresponding
update of the network parameters (also called weights).
The algorithm uses gradient descent minimizing the
model error on the training data.

The learning curve in Fig. 2 shows the stylized effect
of the relative training and generalization error on a test
set as a function of the number of iterations. After initial
decrease of both types of error, the generalization error
reaches a minimum and starts to increase again while
the training error continues to decrease.

This effect of increasing generalization error is
closely related to the more general machine learning
issue of P-overfitting and variance error for models with
high expressive power (or capacity). One of the initial
solutions to this problem for neural networks was early
stopping - some form of early regularization technique
that picked the model at the minimum of the error curve
on a validation subset of the data that was not used for
training.

In the more general machine learning setting and statis-
tics (Flury & Schmid, 1994), learning curves represent
the generalization performance of the model as a func-
tion of the size of the training set.

Figure 3 was taken from Perlich, Provost, and
Simonoff (2003) and shows two typical learning curves
for two different modeling algorithms (»decision tree
and Plogistic regression) on a fairly large domain. For
smaller training-set sizes the curves are steep, but the
increase in accuracy lessens for larger training-set sizes.
Often for very large training-set sizes the standard
representation in the upper graph obscures small, but
non-trivial, gains. Therefore, to visualize the curves it is
often useful to use a log scale on the horizontal axis and
start the graph at the accuracy of the smallest training-
set size (rather than at zero). In addition, one can
include error bars that capture the estimated variance of
the error over multiple experiments and provide some
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Learning Curves in Machine Learning. Figure 3. Typical learning curves in original and log scale

impression of the relevance of the differences between
two learning curves as shown in the graphs.

The figure also highlights a very important issue in
comparative analysis of different modeling techniques:
learning curves for the same domain and different mod-
els can cross. This implies an important pitfall as pointed

out by Kibler and Langley (1998): “Typical empirical
papers report results on training sets of fixed size, which
tells one nothing about how the methods would fare
given more or less data, rather than collecting learning
curves -, A corollary on the above observation is the
dangers of selecting an algorithm on a smaller subset of
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the ultimately available training data either in the con-
text of a proof of concept pre-study or some form of
cross-validation.

Aside from its empirical relevance there has been
significant theoretical work on learning curves - notably
by Cortes, Jackel, Solla, Vapnik, and Denker (1994).
They are addressing the question of predicting the
expected generalization error from the training error
of a model. Their analysis provides many additional
insights about the generalization performance of differ-
ent models as a function of not only training size but in
addition the model capacity.

Cross References

» Artificial Neural Networks
»Computational Learning Theory
» Decision Tree

» Generalization Performance

» Logistic Regression

» Overfitting
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Learning from Structured Data

TamAs HORVATH, STEFAN WROBEL
University of Bonn, Sankt Augustin, Germany

Synonyms
Learning from complex data; Learning from non-
propositional data; Learning from nonvectorial data

Definition

Learning from structured data refers to all those
learning tasks where the objects to be considered
as inputs and/or outputs can usefully be thought
of as possessing internal structure and/or as being
interrelated and dependent on each other, thus forming
a structured space. Typical instances of data in struc-
tured learning tasks are sequences as they arise, e.g., in
speech processing or bioinformatics, and trees or gen-
eral graphs such as syntax trees in natural language
processing and document analysis, molecule graphs
in chemistry, relationship networks in social analy-
sis, and link graphs in the World Wide Web. Learn-
ing from structured data presents special challenges,
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since the commonly used feature vector representa-
tion and/or the ii.d. (independently and identically
distributed data) assumption are no longer applicable.
Different flavors of learning from structured data are
represented by (overlapping) areas such as »Inductive
Logic Programming, »Statistical Relational Learning,
probabilistic relational and logical learning, learning
with structured outputs, sequence learning, learning
with trees and graphs, »graph mining, and »collective
classification.

Motivation and Background

For a long time, learning algorithms had almost exclu-
sively considered data represented in rectangular tables
defined by a fixed set of columns and a number of rows
corresponding to the number of objects to be described.
In this representation, each row independently and
completely describes one object, each column contain-
ing the value of one particular property or feature of
the object. Correspondingly, this representation is also
known as feature vector representation, propositional
representation, or vectorial data representation. Statis-
tically, in such a representation, the values in each row
(i.e., the objects) are assumed to be drawn i.i.d. from a
fixed (but unknown) distribution.

However, when working with objects that are inter-
related and/or have internal structure, this represen-
tation is no longer adequate. Consider representing
chemical molecules with varying numbers of atoms
and bonds in a table with a fixed number of columns.
If we wanted each molecule to correspond to one row,
we would have to fit the atoms and bonds into the
columns, e.g., by reserving a certain number of columns
for each one of them and their respective properties.
To do that however, we would have to make the table
wide enough to contain the largest possible molecule,
resulting in many empty columns for smaller molecules,
and by mapping the component atoms and bonds to
columns, we would assign an order to them that would
not be justified by the underlying problem and that
would consequently mislead any feature vector learning
algorithm.

The second issue with structured data arises from
objects that are interrelated. Consider, e.g., the task of
speech recognition, i.e., learning to map an acoustic unit
into the corresponding lexical unit. Clearly, to solve this
task, one must consider the sequence of such units, since

both on the input and the output sides the probability
of observing a particular unit will strongly depend on
the preceding or subsequent units. The same is true,
e.g., in classifying pages in the World Wide Web, where
it is quite likely that the classification of the page will
correlate with the classifications of neighboring pages.
Therefore, any learning algorithm that would regard
acoustic units or pages as independent and identically
distributed objects is destined to fail, since for a suc-
cessful solution the interdependencies must be modeled
and exploited.

In machine learning, even though there has been
interest in structured representation from the very
beginning of the 1970s (cf. the systems Arch (Winston,
1975) or INDUCE (Michalski, 1983)), it was only in the
1990s, triggered by the popularity of logic programming
and Horn clause representation, that learning from
structured data was more intensively considered for log-
ical representations in the subfield of Inductive Logic
Programming. Outside of (what was then) machine
learning, due to important applications such as speech
processing, probabilistic models for sequence data such
as »Hidden Markov Models have been considered
much earlier. Toward the end of the 1990s, given an
enormous surge of interest in applications in bioin-
formatics and the World Wide Web, and technical
advances resulting from the integration of probabilis-
tic and statistical approaches into machine learning
(e.g., »Graphical Models and »kernel methods), work
on learning from structured data has taken off and
now represents a significant part of machine learning
research in overlapping subareas such as Inductive
Logic Programming, Statistical Relational Learning,
probabilistic relational and logical learning, learning
with structured outputs, sequence learning, learning
with trees and graphs, graph mining, and collective
inference.

Main Tasks and Solution Approaches

A particular problem setting for learning from struc-
tured data is given by specifying, among others, (1) the
language representing the input and output of the learn-
ing algorithms, (2) the type of the input and/or output
data, and (3) the learning task.

1. Beyond attribute-value representation, the most
intensively investigated representation languages
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used in learning are »First-Order Logic, in par-
ticular, the fragment of first-order Horn clauses,
and labeled graphs. Although labeled graphs can
be considered as special relational structures and
thus form a special fragment of first-order logic,
these two representation languages are handled sep-
arately in machine learning. As an example of first-
order representation of labeled graphs, the molec-
ular graph of a benzene ring can be represented as
follows:

atom(a;,carbon).,...,atom(ag,carbon).,
atom(ay,hydrogen).,...,atom(a;,,hydrogen).,
edge(a;,az,aromatic).,...,edge(ag,a;,aromatic).,
edge(aj,az,single).,...,edge(ag,a12,single).,
edge(X,Y) « edge(Y,X).

The molecular graph of benzene rings
(carbon atoms are unmarked)

Besides complexity reasons, the above two repre-
sentation languages are motivated also by the dif-
ference in the matching operators typically used
for these two representations. While in case of
first-order logic, the matching operator is defined
by logical implication or by relational homomor-
phism (often referred to as subsumption), which is
a decidable, but thus, incomplete variant of logical
implication, in case of labeled graphs it is defined by
subgraph isomorphism (i.e., by injective homomor-
phism).

Another component defining a task for learn-
ing from structured data is the type of the input
and/or output data (see »Observation Language
and »Hypothesis Language). For the input, two
main types can be distinguished: the instances are
disjoint structures (structured instances) or sub-
structures of some global structure (structured
instance space). Molecular graphs formed by the
atom-bond structure of chemical compounds are
a common example of structured instances. For
structured instance spaces, the web graph provides
an example of a global structure; for this case, the

set of instances corresponds to the set of vertices
formed by the web sites. The primary goal of tra-
ditional discriminative learning is to approximate
unknown target functions mapping the underly-
ing instance space to some subset of the set of
real numbers. In some of the applications, how-
ever, the elements of the range of the target func-
tion must also be structured. Such problems are
referred to as learning in structured output spaces.
As an example of structured output, we mention
the protein secondary structure prediction prob-
lem, where the goal is to approximate the function
mapping the primary structures of proteins to their
secondary structures. Notice that primary and sec-
ondary structures can be represented by strings,
which in turn can be considered as labeled directed
paths.

3. Finally, the third component defining a problem
setting is the learning task. Besides the classical
learning tasks (e.g., supervised, semisupervised,
unsupervised, transductive learning etc.), recent
tasks include new problems such as, e.g., learning
preferences (i.e., a directed graph, where an edge
from vertex u to vertex v denotes that v is pre-
ferred to u), learning rankings (i.e., when the target
preference relation must be a total order), etc.

Several classes of algorithms have been developed for
the problem settings defined by the above components.
»Propositionalization techniques (e.g., as in LINUS
(Lavrac et al., 1991)) first transform the structured data
into a single table of fixed width by extracting a large
number of propositional features and then use some
propositional learner.

Non-propositionalization rule-based approaches fol-
low mainly general-to-specific (top-down) or specific-
to-general (bottom-up) search strategies. For top—down
search (e.g., as in FOIL (Quinlan, 1990)), the crucial
step of the algorithms is the definition of the refine-
ment operators. While for graph structured data the
specialization relation on the hypothesis space is usu-
ally defined by subgraph isomorphism and is there-
fore a partial order, for First-Order Logic it is typically
defined by subsumption and is therefore only a preorder
(i.e., antisymmetry does not hold), leading to undesir-
able algorithmic properties (e.g., incompleteness). For
bottom-up search (e.g., as in GOLEM (Muggleton &
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Feng, 1992)), which is less common for graph struc-
tured data, the generalization of hypotheses is usually
defined by some variant of Plotkins »Least General
Generalization operator for first-order clauses. While
this generalization operator has nice algebraic proper-
ties, its application raises severe complexity issues, as
the size of the hypotheses may exponentially grow in the
number of examples.

Recent research in structural learning has been
focusing very strongly on distance- and kernel-based
approaches which in terms of accuracy have often
turned out superior to rule-based approaches (e.g., in
virtual screening of molecules). In such approaches,
the basic algorithms carry over unchanged from the
propositional case; instead, special distance (e.g., as in
RIBL (Emde & Wettschereck, 1996)) or kernel func-
tions for structural data are developed. Since even for
graphs, computing any complete kernel (i.e., for which
the underlying embedding function into the feature
space is injective) is at least as hard as the graph isomor-
phism problem, most practical and efficient kernels are
based on examining the structure for the occurrence of
simpler parts (e.g., trees, walks, paths, and cycles) which
are then counted and effectively used as feature vectors
in an intersection kernel.

Finally, as a recent class of approaches, we also men-
tion Statistical Relational Learning which extends prob-
abilistic Graphical Models (e.g., Bayesian networks or
Markov networks) with relational and logic elements
(e.g., as in Alchemy (Domingos & Richardson, 2007),
ICL (Poole, 2008), PRISM (Sato & Kameya, 2008)).

Applications

Virtual compound screening is a representative appli-
cation example of learning from structured data. This
computational problem in pharmaceutical research is
concerned with the identification of chemical com-
pounds that can be developed into drug candidates.
Since current pharmaceutical compound repositories
contain millions of molecules, the design of efficient
algorithms for virtual compound screening has become
an integral part of computer-aided drug design. One
of the branches of the learning algorithms concerned
with this prediction problem is based on using the com-
pounds’ 2D graph structures formed by their atoms and
bonds. Depending on the representation of chemical

graphs, this branch of algorithms can further be clas-
sified into logic and graph-based approaches. The first
class of algorithms, developed mostly in Inductive
Logic Programming, treats chemical graphs as rela-
tional structures addressing the problem to the con-
text of learning in logic; the second class of algorithms
regards them as labeled graphs addressing the problem
to »Graph Mining.

Cross References

» Hypothesis Language
»Inductive Logic Programming
»Observation Language

> Statistical Relational Learning
» Structured Induction

Recommended Reading

Cook, D., & Holder, L. (Eds.). (2007). Mining graph data. New York:
Wiley.

De Raedt, L. (2008). From inductive logic programming to multi-
relational data mining. Heidelberg: Springer.

Domingos, P., & Richardson, M. (2007). Markov logic: A unifying
framework for statistical relational learning. In L. Getoor &
B. Taskar (Eds.), Introduction to statistical relational learning
(pp- 339-371). Cambridge, MA: MIT Press.

Emde, W., & Wettschereck, D. (1996). Relational instance based
learning. In L. Saitta (Ed.), Proceedings of the 13th international
conference on machine learning (pp. 122-130). San Francisco:
Morgan Kaufmann.

Girtner, T. (2003). A survey of kernels for structured data. SIGKDD
Explorations, 5(1), 49-58.

Getoor, L., & Taskar, B. (Eds.). (2007). Introduction to relational
statistical learning. Cambridge, MA: MIT Press.

Lavrac, N., Dzeroski, S., & Grobelnik, M. (1991). Learning nonrecur-
sive definitions of relations with LINUS. In Y. Kodratoff (Ed.),
Proceedings of the 5th European working session on learning. Lec-
ture notes in computer science (Vol. 482, pp. 265-281). Berlin:
Springer.

Michalski, R. S. (1983). A theory and methodology of inductive
learning. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell
(Eds.), Machine learning: An artificial intelligence approach
(pp. 83-134). San Francisco: Morgan Kaufmann.

Muggleton, S. H., & De Raedt, L. (1994). Inductive logic program-
ming: Theory and methods. Journal of Logic Programming,
19,20, 629-679.

Muggleton, S. H., & Feng, C. (1992). Efficient induction of logic
programs. In S. Muggleton (Ed.), Inductive logic programming
(pp. 291-298). London: Academic Press.

Poole, D. (2008). The independent choice logic and beyond. In
L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.),
Probabilistic inductive logic programming: Theory and applica-
tion. Lecture notes in artificial intelligence (Vol. 4911). Berlin:
Springer.

Quinlan, J. R. (1990). Learning logical definitions from relations.
Machine Learning, 5(3), 239-266.




584

Learning from Labeled and Unlabeled Data

Sato, T., & Kameya, Y. (2008). New advances in logic-based prob-
abilistic modeling by PRISM. In L. De Raedt, P. Frasconi,
K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic
programming: Theory and application. Lecture notes in artificial
intelligence (Vol. 4911, pp. 118-155). Berlin: Springer.

Winston, P. H. (1975). Learning structural descriptions from exam-
ples. In P. H. Winston (Ed.), The psychology of computer vision
(pp- 157-209). New York: McGraw-Hill.

! Learning from Labeled and
Unlabeled Data

»Semi-Supervised Text Processing

! Learning Graphical Models

KEevIN B. KOrRB
Monash University, Clayton, Victoria, Australia

Synonyms
Bayesian model averaging; Causal discovery; Dynamic
bayesian network; Learning bayesian networks

Definition

Learning graphical models (see Graphical Models)
means to learn a graphical representation of either a
causal or probabilistic model containing the variables
X; € {X;}. Although graphical models include more
than directed acyclic graphs (DAGs), the focus here
shall be on learning DAGs, as that is where the majority
of research and application is taking place.

Definition 1 (Directed acyclic graph (DAG)) A
directed acyclic graph (DAG) is a set of variables (nodes,
vertices) {X;} and a set of directed arcs (edges) between
them such that following the arcs in their given direction
can never lead from a variable back to itself.

DAGs parameterized to represent probability distri-
butions are otherwise known as Bayesian networks.
Some necessary concepts and notation for discussing
the learning of graphical models is given in Table 1.

A key characteristic of multivariate probability dis-
tributions is the conditional independence structure

they give rise to, that is, the complete list of statements
of the form

Xa L XB‘XC

true of the distribution. A goal of learning DAGs is
to learn a minimal DAG representation of the condi-
tional independence structure for a distribution given
the Markov condition:

Definition 2 (Markov condition) A DAG satisfies the
Markov condition relative to a probability distribution if
and only if for all X; and X; in the DAG X; 1 Xj|my, so
long as X; is not a descendant of X; (i.e., X; is not in the
transitive closure of the parent relation starting from X;).

DAGs which violate the Markov condition are not
capable of fully representing the relevant probababil-
ity distribution. Upon discovering such a violation, the
normal response is to fix the model by adding missing
arcs. In the causal discovery literature, this condition is
often referred to as the causal Markov condition, which
simply means the arcs are being interpreted as repre-
senting causal relationships and not merely as proba-
bilistic dependencies.

Definition 3 (Markov Blanket) The Markov blanket
(MB) of a node X; is the minimal set Xy such that for
all other nodes X; in the model X; 1 Xj|XMB.

The Markov blanket consists of a node’s parents,
children, and its children’s other parents.

Motivation and Background

Bayesian networks have enjoyed substantial success in
thousands of diverse modeling, prediction, and control
applications, including medical diagnosis, epidemiol-
ogy, software engineering, ecology and environmen-
tal management, agriculture, intelligence and security,
finance and marketing (see, e.g., http://www.norsys.
com for customers implementing such applications and
more). Many of these networks have been built by the
traditional process of “knowledge engineering,” that is,
by eliciting both structure and conditional probabilities
from human domain experts. That process is limited by
the availability of expertise and also by the time and cost
of performing such elicitation and subsequent model
validation. In domains where significant quantities of
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Learning Graphical Models. Table 1 Notation

Xi arandom variable

X a set of random variables

{X:} a set of random variables indexed by i € |

X = x; (or, X)) a random variable taking the value x;

p(x) the probability that X = x

Xa 1L X Xa and X are independent (i.e., p(Xa) = p(Xa|Xs))

Xa 1L Xg|Xc Xa and Xp are conditionally independent given Xc (i.e.,
P(XalXc) = p(XalXs, Xc))

Xa 4 Xz Xa and Xz are dependent (i.e., p(Xa) # p(Xa|Xz))

Xa 4 Xg|Xc Xa and Xz are conditionally dependent given Xc¢
(e, p(XalXc) # p(XalXe, Xc))
the set of parents of X in a DAG

IX; (i.e, nodes Y suchthatY — X;)

data are available it is pertinent to consider whether
automated learning of Bayesian networks might either
replace or compliment knowledge engineering. A vari-
ety of techniques for doing so have been developed, and
the causal discovery of Bayesian networks is by now an
important subindustry of data mining.

