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! TD-Gammon

Definition

TD-Gammon is a world-champion strength backgam-
mon program developed by Gerald Tesauro. Its
development relied heavily on machine learning
techniques, in particular on »Temporal-Difference
Learning. Contrary to successful game programs in
domains such as chess, which can easily out-search
their human opponents but still trail these ability
of estimating the positional merits of the current
board configuration, TD-GAMMON was able to excel
in backgammon for the same reasons that humans
play well: its grasp of the positional strengths and
weaknesses was excellent. In 1998, it lost a 100-game
competition against the world champion with only
8 points. Its sometimes unconventional but very solid
evaluation of certain opening strategies had a strong
impact on the backgammon community and was soon
adapted by professional players.

Description of the Learning System
TD-GAMMON is a conventional game-playing program
that uses very shallow search (the first versions only

searched one ply) for determining its move. Candidate
moves are evaluated by a »Neural Network, which
is trained by TD(A), a well-known algorithm for
Temporal-Difference Learning (Tesauro, 1992). This
evaluation function is trained on millions of games that
the program played against itself. At the end of each
game, a reinforcement signal that indicates whether the
game has been lost or won is passed through all moves
of the game. TD-GaMMoN developed useful concepts
in the hidden layer of its network. Tesauro (1992) shows
examples for two hidden units of TD-GAMMON that he
interpreted as a race-oriented feature detector and an
attack-oriented feature detector.

TD-GAMMON clearly surpassed its predecessors, in
particular the Computer Olympiad champion NEU-
ROGAMMON, which was trained with M Preference
Learning (Tesauro, 1989). In fact, early versions of
TD-GamMmoN, which only used the raw board infor-
mation as features, already learned to play as well as
NEUROGAMMON, which used a sophisticated set of fea-
tures. Adding more sophisticated features to the input
representation further improved TD-GAMMON’s play-
ing strength. Over time, TD-GAMMON not only that
increase the number of training games that it played
against itself, but Tesauro also increased the search
depth and changed the network architecture, so that
TD-GaMMON eventually reached world-championship
strength (Tesauro, 1995).
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Definition
Temporal  Difference
TD-Learning, is a method for computing the long term

Learning, also known as
utility of a pattern of behavior from a series of inter-
mediate rewards (Sutton, 1984, 1988; Sutton and Barto,
1998). It uses differences between successive utility esti-
mates as a feedback signal for learning. The Temporal
Differencing approach to model-free »reinforcement
learning was introduced by, and is often associated with,
R.S. Sutton. It has ties to both the artificial intelligence
and psychological theories of reinforcement learning
as well as »dynamic programming and operations
research from economics (Bellman, 1957; Bertsekas &
Tsitsiklis, 1996; Puterman, 1994; Samuel, 1959; Watkins,
1989).

While TD learning can be formalised using the the-
ory of »Markov Decision Processes, in many cases it
has been used more as a heuristic technique and has
achieved impressive results even in situations where
the formal theory does not strictly apply, e.g., Tesauro’s

TD-Gammon (Tesauro, 1995) achieved world cham-
pion performance in the game of backgammon. These
heuristic results often did not transfer to other domains,
but over time the theory behind TD learning has
expanded to cover large areas of reinforcement learning.

Consider an agent moving through a world in discrete
time steps, #,%;,.... At each time step, t, the agent is
informed of both the current state of the world, s; € S,
and its reward, or utility, for the previous time step,
ri-1 € R.

As the expected long term utility of a pattern of
behavior can change depending upon the state, the util-
ity is a function of the state, V : S - R. V is known
as the value function or state-value function. The phrase
“long term utility” can be formalized in multiple ways.

Undiscounted sum of reward:
The simplest definition is that long term reward is
the sum of all future rewards.

V(st) = 1e+ 1oy + Ty + o0

oo
= Z Tt4s
8=0

Unfortunately, the undiscounted sum of reward is
only well defined if this sum converges. Convergence
is usually achieved by the addition of a constraint that
the agent’s experience terminates at some, finite, point
in time and all rewards after that point are zero.

Discounted sum of reward:
The discounted utility measure discounts rewards
exponentially into the future.

V(st) =re+ yres + Y1+ pe[0,1]
= Z Yértﬂ?
8=0

Note that when y = 1 the discounted and undis-
counted regimes are identical. When y < 1, the dis-
counted reward scheme does not require that the agent
experience terminates at some finite time for conver-
gence. The discount factor y can be interpreted as an
inflation rate, a probability of failure for each time
step, or simply as a mathematical trick to achieve
convergence.
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Average reward:

Rather than consider a sum of rewards, the average
reward measure of utility estimates both the expected
reward per future time step, also known as the gain, and
the current difference from that long-term average, or
bias.

G(s;) = lim — Z Ties

1
n—oo n 8:0

B(s;) = 2 (7145 — G(5145)]

A system where any state has a nonzero probabil-
ity of being reached from any other state is known as
an ergodic system. For such a system the gain, G(s),
will have the same value for all states and the bias, B(s),
serves a similar purpose to V (s) above in indicating the
relative worth of different states. While average reward
has a theoretical advantage in that there is no discount
factor to choose, historically average reward has been
considered more complex to use than the discounted
reward regimes and so has been less used in practice.
There is a strong theoretical relationship between aver-
age reward and discounted reward in the limit as the
discount factor approaches one.

Here we focus on discounted reward.

Estimating Discounted Sum of Reward The temporal
differencing estimation procedure is based on recur-
sive reformulation of the above definitions. For the
discounted case:

2 3
V(st) =1t Presy + Y Taa + P s + oo
2
=1+ Y[Tt+1 T Yl T Y T3 + ]

=1+ YV (st41)

From the recursive formulation we can see that the
long term utility for one time step is closely related to
the long term utility at the next time step. If there is
already an estimate of the long term utility at s;, V(s;),
then we could calculate a change in that value given a
new trajectory as follows:

Ar=[re +yV(s1)] = V(st)

If we are dealing with a stochastic system, then we
may not want to update V(s;) to the new value in one

jump, but rather only move part way toward the new
value:

Ar=a(re+yV(se1) — V(st))

where « is a learning rate between 0 and 1. As an
assignment, this update can be written in a number of
equivalent ways, the two most common being:

V(st) < V(se) +a(re +yV(se1) = V(st))  or,
V(st) < (Q—a)V(s) + a(re +yV(se1))

This update, error, learning or delta rule is the core of
temporal difference learning. It is from this formulation,
which computes a delta based on the difference in esti-
mated long term utility of the world at two consecutive
time steps, that we get the term temporal differencing.

Having derived this update rule, we can now apply it
to finding the long term utility of a particular agent. In
the simplest case we will assume that there are a finite
number of Markov states of the world, and that these
can be reliably detected by the agent at run time. We
will store the function V' as an array of real numbers,
with one number for each world state.

After each time step, ¢, we will use the knowledge of
the previous state, s;, the instantaneous reward for the
time step, r4, and the resulting state, s;,1, to update the
value of the previous state, V(s;), using the delta rule
above:

V(st) < V(st) + a(re +yV(ser1) = V(st))

Basic temporal differencing as represented above can be
quite slow to converge in many situations. Consider, for
example, a simple corridor with a single reward at the
end, and an agent that walks down the corridor. Assume
that the value function was initialized to a uniform zero
value. On each walk down the corridor, useful informa-
tion is only pushed one step back toward the start of the
corridor.

Eligibility traces try to alleviate this problem by
pushing information further back along the trajectory
of the agent with each update to V. An algorithm
incorporating eligibility traces can be seen as a mix-
ture of “pure” TD, as described above, and »Monte-
Carlo estimation of the long term utility. In particu-
lar, the A parameter to the TD(A) family of algorithms
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specifies where in the range from pure TD, when A = 0,
to pure Monte-Carlo, when A = 1, a particular algo-
rithm falls.

Eligibility traces are implemented by keeping a sec-
ond function of the state space, € : S — R. The € func-
tion represents how much an experience now should
affect the value of a state the agent has previously passed
through. When the agent performs an update, the values
of all states are changed according to their eligibility.

The standard definition of the eligibility of a par-
ticular state uses an exponential decay over time, but
this is not a strict requirement and other definitions
of eligibility could be used. In addition, each time a
state is visited, its eligibility increases. Formally, on each
time step,

Vies €(s) < yAe(s) and then,

e(s)) < e(s) +1

This eligibility is used to update all state values by
first calculating the delta for the current state as above,
but then applying it to all states according to the eligi-
bility values:

Ar=a(ri+yV(s1) — V(st))
Vses V(s) < V(s) + Ase(s)

TD value function estimation has been shown to con-
verge under many conditions, but there are also well
known examples where it does not converge at all, or
does not converge to the correct long term reward (Tsit-
siklis & Van Roy, 1997).

In particular, temporal differencing has been shown
to converge to the correct value of the long term dis-
counted reward if,

o The world is finite.

o The world state representation is Markovian.

o The rewards are bounded.

e The representation of the V function has no con-
straints (e.g., a tabular representation with an entry
for each state).

e The learning rate, «, is reduced according to the
Robbins-Monro conditions: Yo, a0y =
Yoo ol < oo,

oo, and

Much of the further work in TD learning since its
invention has been in finding algorithms that provably
converge in more general cases.

These convergence results require that a Marko-
vian representation of state be available to the agent.
There has been research into how to acquire such a
representation from a sequence of observations. The
approach of the Temporal Differencing community has
been to use TD-Networks (Sutton & Tanner, 2004).

Temporal Difference Learning is used to estimate the
long term reward of a pattern of behavior. This estima-
tion of utility can then be used to improve that behav-
ior, allowing TD to help solve a reinforcement learning
problem. There are two common ways to achieve this:
An Actor-Critic setup uses value function estimation as
one component of a larger system, and the Q-learning
and SARSA techniques can be viewed as slight modifi-
cations of the TD method which allow the extraction
of control information more directly from the value
function.

First we will formalise the concept of a pattern of
behavior. In the preceding text it was left deliberately
vague as TD can be applied to multiple definitions. Here
we will focus on discrete action spaces.

Assume there is a set of allowed actions for the
agent, A. We define a Markov policy as a function from
world states to actions, 7 : S - A. We also define a
stochastic or mixed Markov policy as a function from
world states to probability distributions over actions,
n:S8 - A - [0,1]. The goal of the control algo-
rithm is to find an optimal policy: a policy that max-
imises long term reward in each state. (When function
approximation is used (see section “Approximation”),
this definition of an optimal policy no longer suffices.
One can then either move to average reward if the sys-
tem is ergodic, or give a, possibly implicit, weighting
function specifying the relative importance of different
states.)

Actor-Critic Control Systems Actor-Critic control is
closely related to mixed policy iteration from Markov
Decision Process theory. There are two parts to an actor-
critic system; the actor holds the current policy for the
agent, and the critic evaluates the actor and suggests
improvements to the current policy.
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There are a number of approaches that fall under this
model. One early approach stores a preference value for
each world state and action pair, p : S x A — R. The
actor then uses a stochastic policy based on the Gibbs
softmax function applied to the preferences:

el (54)

7'[(5, a) = S een P ()

The critic then uses TD to estimate the long term
utility of the current policy, and also uses the TD update
to change the preference values. When the agent is posi-
tively surprised it increases the preference for an action,
when negatively surprised it decreases the preference
for an action. The size of the increase or decrease is
modulated by a parameter, f3:

p(sear) < p(s-ar) + BA,

Convergence of this algorithm to an optimal policy
is not guaranteed.

A second approach requires the agent to have an
accurate model of its environment. In this approach the
critic uses TD to learn a value function for the current
behavior. The actor uses model based forward search to
choose an action likely to lead to a state with a high
expected long term utility. This approach is common
in two player, zero sum, alternating move games such
as Chess or Checkers where the forward search is a
deterministic game tree search.

More modern approaches which guarantee conver-
gence are related to policy gradient approaches to rein-
forcement learning (Castro & Meir, 2010). These store a
stochastic policy in addition to the value function, and
then use the TD updates to estimate the gradient of the
long term utility with respect to that policy. This allows
the critic to adjust the policy in the direction of the neg-
ative gradient with respect to long term value, and thus
improve the policy.

Other Value Functions The second class of approaches
to using TD for control relies upon extending the
value function to estimate the value of multiple actions.
Instead of V we use a state-action value function, Q :
S x A — R. The update rule for this function is min-
imally modified from the TD update defined for V'
above.

Once these state-action value functions have been
estimated, a policy can be selected by choosing for each
state the action that maximizes the state-action value
function, and then adding some exploration.

In order for this extended value function to be
learned, the agent must explore each action in each state
infinitely often. Traditionally this has been assured by
making the agent select random actions occasionally,
even when the agent believes that action would be sub-
optimal. In general the choice of when to explore using
a sub-optimal action, the exploration/exploitation trade-
off, is difficult to optimize. More recent approaches
to optimizing the exploration/exploitation trade-off in
reinforcement learning estimate the variance of the
value function to decide where they need to explore
(Auer & Ortner, 2007).

The requirement for exploration leads to two differ-
ent value functions that could be estimated. The agent
could estimate the value function of the pattern of
behavior currently being executed, which includes the
exploration. Or, the agent could estimate the value func-
tion of the current best policy, excluding the exploration
currently in use. These are referred to as on-policy and
of f-policy methods respectively.

Q-Learning is an oft-policy update rule:

Q(se-ar) < Q(sp-ar) + a(re + yV(se1) — Q(sp-ar))

where V(sit1) = max Q(si11,a)
ae

SARSA is an on-policy update rule:

Q(st-ar) < Q(s-ar) + a(re + yQ(ses1> are1) — Q(s,ar))
Then for both:

n(s) = argmax,, ,Q(s,a)

and some exploration.

As can be seen above, the update rules for SARSA
and Q-learning are very similar — they only differ in the
value used for the resulting state. Q-learning uses the
value of the best action, whereas SARSA uses the value
of the action that will actually be chosen.

Q-Learning converges to the best policy to use once
you have converged and can stop exploring. SARSA
converges to the best policy to use if you want to keep
exploring as you follow the policy (Lagoudakis & Parr,
2003).
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A major problem with many state based algorithms,
including TD learning, is the so-called Mcurse of
dimensionality. In a factored state representation, the
number of states increases exponentially with the num-
ber of factors. This explosion of states produces two
problems: it can be difficult to store a function over the
state space, and even if the function can be stored, so
much data is required to learn the function that learning
is impractical.

The standard response to the curse of dimensional-
ity is to apply function approximation to any function
of state. This directly attacks the representation size, and
also allows information from one state to affect another
“similar” state allowing generalisation and learning.

While the addition of function approximation can
significantly speed up learning, it also causes difficulty
with convergence. Some types of function approxima-
tion will stop TD from converging at all. The resulting
algorithms can either oscillate forever or approach infi-
nite values. Other forms of approximation cause TD to
converge to a estimate of long term reward which is only
weakly related to the true long term reward (Baird, 1995;
Boyan & Moore, 1995; Gordon, 1995).

Most styles of function approximation used in con-
junction with TD learning are parameterized, and the
output is differentiable with respect to those parameters.
Formally we have V : ® - S — R, where © is the space
of possible parameter vectors, so that Vg (s) is the value
of V at state s with parameter vector 6, and VVjy(s) is
the gradient of V with respect to 0 at s. The TD update
then becomes:

A=« (rt + )/Ve(31+1) - V@(St))
0« 0+ A VVy(s:)

We describe three styles of approximation: state
abstraction, linear approximation, and smooth general
approximators (e.g., neural networks).

