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Underlying Objective

�eterm objectiveused inEvolutionaryMulti-Objective
Optimization refers to an indicator of quality return-
ing an element from an ordered set of scalar values,
such as a real number. For any test-based coevolution-
ary problem, a set of underlying objectives exists such
that knowledge of the objective values of an individual
is su�cient to determine the outcomes of all possible
tests. �e existence of a set of underlying objectives is
guaranteed, as the set of possible tests itself satis�es this
property.
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Definition, Motivation, and Background
Universal (machine) learning is concerned with the
development and study of algorithms that are able
to learn from data in a very large range of environ-
ments with as few assumptions as possible. �e class
of environments typically considered includes all com-
putable stochastic processes. �e investigated learn-
ing tasks range from 7inductive inference, sequence
prediction, sequential decisions, to (re)active problems
like 7reinforcement learning (Hutter, ), but also
include 7clustering, 7regression, and others (Li &
Vitányi, ). Despite various no-free-lunch theorems

(Wolpert & Macready, ), universal learning is pos-
sible by assuming that the data possess some e�ective
structure, but without specifying any further, which
structure. Learning algorithms that are universal (at
least to some degree) are also necessary for develop-
ing autonomous general intelligent systems, required,
for example, for exploring other planets, as opposed
to decision support systems which keep a human in
the loop. �ere is also an intrinsic interest in striv-
ing for generality: Finding new learning algorithms
for every particular (new) problem is possible but
cumbersome and prone to disagreement or contra-
diction. A sound, formal, general and ideally com-
plete theory of learning can unify existing approaches,
guide the development of practical learning algo-
rithms, and last but not least lead to novel and deep
insights.

Deterministic Environments
Let t,n ∈ IN be natural numbers, X ∗ be the set of �nite
strings and X∞ be the set of in�nite sequences over
some alphabet X of size ∣X ∣. For a string x ∈ X ∗ of
length ℓ(x) = n we write xx . . . xn with xt ∈ X , and
further abbreviate xt:n := xtxt+ . . . xn−xn and x<n :=
x . . . xn−, and є = x< for the empty string. Consider a
countable class of hypothesesM = {H,H, . . .}. Each
hypothesisH ∈ M (also called model) shall describe an
in�nite sequence xH:∞, for example, like in IQ test ques-
tions “, , , , ….” In online learning, for t = , , , . . .,
we predict xt based on past observations ẋ<t , then
nature reveals ẋt , and so on, where the dot above x
indicates the true observation. We assume that the true
hypothesis is inM, that is, ẋ:∞ = xHm

:∞ for somem ∈ IN.
Goal is to (“quickly”) identify the unknown Hm from
the observations.

Learning by enumeration works as follows: LetMt =

{H ∈ M : xH<t = ẋ<t} be the set of hypotheses
consistent with our observations ẋ<t so far. �e
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hypothesis inMt with smallest index, saym′
t , is selected

and used for predicting xt . �en ẋt is observed and all
H ∈ Mt inconsistent with xt are eliminated, that is,
they are not included inMt+. Every prediction error
results in the elimination of at leastHm′t , so a�er at most
m− errors, the true hypothesisHm gets selected forever,
since it nevermakes an error (Hm ∈ Mt ∀t).�is identi-
�cation may take arbitrarily long (in t), but the number
of errors on the way is bounded by m − , and the lat-
ter is o�en more important. As an example for which
the bound is attained, consider Hi with xHi

:∞ := 
f (i)∞

∀i for any strictly increasing function f , for example,
f (i) = i. But we now show that we can do much better
than this, at least for �nite X .