Theory

The key to learning Bayesian networks from sample data
is the relation between causal dependence and proba-
bilistic dependence. This is most easily understood in
reference to undirected chains of variables, as in Fig. 1.
Where the arcs in Fig. 1 represent causal dependen-
cies, then the probabilistic dependencies are as the cap-
tion describes. That is, in common causes and chains the
end nodes A and B are rendered probabilistically inde-
pendent of each other given knowledge of the state of C.
Contrariwise, when A and B are parents of a common
effect, and otherwise unrelated, they are probabilisti-
cally independent given no information (i.e., marginally
independent), but become dependent given knowledge
of C. This last relationship is often called “explain-
ing away; because it corresponds to situations where,
when already knowing the presence of, say, some dis-
ease C, the learning of the presence of a cause A reduces

one’s belief in some alternative explanation B of the
disease.

These relationships between probabilistic depen-
dence and causal dependence are the key for learn-
ing the causal structure of Bayesian networks because
sample data allow one to estimate probabilistic depen-
dencies directly, and the difference between condi-
tional dependency structures in Fig. 1(a) and (b) ver-
sus its opposite in (c) allows automated learners to
distinguish between these different underlying causal
patterns. (This is related to d-separation in Graphical
Models.) This distinction is explicitly made use of in
constraint learners, but also implicitly used by metric
learners.

In addition to structure learning, parameter learn-
ing is necessary, that is, learning the conditional prob-
abilities of nodes given their parent values (conditional
probability tables). Straightforward counting methods
are frequently employed, although Expectation Maxi-
mization, Gibbs Sampling, and other techniques may
come into play when the available data are noisy.

Two DAGs are said to be statistically equivalent
(or, Markov equivalent) when they contain the same
variables and each can be parameterized so as to rep-
resent any probability distribution that the other can
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Learning Graphical Models. Figure 1. Causality and probabilistic dependence: (a) common cause with A 1 B|C; (b)

causal chain with A 1 B|C; (c) common effect with A 4 B|C

represent. Verma and Pearl (1990) proved that DAGs are
statistically equivalent just in case they have the same
undirected arc structures and the identical set of uncov-
ered common effects, that is, common effects such as
in Fig. 1(c) where the two parents are not themselves
directly connected. They dubbed the set of statistically
equivalent models patterns; these can be represented
using partially directed acyclic graphs (PDAGs), that
is, graphs with some arcs left undirected. Chickering
(1995) showed that statistically equivalent models have
identical maximum likelihoods relative to any given set
of data. This latter result has suggested to many that
causal learning programs can have no reasonable ambi-
tion to learn anything other than patterns, that is, any
learner’s discrimination between DAGs within a com-
mon pattern can only be based upon prior probability
(e.g., prejudice). This is suggested, for example, by the
fact that Bayesian learning combines (by multiplying)
prior probabilities and likelihoods, so identical likeli-
hoods will always lead to identical conclusions should
the priors also be the same. One shall note some rea-
son to doubt this supposed limit to causal discovery
below.

Applications

The most direct application of the above ideas to learn-
ing Bayesian networks is exhibited in what may be
called constraint learners. These programs assess condi-
tional independencies between paired sets of variables
given some other set of observed variables using sta-
tistical tests on the data, eliminating all DAGs that are
incompatible with the independencies and dependen-
cies asserted by the statistical test. (For this reason these
programs are often called “conditional independence
learners”; however, that tag is misleading, as is explained
below.) The original such algorithm, the IC algorithm of
Verma and Pearl (1990), can be described in simplified

form as three rules for constructing a network from Yes
or No answers to questions of the form “Is it the case
that X 1 Y|W?”

Rule I: Put an undirected link between any two vari-
ables X and Y if and only if for every set of variables
Wst X, YW

X&YW

that is, X and Y are directly connected if and only
if they are dependent under every conditioning set
(including ).

Rule II: For every undirected structure X - Y — Z,
orient the arcs X — Y« Z if and only if

X4 Z|W

forevery Ws.t. X,Z¢ Wand Y € Z.

that is, Y is an uncovered common effect if and only
if the end variables X and Z are dependent under
every conditioning set that includes Y.

Rule I is justified by the need to express the proba-
bilistic dependency between X and Y under all possible
circumstances. Rule II is justified by the asymmetry in
probabilistic dependencies illustrated in Fig. 1.

Application of these two rules is then followed by
applying a Rule III, which just checks for any arc direc-
tions that are forced by further considerations, such as
avoiding the introduction of cycles or any uncovered
common effects not already identified in Rule II, and so
not supported by the conditional independence tests.

This algorithm was first put into practice in the PC
algorithm distributed as a part of the TETRAD program
(Spirtes, Glymour, & Scheines, 1993). Aside from intro-
ducing some algorithmic efficiencies, PC adds orthodox
statistical tests to answer the conditional independence
questions. In the case of linear models, it uses a statis-
tical signficance test for vanishing partial correlations,
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accepting a dependence when and only when the test
is statistically significant. For discrete networks a y?
test replaces the correlation test. Margaritis and Thrun
further improve the algorithm’s efficiency by limiting
conditioning sets to the Markov blankets of the vari-
able under test (Margaritis and Thrun, 2000). The PC
algorithm has become the most widely used Bayesian
network learner, available in weka and many Bayesian
network modeling tools.

Constraint learners attempt to build up a network using
asequence of independent statistical tests. One problem
with them is that when one such test gives an incorrect
result, subsequent tests will assume that result, with the
potential for errors to cascade. Metric learners, by con-
trast, use some score applied to a network as a whole
to assess it relative to the data. The earliest of this kind,
by Cooper and Herskovits, turned the computation of
a Bayesian measure into a counting problem. Under a
number of fairly strong assumptions, such as that chil-
dren variable states are always uniformly distributed
given their parent states, they derived the measure

n Sa(k)

P(d,e)=P(d)[[[] ————

k=1 j=1 (Sk] + Sk —1)' H“kﬂ'
where d is the DAG being scored, e the data, n the num-
ber of variables, s; the number of values X; may take,
Sz (k) the number of values the parents of Xj may take,
Sk the number of cases in the data where 71 takes its j-th
value, and ay;; is the number of cases where X takes its
I-th value and m; takes its j-th value. Cooper and Her-
skovits proved that this measure can be computed in
polynomial time. Assuming the adequacy of this proba-
bility distribution, computation of the joint probability
suffices for Bayesian learning, since by Bayes Theo-
rem maximizing P(d,e) is equivalent to maximizing
the posterior probability of d. Cooper and Herskovits
applied this measure in the program K2, which required
as inputs both the data and a total ordering of the vari-
ables. The latter input eliminates all problems about
discovering arc orientations, which could be consid-
ered a cheat since, as the discussion of the IC algo-
rithm showed, this is a part of the causal learning prob-
lem. Subsequently, Chow and Liu’s (1968) maximum
weighted spanning tree algorithm (MWST) has been

used as a preprocessor to K2, doing a reasonable job of
finding an ordering based upon the mutual information
between pairs of variables.

A wide variety of alternative metrics for DAGs
have been developed since K2. Heckerman, Geiger, and
Chickering (1994) generalized the K2 metric to incor-
porate prior information, yielding BD (Bayesian metric
with Dirichlet priors). Other alternatives include Min-
imum Description Length (MDL) scores (Bouckaert,
1993; Suzuki, 1996, 1999), Bayesian Information Cri-
terion (BIC) (Cruz-Ramirez, Acosta-Mesa, Barrientos-
Martinez, & Nava-Fernandez , 2006) and Minimum
Message Length (MML) (Korb & Nicholson, 2004; Wal-
lace, Korb, & Dai, 1996). Although all of these measures
score the DAG as a whole relative to some data set,
they are just as (or more) sensitive to the individual
dependencies and independencies between variables as
are the constraint learners. The difference between the
two types of learners is not whether they attend to
the sets of conditional independencies expressed in the
data, but whether they do so serially (which the con-
straint learners do) or collectively (as do the metric
learners).

The question naturally arises whether constraint
learners as a class are superior to metric learners or
vice versa, or, indeed, which individual learner might
be best. There is no settled answer to such questions,
nor, in fact, is there any agreement about how such
questions are best settled, even for fixed domains or
data sets. Perhaps the issue is more general than that
of learning Bayesian networks, since the fundamental
theory of machine learning evaluation seems to be mas-
sively underdeveloped (see Algorithm Evaluation). In
consequence, while nearly every new publication claims
superiority in some sense for its preferred algorithm,
the evidential basis for such claims remains suspect. It
is clear, nonetheless, that many of the programs avail-
able are helpful with data analysis and are being so
applied.

The space of DAGs is superexponential in the num-
ber of variables, making the learning process hard;
it is NP-hard to be exact (Chickering, Heckerman,
& Meek, 2004). In practice there are limits to the
effectiveness of each algorithm, imposed by the num-
ber of variables (see Dimensionality), the number of
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joint states the variables may take and the amount
of data. The known limitations for different algo-
rithms are scattered throughout the literature. The next
section introduces some ideas for scaling up causal
discovery.

Greedy search has frequently been used with both
constraint-based and metric-based learning. The PC
algorithm searching the space of patterns is an exam-
ple, as it starts with a fully connected graph and searches
greedily for arcs to remove. Chickering and MeeK’s
Greedy Equivalence Search (GES) is another greedy
algorithm operating in the pattern space (Chickering
and Meek, 2002). Cooper and Herskovits' K2 is also a
greedy searcher, adding arcs so long as single arc addi-
tions increases the probability score for the network.
Bouckaert adopted this approach with his MDL score
(Bouckaert, 1993). Greedy searches, of course, tend to
getlostin local maxima, and Suzukiloosened the search
method for his MDL scoring, using branch and bound
(Suzuki, 1999).

Genetic algorithms (GAs) have been successfully
applied to learning Bayesian networks. Larraiaga et al.
used GAs over the space of total orderings to max-
imize the K2 score (Larrafiaga, Kuijpers, Murga, &
Yurramendi, 1996); Neil and Korb developed a GA
searching the DAG space to maximize the MML score
(Neil & Korb, 1999). A similar approach using MDL is
found in Wong, Lam, and Leung (1999).

Markov Chain Monte Carlo (MCMC) searches per-
form stochastic sampling over the model space and
have become a popular technique for Bayesian net-
work learning. Gibbs sampling is used in Chickering
and Heckerman (1997), where they compare a num-
ber of different metrics (and incorrectly conflate BIC
and MDL scores; see Cruz-Ramirez, 2006) for learn-
ing a restricted class of Bayesian networks. Another
MCMC approach, the Metropolis-Hastings algorithm,
has been to estimate the posterior probability distribu-
tion over the space of total orderings, using the MML
score (Korb & Nicholson, 2004, Chap. 8).

An alternative to model selection — searching for
the single best model — is Bayesian model averaging,
that s, searching for a set of models and weights for each
of them (Chickering & Heckerman, 1997). And an alter-
native to that is to find a single Bayesian network that is
equivalent to an averaged selection of networks (Dash &
Cooper, 2004).

Recently, interest has grown in algorithms to learn,
specifically, the Markov blankets around individual
variables, which is a special kind of feature selection
problem (see Feature Selection). One use for this is
in prediction: since the MB renders all other variables
conditionally independent of a target variable, finding
the MB means having all the variables required for an
optimal predictor. Tsamardinos et al. describe the max-
min hill-climbing (MMHC) algorithm for MB discov-
ery (Tsamardinos, Brown, & Aliferis, 2006). Négele et al.
apply this to learning in very high-dimensional spaces
(Négele, Dejori, & Stetter, 2007).

Given the MB for a target variable, one can then
simply apply regression techniques (or any predictive
classification technique) to the discovered variables.
This works fine for standard prediction, but does not
generalize to situations where some of the predictor
variables are externally modified rather than observed.
For an interesting collection of papers mostly apply-
ing some kind of Markov blanket discovery approach
to prediction see the collection (Guyon et al., 2008).

A different use for local discovery is to avoid prob-
lems with computational complexity, whether due to
the “curse of dimensionality” (too many variables) or
the growing availability of very large data sets. Once
the Markov blanket is found, one can employ causal
discovery within the reduced set of variables, yield-
ing local causal discovery. Iterating this will yield
multiple causal subnetworks, when a global causal net-
work might be stitched together from them (Aliferis,
Statnikov, Tsamardinos, Mani, & Koutsoukos, 2010b),
completing the whole causal discovery process while
evading complexity problems. A current review of the
issues and techniques can be found in two companion
articles by Aliferis, Statnikov, Tsamardinos, Mani, and
Koutsoukos (2010a, 2010b).

Another approach to dealing with the complexity and
tribulations of global causal discovery is to aid the dis-
covery process with prior information. Bayesian infer-
ence is, after all, done by combining priors with like-
lihoods, and the priors need not always be perfectly
flavorless, such as uniform priors over the DAG space.
In almost all applications where data threaten to over-
whelm automated discovery there is also at least some
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expertise, if only the ability to say, for example, that the
sex of a patient is determined before adult lifestyle prac-
tices are adopted. Such temporal information provided
to a discovery algorithm can provide a huge boost to the
discovery process.

This quite simple kind of prior information, the tem-
poral tiers within which the variables may be allocated,
has been available in many of the discovery programs
for a long time. PC, for example, allows tiers to be spec-
ified. K2 more restrictively required a total ordering
of the variables. The methods described by Hecker-
man, Geiger, and Chickering (1994) go beyond tiers.
They provide for the specification of a network or sub-
network; the prior probability of any network in the
search space can be computed according to its distance
from the network provided. They also introduced the
idea of equivalent sample size, that is, the weight to be
given the prior information relative to the data, mean-
ing that their priors are soft (probabilistic) rather than
hard constraints. O’Donnell et al. (2006) adapted their
MML score to allow soft priors for tiers, dependencies,
direct and indirect causal relations, and networks or
subnetworks, with variable degrees of confidence.

The flexible combination of prior information
(expertise) with data in the causal discovery process
allows for a full-fledged knowledge engineering process
in the construction of Bayesian networks. Experts may
be consulted for structural or parametric information,
data may be gathered, and these different contributions
may be weighted or reweighted according to the results
of sensitivity analyses or other tests. The result can be a
much faster and more useful approach to building and
applying Bayesian networks.

Causal discovery with meaningful priors, by the
way, shows that limiting discovery to patterns is
insufficient: better priors, or better use of priors, can
make a significant difference within patterns of DAGs.

Cross References

» Dimensionality

» Feature Selection

» Graphical Models

» Hidden Markov Models
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Definition
Hereditary information is stored in the nucleus of every
living cell as biopolymers of deoxyribonucleic acids
(DNA). DNA thus encodes the blueprint for all known
forms of life. A DNA sequence can be expressed as a
finite string over an alphabet of {A, C, G, T}, corre-
sponding to the four DNA bases. The human genome
consists of approximately 3 billion bases, divided among
23 chromosomes.

During its life, each cell makes temporary copies
of short segments of DNA. These shortlived copies are
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comprised of ribonucleic acid (RNA). Each 3-mer of
RNA can subsequently be translated, via the universal
genetic code, into one of 20 amino acids. The resulting
amino acid sequence is called a protein, and the DNA
sequence that en codes the protein is called a gene.

Machine learning has been used to build models
of many different types of biological sequences. These
include models of short, functional elements within
DNA or protein sequences, as well as models of genes,
RNAs, and proteins.

Motivation and Background

Fundamentally, the motivation for building models of
biological sequences is to understand the molecular
mechanisms of the cell and the molecular basis for
human disease. Each subheading below describes a dif-
ferent type of model, each of which attempts to capture a
different facet of the underlying biology. All these mod-
els, ultimately, aim to uncover either evolutionary or
functional relationships among sequences.

Although DNA and protein sequences were avail-
able in small numbers as early as the 1950s, a significant
number of sequences were not available until the 1980s.
Most of the advances in model development occurred
in the 1990s, with the exception of phylogenetic models,
which were already being developed in the 1970s.

Structure of Learning System

In the context of biological sequences, a “motif” is a
short (typically 6-20 letters) subsequence that is func-
tionally significant. A motif may correspond to, e.g., the
location along the DNA strand where a particular pro-
tein binds, or conversely, the location along the protein
that binds to the DNA. The motif can arise either via
convergent evolution (when two sequences evolve to
look similar to one another) or via evolutionary con-
servation (if sequences that lack the motif are likely to
be eliminated via natural selection).

Motif discovery is the problem of identifying a pre-
viously unknown motif within a given collection of
sequences, by finding patterns that occur more often
than one would expect by chance. The problem is chal-
lenging in part because two occurences of a given motif
may not resemble each other exactly.

Work on motif discovery falls into two camps, based
upon how the motifs themselves are represented. One
camp uses position-specific scoring matrices (PSSMs),
in which a motif of width w over an alphabet of size
A is represented as a w-by-A probability matrix. In
this matrix, each entry represents the probability that
a given letter occurs at the given position. Early work
in this area used expectation-maximization to identify
protein motifs (Lawrence & Reilly, 1990). This effort was
significantly extended in the MEME algorithm (Bailey
& Elkan, 1994), which continues to be widely used
today. A complementary approach uses Gibbs sam-
pling (Lawrence, Altschul, Boguski, Liu, Neuwald, &
Wootton, 1993), which offers several benefits, including
avoidinglocal minima and the ability to sample multiple
motifs simultaneously.

The other motif discovery camp uses a discrete motif
representation, in which each motif is represented as a
consensus sequence plus a specified maximum number
of mismatches. In this formalism, enumerative meth-
ods can guarantee solving a given problem to optimality.
For realistic problem sizes, this approach is most appli-
cable to DNA, because of its much smaller alphabet
size. Currently, perhaps the most popular such method
is Weeder (Pavesi, Mereghetti, Mauri, & Pesole, 2004),
which performed well in a recent comparison of motif
discovery algorithms (Tompa, Li, Bailey, Church, Moor,
Eskin, et al., 2005).

A central problem in computational biology is the
classification of proteins into functional and struc-
tural classes given their amino acid sequences. The 3D
structure that a protein assumes after folding largely
determines its function in the cell. However, directly
obtaining a proteins 3D structure involves difficult
experimental techniques such as X-ray crystallography
or nuclear magnetic resonance, whereas it is relatively
easy to determine a protein’s sequence. Through evo-
lution, structure is more conserved than sequence, so
that detecting even very subtle sequence similarities, or
remote homology, is important for predicting function.

Since the early 1980s, researchers have developed
a battery of successively more powerful methods for
detecting protein sequence similarities. This develop-
ment can be broken into three main stages. Early
methods focused on the pairwise comparison problem
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and assessed the statistical significance of similarities
between two proteins based on pairwise alignment.
These methods are only capable of recognizing relatively
close homologies. The BLAST algorithm (Altschul,
Gish, Miller, Myers, & Lipman, 1990), based on heuris-
tic alignment, and related tools are the most widely
used methods for pairwise sequence comparison and
database search today.

In the second stage, further accuracy was achieved
by collecting aggregate statistics from a set of sim-
ilar sequences and comparing the resulting statis-
tics to a single, unlabeled protein of interest. One
important example of family-based models are pro-
file hidden Markov models (HMMs) (Krogh, Brown,
Mian, Sjolander, & Haussler, 1994), probabilistic gen-
erative models estimated from a multiple alignment of
sequences from a protein family. Profile HMMs gener-
ate variable length sequences by allowing insertions and
deletions relative to the core residues of the alignment.

