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! Underlying Objective

The term objective used in Evolutionary Multi-Objective
Optimization refers to an indicator of quality return-
ing an element from an ordered set of scalar values,
such as a real number. For any test-based coevolution-
ary problem, a set of underlying objectives exists such
that knowledge of the objective values of an individual
is sufficient to determine the outcomes of all possible
tests. The existence of a set of underlying objectives is
guaranteed, as the set of possible tests itself satisfies this

property.
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Definition, Motivation, and Background

Universal (machine) learning is concerned with the
development and study of algorithms that are able
to learn from data in a very large range of environ-
ments with as few assumptions as possible. The class
of environments typically considered includes all com-
putable stochastic processes. The investigated learn-
ing tasks range from Pinductive inference, sequence
prediction, sequential decisions, to (re)active problems
like »reinforcement learning (Hutter, 2005), but also
include W clustering, Pregression, and others (Li &
Vitanyi, 2008). Despite various no-free-lunch theorems

(Wolpert & Macready, 1997), universal learning is pos-
sible by assuming that the data possess some effective
structure, but without specifying any further, which
structure. Learning algorithms that are universal (at
least to some degree) are also necessary for develop-
ing autonomous general intelligent systems, required,
for example, for exploring other planets, as opposed
to decision support systems which keep a human in
the loop. There is also an intrinsic interest in striv-
ing for generality: Finding new learning algorithms
for every particular (new) problem is possible but
cumbersome and prone to disagreement or contra-
diction. A sound, formal, general and ideally com-
plete theory of learning can unify existing approaches,
guide the development of practical learning algo-
rithms, and last but not least lead to novel and deep
insights.

Deterministic Environments

Let t,n € N be natural numbers, X'* be the set of finite
strings and X'* be the set of infinite sequences over
some alphabet X" of size |X|. For a string x € X™* of
length €(x) = n we write x;x, ...x, with x; € X, and
further abbreviate x;.,, := XiXi41...Xn—1%, and x, :=
X1...%Xp_1, and € = x4 for the empty string. Consider a
countable class of hypotheses M = {H;,H,,...}. Each
hypothesis H € M (also called model) shall describe an
infinite sequence x{’_, for example, like in IQ test ques-
tions “2, 4, 6, 8, ...” In online learning, for t = 1,2,3,. ..,
we predict x; based on past observations X then
nature reveals %;, and so on, where the dot above x
indicates the true observation. We assume that the true
hypothesis is in M, that is, %1., = X/, for some m € N.
Goal is to (“quickly”) identify the unknown H,, from
the observations.

Learning by enumeration works as follows: Let M, =
{HeM:xZ=x<,} be the set of hypotheses
consistent with our observations x.; so far. The
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hypothesis in M, with smallest index, say m;, is selected
and used for predicting x;. Then %, is observed and all
H € M, inconsistent with x; are eliminated, that is,
they are not included in M,,,. Every prediction error
results in the elimination of at least H,,/, so after at most
m—1errors, the true hypothesis H,, gets selected forever,
since it never makes an error (H,, € M, Vt). This identi-
fication may take arbitrarily long (in t), but the number
of errors on the way is bounded by m — 1, and the lat-
ter is often more important. As an example for which
the bound is attained, consider H; with lejx, S O
Vi for any strictly increasing function f, for example,
f(i) = i. But we now show that we can do much better
than this, at least for finite X'

Majority learning:

Consider (temporarily in this paragraph only) a
binary alphabet X = {0,1} and a finite deterministic
hypothesis class M = {H;, H,, ..., Hy}. H, and M,
are as before, but now we take a majority vote among
the hypotheses in M, as our prediction of x;. If the pre-
diction turns out to be wrong, then at least half (the
majority) of the hypotheses get eliminated from M,.
Hence after at most log N errors, there is only a single
hypothesis, namely H,,, left over. So this majority pre-
dictor makes at most log N errors. As an example where
this bound is essentially attained, consider m = N =
2" —1and let x_ be the digits after the comma of the
binary expansion of (i —1)/2" fori=1,...,N.