Majority learning:
Consider (temporarily in this paragraph only) a

binary alphabet X = {, } and a �nite deterministic
hypothesis classM = {H, H, . . . , HN}. Hm andMt

are as before, but now we take a majority vote among
the hypotheses inMt as our prediction of xt . If the pre-
diction turns out to be wrong, then at least half (the
majority) of the hypotheses get eliminated from Mt .
Hence a�er at most logN errors, there is only a single
hypothesis, namely Hm, le� over. So this majority pre-
dictor makes at most logN errors. As an example where
this bound is essentially attained, consider m = N =

n −  and let xHi
:∞ be the digits a�er the comma of the

binary expansion of (i − )/n for i = , . . . ,N.

Weighted majority for countable classes:
Majority learning can be adapted to denumerable

classes M and general �nite alphabet X as follows:
Each hypothesis Hi is assigned a weight wi >  with
∑i wi ≤ . LetW := ∑i:Hi∈Mt

wi be the total weight of
the hypotheses inMt . LetMa

t := {Hi ∈ Mt : xHi
t = a}

be the consistent hypotheses predicting xt = a, and
Wa their weight, and take the weighted majority pre-
diction xt = argmaxaWa. Similarly as above, a predic-
tion error decreases W by a factor of  − /∣X ∣, since
maxaWa ≥ W/∣X ∣. Since wm ≤ W ≤ , this algorithm
can at most make log−/∣X ∣wm = O (logw−m ) predic-
tion errors. If we choose, for instance, wi = (i + )−,
the number of errors is O(logm), which is an expo-
nential improvement over the Gold-style learning by
enumeration above.

Algorithmic Probability
Algorithmic probability has been founded by
Solomono� (). �e so-called universal probability
or a-priori probability is the key quantity for univer-
sal learning. Its philosophical and technical roots are
7Ockham’s razor (choose the simplest model consis-
tent with the data), Epicurus’ principle of multiple
explanations (keep all explanations consistent with
the data), (Universal) Turing machines (to compute,
quantify and assign codes to all quantities of inter-
est), and Kolmogorov complexity (to de�ne what
simplicity/complexity means). �is section considers
deterministic computable sequences, and the next
section the general setup of computable probability
distributions.

(Universal) monotone Turing machines: Since we con-
sider in�nite computable sequences, we need devices
that convert input data streams to output data streams.
For this we de�ne the following variants of a classi-
cal deterministic Turing machine: A monotone Turing
machine T is de�ned as a Turingmachine with one uni-
directional input tape, one unidirectional output tape,
and some bidirectional work tapes. �e input tape is
binary (no blank) and read only; the output tape is
over �nite alphabet X (no blank) and write only; uni-
directional tapes are those where the head can only
move from le� to right; work tapes are initially �lled
with zeros and the output tape with some �xed element
from X . We say that monotone Turing machine T out-
puts/computes a string starting with x on input p, and
write T(p) = x∗ if p is to the le� of the input head
when the last bit of x is output (T reads all of p but no
more).Tmay continue operation and need not halt. For
a given x, the set of such p forms a pre�x code. Such
codes are called minimal programs. Similarly, we write
T(p) = ω if p outputs the in�nite sequence ω. A pre�x
code P is a set of binary strings such that no element
is proper pre�x of another. It satis�es Kra�’s inequality
∑p∈P −ℓ(p) ≤ .

�e table of rules of a Turing machine T can be
pre�x encoded in a canonical way as a binary string,
denoted by ⟨T⟩. Hence, the set of Turing machines
{T, T, . . .} can be e�ectively enumerated. �ere are
so-called universal Turingmachines that can “simulate”
all other Turing machines. We de�ne a particular one
which simulates monotone Turing machine T(q) if fed
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with input ⟨T⟩q, that is, U(⟨T⟩q) = T(q) ∀T, q. Note
that for p not of the form ⟨T⟩q, U(p) does not out-
put anything. We call this particular U the reference
universal Turing machine.