The third stage introduced discriminative algorithms
based on classifiers like support vector machines for
protein classification and remote homology detection.
Such methods train both on positive sequences belong-
ing to a protein family as well as negative examples
consisting of sequences unrelated to the family. They
require protein sequences to be represented using an
explicit feature mapping or a kernel function in order
to train the classifier. The first discriminative protein
classification algorithm was the SVM-Fisher method
(Jaakkola, Diekhans, & Haussler, 2000), which uses a
profile HMM to extract a feature vector of Fisher scores
for each input sequence x, defined by the gradient vector

Vo log P(x]0)|g=0,

where log P(x|0) is the log likelihood function of the
sequence relative to the HMM and 0 is the maximum
likelihood estimate for the model parameters. Another
feature represention that has been used is the empirical
kernel map
D (x) = (s(x1, %), ..., s(x> %)),

where s(x,y) is a function depending on a pairwise
similarity score between x and y and x;, i = 1...m,

are the training sequences Liano et al. (2002). In addi-
tion, it is possible to construct useful kernels directly

without explicitly depending on generative models by
using subsequence-based string kernels. For example,
the mismatch kernel (Leslie, Eskin, Weston, & Noble,
2003) is defined by a histogram-like feature map. The
feature space is indexed by all possible k-length subse-
quences & = ajd,...dg, where each a; is a character
in the alphabet A of amino acids. The feature map is
defined on k-gram « by ®(a) = (¢p(a))ax where
¢p(a) = Lif a is within m mismatches of §, 0 oth-
erwise, and is extended additively to longer sequences:

@(x) = Zk—gramsex (D(“)

After a genome (or a portion of a genome) has been
sequenced, a biologist’s first question is usually, “Where
are the genes?” In simple organisms, most of the
genome is translated into proteins, and so the gene-
finding problem reduces, essentially, to identifying the
boundaries between genes. In more complex organisms,
a large proportion of the genome consists of non pro-
tein coding DNA. The human genome, for example,
is comprised of approximately 98% non-coding DNA.
This non-coding DNA is interspersed between coding
regions and even in the midst of a single coding region.
The gene-finding problem, canonically, is to identify the
regions of a given DNA sequence that encode proteins.

Initial methods for gene finding combined scores
produced by different types of detectors. A signal detec-
tor attempts to recognize local, fixed-length features,
such as characterize the boundaries between coding
and non-coding regions within a single gene. A con-
tent detector attempts to recognize larger patterns on
the basis of compositional statistics. Early gene finding
algorithms combined these various scores in an ad hoc
fashion to identify gene-like regions.

In the mid-1990s, several research groups began
using HMMs for gene finding. HMMs provide a
coherent, fully probabilistic method that is capable of
capturing many of the complexities of real genes. Per-
haps the most widely used such method is Genscan
(Burge & Karlin, 1997), which uses fifth-order Markov
statistics along with variable duration HMMs.

Gene finding is now a very mature field, but
advances continue to be made using, e.g., conditional
random field models (Bernal, Crammer, Hatzigeorgiou,
& Pereira, 2007) and large-margin structured output
techniques (Rétsch et al., 2007).
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Most RNA molecules are so-called messenger RNAs,
which are used in the production of a corresponding
protein molecule. Some RNAs, however, do not code
for proteins but instead function on their own. These
RNAs fall into functional categories, but they are not
easily recognized by HMMs because (1) the RNAs them-
selves are often very short, and (2) functional RNA
typically folds up in a deterministic fashion, and there-
fore exhibits nonlocal dependencies along the RNA
sequence.

Useful RNA modeling is therefore accomplished
using covariance models, which are a subclass of
stochastic context-free grammars. The foundational
work in this area was due to Eddy and Durbin (1994),
who addressed both the structure inference problem
and the inference of transition and emission probabil-
ities given the structure. They applied these algorithms
to transfer RNAs (tRNAs), and the approach was the
basis for widely used tools such as Rfam.

Much effort in RNA covariance models has been
devoted to improving the time and space efficiency of
the algorithms associated with covariance models. For
example, Eddy (2002) introduced a memory-efficient
variant of the core dynamic programming algorithm
used to align a covariance model to an RNA sequence.
This improvement was practically important, since it
reduced the O(N?) space requirement for a length N
RNA sequence. Other work has focused on accelerating
database search using the modeled families.

Recent efforts have focused on algorithms for
genome-wide screens to discover functional non-
coding RNAs as well as small regulatory RNAs like
microRNAs. Various approaches to this problem have
incorporated conservation as well as RNA structure
prediction, both using covariance models and other
methodologies. One such algorithm is RNAz (Washietl,
Hofacker, & Stadler, 2005), which combines a mea-
sure for thermodynamic stability with a measure for
structure conservation in an SVM approach to detect
functional RNAs in multiple sequence alignments.

Phylogenetic models attempt to infer the series of evo-
lutionary events (mutations, insertions, deletions, etc.)
that gave rise to an observed collection of DNA or
protein sequences. In most cases, these models ignore

the possibility of copying DNA between individuals or
species, and therefore represent the history as a phylo-
genetic tree, in which leaf nodes represent the observed
sequences, and the internal nodes represent unobserved
ancestral sequences. Of primary interest is inferring the
topology and branch lengths of this tree.

Methods for phylogenetic tree inference can be
divided into three classes: parsimony, distance, and like-
lihood methods, all described in detail in Felsenstein
(2003).

Parsimony methods search for a tree that requires
the smallest number of mutations, insertions or dele-
tions along its branches. Because the search space of
possible tree topologies is so large, this approach is fea-
sible only for relatively small sets of sequences - tens
rather than hundreds. Also, because parsimony mod-
els do not allow for so-called back-mutations — where a
letter mutates to a different letter and then back again
- and other similar events, parsimony models are prov-
ably suboptimal for distantly related sequences.

Distance methods replace parsimony with a
generalized notion of distance, which may include
back-mutation. A series of increasingly sophisticated
distance metrics have been developed in this domain,
starting with the one-parameter Jukes-Cantor model
and the two-parameter Kimura model. Given an
all-versus-all distance matrix, various tree inference
algorithms can be used, including neighbor joining and
agglomerative hierarchical clustering (called UPGMA
in phylogenetics).

The third class of models use a fully probabilistic
approach and attempt to infer the tree with maximum
likelihood, given the observed sequences. This approach
was first outlined by Felsenstein (1973), but was not
computationally feasible for large sets of sequences until
recently. Current methods employ Markov chain Monte
Carlo methods to carry out the search.

Following are some of the more popular web sites for
performing biological sequence analysis:

e BLAST and PSI-BLAST (http://www.ncbi.nlm.nih.
gov/BLAST) search a protein or DNA sequence
database with a given, query sequence, and return
a ranked list of homologs.
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e MEME (http://meme.sdsc.edu) searches a given set
of DNA or protein sequences for one or more recur-
rent motif patterns.

o HMMER (http://hmmer.janelia.org) is an HMM
toolkit for training and searching with profile
HMMs of proteins.

o Pfam (http://pfam janelia.org) is a searchable library
of profile HMMs corresponding to a curated collec-
tion of homologous protein domains.

e Rfam (http://rfam janelia.org) is an analagous
database of multiple sequence alignments and
covariance models covering many common non-
coding RNA families.

e PHYLIP (http://evolution.genetics.washington.edu/
phylip.html) is a free software toolkit that includes

many common phylogenetic inference

algorithms.
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Synonyms
LVQ

Definition

Learning vector quantization (LVQ) algorithms pro-
duce prototype-based classifiers. Given a set of labeled
prototype vectors, each input vector is mapped to the
closest prototype, and classified according to its label.
The basic LVQ learning algorithm works by itera-
tively moving the closest prototype toward the cur-
rent input if their labels are the same, and away from
the input if not. Some variants of the algorithm have
been shown to approximate Bayes optimal decision
borders. The algorithm was introduced by Kohonen,
and being prototype-based it bears close resemblance
to P»competitive learning and »Self-Organizing Maps.
The differences are that LVQ is supervised and the pro-
totypes are not ordered (i.e., there is no neighborhood
function).
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Definition

Most algorithms for sequential decision making rely
on computing or learning a value function that cap-
tures the expected long-term return of a decision at
any given state. Value functions are in general com-
plex, nonlinear functions that cannot be represented
compactly as they are defined over the entire state or
state-action space. Therefore, most practical algorithms
rely on value function approximation methods and the
most common choice for approximation architecture is
a linear architecture. Exploiting the properties of lin-
ear architectures, a number of efficient learning algo-
rithms based on least-squares techniques have been
developed. These algorithms focus on different aspects
of the approximation problem and deliver diverse solu-
tions, nevertheless they share the tendency to process
data collectively (batch mode) and, in general, achieve
better results compared to their counterpart algorithms
based on stochastic approximation.

Motivation and Background
Consider a »Markov Decision »Process (MDP) (S, A, P,
R,y,D), where S is the state space, A is the action
space, P(s'|s,a) is a Markovian transition model,
(0,1] is the
discount factor, and D is the initial state distribu-
tion. A linear approximation architecture approximates
the value function V”(s) or Q"(s,a) of a stationary
(stochastic) policy 7(als) as a linear weighted com-
bination of linearly-independent basis functions or
features ¢:

R(s,a) is a reward function, y ¢

k
Vi(sw) = 3 ¢i(s)w; = ¢(s)'w
j=1

T(saw) = 350w, = 0(5)w.

The parameters or weights of the approximation are the
coefficients w.

Let V™ and V" be the exact and the approximate,
respectively, state value function of a policy 1, both
given as column vectors of size |S|. Define @y as the
(S| x k) matrix with elements ¢;(s), where s € S span
the rows and j = 1,2,..., k span the columns. Then, V”
can be expressed compactly as V* = @yw”. Similarly,
let Q" and Q" be the exact and the approximate, respec-
tively, state-action value function of a policy =, both
given as column vectors of size |S||.A|. Define @ as
the (|S[|A| x m) matrix with elements ¢;(s,a), where
(s,a) € (S x A) span the rows and j = 1,2,...,m span
the columns. Then, Q" can be expressed compactly as
Q" = ®ow”. In addition, let R be a vector of size |S||.A|
with entries R (s, a) that contains the reward function,
P be a stochastic matrix of size (|S||.A| x |S|) that con-
tains the transition model (P((s,a),s’) = P(s'|s,a)),
and II,; be a stochastic matrix of size (|S| x |S|.A|)
that describes policy 7 (IL, (s, (s,a)) = n(als)). The
state value function V" and the state-action value
function Q7 are the solutions of the linear Bellman
equations

V" =1I,(R +yPV"™)
Q" =R +yPI,Q"
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and also the fixed points of the corresponding linear
Bellman operators

VTS THVT),
Q" = T5(Q),

where Ty (x) = II;(R + yPx)
where Tj(x) = R + yPILx.

If V¥ and Q" were known, they could be projected
orthogonally onto the space spanned by the basis func-
tions to obtain the optimal least-squares approximation.
(For simplicity of presentation, we consider only uni-
form least-squares criteria in this text, but generaliza-
tion to weighted least-squares criteria is possible in all
cases). For the state value function we have:

V= dyw' = @y (O} D)) B}V
W= @) Dy (@] dy) DLV,

whereas for the state-action value function we have:

= D" = Do (BLDg) DHQ"

= Q)

T @, (0)0,)  DLQ"

The learning algorithms described here strive to find a
set of parameters w, such that the approximate value
function is a good approximation to the true one. How-
ever, since the exact value functions are unknown, these
algorithms have to rely on information contained in
the Bellman equations and the Bellman operators to
derive expressions that characterize a good choice for
w. It has been shown that, in many cases, this kind of
learning is equivalent to approximating the MDP using
a linear (compressed) model and solving exactly the
approximate model (Parr et al., 2008).

An obvious approach to deriving a good approximation
is to require that the approximate function satisfies the
linear Bellman equation as closely as possible. Substi-
tuting the approximation V" into the Bellman equation
for V" yields an overconstrained linear system over the
k parameters w™:

V™~ I, (R +yPV")
Oyw”" ~ I, (R + yPOyw")
(q)v - yHﬂP(bv)Wn N HnR

Solving this overconstrained system in the least-squares
sense is a (k x k) system

(q)V — yHnP(I)V)T(q)V — yHan)V)Wn
= (®y - yII,POy) I, R (1
minimizes

whose  solution is

||T"§(\7”) —V”” ,- Similarly, substituting the approxi-

unique  and

mation Q" into the Bellman equation for Q" yields an
overconstrained linear system over the m parameters

w':

Q"~R+ yPl'I,fC)”
Dow" » R + yPIL, @ow”
((DQ - yPHﬂq)Q)Wn ~R.

Solving this overconstrained system in the least-squares
sense is a (m x m) system

(@q - yPIL, Q)" (P — yPIL, Do) w"
= (@q - yPII,@q) 'R 2)

whose  solution is unique and minimizes
|| Tg(@”) -qQ7 H ,- In both cases, the solution minimizes
the L, norm of the Bellman residual (the difference
between the left-hand side and the right-hand side of
the linear Bellman equation).

Recall that a value function is also the fixed point of
the corresponding linear Bellman operator. Another
way to go about finding a good approximation is to
force the approximate value function to be a fixed point
under the linear Bellman operator. For that to be pos-
sible, the fixed point has to lie in the space of approx-
imate value functions, which is the space spanned by
the basis functions. Even though the approximate func-
tion itself lies in that space by definition, the result of
applying the linear Bellman operator to the approxima-
tion will in general be out of that space and must be
projected back. Considering the orthogonal projection
(®(®"®)"'®") (which minimizes the L, norm) onto
the column space of @, we seek an approximate value
function that is invariant under one application of the
linear Bellman operator followed by orthogonal pro-
jection onto the space spanned by the basis functions.
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More specifically, for the state value function, we require
that

V= oy (0)0y) " @) (TE(VT))
Dy = By (DL DY) @ (TL,(R + yPDyw")).

Note that the orthogonal projection to the column space
of @y is well-defined, because the columns of @y (the
basis functions) are linearly independent by definition.
The expression above is equivalent to solving a (k x k)
linear system

D (Oy - yILPOy)W = O I, R 3)

whose solution is guaranteed to exist for all, but finitely
many, values of y (Koller and Parr, 2000) and mini-
mizes (in fact, zeros out) the projected Bellman residual.
Since the orthogonal projection minimizes the L, norm,
the solution w” yields a value function V”, which is
the least-squares fixed-point approximation to the true
state value function. Similarly, for the state-action value
function, we require that

Q"= 0o (24®q) @4 (T5(Q"))
Dow™ = By (DLDg) " DY (R +yPIL Dow").

This is equivalent to solving a (m x m) linear system
O, (Pq - yPI, Do) = DGR (4)

whose solution is again guaranteed to exist for all, but
finitely many, values of y (Koller and Parr, 2000) and
minimizes (in fact, zeros out) the projected Bellman
residual. Since the orthogonal projection minimizes the
L, norm, the solution w” yields a value function Qr,
which is the least-squares fixed-point approximation to
the true state-action value function.

Structure of Learning System

The least-squares temporal difference (LSTD) learn-
ing algorithm (Bradtke and Barto, 1996) learns the
least-squares fixed-point approximation to the state
value function V7 of a fixed policy n. In essence,
LSTD attempts to form and solve the linear system of
Equation 3 using sampling. Each sample (s,7,s’) indi-
cates a minimal interaction with the unknown process,

whereby in some state s, a decision was made using
policy 7, and reward r was observed, as well as a tran-
sition to state s’. LSTD processes a set of samples col-
lectively to derive the weights of the approximate value
function. LSTD is an on-policy method; it requires
that all training samples are collected using the policy
under evaluation. The LSTD algorithm is summarized
in Algorithm 1.

LSTD improves upon the temporal difference (TD)
learning algorithm for linear architectures by making
efficient use of data and converging faster. The main
advantage of LSTD over TD is the elimination of the
slow stochastic approximation and the learning rate that
needs careful adjustment. TD uses samples to make
small modifications and then discards them. In con-
trast, with LSTD, the information gathered from a single
sample remains present in the matrices of the linear sys-
tem and is used in full every time the parameters are
computed. In addition, as a consequence of the elim-
ination of stochastic approximation, LSTD does not
diverge.

LSTD(A) (Boyan, 1999) is an extension to LSTD
that spans the spectrum between LSTD (A = 0) and
»linear regression over Monte-Carlo returns (A = 1)
for A € [0,1]. LSTD(A) for A > 0 requires that samples
come from complete episodes. RLSTD(A) is a variant
of LSTD(A) that uses recursive least-squares techniques
for efficient implementation (Xu et al., 2002).

Algorithm 1 Least-Squares
(LSTD)

Temporal Difference

w=LSTD(D,k, ¢,7)
Input: samples D, integer k, basis functions ¢, dis-
count factor y
Output: weights w of the learned state value function

A<0 /1 (k x k) matrix

b<0 /1 (k x 1) vector

for each sample (s,7,s’) e Ddo
A A+ §(s) ($(5) ~y9()
b<b+¢(s)r

end for

w< A7l

return w
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The main idea behind LSTD can also be used to
learn the Bellman residual minimization approxima-
tion to the state value function V7 of a fixed policy 7.
In this case, the goal is to form and solve the lin-
ear system of Equation 1 using sampling. However, the
structure of the system, in this case, requires that sam-
ples are “paired,” which means that two independent
samples (s,7,s") and (s,r,s") for the same state s must
be drawn to perform one update. This is necessary to
obtain unbiased estimates of the system matrices. Each
sample (s,7,s") again indicates a minimal interaction
with the unknown process, whereby in some state s, a
decision was made using policy 7, and reward r was
observed, as well as a transition to state s’. Obtain-
ing paired samples is trivial with a generative model
(a simulator) of the process, but virtually impossible
when samples are drawn directly from a physical pro-
cess. This fact makes the Bellman residual minimiza-
tion approximation somewhat impractical for learning,
but otherwise a reasonable approach for computing
approximate state value functions from the model of the
process (Schweitzer and Seidmann, 1985). The learning
algorithm for Bellman residual minimization is sum-
marized in Algorithm 2.

Value function learning algorithms, either in the Bell-
man residual minimization or in the fixed point sense,
have been used within approximate policy iteration

Algorithm 2 Bellman Residual Minimization Learning

w=BRML(D,k, ¢,7)

Input: paired samples D, integer k, basis functions ¢,

discount factor y
Output: weights w of the learned state value function

A<0 /1 (k x k) matrix

b<0 /1 (k x 1) vector

for each pair of samples [(s,7,s"), (s,7,s"")] € D do
A A+ ($(5) - 9()) ($(5) - 9 (")
b b+ (§(5) - yo(s)) r

end for

w< A

return w

schemes for policy learning, but in practice they exhibit
quite diverse performance. Fixed-point approximations
tend to deliver better policies, whereas Bellman resid-
ual minimization approximations fluctuate less between
different rounds of policy iteration. Motivated by a
desire to combine the advantages of both approxima-
tions, some researchers have focused on learning hybrid
approximations that lie somewhere between these two
extremes. Johns et al. (2009) have proposed two differ-
ent approaches to combine these two approximations.
The first relies on a derivation that begins with the goal
of minimizing a convex combination of the two objec-
tives (Bellman residual and projected Bellman resid-
ual); the resulting learning algorithm is quite expensive
as it requires the maintenance of three matrices and
two vectors (as opposed to one matrix and one vec-
tor when learning a non-hybrid approximation), as well
as the inversion of one of the three matrices at each
update. The second approach focuses directly on a con-
vex combination of the linear systems produced by the
two extreme approximations (Equations 1 and 3); the
resulting learning algorithm has the same complexity
as non-hybrid algorithms and in many cases exhibits
better performance than the original approximations.
On the other hand, both hybrid learning algorithms
still have to deal with the paired samples problem and
additionally require tuning of the convex combination
parameter.

