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Definition

Q-learning is a form of »temporal difference learn-
ing. As such, it is a model-free Preinforcement learning
method combining elements of »dynamic program-
ming with Monte Carlo estimation. Due in part to
Watkins' (1989) proof that it converges to the optimal
value function, Q-learning is among the most com-
monly used and well-known reinforcement learning
algorithms.

Cross References
» Reinforcement Learning
» Temporal Difference Learning
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Watkins, C. J. C. H. (1989). Learning from delayed rewards.
PhD thesis. Cambridge: King’s College.
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Synonyms
QT Clustering

Quality threshold (QT) clustering (Heyer, Kruglyak, &
Yooseph 1999) is a partitioning clustering algorithm
originally proposed for gene clustering. The focus of
the algorithm is to find clusters with guaranteed qual-
ity. Instead of specifying K, the number of clusters, QT
uses the maximum cluster diameter as the parameter.

The basic idea of QT is as follows: Form a candidate
cluster by starting with a random point and iteratively
add other points, with each iteration adding the point
that minimizes the increase in cluster diameter. The
process continues until no point can be added with-
out surpassing the diameter threshold. If surpassing
the threshold, a second candidate cluster is formed by
starting with a point and repeating the procedure. In
order to achieve reasonable clustering quality, already
assigned points are available for forming another can-
didate cluster.

For data partition, QT selects the largest candidate
cluster, removes the points which belong to the cluster
from consideration, and repeats the procedure on the
remaining set of data.

Recommended Reading

Heyer, L., Kruglyak, S., & Yooseph, S. (1999). Exploring expression
data: Identification and analysis of coexpressed genes. Genome
Research, 9, 1106-1115.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI10.1007/978-0-387-30164-8,
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Definition

Most learning scenarios consider learning as a relatively
passive process where the learner observes a set of data
and eventually formulates a hypothesis that explains
the data observed. Query-based learning is an »active
learning process where the learner has a dialogue with
a teacher, which provides on request useful information
about the concept to be learnt.

Detail

This article will mainly focus on query-based learning
of finite classes and of parameterized families of finite
classes. In some cases, an infinite class has to be learnt
where then the behaviour of the learner is measured
in terms of a parameter belonging to the concept. For
example, when learning the class of all singletons {x}
with x € {0,1}*, the parameter would be the length n
of x and an algorithm based on membership queries
would need up to 2" — 1 queries of the form “Is y in
L?” to learn an unknown set L = {x} with x € {0,1}".
Query-based learning studies questions like the follow-
ing: Which classes can be learnt using queries of this or
that type? If queries of a given type are used to learn
a parameterized class U C,, is it possible to make a
learner which (with or without knowledge of n) suc-
ceeds to learn every L € C, with a number of queries
that is polynomial in #? What is the exact bound on
queries needed to learn a finite class C in dependence of
the topology of C and the cardinality of C? If a query-
based learner using polynomially many queries exists
for a parameterized class U C,, can this learner also be
implemented such that it is computable in polynomial
time?

In the following, let C be the class of concepts to be
learnt and the concepts L € C are subsets of some basic
set X. Now the learning process is a dialogue between
a learner and a teacher in order to identify a language
L e C, which is known to the teacher but not to the
learner. The dialogue goes in turns and follows a spe-
cific protocol that goes over a finite number of rounds.
Each round consists of a query placed by the learner to
the teacher and the answer of the teacher to this query.
The query and the answer have to follow a specific for-
mat and there are the following common types, where
a € X and H ¢ C are data items and concepts chosen by
the learner and b € X is a counterexample chosen by the
teacher:

Membership- [Isa € L? “Yes” “No”
Query
Equivalence- |IsH =L? “Yes” “No" plus b
Query (where
b e H-LUL-H)
Subset-Query |IsH c L? “Yes” “No"plus b
(where
beH-L)
Superset- IsH2L? “Yes” “No”plus b
Query (where
bel-H)
Disjointness- [IsHNL=@? |“Yes” “No”plus b
Query (where
beHNL)

While, for subset queries and superset queries, it is
not required by all authors that the teacher provides a
counterexample in the case that the answer is “no,” this
requirement is quite standard for the case of equivalence
queries. Without counterexamples, a learner would not
have any real benefit from these queries in settings
where faster convergence is required, than by just check-
ing “Is Hy = L? “Is Hy = L?) “Is H, = L? ..., which
would be some trivial kind of algorithm.