State abstraction refers to grouping states together
and thereafter using the groups, or abstract states,
instead of individual states. This can significantly reduce
the amount of storage required for the value function as
only values for abstract states need to be stored. It also
preserves convergence results. A slightly more advanced
form of state abstraction is the tile coding or CMAC
(Albus, 1981). In this type of function approximation,

the state representation is assumed to be factored, i.e.,
each state is represented by a vector of values rather
than a single scalar value. The CMAC represents the
value function as the sum of separate value functions;
one for each dimension of the state. Those individual
dimensions can each have their own state abstraction.
Again, TD has been shown to converge when used with
a CMAC value function representation.

In general, any form of function approximation that
forms a contraction mapping will converge when used
with TD (see the entry on »Markov Decision Pro-
cesses). Linear interpolation is a contraction mapping,
and hence converges. Linear extrapolation is not a con-
traction mapping and care needs to be taken when using
general linear functions with TD. It has been shown that
general linear function approximation used with TD
will converge, but only when complete trajectories are
followed through the state space (Tsitsiklis & Van Roy,
1997).

It is not uncommon to use various types of
back-propagation neural nets with TD, e.g., Tesauro’s
TD-gammon. More recently, TD algorithms have been
proposed that converge for arbitrary differentiable func-
tion approximators (Maei et al., 2009; Papavassiliou and
Russell, 1999). These use more complex update tech-
niques than those shown above.

TD learning was originally developed for use in envi-
ronments where accurate models were unavailable. It
has a close relationship with the theory of Markov Deci-
sion Processes where an accurate model is assumed.
Using the notation V(s;) ~ V(sy41) for a TD-style
update that moves the value at V(s;) closer to the value
at V(ss41) (including any discounting and intermediate
rewards), we can now consider many possible updates.

As noted above, one way of applying TD to control
is to use forward search. Forward search can be imple-
mented using dynamic programming, and the result is
closely related to TD. Let state c(s) be the best child of
state s in the forward search. We can then consider an
update, V(s) ~ V(c(s)). If we let I(s) be the best leaf in
the forward search, we could then consider an update
V(s) ~ V(I(s)). Neither of these updates consider
the world after an actual state transition, only simu-
lated state transitions, and so neither is technically a TD
update.
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Some work has combined both simulated time steps
and real time steps. The TD-Leaf learning algorithm for
alternative move games uses the V(I(s¢)) ~ V(I(st+1))
update rule (Baxter et al., 1998).

An important issue to consider when using forward
search is whether the state distribution where learning
takes place is different to the state distribution where
the value function is used. In particular, if updates only
occur for states the agent chooses to visit, but the search
is using estimates for states that the agent is not visit-
ing, then TD may give poor results. To combat this, the
TreeStrap(a-f3) algorithm for alternating move games
updates all nodes in the forward search tree to be closer
to the bound information provided by their children
(Veness et al., 2009).

There are strong relationships between TD learning
and the Rescorla-Wagner model of Pavlovian condi-
tioning. The Rescorla-Wagner model is one way to
formalize the idea that learning occurs when the co-
occurence of two events is surprising rather than every
time a co-occurence is experienced. The A, value cal-
culated in the TD update can be viewed as a measure
of surprise. These findings appear to have a neural sub-
strate in that dopamine cells react to reward when it
is unexpected and to the predictor when the reward is
expected (Schultz et al., 1997; Sutton & Barto, 1990).
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Synonyms
Evaluation data; Test instances

Definition

Test data are data to which a »model is applied for the
purposes of »-evaluation. When »holdout evaluation is
performed, test data are also called out-of-sample data,
holdout data, or the holdout set.

Cross References
» Test Set

| Test Instances

» Test Data

| Test Set

Synonyms
Evaluation data; Evaluation set; Test data

Definition

A test set is a »data set containing data that are used
for »evaluation by a Plearning system. Where the
»training set and the test set contain disjoint sets of
data, the test set is known as a »holdout set.

Cross References
» Data Set

! Test Time

A learning algorithm is typically applied at two dis-
tinct times. Test time refers to the time when an algo-
rithm is applying a learned model to make predictions.

» Training time refers to the time when an algorithm is
learning a model from »training data. »Lazy learning
usually blurs the distinction between these two times,
deferring most learning until test time.

[
Test-Based Coevolution

Synonyms
Competitive coevolution

Definition

A coevolutionary system constructed to simultaneously
develop solutions to a problem and challenging tests for
candidate solutions. Here, individuals represent com-
plete solutions or their tests. Though not precisely the
same as competitive coevolution, there is a significant
overlap.

[ .
Text Clustering
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' Text Mining

DuNja MLADENIC
Jozef Stefan Insitute, Ljubljana, Slovenia

Synonyms
Analysis of text; Data mining on text; Text learning

Definition

The term text mining is used analogous to »data min-
ing when the data is text. As there are some data speci-
ficities when handling text compared to handling data
from databases, text mining has a number of specific
methods and approaches. Some of these are extensions
of data mining and machine learning methods, while
other are rather text-specific. Text mining approaches
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combine methods from several related fields, including
machine learning, data mining, »information retrieval,
»natural language processing, Pstatistical learning,
and the Semantic Web. Basic text mining approaches
are also extended to enable handling different natural
languages (»cross-lingual text mining) and are com-
bined with methods for handling different data types,
such as links and graphs (»link mining and link dis-
covery, »-graph mining), images and video (multimedia
mining).

Cross References

» Cross-Lingual Text Mining

»Feature Construction In Text Mining
»Feature Selection In Text Mining
»Semi-Supervised Text Processing

» Text Mining For Advertising

» Text Mining For News and Blogs Analysis
» Text Mining for the Semantic Web

» Text Mining For Spam Filtering

» Text Visualization
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MASSIMILIANO CIARAMITA
Yahoo! Research Barcelona,
Barcelona, Spain

Synonyms
Content match; Contextual advertising; Sponsored
search; Web advertising

Definition

Text mining for advertising is an area of investigation
and application of text mining and machine learning
methods to problems such as Web advertising; e.g.,
automatically selecting the most appropriate ads with
respect to a Web page, or query submitted to a search
engine. Formally, the task can be framed as a rank-
ing or matching problem where the unit of retrieval,
rather than a Web page, is an advertisement. Most of
the time ads have simple and homogeneous prede-
fined textual structures, however, formats can vary and
include audio and visual information. Advertising is

a challenging problem due to several factors such as
the economic nature of the transactions involved, engi-
neering issues concerning scalability, and the inherent
complexity of modeling the linguistic and multimedia
content of advertisements.

Motivation and Background

The role of advertising in supporting and shaping the
development of the Web has substantially increased
over the past years. According to the Interactive Adver-
tising Bureau (IAB), Internet advertising revenues in the
USA totaled almost $8 billion in the first 6 months of
2006, a 36.7% increase over the same period in 2005,
the last in a series of consecutive growths. Search, i.e.,
ads placed by Internet companies in Web pages or in
response to specific queries, is the largest source of
revenue, accounting for 40% of total revenue (Inter-
net Advertising Bureau, 2006). The most important
categories of Web advertising are keyword match, also
known as sponsored search or paid listing, which places
ads in the search results for specific queries (see Fain &
Pedersen, 2006 for a brief history of sponsored search),
and content match, also called content-targeted advertis-
ing or contextual advertising, which places ads in Web
pages based on the page content. Figure 1 shows an
example of sponsored search and ads are listed on the
right side of the page.

Currently, most of the focus in Web advertising
involves sponsored search, because matching based
on keywords is a well-understood problem. Content
match has greater potential for content providers, pub-
lishers, and advertisers, because users spend most of
their time on the Web on content pages as opposed to
search engine result pages. However, content match is
a harder problem than sponsored search. Matching ads
with query terms is to a certain degree straightforward,
because advertisers themselves choose the keywords
that characterize their ads that are matched against
keywords chosen by users while searching. In con-
textual advertising, matching is determined automati-
cally by the page content, which complicates the task
considerably.

Advertising touches challenging problems concern-
ing how ads should be analyzed, and how the accurately
and efficiently systems select the best ads. This area of
research is developing rapidly in information retrieval.




964

Text Mining for Advertising

Web | Images | Video | Local | Shopping | more »

YEHOO! SEARCH [spanhoidays

| (Search ] asvsnces searcn

Search Results

o

Also try: cheap spain holidays spain national holidays More.

.

Tours For You - Spain
W toursforyou. pt - Bringing you the Charm of Spain: Personalized Travel Senices:

Spain Holidays
wyw spain.info - Spain's official tourism website: Advice, info, tips and more

Spain-Holiday.com

Holiday rental homes and accommodations in Spain directly from the owners including self
catering villas, apartments, townhouses, and cottages.

www.spain-holiday.com - 191k - Cached - More from this site

IS

Costa Holidays
Offers holiday vacation rentals all over Andalucia southem Spain
W, holidays.com - 26k - Cached - More from this site

w

Holidays in Spain
Spain Holidays, spain hotels, hotels spain, hotels in spain,
Date. New Year's Day. January 01 2005 * Epiphany. January 06 2005 ..

W X P lidays.html - 17k - Cached - More from this site

=

Expedia.co uk > Cheap holidays to Spain

holidays in Spain and search for cheap holiday deals and bargain holiday deals to Spain

‘Search for holidays to Spain using our advanced search features below and
winw. e@xpedia.co.ukidaily/holidays/Spain. asp - 55k - Cached - Mora from this site

o

Spain National Holidays - Spain Holidays

Spain Holidays. Official National Holidays in Spain. ... October 12th - Spanish National
Holiday (Dia de la Hispanidad) November 1st - All Saints Day ...

www enforex.com/holidays-spain.html - 23k - Cached - More from this site

Spain Holidays. Guide to Lastminute Holidays in Spain
Essential free guide for Spain Holidays. Everything you need to know for a great holiday in
Spain. . our free interactive Spain holidav auide and discover

Holidays in Spain. Holiday.

1 - 10 of about 73,000,000 for spain holidays - 0.02 sec. (Abou this page)

SPONSOR RESULTS

Spain Holidays - Save Now
Discounts up to 70% on holidays in

SPONSOR RESULTS

Spain. Choose from.
hotels-and.discounts.com

Spain Holiday

Take a Spain holiday youll never
forget - stay in.

www spainparador.com

Spain Holidays

Find Out What the Locals Will Be
Celebrating When You Travel.
www Concierge.com

Hilton Head, SC Golf Holiday
2007 Hilton Head Island S.C. Golf
Packages & Holidays. We.

www golfhiltonheadisland.net

Spanish Holidays

Millions of Products from Thousands:
of Stores All in One Place.

www. Shopping.com/Kitchen

3,750 Hotels in Italy - Europe
Save up 10 70% on 110 5 star hotels
in ltaly. No reservation fee.

wnw booking.com

Spain Holidays Rates
Visitina Spain & Nead a Hotel?

Text Mining for Advertising. Figure 1. Ads ranked next to a search results page for the query “Spain holidays”

How best to model the structure and components of
ads, and the interaction between the ads and the con-
texts in that they appear are open problems. Informa-
tion retrieval systems are designed to capture relevance,
which is a basic concept in advertising as well. Elements
of an ad such as text and images tend to be mutually
relevant, and often (in print media for example) ads are
placed in contexts that match a certain product at a top-
ical level; e.g., an ad for sneakers placed on a sport news
page. However, topical relevance is only one the basic
parameters which determine a successful advertisement
placement. For example, an ad for sneakers might be
appropriate and effective on a page comparing MP3
players, because they may share a target audience (e.g.,
joggers) although they arguably refer to different top-
ics, and it is possible they share no common vocabulary.
Conversely, there may be ads that are topically similar
to a Web page, but cannot be placed there because they
are inappropriate. An example might be placing ads for
a product in the page of a competitor.

The language of advertising is rich and sophisti-
cated and can rely considerably on complex inferential
processes. A picture of a sunset in an ad for life insur-
ance carries a different implication than a picture of
a sunset in an ad for beer. Layout and visual content
are designed to elicit inferences, possibly hinging on
cultural elements; e.g., the age, appearance, and gen-
der of people in an ad affect its meaning. Adequate

automatic modeling will likely involve, to a substantial
degree, understanding the language of advertisement
and the inferential processes involved (Vestergaard &
Schroeder, 1985). Today this seems beyond what tra-
ditional information retrieval systems are designed to
cope with. In addition, the global context can be cap-
tured only partially by modeling the text alone. As the
Web evolves into an immense infrastructure for social
interaction and multimedia information sharing the
need for modeling structured “content” becomes more
and more crucial. This applies to information retrieval
and specifically to advertising. For this reason, the prob-
lem of content match is of particular interest and opens
new problems and opportunities for interdisciplinary
research.

Today, contextual advertising, the most interesting
sub-task from a mining perspective, consists mostly in
selecting ads from a pool to match the textual con-
tent of a particular Web page. Ads provide a limited
amount of text: typically a few keywords, a title, and
brief description. The ad-placing system needs to iden-
tify relevant ads, from huge ad inventories, quickly
and efficiently based on this very limited amount of
information. Current approaches have focused on aug-
menting the representation of the page to increase the
chance of a match (Ribeiro-Neto, Cristo, Golgher, and
de Moura, 2005), or by using machine learning to find
complex ranking functions (Lacerda et al., 2006), or
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by reducing the problem of content match to that of
sponsored search by extracting keywords from the Web
page (Yih et al,, 2006). All these approaches are based
on methods that quantify the similarity between the ad
and the target page on the basis of traditional informa-
tion retrieval notions such as cosine similarity and tf.idf
teatures. The relevance of an ad for a page depends on
the number of overlapping words, weighted individu-
ally and independently as a function of their individual
distributional properties in the collection of documents
or ads.

Structure of Learning Problem

The typical elements of an advertisement are a set of
keywords, a title, a textual description and a hyperlink
pointing to page, the landing page, relative to a product
or service, etc. In addition, an ad has an advertiser id and
can be part of a campaign, i.e., a subset of all the ads with
same advertiser id. This latter information can be used,
for example, to impose constraints on the number of ads
to display relative to the campaign or advertiser. While
this is possibly the most common layout, it is important
to realize that ads structure can vary significantly and
include relevant audio and visual content.

In general, the learning problem for an ad-placing
system can be formalized as a ranking task. Let A be a
set of ads, P the set of possible pages, and Q the set of
possible queries. In keyword match, the goal is to find
a function F : A x Q — R; e.g., a function that counts
the number of individual common terms or n-grams of
such terms. In content match, the objective is to find a
function F : A x P — R. The keyword match prob-
lem is to a certain extent straightforward and amounts
to matching small set of terms defined manually by
both the user and the advertiser. The content match task
shares with the former task the peculiarities of the units
of retrieval (the ads), but introduces new and interest-
ing issues for text mining and learning because of the
more complex conditioning environment, the Web page
content, which needs to modeled automatically.

In general terms, an ad can be represented as a fea-
ture vector x = ®(a;,p;) such that a; € A, pjeP,
and given a d-dimensional feature space X c R
®: A x P — X.In the traditional machine learning set-
ting, one introduces a weight vector « € R? which
quantifies each feature’s contribution individually. The

vector’s weights can be learned from manually edited
rankings (Lacerda et al., 2006; Ribeiro-Neto et al., 2005)
or from click-through data as in search results optimiza-
tion (Joachims, 2002). In the case of a linear classifier the
score of an ad-target page pair x; would be:

d
F(xa) = Z s Xs. 1)
s=1

Several methods can be used to learn similar or related
models such as perceptron, SVM, boosting, etc. Con-
straints on the number of advertisers or campaigns
could be easily implemented as post-ranking filters on
the top of the ranked list of ads or included in a suitable
objective function.