The least-squares policy evaluation (LSPE) learning
algorithm (Nedi¢ and Bertsekas, 2003), like LSTD,
learns the least-squares fixed-point approximation to
the state value function V” of a fixed policy 7. Both
LSPE and LSTD strive to obtain the solution to the
same linear system (Equation 3), but using different
methods; LSPE uses an iterative method, whereas LSTD
uses direct matrix inversion. Unlike LSTD, LSPE begins
with some arbitrary approximation to the value func-
tion (given by a parameter vector w’) and focuses
on the one-step application of the Bellman operator
within the lower dimensional space spanned by the
basis functions aiming at producing an incremental
improvement on the parameters. In that sense, LSPE
can take advantage of a good initialization of the param-
eter vector. Given the current parameters w' and a set
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Algorithm 3 Least-Squares Policy Evaluation (LSPE)
w=LSPE(D, k, ¢,y,w', )
Input: samples D, integer k, basis functions ¢, dis-
count factor y, weights w’, stepsize «
Output: weights w of the learned state value function

A<0 /1 (k x k) matrix
b<0 /I (k x 1) vector
for each sample (s,7,5") € D do
AcA+P(s)(s)T
b b+ 9(s) (r+ y(s) W)
end for
W<« A™'b

weaw +(1-a)w
return w

{(sk>7%>8) 1k =0,...,t} of samples, LSPE first com-
putes the solution w to the least-squares problem

2

mwinkzj: ((/)(Sk)TW_ (fk +y¢ (52)T W/))

and then updates w’ toward w using a stepsize a € (0,1].
The LSPE algorithm is summarized in Algorithm 3.

The LSPE incremental update at the extreme can be
performed whenever a new sample arrives or whenever
a batch of samples becomes available to remedy com-
putational costs. An efficiency improvement to LSPE
is to use recursive least-squares computations, so that
the least-squares problem can be solved without matrix
inversion. LSPE(A) for A € [0,1] is an extension of LSPE
to multistep updates in the same spirit as LSTD(A).
LSPE(A) for A > 0 requires that samples come from
complete episodes.

Least-squares policy iteration (LSPI) (Lagoudakis and
Parr, 2003) is a model-free, reinforcement learning
algorithm for policy learning based on the approxi-
mate policy iteration framework. LSPI learns in a batch
manner by processing multiple times the same set of
samples. LSPI is an off-policy method; samples can be
collected arbitrarily from the process using any pol-
icy. Each sample (s,a,7,s") indicates that the learner
observed the current state s, chose an action 4, and
observed the resulting next state s’ and the reward

received r. LSPI iteratively learns a (weighted) least-
squares fixed-point approximation of the state-action
value functions (Equation 4) of a sequence of improv-
ing (deterministic) policies 7. At each iteration, the
value function of the policy is approximated by solv-
ing a (m x m) linear system, formed using the single
sample set and the policy from the previous iteration.
LSPI offers a non-divergence guarantee and in most
cases it converges in just a few iterations. LSPI exhibits
excellent sample efficiency and has been used widely
in many domains. Algorithm 4 summarizes the LSPI
algorithm.

The default internal policy evaluation procedure in
LSPI is the variation of LSTD for the state-action value
function (LSTDQ). However, any other value function
learning algorithm, such as BRML or LSPE, could be
used instead; nevertheless, the A extensions are not
applicable in this case, because the samples in LSPI have
been collected arbitrarily and not by the policy being
evaluated each time. The variation of LSPI that inter-
nally learns the Bellman residual minimizing approxi-
mation (Equation 2) using BRML has produced inferior
policies, in general, and suffers from the paired samples
problem.

Algorithm 4 Least-Squares Policy Iteration (LSPI)
w=LSPI(D, m, ¢,7,€)
Input: samples D, integer m, basis functions ¢, dis-
count factor y, tolerance €

Output: weights w of the learned value function of

the best learned policy

w<0

repeat
A<0 /I (m x m) matrix
b<0 /I (m x 1) vector
w—w

for each sample (s,a,7,s") in D do
a’ = argmaxgreq ¢(s',a") W
A< A+¢(s,a)(9(s,a) - yp(sa"))’
b<b+¢(s,a)r
end for
w< A'b
until (|w—w'|| <€)
return w
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Fitted Q-iteration (FQI) (Ernst et al., 2005) is a batch
reinforcement learning algorithm for policy learning
based on the popular Q-Learning algorithm. FQI uses
an iterative scheme to approximate the optimal value
function, whereby an improved value function Q is
learned at each iteration by fitting a function approx-
imator to a set of training examples generated using
a set of samples from the process and the Q-Learning
update rule. Any function approximation architecture
and the corresponding supervised learning algorithm
could be used in the iteration. The simplest choice is to
use least-squares regression along with a linear architec-
ture to learn the least-squares fixed-point approxima-
tion of the state-action value function (Equation 4). This
version of least-squares fitted Q-iteration is summarized
in Algorithm 5. In a sense, this version of FQI com-
bines ideas from LSPE and LSPI. Like LSPI, FQI is an
oft-policy method; samples can be collected arbitrarily
from the process using any policy. In practice, FQI pro-
duces very good policies within a moderate number of
iterations.

Algorithm 5 Least-Squares Fitted Q-Iteration
w=LS-FQI(D, m, ¢,y,N)
Input: samples D, integer m, basis functions ¢, dis-
count factor y, iterations N
Output: weights w of the learned value function of
the best learned policy

i< 0

w<0

while (i < N) do
A<0 /I (m x m) matrix
b<0 /I (m x 1) vector

for each sample (s,a,7,s") in D do
A< A+¢(s,a)p(s,a)”
b<b+¢(s,a)(r+ymaxyeq {¢(s',a") w})
end for
w< A'b
i<i+l
end while
return w

Cross References

» Curse of Dimensionality

» Feature Selection

» Radial Basis Functions
»Reinforcement Learning
»Temporal Difference Learning
» Value Function Approximation

Recommended Reading

Boyan, J. A. (1999). Least-squares temporal difference learning. Pro-
ceedings of the Sixteenth International Conference on Machine
Learning, Bled, Slovenia, pp. 49-56.

Bradtke, S. J., & Barto, A. G. (1996). Linear least-squares algorithms
for temporal difference learning. Machine Learning, 22, 33-57.

Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-based batch mode
reinforcement learning. Journal of Machine Learning Research,
6, 503-556.

Johns, J., Petrik, M., & Mahadevan, S. (2009). Hybrid least-squares
algorithms for approximate policy evaluation. Machine Learn-
ing, 76(2-3), 243-256.

Koller, D., & Parr, R. (2000). Policy iteration for factored MDPs. Pro-
ceedings of the Sixteenth Conference on Uncertainty in Artificial
Intelligence, Stanford, CA, USA, pp. 326-334.

Lagoudakis, M. G., Parr, R. (2003). Least-squares policy iteration.
Journal of Machine Learning Research, 4, 1107-1149.

Nedi¢, A., & Bertsekas, D. P. (2003). Least-squares policy evaluation
algorithms with linear function approximation. Discrete Event
Dynamic Systems: Theory and Applications, 13(1-2), 79-110.

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., & Littman, M.
L. (2008). An analysis of linear models, linear value-function
approximation, and feature selection for reinforcement learn-
ing, Proceedings of the twenty-fifth international conference
on machine learning, Helsinki, Finland, pp. 752-759.

Schweitzer, P. J., & Seidmann, A. (1985). Generalized polynomial
approximations in Markovian decision processes. Journal of
Mathematical Analysis and Applications, 110(6), 568-582.

Xu, X., He, H. G., & Hu, D. (2002). Efficient reinforcement learn-
ing using recursive least-squares methods. Journal of Artificial
Intelligence Research, 16, 259-292.

|
Leave-One-Out Cross-Validation

Definition

Leave-one-out cross-validation is a special case of
»cross-validation where the number of folds equals the
number of »-instances in the »data set. Thus, the learn-
ing algorithm is applied once for each instance, using all
other instances as a »training set and using the selected
instance as a single-item P-test set. This process is closely
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related to the statistical method of jack-knife estimation
(Efron, 1982).
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! Leave-One-Out Error

Synonyms
Hold-one-out error; LOO error

Definition
Leave-one-out error is an estimate of »error obtained
by »-leave-one-out cross-validation.

[
Lessons-Learned Systems

»Case-Based Reasoning

| Lifelong Learning

»Cumulative Learning

| Life-Long Learning

»Continual Learning

[
Lift

Lift is a measure of the relative utility of a »classification
rule. It is calculated by dividing the probability of the

consequent of the rule, given its antecedent by the prior
probability of the consequent:

lift(x > y) =P(Y =y | X =x)/P(Y = y).

In practice, the probabilities are usually estimated from
either »-training data or »test data. In this case,

lift(x > y) =F(Y =y | X =x)/F(Y = y)

where F(Y =y | X=x) is the frequency with which the
consequent occurs in the data in the context of the
antecedent and F(Y =y) is the frequency of the conse-
quent in the data.

[,. . . .
Linear Discriminant

Novi QUADRIANTO, WRAY L. BUNTINE
RSISE, ANU and SML, NICTA, Canberra, Australia

Definition

A discriminant is a function that takes an input variable
and outputs a class label for it. A linear discriminant is a
discriminant that is linear in the input variables. This
article focuses on one such linear discriminant func-
tion called Fisher’s linear discriminant. Fisher’s discrim-
inant works by finding a projection of input variables
to a lower dimensional space while maintaining a class
separability property.

Motivation and Background

The curse of dimensionality (»>Curse of Dimensional-
ity) is an ongoing problem in applying statistical tech-
niques to pattern recognition problems. Techniques
that are computationally tractable in low-dimensional
spaces can become completely impractical in high-
dimensional spaces. Consequently, various methods
have been proposed to reduce the dimensionality of the
input or feature space in the hope of obtaining a more
manageable problem. This relies on the fact that real
data will often be confined to a region of the space hav-
ing lower effective dimensionality, and in particular the
directions over which important variations in the out-
put variables occur may be so confined. For example, we
can reduce a d-dimensional problem to one dimension
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if we project the d-dimensional data onto a line. How-
ever, arbitrary projections will usually produce cluttered
projected samples from all of the classes. Thus, the aim
is to find a good projection so that the projected samples
are well separated. This is exactly the goal of Fisher’s
linear discriminant analysis.

Fisher’s Discriminant for Two-Category
Problem

Given N observed training data points {(x;, )},
where y;€{1,...,Q} is the label for an input variable
x; €R%, our task is to find the underlying discrimi-
nant function, f : RY — {1,...,Q}. The linear dis-
criminant seeks a projection of d-dimensional input
onto a line in the direction of w € R<, such that

y= wlx. 1)

Subsequently, a class label assignment can be performed
by thresholding the projected values, for example y > C
as class 1 and otherwise as class 2 for an appropriate
choice of constant C. While the magnitude of w has no
real significance (acts only as a scaling factor to y), the
direction of w plays a crucial role. Inappropriate choice
of w can result in an non-informative heavily cluttered
line. However, by adjusting the components of weight
w, we can find a projection that maximizes the class
separability (Fig. 1). It is crucial to note that whenever
the underlying data distributions are multimodal and
highly overlapping, it might not be possible to find such
a projection.

Consider a two-category problem, Q; and Q, with
N; and N, number of data points, respectively. The
d-dimensional sample mean is given by

u1=izx,~ yzzl Yoxio (2)

1 e N, i€Q,

The simplest class separability criterion is the separa-
tion of the projected class mean, that is we can find the
weight w that maximizes

w! (2 = ),
(3)

where m; and m;, are the projected class means. An
additional unit length constraint on w, i.e., ¥; w? = 1
should be imposed to have a well-defined maximiza-
tion problem. The above separability criterion produces
a line that is parallel to the line joining the two means.
However, this projection is sub-optimal whenever the
data has distinct covariances depending on class (i.e., it
is un-isotropic).

1 1
T T
mg—mlz—g wx,-——gwx,-:
NZiEQz Nlite

Fisher’s criterion maximizes a large separation
between the projected class means while also minimiz-
ing a variance within each class. This criterion can be
expressed as

T
J(w) = ——. (4)

where the total within-class covariance matrix is

Sw =3 (ximp) (xi—p) '+ Y (ri—p2) (xi—pi2) " (5)

ieQy i€Qy

Linear Discriminant. Figure 1. Colors encode class labels. Projection of samples onto two different lines. The plot on

the left shows greater separation between the white and black projected points
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and a between-class covariance matrix is

Sp= (2 — 1) (p2 — )" . (6)

The maximizer of (4) can be found by setting its first
derivative with respect to the weights vector to zero, that
is

(WTSBW)SWw = (WTSWW)SBW. (7)

It is clear from (6), that Sp is always in the direction of
(my — my). As only the direction of w is important, we
can drop the scaling factors in (7), those are (w'Szw)
and (wTSyw). Multiplying both sides of (7) by Sy}, we
can then obtain the solution of w that maximizes (4) as

w =Sy (1 — pa). (®)

Fisher’s Discriminant for Multi-category
Problem

For the general Q-class problem, we seek a projection
from d-dimensional space to a (Q — 1)-dimensional
space which is accomplished by (A—1linear discriminant
functions, that is

T
Ve =W X

c=1...,Q-1 9)
In the matrix notation, y = WTx for W e R™>(Q-D)
and y € R, The generalization of the within-class
covariance matrix in (5) to the case of ) classes is
Sw = Z?:I Se with S = X (% — pe) (i — yC)T. Fol-
lowing Duda and Hart (1973), the between-class covari-
ance matrix is defined as the difference between the
total covariance matrix, Y%, (x; — ) (x; — u)”, where
u denotes the total sample mean of the dataset, and the
within-class covariance matrix. One of the criterion to
be optimized is (Fukunaga, 1990)

J(w) = Trace((WTSy W) (WTSzW)). (10
The maximizer of (10) is eigenvectors of Sy Sg associ-
ated with Q — 1 largest eigenvalues. It is important to
note that the between-class covariance matrix Sp is the
sum of () matrices of rank one or less, and because only
Q —1 of these matrices are independent, Sg has rank at
most equal to Q—1and so there are at most Q-1 nonzero
eigenvalues. Therefore, we are unable to find more than
Q —1discriminant functions (Fukunaga, 1990).
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" Linear Regression

Novi QUADRIANTO, WRAY L. BUNTINE
RSISE, ANU and SML, NICTA, Canberra, Australia

Definition

Linear Regression is an instance of the »Regression
problem which is an approach to modelling a func-
tional relationship between input variables x and an
output/response variable y. In linear regression, a lin-
ear function of the input variables is used, and more
generally a linear function of some vector function of
the input variables ¢(x) can also be used. The linear
function estimates the mean of y (or more generally the
median or a quantile).

Motivation and Background

Assume we are given a set of data points sampled from
an underlying but unknown distribution, each of which
includes input x and output y. The task of regression
is to learn a hidden functional relationship between x
and y from observed and possibly noisy data points, so
y is to be approximated in some way by f(x). This is
the task covered in more detail in Regression. A gen-
eral approach to the problem is to make the function
f() be linear. Depending on the optimization criteria
used to fit between the linear function f(x) and the
output y, this can include many different regression
techniques, but optimization is generally easier because
of the linearity.
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Theory/Solution
Formally, in a regression problem, we are interested
in recovering a functional dependency y; = f(x;) +
€; from N observed training data points {(x;,y:)}Y,,
where y; € R is the noisy observed output at input loca-
tion x; € RY. For the linear parametric technique, we
tackle this regression problem by parameterizing the
latent regression function f() by a parameter w € R,
that is f(x;) := (¢(x;), w) for H fixed basis functions
{¢n(x:) }L,. Note that the function is a linear function
of the weight vector w. The simplest form of the lin-
ear parametric model is when ¢(x;) = x; € R, that is
the model is also linear with respect to the input vari-
ables, f(x;) 1= wo + wix! + - + wyx?. Here the weight
wy allows for any constant offset in the data. With gen-
eral basis functions such as polynomials, exponentials,
sigmoids, or even more sophisticated Fourier or wave-
lets bases, we can obtain a regression function which is
nonlinear with respect to the input variables although
still linear with respect to the parameters.

In the subsequent section, the simplest and thus
common linear parametric method for solving a regres-
sion problem is covered, the least squares method.

Least Squares Method Let X € RN*? be a matrix of
input variables and y € RY be a vector of output vari-
ables. The least squares method minimizes the following
sum of squared error,

E(w) = (Xw-y)" (Xw - y) (1)

to infer the weight vector w. Note that the above error
function is quadratic in the w, thus the minimization
has a unique solution and leads to a closed-form expres-
sion for the estimated value of the unknown weight
vector w. The minimizer of the error function in (1) can
be found by setting its first derivative with respect to the
weight vector to zero, that is

0E(w) =2X"(Xw—-y) =0 )
w" = (XTX)'xTy. 3)

The term
(xTx)"'x" = xT (4)

is known as the Moore-Penrose pseudo-inverse (Golub
& Van Loan, 1996) of the matrix X. This quantity can
be regarded as a generalization of a matrix inverse to

nonsquare matrices. Whenever X is square and invert-
ible, xT = x1. Having computed the optimal weight
vector, we can then predict the output value at a novel
input location x,ey simply by taking an inner product:
Ynew = (‘/’(xneW)) w*).

Under the assumption of an independent and nor-
mally distributed noise term, ¢; ~ N'(0,0?), the above
least squares approach can be shown to be equivalent to
the maximum likelihood solution. With the Gaussian
noise term, the log-likelihood model on an output vec-
tor y and an input matrix X is

In p(y|X, w) = In N (Xw, ¢*T) (5)
N 1

= —Eln(Zﬂaz) - ﬁ(y - xXw) " (y - Xw).

(6)

Maximizing the above likelihood function with respect
to w will give the optimal weight to be in the form of
(3). We can also find the maximum likelihood estimate
of the noise variance by setting the first derivative of (6)
with respect to o to zero, that is

o= 0= -Xe). )

Geometrical Interpretation of Least Squares Method Let
y be avector in an N-dimensional space whose axes are
given by {y; }Y,. Each of the H basis functions evaluated
at N input locations can also be represented as a vector
in the same N-dimensional space. For notational con-
venience, we denote this vector as y;,. The H vectors y,
will span a linear subspace of dimensionality H when-
ever the number of basis functions H is smaller than
the number of input locations N (see Fig. 1). Denote
® ¢ RMH as a matrix whose rows are the vectors
{¢n(x:) }L,. Our linear prediction model, ®w (in the
simplest form Xw) will be an arbitrary linear combina-
tion of the vectors y,. Thus, it can live anywhere in the
H-dimensional space. The sum of squared error crite-
rion in (1) then corresponds to the squared Euclidean
distance between ®w and y. Therefore, the least squares
solution of w corresponds to the orthogonal projection
of y onto the linear subspace. This orthogonal projec-
tion is associated with the minimum of the squared
Euclidean distance. As a side note, from Fig. 1, it is clear
that the vector y — ®w is normal (perpendicular) to the
range of ® thus ®Tdw = ®Ty is called the normal
equation associated with the least squares problem.
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Linear Regression. Figure 1. Geometrical interpretation
of least squares. The optimal solution w* with respect to
the least squares criterion corresponds to the orthogonal
projection of y onto the linear subspace which is formed
by the vectors of the basis functions

Practical note: The computation of (3) requires an
inversion of an H by H matrix ®’® (or a d by d matrix
XTX). A direct inversion of this matrix might lead
to numerical difficulties when two or more basis vec-
tors ¥y, or input dimensions are (nearly) collinear. This
problem can be addressed conveniently by using Sin-
gular Value Decomposition (SVD) (Press, Teukolsky,
Vetterling, & Flannery, 1992). It is important to note
that adding a regularization term (see also the later sec-
tion on ridge regression) ensures the non-singularity of
®T® matrix, even in the presence of degeneracies.