Weighted majority for countable classes:

Majority learning can be adapted to denumerable
classes M and general finite alphabet X’ as follows:
Each hypothesis H; is assigned a weight w; > 0 with
Yiwi < 1L Let W := ¥, .o aq, wi be the total weight of
the hypotheses in M. Let M{ := {Hi eM;:xl = a}
be the consistent hypotheses predicting x; = a4, and
W, their weight, and take the weighted majority pre-
diction x;, = argmax, W,. Similarly as above, a predic-
tion error decreases W by a factor of 1 — 1/|X|, since
max, W, > W/|X|. Since w,, < W < 1, this algorithm
can at most make log,_; i wm = O (log w;f) predic-
tion errors. If we choose, for instance, w; = (i +1)7%,
the number of errors is O(logm), which is an expo-
nential improvement over the Gold-style learning by
enumeration above.

Algorithmic Probability
probability has
Solomonoff (1964). The so-called universal probability

Algorithmic been founded by
or a-priori probability is the key quantity for univer-
sal learning. Its philosophical and technical roots are
»Ockham’s razor (choose the simplest model consis-
tent with the data), Epicurus’ principle of multiple
explanations (keep all explanations consistent with
the data), (Universal) Turing machines (to compute,
quantify and assign codes to all quantities of inter-
est), and Kolmogorov complexity (to define what
simplicity/complexity means). This section considers
deterministic computable sequences, and the next
section the general setup of computable probability
distributions.

(Universal) monotone Turing machines: Since we con-
sider infinite computable sequences, we need devices
that convert input data streams to output data streams.
For this we define the following variants of a classi-
cal deterministic Turing machine: A monotone Turing
machine T is defined as a Turing machine with one uni-
directional input tape, one unidirectional output tape,
and some bidirectional work tapes. The input tape is
binary (no blank) and read only; the output tape is
over finite alphabet X’ (no blank) and write only; uni-
directional tapes are those where the head can only
move from left to right; work tapes are initially filled
with zeros and the output tape with some fixed element
from X. We say that monotone Turing machine T out-
puts/computes a string starting with x on input p, and
write T(p) = x+ if p is to the left of the input head
when the last bit of x is output (T reads all of p but no
more). T may continue operation and need not halt. For
a given x, the set of such p forms a prefix code. Such
codes are called minimal programs. Similarly, we write
T(p) = w if p outputs the infinite sequence w. A prefix
code P is a set of binary strings such that no element
is proper prefix of another. It satisfies Kraft’s inequality
Y pep 2710 <1,

The table of rules of a Turing machine T can be
prefix encoded in a canonical way as a binary string,
denoted by (T). Hence, the set of Turing machines
{T}, Ty, ...} can be effectively enumerated. There are
so-called universal Turing machines that can “simulate”
all other Turing machines. We define a particular one
which simulates monotone Turing machine T(q) if fed
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with input (T)g, that is, U({T)q) = T(q) VT,q. Note
that for p not of the form (T)q, U(p) does not out-
put anything. We call this particular U the reference
universal Turing machine.

Universal weighted majority learning: Ti(¢), T>(€),...
constitutes an effective enumeration of all finite and
infinite computable sequences, hence also monotone
U(p) for p € {0,1}*. As argued below, the class
of computable infinite sequences is conceptually very
interesting. The halting problem implies that there is
no recursive enumeration of all partial-recursive func-
tions with infinite domain; hence we cannot remove the
finite sequences algorithmically. It is very fortunate that
we don’t have to. Hypothesis H, is identified with the
sequence U(p), which may be finite, infinite, or possi-
bly even empty. The class of considered hypotheses is
M :={H,:pe{0,1}"}.

The weighted majority algorithm also needs weights
w, for each H,. Ockham’s razor combined with Epi-
curus’ principle demand to assign a high (low) prior
weight to a simple (complex) hypothesis. If complexity
is identified with program length, then w;, should be a
decreasing function of (p). It turns out that w,, = 27¢(?)
is the “right” choice, since minimal p forms a prefix code
and therefore 3, w), <1as required.