A basic model for ranking ads can be defined in
the vector space model for information retrieval, using
a ranking function based on cosine similarity, where
ads and target pages are represented as vectors of terms
weighted by fixed schemes such as tf.idf. If only one fea-
ture is used, the cosine based on tf.idf between the ad
and the page, a standard vector space model baseline is
obtained, which is at the base of the ad-placing rank-
ing functions variants proposed by (Ribeiro-Neto et al.,
2005) Recent work has shown that machine learning-
based models are considerably more accurate than such
baselines. However, as in document retrieval, simple
feature maps which include mostly coarse-grained sta-
tistical properties of the ad-page pairs, such as tfidf-
based cosine, are the most desirable for efficiency and
bias reasons. Properties of the different components of
the ad can be used and weighted in different ways, and
soft or hard constraints introduced to model the pres-
ence of the ads keyword in the Web page. The design
space for ad-place systems is vast and still little explored.
All systems presented so far in the literature make use of
manually annotated data for training and/or evaluating
a model.

Structure of Learning Systems

Web advertising presents peculiar engineering and
modeling challenges and has motivated research in dif-
ferent areas. Systems need to be able to deal in real time
with huge volumes of data and transactions involving
billions of ads, pages, and queries. Hence several engi-
neering constraints need to be taken into account; effi-
ciency and computational costs are crucial factors in the
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choice of matching algorithms (The Yahoo! Research
Team, 2006). Ad-placing systems might require new
global architecture design; e.g., Attardi et al. (2004)
proposed an architecture for information retrieval sys-
tems that need to handle large-scale targeted advertising
based on an information filtering model. The ads that
appear on Web pages or search results pages will ulti-
mately be determined taking into account the expected
revenues and the price of the ads. Modeling the microe-
conomics factors of such processes is a complex area of
investigation in itself (Feng et al., 2005).

Another crucial issue is the evaluation of the
effectiveness of the ad-placing systems. Studies have
emphasized the impact of the quality of the match-
ing on the success of the ad in terms of click-through
rates (Gallagher et al, 2001; Sherman & Deighton,
2001). Although »click-through rates (CTRs) provide
a traditional measure of effectiveness, it has been found
that ads can be effective even when they do not solicit
any conscious response and that the effectiveness of the
ad is mainly determined by the level of congruency
between the ad and the context in which it appears (Yoo,
2006).

Since the query-based ranking problem is better under-
stood than contextual advertising, one way of approach-
ing the latter would be to represent the content page as
a set of keywords and then ranking the ads based on the
keywords extracted from the content page. Carrasco et
al. (2003) proposed clustering of bi-partite advertiser-
keyword graphs for keyword suggestion and identify-
ing groups of advertisers. Yih, Goodman, & Carvalho
(2006) proposed a system for keyword extraction from
content pages. The goal is to determine which key-
words, or key phrases, are more relevant in a Web
page. Yih et al. develop a supervised approach to this
task from a corpus of pages where keywords have been
manually identified. They show that a model learned
with Plogistic regression outperforms traditional vec-
tor models based on fixed tf.idf weights. The most use-
ful features to identify good keywords efficiently are,
in this case, term frequency and document frequency
of the candidate keywords, and particularly the fre-
quency of the candidate keyword in a search engine
query log. Other useful features include the similarity
of the candidate with the page’s URL and the length, in

number of words, of the candidate keyword. In terms
of feature representation thus, they propose a feature
map ® : A - O, which represent a Web page as a
set of keywords. The accuracy of the best learned sys-
tem is 30.06%, in terms of the top predicted keyword
being in the set of manually generated keywords for a
page, against 13.01% of the simpler #{idf based model.
While this approach is simple to apply, it remains to
be seen how accurate it is at identifying good ads for a
page. It identifies potentially useful sources of informa-
tion in automatically-generated keywords. An interest-
ing related finding concerning keywords is that longer
keywords, about four words long, lead to increased
click-through rates (OneUpWeb, 2005).

(Ribeiro-Neto et al., 2005) introduced an approach to
content match which focuses on the vocabulary mis-
match problem. They notice that there tends to be not
enough overlap in the text of the ad and the target page
to guarantee good accuracy; they call this the vocab-
ulary impedance problem. To overcome this limitation
they propose to generate an augmented representation
of the target page by means of a Bayesian model pre-
viously applied to document retrieval (Ribeiro-Neto &
Muntz, 1996). The expanded vector representation of
the target page includes a significant number of addi-
tional words which can potentially match some of the
terms in the ad. They find that such a model improves
over a standard vector space model baseline, evaluated
by means of 11-point average precision on a test bed
of 100 Web pages, from 0.168 to 0.253. One possible
shortcoming of such an approach is that generating the
augmented representation involves crawling a signifi-
cant number of additional related pages. It has also been
argued (Yih et al., 2006) that this model complicates
pricing of the ads because the keywords chosen by the
advertisers might not be present in the content of the
matching page.

Lacerda et al. (2006) proposed to use machine learn-
ing to find good ranking functions for contextual
advertising. They use the same data-set described
in Ribeiro-Neto et al. (2005), but use part of the data
for training a model and part for evaluation purposes.
They use a genetic programming algorithm to select a
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ranking function which maximizes the average preci-
sion on the training data. The resulting ranking function
is a nonlinear combination of simple components based
on the frequency of ad terms in the target page, doc-
ument frequencies, document length, and size of the
collections. Thus, in terms of the feature representa-
tion defined earlier, they choose a feature map which
extracts traditional features from the ad-page pair, but
then apply then genetic programming methods to select
complex nonlinear combinations of such features that
maximize a fitness function based on average precision.
Lacerda et al. (2006) find that the ranking functions
selected in this way are considerably more accurate than
the baseline proposed in Ribeiro-Neto et al. (2005); in
particular, the best function selected by genetic pro-
gramming achieves an average precision at position
three of 0.508, against 0.314 of the baseline.

The most common approaches to contextual adver-
tising are based on matching terms between the ad
and the content page. Broder, Fontoura, Josifovski, and
Riedel (2007) notice that this approach (which they call

>

the “syntactic—” model), can be improved by adopt-
ing a matching model which additionally takes into
account topical proximity; i.e., a “semantic” model. In
their model the target page and the ad are classified
with respect to a taxonomy of topics. The similarity of
ad and target page estimated by means of the taxon-
omy provides an additional factor in the ads ranking
function. The taxonomy, which has been manually built,
contains approximately 6,000 nodes, where each node
represents a set of queries. The concatenation of all
queries at each node is used as a meta-document, ads
and target pages are associated with a node in the tax-
onomy using a nearest neighbor classifier and ff.idf
weighting. The ultimate score of an ad a; for a page
p is a weighted sum of the taxonomy similarity score
and the similarity of a; and p based on standard syn-
tactic measures (vector cosine). On evaluation, Broder
et al. (2007) report a 25% improvement for mid-range
recalls of the syntactic-semantic model over the pure
syntactic one.

Cross References
»Boosting
»Genetic Programming

»Information Retrieval
» Perceptron

»SVM

»TF-IDF

> Vector Space Model
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Definition

News and blogs are two types of media that generate and
offer informational resources. News is any information
whose revelation is anticipated to have an intellectual
or actionable impact on the recipient. The dominant
type of news in text analysis is that pertaining to cur-
rent events. Originally referring to print-based news
from press agencies or end-user news providers (like
individual newspapers or serials), it now increasingly
refers to Web-based news in the online editions of the
same providers or in online-only news media. The term
is generally understood to denote only the reports in
news media, not opinion or comment pieces. A blog is
a (more or less) frequently updated publication on the
Web, sorted in (usually reverse) chronological order of
the constituent blog posts. The content may reflect any
interest including personal, journalistic, or corporate.
Blogs were originally called weblogs. To avoid confu-
sion with web server log files that are also known by
this term, the abbreviation “blog” was coined and is now
commonly used.

News and blogs consist of textual and (in some
cases) pictorial content, and, when Web-based, may
contain additional content in any other format (e.g.,
video, audio) and hyperlinks. They are indexed by
time and structured into smaller units: news media

into articles, blogs into blog posts. In most news and
blogs, textual content dominates. Therefore, text anal-
ysis is the most often applied form of knowledge
discovery. This comprises tasks and methods from
data/text mining, »information retrieval, and related
fields. In accordance with the increasing convergence
of these fields, this article refers to all of them as »text
mining.

Motivation and Background

News and blogs are today’s most common sources
for learning about current events and also, in the
case of blogs, for uttering opinions about current
events. In addition, they may deal with topics of
more long-term interest. Both reflect and form soci-
eties, groups’ and individuals’ views of the world, fast
or even instantaneous with the events triggering the
reporting.

However, there are differences between these two
types of media regarding authoring, content, and form.
News is generally authored by people with journalistic
training who abide by journalistic standards regarding
the style and language of reporting. Topics and ways of
reporting are circumscribed by general societal consen-
sus and the policies of the news provider. In contrast,
everybody with Internet access can start a blog, and
there are no restrictions on content and style (beyond
the applicable types of censorship). Thus, blogs offer end
users a wider range of topics and views on them. On the
one hand, this implies that journalistic blogs, which cor-
respond most closely to news, are only one type of blogs.
Other frequent types are diary-like personal blogs, cor-
porate blogs for public relations, and blogs focusing on
special-interest topics. On the other hand, their com-
parative lack of restrictions has helped to establish blogs
as an important alternative source of information, as a
form of grassroots journalism that may give rise to a
counterpublic. An example are the warblogs published
during the early years of the Iraq War (2003+) by inde-
pendent sources (often civilian individuals) both in the
West and in the Middle East.

These application characteristics lead to various lin-
guistic and computational challenges for text-mining
analyses of news and blogs:

o Indexing, taxonomic categorization, partial redun-
dancy, and data streams: News is indexed by time
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and by source (news agency or provider). In a mul-
tisource corpus, many articles published at about
the same time (in the same or in other languages)
describe the same events. Over time, a story may
develop in the articles. Such multiple reporting and
temporal structures are also observed for popular
topics in blogs.

Language and meaning: News is written in clear,
correct, “objective;” and somewhat schematized lan-
guage. Usually, the start of a news article summarizes
the whole article (feeds are a partial analogue of this
in blogs). Information from external sources such as
press agencies is generally reused rather than refer-
enced. In sum, news makes fewer assumptions about
the reader’s background and context knowledge than
many other texts.

Nonstandard language and subjectivity: The lan-
guage in blogs ranges from high-quality “news-like”
language through poor-quality, restricted-code lan-
guage with many spelling and grammatical errors
to creative, sometimes literary, language. Jargon is
very common in blogs, and new linguistic develop-
ments are adopted far more quickly than could be
reflected in external resources such as lexica. Many
blog authors strive not for objectivity, but for subjec-
tivity and emotionality.

Thematic diversity and new forms of categorization:
News are generally categorized by topic area (“pol-
itics,” “business,” etc.). In contrast, a blog author
may choose to write about differing, arbitrary top-
ics. When blogs are labeled, it is usually not with
reference to a stable, taxonomic system, but with an
arbitrary number of tags: free-form, often informal
labels chosen by the user.

Social structure and its impact on content and mean-
ing: The content of a blog (post) is often not con-
tained in the text alone. Rather, blog software
supports “Social Web” behavior, and bloggers prac-
tice it: multiway communication rather than broad-
casting, and semantics-inducing referencing of both
content and people. Specifically, hyperlinks to other
resources provide not only context but also content;
“blogrolls” (hyperlinks to other blogs) supply con-
text in terms of other blogs/bloggers recommended
by the author; comments to blog posts are inte-
gral part of the communication that the post trig-
gered. “Trackback” links, indicating hyperlinks set

to the blog, may be automatically added by blog-
ging software and thus, create a dynamic citation
context.

Structure of the Learning System

News and blogs may serve many different interests, for
example, those of:

e End users who want to know what is happening in
given universes of discourse, to follow developments
within these areas, or to identify sources that are
of long-term interest to them. These users differ by
their preferences, their educational level, the pur-
poses of their searches, and other factors. This calls
for search engines, temporal analyses, topic identifi-
cation, personalization, and related functionalities.

e Companies that want to learn about their target
groups’ views and opinions of their products and
activities, detect trends and make predictions. Simi-
lar market research may be carried out by nonprofit
organizations or politicians.

e People who use blogs to gain insights about spe-
cific blog author(s) as background knowledge for
decisions on befriending, hiring, or insuring these
individuals (see Nowson & Oberlander 2007) on the
textual analysis of blogs for determining personality
features).

The literature on news and blogs analysis reflects
these and other possible uses. A number of standard
tasks are emerging, furthered by the competitions
at events such as the Topic Detection and Track-
ing (TDT) research program and workshops (http:
/Iwww.itl.nist.gov/iad/mig/tests/tdt, Allan, 2002), Text
Retrieval Conference (TREC, http://trec.nist.gov/, e.g.,
MacDonald, Ounis, & Soboroff, 2007), and Document
Understanding/Text Analysis Conference (DUC/TAC,
http://www.nist.gov/tac/). Other initiatives also provide
and encourage the usage of standardized real-world
»datasets, but instigate research on novel questions
by standardizing neither tasks nor »algorithm evalua-
tion. Prominent examples are the Reuters-21578 dataset,
which is not only a collection of newswire articles
but also the most classical dataset for text mining in
general (http://kdd.ics.uci/edu/databases/reuters21578/
reuters21578.html), and the blog datasets provided by
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International Conference on Weblogs and Social Media
(ICWSM, http://www.icwsm.org) and its precursors.
Tasks can be grouped by different criteria:

o Use case and type of result: description and predic-
tion (supervised or unsupervised, may include topic
identification, tracking, and/or novelty detection);
search (ad hoc or filtering); recommendation (of
blogs, blog posts, or tags); summarization

e Higher-order characterization to be extracted: topic;
opinion

e Time dimension: nontemporal; temporal (stream
mining); multiple streams (e.g., in different lan-
guages, see »cross-lingual text mining)

e User adaptation: none (no explicit mention of user
issues and/or general audience); customizable; per-
sonalized

Since the beginning of news mining in the 1990s and of
blog mining in the early 2000s, more complex combina-
tions of these dimensions have been explored. Examples
include (a) the TDT research program (1997/1998-
2004) required an explicit focus on temporal analyses
and called for topic description and prediction in a
news stream; (b) “bursty” topics in a stream of blogs
were used to predict peaks in a stream of online sales
(Gruhl, Guha, Kumar, Novak, & Tomkins, 2005); (c) the
role of opinion mining as a key question in blog anal-
ysis was manifested by the first TREC blog track in
2006 (see also MacDonald et al., 2007); it is now a
standard task, also for analysing microblogs (Jansen,
Zhang, Sobel, & Chowdury, 2009); (d) a recommen-
dation method on a document stream based on track-
ing multiple topics over time, personalized to a user
whose interests may change over time was developed
in (Pon, Cardenas, Buttler, & Critchlow, 2007); (e) in
(Lu & Zhai, 2008), opinions were summarized in a set
of non-time-indexed texts, for a general audience; and
(f) in (Subasi¢ & Berendt, 2008), bursty topics in a news
stream were summarized into graph patterns that can be
interactively explored and customized.

Another important task is spam detection and
blocking (Kolari, Java, Finin, Oates, & Joshi, 2006).
While basically nonexistent in news mining (news are
identified by their sources, which are “white-listed” and
thus credible), spamming has become a severe problem
in the blogosphere, ranging from comment spam via

“flogs” (e.g., ghostwritten by a marketing department
but pretending to be an end user), to “splogs” (artificially
created blogs used to increase the visibility and search
engine rankings of associated sites). (cf. »text mining
for spam detection).