Sequential Learning of Least Squares Method Compu-
tation of the optimal weight vector in (3) involves the
whole training set comprising N data points. This learn-
ing technique is known as a batch algorithm. Real
datasets can however involve large numbers of data
points which might make batch techniques computa-
tionally prohibitive. In contrast, sequential algorithms
or online algorithms process one data point at a time,
and can be more suited to handle large datasets.

We can use a sequential algorithm called stochastic
gradient descent for learning the optimal weight vector.
The objective function of (1) can be decomposed into
>N ({x;, w) - y;)2. This transformation suggests a sim-
ple stochastic gradient descent procedure: we traverse
the data point i and update the weight vector using

t+1

w e wh - 211(<xi,wt) - ¥i)Xi> (8)

This algorithm is known as LMS (Least Mean Squares)
algorithm. In the above equation, ¢t denotes the iteration
number and 7 denotes the learning rate. The value of 7
needs to be chosen carefully to ensure the convergence
of the algorithm.

Regularized/Penalized Least Squares Method The issue
of over-fitting as mentioned in Regression is usually
addressed by introducing a regularization or penalty
term to the objective function. The regularized objective
function is now in the form of

Ereg = E(w) + AR(w). 9)

Here E(w) measures the quality (such as least squares
quality) of the solution on the observed data points,
R(w) penalizes complex solutions, and A is called the
regularization parameter which controls the relative
importance between the two. This regularized formu-
lation is sometimes called coefficient shrinkage as it
shrinks coefficients/weights toward zero (c.f. coefficient
subset selection formulation where the best k out of
H basis functions are greedily selected). Two simple
penalty terms R(w) are given next, but more gener-
ally measures of curvature can also be used to penalize
non-smooth functions.

Ridge regression The regularization term is in the form
of

D
R(w) = > wa. (10)
o

Considering E(w) to be in the form of (1), the regular-
ized least squares quality function is now

(Xw - )T (Xw—y) + Aw"w. (11)

Since the additional term is a quadratic of w, the
regularized objective function is still quadratic in w,
thus the optimal solution is unique and can be found
in closed form. As before, setting the first derivative of
(11) with respect to w to zero, the optimal weight vector
is in the form of

OwEreg(w) =2XT(Xw-y) +2lw=0  (12)
w' = (XTX + AI)7'XTy. (13)
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The effect of the regularization term is to put a small
weight for those basis functions which are useful only
in a minor way as the penalty for small weights is very
small.

Lasso regression The regularization term is in the form
of

D
R(w) =) |wal. (14)
d=1

In contrast to ridge regression, lasso regression
(Tibshirani, 1996) has no closed-form solution. In
fact, the non-differentiability of the regularization
term has produced many approaches. Most of the
methods involve quadratic programming and recently
coordinate-wise descent algorithms for large lasso prob-
lems (Friedman et al., 2007). Lasso regression leads to
sparsity in w, that is, only a subset of w is nonzero, so
irrelevant basis functions will be ignored.

Cross References
» Correlation Matrix
» Gaussian Processes
»Regression
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Synonyms
Link analysis; Network analysis

Definition

Many domains of interest today are best described
as a linked collection of interrelated objects. Datasets
describing these domains may describe homogeneous
networks, in which there is a single-object type and
link type, or richer, heterogeneous networks, in which
there may be multiple object and link types (and possi-
bly other semantic information). Examples of homoge-
neous networks include social networks, such as people
connected by friendship links, or the WWW, a collec-
tion of linked web pages. Examples of heterogeneous
networks include those in medical domains describing
patients, diseases, treatments and contacts, or biblio-
graphic domains describing publications, authors, and
venues. Link mining refers to data mining techniques
that explicitly consider these links when building pre-
dictive or descriptive models of the linked data. Com-
monly addressed link mining tasks include collective
classification, object ranking, group detection, link pre-
diction, and subgraph discovery. Additional important
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components include entity resolution, and other data
cleaning and data mapping operations.

Motivation and Background

“Links,” or more generically “relationships,” among data
instances are ubiquitous. These links often exhibit pat-
terns that can indicate properties of the data instances
such as the importance, rank, or category of the
instances. In some cases, not all links will be observed;
therefore, we may be interested in predicting the exis-
tence of links between instances. Or, we may be inter-
ested in identifying unusual or anomalous links. In
other domains, where the links are evolving over time,
our goal may be to predict whether a link will exist in
the future, given the previously observed links. By tak-
ing links into account, more complex patterns may be
discernable as well. This observation leads to other chal-
lenges focused on discovering substructures, such as
communities, groups, or common subgraphs. In addi-
tion, links can also help in the process of »-entity resolu-
tion, or figuring out when two instance references refer
to the same underlying entity.

Link mining is a newly emerging research area
that is at the intersection of the work in link analysis
(Feldman, 2002; Jensen & Goldberg, 1998) hypertext
and web mining (Chakrabarti, 2002), »relational learn-
ing and »inductive logic programming (Raedt, 2008),
and »graph mining (Cook & Holder, 2000). We use
the term link mining to put a special emphasis on the
links - moving them up to first-class citizens in the data
analysis endeavor.

Theory/Solution
Traditional data mining algorithms such as »-association
rule mining, market basket analysis, and cluster anal-
ysis commonly attempt to find patterns in a dataset
characterized by a collection of independent instances
of a single relation. This is consistent with the classi-
cal statistical inference problem of trying to identify
a model given an independent, identically distributed
(IID) sample. One can think of this process as learning
amodel for the node attributes of a homogeneous graph
while ignoring the links between the nodes.

A key emerging challenge for data mining is tack-
ling the problem of mining richly structured, heteroge-
neous datasets. These kinds of datasets are commonly

described as networks or graphs. The domains often
consist of a variety of object types; the objects can
be linked in a variety of ways. Thus, the graph may
have different node and edge (or hyperedge) types.
Naively applying traditional statistical inference proce-
dures, which assume that instances are independent,
can lead to inappropriate conclusions about the data
(Jensen, 1999). Care must be taken that potential corre-
lations due to links are handled appropriately. In fact,
object linkage is knowledge that should be exploited.
This information can be used to improve the predic-
tive accuracy of the learned models: attributes of linked
objects are often correlated, and links are more likely to
exist between objects that have some commonality. In
addition, the graph structure itself may be an important
element to include in the model. Structural proper-
ties such as degree and connectivity can be important
indicators.

Data Representation
While data representation and feature selection are sig-
nificant issues for traditional machine learning algo-
rithms, data representation for linked data is even more
complex. Consider a simple example from Singh et al.
(2005) of a social network describing actors and their
participation in events. Such social networks are com-
monly called affiliation networks (Wasserman & Faust,
1994), and are easily represented by three tables rep-
resenting the actors, the events, and the participation
relationships. Even this simple structure can be rep-
resented as several distinct graphs. The most natural
representation is a bipartite graph, with a set of actor
nodes, a set of event nodes, and edges that represent an
actor’s participation in an event. Other representations
may enable different insights and analysis. For exam-
ple, we may construct a network in which the actors are
nodes and edges correspond to actors who have partici-
pated in an event together. This representation allows us
to perform a more actor-centric analysis. Alternatively,
we may represent these relations as a graph in which the
events are nodes, and events are linked if they have an
actor in common. This representation may allow us to
more easily see connections between events.

This flexibility in the representation of a graph arises
from a basic graph representation duality. This duality
is illustrated by the following simple example: Consider




608

Link Mining and Link Discovery

a data set represented as a simple G = (0,L), where
0 is the set of objects (i.e., the nodes or vertices) and
L is the set of links (i.e., the edges or hyperedges). The
graph G(0,L) can be transformed into a new graph
G'(0',L’), in which the links [;, [; in G are objects in
G’ and there exists an link between 0;,0; € 0" if and
only if /; and J; share an object in G. This basic graph
duality illustrates one kind of simple data representation
transformation. For graphs with multiple node and edge
types, the number of possible transformations becomes
immense. Typically, these reformulations are not con-
sidered as part of the link mining process. However, the
representation chosen can have a significant impact on
the quality of the statistical inferences that can be made.
Therefore, the choice of an appropriate representation is
actually an important issue in effective link mining, and
is often more complex than in the case where we have
IID data instances.

Link Mining Tasks

Link mining puts a new twist on some classic data min-
ing tasks, and also poses new problems. One way to
understand the different types of learning and inference
problems is to categorize them in terms of the compo-
nents of the data that are being targeted. Table 1 gives a
simple characterization. Note that for the object-related

Link Mining and Link Discovery. Table 1 A simple catego-
rization of different link mining tasks

1. Object-related tasks

a. Object classification (collective classification)

b. Object clustering (group detection)

c. Object consolidation (entity resolution)

d. Object ranking

2. Link-related tasks

a. Link labeling/classification

b. Link prediction

¢. Linkranking

3. Graph-related tasks

a. Subgraph discovery

b. Graph classification

tasks, even though we are concerned with classifying,
clustering, consolidating, or ranking the objects, we will
be exploiting the links. Similarly for link-related tasks,
we can use information about the objects that partic-
ipate in the links, and their links to other objects and
SO On.

In addition, because of the underlying link struc-
ture, link mining affords the opportunity for inferences
and predictions to be collective or dependent on one
another. The simplest example of this is in collective
classification, where the inferred label of one node can
depend on the inferred label of its neighbors. There are a
variety of ways of modeling and exploiting this depen-
dence. Methods include performing joint inference in
the appropriate probabilistic model, use of informa-
tion diffusion models, constructing and optimizing the
appropriate structured prediction using a max margin
approach, and others.

Additional information on different link mining
subtasks is provided in separate entries on collective clas-
sification, entity resolution, group detection, and link pre-
diction. Related problems and techniques can be found
in the entries on relational learning, graph mining, and
inductive logic programming.

Cross References

» Collective Classification
»Entity Resolution

» Graph Clustering

» Graph Mining

»Group Detection

»Inductive Logic Programming
» Link Prediction

» Relational Learning
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Synonyms
Edge prediction; Relationship extraction

Definition

Many datasets can naturally be represented as graph
where nodes represent instances and links represent
relationships between those instances. A fundamental
problem with these types of data is that the link infor-
mation in the graph maybe of dubious quality; links
may incorrectly exist between unrelated nodes and links
may be missing between two related nodes. The goal of
link prediction is to predict the existence of incorrect or
missing links between the nodes of the graph.

Theory/Solution

Inferring the existences of edges between nodes in a
graph has traditionally been referred to as link predic-
tion (Liben-Nowell & Kleinberg, 2003; Taskar, Wong,
Abbeel, & Koller, 2003). Link prediction is a chal-
lenging problem that has been studied in various
guises in different domains. For example, in social net-
work analysis, there is work on predicting friendship
links (Zheleva, Getoor, Golbeck, & Kuter, 2008), event
participation links (i.e., coauthorship (O’Madadhain,
Hutchins, & Smyth, 2005)), communication links (i.e.,
email (O’Madadhain et al., 2005)), and links repre-
senting semantic relationships (i.e., advisor-of (Taskar
et al,, 2003), subordinate-manager (Diehl, Namata, &
Getoor, 2007)). In bioinformatics, there is interest in
predicting the existence of edges representing physical
protein—protein interactions (Yu, Paccanaro, Trifonov,

& Gerstein, 2006; Szilagyi et al., 2005), domain-domain
interactions (Deng, Mehta, Sun, & Chen, 2002), and
regulatory interactions (Albert et al., 2007). Similarly,
in computer network systems there is work in infer-
ring unobserved connections between routers, as well
as inferring relationships between autonomous systems
and service providers (Spring, Wetherall, & Ander-
son, 2004). There is also work on using link prediction
to improve recommender systems (Farrell, Campbell,
& Myagmar, 2005), Web site navigation (Zhu, 2003),
surveillance (Huang & Lin, 2008), and automatic docu-
ment cross referencing (Milne & Witten, 2008).

We begin with some basic definitions and notation.
We refer to the set of possible edges in a graph as poten-
tial edges. The set of potential edges depends on the
graph type, and how the edges for the graph are defined.
For example, in a directed graph, the set of potential
edges consists of all edges e = (v;,v,) where v; and v,
are any two nodes V in the graph (i.e., the number of
potential edges is | V| x |V]). In an undirected bipartite
graph with two subsets of nodes (V1,V, € V), while
the edges still consist of a pair of nodes, e = (v1,v,),
there is an added condition such that one node must
be from V; and the other node must be from V5; this
resultsin |Vy| x | V| potential edges. Next, we refer to set
of “true” edges in a graph as positive edges, and we refer
to the “true” non-edges in a graph (i.e., pairs of nodes
without edges between them) as negative edges. For a
given graph, typically we only have information about
a subset of the edges; we refer to this set as the observed
edges. The observed edges can include both positive
and negative edges, though in many formulations there
is an assumption of positive-only information. We can
view link prediction as a probabilistic inference prob-
lem, where the evidence includes the observed edges,
the attribute values of the nodes involved in the poten-
tial edge, and possibly other information about the net-
work, and for any unobserved, potential edge, we want
to compute the probability of it existing. This can be
reframed as a binary classification problem by choos-
ing some probability threshold, and concluding that
potential edges with existence probability above the
threshold are true edges, and those below the thresh-
old are considered false edges (more complex schemes
are possible as well). For noisy and incomplete net-
works, we use terminology from the machine learning
literature and refer to an edge that is inferred to exists



610

Link Prediction

and is a true edge in the graph as a true positive edge,
an edge that should exist but is not inferred as a false
negative edge, an edge that should not exist and is not
inferred as a true negative edge, and an edge that should
not exist but is incorrectly inferred to exist as a false
positive edge.

One of the early and simple formulations of the link
prediction problem was proposed by Liben-Nowell and
Kleinberg (2003). They proposed a temporal prediction
problem defined over a dynamic network where given
a graph G;(V E;) at time ¢, the problem is to infer
the set of edges at the next time step ¢ + 1. More for-
mally, the objective is to infer a set of edges E,.,, where
Ei1 = E;UE,.y. We use a more general definition of
link prediction proposed by Taskar et al. (2003) where
given a graph G and the set of potential edges in G,
denoted P(G), the problem of link prediction is to pre-
dict for all p € P(G) whether p exists or does not exists,
remaining agnostic on whether G is a noisy graph with
missing edges or a snapshot of a dynamic graph at a
particular time point.

Approaches

In this section, we discuss the two general cate-
gories of the current link prediction models: topology-
based approaches and node attribute-based approaches.
Topology-based approaches are methods that rely solely
on the topology of the network to infer edges. Node
attribute-based approaches make predictions based on
the attribute values of the nodes incident to the edges.
In addition, there are models that make use of both
structure and attribute values.

Topology-Based Approaches

A number of link prediction models have been pro-
posed, which rely solely on the topology of the network.
These models typically rely on some notion of structural
proximity, where nodes that are close are likely to share
an edge (e.g., sharing common neighbors, nodes with
a small shortest path distance between). The earliest
topological approach for link prediction was proposed
by Liben-Nowell and Kleinberg (2003). In this work,
Liben-Nowell and Kleinberg proposed various struc-
ture based similarity scores and applied them over the
unobserved edges of an undirected graph. They then
use a threshold k, and only predict edges with the top

k scores as existing. A variety of similarity scores were
proposed, given two nodes v; and v,, including graph
distance (the length of the shortest path between 1,
and v,), common neighbors (the size of the intersec-
tion of the sets of neighbors of v; and v,), and more
complex measures such as the Katz measure, (the sum
of the lengths of the paths between v; and v, expo-
nentially damped by length to count short paths more
heavily). Evaluating over a coauthorship network, the
best performing proximity score measure was the Katz
measure, however the simple measures, which rely only
on the intersection of the set of nodes adjacent to both
nodes, performed surprisingly well. A related approach
was proposed by Yu et al. (2006), which applies the
link prediction problem to predicting missing protein—
protein interactions (PPI) from PPI networks generated
by high throughput methods. This work assumes that
interacting proteins tend to form a clique. Thus, miss-
ing edges can be predicted by predicting the existence
of edges that will create cliques in the network. More
recent work by Clauset, Moore, and Newman (2008)
has tried to go beyond predicting edges between neigh-
boring nodes. In their problem domain of food webs,
for example, pairs of predators often prey on a shared
prey species but rarely prey on each other. Thus, in these
networks, predicting “predator—prey” edges need to go
beyond proximity. For this, they propose a “hierarchi-
cal random graph” approach, which fits a hierarchical
model to all possible dendrograms of a given network.
The model is then used to calculate the likelihood of an
edge existing in the network.

Node Attribute-Based Approaches

Although topology is useful in link prediction, topology-
based approaches ignore an important source of infor-
mation in networks, the attributes of nodes. Often there
are correlations in the attributes of nodes that share
an edge with each other. One approach that exploits
this correlation was proposed by Taskar et al. (2003).
In their approach, Taskar et al. (2003) applied the rela-
tional Markov network (RMN) framework to link pre-
diction to predicting the existence and class of edges
between Web sites. They exploit the fact that certain
links can only exist between nodes of the appropri-
ate type. For example, an “advisor” edge can only exist
between student and faculty.
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Another approach that uses node attributes was
proposed by Popescul and Ungar (2003). In that
approach, they used a structured Mlogistic regres-
sion model over learned relational features to predict
citation edges in a citation network. Their relational
features are built over attributes such as the words
used in the paper nodes. O’Madadhain et al. (2005)
also approached an attribute based approach, con-
structing local conditional probability models based on
the attributes such as node attribute similarity, topic
distribution, and geographical location in predicting
“co-participation” edges in an email communication
network. More recently, there is work on exploiting
other node attributes like the group membership of the
nodes. Zheleva et al. (2008) showed that membership in
family groups are very useful in predicting friendship
links in social networks. Similarly, Sprinzak, Altuvia,
& Margalit (2006) showed that using protein complex
information can be useful in predicting protein—protein
interactions. Finally, we note that in link prediction,
as in classification, the quality of predictions can
be improved by making the predictions collectively.
Aside from the relational Markov network approach
by Taskar et al. (2003) mentioned earlier, Markov
logic networks (Richardson & Domingos, 2006) and
probabilistic relational models (Getoor, Friedman,
Koller, & Taskar, 2003) have also been proposed for
link prediction and are capable of performing joint
inference.

Issues

There are a number of challenges that make link pre-
diction very difficult. The most difficult challenge is the
large class skew between the number of edges that exist
and the number of edges that do not. To illustrate, con-
sider directed graph denoted by G(V,E). While the
number of edges |E| is often O(|V]), the number of
edges that do not exist is often O(|V|*). Consequently,
the prior probability edge existence is very small. This
causes many supervised models, which naively optimize
for accuracy, to learn a trivial model, which always pre-
dicts that a link does not exist. A related problem in link
prediction is the large number of edges whose existence
must be considered. The number of potential edges is
O(|V|?) and this limits the size of the data sets that can
be considered.