Using H,, for prediction can now fail in two ways. H,,
may make a wrong prediction or no prediction at all for
x¢. The true hypothesis H,, is still assumed to produce
an infinite sequence. The weighted majority algorithm
in this setting makes at most O (log w,') = o(¢(p))
errors. It is also plausible that learning £(p) bits requires
O(¢(p)) “trials”

Universal mixture prediction: Solomonoff (1978) defined
the following universal a-priori probability

M(x) = > 270, 1)
p:U(p)=xx
That is, M(x) = W is the total weight of the

computable deterministic hypotheses consistent with
x for the universal weight choice w, = 27,
The universal weighted majority algorithm predicted
argmax, M(x.a). Instead, one could also make a
probability prediction M(alx.;) = M(k<a)/M(k<),
which is the relative weight of hypotheses in M, pre-
dicting a. The higher the probability M (x|x.,) that is

assigned to the true next observation x;, the better. Con-
sider the absolute prediction error |1 — M(x|%<;)| and
the logarithmic error —log M (%:|%<;). The cumulative
logarithmic error is bounded by Y7 —log M (i]x<;) =
—log M(%1.,) < €(p) for any program p that prints xx*.
For instance, p could be chosen as the shortest
one printing Xj..., which has length Km(%.00) :=
min{(p) : U(p) = X100 }. Using 1 — z < —logz and
letting n — oo we get

Y= M(ifiar)| < D) —logM(ifier) < Km(ky00).

t=1 t=1

Hence again, the cumulative absolute and logarithmic
errors are bounded by the number of bits required to
describe the true environment.

Universal Bayes

The exposition so far has dealt with deterministic envi-
ronments only. Data sequences produced by real-world
processes are rarely as clean as IQ test sequences.
They are often noisy. This section deals with stochastic
sequences sampled from computable probability dis-
tributions. The developed theory can be regarded as
an instantiation of Bayesian learning. Bayes’ theorem
allows to update beliefs in face of new information but is
mute about how to choose the prior and the model class
to begin with. Subjective choices based on prior knowl-
edge are informal, and traditional “objective” choices
like Jeffrey’s prior are not universal. Machine learn-
ing, the computer science branch of statistics, devel-
ops (fully) automatic inference and decision algorithms
for very large problems. Naturally, machine learning
has (re)discovered and exploited different principles
(Ockham’s and Epicurus’) for choosing priors, appro-
priate for this situation. This leads to an alternative
representation of universal probability as a mixture
over all lower semi-computable semimeasures with Kol-
mogorov complexity-based prior as described below.

Sequences w = Wi € X are now assumed to be
sampled from the “true” probability measure y, that is,
p(x1.n) == Plwy, = x1.,4|p] is the p-probability that
w starts with x.,. Expectations w.r.t. g are denoted
by E. In particular for a function f : X" - IR,

we have E[f] = E[f(win)] = X, p(X1:0)f (x1:0)-
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Note that in Bayesian learning, measures, environ-
ments, and models are the same objects; let M =
{v,v2,...} = {H,,H,,,...} denotes a countable
class of these measures=hypotheses. Assume that y is
unknown but known to be a member of M, and w,, :=
P[H, ] is the given prior belief in H,. Then the Bayesian
mixture

E(xl:n) = P[a)l:n = xl:n]
= Z P[wlzn :xl:n|Hv:|P|:HV:|
veM

= Z v(x10 )Wy

veM

must be our a-priori belief in x;.,, and P[H,|wy., =
X1 ] = wyv(x1.)/E(x1., ) be our posterior belief in v by
Bayes’ rule.

Next, we need to find a universal class of environments
My. Roughly speaking, Bayes’ works if M contains
the true environment p. The larger M, the less restric-
tive is this assumption. The class of all computable
distributions, although only countable, is pretty large
from a practical point of view, since it includes, for
instance, all of today’s valid physics theories. (Finding
a non-computable physical system would indeed over-
turn the generally accepted Church-Turing thesis.) It is
the largest class, relevant from a computational point of
view. Solomonoff (1964, Eq. (13)) defined and studied
the mixture over this class.

One problem is that this class is not (effec-
tively = recursively) enumerable, since the class of
computable functions is not enumerable due to the
halting problem, nor is it decidable whether a func-
tion is a measure. Hence & is completely incomputable.
Leonid Levin (Zvonkin & Levin, 1970) had the idea
to “slightly” extend the class and include also lower
semi-computable semimeasures.