Solution approaches are based on general »data-
mining methods and adapted to the conceptual specifics
of news and blogs and their mining tasks (see list of
tasks above). Methods include (»document) classifica-
tion and »clustering, latent-variable techniques such as
(P)LSA or LDA (cf. »feature construction), »mixture
models, >time series, and Pstream mining methods.
Named-entity recognition may be an important part or
companion of topic detection (cf. »information extrac-
tion). Opinion mining often relies on word class iden-
tification and »part-of-speech tagging, and it generally
employs lexica (e.g., of typical opinionated words and
their positive or negative polarity). Data cleaning is
similar to that of other Web documents; in particular,
it requires the provision or learning of wrappers for
removing markup elements.

In addition, many solution approaches exploit the
specific formatting and/or linguistic features of blogs.
For example, to improve the retrieval of blogs about
a queried event, the format elements “timestamp” and
“number of comments” can be treated as indicators
of increased topical relevance and likelihood of being
opinionated, respectively (Mishne, 2007). Structural
elements of blogs such as length and representation in
post title versus post body have been used for blog dis-
tillation (filtering out those blogs that are principally
devoted to a topic rather than just mentioning it in
passing) (Weerkamp, Balog, & de Rijke, 2008). Text-
based statistical topic modeling can be enhanced by
»regularizing it with the (e.g., social) network struc-
ture associated with blog data (Mei, Cai, Zhang, & Zhai,
2008) (cf. »link mining and link discovery). However,
many blogs are not strongly hyperlinked - but tags also
carry “Social Web” information: A combination of text
clustering and tag analysis can serve to identify topics
as well as the blogs that are on-topic and likely to retain
this focus over time (Hayes, Avesani, & Bojars, 2007).

Due to blog writing style, standard indicators of rel-
evance may not be applicable. For example, a term’s
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TEIDF score, which is commonly used as a »-weight in
a »-feature vector representing the document, assumes
that important terms are mentioned (frequently) in the
document and infrequently elsewhere. However, blogs
often rely on implicit context — established by hyper-
links or by the history of the discussion. Solution pro-
posals include the integration of the text from previous
blog posts with the same tag (Hayes et al., 2007); in
addition, terms from hyperlinked documents could be
taken into account. In addition, while blogs may be
more opinionated than news texts, their language may
make it more difficult to extract topics and argumenta-
tion vis-a-vis that topic. Specifically, blogs often contain
irony and other indirect uses of language for expressing
appreciation or discontent. The “emotional charge” of a
text has, therefore, been proposed as a better target for
blog classification (Gamon et al., 2008).

Viewed in relation to each other, news and blogs
pose some additional challenges for automated anal-
ysis and text mining. Several studies (e.g., Adamic
& Glance 2005) address questions such as: How are
blogs linked to news media (and possibly vice versa)?
Do they form a coherent whole, “the blogosphere,” or
rather a loose connection of mutually unrelated, polit-
ical, national, linguistic, etc., blogospheres? What are
the topics investigated in blogs versus news? Are sto-
ries reported by news or blogs first, and how does the
other side follow up reporting? In general, how do blogs
and news refer to and contextualize each other (e.g.,
Gamon et al. 2008; Berendt & Triimper 2009; Leskovec,
Backstrom, & Kleinberg 2009)?

Finally, text mining faces a further challenge: while
news are always meant to be read, many blogs are not
(e.g., because they are a personal journal) — even if they
are accessible over the Web. This raises the question of
whether text mining could or should become privacy-
aware (cf. privacy-related aspects and techniques).
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Synonyms
Commerical email filtering; Junk email filtering; Spam
detection; Unsolicited commercial email filtering

Definition

Spam filtering is the process of detecting unsolicited
commercial email (UCE) messages on behalf of an
individual recipient or a group of recipients. Machine
learning applied to this problem is used to create dis-
criminating models based on labeled and unlabeled
examples of spam and nonspam. Such models can serve
populations of users (e.g., departments, corporations,
ISP customers) or they can be personalized to reflect
the judgments of an individual. An important aspect of
spam detection is the way in which textual information
contained in email is extracted and used for the purpose
of discrimination.

Motivation and Background

Spam has become the bane of existence for both Inter-
net users and entities providing email services. Time
is lost when sifting through unwanted messages and
important emails may be lost through omission or acci-
dental deletion. According to various statistics, spam
constitutes the majority of emails sent today and a large
portion of emails actually delivered. This translates to
large costs related to bandwidth and storage use. Spam

detection systems help to alleviate these issues, but they
may introduce problems of their own, such as more
complex user interfaces, delayed message delivery, and
accidental filtering of legitimate messages. It is not clear
ifany one approach to fighting spam can lead to its com-
plete eradication and a multitude of approaches have
been proposed and implemented. Among existing tech-
niques are those relying on the use of supervised and
unsupervised machine learning techniques, which aim
to derive a model differentiating spam from legitimate
content using textual and nontextual attributes. These
methods have become an important component of the
antispam arsenal and draw from the body of related
research such as text classification, fraud detection and
cost-sensitive learning. The text mining component of
these techniques is of particular prominence given that
email messages are primarily composed of text. Appli-
cation of machine learning and data mining to the
spam domain is challenging, however, due, among oth-
ers, to the adversarial nature of the problem (Dalvi,
Domingos, Sanghai, & Verma, 2004; Fawcett, 2003).

Structure of the Learning System

A machine-learning approach to spam filtering relies
on the acquisition of a learning sample of email data,
which is then used to induce a classification or scor-
ing model, followed by tuning and setup to satisty the
desired operating conditions. Domain knowledge may
be injected at various stages into the induction process.
For example, it is common to a priori specific features
that are known be highly correlated with the spam label,
e.g., certain patterns contained in email headers or cer-
tain words or phrases. Depending on the application
environment, messages classified as spam are prevented
from being delivered (e.g., are blocked or “bounced”),
or are delivered with a mechanism to alert users to their
likely spam nature. Filter deployment is followed by
continuous evaluation of its performance, often accom-
panied by the collection of error feedback from its users.

A spam filtering system relies on the presence of labeled
training data, which are used to induce a model of what
constitutes spam and what is legitimate email. Spam
detection represents a two-class problem, although it
may sometimes be desired to introduce special handling
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of messages for which a confident decision, either way,
cannot be made. Depending on the application environ-
ment, the training data may represent emails received
by one individual or a group of users. Ideally, the
data should correspond to a uniform sample acquired
over some period of time preceding filter deployment.
Typical problems with data collection revolve around
privacy issues, whereby users are unwilling to donate
emails of personal or sensitive nature. Additionally, lab-
eling mistakes are common where legitimate emails
may be erroneously marked as spam or vice versa. Also,
since for certain types of emails, the spam/legitimate
distinction is personal, one may find that the same
message content is labeled in a conflicting manner by
different users (or even by the same user at different
times). Therefore, data cleaning and conflict resolu-
tion techniques may need to be deployed, especially
when building filters that serve a large and diverse user
population.

Due to privacy concerns, few large publicly email
corpora exist. The ones created for the TREC Spam Track
(TREC data is available from: http://plg.uwaterloo.ca/~
gvcormac/treccorpus/). stand out in terms of size and
availability of published comparative results.

Spam has been evolving in many ways over the course
of time. Some changes reflect the shift in content adver-
tised in such messages (e.g., from pornography and
pharmaceuticals to stock schemes and phish). Others
reflect the formatting of content. While early spam
was sent in the form of plain text, it subsequently
evolved into more complex HTML, with deliberate
attempts to make extraction of meaningful textual
features as difficult as possible. Typically, obfusca-
tion (a list of obfuscation techniques is maintained at
http://www.jgc.org/tsc.html) aims at

(a) Altering the text extracted from the message for
words visible to the user (e.g., by breaking up
the characters in message source by HTML tags,
encoding the characters in various ways, using
character look-alikes, wrapping the display of text
using script code executed by the message viewer).
This tactic is used to hide the message “payload”

(b) Adding content that is not visible to the user (e.g.,
using the background color or zero-width font to

render certain characters/words). This tactic typi-
cally attempts to add “legitimate content.”

(c) Purposeful misspelling of words known to be fairly
incriminating (e.g., Viagra as Vlagr@), in a way
that allows the email recipient to still understand
the spammer’s message.

The line of detection countermeasures aiming at pre-
venting effective content extraction continues in the
form of image spam, where the payload message is
encoded in the form of an image that is easily legi-
ble to a human but poses challenges to an automatic
content extraction system. To the extent that rich and
multimedia content gets sent out by legitimate users in
increasing proportions, spammers are likely to use the
complexity of these media to obfuscate their messages
even further. The very fact that obfuscation is attempted,
however, provides an opportunity for machine learn-
ing techniques to use obfuscation presence as a fea-
ture. Thus, even if payload content cannot be faithfully
decoded, the very presence of elaborate encoding may
help in identifying spam.

An email message represents a semistructured docu-
ment, commonly following the rfc822 standard
(www.fags.org/rfcs/rfc822.html). Its header consists of
fields indicative of formatting, authorship, and delivery
information, while its body contains the actual content
being sent. There can be little correctness enforcement
of the header fields and spamming techniques often rely
on spoofing and forging of the header data, although
this may provide evidence of tempering. Many early
approaches to detect spam depended predominantly
on hand-crafted rules identifying inconsistencies and
peculiarities of spam email headers. Manually or auto-
matically generated header features continue to be rel-
evant even when other features (e.g., message text) are
considered.

Given that an email message tends to be primar-
ily text, features traditionally useful in text categoriza-
tion have also been found useful in spam detection.
These include individual words, phrases, character n-
grams, and other textual components (Siefkes, Assis,
Chhabra, & Yerazunis, 2004). Natural language pro-
cessing (NLP) techniques such as stemming, stop-word
removal, and case folding are also sometimes applied to
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normalize the features further. Text extraction is often
nontrivial due to the application of content obfusca-
tion techniques. For example, standard lexical feature
extractors may need to be strengthened to correctly
identify word boundaries (e.g., in cases where groups
of characters within a word are separated by zero-width
HTML tags).

Extraction of features from nontextual attachments
(e.g., images, audio, and video) is also possible but
tends to be more computationally demanding. Other
types of features capture the way a message if formatted,
encoded in HTML, composed of multiple parts, etc.

Although nontextual features have different proper-
ties than text, it is common practice to combine them
with textual features and present a single unified rep-
resentation to the classifier. Indeed, some approaches
make no distinction between text and formatting even
during the process of feature extraction, and apply
pattern discovery techniques to identifying complex
features automatically (Rigoutsos & Huynh, 2004). The
advantage of such techniques is that they do not require
rich domain knowledge and can discover new useful
patterns. Due to the large space of possible patterns they
can potentially be computationally expensive. However,
even the seemingly simplistic treatment of an email
message as a plain-text document with “words” delim-
ited by white space often leads to very good results.

Even though typical text documents are already very
sparse, the problem is even more pronounced for the
email medium due to frequent misspelling and delib-
erate randomization performed by spammers. Insisting
on using all such variations may lead to overfitting
for some classifiers, and it leads to large filter mem-
ory footprints that are undesirable from an operational
standpoint. However, due to the constantly changing
distribution of content, it may be dangerous to rely
on very few features. Traditional approaches to feature
selection based on measures such as Information Gain
have been reported as successful in the spam filtering
domain, but even simple rudimentary attribute selec-
tion based on removing very rare and/or very frequent
features tends to work well.

There are a number of entities that can be extracted
from message text and that tend to be of relevance
in spam detection. Among others, there are telephone
numbers and URLs. In commercial email and in spam,
these provide a means of ordering products and services

and thus, offer important information for vendor and
campaign tracking. Detection of signature and mailing
address blocks can also be of interest, even if only to
indicate their presence or absence.

A variety of learning algorithms have been applied in
the spam filtering domain. These range from linear
classifiers such as Naive Bayes (Metsis, Androutsopou-
los, & Paliouras, 2006), logistic regression (Goodman &
Yih, 2006), or linear support vector machines (Drucker,
Wu, & Vapnik, 1999; Kolcz & Alspector, 2001; Scul-
ley & Wachman, 2007) to nonlinear ones such as
boosted decision trees (Carreras & Marquez, 2001).
Language modeling and statistical compression tech-
niques have also been found quite effective (Bratko,
Cormack, Filipic, Lynam, & Zupan, 2006). In general,
due to the high dimensionality of the feature space, the
classifier chosen should be able to handle tens of thou-
sand, or more, attributes without overfitting the training
data.

It is usually required that the learned model pro-
vides a scoring function, such that for email message
x score(x) € R, with higher score values correspond-
ing to higher probability of the message being spam.
The score function can also be calibrated to represent
the posterior probability P (spam|x) € [0,1], although
accurate calibration is difficult due to constantly chang-
ing class and content distributions. The scoring function
is used to establish a decision rule:

score (x) > th — spam

where the choice of the decision threshold th is driven
by the minimization of the expected cost. In the linear
case, the scoring function takes the form

score(x) =w-x+b

where w is the weight vectors, and x is a vector represen-
tation of the message. Sometimes scores are normalized
with a monotonic function, e.g., to give an estimate of
the probability of x being spam.

Linear classifiers tend to provide sufficiently high
accuracy, which is also consistent with other applica-
tion domains involving the text medium. In particular,
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many variants of the relatively simple Naive Bayes clas-
sifier have been found successful in detecting spam,
and Naive Bayes often provides a baseline for sys-
tems employing more complex classification algorithms
(Metsis et al., 2006).

It often pays off to combine different types of classifiers
(even different linear ones) in a sequential or parallel
fashion to benefit from the fact that different classifiers
may provide an advantage in different regions of the
feature space. Stacking via Plinear regression has been
reported to be effective for this purpose (Sakkis et al.,
2001; Segal, Crawford, Kephart, & Leiba, 2004). One
can generally distinguish between cases where all clas-
sifiers are induced over the same data and cases where
several different datasets are used. In the former case,
the combination process exploits the biases of different
learning algorithms. In the latter case, one can consider
building a multitude of detectors, each targeting a differ-
ent subclass of spam (e.g., phish, pharmaceutical spam,
“Nigerian” scams, etc.). Datasets can also be defined on
atemporal basis, so that different classifiers have shorter
or longer memory spans. Other criteria of providing
different datasets are also possible (e.g., based on the
language of the message).

Additional levels of complexity in the classifier com-
bination process can be introduced by considering
alternative feature representations for each dataset. For
example, a single data collection and a single learning
method can be used to create several different classifiers,
based upon alternative representations of the same data
(e.g., using just the header features or just the message
text features).

The method of classifier combination will necessar-
ily depend on their performance and intended area of
applications. The combination regimes can range from
simple logical-OR through linear combinations to com-
plex nonlinear rules, either derived automatically to
maximize the desired performance or specified manu-
ally with the guidance of expert domain knowledge.

A spam filtering system can be configured to receive
instant feedback from its users, informing it when-
ever certain messages get misdelivered (this necessarily
does not include cases where misclassified legitimate

messages are simply blocked). In the case of online fil-
ters, the feedback information may be immediately used
to update the filtering profile. This allows a filter to
adjust to the changing distribution of email content and
to detection countermeasures employed by spammers.
Not all classifiers are easily amenable to the online learn-
ing update, although online versions of well-known
learners such as logistic regression (Goodman & Yih,
2006) and linear SVMs (Sculley & Wachman, 2007)
have been proposed. The distinguishing factor is the
amount of the original training data that needs to be
retained in addition to the model itself to perform
future updates. In this respect, Naive Bayes is particu-
larly attractive since it does not require any of the origi-
nal data for adaptation, with the model itself providing
all the necessary information.