In practice, there are general approaches to address-
ing these issues either prior to or during the link predic-
tion. With both large class skew and number of edges to
contend with, the general approach is to make assump-
tions that reduce the number of edges to consider. One
common way to do this is to partition the set of nodes
where we only consider potential edges between nodes
of the same partition; edges between partitions are not
explicitly modeled, but are assumed not to exist. This
is useful in many domains where there is some sort of
natural partition among the nodes available (e.g., geog-
raphy in social networks, location of proteins in a cell),
which make edges across partitions unlikely. Another
way is to define some simple, computationally inexpen-
sive distance measure such that only edges whose nodes
are within some distance are considered.

Another practical issue in link prediction is that
while real-world data often indicates which edges exist
(positive examples), the edges which do not exist (neg-
ative examples) are rarely annotated for use by link
prediction models. In bioinformatics, for example, the
protein—protein interaction network of yeast, the most
and annotated studied organism, is annotated with
thousands of observed edges (physical interactions)
between the nodes (proteins) gathered from numerous
experiments. There are currently, however, no major
datasets available that indicate which proteins definitely
do not physically interact. This is an issue not only in
creating and learning models for link prediction, but
is also an issue evaluating them. Often, it is unclear
whether a predicted edge which is not in our ground
truth data is an incorrectly predicted edge or an edge
resulting from incomplete data.

Related Problems

In addition to the definition of link prediction discussed
above, it is also important to mention three closely
related problems: link completion, leak detection, and
anomalous link discovery, whose objectives are differ-
ent but very similar to link prediction. Link completion
(Chaiwanarom & Lursinsap, 2008; Goldenberg, Kubica,
Komarek, Moore, & Schneider, 2003) and leak detec-
tion (Balasubramanyan, Carvalho, & Cohen, 2009; Car-
valho & Cohen, 2007), are a variation of link prediction
over hypergraphs. A hypergraph is a graph where the
edges (known as hyperedges) can connect any number
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of nodes. For example, in a hypergraph representing
an email communication network, a hyperedge may
connect nodes representing email addresses that are
recipients of a particular email communication. In link
completion, given the set of nodes that participate in
a particular hyperedge, the objective is to infer nodes
that are missing. For the email communication network
example, link completion may involve inferring which
email addresses need to be added to the recipients list
of an email communication. Conversely, in leak detec-
tion, given the set of nodes participating in a particular
hyperedge, the objective is to infer which nodes should
not be part of that hyperedge. For example, in email
communications, leak detection will attempt to infer
which email address nodes are incorrectly part of the
hyperedge representing the recipient list of the email
communication.

The last problem, anomalous link discovery (Huang
& Zeng, 2006; Rattigan & Jensen, 2005), has been pro-
posed as an alternate task to link prediction. As with
link completion, the existence of the edges are assumed
to be observed, and the objective is to infer which of
the observed links are anomalous or unusual. Specif-
ically, anomalous link discovery identifies which links
are statistically improbable with the idea that these may
be of interest for those analyzing the network. Rattigan
and Jensen (2005) show that some methods that per-
form poorly for link prediction can still perform well
for anomalous link discovery.
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»Statistical Relational Learning
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Link-Based Classification

» Collective Classification

| Liquid State Machine

»Reservoir Computing

| Local Distance Metric Adaptation

Synonyms

Supersmoothing; Nonstationary kernels; Kernel

shaping

Definition

In learning systems with kernels, the shape and size of
a kernel plays a critical role for accuracy and general-
ization. Most kernels have a distance metric parameter,
which determines the size and shape of the kernel in
the sense of a Mahalanobis distance. Advanced kernel
learning tune every kernel’s distance metric individu-
ally, instead of turning one global distance metric for all
kernels.

Cross References
» Locally Weighted Regression for Control

[
Local Feature Selection

»Projective Clustering

| Locality Sensitive Hashing Based
Clustering

XIN JIN, JIAWETI HAN
University of Illinois at Urbana-Champaign
Urbana, IL, USA

The basic idea of the LSH (Gionis, Indyk, & Motwani,
1999) technique is using multiple hash functions to hash
the data points and guarantee that there is a high prob-
ability of collision for points which are close to each
other and low collision probability for dissimilar points.
LSH schemes exist for many distance measures, such

as Hamming norm, L, norms, cosine distance, earth
movers distance (EMD), and Jaccard coefficient.

In LSH, define a family H = {h : S - U} as locality-
sensitive, if for any a, the function p(t) = Pry[h(a) =
h(b) : |la — b|]| = x] is decreasing in x. Based on this
definition, the probability of collision of points a and b
is decreasing with their distance.

Although LSH was originally proposed for approx-
imate nearest neighbor search in high dimensions, it
can be used for clustering as well (Das, Datar, Garg, &
Rajaram, 2007; Haveliwala, Gionis, & Indyk, 2000). The
buckets could be used as the bases for clustering. Seed-
ing the hash functions several times can help getting
better quality clustering.
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Synonyms

Kernel shaping; Lazy learning; Local distance metric
adaptation; Locally weighted learning; LWPR; LWR;
Nonstationary kernels supersmoothing

Definition
This article addresses two topics: »learning control and
locally weighted regression.
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» Learning control refers to the process of acquiring
a control strategy for a particular control system and
a particular task by trial and error. It is usually distin-
guished from adaptive control (Astrom & Wittenmark,
1989) in that the learning system is permitted to fail
during the process of learning, resembling how humans
and animals acquire new movement strategies. In con-
trast, adaptive control emphasizes single trial conver-
gence without failure, fulfilling stringent performance
constraints, e.g., as needed in life-critical systems like
airplanes and industrial robots.

Locally weighted regression refers to »supervised
learning of continuous functions (otherwise known as
function approximation or »regression) by means of
spatially localized algorithms, which are often discussed
in the context of »kernel regression, »-nearest neighbor
methods, or »-lazy learning (Atkeson, Moore, & Schaal,
1997). Most regression algorithms are global learning
systems. For instance, many algorithms can be under-
stood in terms of minimizing a global »loss function
such as the expected sum squared error:

N 2 N T 2
]global:E[;;(ti_y;‘)]:E[;;(ti_(p(xi) ﬁ)]
©)

where E[-] denotes the expectation operator, t; the
noise-corrupted target value for an input x;, which is
expanded by basis functions into a basis function vec-
tor ¢ (x;), and B the vector of (usually linear) regression
coefficients. Classical feedforward »neural networks,
» radial basis function networks, »mixture models, or
»Gaussian Process regression are all global function
approximators in the spirit of Eq. (1).

In contrast, local learning systems split up concep-
tually the cost function into multiple independent local
function approximation problems, using a cost function
such as the one below:
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Motivation and Background
Figure 1 illustrates why locally weighted regression
methods are often favored over global methods when

it comes to learning from incrementally arriving data,
especially when dealing with nonstationary input dis-
tributions. The figure shows the division of the training
data into two sets: the “original training data” and the
“new training data” (in dots and crosses, respectively).

Initially, a sigmoidal »neural network and a locally
weighted regression algorithm are trained on the “orig-
inal training data,” using 20% of the data as a cross-
validation set to assess convergence of the learning. In
a second phase, both learning systems are trained solely
on the “new training data” (again with a similar cross-
validation procedure), but without using any data from
the “original training data” While both algorithms gen-
eralize well on the “new training data,” the global learner
incurred catastrophic interference, unlearning what
was learned initially, as seen in Fig. la, b shows that the
locally weighted regression algorithm does not have this
problem since learning (along with »generalization) is
restricted to a local area.

Appealing properties of locally weighted regression
include the following:

e Function approximation can be performed incre-
mentally with nonstationary input and output dis-
tributions and without significant danger of inter-
ference. Locally weighted regression can provide
»posterior probability distributions, offer confi-
dence assessments, and deal with heteroscedastic
data.

o Locally weighted learning algorithms are compu-
tationally inexpensive to compute. It is well suited
for online computations (e.g., for P»online and
»incremental learning) in the fast control loop of a
robot - typically on the order of 100-1000 Hz.

o Locally weighted regression methods can implement
continual learning and learning from large amounts
of data without running into severe computational
problems on modern computing hardware.

e Locally weighted regression is a nonparametric
method (i.e., it does not require that the user deter-
mine a priori the number of local models in the
learning system), and the learning systems grows
with the complexity of the data it tries to model.

o Locally weighted regression can include »feature
selection, »dimensionality reduction, and »Baye-
sian inference - all which are required for robust
statistical inference.
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Locally Weighted Regression for Control. Figure 1. Function approximation results for the function y = sin(2x) +
2exp(-16x>) + N(0, 0.16) with (a) a sigmoidal neural network; (b) a locally weighted regression algorithm (note that the
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data traces “truey,

predicted y,” and “predicted y after new training data” largely coincide); and (c) the organization

of the (Gaussian) kernels of (b) after training. See Schaal and Atkeson (1998) for more details

e Locally weighted regression works favorably with
locally linear models (Hastie & Loader, 1993), and
local linearizations are of ubiquitous use in control
applications.

Background
Returning to Eqgs. (1) and (2), the main differences
between both equations are listed below:

(i) A weight w; x is introduced that focuses the func-
tion approximation on only a small neighbor-
hood around a point of interest ¢ in input space
(see Eq. 3 below).

(ii) The cost function is split into K independent
optimization problems.

(iii) Due to the restricted scope of the function
approximation problem, we do not need a non-
linear basis function expansion and can, instead,
work with simple local functions or local polyno-
mials (Hastie & Loader, 1993).

The weights wy; in Eq. (2) are typically computed from
some Pkernel function (Atkeson, Moore, & Schaal,

1997) such as a squared exponential kernel

Wk, = €Xp (—% (xi - cx)" Dy (Xi_ck)) (3)

with Dy denoting a positive semidefinite distance met-
ric and ¢ the center of the kernel. The number of ker-
nels K is not finite. In many local learning algorithms,
the kernels are never maintained in memory. Instead,
for every query point x;, a new kernel is centered at
¢k = X4, and the localized function approximation is
solved with weighted »regression techniques (Atkeson
etal, 1997).

Locally weighted regression should not be con-
fused with mixture of experts models (Jordan & Jacobs,
1994). »Mixture models are global learning systems
since the experts compete globally to cover train-
ing data. Mixture models address the »bias-variance
dilemma (Intuitively, the M bias-variance dilemma
addresses how many parameters to use for a func-
tion approximation problem to find an optimal bal-
ance between Poverfitting and oversmoothing of the
training data) by finding the right number of local
experts. Locally weighted regression addresses the
»bias-variance dilemma in a local way by finding the
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optimal distance metric for computing the weights
in the locally weighted regression (Schaal & Atkeson,
1998). We describe some algorithms to find D next.

Structure of Learning System
For a locally linear model centered at the query point
X, the regression coefficients would be

B, = (XTW,X) " XTW,t (4)

where X is a matrix that has all training input data
points in its rows (with a column of 1s added in the last
column for the offset parameter in »linear regression).
W, is a diagonal matrix with the corresponding weights
for all data points, computed from Eq. (3) with ¢ = x,,
and t is the vector of regression targets for all train-
ing points. Such a “compute-the-prediction-on-the-fly”
approach is often called lazy learning (The approach
is “lazy” because the computational of a prediction is
deferred until the last moment, i.e., when a predic-
tion is needed) and is a memory-based learning system
where all training data is kept in memory for making
predictions.

Alternatively, kernels can be created as needed to
cover the input space, and the sufficient statistics of
the weighted regression are updated incrementally with
recursive least squares (Schaal & Atkeson, 1998). This
approach does not require storage of data points in
memory. Predictions of neighboring local models can
be blended, improving function fitting results in the
spirit of committee machines.

Memory-Based Locally Weighted
Regression (LWR)

The original locally weighted regression algorithm was
introduced by Cleveland (1979) and popularized in the
machine learning and learning control community by
Atkeson (1989). The algorithm is largely summarized
by Eq. (4) (for algorithmic pseudo-code, see (Schaal,
Atkeson, & Vijayakumar, 2002)):

o All training data is collected in the matrix X and the
vector t (For simplicity, only functions with a scalar
output are addressed. Vector-valued outputs can be
learned either by fitting a separate learning system
for each output or by modifying the algorithms to
fit multiple outputs (similar to multi-output linear
regression)).

o For every query point x;, the weighting kernel is
centered at the query point.
o The weights are computed with Eq. (3).
o The local regression coefficients are computed
according to Eq. (4).
* A prediction is formed with y, = [x] 1] B,.
As in all kernel methods, it is important to optimize
the kernel parameters in order to get optimal function
fitting quality. For LWR, the critical parameter deter-
mining the »bias-variance tradeoff is the distance met-
ric D,. If the kernel is too narrow, it starts fitting noise.
If it is too broad, oversmoothing will occur. D, can be
optimized with leave-one-out cross-validation to obtain
a globally optimal value, i.e., the same D, = D is used
throughout the entire input space of the data. Alter-
natively, D, can be locally optimized as a function of
the query point, i.e., obtain a D, as a function of the
query point (as already indicated by the subscript “q”).
In the recent machine learning literature (in particular,
work related to kernel methods), such input dependent
kernels are referred to as nonstationary kernels.

Locally Weighted Projection Regression
(LWPR)

Schaal and Atkeson (1998) suggested a memoryless ver-
sion of LWR in order to avoid the expensive »nearest
neighbor computations - particularly for large training
data sets — of LWR and to have fast real-time (In most
robotic systems, “real-time” means on the order of max-
imally 1-10 ms computation time, corresponding to a
1000-100 Hz control loop) prediction performance. The
main ideas of the RFWR algorithm (Schaal & Atkeson,
1998) are listed below:

o Create new kernels only if no existing kernel in
memory covers a training point with some minimal
activation weight.

o Keep all created kernels in memory and update the
weighted regression with weighted recursive least
squares for new training points {x, f}:

B =B+ wP 'k (t-x"B})

1 P/xx P!
where P = 5 (PZ - }LkTPk)
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w

and X = [XT 1]T. (5)
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o Adjust the distance metric D, for each kernel with
a gradient descent technique using leave-one-out
cross-validation.

e Make a prediction for a query point taking a weig-
hted average of predictions from all local models:

K .
B Ykl Wa.kY g,k

¥q Z}Ile Wak (6)
Adjusting the distance metric D, with leave-one-
out cross-validation without keeping all training data
in memory is possible due to the PRESS residual.
The PRESS residual allows the leave-one-out cross-
validation error to be computed in closed form with-
out needing to actually exclude a data point from the
training data.

Another deficiency of LWR is its inability to
scale well to high-dimensional input spaces since the
»covariance matrix inversion in Eq. (4) becomes
severely ill-conditioned. Additionally, LWR becomes
expensive to evaluate as the number of local models
to be maintained increases. Vijayakumar, D’Souza and
Schaal (2005) suggested local »dimensionality reduc-
tion techniques to handle this problem. Partial least
squares (PLS) regression is a useful »dimensionality
reduction method that is used in the LWPR algo-
rithm (Vijayakumar et al., 2005). In contrast to PCA
methods, PLS performs »dimensionality reduction for
»regression, i.e., it eliminates subspaces of the input
space that minimally correlate with the outputs, not just
parts of the input space that have low variance.

LWPR is currently one of the best developed locally
weighted regression algorithms for control (Klanke,
Vijayakumar, & Schaal, 2008) and has been applied
to learning control problems with over 100 input
dimensions.

A Full Bayesian Treatment of Locally
Weighted Regression

Ting, Kalakrishnan, Vijayakumar, and Schaal (2008)
proposed a fully probabilistic treatment of LWR in
an attempt to avoid cross-validation procedures and
minimize any manual parameter tuning (e.g., gradient
descent rates, kernel initialization, and forgetting rates).
The resulting Bayesian algorithm learns the distance
metric of local linear model (For simplicity, a local lin-
ear model is assumed, although local polynomials can

be used as well) probabilistically, can cope with high
input dimensions, and rejects data outliers automati-
cally. The main ideas of Bayesian LWR are listed below
(please see Ting (2009) for details):

e Introduce hidden variables z to the local linear
model (as in Variational Bayesian least squares (Ting
et al., 2005)) to decompose the statistical estima-
tion problem into d individual estimation prob-
lems (where d is the number of input dimensions).
The result is an iterative Expectation-Maximization
(EM) algorithm that is of linear »computational
complexity in d and the number of training data
samples N, i.e., O(Nd).

e Associate a scalar weight w; with each training data
sample {x;,;}, placing a Bernoulli »prior probabil-
ity distribution over a weight for each input dimen-
sion so that the weights are positive and between 0
and I:

d
w; = w;n where
1 rg m (7)

Wim ~ Bernoulli (g;,,) fori=1,.,N;m=1,...d

where the weight w; is decomposed into indepen-
dent components in each input dimension w;,, and
Qim 1s the parameter of the Bernoulli »probability
distribution. The weight w; indicates a training sam-
ple’s contribution to the local model. An outlier
will have a weight of 0 and will, thus, be automati-
cally rejected. The formulation of g;,,, determines the
shape of the weighting function applied to the local
model. The weighting function g, used in Bayesian
LWR is listed below:

1
dim = 2

fori=1,.,Nym=1,..,d
1+ (xim ~Xqm) hm

(8)

where x,; € R is the query input point and h,,
is the bandwidth parameter/distance metric of the
local model in the m-th input dimension (The dis-
tance metric/bandwidth is assumed to be a diagonal
matrix, i.e., bandwidths in each input dimension are
independent. That is to say, D = H, where h is the
diagonal vector and h,, are the coeflicients of h).
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e Place a Gamma Pprior probability distribution over
the distance metric h,,,:

hy ~ Gamma (@nmo» bpmo) %)

where {apmo, bpmo | are the prior parameter values of
the Gamma distribution.

o Treat the model as an EM-like »regression prob-
lem, using »variational approximations to achieve
analytically tractable inference of the Mposterior
probability distributions.

The initial parameters {apmo, bpmo } should be set so
that the »prior probability distribution over A,, is unin-
formative and wide (e.g., anmo = bumo = 107°). The other
»prior probability distribution that needs to be speci-
fied is the one over the noise variance random variable -
and this is best set to reflect how noisy the data set is
believed to be. More details can be found in Ting (2009).

This Bayesian method can can also be applied as
general kernel shaping algorithm for global »kernel
learning methods that are linear in the parameters (e.g.,
to realize nonstationary P»Gaussian processes (Ting
et al., 2008), resulting in an augmented nonstationary
» Gaussian Process).

Figure 2 illustrates Bayesian kernel shaping’s band-
width adaptation abilities on several synthetic data sets,
comparing it to a stationary »Gaussian Process and
the augmented nonstationary »Gaussian Process. For
the ease of visualization, the following one-dimensional
functions are considered: (i) a function with a disconti-
nuity, (ii) a spatially inhomogeneous function, and (iii)
a straight line function. The data set for function (i)
consists of 250 training samples, 201 test inputs (evenly
spaced across the input space), and output noise with
variance of 0.3025; the data set for function (ii) consists
of 250 training samples, 101 test inputs, and an output
signal-to-noise ratio (SNR) of 10; and the data set for
function (iii) has 50 training samples, 21 test inputs, and
an output SNR 0f 100. Figure 2 shows the predicted out-
puts of all three algorithms for data sets (i)-(iii). The
local kernel shaping algorithm smoothes over regions
where a stationary »Gaussian Process overfits and yet,
it still manages to capture regions of highly varying
curvature, as seen in Figs. 2a and 2b.