Universal weighted majority learning: T(є),T(є), . . .
constitutes an e�ective enumeration of all �nite and
in�nite computable sequences, hence also monotone
U(p) for p ∈ {, }∗. As argued below, the class
of computable in�nite sequences is conceptually very
interesting. �e halting problem implies that there is
no recursive enumeration of all partial-recursive func-
tions with in�nite domain; hence we cannot remove the
�nite sequences algorithmically. It is very fortunate that
we don’t have to. Hypothesis Hp is identi�ed with the
sequence U(p), which may be �nite, in�nite, or possi-
bly even empty. �e class of considered hypotheses is
M := {Hp : p ∈ {, }∗}.

�e weightedmajority algorithm also needs weights
wp for each Hp. Ockham’s razor combined with Epi-
curus’ principle demand to assign a high (low) prior
weight to a simple (complex) hypothesis. If complexity
is identi�ed with program length, then wp should be a
decreasing function of ℓ(p). It turns out thatwp = −ℓ(p)

is the “right” choice, sinceminimal p forms a pre�x code
and therefore∑p wp ≤  as required.
UsingHp for prediction can now fail in twoways.Hp

maymake a wrong prediction or no prediction at all for
xt . �e true hypothesis Hm is still assumed to produce
an in�nite sequence. �e weighted majority algorithm
in this setting makes at most O (logw−p ) = O(ℓ(p))
errors. It is also plausible that learning ℓ(p) bits requires
O(ℓ(p)) “trials.”

Universalmixtureprediction: Solomono� () de�ned
the following universal a-priori probability

M(x) := ∑
p:U(p)=x∗

−ℓ(p). ()

�at is, M(x) = W is the total weight of the
computable deterministic hypotheses consistent with
x for the universal weight choice wp = −ℓ(p).
�e universal weighted majority algorithm predicted
argmaxa M(ẋ<ta). Instead, one could also make a
probability prediction M(a∣ẋ<t) := M(ẋ<ta)/M(ẋ<t),
which is the relative weight of hypotheses inMt pre-
dicting a. �e higher the probability M(ẋt ∣ẋ<t) that is

assigned to the true next observation ẋt , the better. Con-
sider the absolute prediction error ∣ −M(ẋt ∣ẋ<t)∣ and
the logarithmic error − logM(ẋt ∣ẋ<t). �e cumulative
logarithmic error is bounded by∑n

t= − logM(ẋt ∣ẋ<t) =
− logM(ẋ:n) ≤ ℓ(p) for any program p that prints ẋ∗.
For instance, p could be chosen as the shortest
one printing ẋ:∞, which has length Km(ẋ:∞) :=
min{ℓ(p) : U(p) = ẋ:∞}. Using  − z ≤ − log z and
letting n→∞ we get

∞
∑
t=

∣ −M(ẋt ∣ẋ<t)∣ ≤
∞
∑
t=
− logM(ẋt ∣ẋ<t) ≤ Km(ẋ:∞).

Hence again, the cumulative absolute and logarithmic
errors are bounded by the number of bits required to
describe the true environment.

Universal Bayes
�e exposition so far has dealt with deterministic envi-
ronments only. Data sequences produced by real-world
processes are rarely as clean as IQ test sequences.
�ey are o�en noisy. �is section deals with stochastic
sequences sampled from computable probability dis-
tributions. �e developed theory can be regarded as
an instantiation of Bayesian learning. Bayes’ theorem
allows to update beliefs in face of new information but is
mute about how to choose the prior and themodel class
to begin with. Subjective choices based on prior knowl-
edge are informal, and traditional “objective” choices
like Je�rey’s prior are not universal. Machine learn-
ing, the computer science branch of statistics, devel-
ops (fully) automatic inference and decision algorithms
for very large problems. Naturally, machine learning
has (re)discovered and exploited di�erent principles
(Ockham’s and Epicurus’) for choosing priors, appro-
priate for this situation. �is leads to an alternative
representation of universal probability as a mixture
over all lower semi-computable semimeasureswithKol-
mogorov complexity-based prior as described below.