One issue with the user feedback signal, however, is
its bias toward current errors of the classifier, which for
learners depending on the training data being an unbi-
ased sample drawn from the underlying distribution
may lead to overcompensation rather than an improve-
ment in filtering accuracy. As an alternative, unbiased
feedback can be obtained by either selectively querying
users about the nature of uniformly sampled messages
or by deriving the labels implicitly.

In the case where off-line adaptation is in use,
the feedback data is collected and saved for later use,
whereby the filtering models are retrained periodically
or only as needed using the data collected. The advan-
tage of off-line adaptation is that it offers more flexibility
in terms of the learning algorithm and its optimization.
In particular, model retraining can take advantage of a
larger quantity of data, and does not have to be con-
strained to be an extension of the current version of the
model. As a result, it is, e.g., possible to redefine the fea-
tures from one version of the spam filter to the next. One
disadvantage is that model updates are likely to be per-
formed less frequently and may be lagging behind the
most recent spam trends.

What constitutes a spam message tends to be personal,
at least for some types of spam. Various commercial
messages, such as promotions and advertisements, e.g.,
may be distributed in a solicited or unsolicited manner,
and sometimes only the end recipient may be able to
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judge which. In that sense, user-specific spam detection
has the potential of being most accurate, since a user’s
own judgments are used to drive the training process.
Since the nonspam content received by any particu-
lar user is likely to be more narrowly distributed when
compared a larger user population, this makes the dis-
crimination problem much simpler. Additionally, in the
adversarial context, a spammer should find it more diffi-
cult to measure the success of penetrating personalized
filter defenses, which makes it more difficult to craft a
campaign that reaches sufficiently many mail inboxes to
be profitable.

One potential disadvantage of such solutions is the
need for acquiring labeled data on a user by user basis,
which may be challenging. For some users historical
data may not yet exist (or has already been destroyed),
for others even if such data exist, labeling may seem too
much of a burden for the users. Aside from the data col-
lection issues, personal spam filtering faces maintain-
ability issues, as the filter is inherently controlled by its
user. This may result in less-than-perfect performance,
e.g., if the user misdirects filter training.

From the perspective of institutions and email ser-
vice providers, it is often more attractive to maintain just
one set of spam filters that service a larger user popula-
tion. This makes them simpler to operate and maintain,
but their accuracy may depend on the context of any
particular user. The advantage of centralized filtering
when serving large user populations is that global trends
can be more readily spotted and any particular user
may be automatically protected against spam, affecting
other users. Also, the domain knowledge of the spam-
filtering analysts can be readily injected into the filtering
pipeline.

To the extent that a service provider maintains
personal filters for its population of users, there are
potential large system costs to account for, so that a
complete cost-benefit analysis needs to be performed to
assess the suitability of such as solution as opposed to
a user-independent filtering complex. More details on
the nature of such trade-offs can be found in (Kotcz,
Bond, & Sargent, 2006).

Content clustering can serve as an important data
understanding technique in spam filtering. For example,

large clusters can justify the use of specialized classifiers
and/or the use of cost-sensitive approaches in classifier
learning and evaluation (e.g., where different costs are
assigned to different groups of content within each class
(Kotcz & Alspector, 2001).

Both spam and legitimate commercial emails are
often sent in large campaigns, where the same or highly
similar content is sent to a large number of recipients,
sometimes over prolonged periods of time. Detection of
email campaigns can therefore play an important role
in spam filtering. Since individual messages of a cam-
paign are highly similar to one another, this can be
considered a variant of near-replica document detec-
tion (Kolcz, 2005). It can also be seen as relying on
identification of highly localized spikes in the content
density distribution. As found in (Yoshida et al., 2004),
density distribution approaches can be highly effec-
tive, which is especially attractive given that they do
not require the explicitly labeled training data. Track-
ing of spam campaigns may be made difficult due to
content randomization, and some research has been
directed at making the detection methods robust in the
presence such countermeasures (Kofcz, 2005; Kotcz &
Chowdhury, 2007).

An important aspect of spam filtering is that the costs
of misclassifying spam as legitimate email are not the
same as the costs of making the opposite mistake. It is
thus commonly assumed that the costs of a false posi-
tive mistake (i.e., a legitimate email being misclassified
as spam) are much higher than the cost of mistak-
ing spam for legitimate email. Given the prevalence of
spam 7 and the false-spam (FS) and false-legitimate
(FL) rates of the classifier, the misclassification cost c can
be expressed as

c=Cps-(1-m)-FS+ CpL-m-FL

where Cgg and Cyy, are the costs of making a false-spam
and false-legitimate mistake, respectively (there is no
penalty for making the correct decision). Since actual
values of Cgs and Cyp, are difficult to quantify, one typ-
ically sees them combined in the form of a ratio, A =
Crs/Cr1, and the overall cost can be expressed as rel-
ative to the cost of a false-legitimate misclassification

eg.,
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cre1 =A-(1-m)-FS+m-FL

Practical choices of A tend to range from 1 to 1,000.
Nonuniform misclassification costs can be used dur-
ing the process of model induction or in postprocessing
when setting up the operating parameters of a spam
filter, e.g., using the receiver operating characteristic
(ROC) analysis.

Since the costs and cost ratios are sometimes hard to
define, some approaches to evaluation favor direct val-
ues of the false-spam and false-legitimate error rates.
This captures the intuitive requirement that an effec-
tive spam filter should provide high detection rate at
a close-to-zero false-spam rate. Alternatively, threshold
independent metrics such as the area under the ROC
(AUC) can be used (Bratko et al., 2006; Cormack &
Lynam, 2006), although other measures have also been
proposed (Sakkis et al., 2001).

Spam filtering is an inherently adversarial task, where
any solution deployed on a large scale is likely to be
met with a response on the part of the spammers. To
that extent that the success of a spam filter can be pin-
pointed to any particular component (e.g., the type of
features used), that prominent component is likely to
be attacked directly and may become a victim of its
own success. For example, the use of word features
in spam filtering encourages countermeasures in the
form of deliberate misspellings, word fragmentation,
and “invisible ink” in HTML documents. Also, since
some words are considered by a model inherently more
legitimate than others, “word stuffing” has been used
to inject large blocks of potentially legitimate vocab-
ulary into an otherwise spammy message in the hope
that this information outweighs the evidence provided
by the spam content (Lowd & Meek, 2005).

Some authors have attempted to put the adversar-
ial nature of spam filtering in the formal context of
game theory (Dalvi et al., 2004). One difficulty of draw-
ing broad conclusion based on such analyses is the
breadth of the potential attack/defense front, of which
only small sections have been successfully captured in
the game-theory formalism. The research on countering
the countermeasures points at using multiple diverse
filtering components, normalization of features to keep
them invariant to irrelevant alterations. A key point is

that frequent filter retraining is likely to help in keeping
up with the shifts in content distribution, both natural
and due to countermeasures.

Future Directions

There has been a growing interest in developing reputa-
tion systems capturing the trustworthiness of a sender
with respect to a particular user or group of users.
To this end however, the identity of the sender needs to
be reliably verified, which poses challenges and presents
a target for potential abuses of such systems. Never-
theless, reputation systems are likely to grow in impor-
tance, since they are intuitive from the user perspective
in capturing the communication relationships between
users. Sender reputation can be hard or soft. In the hard
variant, the recipient always accepts or declines mes-
sages from a given sender. In the soft variant, the repu-
tation reflects the level of trustworthiness of the sender
in the context of the given recipient. When sender
identities resolve to individual email addresses, the rep-
utation system can be learned via analysis of a large
social network that documents who exchanges email
with whom. The sender identities can also be broader
however, e.g., assigning reputation to a particular mail
server or all mail servers responsible for handling the
outbound traffic for a particular domain. On the recip-
ient side, reputation can also be understood globally to
represent the trustworthiness of the sender with respect
to all recipients hosted by the system. Many open ques-
tions remain with regard to computing and maintain-
ing reputations as well as using them effectively to
improve spam detection. In the context of text mining,
one such question is the extent to which email content
analysis can be used to aid the process of reputation
assessment.

Cross References
»Cost-Sensitive Learning
» Logistic Regression
»Naive Bayes

»Support Vector Machines
»Text Categorization
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Definition

»Text mining methods allow for the incorporation of
textual data within applications of semantic technolo-
gies on the Web. Application of these techniques is
appropriate when some of the data needed for a Seman-
tic Web use scenario are in textual form. The techniques
range from simple processing of text to reducing vocab-
ulary size, through applying shallow natural language
processing to constructing new semantic features or
applying information retrieval to selecting relevant texts
for analysis, through complex methods involving inte-
grated visualization of semantic information, seman-
tic search, semiautomatic ontology construction, and
large-scale reasoning.

Motivation and Background

Semantic Web applications usually involve deep struc-
tured knowledge integrated by means of some kind
of ontology. Text mining methods, on the other hand,
support the discovery of structure in data and effec-
tively support semantic technologies on data-driven
tasks such as, (semi)automatic ontology acquisition,
extension, and mapping. Fully automatic text mining
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approaches are not always the most appropriate because
often it is too difficult or too costly to fully integrate the
available background domain knowledge into a suitable
representation. For such cases semiautomatic methods,
such as P-active learning and »semisupervised text pro-
cessing (P»Semisupervised Learning), can be applied
to make use of small pieces of human knowledge to
provide guidance toward the desired ontology or other
model. Application of these semiautomated techniques
can reduce the amount of human effort required to
produce training data by an order of magnitude while
preserving the quality of results.

To date, Semantic Web applications have typically
been associated with data, such as text documents and
corresponding metadata that have been designed to be
relatively easily manageable by humans. Humans are,
for example, very good at reading and understanding
text and tables. General semantic technologies, on the
other hand, aim more broadly at handling data modal-
ities including multimedia, signals from emplaced or
remote sensors, and the structure and content of com-
munication and transportation graphs and networks.
In handling such multimodal data, much of which is
not readily comprehensible by unaugmented humans,
there must be significant emphasis on fully- or semi-
automatic methods offered by knowledge discovery
technologies whose application is not limited to a spe-
cific data representation (Grobelnik & Mladenic, 2005).

Data and the corresponding semantic structures
change over time, and semantic technologies also aim at
adapting the ontologies that model the data accordingly.
For most such scenarios extensive human involvement
in building models and adapting them according to the
data is too costly, too inaccurate, and too slow. Stream
mining (Gaber, Zaslavsky, & Krishnaswamy, 2005) tech-
niques (»Data Streams: Clustering) allow text mining
of dynamic data (e.g., notably in handling a stream of
news or of public commentary).

Structure of Learning System

Ontology is a fundamental method for organizing
knowledge in a structured way, and is applied, along
with formalized reasoning, in areas from philosophy
to scientific discovery to knowledge management and
the Semantic Web. In computer science, an ontology
generally refers to a graph or network structure con-
sisting of a set of concepts (vertices in a graph), a set of

relationships connecting those concepts (directed edges
in a graph) and, possibly, a set of distinguished instance
concepts assigned to particular class concepts (data
records assigned to vertices in a graph). In many cases,
knowledge is structured in this way to allow for auto-
mated inference based on a logical formalism such as
the predicate calculus (Barwise & Etchemendy, 2002);
for these applications, an ontology often further com-
prises a set of rules or produces new knowledge within
the representation from existing knowledge. An ontol-
ogy containing instance data and rules is often referred
to as a knowledge base (KB) (e.g., Lenat, 1995).

Machine learning practitioners refer to the task
of constructing these ontologies as ontology learn-
ing. From this point of view, an ontology is seen
a class of models - somewhat more complex than
most used in machine learning - which need to be
expressed in some P»hypothesis language. This defini-
tion of ontology learning (from Grobelnik & Mladenic,
2005) enables a decomposition into several machine
learning tasks, including learning concepts, identi-
fying relationships between existing concepts, popu-
lating an existing ontology/structure with instances,
identifying change in dynamic ontologies, and induc-
ing rules over concepts, background knowledge, and
instances.

Following this scheme, text mining methods have
been applied to extending existing ontologies based
on Web documents, learning semantic relations from
text based on collocations, semiautomatic data driven
ontology construction based on document clustering
and classification, extracting semantic graphs from
text, transforming text into RDF triples (a commonly
used Semantic Web data representation), and mapping
triplets to semantic classes using several kinds of lexi-
cal and ontological background knowledge. Text min-
ing is also intensively used in the effort to produce a
Semantic Web for annotation of text with concepts from
ontology. For instance, a text document is split into sen-
tences, each sentence is represented as a word-vector,
sentences are clustered, and each cluster is labeled by
the most characteristic words from its sentences and
mapped upon the concepts of a general ontology. Sev-
eral approaches that integrate ontology management,
knowledge discovery, and human language technolo-
gies are described in (Davies, Grobelnik, & Mladenic,
2009).
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Extending the text mining paradigm, current efforts
are beginning to aim at giving machines an approxima-
tion of the full human ability to acquire knowledge from
text. Machine reading aims at full text understanding
by integrating knowledge-based construction and use
into syntactically sophisticated natural language analy-
sis, leading to systems that autonomously improve their
ability to extract further knowledge from text (e.g.,
Curtis et al.,, 2009; Etzioni, Banko, & Cafarella, 2007;
Mitchell, 2005).

Cross References
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» Classification
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»Semisupervised Learning
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Synonyms
Semantic mapping; Text spatialization; Topic mapping

Definition

The term text visualization describes a class of knowl-
edge discovery techniques that use interactive graphi-
cal representations of textual data to enable knowledge
discovery via recruitment of human visual pattern
recognition and spatial reasoning capabilities. It is
a subclass of information visualization, which more
generally encompasses visualization of nonphysically
based (or “abstract”) data of all types. Text visualiza-
tion is distinguished by its focus on the unstructured
(or free text) component of information. While the term
“text visualization” has been used to describe a vari-
ety of graphical methods for deriving knowledge from
text, it is most closely associated with techniques for
depicting the semantic characteristics of large docu-
ment collections. Text visualization systems commonly
employ unsupervised machine learning techniques as
part of broader strategies for organizing and graphically
representing such collections.

Motivation and Background

The Internet enables universal access to vast quantities
of information, most of which (despite admirable efforts
(Berners-Lee, Hendler, & Lassila, 2001)) exists in the
form of unstructured and unorganized text. Advance-
ments in search technology make it possible to retrieve
large quantities of this information with reasonable
precision; however, only a tiny fraction of the infor-
mation available on any given topic can be effectively
exploited.
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Text visualization technologies, as forms of
computer-supported knowledge discovery, aim to
improve our ability to understand and utilize the wealth
of text-based information available to us. While the
term “text visualization” has been used to describe
a variety of techniques for graphically depicting the
characteristics of free-text data (Havre, Hetzler, Whit-
ney, & Nowell, 2002; Small, 1996), it is most closely
associated with the so-called semantic clustering or
semantic mapping techniques (Chalmers & Chitson,
1992; Kohonen et al.,, 2000; Lin, Soergel, & Marchion-
ini, 1991; Wise et al., 1995). These methods attempt to
generate summary representations of document col-
lections that convey information about their general
topical content and similarity structure, facilitating gen-
eral domain understanding and analytical reasoning
processes.