Here is an example: Given the class C of all finite
subsets of {0,1}*, a learner using superset queries could
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just work as follows to learn each set of the form L =

{x1,%2,...,%,} with n + 1 queries:

1 IsLc@? “No” Xi
2 IsLc{x}? “No” X2
3 IsLc {x,x}? “No” X3
n IsLc{x,Xy...,.Xa21}? |“No" Xn
n+1 |IsLc {x,X...,Xn-1,Xn}?|"Yes" —

Here, of course, the order on how the counterex-
amples come up does not matter; the given order was
just preserved for the reader’s convenience. Note that
the same algorithm works also with equivalence queries
in place of superset queries. In both cases, the algo-
rithm stops with outputting “L = {x;,x,,...,x,}” after
the last query. However, the given class is not learn-
able using membership and subset queries which can
be seen as follows: Assume that such a learner learns
@ using the subset queries “Is Hy ¢ L2 “Is H; ¢ L3,
“Is Hy ¢ L% ..., “Is H, S L?” and the membership
queries “Is yo € L3 “Is y; € L) “Is y, € L% ..., “Is
¥k € L?” Furthermore, let D be the set of all counterex-
amples provided by the learner to subset queries. Now
lete E=DUHyUH U...UH, U {yo,y,-.., ¥} Note
that E is a finite set and let x be an element of {0,1}* - E.
IfL = {x} then the answers to these queries are the same
to the case that L = @. Hence, the learner cannot distin-
guish between the sets @ and {x}; therefore, the learner
is incorrect on at least one of these sets.

In the case that C is finite, one could just ask what is
the number of queries needed to determine the target L
in the worst case. This depends on the types of queries
permitted and also on the topology of the class C. For
example, if C is the power set of {x1,x5,...,%,}, then n
membership queries are enough; but if C is the set of all
singleton sets {x} with x € {0,1}", then 2" — 1 member-
ship queries are needed to learn the concept, although
in both cases the cardinality of C is 2".

Angluin (2004) provides a survey of the prior results
on questions like how many queries are needed to learn
a given finite class. Maass and Turdn (1992) showed
that usage of membership queries in addition to equiv-
alence queries does not speed up learning too much
compared to the case of using equivalence queries alone.
If EQ is the number of queries needed to learn C from
equivalence queries alone (with counterexamples) and
EMQ is the number of queries needed to learn C with
equivalence queries and membership queries then

EQ _
log(ETl) < EMQ < EQ,

here the logarithm is base 2. This result is based on a
result of Littlestone (1988) who characterized the num-
ber of queries needed to learn from equivalence queries
alone and provided a “standard optimal algorithm” for
this task.

Angluin (1987) showed that the class of all regu-
lar languages can be learnt in polynomial time using
queries and counterexamples. Here the learning time
is measured in terms of two parameters: the number n
of states that the smallest determinisitic finite automa-
ton generating the language has and the number m of
symbols in the longest counterexample provided by the
teacher. Ibarra and Jiang (1988) showed that the algo-
rithm can be improved to need at most dn® equivalence
queries when the teacher always returns the shortest
counterexample; Birkendorf, Boker, and Simon (2000)
improved the bound to dn?. In these bounds, d is the size
of the alphabet used for defining the regular languages
to be learnt.

Much attention has been paid to the following ques-
tion: Which classes of Boolean formulas over n variables
can be learnt with polynomially many queries, uni-
formly in n (see, for example, Aizenstein et al. (1995);
Aizenstein (1995); Angluin, Hellerstein, and Karpinski
(1993); Hellerstein, Pillaipakkamnatt, Raghavan, and
Wilkins (1996))? Angluin, Hellerstein, and Karpinski
(1993) showed that read-once formulas, in which every
variable occurs only once, are learnable in polyno-
mial time using membership and equivalence queries.
On the other hand, read-thrice DNF (disjunctive nor-
mal form) formulas cannot be learnt in polynomial time
using the same queries (Aizenstein et al., 1992) unless
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P =NP. In other words, such a learner would not suc-
ceed because of the limited computational power of a
polymomial time learner; hence, equipping the learner
with an additional oracle that can provide this power
would permit to build such a learner. Here an oracle -
in contrast to a teacher - does not know the task to be
learnt but gives information which is difficult or impos-
sible to compute. Such an oracle could, for example,
be the set SAT of all satisfiable formulas and thus the
learner could gain additional power by asking the ora-
cle whether certain formulas are satisfiable. A special
class of Boolean formulas is that of Horn clauses and
the study in this field is still active (see, for example,
Angluin, Frazier and Pitt (1992), Arias (2004), Arias &
Balcazar (2009) and Arias & Khardon (2002)).

There are links to other fields. Angluin (1988, 1990)
investigated the relation between query learning and
»PAC Learning. She found that every class which is
learnable using membership queries and equivalence
queries is also PAC learnable (Angluin, 1988); the PAC
learner also works in polynomial time and needs at most
polynomially many examples. More recent research
on learning Boolean formulas also combines queries
with probabilistic aspects (Jackson, 1997). Furthermore,
query learning has also been applied to »Inductive
Inference (see, for example, Gasarch (2008, 1992); Jain
et al (2007); Lange (2005)). Here the power of the
learner depends not only on the type of queries permit-
ted but also on whether queries of the corresponding
type can be asked finitely often or infinitely often; the
latter applies of course only to learning models where
the learner converges in the limit and may revise the
hypothesis from time to time. Furthermore, queries
to oracles have been studied widely, see the entry on
» Complexity of Inductive Inference.
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