A function v : X* — [0,1] is called a semimeasure
iff v(x) > Ysex v(xa) Vx € X*. It is a proper prob-
ability measure iff equality holds and v(e) = 1. v(x)
still denotes the v-probability that a sequence starts with
string x. A function is called lower semi-computable,
if it can be approximated from below. Similarly to the
fact that the class of partial recursive functions is recur-
sively enumerable, one can show that the class My =
{v1,v;,...} of lower semi-computable semimeasures

is recursively enumerable. In some sense My is the
largest class of environments for which £ is in some
sense computable, but even larger classes are possible
(Schmidhuber, 2002).

Before we can turn to the prior w,, we need to quantify
complexity/simplicity. Intuitively, a string is simple if it
can be described in a few words, like “the string of one
million ones,” and is complex if there is no such short
description, like for a random object whose shortest
description is specifying it bit by bit. We are interested in
effective descriptions, and hence restrict decoders to be
Turing machines. One can define the prefix Kolmogorov
complexity of string x as the length ¢ of the shortest
halting program p for which U outputs x:

K(x) := m;n{f(p) : U(p) = x halts}.

Simple strings like 000...0 can be generated by short
programs, and hence have low Kolmogorov complex-
ity, but irregular (e.g., random) strings are their own
shortest description, and hence have high Kolmogorov
complexity. For non-string objects o (like numbers and
functions) one defines K(0) := K({0)}), where (o) ¢ X'*
is some standard code for o. In particular, K(v;) = K(i).
To be brief, K is an excellent universal complexity
measure, suitable for quantifying Ockham’s razor.

We can now quantify a prior biased toward simple mod-
els. First, we quantify the complexity of an environment
v or hypothesis H, by its Kolmogorov complexity K(v).
The universal prior should be a decreasing function in
the model’s complexity, and of course sum to (less than)
one. Since Y., 27K < 1 by the prefix property and
Kraft’s inequality, this suggests the choice

w, = wY = 27K, (2)

Since logi < K(v;) < logi + 2loglogi for “most” i, most
v; have prior approximately reciprocal to their index i as
also advocated by Jeffreys and Rissanen.

Combining the universal class My with the universal
prior 2, we arrive at the universal mixture

Eu(x) = ) 275 W(x) ©)

VEMU
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which has remarkable properties. First, it is itself a lower
semi-computable semimeasure, that is £y, € My, which
is very convenient. Note that for most classes, & ¢ M.

Second, &y coincides with M within an irrelevant
multiplicative constant, and M € My. This means that
the mixture over deterministic computable sequences is
as rich as the mixture over the much larger class of semi-
computable semimeasures. The intuitive reason is that
the probabilistic semimeasures are in the convex hull of
the deterministic ones, and therefore need not be taken
extra into account in the mixture.

There is another, possibly the simplest, representa-
tion: One can show that M (x) is equal to the probability
that U outputs a string starting with x when provided
with uniform random noise on the program tape. Note
that a uniform distribution is also used in many no-
free-lunch theorems to prove the impossibility of uni-
versal learners, but in our case the uniform distribution
is piped through a universal Turing machine, which
defeats these negative implications as we will see in the
next section.

Applications

In the stochastic case, identification of the true hypoth-
esis is problematic. The posterior P[H|x] may not con-
centrate around the true hypothesis H, if there are other
hypotheses H, that are not asymptotically distinguish-
able from H,. But even if model identification (induc-
tion in the narrow sense) fails, predictions, decisions, and
actions can be good, and indeed, for universal learning
this is generally the case.

Given a sequence x;x; ...x;—1, we want to predict its
likely continuation x;. We assume that the strings which
have to be continued are drawn from a computable
“true” probability distribution y. The maximal prior
information a prediction algorithm can possess is the
exact knowledge of y, but often the true distribution
is unknown. Instead, prediction is based on a guess
p of u. Let p(alx) := p(xa)/p(x) be the “predictive”
p-probability that the next symbol is a € X, given
sequence x € X*. Since y € My it is natural to use
&y or M for prediction.