Bayes

Sequences ω = ω:∞ ∈ X∞ are now assumed to be
sampled from the “true” probability measure µ, that is,
µ(x:n) := P[ω:n = x:n∣µ] is the µ-probability that
ω starts with x:n. Expectations w.r.t. µ are denoted
by E. In particular for a function f : X n → IR,
we have E[f ] = E[f (ω:n)] = ∑x:n µ(x:n)f (x:n).
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Note that in Bayesian learning, measures, environ-
ments, and models are the same objects; let M =

{ν, ν, . . .} ≡ {Hν ,Hν , . . .} denotes a countable
class of these measures≡hypotheses. Assume that µ is
unknown but known to be a member ofM, and wν :=
P[Hν] is the given prior belief inHν . �en the Bayesian
mixture

ξ(x:n) := P[ω:n = x:n]

= ∑
ν∈M

P[ω:n = x:n∣Hν]P[Hν]

≡ ∑
ν∈M

ν(x:n)wν

must be our a-priori belief in x:n, and P[Hν ∣ω:n =

x:n] = wνν(x:n)/ξ(x:n) be our posterior belief in ν by
Bayes’ rule.

Universal Choice ofM
Next, we need to �nd a universal class of environments
MU . Roughly speaking, Bayes’ works if M contains
the true environment µ. �e largerM, the less restric-
tive is this assumption. �e class of all computable
distributions, although only countable, is pretty large
from a practical point of view, since it includes, for
instance, all of today’s valid physics theories. (Finding
a non-computable physical system would indeed over-
turn the generally accepted Church-Turing thesis.) It is
the largest class, relevant from a computational point of
view. Solomono� (, Eq. ()) de�ned and studied
the mixture over this class.
One problem is that this class is not (e�ec-

tively = recursively) enumerable, since the class of
computable functions is not enumerable due to the
halting problem, nor is it decidable whether a func-
tion is a measure. Hence ξ is completely incomputable.
Leonid Levin (Zvonkin & Levin, ) had the idea
to “slightly” extend the class and include also lower
semi-computable semimeasures.
A function ν : X ∗ → [, ] is called a semimeasure

i� ν(x) ≥ ∑a∈X ν(xa)∀x ∈ X ∗. It is a proper prob-
ability measure i� equality holds and ν(є) = . ν(x)
still denotes the ν-probability that a sequence starts with
string x. A function is called lower semi-computable,
if it can be approximated from below. Similarly to the
fact that the class of partial recursive functions is recur-
sively enumerable, one can show that the classMU =

{ν, ν, . . .} of lower semi-computable semimeasures

is recursively enumerable. In some sense MU is the
largest class of environments for which ξ is in some
sense computable, but even larger classes are possible
(Schmidhuber, ).

Kolmogorov Complexity

Before we can turn to the prior wν , we need to quantify
complexity/simplicity. Intuitively, a string is simple if it
can be described in a few words, like “the string of one
million ones,” and is complex if there is no such short
description, like for a random object whose shortest
description is specifying it bit by bit.We are interested in
e�ective descriptions, and hence restrict decoders to be
Turing machines. One can de�ne the pre�x Kolmogorov
complexity of string x as the length ℓ of the shortest
halting program p for which U outputs x:

K(x) := min
p

{ℓ(p) : U(p) = x halts}.

Simple strings like … can be generated by short
programs, and hence have low Kolmogorov complex-
ity, but irregular (e.g., random) strings are their own
shortest description, and hence have high Kolmogorov
complexity. For non-string objects o (like numbers and
functions) one de�nes K(o) := K(⟨o⟩), where ⟨o⟩ ∈ X ∗

is some standard code for o. In particular,K(νi) = K(i).
To be brief, K is an excellent universal complexity

measure, suitable for quantifying Ockham’s razor.

The Universal Prior

Wecan nowquantify a prior biased toward simplemod-
els. First, we quantify the complexity of an environment
ν or hypothesisHν by its Kolmogorov complexityK(ν).
�e universal prior should be a decreasing function in
the model’s complexity, and of course sum to (less than)
one. Since ∑x −K(x) ≤  by the pre�x property and
Kra�’s inequality, this suggests the choice

wν = wU
ν := 

−K(ν). ()

Since log i ≤ K(νi) ≤ log i +  log logi for “most” i, most
νi have prior approximately reciprocal to their index i as
also advocated by Je�reys and Rissanen.