Text visualization methods are generally based on
vector-space models of text collections (Salton, 1989),
which are commonly used in information retrieval,
clustering, and categorization. Such models repre-
sent the text content of individual documents in the
form of vectors of frequencies of the terms (text fea-
tures) they contain. A document collection is therefore
represented as a collection of vectors. Because the num-
ber of unique terms present in a document collec-
tion generally is in the range of tens of thousands, a
dimensionality reduction method such as singular value
decomposition (SVD) (Deerwester, Dumais, Furnas,
Landauer, & Harshman, 1990) or other matrix decom-
position method (Kao, Poteet, Ferng, Wu, & Quach,
2008; Booker et al., 1999) is typically used to eliminate
noise terms and reduce the length of the document vec-
tors to a tractable size (e.g., 50-250 dimensions). Some
systems attempt to first identify discriminating features
in the text and then use mutual probabilities to spec-
ify the vector space (York, Bohn, Pennock, & Lantrip,
1995).

To enable visualization, the dimensions must be fur-
ther reduced to two or three. The goal is a graphical
representation that employs a “spatial proximity means
conceptual similarity” metaphor where topically similar
text documents are represented as nearby points in the
display. Various regions of the semantic map are subse-
quently labeled with descriptive terms that convey the
primary concepts described by nearby documents. The
text visualization can thus serve as a kind of graphical

“table of contents” depicting the conceptual similarity
structure of the collection.

Text visualization systems therefore typically imple-
ment four key functional components, namely,

1. A tokenization component that characterizes the
lexical content of text units via extraction, normal-
ization, and selection of key terms

2. A vector-space modeling component that generates
a computationally tractable vector space represen-
tation of a collection of text units

3. A spatialization component that uses the vector
space model to generate a 2D or 3D spatial config-
uration that places the points representing concep-
tually similar text units in near spatial proximity

4. A labeling component that assigns characteristic
text labels to various regions of the semantic map

Although machine learning techniques can be used in
several of these steps, their primary usage is in the spa-
tialization stage. An unsupervised learning algorithm
is typically used to find meaningful low-dimensional
structures hidden in high-dimensional document fea-
ture spaces.

Structure of Learning System
Spatialization is a term generically used in »>information
visualization to describe the process of generating a
spatial representation of inherently nonspatial infor-
mation. In the context of text visualization, this term
generally refers to the application of a nonlinear dimen-
sionality reduction algorithm to a collection of text
vectors in order to generate a visually interpretable two-
or three-dimensional representation of the similarity
structure of the collection. The goal is the creation of a
semantic similarity map that positions graphical features
representing text units (e.g., documents) conceptually
similar to one another near one another in the visual-
ization display. These maps may be further abstracted to
produce more general summary representations of text
collections that do not explicitly depict the individual
text units themselves (Wise et al., 1995).

A key assumption in text visualization is that text
units which express similar concepts will employ sim-
ilar word patterns, and that the existence of these
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word correlations creates coherent structures in high-
dimensional text feature spaces. A further assumption
is that text feature spaces are nonlinear, but that their
structural characteristics can be approximated by a
smoothly varying low-dimensional manifold. The text
spatialization problem thus becomes one of finding an
embedding of the feature vectors in a two- or three-
dimensional manifold that best approximates this struc-
ture. Because the intrinsic dimensionality of the data is
invariably much larger than two (or three), significant
distortion is unavoidable. However, because the goal of
text visualization is not necessarily the development of
an accurate representation of interdocument similari-
ties, but rather the depiction of broad (and ambigu-
ously defined) semantic relationships, this distortion is
generally considered acceptable.

Text vector spatialization therefore involves the fit-
ting of a model into a collection of observations.
Most text visualization systems developed to date have
employed some type of unsupervised learning algo-
rithm for this purpose. In general, the desired character-
istics of an algorithm used for text spatialization include
that it (1) preserves global properties of the input space,
(2) preserves the pairwise input distances to the greatest
extent possible, (3) supports out-of-sample extension
(i.e., the incremental addition of new documents), and
(4) has low computational and memory complexity.
Computational and memory costs are key considera-
tions, as a primary goal of text visualization is the man-
agement and interpretation of extremely large quanti-
ties of textual information.

A leading approach is to iteratively adapt the nodes
of a fixed topology mesh to the high-dimensional fea-
ture space via adaptive refinement. This is the basis of
the well-known Kohonen feature mapping algorithm,
more commonly referred to as the Pself-organizing
map (SOM) (Kohonen, 1997). In a competitive learn-
ing process, text vectors are presented one at a time to
a (typically triangular) grid, the nodes of which have
been randomly initialized to points in the term space.
The Euclidean distance to each node is computed, and
the node closest to the sample is identified. The posi-
tion of the winning node, along with those of it’s topo-
logically nearest neighbors, is incrementally adjusted
toward the sample vector. The magnitude of the adjust-
ments is gradually decreased over time. The process

is generally repeated using every vector in the set for
many hundreds or thousands of cycles until the mesh
converges on a solution. At the conclusion, the sam-
ples are assigned to their nearest nodes, and the results
are presented as a uniform grid. In the final step, the
nodes of the grid are labeled with summary terms which
describe the key concepts associated with the text units
that have been assigned to them.

Although self-organizing maps can be considered
primarily a clustering technique, the grid itself theoret-
ically preserves the topological properties of the input
feature space. As a consequence, samples that are near-
est neighbors in the feature space generally end up in
topologically adjacent nodes. However, while SOMs are
topology-preserving, they are not distance-preserving.
Vectors that are spatially distant in the input space
may be presented as proximal in the output, which
may be semantically undesirable. SOMs have a num-
ber of attractive characteristics, including straightfor-
ward out-of-sample extension and low computational
and memory complexity. Examples of the use of SOMs
in text visualization applications can be found in (Lin
et al,, 1991; Kaski, Honkela, Lagus, & Kohonen, 1998;
Kohonen et al., 2000).

Often, it is considered desirable to attempt to pre-
serve the distances among the samples in the input
space to the greatest extent possible in the output. The
rationale is that the spatial proximities of the text vectors
capture important and meaningful characteristics of
the associated text units: spatial “nearness” corresponds
to conceptual “nearness” As a consequence, many
text visualization systems employ distance-preserving
dimensionality reduction algorithms. By far the most
commonly used among these is the class of algo-
rithms known as multidimensional scaling (MDS)
algorithms.

Multidimensional scaling is “a term used to describe
any procedure which starts with the ‘distances’ between
a set of points (or individuals or objects) and finds
a configuration of the points, preferably in a smaller
number of dimensions, usually 2 or 3” ((Chatfield &
Collins, 1980), quoted in Chalmers & Chitson, 1992).
There are two main subclasses of MDS algorithms.
Metric (quantitative, also known as classical) MDS
algorithms attempt to preserve the pairwise input dis-
tances to the greatest extent possible in the output
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configuration, while nonmetric (qualitative) techniques
attempt only to preserve the rank order of the distances.
Metric techniques are most commonly employed in text
visualization.

Metric MDS maps the points in the input space to
the output space while maintaining the pairwise dis-
tances among the points to the greatest extent possi-
ble. The quality of the mapping is expressed in a stress
function which is minimized using any of a variety
of optimization methods, e.g., via eigen decomposi-
tion of a pairwise dissimilarity matrix, or using itera-
tive techniques such as generalized Newton-Raphson,
simulated annealing, or genetic algorithms. A simple
example of a stress function is the raw stress function
(Kruskal, 1964) defined by

$(Y) =3 (Ilxi = x5l = [lys = yl1)*
ij

in which ||x; — xj|| is the Euclidean distance between
points x; and x; in the high-dimensional space, and ||y; -
jll is the distance between the corresponding points in
the output space. A variety of alternative stress func-
tions have been proposed (Cox & Cox, 2001). In addi-
tion to its distance-preserving characteristics, MDS has
the added advantage of preserving the global proper-
ties of the input space. A major disadvantage of MDS,
however, is its high computational complexity, which is
approximately O(kN?), where N is the number of data
points and k is the dimensionality of the embedding.
Although computationally expensive, MDS can be used
practically on data sets of up to several hundred docu-
ments in size. Another disadvantage is that out-of-core
extension requires reprocessing of the full data set if
an optimization method which computes the output
coordinates all at once is used.

The popularity of MDS methods has led to the devel-
opment of a range of strategies for improving on its
computational efficiency to enable scaling of the tech-
nique to text collections of larger size. One approach
is to use either cluster centroids or a randomly sam-
pled subset of input vectors as surrogates for the full
set. The surrogates are down-projected independently
using MDS, then the remainder of the data is pro-
jected relative to this “framework” using a less expensive
algorithm, e.g., distance-based triangulation. This is the
basis for the anchored least stress algorithm used in the

SPIRE text visualization system (York et al., 1995), as
well as the more recently developed Landmark MDS (de
Silva & Tenenbaum, 2003) algorithm.

While self-organizing maps and multidimensional
scaling techniques have received the most attention to
date, a number of other machine learning techniques
have also been used for text spatialization. The Starlight
system (Risch et al, 1999) uses stochastic proximity
embedding (Agrafiotis, 2003), a high-speed nonlinear
manifold learning algorithm. Other approaches have
employed methods based on graph layout techniques
(Fabrikant, 2001). Generally speaking, any of a num-
ber of techniques for performing dimensionality reduc-
tion in a correlated system of measurements (classified
under the rubric of factor analysis in statistics) may be
employed for this purpose.

Machine learning algorithms can also be used in
text visualization for tasks other than text vector spa-
tialization. For example, generation of descriptive labels
for semantic maps requires partitioning of the text
units into related sets. Typically, a partitioning-type
> clustering algorithm such as K-means is used for
this purpose (see »-Partitional Clustering), either as an
element of the spatialization strategy (see York et al.,
1995), or as a postspatialization step. The labeling pro-
cess itself may also employ machine learning algo-
rithms. For instance, the TRUST system (Booker et al.,
1999; Kao et al., 2008) employed by Starlight gener-
ates meaningful labels for document clusters using a
kind of »unsupervised learning. By projecting a clus-
ter centroid defined in the reduced dimensional repre-
sentation (e.g., 50-250 dimensions) back into the full
term space, terms related to the content of the docu-
ments in the cluster are identified and used as sum-
mary terms. Machine learning techniques can also be
applied indirectly during the tokenization phase of text
visualization. For example, information extraction sys-
tems commonly employ rule sets that have been gen-
erated by a supervised learning algorithm (Mooney &
Bunescu, 2006). Such systems may be used to iden-
tify tokens that are most characteristic of the over-
all topic of a text unit, or are otherwise of interest
(e.g., the names of people or places). In this way, the
dimensionality of the input space can be drastically
reduced, accelerating downstream processing while
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simultaneously improving the quality of the resulting
visualizations.

Applications

The first text visualization system based on a text vec-
tor space model was likely a prototype developed in
the 1960s by John Sammon’s “nonlinear mapping,” or
NLM, algorithm (today referred to as organizing text
data). The configuration depicted here is the result of
applying Sammon’s algorithm to a collection 0f 188 doc-
uments represented as 17-dimensional vectors deter-
mined according to document relevance to 1,125 key
words and phrases. Among other interesting and pre-
scient ideas, Sammon describes techniques for interact-
ing with text visualizations depicted on a “CRT display”
using a light pen (Fig. 1).

Lin’s 1991 prototype (Lin et al., 1991) was one of the first
to demonstrate the use of self-organizing maps for orga-
nizing text documents. Lin formed a 25-dimensional
vector space model of a 140 document collection using
25 key index terms extracted from the text. The doc-
ument vectors were used to train a 140 node feature
map, generating the result shown here (the fact that the

Text Visualization. Figure 1.

number of nodes matches the number of documents is
coincidental). Lin was also among the first to assign text
labels to various regions of the resulting map to improve
the interpretability and utility of the resulting product
(Fig. 2).

The BEAD system (Chalmers & Chitson, 1992) was a
text visualization prototype developed during the early
1990s at Rank Xerox EuroPARC. BEAD employed a
vector space model constructed using document key-
words and a hybrid MDS algorithm based on an opti-
mized form of simulated annealing. Although it did not
include a region labeling component, BEAD did sup-
port highlighting of visualization features in response to
query operations, a now standard text visualization sys-
tem feature. The BEAD project also pioneered a number
of now common interaction techniques, and was among
the first to explore 3D representations of document
collections (Fig. 3).

IN-SPIRE (formerly SPIRE, Spatial Paradigm for Infor-
mation Retrieval and Exploration) (Wise et al., 1995),
was originally developed in 1995 at Pacific North-
west National Laboratory (PNNL). Over the years, IN-
SPIRE has evolved from using MDS, to Anchored Least
Stress, to a hybrid clustering/PCA projection scheme.
The SPIRE/IN-SPIRE system introduced several new
concepts, including the use of a 3D “landscape” abstrac-
tion (called a ThemeView) for depicting the general
characteristics of large text collections. A recently devel-
oped parallelized version of the software is capable of
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generating visualizations of document collections con-
taining millions of items (Fig. 4).

WEBSOM

WEBSOM (Kaski et al., 1998) was another early appli-
cation of Kohonnen self-organizing maps to text data.
Early versions of WEBSOM used an independent SOM
to generate reduced dimensionality text vectors which
were then mapped with a second SOM for visualiza-
tion purposes. More recent SOM-based text visualiza-
tion experiments have employed vectors constructed
via random projections of weighted word histograms
(Kohonen et al., 2000). SOMs have been used to gen-
erate semantic maps containing millions of documents
(Fig. 5).
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Starlight

Starlight (Risch et al., 1999) is a general-purpose infor-
mation visualization system developed at PNNL that
includes a text visualization component. Starlights text
visualization system uses the Boeing Text Represen-
tation Using Subspace Transformation (TRUST) text
engine for vector space modeling and text summariza-
tion. Text vectors generated by TRUST are clustered,
and the cluster centroids are down-projected to 2D and
3D using a nonlinear manifold learning algorithm. Indi-
vidual document vectors associated with each cluster
are likewise projected within a local coordinate system
established at the projected coordinates of their asso-
ciated cluster centroid, and TRUST is used to generate
topical labels for each cluster. Starlight is unique in that

Text Visualization. Figure 6.
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it couples text visualization with a range of other infor-
mation visualization techniques (such as link displays)
to depict multiple aspects of information simultane-
ously (Fig. 6).

Cross References
»Dimensionality Reduction
»Document Classification/Clustering
» Feature Selection/Construction

» Information Extraction/Visualization
»Self-Organizing Maps

» Text Preprocessing
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" TF-IDF

TF-IDF (term frequency-inverse document frequency) is
a term weighting scheme commonly used to represent
textual documents as vectors (for purposes of classifi-
cation, clustering, visualization, retrieval, etc.). Let T =
{t1,.., t} be the set of all terms occurring in the doc-
ument corpus under consideration. Then a document
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d; is represented by a n-dimensional real-valued vector
x; = (xi-..., Xin ) with one component for each possible
term from T.

The weight x;; corresponding to term ¢; in docu-
ment d; is usually a product of three parts: one which
depends on the presence or frequency of ¢; in d;, one
which depends on ¢;’s presence in the corpus as a whole,
and a normalization part which depends on d;. The
most common TF-IDF weighting is defined by x;; =
TF; - IDF; - (¥; (TF41DF;)?) /2, where TF; is the term
frequency (i.e., number of occurrences) of tj in d;, and
IDF; is the IDF of ¢, defined as log(N/DF;), where N
is the number of documents in the corpus and DF;
is the document frequency of tj (ie., the number of
documents in which ¢; occurs). The normalization part
ensures that the vector has a Euclidean length of 1.