It correctly adjusts the bandwidths & with the cur-
vature of the function. When the data looks linear, the
algorithm opens up the weighting kernel so that all data
samples are considered, as Fig. 2c shows.
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Locally Weighted Regression for Control. Figure 2. Predicted outputs using a stationary Gaussian Process (GP), the

augmented nonstationary GP and local kernel shaping on three different data sets. Figures on the bottom row show

the bandwidths learned by local kernel shaping and the corresponding weighting kernels (in dotted black lines) for

various input query points (shown in red circles)
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From the
»overfitting — as seen in the »Gaussian Process in

viewpoint of Wlearning control,
Fig. 2 - can be detrimental since »learning control
often relies on extracting local linearizations to derive
»controllers (see Applications section). Obtaining the
wrong sign on a slope in a local linearization may desta-
bilize a »-controller.

In contrast to LWPR, the Bayesian LWR method
is memory-based, although memoryless versions could
be derived. Future work will also have to address how
to incorporate »dimensionality reduction methods for
robustness in high dimensions. Nevertheless, it is a first
step toward a probabilistic locally weighted regression
method with minimal parameter tuning required by the
user.

Applications

Learning an internal model is one of most typical
applications of LWR methods for control. The model
could be a forward model (e.g, the nonlinear differ-
ential equations of robot dynamics), an inverse model
(e.g., the equations that predict the amount of torque
to achieve a change of state in a robot), or any other
function that models associations between input and
output data about the environment. The models are
used, subsequently, to compute a »controller e.g., an
inverse dynamics controller similar to Eq. (12). Mod-
els for complex robots such as humanoids exceed easily

20 - 350
18 3 Parameter b

] Estimation - 300
— LWPR ;250
£ 200
- 150
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#Training data points
Learning curve locally weighted projection
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a hundred input dimensions. In such high-dimensional
spaces, it is hopeless to assume that a representative data
set can be collected for offline training that can general-
ize sufficiently to related tasks. Thus, the LWR philoso-
phy involves having a learning algorithm that can learn
rapidly when entering a new part of the state space such
that it can achieve acceptable »generalization perfor-
mance almost instantaneously.

Figure 3 demonstrates Ponline learning of an
inverse dynamics model for the elbow joint (cf. Eq. 12)
for a Sarcos Dexterous Robot Arm. The robot starts with
no knowledge about this model, and it tracks some ran-
domly varying desired trajectories with a proportional-
derivative (PD) controller. During its movements, train-
ing data consisting of tuples (q,q, q, 7) — which model
a mapping from joint position, joint velocities and joint
accelerations (q, g, q) to motor torques 7 — are collected
(at about every 2 ms). Every data point is used to train a
LWPR function approximator, which generates a feed-
forward command for the controller. The »learning
curve is shown in Fig. 3a.

Using a test set created beforehand, the model pre-
dictions of LWPR are compared every 1,000 training
points with that of a parameter estimation method.
The parameter estimation approach fits the minimal
number of parameters to an analytical model of the
robot dynamics under an idealized rigid body dynam-
ics (RBD) assumptions, using all training data (i.e.,
not incrementally). Given that the Sarcos robot is a

#Receptive fields

b  Seven Degree-of-Freedom Sarcos Robot Arm

Locally Weighted Regression for Control. Figure 3. Learning an inverse dynamics model in real-time with a high-

performance anthropomprohic robot arm
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hydraulic robot, the RBD assumption is not very suit-
able, and, as Fig. 3a shows, LWPR (in thick red line)
outperforms the analytical model (in dotted blue line)
after a rather short amount of training. After about
5 min of training (about 125,000 data points), very good
performance is achieved, using about 350 local models.
This example demonstrates (i) the quality of func-
tion approximation that can be achieved with LWPR
and (ii) the online allocation of more local models as
needed.

Learning inverse models (such as inverse kinematics
and inverse dynamics models) can be challenging since
the inverse model problem is often a relation, not a
function, with a one-to-many mapping. Applying any
arbitrary nonlinear function approximation method to
the inverse model problem can lead to unpredictably
bad performance, as the training data can form non-
convex solution spaces, in which averaging is inap-
propriate. Architectures such as »mixture models (in
particular, mixture density networks) have been pro-
posed to address problems with non-convex solution
spaces. A particularly interesting approach in control
involves learning linearizations of a forward model
(which is proper function) and learning an inverse map-
ping within the local region of the forward model.
Ting et al. (2008) demonstrated such a forward-
inverse model learning approach with Bayesian LWR
to learn an inverse kinematics model for a haptic robot
arm (shown in Fig. 4) in order to control the end-
effector along a desired trajectory in task space. Training

Locally Weighted Regression for Control. Figure 4.
SensAble Phantom haptic robotic arm

data was collected while the arm performed random
sinusoidal movements within a constrained box volume
of Cartesian space. Each sample consists of the arm’s
joint angles q, joint velocities ¢, end-effector position in
Cartesian space x, and end-effector velocities x. From
this data, a forward kinematics model is learned:

x=J(q)q (10)

where J(q) is the Jacobian matrix. The transformation
from q to x can be assumed to be locally linear at a
particular configuration q of the robot arm. Bayesian
LWR is used to learn the forward model, and, as in
LWPR, local models are only added if a training point
is not already sufficiently covered by an existing local
model. Importantly, the kernel functions in LWR are
localized only with respect to q, while the regression
of each model is trained only on a mapping from q to
X - these geometric insights are easily incorporated as
priors in Bayesian LWR, as they are natural to locally
linear models. Incorporating these priors in other func-
tion approximators, e.g., »Gaussian Process regression,
is not straightforward.

The goal of the robot task is to track a desired trajec-
tory (x, %) specified only in terms of x, z positions and
velocities, i.e., the movement is supposed to be in a ver-
tical plane in front of the robot, but the exact position
of the vertical plane is not given. Thus, the task has one
degree of redundancy, and the learning system needs to
generate a mapping from {x,X} to q. Analytically, the
inverse kinematics equation is

# . # a
q=V(@x-a(l-J J)a—fl (1)

where J*(q) is the pseudo-inverse of the Jacobian. The
second term is an gradient descent optimization term
for redundancy resolution, specified here by a cost func-
tion g in terms of joint angles q.

To learn an inverse kinematics model, the local
regions of q from the forward model can be re-used
since any inverse of J is locally linear within these
regions. Moreover, for locally linear models, all solution
spaces for the inverse model are locally convex, such
that an inverse can be learned without problems. The
redundancy issue can be solved by applying an addi-
tional weight to each data point according to a reward
function. Since the experimental task is specified in
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Locally Weighted Regression for Control. Figure 5. Desired versus actual trajectories for SensAble Phantom robot arm

terms of {x, 2}, a reward is defined, based on a desired
y coordinate, y4,, and enforced as a soft constraint.
The resulting reward function, is g = e~ z"(k(vaes=») -y )
where k is a gain and h specifies the steepness of the
reward. This ensures that the learned inverse model
chooses a solution that pushes y toward y4.;. Each for-
ward local model is inverted using a weighted »linear
regression, where each data point is weighted by the
kernel weight from the forward model and addition-
ally weighted by the reward. Thus, a piecewise locally
linear solution to the inverse problem can be learned
efficiently.

Figure 5 shows the performance of the learned
inverse model (Learnt IK) in a figure-eight tracking
task. The learned model performs as well as the ana-
Iytical inverse kinematics solution (Analytical IK), with
root mean squared tracking errors in positions and
velocities very close to that of the analytical solution.

Mitrovic, Klanke, and Vijayakumar (2008) have explored
a theory for sensorimotor adaptation in humans, i.e.,

how humans replan their movement trajectories in the

presence of perturbations. They rely on the iterative

Linear Quadratic Gaussian (iLQG) algorithm (Todorov

& Li, 2004) to deal with the nonlinear and chang-

ing plant dynamics that may result from altered mor-

phology, wear and tear, or external perturbations. They

take advantage of the “on-the-fly” adaptation of locally

weighted regression methods like LWPR to learn the

forward dynamics of a simulated arm for the purpose of
optimizing a movement trajectory between a start point

and an end point.

Figure 6a shows the diagram of a two degrees-of-
freedom planar human arm model, which is actuated
by four single-joint and two double-joint antagonis-
tic muscles. Although kinematically simple, the sys-
tem is over-actuated and, therefore, it is an interesting
testbed because large redundancies in the dynamics
have to be resolved. The dimensionality of the con-
trol signals makes adaptation processes (e.g., to external
force fields) quite demanding.

The dynamics of the arm is, in part, based on stan-
dard RBD equations of motion:

T=M(q)4+C(q4)q (12)

where 7 are the joint torques; q and q are the joint
angles and velocities, respectively; M(q) is the two-
dimensional symmetric joint space inertia matrix; and
C(q,q) accounts for Coriolis and centripetal forces.
Given the antagonistic muscle-based actuation, it is not
possible to command joint torques directly. Instead, the
effective torques from the muscle activations u — which
happens to be quadratic in u - should be used. As a
result, in contrast to standard torque-controlled robots,
the dynamics equation in Eq. (12) is nonlinear in the
control signals u.

The iLQG algorithm (Todorov & Li, 2004) is used
to calculate solutions to “localized” linear and quadratic
approximations, which are iterated to improve the
global control solution. However, it relies on an ana-
lytical forward dynamics model x = f (x,u) and finite
difference methods to compute gradients. To alleviate
this requirement and to make iLQG adaptive, LWPR
can be used to learn an approximation of the plant’s
forward dynamics model. Figure 7 shows the control
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Locally Weighted Regression for Control. Figure 6. (a) Human arm model with 6 muscles; (b) Optimized control
sequence (left) and resulting trajectories (right) using the known analytic dynamics model. The control sequences (left
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Locally Weighted Regression for Control. Figure 7. lllustration of learning and control scheme of the iterative Linear
Quadratic Gaussian (iLQG) algorithm with learned dynamics

diagram, where the “learned dynamics model” (the for-
ward model learned by LWPR) is then updated in an
online fashion with every iteration to cope with changes
in dynamics. The resulting framework is called iLQG-
LD (iLQG with learned dynamics).

Movements of the arm model in Fig. 6a are stud-
ied for fixed time horizon reaching movement. The
manipulator starts at an initial position q, and reaches
towards a target q,,,. The cost function to be optimized
during the movement is a combination of target accu-
racy and amount of muscle activation (i.e., energy con-
sumption). Figure 6b shows trajectories of generated
movements for three reference targets (shown in red
circles) using the feedback controller from iLQG with
the analytical plant dynamics. The trajectories gener-
ated with iLQG-LD (where the forward plant dynamics
are learned with LWPR) are omitted as they are hardly
distinguishable from the analytical solution.

A major advantage of iLQG-LD is that it does
not rely on an accurate analytic dynamics model; this
enables the framework to predict adaptation behav-
ior under an ideal observer planning model. Reaching
movements were studied where a constant unidirec-
tional force field acting perpendicular to the reach-
ing movement was generated as a perturbation (see
Fig. 8 (left)). Using the iLQG-LD model, the manip-
ulator gets strongly deflected when reaching for the
target because the learned dynamics model cannot
yet account for the “spurious” forces. However, when
the deflected trajectory is used as training data and
the dynamics model is updated online, the tracking
improves with each new successive trial (Fig. 8 (left)).
Please refer to Mitrovic et al. (2008) for more details.
Aftereffects upon removing the force field, very simi-
lar to those observed in human experiments, are also
observed.
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control sequence, which was calculated using the LWPR model before the adaptation process. The fully “adapted”
control sequence results in a nearly straight line reaching movement

Cross References

» Bias and Variance

» Dimensionality Reduction
»Incremental Learning
» Kernel Function

» Kernel Methods
»Lazy Learning
»Linear Regression

» Mixture Models
»Online Learning

» Overfitting

» Radial Basis Functions
»Regression
»Supervised Learning

Programs and Data
http://www-clmc.usc.edu/software
http://www.ipab.inf.ed.ac.uk/slmc/software/

Recommended Reading

Astrom, K. J., & Wittenmark, B. (1989). Adaptive control. Reading,
MA: Addison-Wesley.

Atkeson, C., Moore, A., & Schaal, S. (1997). Locally weighted learn-
ing. AI Review, 11, 11-73.

Atkeson, C. (1989). Using local models to control movement.
In Proceedings of the advances in neural information pro-
cessing systems 1 (pp. 157-183). San Francisco, CA: Morgan
Kaufmann.

Cleveland, W. S. (1979). Robust locally weighted regression and
smoothing scatterplots. Journal of the American Statistical Asso-
ciation, 74, 829-836.

Hastie, T., & Loader, C. (1993). Local regression: Automatic kernel
carpentry. Statistical Science, 8,120-143.

Jordan, M. L., & Jacobs, R. (1994). Hierarchical mixtures of experts
and the EM algorithm. Neural Computation, 6, 181-214.

Klanke, S., Vijayakumar, S., & Schaal, S. (2008). A library for locally
weighted projection regression. Journal of Machine Learning
Research, 9, 623-626.

Mitrovic, D., Klanke, S., & Vijayakumar, S. (2008). Adaptive optimal
control for redundantly actuated arms. In Proceedings of the 10th
international conference on the simulation of adaptive behavior,
Osaka, Japan (pp. 93-102). Berlin: Springer-Verlag.

Schaal, S., & Atkeson, C. G. (1998). Constructive incremental learn-
ing from only local information. Neural Computation, 10(8),
2047-2084.

Schaal, S., Atkeson, C. G., & Vijayakumar, S. (2002). Scalable tech-
niques from nonparametric statistics. Applied Intelligence, 17,
49-60.

Ting, J., D’Souza, A., Yamamoto, K., Yoshioka, T., Hoffman, D,
Kakei, S., et al. (2005). Predicting EMG data from M1 neu-
rons with variational Bayesian least squares. In Proceedings
of advances in neural information processing systems 18, Cam-
bridge: MIT Press.

Ting, J., Kalakrishnan, M., Vijayakumar, S., & Schaal, S. (2008).
Bayesian kernel shaping for learning control. In Proceedings
of advances in neural information processing systems 21 (pp.
1673-1680). Cambridge: MIT Press.

Ting, J. (2009). Bayesian methods for autonomous learning systems.
Ph.D. Thesis, Department of Computer Science, University of
Southern California, 2009.



http://www-clmc.usc.edu/software
http://www.ipab.inf.ed.ac.uk/slmc/software/

624

Logic of Generality

Todorov, E., & Li, W. (2004). A generalized iterative LQG method
for locally-optimal feedback control of constrained nonlinear
stochastic systems. In Proceedings of st international confer-
ence of informatics in control, automation and robotics, Setibal,
Portugal.

Vijayakumar, S., D’Souza, A., & Schaal, S. (2005). Incremental online
learning in high dimensions. Neural Computation, 17, 2602—
2634.

! Logic of Generality

Luc DE RAEDT
Katholieke Universiteit Leuven
Heverlee, Belgium

Synonyms

Generality and logic; Induction as inverted deduction;
Inductive inference rules; Is more general than; Is more
specific than; Specialization

Definition

One hypothesis is more general than another one if it
covers all instances that are also covered by the latter
one. The former hypothesis is called a »generalization
of the latter one, and the latter a »specialization of the
former. When using logical formulae as hypotheses, the
generality relation coincides with the notion of logical
entailment, which implies that the generality relation
can be analyzed from a logical perspective. The logical
analysis of generality, which is pursued in this chap-
ter, leads to the perspective of induction as the inverse
of deduction. This forms the basis for an analysis of
various logical frameworks for reasoning about gener-
ality and for traversing the space of possible hypothe-
ses. Many of these frameworks (such as for instance,
0-subsumption) are employed in the field of »inductive
logic programming and are introduced below.

Motivation and Background

Symbolic machine learning methods typically learn by
searching a hypothesis space. The hypothesis space can
be (partially) ordered by the »generality relation, which
serves as the basis for defining operators to traverse the
space as well as for pruning away unpromising parts
of the search space. This is often realized through the
use of »refinement operators, that is, generalization and

specialization operators. Because many learning meth-
ods employ a »hypothesis language that is logical or
that can be reformulated in logic, it is interesting to ana-
lyze the generality relation from a logical perspective.
When using logical formulae as hypotheses, the gener-
ality relation closely corresponds to logical entailment.
This allows us to directly transfer results from logic
to a machine learning context. In particular, machine
learning operators can be derived from logical inference
rules. The logical theory of generality provides a frame-
work for transferring these results. Within the standard
setting of inductive logic programming, learning from
entailment, specialization is realized through deduc-
tion, and generalization through induction, which is
considered to be the inverse of deduction. Different
deductive inference rules lead to different frameworks
for generalization and specialization. The most popu-
lar one is that of 8-subsumption, which is employed
by the vast majority of contemporary inductive logic
programming systems.

Theory

A hypothesis g is more general than a hypothesis s if and
only if g covers all instances that are also covered by s,
more formally, if covers(s) < covers(g), in which case,
covers(h) denotes the set of all instances covered by the
hypothesis h.

There are several possible ways to represent hypothe-
ses and instances in logic (De Raedt, 1997, 2008), each
of which results in a different setting with a correspond-
ing covers relation. Some of the best known settings are
learning from entailment, learning from interpretations,
and learning from proofs.

In learning from entailment, both hypotheses and
instances are logical formulae, typically definite clauses,
which underlie the programming language Prolog
(Flach, 1994). Furthermore, when learning from entail-
ment, a hypothesis /& covers an instance e if and only
if h = e, that is, when h logically entails e, or equiva-
lently, when e s alogical consequence of k. For instance,
consider the hypothesis h:

flies :- bird, normal.
bird :- blackbird.
bird :—- ostrich.
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The first clause or rule canbereadas f1ies if normal
and bird, that is, normal birds fly. The second and
third states that blackbirds are birds. Consider now the
examples e;:

flies :- blackbird, normal, small.
and e;:
flies :- ostrich, small.

Example ¢, is covered by h, because it is a logical conse-
quence of h, that is, h = ;. On the other hand, example
e, is not covered, which we denote as h # e,.

When learning from entailment, the following prop-
erty holds:

Property 1 A hypothesis g is more general than a
hypothesis s if and only if g logically entails s, that is, g = s.

This is easy to see. Indeed, g is more general than s
if and only if covers(s) ¢ covers(g) if and only if for all
examples e: (s = e) - (g E e), ifand only if g = 5. For
instance, consider the hypothesis h;:
flies :- blackbird, normal.

Because h E hy, it follows that /i covers all examples
covered by hy, and hence, h generalizes h;.

Property 1 states that the generality relation coin-
cides with logical entailment when learning from entail-
ment. In other learning settings, such as when learning
from interpretations, this relationship also holds though
the direction of the relationship might change.

In learning from interpretations, hypotheses are logical
formulae, typically sets of definite clauses, and instances
are interpretations. For propositional theories, interpre-
tations are assignments of truth-values to propositional
variables. For instance, continuing the f1ies illustra-
tion, two interpretations could be

{blackbird, bird,
small}

normal, flies} and

{ostrich,

where we specify interpretations through the set of
propositional variables that are true. An interpretation
specifies a kind of possible world. A hypothesis / then
covers an interpretation if and only if the interpreta-
tion is a model for the hypothesis. An interpretation is
a model for a hypothesis if it satisfies all clauses in the
hypothesis. In our illustration, the first interpretation is
amodel for the theory h, but the second is not. Because
the condition part of the rule bird
is satisfied in the second interpretation (as it contains
ostrich), the conclusion part, that is, bird, should
also belong to the interpretation in order to have a
model. Thus, the first example is covered by the theory
h, but the second is not.