Representations

Combining the universal classMU with the universal
prior , we arrive at the universal mixture

ξU(x) := ∑
ν∈MU

−K(ν)ν(x) ()
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which has remarkable properties. First, it is itself a lower
semi-computable semimeasure, that is ξU ∈ MU , which
is very convenient. Note that for most classes, ξ /∈ M.
Second, ξU coincides with M within an irrelevant

multiplicative constant, andM ∈ MU . �is means that
themixture over deterministic computable sequences is
as rich as themixture over themuch larger class of semi-
computable semimeasures. �e intuitive reason is that
the probabilistic semimeasures are in the convex hull of
the deterministic ones, and therefore need not be taken
extra into account in the mixture.

�ere is another, possibly the simplest, representa-
tion: One can show thatM(x) is equal to the probability
that U outputs a string starting with x when provided
with uniform random noise on the program tape. Note
that a uniform distribution is also used in many no-
free-lunch theorems to prove the impossibility of uni-
versal learners, but in our case the uniform distribution
is piped through a universal Turing machine, which
defeats these negative implications as we will see in the
next section.

Applications
In the stochastic case, identi�cation of the true hypoth-
esis is problematic. �e posterior P[H∣x] may not con-
centrate around the true hypothesisHµ if there are other
hypotheses Hν that are not asymptotically distinguish-
able from Hµ . But even if model identi�cation (induc-
tion in the narrow sense) fails, predictions, decisions, and
actions can be good, and indeed, for universal learning
this is generally the case.

Universal Sequence Prediction

Given a sequence xx . . . xt−, we want to predict its
likely continuation xt . We assume that the strings which
have to be continued are drawn from a computable
“true” probability distribution µ. �e maximal prior
information a prediction algorithm can possess is the
exact knowledge of µ, but o�en the true distribution
is unknown. Instead, prediction is based on a guess
ρ of µ. Let ρ(a∣x) := ρ(xa)/ρ(x) be the “predictive”
ρ-probability that the next symbol is a ∈ X , given
sequence x ∈ X ∗. Since µ ∈ MU it is natural to use
ξU orM for prediction.
Solomono� ’s (Hutter, ; Solomono�, ) cel-

ebrated result indeed shows that M converges to µ.

For general alphabet it reads

∞
∑
t=

E [∑
a∈X

(M(a∣ω<t) − µ(a∣ω<t))

]

≤ K(µ) ln  +O(). ()

Analogous bounds hold for ξU and for other than the
Euclidean distance, for example, the Hellinger and the
absolute distance and the relative entropy.
For a sequence a, a, . . . of random variables,

∑
∞
t= E [at ] ≤ c < ∞ implies at →  for t → ∞

with µ-probability  (w.p.). Convergence is rapid in the
sense that the probability that at exceeds ε >  at more
than c/εδ times is bounded by δ. �is might loosely
be called the number of errors. Hence Solomono� ’s
bounds implies

M(xt ∣ω<t) − µ(xt ∣ω<t) Ð→  for any xt rapid w.p.

for t →∞.

�e number of times M deviates from µ by more
than ε >  is bounded by O(K(µ)), that is, propor-
tional to the complexity of the environment, which
is again reasonable. A counting argument shows that
O(K(µ)) errors for most µ are unavoidable. No other
choice for wν would lead to signi�cantly better bounds.
Again, in general it is not possible to determine when
these “errors” occur. Multi-step lookahead convergence
M(xt:nt ∣ω<t) − µ(xt:nt ∣ω<t) →  even for unbounded
lookahead nt − t ≥ , relevant for delayed sequence
prediction and in reactive environments, can also be
shown.
In summary, M is an excellent sequence predictor

under the only assumption that the observed sequence
is drawn from some (unknown) computable probability
distribution. No ergodicity, stationarity, or identi�abil-
ity or other assumption is required.