Solomonoff’s (Hutter, 2005; Solomonoff, 1978) cel-
ebrated result indeed shows that M converges to u.

For general alphabet it reads

SE| S (M) - plalon))’

t=1 aeX

<K(u)In2+0(1). 4)

Analogous bounds hold for &y and for other than the
Euclidean distance, for example, the Hellinger and the
absolute distance and the relative entropy.

For a sequence dgj,a;,... of random variables,
pes] E[a?] < ¢ < oo implies a; - 0 for t - oo
with y-probability 1 (w.p.1). Convergence is rapid in the
sense that the probability that a? exceeds ¢ > 0 at more
than c/ed times is bounded by §. This might loosely
be called the number of errors. Hence Solomonoff’s

bounds implies

M(x;|w<;) — p(xi|w<;) —> 0 for any x; rapid w.p.1

for t - oo.

The number of times M deviates from y by more
than ¢ > 0 is bounded by O(K(y)), that is, propor-
tional to the complexity of the environment, which
is again reasonable. A counting argument shows that
O(K(p)) errors for most y are unavoidable. No other
choice for w, would lead to significantly better bounds.
Again, in general it is not possible to determine when
these “errors” occur. Multi-step lookahead convergence
M(x¢.p,|w<t) — Y(Xpn,|w<t) — O even for unbounded
lookahead n; — t > 0, relevant for delayed sequence
prediction and in reactive environments, can also be
shown.

In summary, M is an excellent sequence predictor
under the only assumption that the observed sequence
is drawn from some (unknown) computable probability
distribution. No ergodicity, stationarity, or identifiabil-
ity or other assumption is required.

Predictions usually form the basis for decisions and
actions, which result in some profit or loss. Let £,,,, €
[0,1] be the received loss for decision y; € ) when x; €
X turns out to be the true ¢tth symbol of the sequence.
The p-optimal strategy

yi7(wer) = argmin . p(xiw< )y, (5)

ye oy
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minimizes the p-expected loss. For instance, if we can
decide among Y = {sunglasses, umbrella} and it turns
out to be X = {sun, rain}, and our personal loss matrix
is ¢ = (?g 3'31 ), then A, takes yf» = sunglasses if
p(rainjw<;) < 1/8 and an umbrella otherwise. For X’ =
Y and 0-1loss £,, = 0 for x = y and 1 else, A, predicts
the most likely symbol y» = argmax, p(a|w<;) as in
Sect. 2.

The cumulative y(=true)-expected loss of A, for the
first n symbols is

E [ewr}’{\/’(wd)] = Z Z ‘Lt(xl:t)fx!),l/\p (x<t)®

t=1 x1.4

n
Lossﬁ/’ =

=1
If u is known, A, obviously results in the best decisions
in the sense of achieving minimal expected loss among
all strategies. For the predictor Ay based on M (and
similarly £y;), one can show

VLoss™ —/Loss ™ < \/2K(u)In2+0(1)  (6)

This implies that Loss’* /Loss’* — 1 for Loss* —
oo, or if Loss2 is finite, then also Loss>* < co. This
shows that M (via Ajs) also performs excellent from a
decision-theoretic perspective, that is, suffers loss only
slightly larger than the optimal A, strategy.

One can also show that Ay is pareto-optimal
(admissible) in the sense that every other predictor with
smaller loss than Aj; in some environment v € My
must be worse in another environment.

The goal of classification and regression is to infer
the functional relationship f : VY — X from data
{(1x1)5-+.»(¥n>%n)}. In a predictive online setting
one wants to “directly” infer x; from y; given (y<s, x<)
for t = 1,2,3,.... The universal induction framework
has to be extended by regarding y.., as independent
side-information presented in the form of an oracle or
extra tape information or extra parameter. The con-
struction has to ensure that x;.,, depends only on yy.,, but
is (functionally or statistically) independent of y,,41.c0.
First, we augment a monotone Turing machine with
an extra input tape containing ;... The Turing machine
is called chronological if it does not read beyond y.,
before x;., has been written. Second, semimeasures

p = v, M, &y are extended to p(x1.,|y1.00 ) that is, one
semimeasure p(-|y1..o) for each y1... (no distribution
over y is assumed). Any such semimeasure must be
chronological in the sense that p(x1.4|y1.c0 ) is indepen-
dent of y; for t > n, hence we can write p(x1.4|y1., ). In
classification and regression, p is typically (condition-
ally) iid., that is, p(xialyin) = T, p(xely:), which
is chronological, but note that the Bayesian mixture
& is not iid. One can show that the class of lower
semi-computable chronological semimeasures M‘U =
{m(|),va(:]-),.. .} is effectively enumerable.