When learning from interpretations, a hypothesis g
is more general than a hypothesis s if and only if for all
examples e: (e is a model of s) — (e is a model of g), if
andonlyifs = g.

Because the learning from entailment setting is
more popular than the learning from interpretations
setting, we shall employ in this section the usual con-
vention that states that one hypothesis g is more general
than a hypothesis s if and only if g &= s.

:— ostrich.

Property 1 lies at the heart of the theory of induc-
tive logic programming and generalization because it
directly relates the central notions of logic with those
of machine learning (Muggleton & De Raedt, 1994). It
is also extremely useful because it allows us to directly
transfer results from logic to machine learning.

This can be illustrated using traditional deductive
inference rules, which start from a set of formulae and
derive a formula that is entailed by the original set.
For instance, consider the resolution inference rule for
propositional definite clauses:

h<ga,...,a,and g < by,..., by

1
]’l(—bl,.. ()

->bm>a1>--~)an

This inference rule starts from the two rules above the
line and derives the so-called resolvent below the line.
This rule can be used to infer h; from h. An alternative
deductive inference rule adds a condition to a rule:

h<a,...,a, 2

h<a,ay,...,a,
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This rule can be used to infer that ; is more general than
the clause used in example e;. In general, a deductive
inference rule can be written as

g 3)
N

If s can be inferred from g and the operator is sound,
then g = s. Thus, applying a deductive inference rule
realizes specialization, and hence, deductive inference
rules can be used as specialization operators. A spe-
cialization operator maps a hypothesis onto a set of its
specializations. Because specialization is the inverse of
generalization, generalization operators — which map a
hypothesis onto a set of its generalizations - can be
obtained by inverting deductive inference rules. The
inverse of a deductive inference rule written in for-
mat (3) works from bottom to top, that is, from s to g.
Such an inverted deductive inference rule is called an
inductive inference rule. This leads to the view of induc-
tion as the inverse of deduction. This view is opera-
tional as it implies that each deductive inference rule
can be inverted into an inductive one, and, also, that
each inference rule provides an alternative framework
for generalization.

An example of a generalization operator is obtained
by inverting the adding condition rule (2). It corre-
sponds to the well-known “dropping condition” rule
(Michalski, 1983). As will be seen soon, it is also possible
to invert the resolution principle (1).

Before deploying inference rules, it is necessary to
determine their properties. Two desirable properties are
soundness and completeness. These properties are based
on the repeated application of inference rules. There-
fore, we write ¢ ~, s when there exists a sequence of
hypotheses hy, . .., h, such that

h h,
hﬁ,hfl,...,? using r. (4)
)

A set of inference rules r is sound whenever g +, s
implies g &= s; and complete whenever g £ s implies
g + s. In practice, soundness is always enforced though
completeness is not always required in a machine learn-
ing setting. When working with incomplete rules, one
should realize that the generality relation “-,” is weaker
than the logical one “=”

The most important logical frameworks for reason-
ing about generality, such as 8-subsumption and resolu-
tion, are introduced below using the above introduced
logical theory of generality.

Frameworks for Generality

Many propositional learning systems employ hypothe-
ses that consist of rules, often definite clauses as in the
flies illustration above. The propositional subsump-
tion relation defines a generality relation among clauses
and is defined through the adding condition rule (2).
The properties follow from this inference rule by apply-
ing the logical theory of generalization presented above.
More specifically, the generality relation +, induced by
the adding condition rule states that a clause g is more
general than a clause s, if s can be derived from g by
adding a sequence of conditions to g. Observing that
a clause h < ay,...,a, is a disjunction of literals h v
—a; V -+ V —a, allows us to write it in set notation as
{ ]’l, —dyy ...
propositional subsumption then follow from

,—a, }. The soundness and completeness of

grasifandonlyifg Ccsifandonlyifgks, (5)

which also states that g subsumes s if and only if g C s.

The propositional subsumption relation induces a
complete lattice on the space of possible clauses. A com-
plete lattice is a partial order - a reflexive, antisymmet-
ric, and transitive relation — where every two elements
posses a unique least upper and greatest lower bound.
An example lattice for rules defining the predicate
flies in terms of bird, normal, and small is
illustrated in the Hasse diagram depicted in Fig. 1.

The Hasse diagram also visualizes the different oper-
ators that can be used. The generalization operator p,
maps a clause to the set of its parents in the diagram,
whereas the specialization operator p; maps a clause to
the set of its children. So far, we have defined such oper-
ators implicitly through their corresponding inference
rules. In the literature, they are often defined explicitly:

pe(h<ay....a,)

={h<a,....,ai1,ai11,....a,4/i=1,...,n}. (6)
In addition to using the inference rules directly,

some systems such as Golem (Muggleton & Feng, 1990)
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flies.

— T

flies :- bird. flies

:— normal.

flies :- small.

==

flies :-bird, normal. flies

:— bird, small.

flies :- small, normal.

flies :-bird, normal, small.

Logic of Generality. Figure 1. The Hasse diagram for the predicate flies

also exploit the properties of the underlying lattice by
computing the least upper bound of two formulae. The
least upper bound operator is known under the name of
least general generalization (Igg) in the machine learn-
ing literature. It returns the least common ancestor in
the Hasse diagram. Using a set notation for clauses, the
definition of the lgg is:

lgg(c1,c2) = a1 ney. @)

The least general generalization operator is used by
machine learning systems that follow a cautious gener-
alization strategy. They take two clauses corresponding
to positive examples and minimally generalize them.

The most popular framework for generality within
inductive logic programming is 6-subsumption (Plotkin,
1970). It provides a generalization relation for clausal
logic and it extends propositional subsumption to first
order logic.

A definite clause is an expression of the form
h < ay,...,a, where h and the g; are logical atoms. An
atom is an expression of the form p(#,...,t,) where
p is a predicate name (or, the name of a relation) and
the t; are terms. A term is either a constant (denot-
ing an object in the domain of discourse), a variable, or
a structured term of the form f(uy,...,u;) where f is
a functor symbol (denoting a function in the domain
of discourse) and the u; are terms, see Flach (1994) for

more details. Consider for instance the clauses

likes (X,Y) :— neighbours(X,Y).
likes (X, husbandof (Y)) :- likes(X,Y).

likes (X, tom) :- neighbours (X, tom),

male (X) .

The first clause states that X likes Y if X is a
neighbour of Y. The second one that X 1likes the
husband of Y if X likes Y. The third one that all
male neighbours of tomlike tom.
0-Subsumption is based not only on the adding
condition rule (2) but also on the substitution rule:

£. ®)
g0

The substitution rule applies a substitution 6 to the def-
inite clause g. A substitution {Vi/f;,..., V,/t,} is an
assignment of terms to variables. Applying a substitu-
tion to a clause ¢ yields the instantiated clause, where
all variables are simultaneously replaced by their corre-
sponding terms.

0-subsumption is then the generality relation induced
by the substitution and the adding condition rules.
Denoting this set of inference rules by ¢, we obtain our
definition of 8-subsumption:

g 0-subsumes s if and only if g +, s if and only if
36 :g6cs. 9)

For instance, the first clause for 1ikes subsumes the
third one with the substitution {Y/tom}.
0-subsumption has some interesting properties:

e 0-subsumption is sound.

e 0O-subsumption is complete for clauses that are not
self-recursive. It is incomplete for self-recursive
clauses such as
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nat (s (X)) :— nat (X)
nat (s(s(Y))) :— nat (YY)

for which one can use resolution to prove that the
first clause logically entails the second one, even
though it does not 8-subsume it.

e Deciding 0-subsumption is an NP-complete prob-
lem.

Because 0-subsumption is relatively simple and
decidable whereas logical entailment between single
clauses is undecidable, it is used as the generality rela-
tion by the majority of inductive logic programming
systems. These systems typically employ a specialization
or refinement operator to traverse the search space. To
guarantee systematic enumeration of the search space,
the specialization operator p; can be employed. p;(c) is
obtained by applying the adding condition or substitu-
tion rule with the following restrictions.

o The adding condition rule only adds atoms of the
form p(Vy,..
yet occurring in the clause c.
o The substitution rule only employs elementary sub-
stitutions, which are of the form
- {X/Y}, where X and Y are two variables appear-
inginc

- {V/ct}, where V is a variable in ¢ and ct a con-
stant

- {V/f(Vy,...,V,)}, where Visavariableinc, f a
functor of arity n and the V; are variables not yet
occurring in c.

., V), where the V; are variables not

A generalization operator can be obtained by invert-
ing ps, which requires one to invert substitutions.
Inverting substitutions is not easy. While applying a
substitution 8 = {V/a} to a clause ¢ replaces all occur-
rences of V by a and yields a unique clause ¢, apply-
ing the substitution rule in the inverse direction does
not necessarily yield a unique clause. If we assume the
elementary substitution applied to ¢ with

c

_ 10
g(a,a) 1)

was {V/a}, then there are at least three possibilities for
cg(a,Vv),q(v,a),and g (V,V).

0-subsumption is reflexive, transitive but unfortu-
nately not anti-symmetric, which can be seen by con-
sidering the clauses

parent (X,Y) :— father(X,Y).
parent (X,Y) :— father(X,Y),
father (U,V) .

The first clause clearly subsumes the second one because
itis a subset. The second one subsumes the first with the
substitution {X/U, V/Y}. The two clauses are there-
fore equivalent under 0-subsumption, and hence also
logically equivalent. The loss of the anti-symmetry com-
plicates the search process. The naive application of the
specialization operator p; may yield syntactic special-
izations that are logically equivalent. This is illustrated
above where the second clause for parent is a refine-
ment of the first one using the adding condition rule. In
this way, useless clauses are generated, and if the result-
ing clauses are further refined, there is a danger that the
search will end up in an infinite loop.

Plotkin (1970) has studied the quotient set induced
by 6-subsumption and proven various interesting
properties. The quotient set consists of classes of
clauses that are equivalent under 8-subsumption. The
class of clauses equivalent to a given clause ¢ is
denoted by

[c] = {c'|’ is equivalent with c under

6-subsumption}. (11)

Plotkin proved that

¢ The quotient set is well-defined w.r.t. f-subsumption.

o There is a representative, a canonical form, of each
equivalence class, the so-called reduced clause. The
reduced clause of an equivalence class is the short-
est clause belonging to class. It is unique up to
variable renaming. For instance, in the parent
example above, the first clause is in reduced
form.

o The quotient set forms a complete lattice, which
implies that there is a least general generalization of
two equivalence classes. In the inductive logic pro-
gramming literature, one often talks about the least
general generalization of two clauses.



Logic of Generality

629

Several variants of 8-subsumption have been devel-
oped. One of the most important ones is that of
OI-subsumption (Esposito, Laterza, Malerba, & Semer-
aro, 1996). For functor-free clauses, it modifies the sub-
stitution rule by disallowing substitutions that unify
two variables or that substitute a variable by a constant
already appearing in the clause. The advantage is that
the resulting relation is anti-symmetric, which avoids
some of the above mentioned problems with refinement
operators. On the other hand, the minimally general
generalization of two clauses is not necessary unique,
and hence, there exists no least general generalization
operator.

Applying resolution is a sound deductive inference rule
and therefore realizes specialization. Reversing it yields
inductive inference rules or generalization operators
(Muggleton, 1987; Muggleton & Buntine, 1988). This is
typically realized by combining the resolution princi-
ple with a copy operator. The resulting rules are called
absorption (12) and identification (13). They start from
the clauses below and induce the clause above the line.
They are shown here only for the propositional case, as
the first order case requires one to deal with substitu-
tions as well as inverse substitutions.

h<ga,...,apand g < by,..., by, 1)
h<by,....bpa,...,apand g < by,..., b,

h<ga,...,apandg < by,..., b, 13)
h<by,....,bpa,...,apand h < g,ay,...,a,

Other interesting inverse resolution operators per-
form predicate invention, that is, they introduce new
predicates that were not yet present in the original data.
These operators invert two resolution steps. One such
operator is the intra-construction operator (14). Apply-
ing this operator from bottom to top introduces the new
predicate g that was not present before.

okn,gand g < L/,.. . 1"
kb

Slgandp < ki, ..
Skl

q<h,..

(14)

p<ki.. Llgandp < ki, ..

The idea of inverting the resolution operator is very
appealing because it aims at inverting the most popular
deductive inference operator, but is also rather com-
plicated due to the non-determinism and the need to

invert substitutions. Due to these complications, there
are only few systems that employ inverse resolution
operators.

Background Knowledge

Inductive logic programming systems employ back-
ground knowledge during the learning process. Back-
ground knowledge typically takes the form of a set
of clauses B, which is then used by the covers rela-
tion. When learning from entailment in the presence of
background knowledge B an example e is covered by a
hypothesis / if and only if BU h k= e. This notion of cov-
erage is employed in most of the work on inductive logic
programming. In the intial f1ies example, the two
clauses defining bird would typically be considered
background knowledge.

The incorporation of background knowledge in the
induction process has resulted in the frameworks for
generality relative to a background theory. More for-
mally, a hypothesis g is more general than a hypothesis
s relative to the background theory B if and only if
B u g E s. The only inference rules that deal with
multiple clauses are those based on (inverse) resolu-
tion. The other frameworks can be extended to cope
with this generality relation following the logical the-
ory of generalization. Various frameworks have been
developed along these lines. Some of the most impor-
tant ones are relative subsumption (Plotkin, 1971) and
generalized subsumption (Buntine, 1998), which extend
0-subsumption and the notion of least general general-
ization toward the use of background knowledge. Com-
puting the least general generalization of two clauses
relative to the background theory is realized by first
computing the most specific clauses covering the exam-
ples with regard to the background theory and then
generalizing them using the least general generalization
operator of 0-subsumption.

The first step is the most interesting one, and has
been tackled under the name of saturation (Rouveirol,
1994) and bottom-clauses (Muggleton, 1995). We illus-
trate it within the framework of inverse entailment due
to Muggleton (1995). The bottom clause L(c) of a clause
¢ with regard to a background theory B is the most
specific clause L(c) such that

Bul(c)Eec. 15)
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If B consist of

polygon :— rectangle.
rectangle :- square.

oval :- circle.
and the example c is
positive :- red, square.

Then the bottom-clause 1(c) is

positive :- red,
polygon.

rectangle, square,

The bottom-clause is useful because it only lists those
atoms that are relevant to the example, and only gener-
alizations (under 0-subsumption) of 1 (¢) will cover the
example. For instance, in the illustration, the bottom-
clause mentions neither oval nor circle as clauses
for pos containing these atoms will never cover the
example clause c. Once the bottom-clause covering an
example has been found the search process continues as
if no background knowledge were present. Either spe-
cialization operators (typically under 8-subsumption)
would search the space of clauses more general than
L(c), or the least general generalization of multiple
bottom-clauses would be computed.
Equation (15) is equivalent to

Bu-cE —\J_(C), (16)

which explains why the bottom-clause is computed by
finding all factual consequences of B U —c and then
inverting the resulting clause again. On the example:

-c={- positive, red, square}

and the set of all consequences is
-1(c) = -cu{rectangle, polygon}

which then yields L(c) mentioned above. When deal-
ing with first order logic, bottom-clauses can become
infinite, and therefore, one typically imposes further
restrictions on the atoms that appear in bottom-clauses.
These restrictions are part of the language bias.

The textbook by Nienhuys-Cheng and De Wolf
(1997) is the best reference for an in-depth formal

description of various frameworks for generality in
logic, in particular, for 0-subsumption and some of
its variants. The book by De Raedt (2008) contains
a more complete introduction to inductive logic pro-
gramming and relational learning, and also introduces
the key frameworks for generality in logic. An early
survey of inductive logic programming and the log-
ical theory of generality is contained in Muggleton
and De Raedt (1994). Plotkin (1970, 1971) pioneered the
use 0-subsumption and relative subsumption (under
a background theory) for machine learning. Buntine
(1998) extended these frameworks toward generalized
subsumption, and Esposito et al. (1996) introduced OI-
subsumption. Inverse resolution was first used in the
system Marvin (Sammut & Banerji, 1986), and then
elaborated by Muggleton (1987) for propositional logic
and by Muggleton and Buntine (1988) for definite clause
logic. Various learning settings are studied by De Raedt
(1997) and discussed extensively by De Raedt (2008).
They are also relevant to »probabilistic logic learning
and Pstatistical relational learning.
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! Logic Program

A logic program is a set of logical rules or »clauses.

Logic programs are employed to answer queries using

the »resolution inference rule. For example, consider

the following logic program:

grandparent (X,Y) :- parent(X,Z2),
parent (Z,Y) .

parent (X,Y) :— father(X,Y).
parent (X,Y) :— mother(X,Y).
william) .
william) .
charles) .

father (charles,
mother (diana,
father (philip,
mother (elizabeth, charles).
father (john,
mother (frances,

diana) .
diana) .

Using resolution we obtain the following answers to the
query : —grandparent (X, Y):

X = philip, Y = william ;
X = john, Y = william ;
X = elizabeth, Y = william ;
X = frances, Y = william.

Cross References
» Clause

» First-Order Logic
»Prolog

| Logical Consequence

» Entailment

! Logical Regression Tree

» First-Order Regression Tree

| Logistic Regression

Synonyms
Logit model

Definition

Logistic regression provides a mechanism for applying
the techniques of »linear regression to »classification
problems. It utilizes a linear regression model of
the form

z= ﬂ() + ﬁlxl +[32x2 + .- +[3,,xn

where x; to x,, represent the values of the n attributes
and f to 3, represent weights. This model is mapped
onto the interval [0,1] using

1

P(c0|x1...xn) = m

where ¢, represents class 0.

Recommended Reading

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of
statistical learning (2nd ed.). New York: Springer.

| Logit Model

» Logistics Regression



632

Log-Linear Models

! Log-Linear Models

»Maximum Entropy Models for Natural Language
Processing

! Long-Term Potentiation of Synapses

By a suitable induction protocol, the connection bet-
ween two neurons can be strengthened. If this change
persists for hours, the effect is called a long-term
potentation.

! LOO Error

»Leave-One-Out Error

! Loopy Belief Propagation

Loopy belief propagation is a heuristic inference algo-
rithm for »Bayesian networks. See »Graphical Models
for details.

[
Loss

Synonyms
Cost

Definition

The cost or loss of a prediction y’, when the correct value
is y, is a measure of the relative utility of that prediction
given that correct value. A common loss function used

with »-classification learning is »zero-one loss. Zero-
one loss assigns 0 to loss for a correct classification and
1 for an incorrect classification. »Cost sensitive clas-
sification assigns different costs to different forms of
misclassification. For example, misdiagnosing a patient
as having appendicitis when he or she does not might
be of lower cost than misdiagnosing the patient as not
having it when he or she does. A common loss func-
tion used with Pregression is Berror squared. This is
the square of the difference between the predicted and
true values.

! Loss Function

Synonyms
Cost function

Definition
A loss function is a function used to determine »loss.

" LWPR

» Locally Weighted Regression for Control

" LWR

» Locally Weighted Regression for Control
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