Several variations on this weighting scheme are
also known. Possible alternatives for TF;; include min
{I,TF;} (to obtain binary vectors) and (I + TF;;/max;
TF;;)/2 (to normalize TF within the document).
Possible alternatives for IDF; include 1 (to obtain
plain TF vectors instead of TF-IDF vectors) and log
(X, Xk TFi/ ¥, TE;). The normalization part can be
omitted altogether or modified to use some other norm
than the Euclidean one.

| Threshold Phenomena in Learning

»Phase Transitions in Machine Learning

' Time Sequence

»Time Series

- .
Time Series

EAMONN KEOGH
University of California
Riverside, CA, USA

Synonyms
Temporal data; Time sequence; Trajectory data

Definition

A Time Series is a sequence T = (f;, t,...,t, ) which is an
ordered set of n real-valued numbers. The ordering is
typically temporal; however, other kinds of data such
as color distributions (Hafner, Sawhney, Equitz, Flick-
ner, & Niblack, 1995), shapes (Ueno, Xi, Keogh, &
Lee, 2006), and spectrographs also have a well-defined
ordering and can be fruitfully considered “time series”
for the purposes of machine learning algorithms.

Motivation and Background
The special structure of time series produces unique
challenges for machine learning researchers.

It is often the case that each individual time series
object has a very high dimensionality. Whereas classic
algorithms often assume a relatively low dimensional-
ity (for example, a few dozen measurements such as
“height, weight, blood sugar,” etc.), time series learning
algorithms must be able to deal with dimensionalities
in hundreds or thousands. The problems created by
high-dimensional data are more than mere computa-
tion time considerations; the very meaning of normally
intuitive terms, such as “similar to” and “cluster form-
ing)” become unclear in high-dimensional space. The
reason for this is that as dimensionality increases, all
objects become essentially equidistant to each other
and thus classification and clustering lose their mean-
ing. This surprising result is known as the »curse of
dimensionality and has been the subject of extensive
research. The key insight that allows meaningful time
series machine learning is that although the actual
dimensionality may be high, the intrinsic dimension-
ality is typically much lower. For this reason, virtually
all time series data mining algorithms avoid operat-
ing on the original “raw” data; instead, they consider
some higher level representation or abstraction of the
data. Such algorithms are known as »dimensionality
reduction algorithms. There are many general dimen-
sionality reduction algorithms, such as singular value
decomposition and random projections, in addition
to many reduction algorithms specifically designed for
time series, including piecewise liner approximations,
Fourier transforms, wavelets, and symbol approxima-
tions (Ding, Trajcevski, Scheuermann, Wang, & Keogh,
2008).

In addition to the high dimensionality of individual
time series objects, many time series datasets have very
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high numerosity, resulting in a large volume of data.
One implication of high numerosity combined with the
high dimensionality of this is that the entire dataset
may not fit in main memory. This requires an efficient
disk-aware learning algorithm or a careful sampling
approach.

A final consideration due to the special nature
of time series is the fact that individual datapoints
are typically highly correlated with their neighbors
(a phenomenon known as autocorrelation). Indeed, it
is this correlation that makes most time series excellent
candidates for dimensionality reduction. However, for
learning algorithms that assume the independence of
features (i.e., »Naive Bayes), this lack of independence
must be countered or mitigated in some way.

While virtually every machine learning method has
been used to classify time series, the current state-of-
the-art method is the nearest neighbor algorithm (Ueno
et al, 2006) with a suitable distance measure (Ding
et al., 2008). This simple method outperforms neutral
networks and Bayesian classifiers.

The major database (SIGMOD, VLDB, PODS) and
data mining (SIGKDD, ICDM, SDM) conferences
typically feature several time series machine learn-
ing/data mining papers each year. In addition, because
of the ubiquity of time series, several other commu-
nities have active subgroups that conduct research on
time series; for example, the SIGGRAPH conference
typically has papers on learning or indexing or motion
capture time series, and most medical conferences have
tracks devoted to medical time series, such as electro-
cardiograms and electroencephalograms.

The UCR Time Series Archive has several dozen
time series datasets which are widely used to test clas-
sification and clustering algorithms, and the UCI Data
Mining archive has several additional datasets.
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| Topology of a Neural Network

R1STO MIIKKULAINEN
The University of Texas at Austin
Austin, TX, USA

Synonyms
Connectivity; Neural network architecture; Structure

Definition

Topology of a neural network refers to the way the
»Neurons are connected, and it is an important fac-
tor in network functioning and learning. A com-
mon topology in unsupervised learning is a direct
mapping of inputs to a collection of units that rep-
resents categories (e.g., »Self-organizing maps). The
most common topology in supervised learning is the
fully connected, three-layer, feedforward network (see
»Backpropagation, Radial Basis Function Networks).
All input values to the network are connected to all
neurons in the hidden layer (hidden because they are
not visible in the input or the output), the outputs of
the hidden neurons are connected to all neurons in the
output layer, and the activations of the output neurons
constitute the output of the whole network. Such net-
works are popular partly because theoretically they are
known to be universal function approximators (with
e.g., a sigmoid or gaussian nonlinearity in the hid-
den layer neurons), although in practice networks with
more layers may be easier to train (see »Cascade Cor-
relation, Deep Belief Networks). Layered networks can
be extended to processing sequential input and/or out-
put by saving a copy of the hidden layer activations
and using it as additional input to the hidden layer in
the next time step (see »Simple Recurrent Networks).
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Fully recurrent topologies, where each neuron is con-
nected to all other neurons (and possibly to itself) can
also be used to model time-varying behavior, although
such networks may be unstable and difficult to train
(e.g., with backpropagation; but see also »Boltzmann
Machines). Modular topologies, where different parts
of the networks perform distinctly different tasks, can
improve stability and can also be used to model high-
level behavior (e.g., »Reservoir Computing, »Adaptive
Resonance Theory). Whatever the topology, in most
cases, learning involves modifying the »Weights on
the network connections. However, arbitrary network
topologies are possible as well and can be constructed
as part of the learning (e.g. with backpropagation or
» Neuroevolution) to enhance feature selection, recur-
rent memory, abstraction, or generalization.

! Trace-Based Programming
P1errE FLENER"?, UTE ScHMID?
!Sabanci University, Orhanly, Tuzla,
Istanbul, Turkey

*Uppsala University

Uppsala, Sweden

3University of Bamberg

Bamberg, Germany

Synonyms
Programming from traces; Trace-based programming

Definition

Trace-based programming addresses the inference of
a program from a small set of example computation
traces. The induced program is typically a recursive pro-
gram. A computation trace is a nonrecursive expression
that describes the transformation of some specific input
into the desired output with help of a predefined set of
primitive functions. While the construction of traces is
highly dependent on background knowledge or even on
knowledge about the program searched for, the induc-
tive »-generalization is based on syntactical methods of
detecting regularities and dependencies between traces,

as proposed in classical approaches to »inductive pro-
gramming (see Example 5 of that encyclopedia entry) or
»explanation-based learning (EBL). As an alternative
to providing traces by hand-simulation, Al planning
techniques or »programming by demonstration (PBD)
can be used.

Cross References
»Inductive Programming
»Programming by Demonstration
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! Training Curve

»Learning Curves in Machine Learning

! Training Data

Synonyms
Training examples; Training instances; Training set

Definition
Training data are data to which a »learner is applied.

! Training Examples

»Training Data
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Training Instances

! Training Instances

» Training Data

| Training Set

Synonyms
Training data

Definition

A training set is a >data set containing data that are
used for learning by a »learning system. A training
set may be divided further into a »>growing set and a
» pruning set.

Cross References
» Data Set
»Training Data

! Training Time

A learning algorithm is typically applied at two distinct
times. Training time refers to the time when an algo-
rithm is learning a model from Ptraining data. »Test
time refers to the time when an algorithm is applying
a learned model to make predictions. »Lazy learning
usually blurs the distinction between these two times,
deferring most learning until test time.

! Trait

» Attribute

| Trajectory Data

» Time Series

| Transductive Learning

»Semi-Supervised Learning
»Semi-Supervised Text Processing

' Transfer of Knowledge Across
Domains

» Inductive Transfer

[
Transition Probabilities

In a »Markov decision process, the transition probabil-
ities represent the probability of being in state s’ at time
t+1, given you take action a from state s at time ¢ for all
s,aand t.

! Tree Augmented Naive Bayes

FEI ZHENG, GEOFFREY 1. WEBB
Monash University

Synonyms
TAN

Definition

Tree augmented naive Bayes is a »>semi-naive Bayesian
Learning method. It relaxes the »naive Bayes attribute
independence assumption by employing a tree struc-
ture, in which each attribute only depends on the class
and one other attribute. A maximum weighted span-
ning tree that maximizes the likelihood of the training
data is used to perform classification.

Classification with TAN

Interdependencies between attributes can be addressed
directly by allowing an attribute to depend on other
non-class attributes. However, techniques for learning
unrestricted »Bayesian networks often fail to deliver
lower zero-one loss than naive Bayes (Friedman, Geiger,
& Goldszmidt, 1997). One possible reason for this is
that full Bayesian networks are oriented toward opti-
mizing the likelihood of the training data rather than
the conditional likelihood of the class attribute given
a full set of other attributes. Another possible reason
is that full Bayesian networks have high variance due
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Tree Augmented Naive Bayes. Figure 1. Bayesian net-
work examples of the forms of model created by NB and

TAN

to the large number of parameters estimated. An inter-
mediate alternative technique is to use a less restrict
structure than naive Bayes. Tree augmented naive Bayes
(TAN) (Friedman et al., 1997) employs a tree structure,
allowing each attribute to depend on the class and at
most one other attribute. Figure 1 shows Bayesian net-
work representations of the types of model that NB and
TAN respectively create.

Chow and Liu (1968) proposed a method that effi-
ciently constructs a maximum weighted spanning tree
which maximizes the likelihood that the training data
was generated from the tree. The weight of an edge in the
tree is the mutual information of the two attributes con-
nected by the edge. TAN extends this method by using
conditional mutual information as weights. Since the
selection of root does not affect the log-likelihood of the
tree, TAN randomly selects a root attribute and directs
all edges away from it. The parent of each attribute X;
is indicated as 7(X;) and the parent of the class is @.
It assumes that attributes are independent given the
class and their parents and classifies the test instance
x = {x1,...,%,) by selecting

argmaxP(y) [] Pxi [ pon(x)), ()

y 1<i<n

where 71(x;) is a value of 7(X;) and y is a class label.

Due to the relaxed attribute independence assump-
tion, TAN considerably reduces the »bias of naive
Bayes at the cost of an increase in »variance. Empirical
results (Friedman et al., 1997) show that it substan-
tially reduces zero-one loss of naive Bayes on many
data sets and that of all data sets examined it achieves
lower zero-one loss than naive Bayes more often
than not.

Cross References

» Averaged One-Dependence Estimators
»Bayesian Network

»Naive Bayes

»Semi-Naive Bayesian Learning
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Definition

Tree mining is an instance of constraint-based pattern
mining and studies the discovery of tree patterns in
data that is represented as a tree structure or as a set
of trees structures. Minimum frequency is the most
studied constraint.

Motivation and Background

Tree mining is motivated by the availability of many
types of data that can be represented as tree struc-
tures. There is a large variety in tree types, for instance,
ordered trees, unordered trees, rooted trees, unrooted
(free) trees, labeled trees, unlabeled trees, and binary
trees; each of these has its own application areas.
An example are trees in tree banks, which store sen-
tences annotated with parse trees. In such data, it is
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not only of interest to find commonly occurring sets
of words (for which frequent itemset miners could be
used), but also to find commonly occurring parses of
these words. Tree miners aim at finding patterns in this
structured information. The patterns can be interest-
ing in their own right, or can be used as features in
classification algorithms.

Structure of Problem
All tree miners share a similar problem setting. Their
input consists of a set of trees and a set of con-
straints, usually a minimum frequency constraint, and
their output consists of all subtrees that fulfill the
constraints.

Tree miners differ in the constraints that they are
able to deal with, and the types of trees that they operate
on. The following types of trees can be distinguished:

Free trees, which are graphs without cycles, and no
order on the nodes or edges;

Unordered trees, which are free trees in which one
node is chosen to be the root of the tree;

Ordered trees, which are rooted trees in which the
nodes are totally ordered.

For each of these types of tree, we can choose to have
labels on the nodes, or on the edges, or on both.

The differences between these types of trees are
illustrated in Fig. 1. Every graph in this figure can be
interpreted as a free tree F;, an unordered tree U;, or
an ordered tree T;. When interpreted as ordered trees,
none of the trees are equivalent. When we interpret
them as unordered trees, U; and U, are equivalent rep-
resentations of the same unordered tree that has B as

T,U, F

17U17 1

T4, 1 £y

its root and C and D as its children. Finally, as free
trees, not only F; and F, are equivalent, but also F;s
and F;.

Intuitively, a free tree requires less specification than
an ordered tree. The number of possible free trees is
smaller than the number of possible ordered trees. On
the other hand, to test if two trees are equivalent we
need a more elaborate computation for free trees than
for ordered trees.

Assume that we have data represented as (a set of)
trees, then the data mining problem is to find patterns,
represented as trees, that fulfill constraints based on this
data. To express these constraints, we need a coverage
relation that expresses when one tree can be considered
to occur in another tree. Different coverage relations can
be expressed for free trees, ordered trees, and unordered
trees. We will introduce these relations through opera-
tions that can be used to transform trees. As an example,
consider the operation that removes a leaf from a tree.
We can repeatedly apply this operation to turn a large
tree into a smaller one. Given two trees A and B, we say
that A occurs in B as

Induced subtree, if A can be obtained from B by repeat-
edly removing leaves from B. When dealing with
rooted trees, the root is here also considered to be
a leaf if it has one child;

Root-induced subtree, if A can be obtained from B
by repeatedly removing leaves from B. When deal-
ing with rooted trees, the root is not allowed to be
removed;

Embedded subtree, if A can be obtained from B by
repeatedly either (1) removing a leaf or (2) remov-
ing an internal node, reconnecting the children of

@

2 U27 2

T3, Us, F3

A

Fs Ts, Us, Fo

Tree Mining. Figure 1. The leftmost tree is part of the data, the other trees could be patterns in this tree, depending on

the subtree relation that is used
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the removed node with the parent of the removed
node;

Bottom-up subtree, if there is a node v in B such that if
we remove all nodes from B that are not a descendant
of v, we obtain A;

Prefix,if A can be obtained from B by repeatedly
removing the last node from the ordered tree B;

Leaf set, if A can be obtained from B by selecting a set
of leaves from B, and all their ancestors in B.

For free trees, only the induced subtree relation is well-
defined. A prefix is only well-defined for ordered trees,
the other relations apply both to ordered and unordered
trees. In the case of unordered trees, we assume that
each operation maintains the order of the original
tree B. The relations are also illustrated in Fig. 2.

Intuitively, we can speak of occurrences (also called
embeddings by some authors) of a small tree in a larger
tree. Each such occurrence (or embedding) can be
thought of as a function ¢ that maps every node in the
small tree to a node in the large tree.

Using an occurrence relation, we can define fre-
quency measures. Assume given a forest F of trees, all
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U; yes yes yes no yes
Tree Mining. Figure 2. Relations between the trees of
Fig.1

ordered, unordered, or free. Then the frequency of a tree
A can be defined

Transaction-based, where we count the number of
trees B € F such that A is a subtree of B;

Node-based, where we count the number of nodes v in
F such that A is a subtree of the bottom-up subtree
below v.

Node-based frequency is only applicable in rooted trees,
in combination with the root-induced, bottom-up, pre-
fix, or leaf set subtree relations.