The generalized universal a-priori semimeasure also
has two equivalent definitions:

M(xlznb/l:n) = z 2—€(P)
P:U(PJ’l:n):xl:n

= 3 27Oy (xlyin) 7)
veM

which is again in MIU In case of | Y| = 1, this reduces
to (1) and (3). The bounds (4) and (6) and others con-
tinue to hold, now for all individual ys, that is, M pre-
dicts asymptotically x; from y; and (y<, x<;) for any y,
provided x is sampled from a computable probability
measure 4(:[y1.0 ). Convergence is rapid if g is not too
complex.

The generalized universal a-priori semimeasure (7) can
be used to construct a universal reinforcement learning
agent, called AIXI. In reinforcement learning, an agent
interacts with an environment in cycles t = 1,2, . ..
cycle t, the agent chooses an action y; (e.g., alimb move-
ment) based on past perceptions x, and past actions y.;.
Thereafter, the agent perceives x;, = o,r;, which con-
sists of a (regular) observation o, (e.g., a camera image)

,n.In

and a real-valued reward r,. The reward may be scarce,
for example, just +1 (-1) for winning (losing) a chess
game, and 0 at all other times. Then the next cycle t + 1
starts. The goal of the agent is to maximize its expected
reward over its lifetime n. Probabilistic planning deals
with the situation in which the environmental proba-
bility distribution g(xi.,[y1.,) is known. Reinforcement
learning deals with the case of unknown y. In univer-
sal reinforcement learning, the unknown y is replaced
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by M similarly to the prediction, decision, and classi-
fication cases above. The universally optimal action in
cycle t is (Hutter, 2005)

y¢ = argmax Z ... n}ax Z [r+ -+ 70 ]M(x10|Y10)-

(8)

The expectations (£) and maximizations (max) over
future x and y are interleaved in chronological order to
form an expectimax tree similarly to minimax decision
trees in extensive zero-sum games like chess. Optimal-
ity and universality results similar to the prediction case
exist.

Since K and M are only semi-computable, they have to
be approximated in practice. For instance, —log M(x) =
K(x) + O(logl(x)), and K(x) can be and has been
approximated by off-the-shelf compressors like Lempel-
Ziv and successfully applied to a plethora of clustering
problems (Cilibrasi & Vitanyi, 2005). The approxima-
tions upper-bound K(x) and, for example, for Lempel-
Ziv converge to K(x) if x is sampled from a context tree
source. The »Minimum Description Length principle
(Griinwald, 2007) also attempts to approximate K(x)
for stochastic x. The Context Tree Weighting algorithm
considers a relatively large subclass of My that can be
summed over efficiently. This can be and has been com-
bined with Monte-Carlo sampling to efficiently approx-
imate AIXI 8 (Veness, Ng, Hutter, & Silver, 2010). The
time-bounded versions of K and M, namely Levin com-
plexity Kt and the speed prior S have also been applied
to various learning tasks (Gaglio, 2007).

Continuously parameterized model classes are very
common in statistics. Bayesian’s usually assume a-prior
density over some parameter 0 € IRY, which works fine
for many problems, but has its problems. Even for con-
tinuous classes M, one can assign a (proper) universal
prior (not density) wj := 27K 5 0 for computable 6
(and vp), and 0 for uncomputable ones. This effectively
reduces M to a discrete class {ve eM: wg > 0} c
My which is typically dense in M. There are various
fundamental philosophical and statistical problems and
paradoxes around (Bayesian) induction, which nicely

disappear in the universal framework. For instance,
universal induction has no zero and no improper
p(oste)rior problem, that is, can confirm universally
quantified hypotheses, is reparametrization and repre-
sentation invariant, and avoids the old-evidence and
updating problem, in contrast to most classical contin-
uous prior densities. It even performs well in incom-
putable environments, actually better than the latter
(Hutter, 2007).