Universal Sequential Decisions

Predictions usually form the basis for decisions and
actions, which result in some pro�t or loss. Let ℓxtyt ∈
[, ] be the received loss for decision yt ∈ Y when xt ∈
X turns out to be the true tth symbol of the sequence.
�e ρ-optimal strategy

yΛρ
t (ω<t) := argmin

yt
∑
xt

ρ(xt ∣ω<t)ℓxtyt ()
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minimizes the ρ-expected loss. For instance, if we can
decide among Y = {sunglasses, umbrella} and it turns
out to be X = {sun, rain}, and our personal loss matrix
is ℓ = (

. .
. . ), then Λρ takes yΛρ

t = sunglasses if
ρ(rain∣ω<t) < / and an umbrella otherwise. For X =

Y and – loss ℓxy =  for x = y and  else, Λρ predicts
the most likely symbol yΛρ

t = argmaxa ρ(a∣ω<t) as in
Sect. .

�e cumulative µ(=true)-expected loss of Λρ for the
�rst n symbols is

LossΛρ
n :=

n

∑
t=

E [ℓωtyΛρ
t (ω<t)] ≡

n

∑
t=
∑
x:t

µ(x:t)ℓxtyΛρ
t (x<t).

If µ is known, Λµ obviously results in the best decisions
in the sense of achieving minimal expected loss among
all strategies. For the predictor ΛM based on M (and
similarly ξU), one can show

√
LossΛM

n −
√
LossΛµ

n ≤
√
K(µ) ln  +O() ()

�is implies that LossΛM
n /LossΛµ

n →  for LossΛµ
n →

∞, or if LossΛµ
∞ is �nite, then also LossΛM

∞ < ∞. �is
shows that M (via ΛM) also performs excellent from a
decision-theoretic perspective, that is, su�ers loss only
slightly larger than the optimal Λµ strategy.
One can also show that ΛM is pareto-optimal

(admissible) in the sense that every other predictor with
smaller loss than ΛM in some environment ν ∈ MU

must be worse in another environment.

Universal Classification and Regression

�e goal of classi�cation and regression is to infer
the functional relationship f : Y → X from data
{(y, x), . . . , (yn, xn)}. In a predictive online setting
one wants to “directly” infer xt from yt given (y<t , x<t)
for t = , , , . . .. �e universal induction framework
has to be extended by regarding y:∞ as independent
side-information presented in the form of an oracle or
extra tape information or extra parameter. �e con-
struction has to ensure that x:n depends only on y:n but
is (functionally or statistically) independent of yn+:∞.
First, we augment a monotone Turingmachine with

an extra input tape containing y:∞.�eTuringmachine
is called chronological if it does not read beyond y:n
before x:n has been written. Second, semimeasures

ρ = µ, ν,M, ξU are extended to ρ(x:n∣y:∞), that is, one
semimeasure ρ(⋅∣y:∞) for each y:∞ (no distribution
over y is assumed). Any such semimeasure must be
chronological in the sense that ρ(x:n∣y:∞) is indepen-
dent of yt for t > n, hence we can write ρ(x:n∣y:n). In
classi�cation and regression, ρ is typically (condition-
ally) i.i.d., that is, ρ(x:n∣y:n) = ∏

n
t= ρ(xt ∣yt), which

is chronological, but note that the Bayesian mixture
ξ is not i.i.d. One can show that the class of lower
semi-computable chronological semimeasuresM∣

U =

{ν(⋅∣⋅), ν(⋅∣⋅), . . .} is e�ectively enumerable.
�e generalized universal a-priori semimeasure also

has two equivalent de�nitions:

M(x:n∣y:n) := ∑
p:U(p,y:n)=x:n

−ℓ(p)

= ∑
ν∈M

−K(ν)ν(x:n∣y:n) ()

which is again inM∣
U . In case of ∣Y∣ = , this reduces

to () and (). �e bounds () and () and others con-
tinue to hold, now for all individual ys, that is, M pre-
dicts asymptotically xt from yt and (y<t , x<t) for any y,
provided x is sampled from a computable probability
measure µ(⋅∣y:∞). Convergence is rapid if µ is not too
complex.