Given a definition of frequency, constraints on trees
of interest can be expressed:

Minimum frequency, to specify that only trees with
a certain minimum number of occurrences are of
interest;

Closedness, to specify that a tree is only of interest if its
frequency is different from all its supertrees;

Maximality, to specify that a tree is only of interest if
none of its supertrees is frequent.

Observe that in all of these constraints, the subtree rela-
tion is again important. The subtree relation is not only
used to compare patterns with data, but also patterns
among themselves.

The tree mining problem can now be stated as fol-
lows. Given a forest of trees F (ordered, unordered, or
free) and a set of constraints, based on a subtree rela-
tion, the task is to find all trees that satisfy the given
constraints.

Theory/Solution

The tree mining problem is an instance of the more gen-
eral problem of constraint-based pattern mining under
constraints. For more information about the general
setting, see the sections on constraint-based mining,
itemset mining, and graph mining.

All algorithms iterate a process of generating can-
didate patterns, and testing if these candidates satisfy
the constraints. Essential is to avoid that every possible
tree is considered as a candidate. To this purpose, the
algorithms exploit that many frequency measures are
anti-monotonic. This property states that for two given
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trees A and B, where A is a subtree of B, if A is infre-
quent, then also B is infrequent, and therefore, we do
not need to consider it as a candidate.

This observation can make it possible to find all trees
that satisfy the constraints, if these requirements are
fulfilled:

e We have an algorithm to enumerate candidate sub-
trees, which satisfies these properties:

- It should be able to enumerate all trees in the
search space;

- Itshould avoid that no two equivalent subtrees
are listed;

- It should only list a tree after at least one of
its subtrees has been listed, to exploit the anti-
monotonicity of the frequency constraint;

e We have an algorithm to efficiently compute in how
many database trees a pattern tree occurs.

The algorithmic solutions to these problems depend on
the type of tree and the subtree relation.

We will first consider how tree miners internally repre-
sent trees. Two types of encodings have been proposed,
both of which are string-based. We will illustrate these
encodings for node-labeled trees, and start with ordered
trees.

The first encoding is based on a preorder listing of
nodes: (1) for a rooted ordered tree T with a single ver-
tex r, the preorder string of T is S, = I, — 1, where [,
is the label for the single vertex r, and (2) for a rooted
ordered tree T with more than one vertex, assuming the
root of T is r (with label I,) and the children of r are
11,. ..,k from left to right, then the preorder string for
T is St, = L:Sty,-Stse — 1, where St,,,...,Sr,, are
the preorder strings for the bottom-up subtrees below
nodesry,...,rgin T.

The second encoding is based on listing the depths
of the nodes together with their labels in prefix-order.
The depth of a node v is the length of the path from
the root to the node v. The code for a tree is St, =
d,1,S1,4,-S1,r¢» Where d, is the depth of the node r in
tree T.

Both encodings are illustrated in Fig. 3.

Tree | Depth-sequence | Preorder string
Ts 1A2B2D AB-1D-1

T; 1A2B3C3D ABC-1D-1-1-1
T 1A2B3C3D2E ABC-1D-1-1E-1
Ty 1A2D2E AD-1E-1-1

Ts 1A2E AE-1-1

Ts 1B2A2C2D BA-1C-1D-1-1
T 1B2C2D BC-1D-1-1

T, 1B2D2C BD-1C-1-1

Tree Mining. Figure 3. Depth sequences for all the trees
of Fig. 1, sorted in lexicographical order. Tree T is
the canonical form of unordered tree U,, as its depth
sequence is the highest among equivalent representa-
tions

A search space of trees can be visualized as in Fig. 4.
In this figure, every node corresponds to the depth
encoding of a tree, while the edges visualize the partial
order defined by the subtree relation. It can be seen that
the number of induced subtree relations between trees is
smaller than the number of embedded subtree relations.

The task of the enumeration algorithm is to traverse
this search space starting from trees that contain only
one node. Most algorithms perform the search by build-
ing an enumeration tree over the search space. In this
enumeration tree every pattern should have a single par-
ent. The children of a pattern in the enumeration tree
are called its extensions or its refinements. An example
of an enumeration tree for the induced subtree relation
is given in Fig. 5.

In the enumeration tree that is given here, the parent
of a tree is its prefix in the depth encoding. An alterna-
tive definition is that the parent of a tree can be obtained
by removing the last node in a prefix order traversal
of the ordered tree. Every refinement in the enumera-
tion has one additional node that is connected to the
rightmost path of the parent.

The enumeration problem is more complicated for
unordered trees. In this case, the trees represented by
the strings 1A2A2B and 1A2B2A are equivalent, and we
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— Induced/Embedded Subtree
=== Embedded Subtree only

[1A242A] [1A242B] | [1A2B2A]

1A2MBSB

[1A243B]

[1A243A] [1A2B2B]

Tree Mining. Figure 4. A search space of ordered trees, where edges denote subtree relationships

[1A2A2A] [1A2A2B] | [1A2B24A]

[1A2A3B] [1A2B3A| [1A2B3B]

[1A2A3A] [1A2B2B]

Tree Mining. Figure 5. Part of an enumeration tree for the search space of Fig. 4

only wish to enumerate one of these strings. This can
be achieved by defining a total order on all strings that
represent trees, and to define that only the highest (or
lowest) string of a set of equivalent strings should be
considered.

For depth encodings, the ordering is usually lexi-
cographical, and the highest string is chosen to be the
canonical encoding. In our example, 1A2B2A would be
canonical. This code has the desirable property that
every prefix of a canonical code is also a canonical code.
Furthermore it can be determined in polynomial time
which extensions of a canonical code lead to a canon-
ical code, such that it is not necessary to consider any
code that is not canonical.

Alternative codes have also been proposed, which
are not based on a preorder, depth-first traversal of
a tree, but on a level-wise listing of the nodes in
atree.

Finally, for free trees we have the additional problem
that we de not have a root for the tree. Fortunately, it is
known that every free tree either has a uniquely deter-
mined center or a uniquely determined bicenter. This
(bi)center can be found by determining the longest path
between two nodes in a free tree: the node(s) in the mid-
dle of this path are the center of the tree. It can be shown

that if multiple paths have the same maximal length,
they will have the same (bi)center. By appointing one
center to be the root, we obtain a rooted tree, for which
we can compute a code.

To avoid that two codes are listed that represent
equivalent free trees, several solutions have been pro-
posed. One is based on the idea of first enumerat-
ing paths (thus fixing the center of a tree), and for
each of these paths enumerating all trees that can be
grown around them. Another solution is based on enu-
merating all rooted, unordered trees under the con-
straint that at least two different children of the root
have a bottom-up subtree of equal, maximal depth.
In the first approach, a preorder depth encoding was
used; in the second approach a level-wise encoding
was used.

To evaluate the frequency of a tree the subtree rela-
tion between a candidate pattern tree and all trees
in the database has to be computed. For each of our
subtree relations, polynomial algorithms are known
to decide the relation, which are summarized in
Table 1.
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Tree Mining. Table 1 Worst case complexities of the best known algorithms that determine whether a tree relation

holds between two trees; m is the number of nodes in the pattern tree, | is the number of leafs in the pattern tree,

n the number of nodes in the database tree

Ordered
Unordered
Embedding  O(nl)
Embedding  NP-complete
Induced O(nm)

Induced

Root-induced O(n)

O(nm' [ log m)

Root-induced O(nm':/logm)

Leaf-set O(n) X
Leaf-set O(nm'z [logm)
Bottom-up O(n)
Bottom-up O(n)
Prefix O(m)

Even though a subtree testing algorithm and an
algorithm for enumerating trees are sufficient to com-
pute all frequent subtrees correctly, in practice fine-
tuning is needed to obtain an efficient method. There
are two reasons for this:

o In some databases, the number of candidates can
by far exceed the number of trees that are actually
frequent. One way to reduce the number of candi-
dates is to only generate a particular candidate after
we have encountered at least one occurrence of it in
the data (this is called pattern growth); another way
is to require that a candidate is only generated if at
least two of its subtrees satisfy the constraints (this
is called pattern joining).

e The trees in the search space are very similar to each
other: a parent only differs from its children by the
absence of a single node. If memory allows, it is
desirable to reuse the subtree matching information,
instead of starting the matching from scratch.

A large number of data structures have been proposed
to exploit these observations. We will illustrate these
ideas using the FREQT algorithm, which mines induced,
ordered subtrees, and uses a depth encoding for the
trees.

In FreQT, for a given pattern tree A, a list of
(database tree, database node) pointers is stored. Every
element (B, v) in this list corresponds to an occurrence

of tree A in tree B in which the last node (in terms of the
preorder) of A is mapped to node v in database tree B.
For a database and three example trees this is illustrated
in Fig. 6.

Every tree in the database is stored as follows. Every
node is given an index, and for every node, we store
the index of its parent, its righthand sibling, and its first
child.

Let us consider how we can compute the occur-
rences of the subtree 1A2B2B from the occurrences of
the tree 1A2B. The first occurrence of 1A2B is (¢1,2),
which means that the B labeled node can be mapped to
node 2 in t1. Using the arrays that store the database tree,
we can then conclude that node 6, which is the right-
hand sibling of node 2, corresponds to an occurence
of the subtree 1A2B2B. Therefore, we add (#1,6) to the
occurrence list of 1A2B2B. Similarly, by scanning the
data we find out that the first child of node 2 corre-
sponds to an occurrence of the subree 14A2B3C, and we
add (11,3) to the occurrence list of 1A2B3C.

Opverall, using the parent, sibling and child point-
ers we can scan every node in the data that could
correspond to a valid expansion of the subtree 1A2B,
and update the corresponding lists. After we have done
this for every occurrence of the subtree, we know the
occurrence lists of all possible extensions.

From an occurrence list we can determine the fre-
quency of a tree. For instance, the transaction-based
frequency can be computed by counting the number of
different database trees occurring in the list.
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Node | 1 2 3 4 5 6
Label A B C D E B
Parent -1 2 2 2 1
Sibling | - 6 4 5 - -
Child 2 3 - - - -

(tL1)(2,1)

(t1,2)(t1,6)(£2,2)(t2,6)

O ORORO)

(t1,6)(12,6)

Tree Mining. Figure 6. A tree database (left) and three ordered trees with their occurrence lists according to the FreqT
algorithm (right). The datastructure that stores t1in FreqT is given in the table (right)

As we claimed, this example illustrates two features
that are commonly seen in tree miners: first, the occur-
rence list of one tree is used to compute the occurrence
list of another tree, thus reusing information; second,
the candidates are collected from the data by scanning
the nodes that connect to the occurrence of a tree in the
data. Furthermore, this example illustrates that a careful
design of the datastructure that stores the data can ease
the frequency evaluation considerably.

FrREQT does not perform pattern joining. The most
well-known example of an algorithm that performs
tree joining is the embedded TreeMiner (Zaki, 2002).
Both the FREQT and the TreeMiner perform the search
depth-first, but also tree miners that use the traditional
level-wise approach of the ApriORT algorithm have been
proposed. The FREQT and the TreeMiner have been
extended to unordered trees.

As the number of frequent subtrees can be very large,
approaches have been studied to reduce the number of
trees returned by the algorithm, of which closed and
maximal trees are the most popular. To find closed or
maximal trees, two issues need to be addressed:

¢ How do we make sure that we only output a tree if it
is closed or maximal, that is, how do we determine
that none of its supertrees has the same support, or
is frequent?

e Can we conclude that some parts of the search space
will never contain a closed or maximal tree, thus
making the search more efficient?

Two approaches can be used to address the first issue:

o All closed patterns can be stored, and every new pat-
tern can be compared with the stored set of patterns;

e  When we evaluate the frequency of a pattern in the
data, we also (re)evaluate the frequency of all its pos-
sible extensions, and only output the pattern if its
support is different.

The second approach requires less memory, but in some
cases requires more computations.

To prune the search space, a common approach is
to check all occurrences of a tree in the data. If every
occurrence of a tree can be extended into an occurrence
of another tree, the small tree should not be considered,
and the search should continue with the tree that con-
tains all common edges and nodes. Contrary to graph
mining, it can be shown that this kind of pruning can
safely be done in most cases.

Applications
Examples of databases to which tree mining algorithms
have been applied are

Parse tree analysis: Since the early 1990s large Tree-
bank datasets have been collected consisting of
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sentences and their grammatical structure. An
example is the Penn TreeBank (Marcus, Santorini,
& Marcinkiewicz, 1993). These databases contain
rooted, ordered trees. To discover differences in
domain languages it is useful to compare commonly
occurring grammatical constructions in two differ-
ent sets of parsed texts, for which tree miners can be
used (Sekine, 1998).

Computer network analysis: IP multicast is a protocol
for sending data to multiple receivers. In an IP multi-
cast session a webserver sends a packet once; routers
copy a packet if two different routes are required to
reach multiple receivers. During a multicast session
rooted trees are obtained in which the root is the
sender and the leaves are the receivers. Commonly
occurring patterns in the routing data can be dis-
covered by analyzing these unordered rooted trees
(Chalmers & Almeroth, 2003).

Webserver access log analysis: When users browse a web-
site, this behavior is reflected in the access log files
of the webserver. Servers collect information such as
the webpage that was visited, the time of the visit,
and the webpage that was clicked to reach the web-
page. The access logs can be transformed into a set
of ordered trees, each of which corresponds to a vis-
itor. Nodes in these trees correspond to webpages;
edges are inserted if a user browses from one web-
page to another. Nodes are ordered in viewing order.
A tool was developed to perform this transformation
in a sensible way (Punin, Krishnamoorthy, & Zaki,
2002).

Phylogenetic trees: One of the largest tree databases cur-
rently under construction is the TreeBASE database,
which is comprised of a large number of phyloge-
netic trees (Morell, 1996). The trees in the TreeBASE
database are submitted by researchers and are col-
lected from publications. Originating from multiple
sources, they can disagree on parts of the phylo-
genetic tree. To find common agreements between
the trees, tree miners have been used (Zhang &
Wang, 2005). The phylogenetic trees are typically
unordered; labels among siblings are unique.

Hypergraph mining: Hypergraphs are graphs in which
one edge can have more than two endpoints. Those
hypergraphs in which no two nodes share the same
label can be transformed into unordered trees, as fol-
lows. First, an artificial root is inserted. Second, for

each edge of the hypergraph a child node is added
to the root, labeled with the label of the hyperedge.
Finally, the labels of nodes within hyperedges are
added as leaves to the tree. An example of hyper-
graph data is bibliographic data: if each example cor-
responds to a paper, nodes in the hypergraph corre-
spond to authors cited by the paper, and hyperedges
connect coauthors of cited papers.

Multi-relational data mining: Many multi-relational
databases are tree shaped, or a tree-shaped view can
be created. For instance, a transaction database in
which every transaction is associated with customers
and their information, can be represented as a tree
(Berka, 1999).

XML data mining: Several authors have stressed that
tree mining algorithms are most suitable for mining
XML data. XML is a tree-shaped data format,
and tree miners can be helpful when trying to
(re)construct Document Type Definitions (DTDs)
for such documents.

Cross References
» Constraint-based Mining
» Graph Mining

Further Reading

The FrReQT algorithm was introduced in (Asai, Abe,
Kawasoe, Arimura, Satamoto, & Arikawa, 2002; Wang
& Liu, 1998; Zaki, 2002). The most popular tree miner
is the embedded tree miner by Zaki (2002). A more
detailed overview of tree miners can be found in Chi,
Nijssen, Muntz, and Kok (2005). Most implementa-
tions of tree miners are available on request from their
authors.
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