Discussion and Future Directions

Universal learning is designed to work for a wide range
of problems without any a-priori knowledge. In prac-
tice, we often have extra information about the prob-
lem at hand, which could and should be used to guide
the forecasting. One can incorporate it by explicating
all our prior knowledge z, and place it on an extra
input tape of our universal Turing machine U, or pre-
fix our observation sequence x by z and use M(zx) for
prediction.

Another concern is the dependence of K and M on
U. The good news is that a change of U changes K(x)
only within an additive and M(x) within a multiplica-
tive constant independent of x. This makes the theory
practically immune to any “reasonable” choice of U for
large data sets x, but predictions for short sequences
(shorter than typical compiler lengths) can be arbitrary.
One solution is to take into account our (whole) scien-
tific prior knowledge z (Hutter, 2006), and predicting
the now long string zx leads to good (less sensitive to
“reasonable” U) predictions. This is a kind of grand
transfer learning scheme. It is unclear whether a more
elegant theoretical solution is possible.

Finally, the incomputability of K and M prevents a
direct implementation of Solomonoft induction. Most
fundamental theories have to be approximated for prac-
tical use, sometimes systematically like polynomial time
approximation algorithms or numerical integration,
and sometimes heuristically like in many Al-search
problems or in non-convex optimization problems.
Universal machine learning is similar, except that its
core quantities are only semi-computable. This makes
them often hard, but as described in the previous sec-
tion, not impossible, to approximate.

In any case, universal induction can serve as a “gold
standard” which practitioners can aim at. Solomonoft’s
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theory considers the class of all computable (stochas-
tic) models, and a universal prior inspired by Ockham
and Epicurus, quantified by Kolmogorov complexity.
This leads to a universal theory of induction, predic-
tion, decisions, and, by including Bellman, to universal
actions in reactive environments. Future progress on the
issues above (incorporating prior knowledge, getting
rid of the compiler constants, and finding better approx-
imations) will lead to new insights and will continually
increase the number of applications.
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[
Unlabeled Data

Unlabeled data are »data for which there are no tar-
get values. Unlabeled data are used in »unsupervised
learning. They stand in contrast to labeled data that have
target values and are used in »supervised learning.

| Unsolicited Commercial Email
Filtering

» Text Mining for Spam Filtering

[
Unstable Learner

An unstable learner produces large differences in gen-
eralization patterns when small changes are made to its
initial conditions. The obvious initial condition is the set
of training data used - for an unstable learner, sampling
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a slightly different training set produces a large differ-
ence in testing behavior. Some models can be unstable
in additional ways, for example »neural networks are
unstable with respect to the initial weights. In general
this is an undesirable property — high sensitivity to
training conditions is also known as high »variance,
which results in higher overall mean squared error. The
flexibility enabled by being sensitive to data can thus be
a blessing or a curse. Unstable learners can however be
used to an advantage in »ensemble learning methods,
where large variance is “averaged out” across multiple
learners.

Examples of unstable learners are: neural networks
(assuming gradient descent learning), and »decision
trees. Examples of stable learners are »support vec-
tor machines, »K-nearest neighbor classifiers, and
»decision stumps. It should of course be recognized
that there is a continuum between “stable” and “unsta-
ble,” and the opinion of whether something is “sensitive”
to initial conditions is somewhat of a subjective one. See
also P-bias-variance decomposition for a more formal
interpretation of this concept.

| Unsupervised Learning

Unsupervised learning refers to any machine learning
process that seeks to learn structure in the absence of
either an identified output (cf. »supervised learning)
or feedback (cf. »reinforcement learning). Three typ-
ical examples of unsupervised learning are »clustering,
»association rules, and Pself-organizing maps.

! Unsupervised Learning on
Document Datasets

»Document Clustering

' Utility Problem

»Explanation-Based Learning
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