Universal Reinforcement Learning

�e generalized universal a-priori semimeasure () can
be used to construct a universal reinforcement learning
agent, called AIXI. In reinforcement learning, an agent
interacts with an environment in cycles t = , , . . . ,n. In
cycle t, the agent chooses an action yt (e.g., a limbmove-
ment) based on past perceptions x<t and past actions y<t .
�erea�er, the agent perceives xt ≡ otrt , which con-
sists of a (regular) observation ot (e.g., a camera image)
and a real-valued reward rt . �e reward may be scarce,
for example, just + (−) for winning (losing) a chess
game, and  at all other times. �en the next cycle t + 
starts. �e goal of the agent is to maximize its expected
reward over its lifetime n. Probabilistic planning deals
with the situation in which the environmental proba-
bility distribution µ(x:n∣y:n) is known. Reinforcement
learning deals with the case of unknown µ. In univer-
sal reinforcement learning, the unknown µ is replaced
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by M similarly to the prediction, decision, and classi-
�cation cases above. �e universally optimal action in
cycle t is (Hutter, )

yt := argmax
yt
∑
xt
. . . max

yn
∑
xn

[rt +⋯ + rn]M(x:n∣y:n).

()

�e expectations (Σ) and maximizations (max) over
future x and y are interleaved in chronological order to
form an expectimax tree similarly to minimax decision
trees in extensive zero-sum games like chess. Optimal-
ity and universality results similar to the prediction case
exist.

Approximations and Practical Applications

Since K andM are only semi-computable, they have to
be approximated in practice. For instance, − logM(x) =
K(x) + O(log l(x)), and K(x) can be and has been
approximated by o�-the-shelf compressors like Lempel-
Ziv and successfully applied to a plethora of clustering
problems (Cilibrasi & Vitányi, ). �e approxima-
tions upper-bound K(x) and, for example, for Lempel-
Ziv converge to K(x) if x is sampled from a context tree
source. �e 7Minimum Description Length principle
(Grünwald, ) also attempts to approximate K(x)
for stochastic x. �e Context Tree Weighting algorithm
considers a relatively large subclass ofMU that can be
summed over e�ciently.�is can be and has been com-
bined withMonte-Carlo sampling to e�ciently approx-
imate AIXI  (Veness, Ng, Hutter, & Silver, ). �e
time-bounded versions ofK andM, namely Levin com-
plexity Kt and the speed prior S have also been applied
to various learning tasks (Gaglio, ).

Other Applications

Continuously parameterized model classes are very
common in statistics. Bayesian’s usually assume a-prior
density over some parameter θ ∈ IRd, which works �ne
for many problems, but has its problems. Even for con-
tinuous classesM, one can assign a (proper) universal
prior (not density) wU

θ := 
−K(θ) >  for computable θ

(and νθ ), and  for uncomputable ones. �is e�ectively
reduces M to a discrete class {νθ ∈ M : wU

θ > } ⊆

MU which is typically dense inM. �ere are various
fundamental philosophical and statistical problems and
paradoxes around (Bayesian) induction, which nicely

disappear in the universal framework. For instance,
universal induction has no zero and no improper
p(oste)rior problem, that is, can con�rm universally
quanti�ed hypotheses, is reparametrization and repre-
sentation invariant, and avoids the old-evidence and
updating problem, in contrast to most classical contin-
uous prior densities. It even performs well in incom-
putable environments, actually better than the latter
(Hutter, ).

Discussion and Future Directions
Universal learning is designed to work for a wide range
of problems without any a-priori knowledge. In prac-
tice, we o�en have extra information about the prob-
lem at hand, which could and should be used to guide
the forecasting. One can incorporate it by explicating
all our prior knowledge z, and place it on an extra
input tape of our universal Turing machine U, or pre-
�x our observation sequence x by z and useM(zx) for
prediction.
Another concern is the dependence of K andM on

U. �e good news is that a change of U changes K(x)
only within an additive and M(x) within a multiplica-
tive constant independent of x. �is makes the theory
practically immune to any “reasonable” choice of U for
large data sets x, but predictions for short sequences
(shorter than typical compiler lengths) can be arbitrary.
One solution is to take into account our (whole) scien-
ti�c prior knowledge z (Hutter, ), and predicting
the now long string zx leads to good (less sensitive to
“reasonable” U) predictions. �is is a kind of grand
transfer learning scheme. It is unclear whether a more
elegant theoretical solution is possible.
Finally, the incomputability of K and M prevents a

direct implementation of Solomono� induction. Most
fundamental theories have to be approximated for prac-
tical use, sometimes systematically like polynomial time
approximation algorithms or numerical integration,
and sometimes heuristically like in many AI-search
problems or in non-convex optimization problems.
Universal machine learning is similar, except that its
core quantities are only semi-computable. �is makes
them o�en hard, but as described in the previous sec-
tion, not impossible, to approximate.
In any case, universal induction can serve as a “gold

standard” which practitioners can aim at. Solomono� ’s
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theory considers the class of all computable (stochas-
tic) models, and a universal prior inspired by Ockham
and Epicurus, quanti�ed by Kolmogorov complexity.
�is leads to a universal theory of induction, predic-
tion, decisions, and, by including Bellman, to universal
actions in reactive environments. Future progress on the
issues above (incorporating prior knowledge, getting
rid of the compiler constants, and �nding better approx-
imations) will lead to new insights and will continually
increase the number of applications.
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7Missing Attribute Values

Unknown Values

7Missing Attribute Values

Unlabeled Data

Unlabeled data are 7data for which there are no tar-
get values. Unlabeled data are used in 7unsupervised
learning.�ey stand in contrast to labeled data that have
target values and are used in7supervised learning.

Unsolicited Commercial Email
Filtering

7Text Mining for Spam Filtering

Unstable Learner

An unstable learner produces large di�erences in gen-
eralization patterns when small changes are made to its
initial conditions.�eobvious initial condition is the set
of training data used – for an unstable learner, sampling

http://prize.hutter1.net/
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a slightly di�erent training set produces a large di�er-
ence in testing behavior. Some models can be unstable
in additional ways, for example 7neural networks are
unstable with respect to the initial weights. In general
this is an undesirable property – high sensitivity to
training conditions is also known as high 7variance,
which results in higher overall mean squared error. �e
�exibility enabled by being sensitive to data can thus be
a blessing or a curse. Unstable learners can however be
used to an advantage in 7ensemble learning methods,
where large variance is “averaged out” across multiple
learners.
Examples of unstable learners are: neural networks

(assuming gradient descent learning), and 7decision
trees. Examples of stable learners are 7support vec-
tor machines, 7K-nearest neighbor classi�ers, and
7decision stumps. It should of course be recognized
that there is a continuum between “stable” and “unsta-
ble,” and the opinion ofwhether something is “sensitive”
to initial conditions is somewhat of a subjective one. See
also 7bias-variance decomposition for a more formal
interpretation of this concept.

Unsupervised Learning

Unsupervised learning refers to any machine learning
process that seeks to learn structure in the absence of
either an identi�ed output (cf. 7supervised learning)
or feedback (cf. 7reinforcement learning). �ree typ-
ical examples of unsupervised learning are7clustering,
7association rules, and7self-organizing maps.

Unsupervised Learning on
Document Datasets

7Document Clustering

Utility Problem

7Explanation-Based Learning
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